EP3327744A1 - Dispositif de detection de la perte de vide dans une ampoule a vide et appareil de coupure a vide comportant un tel dispositif - Google Patents

Dispositif de detection de la perte de vide dans une ampoule a vide et appareil de coupure a vide comportant un tel dispositif Download PDF

Info

Publication number
EP3327744A1
EP3327744A1 EP17189138.5A EP17189138A EP3327744A1 EP 3327744 A1 EP3327744 A1 EP 3327744A1 EP 17189138 A EP17189138 A EP 17189138A EP 3327744 A1 EP3327744 A1 EP 3327744A1
Authority
EP
European Patent Office
Prior art keywords
screen
bulb
detection device
vacuum
additional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17189138.5A
Other languages
German (de)
English (en)
Other versions
EP3327744B1 (fr
Inventor
Philippe Picot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric Industries SAS
Original Assignee
Schneider Electric Industries SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Electric Industries SAS filed Critical Schneider Electric Industries SAS
Publication of EP3327744A1 publication Critical patent/EP3327744A1/fr
Application granted granted Critical
Publication of EP3327744B1 publication Critical patent/EP3327744B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/668Means for obtaining or monitoring the vacuum

Definitions

  • the present invention thus relates to a device for detecting the loss of vacuum in a vacuum interrupter of a vacuum interrupter, said switchgear being located in a powered primary electrical network and the contacts of the bulb being housed in an envelope, said envelope housing a fixed electrode integral with one of the aforementioned bottoms and supporting a fixed contact, and a movable electrode supporting a movable contact, said movable electrode being slidably mounted through the other of the two bottoms, between a position closed of the apparatus in which the movable contact is in contact with the fixed contact and an open position of the apparatus in which the movable contact is separated from the fixed contact, this detection being carried out by the method of the measurement of electric discharges between the contacts and at least one floating potential conductive screen respectively surrounding at least one electrode and electrically connected t to the mass.
  • the problem of detecting the loss of vacuum in a bulb in use can be solved by a deformable bellows system, which provides a late indication from the moment the pressure is raised to a significant fraction (for example 10% or 100mbar). ) atmospheric pressure, as described in the patent WO2007070700 .
  • Another way of detecting the decrease of the dielectric properties of the vacuum when the pressure exceeds 10 -2 mbar is to detect the discharges which occur between on the one hand, the electrodes (fixed and mobile contacts) brought to the service voltage and another, a potential screen floating around them, by measuring the potential difference between these electrodes and this screen when a bulb is in use.
  • This detection of discharges can be done either by measuring the electromagnetic wave signals generated when the pressure increases inside the bulb, or by capacitive coupling between the floating screen and the mass via the capacitance of the capacitor. discharge detection circuit, by measuring the increase of the potential difference between the floating screen and the mass, as described in the patents, US 4553139 , WO 02/49057 (Meidensha ) EP 1 763 049 and EP 2 463 883 .
  • the discharges cease when the bulb is raised to atmospheric pressure (Patm), because of the insulating properties of the air at 1 bar and the design rules of the ampoules to ensure a satisfactory dielectric strength during the vacuum type tests between the electrodes and the screen.
  • Patm atmospheric pressure
  • the detector continues to indicate a permanent defect of the bulb when it is raised to atmospheric pressure.
  • the document EP 1763049 describes the fact that the capacitive coupling between the floating potential screen and the ground is greatly increased when the bulb is coated with solid insulation covered with a conductive layer grounded. This increases the voltage difference applied between the electrodes under the operating voltage and the screen. This principle makes it possible to simplify the detection of discharges but the discharges are not maintained at Patm.
  • the present invention solves these problems and proposes a device for detecting the loss of vacuum in a vacuum interrupter to obtain a reliable indication and maintained over the entire pressure range from about 10 -2 mbar to Patm, by the method of measuring electric discharges, without removing the vacuum cut-off device from the electrical network, as well as a vacuum breaking device comprising such a device.
  • the subject of the present invention is a device for detecting the loss of vacuum in a vacuum interrupter of the kind mentioned above, this device being characterized in that it comprises in combination so-called first means for increasing the field between the electrodes and the aforementioned floating potential screen, and so-called second means for increasing the capacitive coupling between the aforementioned screen and the mass, these two means cooperating so that the ionization threshold of the air is exceeded at atmospheric pressure so that the electric discharges continue even after the rise of the pressure at atmospheric pressure.
  • the so-called first means for increasing the electric field between the floating potential screen and the electrodes are supported at least partially by said screen.
  • the so-called first means comprise specific shapes provided on the floating potential screen and / or on an additional conductive screen located opposite said floating potential screen, said additional conductive screen being mounted around one of the electrodes to which it is electrically connected so as to be at the same electrical potential.
  • this additional conductive screen is a bellow protector screen or an insulating shield of the bulb, brought to the mains voltage.
  • the distance between the above-mentioned additional conductive screen and the floating potential screen is a few millimeters and / or aggressive forms are provided on the additional conductive screen and / or on the floating potential screen.
  • the so-called first means are positioned in the bulb on the side of the bulb remaining energized when the bulb is open or on both sides.
  • this floating potential screen comprises a cylindrical conductive strip pressed against the inner face of the insulating portion of the envelope, an elastic split metal ring or a layer of conductive material deposited on this inner face.
  • the so-called second means for increasing the capacitive coupling between the aforementioned screen and the mass consist in that the bulb is of the type embedded in a shielded or screened solid insulation covered with a conductive layer connected to the potential of the mass.
  • the aforementioned floating potential screen has a T shape with a tip oriented towards the additional conductive screen, and a bar oriented towards the ground in order to increase the surface and therefore the capacity of that side. .
  • the value of the aforementioned electric field is increased so as to reach a value of 3kV / mm under the effect of the operating voltage, this value being greater than the threshold of ionization of the air at Patm.
  • these means said first are located in an electrically closed area of the bulb so that the discharges that occur there are not likely to propagate to the inter-contact space or along the insulator of the bulb during dielectric tests.
  • these so-called first means are located in an additional volume of the bulb dedicated to the detection of discharges, this volume being added to one of the ends of the bulb, and communicating with the main volume of the bulb by at least one orifice provided in the partition wall of the two volumes of the bulb.
  • the bulb comprises an additional insulator dedicated to this additional volume or a single insulator extended to cover the aforementioned additional zone of the bulb.
  • the detection of discharges is carried out by capacitive detection of discharges or by detection of the electromagnetic waves produced by means of a radio antenna.
  • the subject of the present invention is also a medium-voltage electrical breaking device comprising a device for detecting discharges. having the above mentioned features taken alone or in combination.
  • a pole I of vacuum interrupter comprising a vacuum interrupter and its coating
  • said bulb commonly comprising for the three embodiments, and in a manner known per se, an envelope E of substantially cylindrical form closed by two funds 1,2.
  • the envelope encloses a fixed electrode 3 with respect to said envelope, and a movable electrode 4 with respect to said envelope, the two electrodes each supporting at their free end respectively a fixed contact 5 and a movable contact 6, said mobile electrode being mobile between a contact position of the two contacts and a position separated from the two contacts.
  • the casing comprises a cylindrical portion 7 made of ceramic closed by two end covers 8,9 crossed respectively by the two aforementioned electrodes 3,4.
  • the bulb also comprises two additional conductive screens 12, 13 electrically connected for one, to the mobile electrode 4, and for the other, to the fixed electrode 3.
  • the ceramic portion of the envelope E is embedded in a solid insulation 14 (typically epoxy resin) screened, covered with a conductive layer 15 connected to the potential of the mass.
  • a solid insulation 14 typically epoxy resin
  • the metallized outer surface of this pole is connected to the mass M by means of a so-called measuring capacitance, not shown, belonging to a circuit for measuring the potential difference between the aforementioned electrodes and a so-called floating screen placed between the one of the electrodes and the mass.
  • the dielectric strength between the moving electrode 4 and the ceramic part E is reduced, and it is possible to measure a decrease in the difference in potential between the electrodes 3,4 and the floating screen 16. For example, this reduction can be measured by increasing the capacitive current passing through the above-mentioned measurement capacitance.
  • the curve represents the so-called critical electrical voltage as a function of the pressure in the switch. This curve describes the principle that there is always a critical electrical voltage for a certain distance between the electrodes at a given pressure, allowing the electric current to discharge into the gas.
  • This electrical voltage for a certain distance corresponds to the minimum disruptive field, (valid only for the right branch of the Paschen curve), which is a voltage per unit length (V / m), which in this case is typically expressed in kV. / mm).
  • this voltage corresponds to Ds.
  • a pressure of between 10 Pa and about 10 4 Pa that is to say between 10 -4 bar and 10 -1 bar
  • the electric current is discharged into the gas from a potential difference equal to Up between the electrodes and the floating potential screen, the value of Ds less than Up being degressive and progressive between these two values.
  • this problem is solved by increasing (widening) the pressure range within which the electric discharges are likely to occur, so that this interval reaches the value of the atmospheric pressure. This is done by increasing the value of the electric field between the electrodes (contacts) 3,4 and the floating potential screen 16, when these electrodes are at the mains voltage. So, the figure 1 shows that when moving from the field corresponding to the voltage Up to a field corresponding to the voltage UHP, the pressure interval allowing the detection of discharges increases, and reaches the value of the atmospheric pressure, so as to allow the detection of discharges to this value of atmospheric pressure.
  • the present invention uses specific forms of conductive screens of the electrode 4 or floating screen to increase the electric field between the conductors and the floating screen under the influence of a potential of the mass close to the screen, the switch being covered with shielded solid insulation.
  • Electrodes and screens are thus intended solely for the detection of the loss of vacuum and make it possible to obtain a sufficient electric field between the electrodes and the screen so that the ionization threshold of the air is exceeded at atmospheric pressure and that discharges occur even after a rise in pressure to atmospheric pressure.
  • this vacuum switch comprises, on the mobile contact 6 side, a floating screen 16, this screen being formed by a cylindrical conductive strip pressed against the inner face of the insulating portion of the envelope E and located opposite this strip , a tip 17 projecting from the outer surface of an additional conductive screen 13 surrounding the movable electrode 4 and at the same potential as this electrode.
  • the floating potential screen 16 faces an assembly comprising a central electrode 4 and an additional conductive screen 13 brought to the mains voltage.
  • the distance between the conductive screen 13 and the floating potential screen 16 must be relatively small, advantageously a few millimeters, or aggressive forms may be provided on the screen 16 or the additional screen 13, such as the tip 17 illustrated on this figure 2 .
  • this aggressive form could consist of the edge of one or more thin disks provided on the conductive screen or the floating screen.
  • the switch comprises a floating screen 16a in the form of a conductive strip as in the previous embodiment, this strip being placed this time opposite the other electrode 3 associated with the fixed contact 5.
  • the risk associated with the presence of this additional electrode and the local reinforcement of the electric field in the bulb A which is associated with it is a decrease in the performance of holding of the bulb during dielectric tests.
  • the position of the sensor will advantageously correspond to the side of the bulb remaining energized when the bulb is open (most often the side of the busbar).
  • the position of the sensor is of course indifferent.
  • a fallback solution is to add an additional portion to the bulb to accommodate the sensor function in an electric field configuration corresponding to that of the closed bulb, presenting no risk of propagation of a partial breakdown between the central electrode and the electrode of the sensor (or floating screen), the potential being the even on both sides of the conductive strip 16.
  • FIG 4 Such a solution is illustrated by the figure 4 , illustrating the position of the sensor 16b in an additional volume 18 communicating with the volume of the main vacuum 19 of the bulb A by an orifice provided in the metal wall separating the two volumes, this additional volume having been provided around the fixed contact.
  • an additional ceramic insulator 20 dedicated to the sensor function is used in addition to the main insulator 21, on which the sensor was placed in the two positions illustrated respectively on the figures 2 and 3 . It can be seen that the same principle can be applied by using only one extended insulator to cover the area of the additional volume 18.
  • the wall separating the "sensor" and “cutoff” zones would not extend to the ceramic, but would support the screen 22 protecting the interrupting chamber, leaving a small gap between the ceramic and the screen. In the latter case, even if the volume appears less "closed”, the field configuration is equivalent, and the risk of propagation of a partial breakdown is discarded.
  • the principle of this fallback solution is therefore to provide an additional slice of the bulb, dedicated to the vacuum loss sensor function, in which the configuration of the central electrode 23 (or conductive screen) facing the screen 16b of the sensor is U-shaped.
  • This screen consists of all the live conductors of the network facing the sensor 16b in the volume 18, that is to say the old end cap 8, the electrode 3 and the new end cap 8a, the surface of these three parts having a U-shaped configuration.
  • This U-shaped configuration therefore creates an electric field of substantially radial orientation with respect to the cylindrical mass which surrounds, and the floating electrode of the sensor, said floating screen interposed between the conductive screen and the cylindrical mass. It will be noted that this U-shaped compartment can be provided both on the fixed contact side (shown on the figure 4 ) that mobile contact side of the bulb.
  • the detection of partial discharges occurring between the floating screen 16 of the sensor and the live operating conductors can be done either by the emitted electromagnetic disturbances, as described in the patent mentioned at the beginning, or more simply by capacitive coupling with the electrode of the sensor.
  • This capacitive coupling is easily achievable in the case of a bulb embedded in a solid insulation screened using a dedicated area of the screen 15, facing the internal electrode of the sensor and connected to the rest of the screen and to ground by the measurement capability of the discharge detection circuit.
  • a device has thus been achieved thanks to the invention making it possible to obtain a reliable fault indication maintained over an entire pressure range ranging from 10 -2 mbar to atmospheric pressure by the discharge method.

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

La présente invention concerne un dispositif de détection de la perte de vide dans une ampoule à vide A, par la méthode de la mesure des décharges électriques entre les électrodes (3,4) et au moins un écran conducteur (16) à potentiel flottant entourant respectivement au moins une électrode et relié électriquement à la masse M. Ce dispositif est caractérisé en ce qu'il comporte en combinaison, des moyens dits premiers, pour augmenter le champ électrique entre les électrodes (3,4) et l'écran (16), et des moyens dits seconds, pour augmenter le couplage capacitif entre l'écran précité (16) et la masse M, ces deux moyens coopérant de manière que le seuil d'ionisation de l'air soit dépassé à la pression atmosphérique afin que les décharges électriques se poursuivent même après la remontée de la pression à la pression atmosphérique.

Description

    DOMAINE TECHNIQUE
  • La présente invention concerne ainsi un dispositif de détection de la perte de vide dans une ampoule à vide d'un appareil de coupure à vide, ledit appareil de coupure étant situé dans un réseau primaire électrique alimenté et les contacts de l'ampoule étant logés dans une enveloppe, ladite enveloppe logeant une électrode fixe solidaire de l'un des fonds précités et supportant un contact fixe, et une électrode mobile supportant un contact mobile, ladite électrode mobile étant montée coulissante à travers l'autre des deux fonds, entre une position fermée de l'appareil dans laquelle le contact mobile est en contact avec le contact fixe et une position ouverte de l'appareil dans laquelle le contact mobile est séparé du contact fixe, cette détection étant réalisée par la méthode de la mesure des décharges électriques entre les contacts et au moins un écran conducteur à potentiel flottant entourant respectivement au moins une électrode et relié électriquement à la masse.
  • ETAT DE LA TECHNIQUE ANTERIEURE
  • Le problème de la détection de la perte de vide dans une ampoule en service peut être résolu par un système de soufflet déformable, lequel fournit une indication tardive à partir du moment où la pression est remontée à une fraction notable (par exemple 10% soit 100mbar) de la pression atmosphérique, tel que décrit dans le brevet WO2007070700 .
  • Une autre manière de détecter la diminution des propriétés diélectriques du vide lorsque la pression dépasse 10-2 mbar consiste à détecter les décharges qui se produisent entre d'une part, les électrodes (contacts fixe et mobile) portées à la tension de service et d'autre part, un écran à potentiel flottant qui les entoure, en mesurant la différence de potentiel existant entre ces électrodes et cet écran lorsqu'une ampoule est en service.
  • Cette détection des décharges peut se faire soit en mesurant les signaux d'onde électromagnétiques générés lorsque la pression augmente à l'intérieur de l'ampoule, soit par couplage capacitif entre l'écran flottant et la masse par l'intermédiaire de la capacité du circuit de détection des décharges, en mesurant l'augmentation de la différence de potentiel entre l'écran flottant et la masse, tel que décrit dans les brevets, US 4553139 , WO 02/49057 (Meidensha ), EP 1 763 049 et EP 2 463 883 .
  • Or, selon cette deuxième méthode, les décharges cessent lorsque l'ampoule est remontée à la pression atmosphérique (Patm), en raison des propriétés isolantes de l'air à 1 bar et des règles de conception des ampoules pour garantir une tenue diélectrique satisfaisante durant les essais de type sous vide entre les électrodes et l'écran.
  • Dans les configurations habituelles des appareillages à coupure dans le vide isolés dans l'air, la différence de tension entre les électrodes (contacts) et l'écran flottant est relativement faible, en raison du faible couplage capacitif entre l'écran flottant et la masse environnante. Les décharges risquent donc de se produire de manière transitoire, pendant le passage par le creux de la courbe de Paschen sous l'effet d'une fuite, et de s'interrompre lorsque la pression d'air est suffisamment remontée dans l'ampoule. Dans le cas d'une remontée brutale à la pression atmosphérique (fuite rapide due par exemple à une fissuration soudaine d'une céramique, d'un soufflet,etc...), l'indication donnée par l'indicateur de perte de vide risque donc de n'être que transitoire et brève, ce qui conduit à une difficulté d'interprétation et à la nécessité de mémoriser de manière fiable le passage par le creux de la courbe de Paschen afin de prévenir l'exploitant du fait qu'une ampoule dont la pression est remontée à la pression atmosphérique est en situation de défaut.
  • Il est donc préférable que le détecteur continue à indiquer un défaut permanent de l'ampoule lorsque celle-ci est remontée à la pression atmosphérique.
  • Le document EP 1763049 décrit le fait que le couplage capacitif entre l'écran à potentiel flottant et la masse est fortement augmenté lorsque l'ampoule est enrobée d'isolation solide recouverte d'une couche conductrice mise à la masse. L'on augmente ainsi la différence de tension appliquée entre les électrodes sous la tension de service et l'écran. Ce principe permet de simplifier la détection des décharges mais les décharges ne sont pas maintenues à Patm.
  • On connaît également le document US 5 399973 décrivant un principe pour augmenter l'intervalle de pression dans lequel la détection de perte de vide est possible (en abaissant la valeur minimale de pression à laquelle apparaissent les décharges) par l'intermédiaire d'un élément en saillie prévu soit sur la surface extérieure des écrans, soit sur la surface intérieure de l'enveloppe. Cependant, ce principe ne permet pas d'augmenter beaucoup la sensibilité de la détection vers les pressions élevées, en particulier jusqu'à la pression atmosphérique.
  • La présente invention résout ces problèmes et propose un dispositif de détection de la perte de vide dans une ampoule à vide permettant d'obtenir une indication fiable et maintenue sur toute la plage de pression allant d'environ 10-2 mbar à Patm, par la méthode de la mesure des décharges électriques, sans retirer l'appareil de coupure à vide du réseau électrique, ainsi qu'un appareil de coupure à vide comportant un tel dispositif.
  • EXPOSE DE L'INVENTION
  • A cet effet, la présente invention a pour objet un dispositif de détection de la perte de vide dans une ampoule à vide du genre précédemment mentionné, ce dispositif étant caractérisé en ce qu'il comporte en combinaison des moyens dits premiers, pour augmenter le champ électrique entre les électrodes et l'écran à potentiel flottant précité, et des moyens dits seconds, pour augmenter le couplage capacitif entre l'écran précité et la masse, ces deux moyens coopérant de manière que le seuil d'ionisation de l'air soit dépassé à la pression atmosphérique afin que les décharges électriques se poursuivent même après la remontée de la pression à la pression atmosphérique.
  • Selon une réalisation particulière, les moyens dits premiers pour augmenter le champ électrique entre l'écran à potentiel flottant et les électrodes sont supportés au moins partiellement par ledit écran.
  • Selon une caractéristique particulière, les moyens dits premiers comportent des formes spécifiques prévues sur l'écran à potentiel flottant et/ou sur un écran additionnel conducteur situé en regard dudit écran à potentiel flottant, ledit écran conducteur additionnel étant monté autour de l'une des électrodes à laquelle il est relié électriquement de manière à être au même potentiel électrique.
  • Selon une caractéristique particulière, cet écran additionnel conducteur est un écran protège-soufflet ou à un écran protège-isolant de l'ampoule, porté à la tension du réseau.
  • Selon une autre caractéristique, la distance entre l'écran conducteur additionnel précité et l'écran à potentiel flottant est de quelques millimètres et/ou des formes agressives sont prévues sur l'écran additionnel conducteur et/ou sur l'écran à potentiel flottant.
  • Selon une autre caractéristique, les moyens dits premiers sont positionnés dans l'ampoule du côté de l'ampoule restant sous tension lorsque l'ampoule est ouverte ou bien des deux côtés.
  • Selon une autre caractéristique, cet écran à potentiel flottant comporte une bande conductrice cylindrique plaquée contre la face interne de la partie isolante de l'enveloppe, un anneau métallique fendu élastique ou bien une couche de matériau conducteur déposée sur cette face interne.
  • Selon une autre caractéristique, les moyens dits seconds pour augmenter le couplage capacitif entre l'écran précité et la masse, consistent en ce que l'ampoule est du type enrobée dans une isolation solide blindée ou écrantée recouverte d'une couche conductrice reliée au potentiel de la masse.
  • Selon une autre caractéristique, l'écran à potentiel flottant précité présente une forme de T comportant une pointe orientée vers l'écran conducteur additionnel, et une barre orientée vers la masse afin d'augmenter la surface et donc la capacité de ce côté-là.
  • Selon une autre caractéristique, la valeur du champ électrique précité est augmentée de manière à atteindre une valeur de 3kV/mm sous l'effet de la tension de service, cette valeur étant supérieure au seuil d'ionisation de l'air à Patm.
  • Selon une autre caractéristique, ces moyens dits premiers sont localisés dans une zone électriquement fermée de l'ampoule afin que les décharges qui s'y produisent ne risquent pas de se propager à l'espace inter-contacts ou le long de l'isolateur de l'ampoule lors de tests diélectriques.
  • Selon une autre caractéristique, ces moyens dits premiers sont localisés dans un volume additionnel de l'ampoule dédié à la détection des décharges, ce volume étant ajouté à l'une des extrémités de l'ampoule, et communiquant avec le volume principal de l'ampoule par au moins un orifice prévu dans la paroi de séparation des deux volumes de l'ampoule.
  • Selon une autre caractéristique, l'ampoule comporte un isolateur additionnel dédié à ce volume additionnel ou bien un seul isolateur prolongé pour couvrir la zone additionnelle précitée de l'ampoule.
  • Selon une autre caractéristique, la détection des décharges est réalisée par détection capacitive des décharges ou bien par détection des ondes électromagnétiques produites au moyen d'une antenne radio.
  • La présente invention a encore pour objet un appareil de coupure électrique à vide moyenne tension comportant un dispositif de détection des décharges comportant les caractéristiques précédemment mentionnées prises seules ou en combinaison.
  • Mais d'autres avantages et caractéristiques de l'invention apparaîtront mieux dans la description détaillée qui suit et se réfère aux dessins annexés donnés uniquement à titre d'exemple et dans lesquels :
    • La figure 1 est une courbe illustrant la loi de Paschen, et représentant en ordonnée la tension critique appliquée entre deux électrodes distantes de 1 cm, à partir de laquelle le courant électrique se décharge dans le gaz en fonction de la pression en abscisse dans un interrupteur à vide.
    • Les figures 2,3 et 4 sont des vues en coupe longitudinale, illustrant respectivement trois réalisations différentes d'un pôle d'appareil de coupure dans le vide selon l'invention.
  • Sur les figures 2,3 et 4, l'on voit un pôle I d'appareil à coupure dans le vide comportant une ampoule à vide et son enrobage, ladite ampoule comportant communément pour les trois réalisations, et de manière connue en soi, une enveloppe E de forme sensiblement cylindrique fermée par deux fonds 1,2. L'enveloppe renferme une électrode fixe 3 par rapport à ladite enveloppe, et une électrode mobile 4 par rapport à ladite enveloppe, les deux électrodes supportant chacune à leur extrémité libre respectivement un contact fixe 5 et un contact mobile 6, ladite électrode mobile étant mobile entre une position de contact des deux contacts et une position séparée des deux contacts. L'enveloppe comporte une partie cylindrique 7 réalisée en céramique fermée par deux capots d'extrémités 8,9 traversés respectivement par les deux électrodes précitées 3,4. L'ampoule comporte également deux écrans conducteurs additionnels 12,13 reliés électriquement pour l'un, à l'électrode mobile 4, et pour l'autre, à l'électrode fixe 3.
  • La partie en céramique de l'enveloppe E est enrobée dans une isolation solide 14 (typiquement résine époxy) écrantée, recouverte d'une couche conductrice 15 reliée au potentiel de la masse.
  • La surface extérieure métallisée de ce pôle est reliée à la masse M par l'intermédiaire d'une capacité dite de mesure non représentée appartenant à un circuit de mesure de la différence de potentiel entre les électrodes précitées et un écran dit flottant, placé entre l'une des électrodes et la masse.
  • Ainsi, lorsqu' une perte de vide se produit à l'intérieur de l'ampoule A, la tenue diélectrique entre l'électrode mobile 4 et la partie en céramique E se réduit, et l'on peut mesurer une diminution de la différence de potentiel entre les électrodes 3,4 et l'écran flottant 16. Par exemple, cette diminution peut être mesurée par l'augmentation du courant capacitif traversant la capacité de mesure précitée.
  • Sur la figure 1, la courbe représente la tension électrique dite critique en fonction de la pression dans l'interrupteur. Cette courbe décrit le principe selon lequel il existe toujours une tension électrique critique pour une certaine distance entre les électrodes à une pression donnée, permettant au courant électrique de se décharger dans le gaz.
  • Cette tension électrique pour une certaine distance correspond au champ disruptif minimal, (valable uniquement pour la branche droite de la courbe de Paschen), lequel est une tension électrique par unité de longueur (V/m) s'exprimant dans ce cas classiquement en kV/mm).
  • Sur la courbe représentée sur la figure 1, cette tension correspond à Ds. Et l'on voit que pour une pression comprise entre 10 Pa et environ 104 Pa, c'est-à-dire entre 10-4 bar et 10 -1 bar, le courant électrique se décharge dans le gaz à partir d'une différence de potentiel égale à Up entre les électrodes et l'écran à potentiel flottant, la valeur de Ds inférieure à Up étant dégressive puis progressive entre ces deux valeurs.
  • On voit ainsi qu'à une valeur de pression correspondant à la pression atmosphérique (105 Pa=1 bar), les décharges électriques ne se produisent plus pour la tension Up, et que de ce fait, l'information de l'existence du défaut est transitoire.
  • Selon l'invention, ce problème est résolu en augmentant (élargissant) l'intervalle de pression à l'intérieur duquel les décharges électriques sont susceptibles de se produire, de manière que cet intervalle atteigne la valeur de la pression atmosphérique. Ceci est réalisé en augmentant la valeur du champ électrique entre les électrodes (contacts) 3,4 et l'écran à potentiel flottant 16, lorsque ces électrodes sont à la tension du réseau. Ainsi, la figure 1 montre que lorsqu'on passe du champ correspondant à la tension Up à un champ correspondant à la tension UHP, l'intervalle de pression permettant la détection des décharges augmente, et atteint la valeur de la pression atmosphérique, de manière à permettre la détection des décharges jusqu'à cette valeur de la pression atmosphérique.
  • A cet effet, la présente invention utilise des formes spécifiques d'écrans conducteurs de l'électrode 4 ou d'écran flottant afin d'augmenter le champ électrique entre les conducteurs et l'écran flottant sous l'influence d'un potentiel de la masse proche de l'écran, l'interrupteur étant recouvert d'isolation solide blindée.
  • Ces électrodes et écrans sont ainsi destinés uniquement à la détection de la perte de vide et permettent d'obtenir un champ électrique suffisant entre les électrodes et l'écran afin que le seuil d'ionisation de l'air soit dépassé à la pression atmosphérique et que les décharges se produisent même après une remontée de la pression jusqu'à la pression atmosphérique.
  • Selon la réalisation particulière de l'invention illustrée sur la figure 2, cet interrupteur à vide comporte, du côté du contact mobile 6, un écran flottant 16, cet écran étant formé par une bande conductrice cylindrique plaquée contre la face interne de la partie isolante de l'enveloppe E et, situé en regard de cette bande, une pointe 17 en saillie à partir de la surface extérieure d'un écran conducteur additionnel 13 entourant l'électrode mobile 4 et au même potentiel que cette électrode.
  • Ainsi, l'écran à potentiel flottant 16 fait face à un ensemble comportant une électrode centrale 4 et un écran conducteur additionnel 13 portés à la tension du réseau.
  • Pour que le champ électrique entre les deux électrodes 4,16 atteigne la valeur suffisamment élevée de 3 kV/mm sous la tension de service, la distance entre l'écran conducteur 13 et l'écran à potentiel flottant 16 doit être relativement réduite, avantageusement de quelques millimètres, ou bien des formes agressives peuvent être prévues sur l'écran 16 ou l'écran additionnel 13, telle que la pointe 17 illustrée sur cette figure 2.
  • Selon une autre réalisation, cette forme agressive pourrait consister en l'arête d'un ou plusieurs disques minces prévus sur l'écran conducteur ou l'écran flottant.
  • Ainsi, c'est entre l'écran conducteur additionnel 13 et l'écran à potentiel flottant 16, qu'il est nécessaire que le champ électrique soit fort pour que cela continue à décharger à la pression atmosphérique.
  • Selon une autre réalisation de l'invention illustrée sur la figure 3, l'interrupteur comporte un écran flottant 16a sous la forme d'une bande conductrice telle que dans la réalisation précédente, cette bande étant placée cette fois en regard de l'autre électrode 3 associée au contact fixe 5. Le risque lié à la présence de cette électrode additionnelle et au renforcement local du champ électrique dans l'ampoule A qui lui est associé est une diminution des performances de tenue de l'ampoule lors d'essais diélectriques.
  • Ce risque est nul si les essais sont réalisés avec l'ampoule en position fermée, car même dans l'éventualité d'un claquage partiel entre l'électrode centrale et la bande plaquée sur la céramique, l'épaisseur combinée de céramique et d'isolation extérieure solide est suffisante pour prévenir une perforation entre l'électrode 16a du capteur et la masse 15.
  • Lorsque l'ampoule est testée en position ouverte, dans l'éventualité d'un claquage partiel entre l'électrode centrale sous tension et l'électrode à potentiel flottant, le risque que l'électrode joue un rôle de relais et que le claquage évolue en franchissement entrée-sortie de l'ampoule doit être considéré.
  • Pour le minimiser, on peut envisager soit de disposer les écrans flottants (16,16a,16b) suffisamment loin des extrémités médianes des écrans intérieurs de l'ampoule, soit de loger la bande métallique en retrait dans l'épaisseur de la céramique, soit de travailler les formes d'extrémités des bandes de manière similaire à celles de l'écran conducteur additionnel12.
  • Si ces dispositions (éventuellement combinées) permettent de préserver la tenue diélectrique des ampoules, on peut donc ajouter des électrodes additionnelles sans remise en cause de l'architecture normale des ampoules, tel qu'illustré sur les figures 2 et 3.
  • On notera que la position du capteur correspondra avantageusement au côté de l'ampoule restant sous tension lorsque l'ampoule est ouverte (le plus souvent le côté du jeu de barres). Lorsque l'ampoule est fermée, ce qui correspond à la situation la plus fréquente en service, la position du capteur est bien sûr indifférente.
  • S'il s'avère difficile de maintenir la tenue diélectrique d'une ampoule enrobée écrantée d'architecture conventionnelle après incorporation d'électrodes additionnelles pour la fonction capteur, une solution de repli est d'ajouter une partie supplémentaire à l'ampoule pour loger la fonction capteur dans une configuration de champ électrique correspondant à celle de l'ampoule fermée, ne présentant aucun risque de propagation d'un claquage partiel entre l'électrode centrale et l'électrode du capteur (ou écran flottant), le potentiel étant le même de part et d'autre de la bande conductrice 16.
  • Une telle solution est illustrée par la figure 4, illustrant la position du capteur 16b dans un volume additionnel 18 communiquant avec le volume du vide principal 19 de l'ampoule A par un orifice prévu dans la paroi métallique séparant les deux volumes, ce volume additionnel ayant été prévu autour du contact fixe. Dans cette réalisation, un isolateur céramique additionnel 20 dédié à la fonction capteur est utilisé en complément de l'isolateur principal 21, sur lequel était placé le capteur dans les deux positions illustrées respectivement sur les figures 2 et 3. On voit que le même principe peut être appliqué en n'utilisant qu'un seul isolateur prolongé pour couvrir la zone du volume additionnel 18.
  • Dans ce cas, la paroi séparant les zones « capteur » et « coupure » ne s'étendrait pas jusqu'à la céramique, mais supporterait l'écran 22 protégeant la chambre de coupure, en laissant un intervalle réduit entre la céramique et l'écran. Dans ce dernier cas, même si le volume paraît moins « fermé », la configuration de champ est équivalente, et le risque de propagation d'un claquage partiel est écarté.
  • Le principe de cette solution de repli est donc de prévoir une tranche additionnelle de l'ampoule, dédiée à la fonction capteur de perte de vide, dans laquelle la configuration de l'électrode centrale 23 (ou écran conducteur) faisant face à l'écran flottant 16b du capteur est en forme de U. Cet écran est constitué par l'ensemble des conducteurs sous tension du réseau faisant face au capteur 16b dans le volume 18, c'est-à-dire l'ancien capot d'extrémité 8, l'électrode 3 et le nouveau capot d'extrémité 8a, la surface de ces trois pièces présentant une configuration en forme de U. Cette configuration en U crée donc un champ électrique d'orientation essentiellement radiale par rapport à la masse cylindrique qui l'entoure, et à l'électrode flottante du capteur, dit écran flottant, intercalée entre l'écran conducteur et cette masse cylindrique. On notera que ce compartiment en U peut être prévu aussi bien côté contact fixe (montré sur la figure 4) que côté contact mobile de l'ampoule.
  • Cette augmentation de longueur de l'enveloppe de l'ampoule ne nécessite pas forcément un allongement du circuit principal mais se traduit par un renchérissement de l'ampoule du fait de l'allongement de l'isolateur céramique et de l'addition des électrodes en U spécifiques. Cette solution ne doit donc être envisagée que s'il n'est pas possible de faire fonctionner de manière satisfaisante le capteur dans l'une ou l'autre des deux positions illustrées sur les figures 2 et 3.
  • Finalement, la détection des décharges partielles se produisant entre l'écran flottant 16 du capteur et les conducteurs sous tension de service (si le vide est dégradé) peut se faire soit par les perturbations électromagnétiques émises, comme décrit dans le brevet mentionné au début, soit plus simplement par couplage capacitif avec l'électrode du capteur. Ce couplage capacitif est facilement réalisable dans le cas d'une ampoule enrobée dans une isolation solide écrantée en utilisant une zone dédiée de l'écran 15, faisant face à l'électrode interne du capteur et reliée au reste de l'écran et à la masse par la capacité de mesure du circuit de détection des décharges.
  • On a donc réalisé grâce à l'invention, un dispositif permettant d'obtenir une indication de défaut fiable et maintenue sur toute une plage de pression allant de 10-2 mbar à la pression atmosphérique par la méthode des décharges.
  • Pour cela, l'on utilise le fait que le couplage capacitif entre un écran à potentiel flottant et la masse est fortement augmenté lorsque l'ampoule est enrobée d'isolation solide recouverte d'une couche conductrice mise à la masse, ce qui permet d'augmenter la différence de tension appliquée entre d'une part, les électrodes sous la tension de service et d'autre part, l'écran. On utilise donc en plus, des écrans spécifiques destinés uniquement à la détection de perte de vide qui permettent d'obtenir un champ électrique suffisant entre les électrodes (contacts) et ces écrans pour que le seuil d'ionisation de l'air soit dépassé à la pression atmosphérique et que les décharges se poursuivent même après une remontée de la pression à la pression atmosphérique.
  • Comme l'existence de ces champs électriques élevés dans l'ampoule, pourrait nuire à la tenue diélectrique entre l'entrée et la sortie de l'ampoule, diverses dispositions sont envisagées pour éviter cette perte de performance, dont l'une présentant une grande efficacité est de localiser ces écrans dans une zone électriquement fermée de l'ampoule, afin que les décharges qui s'y produiront ne risquent pas de se propager à l'espace inter-contacts ou le long de l'isolateur céramique.
  • Bien entendu, l'invention n'est pas limitée aux modes de réalisation décrits et illustrés qui n'ont été donnés qu'à titre d'exemple.
  • Au contraire, l'invention comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci sont réalisées suivant son esprit.

Claims (15)

  1. Dispositif de détection de la perte de vide dans une ampoule à vide d'un appareil de coupure dans le vide, ledit appareil de coupure étant situé dans un réseau primaire électrique alimenté et les contacts de ladite ampoule étant logés dans une enveloppe fermée par deux fonds logeant une électrode fixe solidaire de l'un des fonds précités et supportant un contact fixe, et une électrode mobile supportant un contact mobile, ladite électrode mobile étant montée coulissante à travers l'autre des deux fonds, entre une position fermée de l'appareil dans laquelle le contact mobile est en contact avec le contact fixe et une position ouverte de l'appareil dans laquelle le contact mobile est séparé du contact fixe, cette détection étant réalisée par la méthode de la mesure des décharges électriques entre les contacts et au moins un écran conducteur à potentiel flottant entourant respectivement au moins une électrodes et relié électriquement à la masse,
    caractérisé en ce qu'il comporte en combinaison, des moyens dits premiers, pour augmenter le champ électrique entre les électrodes (3,4) et l'écran à potentiel flottant précité (16,16a,16b), et des moyens dits seconds, pour augmenter le couplage capacitif entre l'écran précité (16,16a,16b) et la masse M, ces deux moyens coopérant de manière que le seuil d'ionisation de l'air soit dépassé à la pression atmosphérique afin que les décharges électriques se poursuivent même après la remontée de la pression à la pression atmosphérique.
  2. Dispositif de détection selon la revendication 1, caractérisé en ce que les moyens dits premiers pour augmenter le champ électrique entre l'écran à potentiel flottant (16,16a, 16b) et les électrodes (3,4) sont supportés au moins partiellement par ledit écran (16).
  3. Dispositif de détection selon la revendication 1 ou 2, caractérisé en ce que les moyens dits premiers comprennent des formes agressives prévues sur l'écran à potentiel flottant (16,16a,16b) et/ou sur un écran additionnel conducteur (12,13) situé en regard dudit écran à potentiel flottant, ledit écran additionnel étant monté autour de l'une des électrodes à laquelle il est relié électriquement de manière à être au même potentiel électrique.
  4. Dispositif de détection selon la revendication 3, caractérisé en ce que cet écran additionnel conducteur est un écran protège-soufflet (13) ou un écran protège-isolant de l'ampoule (12), porté à la tension du réseau.
  5. Dispositif de détection selon la revendication 3 ou 4, caractérisé en ce que la distance entre l'écran additionnel conducteur précité (12,13) et l'écran à potentiel flottant (16,16a,16b) est de quelques millimètres et/ou des formes agressives (17) sont prévues sur l'écran additionnel (12,13) et/ou sur l'écran à potentiel flottant (16, 16a,16b).
  6. Dispositif de détection selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les moyens dits premiers sont positionnés dans l'ampoule A du côté de l'ampoule restant sous tension lorsque l'ampoule est ouverte, ou bien des deux côtés.
  7. Dispositif de détection selon l'une quelconque des revendications 1 à 6, caractérisé en ce que cet écran à potentiel flottant (16,16a,16b) comporte une bande conductrice cylindrique plaquée contre la face interne d'une partie isolante de l'enveloppe, un anneau métallique fendu élastique ou bien une couche de matériau conducteur déposée sur cette face interne.
  8. Dispositif de détection selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens dits seconds pour augmenter le couplage capacitif entre l'écran précité (16,16a,16b) et la masse M, consistent en ce que l'ampoule est du type enrobée dans une isolation solide (14) blindée ou écrantée recouverte d'une couche conductrice (15) reliée au potentiel de la masse M.
  9. Dispositif de détection selon l'une quelconque des revendications 3 à 8, caractérisé en ce que l'écran à potentiel flottant précité (16,16a,16b) présente une forme de T comportant une pointe orientée vers l'écran conducteur additionnel (12,13), et une barre orientée vers la masse M afin d'augmenter la surface et donc la capacité de ce côté-là.
  10. Dispositif de détection selon l'une quelconque des revendications précédentes, caractérisé en ce que la valeur du champ électrique précité est de 3kV/mm sous l'effet de la tension de service.
  11. Dispositif de détection selon l'une quelconque des revendications précédentes, caractérisé en ce que ces moyens dits premiers sont localisés dans une zone électriquement fermée (18) de l'ampoule A afin que les décharges qui s'y produisent ne risquent pas de se propager dans un espace inter-contacts ou le long d'un isolateur de l'ampoule lors de tests diélectriques.
  12. Dispositif de détection selon la revendication 11, caractérisé en ce que ces moyens dits premiers sont localisés dans un volume additionnel (18) de l'ampoule dédié à la détection des décharges, ce volume étant ajouté à l'une des extrémités de l'ampoule, et communiquant avec le volume principal (19) de l'ampoule par au moins un orifice prévu dans la paroi de séparation des deux volumes de l'ampoule.
  13. Dispositif de détection selon la revendication 12, caractérisé en ce que l'ampoule comporte un isolateur additionnel (20) dédié à ce volume additionnel (18) ou bien un seul isolateur prolongé pour couvrir la zone additionnelle précitée de l'ampoule A.
  14. Dispositif de détection selon l'une quelconque des revendications précédentes, caractérisé en ce que la détection des décharges est réalisée par détection capacitive des décharges ou bien par détection des ondes électromagnétiques produites au moyen d'une antenne radio.
  15. Appareil de coupure électrique à vide moyenne tension comportant un dispositif de détection des décharges selon l'une quelconque des revendications précédentes.
EP17189138.5A 2016-11-28 2017-09-04 Dispositif de detection de la perte de vide dans une ampoule a vide et appareil de coupure a vide comportant un tel dispositif Active EP3327744B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1661565A FR3059461A1 (fr) 2016-11-28 2016-11-28 Dispositif de detection de la perte de vide dans une ampoule a vide et appareil de coupure a vide comportant un tel dispositif

Publications (2)

Publication Number Publication Date
EP3327744A1 true EP3327744A1 (fr) 2018-05-30
EP3327744B1 EP3327744B1 (fr) 2023-11-29

Family

ID=58314404

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17189138.5A Active EP3327744B1 (fr) 2016-11-28 2017-09-04 Dispositif de detection de la perte de vide dans une ampoule a vide et appareil de coupure a vide comportant un tel dispositif

Country Status (2)

Country Link
EP (1) EP3327744B1 (fr)
FR (1) FR3059461A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148830A (en) * 1981-03-11 1982-09-14 Meidensha Electric Mfg Co Ltd Vacuum degree checker for vacuum interrupter
US5399973A (en) * 1992-04-02 1995-03-21 Fuji Electric Co., Ltd. Method and apparatus for detecting a reduction in the degree of vacuum of a vacuum valve while in operation
EP1763049A1 (fr) * 2005-09-13 2007-03-14 Hitachi, Ltd. Appareillage commutateur à vide
WO2016005509A1 (fr) * 2014-07-10 2016-01-14 Supergrid Institute Sas Interrupteur isolé par du vide autorisant un test du vide, ensemble d'interrupteur et procédé de test

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148830A (en) * 1981-03-11 1982-09-14 Meidensha Electric Mfg Co Ltd Vacuum degree checker for vacuum interrupter
US5399973A (en) * 1992-04-02 1995-03-21 Fuji Electric Co., Ltd. Method and apparatus for detecting a reduction in the degree of vacuum of a vacuum valve while in operation
EP1763049A1 (fr) * 2005-09-13 2007-03-14 Hitachi, Ltd. Appareillage commutateur à vide
WO2016005509A1 (fr) * 2014-07-10 2016-01-14 Supergrid Institute Sas Interrupteur isolé par du vide autorisant un test du vide, ensemble d'interrupteur et procédé de test

Also Published As

Publication number Publication date
EP3327744B1 (fr) 2023-11-29
FR3059461A1 (fr) 2018-06-01

Similar Documents

Publication Publication Date Title
EP2463883B1 (fr) Dispositif de détection de la perte de vide dans un appareil de coupure à vide et appareil de coupure à vide comportant un tel dispositif
WO2016005509A1 (fr) Interrupteur isolé par du vide autorisant un test du vide, ensemble d'interrupteur et procédé de test
EP2085995B1 (fr) Ampoule à vide pour un appareil électrique de coupure assurant au moins la fonction sectionneur
EP1897107A1 (fr) Ampoule a vide pour un appareil de protection electrique tel un interrupteur ou un disjoncteur
EP3327744B1 (fr) Dispositif de detection de la perte de vide dans une ampoule a vide et appareil de coupure a vide comportant un tel dispositif
FR2476381A1 (fr) Sectionneur isole par gaz
EP2224252B1 (fr) Dispositif capacitif de mesure de la tension d'un élément haute tension
EP1887667A1 (fr) Dispositif d'amorcage a deux électrodes pour éclateur et procédés correspondants
WO2006072737A2 (fr) Appareil de protection d'une installation electrique a capacite de coupure amelioree
FR2841682A1 (fr) Ampoule a vide pour un appareil de protection electrique tel un interrupteur ou un disjoncteur
FR2687022A1 (fr) Appareil de mise automatique a la terre.
EP3271246B1 (fr) Cable de levage pour treuil d'helicoptere
EP3230997B1 (fr) Dispositif de coupure electrique haute tension a autosoufflage optimise
WO2016046091A2 (fr) Dispositif surveillance de la qualite du vide d'un disjoncteur a vide
EP2990811B1 (fr) Dispositif de mesure sans contact d'une tension electrique dans un cable de reseau electrique moyenne ou haute tension
EP3227897B1 (fr) Dispositif de coupure electrique integrant un disjoncteur et un sectionneur
EP4012740B1 (fr) Surveillance de dégradation d'une ampoule à vide
EP3836185B1 (fr) Appareil électrique à haute tension comprenant un dispositif anti-explosion
EP3175249A1 (fr) Dispositif de detection de decharge partielle de materiel haute tension isole au gaz
FR2647222A1 (fr) Dispositif de controle pour un appareillage sous enveloppe metallique a isolement gazeux
FR2933806A1 (fr) Appareillage electrique sous enveloppe metallique a gradient de tension reduit.
FR3056822A1 (fr) Ampoule a vide pour appareil de connexion electrique
FR2629955A1 (fr) Dispositif de protection d'un appareil electrique immerge par la detection de fuites de liquide dielectrique
EP0678887A1 (fr) Appareillage électrique à détection de pression intégrée
EP2774159A1 (fr) Appareillage electrique comportant des moyens pour limiter la formation d'un arc electrique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180607

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210315

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20230707

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017076932

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240329

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240229

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1637014

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240229

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240401