EP3327457A1 - Medical imaging system comprising a magnet unit and a radiation unit - Google Patents

Medical imaging system comprising a magnet unit and a radiation unit Download PDF

Info

Publication number
EP3327457A1
EP3327457A1 EP16200280.2A EP16200280A EP3327457A1 EP 3327457 A1 EP3327457 A1 EP 3327457A1 EP 16200280 A EP16200280 A EP 16200280A EP 3327457 A1 EP3327457 A1 EP 3327457A1
Authority
EP
European Patent Office
Prior art keywords
unit
radiation
examination
magnet
magnet unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16200280.2A
Other languages
German (de)
French (fr)
Inventor
Martino Leghissa
Rebecca Fahrig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Healthcare GmbH
Original Assignee
Siemens Healthcare GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Healthcare GmbH filed Critical Siemens Healthcare GmbH
Priority to EP16200280.2A priority Critical patent/EP3327457A1/en
Priority to US16/461,159 priority patent/US11464469B2/en
Priority to EP17720431.0A priority patent/EP3519844B1/en
Priority to JP2019527177A priority patent/JP6827114B2/en
Priority to PCT/EP2017/059690 priority patent/WO2018095587A1/en
Priority to CN201780070663.2A priority patent/CN109983356B/en
Publication of EP3327457A1 publication Critical patent/EP3327457A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4808Multimodal MR, e.g. MR combined with positron emission tomography [PET], MR combined with ultrasound or MR combined with computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0035Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4007Arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units
    • A61B6/4014Arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units arranged in multiple source-detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4064Arrangements for generating radiation specially adapted for radiation diagnosis specially adapted for producing a particular type of beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5247Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from an ionising-radiation diagnostic technique and a non-ionising radiation diagnostic technique, e.g. X-ray and ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3804Additional hardware for cooling or heating of the magnet assembly, for housing a cooled or heated part of the magnet assembly or for temperature control of the magnet assembly
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4808Multimodal MR, e.g. MR combined with positron emission tomography [PET], MR combined with ultrasound or MR combined with computed tomography [CT]
    • G01R33/4812MR combined with X-ray or computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4258Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector for detecting non x-ray radiation, e.g. gamma radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4417Constructional features of apparatus for radiation diagnosis related to combined acquisition of different diagnostic modalities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1054Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using a portal imaging system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1055Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using magnetic resonance imaging [MRI]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor

Definitions

  • Magnetic resonance imaging is an imaging procedure that is characterized by particularly high soft tissue contrast. It can therefore be used in particular in the diagnosis of tumors and in angiography.
  • radiation units such as X-ray sources or particle radiation sources.
  • Particle radiation may be, in particular, electron radiation or hadron radiation.
  • These radiation units can be used on the one hand together with a suitable detector for imaging, on the other hand for the manipulation of tissue.
  • MR image data For many medical diagnostic applications, it is desirable to use both MR image data and image data derived from radiation units. Furthermore, in the manipulation of tissue by means of particle radiation, it is desirable to monitor the position and other characteristics of the irradiated tissue by MR imaging.
  • the invention relates to a medical imaging system, comprising a magnet unit designed for magnetic resonance imaging of an examination subject and a first radiation unit designed to irradiate the examination subject, wherein the magnet unit comprises a main magnet and a housing, wherein the main magnet is disposed within the housing and wherein the main magnet coil elements and at least having a bobbin. Furthermore, the magnet unit defines such an examination opening along an examination axis that the magnet unit encloses the examination opening. Furthermore, the magnet unit has a first region which is radial to the examination axis emitted radiation of the first radiation unit is transparent. Furthermore, the first radiation unit is arranged on the side of the magnet unit facing away from the examination opening and designed to transmit radiation through the first area of the magnet unit in the direction of the examination opening. Furthermore, the first radiation unit is furthermore designed to rotate around the examination opening.
  • the first region of the magnet unit is in particular so transparent to radiation of the first radiation unit that the intensity of radiation of the first radiation unit extending radially to the examination axis and through the first region is attenuated to a lesser extent than the intensity from radially to the examination axis and not through the first Area extending radiation of the first radiation unit.
  • the attenuation of the intensity of the radiation passing through the first region after passing through the magnet unit is less than half or less than 10% or less than 1% of the attenuation of the intensity of the radiation not passing through the first region after passing through the magnet unit.
  • the examination opening is designed in particular for receiving the examination subject.
  • the first radiation unit can in particular be formed outside the magnet unit.
  • the medical imaging system may in particular comprise exactly one magnet unit.
  • the inventors have recognized that the arrangement of the radiation unit outside the magnet unit does not influence it by the strong main magnetic field in the examination opening during the MR imaging. Therefore, inexpensive radiation units that are not designed to be operated in strong magnetic fields can be used.
  • the inventors have recognized that it is not necessary to use a plurality of separated magnet units due to the region of the magnet unit that is transparent for the radiation of the first radiation unit. As a result, a more homogeneous magnetic field and thus a more accurate MR imaging can be achieved than with several separated magnet units.
  • the magnet unit further has a first exit area, which is transparent to radiation of the first radiation unit transmitted radially to the examination axis through the first area and the examination object, and wherein the first exit area does not overlap with the first area.
  • a radiation detector can also be arranged outside the magnet unit. Furthermore, the unscattered radiation of the first radiation unit can be discharged from the magnet unit through a first exit area without interacting with the magnet unit and damaging it.
  • the coil elements of the main magnet and the at least one coil carrier are arranged outside the first region of the magnet unit.
  • the inventors have recognized that, owing to this geometry of the coil elements and the coil carrier of the main magnet, transparency for the radiation of the radiation unit can be achieved particularly efficiently and cost-effectively, since no special materials are used for the coil elements of the main magnet and for the at least one coil carrier and no loss of intensity of the radiation in the transillumination of the coil elements of the main magnet or the at least one coil carrier occurs.
  • the magnet unit has in the first region at least one inner window and at least one outer window in the housing, wherein the inner window and the outer window are transparent to the radiation emitted by the first radiation unit.
  • the inner window is arranged on the side of the magnet unit facing away from the examination opening, in particular as part of the housing.
  • the outer window on the side facing away from the examination opening side of the magnet unit, in particular as part of the housing is arranged.
  • the inner window and the outer window are so transparent that the material of the inner and outer windows for the radiation of the first radiation unit is more transparent than the material of the housing.
  • the attenuation of the intensity of radiation as it passes through the window is less than half or less than 10% or less than 1% of the attenuation of the intensity as the housing passes.
  • the first region is formed as a funnel in the magnet unit, which extends radially to the examination axis and which is permeable to the radiation emitted by the first radiation unit radially to the examination axis.
  • a funnel is in particular a through opening of the magnet unit. The inventors have realized that by using a funnel the radiation unit radiation transmitted by the magnet unit will be attenuated very little.
  • the funnel can be formed in particular by the housing of the magnet unit, in particular the side walls of the funnel can be formed by the housing.
  • the inventors have recognized that the formation of the funnel through the housing makes it possible to form the magnet unit in a particularly stable manner, and in particular to design a closed cooling system as simply and inexpensively as possible.
  • the funnel can be filled in particular with a material transparent to the radiation of the first radiation unit.
  • the inventors have recognized that the stability of the magnet unit can be increased by filling with a radiation-transmissive material.
  • the medical imaging system further comprises a first radiation detector, wherein the first radiation detector is configured to detect radiation transmitted by the first radiation unit through the first region of the magnet unit, and wherein the first radiation detector is on the first radiation detector Radiation unit side facing away from the examination object is arranged.
  • a first radiation detector may, in particular, be a first X-ray detector, a gamma detector and / or a particle detector. The inventors have recognized that detection of the radiation can be used to measure the radiation dose to which the examination subject is exposed by irradiation with the radiation of the first radiation unit, and thus to minimize the radiation dose.
  • the first radiation unit is a particle source adapted to generate particle radiation.
  • the inventors have realized that by irradiation by means of particle radiation particularly much energy can be deposited in a tissue, and the irradiation is therefore particularly effective.
  • the particle source is adapted to generate electron and / or hadron radiation.
  • the inventors have recognized that electron and / or hadron radiation can be generated in a particularly simple and cost-effective manner with a particle radiation source.
  • the first radiation unit is a first X-ray source.
  • the medical imaging system has a first X-ray detector, wherein the first X-ray detector is arranged on the side of the examination subject facing away from the first X-ray source, and wherein the first X-ray source and the first X-ray detector are designed for X-ray imaging of the examination subject.
  • the inventors have recognized that imaging is possible by means of X-radiation emitted by a first X-ray source and received by a first X-ray detector, which complements MR imaging well, because MR imaging has a good soft-tissue contrast, and X-ray imaging can be good bone structures and contrast agents.
  • the inventors have further recognized that an arrangement of the first X-ray source outside the magnet unit results in a larger distance and a smaller magnification factor of the X-ray projections than by an arrangement in the examination opening. As a result, the radiation dose absorbed by the surface of the examination object, in particular the skin of a patient, and the concealment of the x-ray projections are reduced.
  • the first X-ray detector can be arranged in the main magnetic field of the main magnet.
  • the inventors have recognized that a first X-ray detector on the one hand, is clearly less sensitive to high magnetic fields than a first X-ray source, on the other hand, the arrangement in the main magnetic field, the X-rays must pass only once the main magnet, and no associated with an intensity attenuation second time. Therefore, in this arrangement, no exit region of the magnet unit for X-radiation must be transparent.
  • the first X-ray detector may be curved.
  • the inventors have recognized that with a curved configuration, the space remaining in the examination opening for examination objects is greater, and / or a larger first X-ray detector can be used.
  • the magnet unit may have a first exit area, furthermore, the first x-ray detector outside the magnet unit is arranged on the side of the magnet unit facing away from the examination opening in front of the first exit area such that the first x-ray detector is moved from the first x-ray source through the first x-ray source Area emitted X-ray radiation can receive.
  • the inventors have recognized that the arrangement of the first X-ray detector outside the magnet unit allows the examination opening to be made as large as possible.
  • the first X-ray detector is designed to rotate simultaneously with the first X-ray source around the examination opening.
  • the inventors have recognized that by simultaneous rotation, the relative position between the first X-ray source and the first X-ray detector remains constant, and the X-ray imaging does not have to be adapted to a changed relative position. Furthermore, it is possible by the simultaneous rotation not to use a large, non-rotatable first X-ray detector, but a small and thus inexpensive first X-ray detector.
  • the magnet unit is designed to rotate about the examination opening.
  • the inventors have recognized that, as a result, the first region of the magnet unit can be rotated in different orientations, and the irradiation can take place from different directions through only one transparent region of the magnet unit.
  • the transparent area of the magnet unit only has to be as large as the beam path of the radiation unit.
  • the stability of the magnet unit increases, furthermore the coil elements of the main magnet and the coil carriers of the main magnet can be arranged in a larger volume, this simplifies the generation of a homogeneous magnetic field.
  • the smallest possible first area simplifies the arrangement of a gradient coil unit and a high-frequency antenna unit outside the first area and thus improves the quality of the gradient field and the high-frequency field.
  • the first radiation unit and the magnet unit are designed to rotate simultaneously around the examination opening.
  • the first radiation unit can be connected to the magnet unit.
  • the first radiation unit may be connected to the magnet unit in such a way that the radiation emitted by the first radiation unit extends through the first transparent area of the magnet unit.
  • the inventors have recognized that by simultaneous rotation of the first radiation unit with the magnet unit no separate, time-consuming alignment and / or placement of the first radiation unit during the examination is necessary.
  • the first region of the magnet unit can be selected as small as possible.
  • the magnetic field of the main magnetic unit outside the inspection opening, which penetrates the first radiation unit does not depend on the orientation of the first radiation unit. This can be done in the first Radiation unit measures are taken to compensate for the magnetic field, which do not depend on the orientation of the first radiation unit.
  • the magnet unit is designed to cool the coil elements of the main magnet by means of heat conduction.
  • the inventors have recognized that cooling by means of heat conduction is more cost-effective than convection-based cooling by means of immersion in a coolant, since cooling by means of heat conduction requires less coolant.
  • the inventors have further recognized that when cooling by means of heat conduction, the cooling performance is not or only less influenced by the orientation of the magnet unit than by cooling by means of immersion. This allows efficient cooling even with a magnet unit designed to rotate.
  • the waste heat of the coil elements of the main magnet is diverted through conduits comprising circulating coolant.
  • the inventors have recognized that a particularly effective cooling is possible by means of the pipes.
  • the inventors have recognized that the first region can be formed in a particularly transparent manner for the radiation of the first radiation unit if the tube lines are arranged outside the first region of the magnet unit.
  • the coil elements of the main magnet are formed of electrically superconductive material, wherein the critical temperature of the superconducting material is higher than the boiling point of helium.
  • the inventors have recognized that by a critical temperature higher than the boiling point of liquid helium, coolants other than liquid helium and / or cooling methods can be used as an immersion in liquid helium, in particular cooling by means of heat conduction. This cooling is therefore more cost-effective and furthermore particularly advantageous in the case of a magnet unit designed to rotate This cooling is particularly advantageous in order to form the first region of the magnet unit transparent to the radiation of the first radiation unit.
  • the electrically conductive material of the coil elements of the main magnet is magnesium diboride.
  • the inventors have recognized that magnesium diboride is a metallic superconductor having a particularly high critical temperature. Thus, measures for cooling the coil elements can be used, which are particularly cost-effective and transparent to the radiation emitted by the radiation unit.
  • the medical imaging system further comprises a second radiation unit, wherein the second radiation unit is arranged on the side of the magnet unit facing away from the examination opening. Furthermore, the magnet unit has a second region which is transparent to radiation of the second radiation unit emitted radially to the examination axis. Furthermore, the second radiation unit is designed to transmit radiation through the second region of the magnet unit in the direction of the examination opening, furthermore, the second radiation unit is designed to rotate about the examination opening. In particular, the second beam unit can be arranged outside the magnet unit.
  • the inventors have recognized that a second radiation unit that is present in addition to a first x-ray source can be irradiated with the second radiation unit based on the MR imaging and the x-ray imaging by means of the first x-ray source.
  • the complementary image information of the MR imaging and the first X-ray imaging can be used.
  • the second radiation unit can be used particularly efficiently.
  • the second region of the magnet unit is in particular so transparent to radiation of the second radiation unit that the intensity of radial to the examination axis and through the radiation of the second radiation unit extending to the second region is attenuated to a lesser extent than the intensity of radiation of the second radiation unit extending radially to the examination axis and not through the first region and not through the second region.
  • the attenuation of the intensity of the radiation passing through the second region when passing is less than half or less than 10% or less than 1% of the attenuation of the intensity of the radiation not passing through the first and not the second region.
  • the second radiation unit is a second X-ray source
  • the medical imaging system has a second X-ray detector, wherein the second X-ray detector is arranged on the side of the examination subject which is remote from the second X-ray source.
  • the second X-ray detector is designed to rotate simultaneously with the second X-ray source around the examination opening.
  • the second X-ray source and the second X-ray detector are formed for X-ray imaging of the examination subject.
  • the inventors have recognized that with such an arrangement, it is possible to simultaneously record two X-ray projections from two different directions without having to perform rotation of the X-ray sources or rotation of the magnet unit , This makes it possible to reconstruct a three-dimensional X-ray image data set without rotation of the X-ray sources or a rotation of the magnet unit.
  • the magnet unit further has a second exit area, which is transparent to radiation of the second radiation unit transmitted radially to the examination axis through the second area and the examination object, wherein the second exit area does not overlap with the second area.
  • a radiation detector can also be arranged outside the magnet unit. Furthermore, can be discharged through a second exit region, the unscattered radiation of the second radiation unit from the magnet unit without interacting with the magnet unit and damage it.
  • the second X-ray detector may have all further features of the first X-ray detector. All the advantages associated with an embodiment of the first X-ray detector can also be assigned to the corresponding embodiment of the second X-ray detector.
  • the second area of the magnet unit, the first exit area and / or the second exit area may have all further features of the first area of the magnet unit. All the advantages associated with an embodiment of the first region of the magnet unit can also be assigned to the corresponding embodiments of the second region, the first exit region and / or the second exit region.
  • the line connecting the first X-ray source and the first X-ray detector with the connecting line of the second X-ray source and the second X-ray detector forms an angle between 60 and 120 degrees or between 80 and 100 degrees or between 85 and 95 degrees.
  • the inventors have recognized that the angle between the connecting lines corresponds to the angle between the projection directions of the X-ray projections recorded with the two X-ray sources and the two X-ray detectors. With such an angle between the X-ray projections, three-dimensional X-ray data from the two-dimensional X-ray projections can be reconstructed in a particularly efficient manner.
  • a magnet unit may in particular be cylindrical, annular and / or toroidal. Furthermore, the magnet unit has one of the examination opening facing Side, which is referred to as the inner side, further, the magnet unit has a side facing away from the examination opening, which is referred to as the outer side.
  • the magnet unit encloses the examination opening in such a way that it encloses the examination opening along a circulation around the preferred direction, ie the examination opening is in particular open at two ends.
  • the magnet unit also encloses an inspection opening when it has design-related recesses.
  • a radiation unit emits electromagnetic radiation or particle radiation.
  • Electromagnetic radiation may in particular be X-radiation or gamma radiation.
  • electromagnetic radiation having a wavelength of between 1 ⁇ m and 500 ⁇ m, in particular between 5 ⁇ m and 250 ⁇ m, in particular between 5 ⁇ m and 60 ⁇ m is referred to as X-radiation.
  • electromagnetic radiation having a wavelength of less than 5 ⁇ m, in particular less than 1 ⁇ m is referred to as gamma radiation, regardless of the generation of the radiation.
  • the spectrum of both X-rays and gamma rays can be monochromatic or polychromatic.
  • particle radiation corresponds to a stream of particles in a common direction.
  • Particles may in particular be leptons or baryons.
  • Baryons may in particular be protons or neutrons.
  • Leptons may in particular be electrons, positrons or muons.
  • a first region, a second region and / or an exit region of the magnet unit are transparent, in particular for the radiation of the first radiation unit, if the intensity of the radiation after passing through the first region, the second region and / or the exit region is at least 10%, in particular at least 50%, in particular at least 90%, in particular at least 95%, in particular at least 99%, in particular at least 99.9%, of the intensity of the radiation before passing through the first region, the second area and / or the exit area is.
  • the magnet unit is more transparent, in particular for radiation of the first radiation unit extending radially to the examination axis and through the first area, the second area and / or the outlet area, than for the radiation extending radially to the examination axis and not through the first area, the second area and / or the exit area the first radiation unit, if the attenuation of the intensity of the radiation extending radially to the examination axis and not by the first region, the second region and / or the outlet region by more than a factor of 2, in particular by more than a factor of 5, in particular by more than one Factor 10, in particular by more than a factor 50, is greater than the attenuation of the intensity of the radiation extending radially to the examination axis and through the first region, the second region and / or the exit region.
  • the intensity denotes the energy of the radiation per unit area and per unit of time.
  • the intensity of the radiation is particularly proportional to the quadratic amplitude of the variable electric field.
  • the intensity of the radiation is, in particular, proportional to the energy of the particles and to the number of particles per unit of time.
  • a first unit and a second unit simultaneously rotate about an axis or a region as they rotate at the same angular velocity about the axis or region.
  • the angle between the first connecting line of the first unit with the axis or the region and the second connecting line of the second unit with the axis or the region remains constant.
  • the cooling of the coil elements of a magnet can be effected by heat conduction, heat convection and / or thermal radiation.
  • the coil elements of the main magnet of an MR device are designed, for example, for cooling by means of thermal convection, by being stored in liquid helium. Furthermore, the coil elements of the main magnet of an MR device can be designed for cooling by means of heat conduction.
  • Superconductors are materials whose electrical resistance falls below zero at a critical temperature (another technical term is the critical temperature). Superconducting materials are used in particular in coils and coil elements for generating strong magnetic fields.
  • a first unit which is arranged on the side facing away from a second unit side of a third unit, does not have to be part of the third unit or be included by the third unit.
  • a first unit is arranged behind the second unit, viewed in particular from the third unit, but in particular the first unit can also be fastened or arranged directly on the second unit.
  • a first unit arranged on the side of a third unit facing a second unit does not have to be part of the third unit or be included in the third unit.
  • a first unit is arranged in front of the second unit, in particular from the third unit, but in particular the first unit can also be fastened or arranged directly on the second unit.
  • Fig. 1 shows a perspective view of a medical imaging system 10.
  • the medical imaging system 10 comprises a magnet unit 20, a first X-ray source 30, a storage and rotation device 40, an MR control and evaluation unit 50, an X-ray control and evaluation unit 60 and a storage device 70, on which an examination object 80 is located.
  • the magnet unit 20 forms an examination opening 90, which is designed to receive the patient support device 70 with the patient 80.
  • the magnet unit 20 is formed in the form of a hollow cylinder about an examination axis 91, the examination axis 91 extending parallel to a third coordinate axis z. Furthermore, a first coordinate axis x and a second coordinate axis y are shown, which together with the third coordinate axis z form a three-dimensional Cartesian coordinate system.
  • the magnet unit 20 is rotatable about the examination opening 90, in particular rotatably around the examination axis 91, by means of the mounting and rotating device 40.
  • the first x-ray source 30 is fixedly connected to the magnet unit 20, so that upon rotation of the magnet unit 20 about the examination axis 91, the first x-ray source 30 is also rotated about the examination axis 91 and about the examination opening 90.
  • the magnet unit 20 is connected to the MR control and evaluation unit 50.
  • the first radiation unit 30 is connected to the radiation control and evaluation unit 60.
  • the MR control and evaluation unit 50 is connected to the radiation control and evaluation unit 60; in particular, the MR control and evaluation unit 50 and the radiation control and evaluation unit 60 can exchange image information and / or control signals with one another. It is also alternatively possible for the MR control and evaluation unit 50 and the radiation control and evaluation unit 60 to be designed in a common control and evaluation unit.
  • the examination object 80 is a patient 80
  • the storage device 70 is a patient support device 70.
  • the patient support device 70 is adapted to transport the patient 80 into the cylindrically shaped examination opening 90.
  • Fig. 2 shows a magnet unit 20 with an outer window 25.1 and an inner window 25.2, wherein the windows are formed as part of the housing 26 of the magnet unit 20.
  • the first area of the magnet unit 20 is bounded by the outer window 25.1 and the inner window 25.2.
  • the outer window 25.1 and the inner window 25.2 are here made of glass.
  • the two windows 25.1, 25.2 can also be made of beryllium, aluminum or another material, the other material being transparent to the radiation 32 of the first radiation unit 30.
  • the outer window 25.1 and the inner window 25.2 is rectangular.
  • the two windows 25.1, 25.2 can also be round, oval or in another form.
  • the necessary stability of the magnet unit 20 and the geometric shape of the beam path of the radiation 32 of the first radiation unit 30 can be taken into account.
  • the magnet unit 20 is designed to rotate around the examination axis 91 and only exactly a first area of the magnet unit 20 is bounded by the outer window 25.1 and the inner window 25.2. If the magnet unit 20 is not designed to rotate around the examination axis 91, it is alternatively possible to use a magnet unit 20 having a plurality of first areas and thus a plurality of outer windows 25.1 and inner windows 25.2, or a magnet unit 20 having a larger first area defined by To use a larger outer window 25.1 and a larger inner window 25.2 to radiate with the first radiation unit 30 from different directions on the object to be examined 80. In the embodiment shown are the outer Window 25.1 and the inner window 25.2 arcuately adapted to the curvature of the housing 26 of the magnet unit 20. It is also possible to use a flat outer window 25.1 and / or a flat inner window 25.2.
  • Fig. 3 shows a magnet unit 20, which forms a funnel 24 as a first region.
  • the funnel 24 is formed in particular by the housing 26 of the magnet unit 20.
  • the funnel 24 is formed in this embodiment as a prism with a rectangular base.
  • the funnel 24 may also be formed as a prism with a different base area, or as a truncated pyramid or truncated cone.
  • the funnel 24 is cylindrical.
  • the hopper 24 is filled with air.
  • the funnel 24 can in particular also be filled with plexiglass.
  • the magnet unit 20 is designed to rotate around the examination axis 91 and only exactly a first area of the magnet unit 20 is formed by a funnel 24.
  • the magnet unit 20 is not configured to rotate around the inspection axis 91, it is possible to use a magnet unit 20 having a plurality of first areas and thus multiple funnels 24, or a magnet unit 20 having a larger first area with a larger funnel 24 for irradiating the examination subject 80 with the first radiation unit 30 from different directions.
  • Fig. 4 shows a section through the medical imaging system 10 orthogonal to the examination axis 91, in particular a section through the magnet unit 20th
  • Fig. 5 also shows a section through the medical imaging system 10 orthogonal to the examination axis 91, in particular a section through the magnet unit 20.
  • the magnet unit 20 is adapted to rotate
  • the first radiation unit 30 is fixedly connected to the magnet unit 20 and adapted to be common and to rotate simultaneously with the magnet unit 20 about the inspection opening 90.
  • the orientation of the magnet unit 20 is given by a first rotated coordinate axis x 'and a second rotated coordinate axis y', the second rotated coordinate axis y 'being orthogonal to the first rotated coordinate axis x', and the first rotated coordinate axis x 'and the second rotated coordinate axis x' Coordinate axis y 'are orthogonal to the examination axis 91 and thus the third coordinate axis z.
  • the first radiation unit 30 corresponds to a first X-ray source
  • the medical imaging system 10 comprises a first X-ray detector 31.
  • the magnet unit 20 is connected to another first radiation unit 30 and at the same time configured to rotate about the examination axis 91 .
  • the first X-ray detector 31 is designed to rotate simultaneously with the first X-ray source 30 and thus simultaneously with the magnet unit 20.
  • the first X-ray detector 31 could also be stationary, in which case a significantly larger and / or a curved first X-ray detector 31 must be used in order to detect the X-ray radiation 32 of the first X-ray source 30 from different directions.
  • the first radiation unit 30 is a first x-ray source 30, which is designed to transmit x-ray radiation 32.
  • radiation unit 30 can also be designed to transmit gamma radiation or particle radiation.
  • the first X-ray source 30 is designed as a first X-ray tube 30 with a rotating anode (an English technical term is "rotating anode").
  • a first x-ray tube 30 may in particular be formed together with a first x-ray detector 31 for x-ray imaging of the examination subject 80 by taking x-ray projections of the examination subject 80.
  • a first x-ray tube with rotating anode and a first x-ray detector 31 are known from the prior art.
  • a first X-ray source 30 may also be the first static anode X-ray tube ("static anode") or an liquid metal jet anode ("liquid metal jet anode”).
  • a first X-ray source can be designed as a linear accelerator (an English technical term is "linear accelerator", short LINAC).
  • linear accelerator an English technical term is "linear accelerator”, short LINAC.
  • X-ray radiation having a smaller wavelength can be generated with a linear accelerator, in particular.
  • This X-ray radiation can then be used in particular for the manipulation of a region of the examination object 80. It can be destroyed in particular by the irradiation tissue, especially tumor tissue. With a linear accelerator and particle radiation can be generated.
  • a linear accelerator has a linear acceleration unit formed along an axis.
  • the linear acceleration unit may be formed parallel to the first rotated coordinate axis x '.
  • the linear acceleration unit can also be designed in a different direction be, in particular parallel to the third coordinate axis z or parallel to the second rotated coordinate axis y '.
  • the space requirement above the magnet unit 20 is particularly small, and the medical imaging system 10 can be used in standardized examination rooms, but with particle radiation then an additional deflection unit must be used to correct the radiation 32 through the first area of the magnet unit 20 send.
  • a first X-ray detector 31 may be formed flat as in the illustrated embodiment.
  • a flat X-ray detector 31 different embodiments are known, for example consisting of amorphous silicon or consisting of complementary metal oxide semiconductors (an English term is "complementary metal oxide semiconductor", a common abbreviation is "CMOS").
  • CMOS complementary metal oxide semiconductor
  • photon counting first X-ray detectors as well as first X-ray detectors comprising a screen are known (a technical term is "screen-film”), wherein the screen converts X-ray radiation 32 into visible light.
  • the first X-ray detector 31 may alternatively also be curved or piecewise curved.
  • the first X-ray detector 31 may, as in the embodiment shown, the Fig. 4 and Fig. 5 be formed within the examination opening 90. Furthermore, the X-ray detector can also be formed between the main magnet 21 and the examination opening 90, in particular between the parts or within the gradient coil unit 22 or the parts or within the high-frequency antenna unit 23. Alternatively, the first X-ray detector 31 can also be outside of the magnet unit 20 on the of the The first X-ray source facing away from the magnet unit 20 may be arranged. In this case, the magnet unit 20 has an outlet region 27 that is transparent to the radiation 32 of the first radiation unit 30, wherein the radiation 32 passes through the exit region 27 after the examination object 80 has passed.
  • Fig. 6 the mode of operation of a magnet unit 20 is shown schematically on the basis of a section orthogonal to the second coordinate axis y.
  • the magnet unit 20 encloses an examination opening 90 for receiving a patient 80.
  • the examination opening 90 in the present exemplary embodiment has a cylindrical shape and is surrounded by a hollow cylinder in a circumferential direction by the magnet unit 20. In principle, however, a different design of the examination opening 90 is conceivable at any time.
  • the patient 80 can be pushed into the examination opening 90 by means of a patient support device 70.
  • the patient support device 70 has a patient table designed to be movable within the examination opening 90.
  • the magnet unit 20 comprises a main magnet 21 for generating a strong and in particular homogeneous main magnetic field within the examination opening 90.
  • the magnet unit 20 is shielded by means of a housing 26 to the outside.
  • the magnet unit 20 further includes a gradient coil unit 22 for generating magnetic field gradients used for spatial coding during imaging.
  • the gradient coil unit 22 is controlled by means of a gradient control unit 53 of the MR control and evaluation unit 50.
  • the magnet unit 20 furthermore comprises a high-frequency antenna unit 23, which in the present exemplary embodiment is designed as a body coil permanently integrated in the magnet unit 20.
  • the high-frequency antenna unit 23 is designed to excite atomic nuclei established in the main magnetic field generated by the main magnet 21.
  • the high-frequency antenna unit 23 is controlled by a high-frequency antenna control unit 52 of the MR control and evaluation unit 50 and radiates high-frequency alternating fields into an examination space, which is essentially formed by an examination opening 90 of the magnet unit 20.
  • the high frequency antenna unit 23 is further configured to receive magnetic resonance signals.
  • the gradient coil unit 22 can generate magnetic fields with a gradient in the direction of the first rotated coordinate axis x ', in the direction of the second rotated coordinate axis y' or in the direction of the third coordinate axis y.
  • the gradient coil unit 22 in this exemplary embodiment comprises three gradient coil subunits which can each generate a magnetic field with a gradient in the direction of one of the coordinate axes x ', y', z '.
  • an arrangement is known for each of the three gradient coil unit units, so that each gradient coil unit unit is arranged outside the first area of the magnet unit 20.
  • the magnet unit 20 is connected to an MR control and evaluation unit 50.
  • the MR control and evaluation unit 50 controls the magnet unit 20 centrally by means of a system control unit 51, such as, for example, carrying out a predetermined imaging gradient echo sequence. In this case, the control takes place via a high-frequency antenna control unit 52 and a gradient control unit 53.
  • the MR control and evaluation unit 50 comprises an evaluation unit (not shown) for evaluating medical image data acquired during the magnetic resonance examination.
  • the MR control and evaluation unit 50 comprises a user interface (not shown), which comprises a display unit 54 and an input unit 55, which are each connected to the system control unit 51.
  • Control information such as imaging parameters, as well as reconstructed magnetic resonance images may be displayed on the display unit 54, for example on at least one monitor, for a medical operator.
  • information and / or parameters can be input during a measuring process by the medical operating personnel.
  • Fig. 7 shows a section orthogonal to the first rotated coordinate axis y 'through a funnel 24 through the magnet unit 20.
  • the funnel 24 passes through the main magnet 21 and the gradient coil unit 22, but not through the high-frequency antenna unit 23.
  • the high-frequency antenna unit 23 is at least partially formed permeable to radiation 32 of the first radiation unit 30. It is also possible that the funnel 24 penetrates the high-frequency antenna unit 23. Furthermore, it is also possible that the funnel 24 does not penetrate the gradient coil unit 22, in which case the gradient coil unit 22 must be at least partially permeable to radiation 32 of the first radiation unit 30.
  • the funnel 24 penetrates the main magnet 21 in such a way that the main magnet 21, in particular the coil elements 21.
  • the main magnet 21 comprises a plurality of superconducting coil elements 21.1 on a coil support 21.2, which are surrounded by a coolant 21.3.
  • the superconducting coil elements 21.1 in this case revolve around the examination opening 90.
  • the coil support 21.2 on the one hand ensures the mechanical stability and the dimensional stability of the coil elements 21.1, as well as for the cooling of the coil elements 21.1.
  • Fig. 8 shows a section orthogonal to the first rotated coordinate axis y 'through the outer window 25.1 and the inner window 25.2 of the magnet unit 20.
  • the outer window 25.1 and the inner window 25.2 are in the embodiment shown a part of the housing 26 of the magnet unit 20. Both the outer window 25.1 and the inner window 25.2 are rectangular here. Of course, other window shapes are possible, in particular round windows 25.1, 25.2.
  • the thermal insulation 21.4 likewise has regions 21.5 which are permeable to the radiation 32 of the first radiation unit 30. These areas 21.5 of the thermal insulation 21.4 For example, they may be constructed of the material of thermal insulation 21.4, but may be made thinner than the housing 26 outside the region.
  • the regions 21.5 of the thermal insulation 21.4 can also be formed from a metal foil, in particular from an aluminum foil or a copper foil.
  • the outer window 25.1 and the inner window 25.2 consist in the illustrated embodiment of beryllium. It is also possible to form the windows 25.1, 25.2 of a different material that is transparent to the radiation 32 of the first radiation unit 30, for example made of aluminum or glass.
  • the electrically conductive material of the coil elements 21.1 is magnesium diboride MgB 2 .
  • the critical temperature of 39 K of magnesium diboride MgB 2 is above the boiling point of 4.2 K helium at atmospheric pressure 1013 hPa.
  • electrically conductive materials for the coil elements 21.1 to imagine, especially superconducting materials, and especially superconducting materials having a critical temperature above the boiling point 4.2 K of helium at normal pressure 1013 hPa, for example niobium germanium Nb 3 Ge with a critical temperature of 23 K.
  • the cooling is carried out by heat conduction through the bobbin 21.2 by the bobbin 21.2 is cooled by means of a tube system, wherein circulated in the tube system, a coolant for heat transfer and the heat is transported to a heat exchanger. It can be supported by means of an optional gaseous coolant 21.3 cooled. That in the Fig. 7 not shown tube system is formed such that it is not formed in the first region of the magnet unit 20 in order to improve the transparency of the first region for radiation 32 of the first radiation unit 30.
  • the cooling of the coil elements 21.1 can be done by immersion in a coolant 21.3, for example, in liquid helium 21.3.
  • a coolant 21.3 for example, in liquid helium 21.3.
  • Such a tube system is for example from the document DE 10 2004 061 869 B4 known.
  • the coil elements 21.1 of the main magnet 21 and the bobbin 21.2 of the main magnet 21 are not arranged in the first region of the magnet unit 20. Also, no parts of the coil elements 21.1 and no parts of the coil support 21.2 are arranged in the first region of the magnet unit 20.
  • the coil elements 21.1 usually surround the examination axis 91 in a ring shape in order to generate a homogeneous magnetic field in the direction of the third coordinate axis z when current flows through the examination opening 90.
  • the annular coil elements 21.1 are at a distance from one another with respect to the third coordinate axis z.
  • a distance greater than the extent of the first region with respect to the third coordinate axis Z can be selected between two different coil elements 21.1, and the two different coil elements 21.1 can different sides of the first area are arranged. This distance may in particular be greater than the distances between all other adjacent coil elements 21.1.
  • the bobbin 21.2 forms in the first region of a through opening, which is greater than the extension of the beam path of the radiation 32 through the bobbin 21.2.
  • the material of the coil carrier 21.2 a material that is transparent to the radiation 32 of the first radiation unit 30.
  • the bobbin 21.2 is advantageously made of a material with high thermal conductivity and low mechanical deformability, in particular of metal, in particular of aluminum.
  • Fig. 9 11 shows a schematic section through a medical imaging system 10 with a first X-ray source 30, a second X-ray source 33, a first X-ray detector 31 and a second X-ray detector 34.
  • the first X-ray source 30 is designed to receive X-radiation 32 through the magnet unit 20 and through the examination subject 80 in the direction of the first rotated coordinate axis x 'to the first x-ray detector 31
  • the second x-ray source 33 is designed to emit x-ray radiation 35 through the magnet unit 20 and through the examination subject 80 in the direction of the second rotated coordinate axis y' to the second x-ray detector 34.
  • the rotated coordinate axis x ' is orthogonal to the rotated coordinate axis y', and both rotated coordinate axes are orthogonal to the examination axis 91 and thus to the coordinate axis z.
  • two X-ray projections with respect to orthogonal projection directions can be recorded simultaneously.
  • the magnet unit 20 is designed to rotate the examination opening 90, in particular about the examination axis 91.
  • the first X-ray source 30, the first X-ray detector 31, the second X-ray source 33 and the second X-ray detector 34 are designed to rotate simultaneously with the magnet unit 20 around the examination opening 90, in particular around the examination axis 91, for example by being firmly connected to the magnet unit 20 are.
  • the connecting line between the first X-ray source 30 and the first X-ray detector 31 corresponds to FIG Fig. 9 of the coordinate axis x '
  • the connecting line between the second x-ray source 33 and the second x-ray detector 34 corresponds to the coordinate axis y'.
  • the connecting lines are orthogonal to each other, but other angles are possible.
  • Fig. 10 shows a schematic section through a medical imaging system 10 orthogonal to the second coordinate axis y.
  • the medical imaging system 10 comprises, in addition to the magnet unit 20, a radiation unit 30 which comprises a particle accelerator 30.1 and a charged particle beam guide 30.2 for charged particles (an English term for a mobile particle beam guidance is "gantry").
  • the particle accelerator 30. 1 is stationary, and the particle beam guide 30. 2 is designed to rotate the examination opening 90, in particular around the examination axis 91.
  • the magnet unit 20 is designed to rotate about the examination opening 90.
  • the particle beam guide 30.2 and the magnet unit 20 are designed for simultaneous rotation.
  • the movable particle beam guide 30.2 comprises deflection units which generate a magnetic field and, by means of the Lorentz force acting on charged particles, guide the particles to curves along the particle beam guidance 30.2.
  • the strength of the magnetic fields of the particle beam guide 30.2 can be adapted to the mass, the charge and the velocity of the guided particles.
  • the medical imaging system 10 further comprises an exit region 27 and a shield 28 in this exemplary embodiment.
  • the exit region 27 is configured such that the radiation 32 emitted by the radiation unit 30 through the funnel 24 onto the examination object 80 leaves the magnet unit 20 through the exit region 27.
  • the shield 28 which is advantageously made of lead, absorbs the particle beam 32 in order to prevent a danger from the particle radiation 32.
  • the exit region 27 of the magnet unit 20 is relative to the examination axis 91 the funnel 24 of the magnet unit 20 is arranged directly opposite. However, it is also possible to form the exit region 27 at another position, so that the deflection of the radiation 32 by the main magnetic field of the main magnet 21 is taken into account.
  • Fig. 11 shows a further section of the in Fig. 10 Since the main magnet 21, the gradient coil unit 22 and the high-frequency antenna unit 23 generate temporally constant or temporally variable magnetic or electric fields, radiation 32 consisting of electrically charged particles is deflected by the Lorentz force.
  • the first radiation unit 30 is designed to adapt the speed and direction of the electrically charged particles in the particle beam 32 such that they strike a predefined part of the examination object 80, taking into account the electrical and magnetic fields prevailing in the examination opening 90.
  • the radiation control and evaluation unit 60 and the MR control and evaluation unit 50 are connected in this embodiment, while the MR control and evaluation unit 50 provides information about the magnetic field in the magnet unit 20 to the radiation control and evaluation unit 60, which adjusts the speed and direction of the particles of the particle radiation 32.
  • the radiation control and evaluation unit 60 and the MR control and evaluation unit 50 it is also possible to execute the radiation control and evaluation unit 60 and the MR control and evaluation unit 50 as a common control and evaluation unit which controls both the magnet unit 20 and the first radiation unit 30 and evaluates the data obtained.
  • the MR control and evaluation unit 50 transmits MR image data sets to the radiation control and evaluation unit 60.
  • the radiation control and evaluation unit 60 can then transmit the radiation unit 30 so that the radiation 32 strikes a predetermined part of the examination object 80.
  • a possible movement of the predetermined part of the examination object 80 due to changes or movements of the examination subject 80 can be detected by an analysis of the MR image data sets and compensated by means of the radiation control and evaluation unit 60.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • Pulmonology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electromagnetism (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

Die Erfindung betrifft ein medizinisches Bildgebungssystem, umfassend eine Magneteinheit (20) ausgebildet zur Magnetresonanzbildgebung eines Untersuchungsobjekts sowie eine erste Strahlungseinheit (30) ausgebildet zum Bestrahlen des Untersuchungsobjekts, wobei die Magneteinheit einen Hauptmagneten sowie ein Gehäuse aufweist, wobei der Hauptmagnet innerhalb des Gehäuses angeordnet ist und wobei der Hauptmagnet Spulenelemente und wenigstens einen Spulenträger aufweist. Weiterhin definiert die Magneteinheit derart eine Untersuchungsöffnung (90) entlang einer Untersuchungsachse definiert, dass die Magneteinheit die Untersuchungsöffnung umschließt. Weiterhin weist die Magneteinheit einen ersten Bereich auf, der für radial zur Untersuchungsachse ausgesendete Strahlung der ersten Strahlungseinheit transparent ist. Weiterhin ist die erste Strahlungseinheit an der von der Untersuchungsöffnung abgewandten Seite der Magneteinheit angeordnet und dazu ausgebildet, Strahlung durch den ersten Bereich der Magneteinheit in Richtung der Untersuchungsöffnung zu senden. Weiterhin ist erste Strahlungseinheit weiterhin dazu ausgebildet, um die Untersuchungsöffnung zu rotieren.The invention relates to a medical imaging system comprising a magnet unit (20) designed for magnetic resonance imaging of an examination object and a first radiation unit (30) designed to irradiate the examination subject, wherein the magnet unit comprises a main magnet and a housing, wherein the main magnet is disposed within the housing and wherein the main magnet coil elements and at least one coil carrier. Furthermore, the magnet unit defines such an examination opening (90) along an examination axis that the magnet unit encloses the examination opening. Furthermore, the magnet unit has a first region, which is transparent to radiation of the first radiation unit emitted radially to the examination axis. Furthermore, the first radiation unit is arranged on the side of the magnet unit facing away from the examination opening and designed to transmit radiation through the first area of the magnet unit in the direction of the examination opening. Furthermore, the first radiation unit is furthermore designed to rotate around the examination opening.

Description

Die Magnetresonanztomographie (kurz MR) ist ein bildgebendes Verfahren, das sich durch besonders hohen Weichteilkontrast auszeichnet. Sie kann daher insbesondere bei der Diagnostik von Tumoren und in der Angiographie eingesetzt werden.Magnetic resonance imaging (MR) is an imaging procedure that is characterized by particularly high soft tissue contrast. It can therefore be used in particular in the diagnosis of tumors and in angiography.

In diesen Anwendungsgebieten ist es weiterhin bekannt, Strahlungseinheiten wie Röntgenquellen oder Teilchenstrahlungsquellen einzusetzen. Bei Teilchenstrahlung kann es sich dabei insbesondere um Elektronenstrahlung oder um Hadronenstrahlung handeln. Diese Strahlungseinheiten können einerseits zusammen mit einem geeigneten Detektor zur Bildgebung, andererseits zur Manipulation von Gewebe eingesetzt werden.In these application areas, it is also known to use radiation units such as X-ray sources or particle radiation sources. Particle radiation may be, in particular, electron radiation or hadron radiation. These radiation units can be used on the one hand together with a suitable detector for imaging, on the other hand for the manipulation of tissue.

Für viele medizinische Diagnostikanwendung ist es wünschenswert, sowohl MR-Bilddaten als auch aus Strahlungseinheiten gewonnene Bilddaten zu verwenden. Weiterhin ist es bei der Manipulation von Gewebe mittels Teilchenstrahlung wünschenswert, die Position und andere Charakteristika des bestrahlten Gewebes mittels MR-Bildgebung zu überwachen.For many medical diagnostic applications, it is desirable to use both MR image data and image data derived from radiation units. Furthermore, in the manipulation of tissue by means of particle radiation, it is desirable to monitor the position and other characteristics of the irradiated tissue by MR imaging.

Es ist bekannt, eine MR-Bildgebung und Bestrahlung zeitlich versetzt mittels eines MR-Geräts und mittels eines vom MR-Gerät separaten Strahlungsgeräts durchzuführen. Hierbei muss der Patient aber zwischen den beiden unterschiedlichen Geräten transportiert werden oder sogar umgelagert werden. Weiterhin kann sich die Anatomie des Patienten aufgrund des Zeitraums zwischen den beiden Vorgängen ändern, z.B. durch Atmung oder Stoffwechselvorgänge. Dies erschwert eine Kombination der MR-Bildgebung mit der Bestrahlung.It is known to carry out MR imaging and irradiation offset in time by means of an MR device and by means of a radiation device separate from the MR device. However, the patient must be transported or even relocated between the two different devices. Furthermore, the anatomy of the patient may change due to the time period between the two procedures, e.g. through breathing or metabolic processes. This complicates a combination of MR imaging with radiation.

Aus der Druckschrift US 2015/0247907 A1 ist es bekannt, eine Röntgenquelle sowie einen Röntgendetektor in der Untersuchungsöffnung eines Magnetresonanztomographen zu betreiben. Hierfür müssen aber sowohl die Röntgenquelle als auch der Röntgendetektor dafür ausgelegt sein, in starken Magnetfeldern betrieben zu werden.From the publication US 2015/0247907 A1 It is known to operate an X-ray source and an X-ray detector in the examination opening of a magnetic resonance tomograph. For this, however, both the X-ray source and the X-ray detector must be designed to be operated in strong magnetic fields.

Weiterhin ist aus der Veröffentlichung GANGULY, Arundhuti et al.: "Truly Hybrid X-Ray/MR Imaging: Toward a Streamlined Clinical System", in: Academic Radiology (12) 2005, Seiten 1167 - 1177 , bekannt, ein MR-Gerät zu verwenden, der mehrere Magneteinheiten aufweist, und die Strahlungseinheit so auszubilden, dass der Strahlengang zwischen den unterschiedlichen Magneteinheiten hindurch verläuft. Hierdurch wird die Strahlungseinheit zwar nicht vom starken Magnetfeld in der Untersuchungsöffnung des MR-Geräts beeinflusst, durch die mehreren Magneteinheiten ist es aber schwierig, ein für die MR-Bildgebung notwendiges homogenes Magnetfeld in der Untersuchungsöffnung zu erreichen.Furthermore, from the publication GANGULY, Arundhuti et al .: "Truly Hybrid X-Ray / MR Imaging: Toward a Streamlined Clinical System", in: Academic Radiology (12) 2005, pp. 1167-1177 It is known to use an MR apparatus having a plurality of magnet units and to form the radiation unit such that the beam path passes between the different magnet units. Although the radiation unit is not influenced by the strong magnetic field in the examination opening of the MR apparatus, it is difficult for the plurality of magnet units to achieve a homogeneous magnetic field in the examination opening which is necessary for MR imaging.

Es ist daher die Aufgabe der vorliegenden Erfindung, eine effiziente Möglichkeit für eine gleichzeitige MR-Bildgebung und Strahlungsexposition des Untersuchungsobjekts bereitzustellen.It is therefore the object of the present invention to provide an efficient possibility for a simultaneous MR imaging and radiation exposure of the examination subject.

Die Aufgabe wird durch das medizinische Bildgebungssystem nach dem unabhängigen Anspruch gelöst. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen beschrieben.The object is achieved by the medical imaging system according to the independent claim. Advantageous embodiments are described in the subclaims.

Die Erfindung betrifft ein medizinisches Bildgebungssystem, umfassend eine Magneteinheit ausgebildet zur Magnetresonanzbildgebung eines Untersuchungsobjekts sowie eine erste Strahlungseinheit ausgebildet zum Bestrahlen des Untersuchungsobjekts, wobei die Magneteinheit einen Hauptmagneten sowie ein Gehäuse aufweist, wobei der Hauptmagnet innerhalb des Gehäuses angeordnet ist und wobei der Hauptmagnet Spulenelemente und wenigstens einen Spulenträger aufweist. Weiterhin definiert die Magneteinheit derart eine Untersuchungsöffnung entlang einer Untersuchungsachse, dass die Magneteinheit die Untersuchungsöffnung umschließt. Weiterhin weist die Magneteinheit einen ersten Bereich auf, der für radial zur Untersuchungsachse ausgesendete Strahlung der ersten Strahlungseinheit transparent ist. Weiterhin ist die erste Strahlungseinheit auf der von der Untersuchungsöffnung abgewandten Seite der Magneteinheit angeordnet und dazu ausgebildet, Strahlung durch den ersten Bereich der Magneteinheit in Richtung der Untersuchungsöffnung zu senden. Weiterhin ist erste Strahlungseinheit weiterhin dazu ausgebildet, um die Untersuchungsöffnung zu rotieren.The invention relates to a medical imaging system, comprising a magnet unit designed for magnetic resonance imaging of an examination subject and a first radiation unit designed to irradiate the examination subject, wherein the magnet unit comprises a main magnet and a housing, wherein the main magnet is disposed within the housing and wherein the main magnet coil elements and at least having a bobbin. Furthermore, the magnet unit defines such an examination opening along an examination axis that the magnet unit encloses the examination opening. Furthermore, the magnet unit has a first region which is radial to the examination axis emitted radiation of the first radiation unit is transparent. Furthermore, the first radiation unit is arranged on the side of the magnet unit facing away from the examination opening and designed to transmit radiation through the first area of the magnet unit in the direction of the examination opening. Furthermore, the first radiation unit is furthermore designed to rotate around the examination opening.

Der erste Bereich der Magneteinheit ist insbesondere derart für Strahlung der ersten Strahlungseinheit transparent, dass die Intensität von radial zur Untersuchungsachse und durch den ersten Bereich verlaufende Strahlung der ersten Strahlungseinheit in einem geringeren Maße abgeschwächt wird als die Intensität von radial zur Untersuchungsachse und nicht durch den ersten Bereich verlaufende Strahlung der ersten Strahlungseinheit. Insbesondere beträgt die Abschwächung der Intensität der den ersten Bereich durchlaufenden Strahlung nach Durchlauf der Magneteinheit weniger als die Hälfte oder weniger als 10% oder weniger als 1% der Abschwächung der Intensität der nicht den ersten Bereich durchlaufenden Strahlung nach Durchlauf der Magneteinheit. Die Untersuchungsöffnung ist insbesondere zur Aufnahme des Untersuchungsobjekts ausgebildet. Die erste Strahlungseinheit kann insbesondere außerhalb der Magneteinheit ausgebildet sein. Das medizinische Bildgebungssystem kann insbesondere genau eine Magneteinheit umfassen.The first region of the magnet unit is in particular so transparent to radiation of the first radiation unit that the intensity of radiation of the first radiation unit extending radially to the examination axis and through the first region is attenuated to a lesser extent than the intensity from radially to the examination axis and not through the first Area extending radiation of the first radiation unit. In particular, the attenuation of the intensity of the radiation passing through the first region after passing through the magnet unit is less than half or less than 10% or less than 1% of the attenuation of the intensity of the radiation not passing through the first region after passing through the magnet unit. The examination opening is designed in particular for receiving the examination subject. The first radiation unit can in particular be formed outside the magnet unit. The medical imaging system may in particular comprise exactly one magnet unit.

Die Erfinder haben erkannt, dass durch die Anordnung der Strahlungseinheit außerhalb der Magneteinheit diese nicht durch das starke Hauptmagnetfeld in der Untersuchungsöffnung während der MR-Bildgebung beeinflusst wird. Es können daher kostengünstige Strahlungseinheiten verwendet werden, die nicht dafür ausgelegt sind, in starken Magnetfeldern betrieben zu werden.The inventors have recognized that the arrangement of the radiation unit outside the magnet unit does not influence it by the strong main magnetic field in the examination opening during the MR imaging. Therefore, inexpensive radiation units that are not designed to be operated in strong magnetic fields can be used.

Als weiterer Vorteil einer Anordnung der ersten Strahlungseinheit außerhalb der Magneteinheit im Vergleich zur Anordnung in der Untersuchungsöffnung ergibt sich, dass außerhalb der Magneteinheit mehr Platz für die erste Strahlungseinheit zur Verfügung steht, und daher effizientere und/oder stärkere erste Strahlungseinheiten verwendet werden können. Weiterhin haben die Erfinder erkannt, dass durch eine Anordnung außerhalb des Magnetfeldes die erste Strahlungseinheit auch sehr einfach für Wartungsmaßnahmen zugänglich ist.As a further advantage of an arrangement of the first radiation unit outside the magnet unit in comparison to the arrangement In the examination opening, it follows that more space is available for the first radiation unit outside the magnet unit, and therefore more efficient and / or stronger first radiation units can be used. Furthermore, the inventors have recognized that by an arrangement outside the magnetic field, the first radiation unit is also very easily accessible for maintenance.

Weiterhin haben die Erfinder erkannt, dass es durch den für die Strahlung der ersten Strahlungseinheit transparente Bereich der Magneteinheit nicht notwendig ist, mehrere separierte Magneteinheiten zu verwenden. Dadurch lässt sich ein homogeneres Magnetfeld und somit eine genauere MR-Bildgebung erreichen als mit mehreren separierten Magneteinheiten.Furthermore, the inventors have recognized that it is not necessary to use a plurality of separated magnet units due to the region of the magnet unit that is transparent for the radiation of the first radiation unit. As a result, a more homogeneous magnetic field and thus a more accurate MR imaging can be achieved than with several separated magnet units.

Nach einem weiteren möglichen Aspekt der Erfindung weist die Magneteinheit weiterhin einen ersten Austrittsbereich auf, der für radial zur Untersuchungsachse durch den ersten Bereich und das Untersuchungsobjekt gesendete Strahlung der ersten Strahlungseinheit transparent ist, und wobei der erste Austrittsbereich nicht mit dem ersten Bereich überlappt. Die Erfinder haben erkannt, dass durch eine zusätzliche ersten Austrittsbereich zum einen ein Strahlungsdetektor auch außerhalb der Magneteinheit angeordnet werden kann. Weiterhin kann durch einen ersten Austrittsbereich die ungestreute Strahlung der ersten Strahlungseinheit aus der Magneteinheit ausgeleitet werden, ohne mit der Magneteinheit zu interagieren und diese zu beschädigen.According to a further possible aspect of the invention, the magnet unit further has a first exit area, which is transparent to radiation of the first radiation unit transmitted radially to the examination axis through the first area and the examination object, and wherein the first exit area does not overlap with the first area. The inventors have recognized that by means of an additional first exit region, on the one hand, a radiation detector can also be arranged outside the magnet unit. Furthermore, the unscattered radiation of the first radiation unit can be discharged from the magnet unit through a first exit area without interacting with the magnet unit and damaging it.

Nach einem weiteren Aspekt der Erfindung sind die Spulenelemente des Hauptmagneten und der wenigstens eine Spulenträger außerhalb des ersten Bereichs der Magneteinheit angeordnet. Die Erfinder haben erkannt, dass durch diese Geometrie der Spulenelemente und des Spulenträgers des Hauptmagneten eine Transparenz für die Strahlung der Strahlungseinheit besonders effizient und kostengünstig erreicht werden kann, da für die Spulenelemente des Hauptmagneten und für den wenigstens einen Spulenträger keine speziellen Materialien verwendet werden müssen und kein Intensitätsverlust der Strahlung bei der Durchleuchtung der Spulenelemente des Hauptmagneten oder des wenigstens einen Spulenträgers auftritt.According to a further aspect of the invention, the coil elements of the main magnet and the at least one coil carrier are arranged outside the first region of the magnet unit. The inventors have recognized that, owing to this geometry of the coil elements and the coil carrier of the main magnet, transparency for the radiation of the radiation unit can be achieved particularly efficiently and cost-effectively, since no special materials are used for the coil elements of the main magnet and for the at least one coil carrier and no loss of intensity of the radiation in the transillumination of the coil elements of the main magnet or the at least one coil carrier occurs.

Nach einem weiteren Aspekt der Erfindung weist die Magneteinheit im ersten Bereich wenigstens ein inneres Fenster und wenigstens ein äußeres Fenster im Gehäuse auf, wobei das innere Fenster und das äußere Fenster für die von der ersten Strahlungseinheit ausgesendete Strahlung transparent sind. Hierbei ist das innere Fenster auf der von der Untersuchungsöffnung zugewandten Seite der Magneteinheit, insbesondere als Teil des Gehäuses, angeordnet. Weiterhin ist hierbei das äußere Fenster auf der von der Untersuchungsöffnung abgewandten Seite der Magneteinheit, insbesondere als Teil des Gehäuses, angeordnet. Die Erfinder haben erkannt, dass durch die Verwendung wenigstens zweier Fenster die Struktur und damit die Stabilität der Magneteinheit erhalten werden kann, und gleichzeitig eine Transparenz des ersten Bereichs der Magneteinheit erreicht werden kann.According to a further aspect of the invention, the magnet unit has in the first region at least one inner window and at least one outer window in the housing, wherein the inner window and the outer window are transparent to the radiation emitted by the first radiation unit. In this case, the inner window is arranged on the side of the magnet unit facing away from the examination opening, in particular as part of the housing. Furthermore, in this case, the outer window on the side facing away from the examination opening side of the magnet unit, in particular as part of the housing, is arranged. The inventors have recognized that by using at least two windows, the structure and thus the stability of the magnet unit can be obtained, and at the same time transparency of the first area of the magnet unit can be achieved.

Das innere Fenster und das äußere Fenster sind insbesondere derart transparent, dass das Material des inneren und des äußeren Fensters für die Strahlung der ersten Strahlungseinheit transparenter ist als das Material des Gehäuses. Insbesondere beträgt die Abschwächung der Intensität von Strahlung bei Durchlauf des Fensters weniger als die Hälfte oder weniger als 10% oder weniger als 1% der Abschwächung der Intensität bei Durchlauf des Gehäuses.In particular, the inner window and the outer window are so transparent that the material of the inner and outer windows for the radiation of the first radiation unit is more transparent than the material of the housing. In particular, the attenuation of the intensity of radiation as it passes through the window is less than half or less than 10% or less than 1% of the attenuation of the intensity as the housing passes.

Nach einem weiteren Aspekt der Erfindung ist der erste Bereich als Trichter in der Magneteinheit ausgebildet, der sich radial zur Untersuchungsachse erstreckt und der für die von der ersten Strahlungseinheit radial zur Untersuchungsachse ausgesendete Strahlung durchdringbar ist. Bei einem Trichter handelt es sich insbesondere um eine durchgehende Öffnung der Magneteinheit. Die Erfinder haben erkannt, dass durch die Verwendung eines Trichters die von der Strahlungseinheit durch die Magneteinheit gesendete Strahlung nur sehr wenig abgeschwächt werden.According to a further aspect of the invention, the first region is formed as a funnel in the magnet unit, which extends radially to the examination axis and which is permeable to the radiation emitted by the first radiation unit radially to the examination axis. A funnel is in particular a through opening of the magnet unit. The inventors have realized that by using a funnel the radiation unit radiation transmitted by the magnet unit will be attenuated very little.

Nach einem weiteren Aspekt der Erfindung kann der Trichter insbesondere durch das Gehäuse der Magneteinheit ausgebildet werden, insbesondere können die Seitenwände des Trichters durch das Gehäuse ausgebildet werden. Die Erfinder haben erkannt, dass es die Ausbildung des Trichters durch das Gehäuse ermöglicht, die Magneteinheit besonders stabil auszubilden, und insbesondere ein geschlossenes Kühlsystem möglichst einfach und kostengünstig auszubilden.According to a further aspect of the invention, the funnel can be formed in particular by the housing of the magnet unit, in particular the side walls of the funnel can be formed by the housing. The inventors have recognized that the formation of the funnel through the housing makes it possible to form the magnet unit in a particularly stable manner, and in particular to design a closed cooling system as simply and inexpensively as possible.

Nach einem weiteren Aspekt der Erfindung kann der Trichter insbesondere mit einem für die Strahlung der ersten Strahlungseinheit transparentem Material gefüllt sein. Die Erfinder haben erkannt, dass sich durch die Füllung mit einem strahlungsdurchlässigen Material die Stabilität der Magneteinheit erhöhen lässt.According to a further aspect of the invention, the funnel can be filled in particular with a material transparent to the radiation of the first radiation unit. The inventors have recognized that the stability of the magnet unit can be increased by filling with a radiation-transmissive material.

Nach einem weiteren möglichen Aspekt der Erfindung weist das medizinische Bildgebungssystem weiterhin einen ersten Strahlungsdetektor auf, wobei der erste Strahlungsdetektor dazu ausgebildet ist, von der ersten Strahlungseinheit durch den ersten Bereich der Magneteinheit gesendete Strahlung zu detektieren, und wobei der erste Strahlungsdetektor auf der von der ersten Strahlungseinheit abgewandten Seite des Untersuchungsobjekts angeordnet ist. Bei einem ersten Strahlungsdetektor kann es sich insbesondere um einen ersten Röntgendetektor, um einen Gammadetektor und/oder um einen Teilchendetektor handeln. Die Erfinder haben erkannt, dass eine Detektion der Strahlung genutzt werden kann, um die Strahlungsdosis zu messen, denen das Untersuchungsobjekt durch eine Bestrahlung mit der Strahlung der ersten Strahlungseinheit ausgesetzt ist, und damit die Strahlungsdosis zu minimieren.According to another possible aspect of the invention, the medical imaging system further comprises a first radiation detector, wherein the first radiation detector is configured to detect radiation transmitted by the first radiation unit through the first region of the magnet unit, and wherein the first radiation detector is on the first radiation detector Radiation unit side facing away from the examination object is arranged. A first radiation detector may, in particular, be a first X-ray detector, a gamma detector and / or a particle detector. The inventors have recognized that detection of the radiation can be used to measure the radiation dose to which the examination subject is exposed by irradiation with the radiation of the first radiation unit, and thus to minimize the radiation dose.

Nach einem weiteren Aspekt der Erfindung ist die erste Strahlungseinheit eine Teilchenquelle, die dazu ausgebildet ist, Teilchenstrahlung zu erzeugen. Die Erfinder haben erkannt, dass durch ein Bestrahlen mittels Teilchenstrahlung besonders viel Energie in einem Gewebe deponiert werden kann, und die Bestrahlung daher besonders effektiv ist.According to another aspect of the invention, the first radiation unit is a particle source adapted to generate particle radiation. The inventors have realized that by irradiation by means of particle radiation particularly much energy can be deposited in a tissue, and the irradiation is therefore particularly effective.

Nach einem weiteren möglichen Aspekt der Erfindung ist die Teilchenquelle dazu ausgebildet, Elektronen- und/oder Hadronenstrahlung zu erzeugen. Die Erfinder haben erkannt, dass Elektronen- und/oder Hadronenstrahlung besonders einfach und kostengünstig mit einer Teilchenstrahlungsquelle erzeugt werden können.According to another possible aspect of the invention, the particle source is adapted to generate electron and / or hadron radiation. The inventors have recognized that electron and / or hadron radiation can be generated in a particularly simple and cost-effective manner with a particle radiation source.

Nach einem weiteren Aspekt der Erfindung ist die erste Strahlungseinheit eine erste Röntgenquelle. Weiterhin weißt das medizinische Bildgebungssystem einen ersten Röntgendetektor auf, wobei der erste Röntgendetektor auf der von der ersten Röntgenquelle abgewandten Seite des Untersuchungsobjekts angeordnet ist, und wobei die erste Röntgenquelle und der erste Röntgendetektor zur Röntgenbildgebung des Untersuchungsobjekts ausgebildet sind. Die Erfinder haben erkannt, dass mittels von einer erste Röntgenquelle emittierter und mittels eines ersten Röntgendetektors empfangener Röntgenstrahlung eine Bildgebung möglich ist, die sich gut mit der MR-Bildgebung ergänzt, denn die MR-Bildgebung hat einen guten Weichteilkontrast, und die Röntgenbildgebung kann gut Knochenstrukturen und Kontrastmittel darstellen.According to a further aspect of the invention, the first radiation unit is a first X-ray source. Furthermore, the medical imaging system has a first X-ray detector, wherein the first X-ray detector is arranged on the side of the examination subject facing away from the first X-ray source, and wherein the first X-ray source and the first X-ray detector are designed for X-ray imaging of the examination subject. The inventors have recognized that imaging is possible by means of X-radiation emitted by a first X-ray source and received by a first X-ray detector, which complements MR imaging well, because MR imaging has a good soft-tissue contrast, and X-ray imaging can be good bone structures and contrast agents.

Die Erfinder haben weiterhin erkannt, dass sich durch eine Anordnung der ersten Röntgenquelle außerhalb der Magneteinheit ein größerer Abstand und ein kleinerer Vergrößerungsfaktor der Röntgenprojektionen ergeben als durch eine Anordnung in der Untersuchungsöffnung. Dadurch verringert sich die von der Oberfläche des Untersuchungsobjekts, insbesondere der Haut eines Patienten absorbierte Strahlungsdosis, sowie die Verschleierung der Röntgenprojektionen.The inventors have further recognized that an arrangement of the first X-ray source outside the magnet unit results in a larger distance and a smaller magnification factor of the X-ray projections than by an arrangement in the examination opening. As a result, the radiation dose absorbed by the surface of the examination object, in particular the skin of a patient, and the concealment of the x-ray projections are reduced.

Nach einem weiteren Aspekt der Erfindung kann der erste Röntgendetektor im Hauptmagnetfeld des Hauptmagneten angeordnet sein. Die Erfinder haben erkannt, dass ein erste Röntgendetektor einerseits deutlich unempfindlicher gegen hohe Magnetfelder als eine erste Röntgenquelle ist, andererseits durch die Anordnung im Hauptmagnetfeld die Röntgenstrahlung nur einmal den Hauptmagneten passieren muss, und kein mit einer Intensitätsschwächung verknüpftes zweites Mal. Daher muss bei dieser Anordnung auch kein Austrittsbereich der Magneteinheit für Röntgenstrahlung transparent sein.According to a further aspect of the invention, the first X-ray detector can be arranged in the main magnetic field of the main magnet. The inventors have recognized that a first X-ray detector on the one hand, is clearly less sensitive to high magnetic fields than a first X-ray source, on the other hand, the arrangement in the main magnetic field, the X-rays must pass only once the main magnet, and no associated with an intensity attenuation second time. Therefore, in this arrangement, no exit region of the magnet unit for X-radiation must be transparent.

Nach einem weiteren Aspekt der Erfindung kann der erste Röntgendetektor gekrümmt ausgebildet sein. Die Erfinder haben erkannt, dass bei einer gekrümmten Ausbildung der in der Untersuchungsöffnung für Untersuchungsobjekte verbleibende Platz größer ist, und/oder ein größerer erster Röntgendetektor verwendet werden kann.According to a further aspect of the invention, the first X-ray detector may be curved. The inventors have recognized that with a curved configuration, the space remaining in the examination opening for examination objects is greater, and / or a larger first X-ray detector can be used.

Nach einem weiteren Aspekt der Erfindung kann die Magneteinheit einen ersten Austrittsbereich aufweisen, weiterhin ist der erste Röntgendetektor außerhalb der Magneteinheit auf der von der Untersuchungsöffnung abgewandten Seite der Magneteinheit derart vor dem ersten Austrittsbereich angeordnet ist, dass der erste Röntgendetektor von der ersten Röntgenquelle durch den ersten Bereich ausgesandte Röntgenstrahlung empfangen kann. Die Erfinder haben erkannt, dass durch die Anordnung des ersten Röntgendetektors außerhalb der Magneteinheit die Untersuchungsöffnung möglichst groß ausgebildet werden kann.According to a further aspect of the invention, the magnet unit may have a first exit area, furthermore, the first x-ray detector outside the magnet unit is arranged on the side of the magnet unit facing away from the examination opening in front of the first exit area such that the first x-ray detector is moved from the first x-ray source through the first x-ray source Area emitted X-ray radiation can receive. The inventors have recognized that the arrangement of the first X-ray detector outside the magnet unit allows the examination opening to be made as large as possible.

Nach einem weiteren Aspekt der Erfindung ist der erste Röntgendetektor dazu ausgebildet, simultan mit der ersten Röntgenquelle um die Untersuchungsöffnung zu rotieren. Die Erfinder haben erkannt, dass durch eine simultane Rotation die relative Position zwischen der ersten Röntgenquelle und dem erstem Röntgendetektor konstant bleibt, und die Röntgenbildgebung nicht an eine veränderte relative Position angepasst werden muss. Weiterhin ist es durch die simultane Rotation möglich, nicht einen großen, nicht-rotierbaren ersten Röntgendetektor, sondern einen möglichst kleinen und damit kostengünstigen ersten Röntgendetektor einzusetzen.According to a further aspect of the invention, the first X-ray detector is designed to rotate simultaneously with the first X-ray source around the examination opening. The inventors have recognized that by simultaneous rotation, the relative position between the first X-ray source and the first X-ray detector remains constant, and the X-ray imaging does not have to be adapted to a changed relative position. Furthermore, it is possible by the simultaneous rotation not to use a large, non-rotatable first X-ray detector, but a small and thus inexpensive first X-ray detector.

Nach einem weiteren Aspekt der Erfindung ist die Magneteinheit dazu ausgebildet, um die Untersuchungsöffnung zu rotieren. Die Erfinder haben erkannt, dass hierdurch der erste Bereich der Magneteinheit in verschiedene Ausrichtungen rotiert werden kann, und die Bestrahlung aus unterschiedlichen Richtungen durch immer nur einen transparenten Bereich der Magneteinheit erfolgen kann. Damit muss der transparente Bereich der Magneteinheit nur so groß wie der Strahlengang der Strahlungseinheit sein. Durch einen möglichst kleinen ersten Bereich vergrößert sich die Stabilität der Magneteinheit, weiterhin können die Spulenelemente des Hauptmagneten und die Spulenträger des Hauptmagneten in einem größeren Volumen angeordnet werden, dies vereinfacht die Erzeugung eines homogenen Magnetfeldes. Weiterhin vereinfacht ein möglichst kleiner erster Bereich die Anordnung einer Gradientenspuleneinheit und einer Hochfrequenzantenneneinheit außerhalb des ersten Bereichs und verbessert damit die Güte des Gradientenfeldes und des Hochfrequenzfeldes.According to a further aspect of the invention, the magnet unit is designed to rotate about the examination opening. The inventors have recognized that, as a result, the first region of the magnet unit can be rotated in different orientations, and the irradiation can take place from different directions through only one transparent region of the magnet unit. Thus, the transparent area of the magnet unit only has to be as large as the beam path of the radiation unit. As a result of the smallest possible first area, the stability of the magnet unit increases, furthermore the coil elements of the main magnet and the coil carriers of the main magnet can be arranged in a larger volume, this simplifies the generation of a homogeneous magnetic field. Furthermore, the smallest possible first area simplifies the arrangement of a gradient coil unit and a high-frequency antenna unit outside the first area and thus improves the quality of the gradient field and the high-frequency field.

Nach einem weiteren Aspekt der Erfindung sind die erste Strahlungseinheit und die Magneteinheit dazu ausgebildet, simultan um die Untersuchungsöffnung zu rotieren. Insbesondere kann die erste Strahlungseinheit mit der Magneteinheit verbunden sein. Insbesondere kann die erste Strahlungseinheit derart mit der Magneteinheit verbunden sein, dass die von der ersten Strahlungseinheit ausgesendete Strahlung durch den ersten transparenten Bereich der Magneteinheit verlaufen. Die Erfinder haben erkannt, dass durch simultane Rotation der ersten Strahlungseinheit mit der Magneteinheit keine separate, zeitintensive Ausrichtung und/oder Platzierung der ersten Strahlungseinheit während der Untersuchung notwendig ist. Weiterhin kann der erste Bereich der Magneteinheit möglichst klein gewählt werden. Die Erfinder haben weiterhin erkannt, dass in dieser Anordnung das Magnetfeld der Hauptmagneteinheit außerhalb der Untersuchungsöffnung, welches die erste Strahlungseinheit durchdringt, nicht von der Orientierung der ersten Strahlungseinheit abhängt. Dadurch können in der ersten Strahlungseinheit Maßnahmen zum Ausgleich des Magnetfeldes getroffen werden, die nicht von der Orientierung der ersten Strahlungseinheit abhängen.According to a further aspect of the invention, the first radiation unit and the magnet unit are designed to rotate simultaneously around the examination opening. In particular, the first radiation unit can be connected to the magnet unit. In particular, the first radiation unit may be connected to the magnet unit in such a way that the radiation emitted by the first radiation unit extends through the first transparent area of the magnet unit. The inventors have recognized that by simultaneous rotation of the first radiation unit with the magnet unit no separate, time-consuming alignment and / or placement of the first radiation unit during the examination is necessary. Furthermore, the first region of the magnet unit can be selected as small as possible. The inventors have further recognized that in this arrangement, the magnetic field of the main magnetic unit outside the inspection opening, which penetrates the first radiation unit, does not depend on the orientation of the first radiation unit. This can be done in the first Radiation unit measures are taken to compensate for the magnetic field, which do not depend on the orientation of the first radiation unit.

Nach einem weiteren Aspekt der Erfindung ist die Magneteinheit dazu ausgelegt, die Spulenelemente des Hauptmagnets mittels Wärmeleitung zu kühlen. Die Erfinder haben erkannt, dass eine Kühlung mittels Wärmeleitung kostengünstiger ist als eine konvektionsbasierte Kühlung mittels Immersion in ein Kühlmittel, denn für eine Kühlung mittels Wärmeleitung wird weniger Kühlmittel benötigt. Die Erfinder haben weiterhin erkannt, dass bei einer Kühlung mittels Wärmeleitung die Kühlleistung nicht oder nur weniger als bei einer Kühlung mittels Immersion von der Ausrichtung der Magneteinheit beeinflusst wird. Dies erlaubt eine effiziente Kühlung auch bei einer Magneteinheit, die zum Rotieren ausgelegt ist.According to a further aspect of the invention, the magnet unit is designed to cool the coil elements of the main magnet by means of heat conduction. The inventors have recognized that cooling by means of heat conduction is more cost-effective than convection-based cooling by means of immersion in a coolant, since cooling by means of heat conduction requires less coolant. The inventors have further recognized that when cooling by means of heat conduction, the cooling performance is not or only less influenced by the orientation of the magnet unit than by cooling by means of immersion. This allows efficient cooling even with a magnet unit designed to rotate.

Nach einem weiteren Aspekt der Erfindung wird die Abwärme der Spulenelemente des Hauptmagneten durch Röhrenleitungen umfassend ein zirkulierendes Kühlmittel abgeleitet. Die Erfinder haben erkannt, dass mittels der Röhrenleitungen eine besonders effektive Kühlung möglich ist. Weiterhin haben die Erfinder erkannt, dass der erste Bereich besonders transparent für die Strahlung der ersten Strahlungseinheit ausgebildet werden kann, wenn die Röhrenleitungen außerhalb des ersten Bereichs der Magneteinheit angeordnet werden.According to another aspect of the invention, the waste heat of the coil elements of the main magnet is diverted through conduits comprising circulating coolant. The inventors have recognized that a particularly effective cooling is possible by means of the pipes. Furthermore, the inventors have recognized that the first region can be formed in a particularly transparent manner for the radiation of the first radiation unit if the tube lines are arranged outside the first region of the magnet unit.

Nach einem weiteren Aspekt der Erfindung sind die Spulenelemente des Hauptmagneten aus elektrisch supraleitendem Material ausgebildet, wobei die kritische Temperatur des supraleitenden Materials höher ist als der Siedepunkt von Helium. Die Erfinder haben erkannt, dass durch eine kritische Temperatur, die über dem Siedepunkt von flüssigem Helium liegt, andere Kühlmittel als flüssiges Helium und/oder Kühlverfahren als eine Immersion in flüssiges Helium verwendet werden können, insbesondere eine Kühlung mittels Wärmeleitung. Diese Kühlung ist daher kostengünstiger und weiterhin besonders vorteilhaft bei einer zum Rotieren ausgebildeten Magneteinheit, weiterhin ist diese Kühlung besonders vorteilhaft, um den ersten Bereich der Magneteinheit transparent für die Strahlung der ersten Strahlungseinheit auszubilden.According to another aspect of the invention, the coil elements of the main magnet are formed of electrically superconductive material, wherein the critical temperature of the superconducting material is higher than the boiling point of helium. The inventors have recognized that by a critical temperature higher than the boiling point of liquid helium, coolants other than liquid helium and / or cooling methods can be used as an immersion in liquid helium, in particular cooling by means of heat conduction. This cooling is therefore more cost-effective and furthermore particularly advantageous in the case of a magnet unit designed to rotate This cooling is particularly advantageous in order to form the first region of the magnet unit transparent to the radiation of the first radiation unit.

Nach einem weiteren möglichen Aspekt der Erfindung ist das elektrisch leitende Material der Spulenelemente des Hauptmagneten Magnesiumdiborid. Die Erfinder haben erkannt, dass Magnesiumdiborid ein metallischer Supraleiter mit einer besonders hohen kritischen Temperatur ist. Damit können Maßnahmen zur Kühlung der Spulenelemente verwendet werden, die besonders kostengünstige sowie transparent für die von der Strahlungseinheit emittierte Strahlung sind.According to another possible aspect of the invention, the electrically conductive material of the coil elements of the main magnet is magnesium diboride. The inventors have recognized that magnesium diboride is a metallic superconductor having a particularly high critical temperature. Thus, measures for cooling the coil elements can be used, which are particularly cost-effective and transparent to the radiation emitted by the radiation unit.

Nach einem weiteren Aspekt der Erfindung umfasst dass medizinisches Bildgebungssystem weiterhin eine zweite Strahlungseinheit, wobei die zweite Strahlungseinheit auf der von der Untersuchungsöffnung abgewandten Seite der Magneteinheit angeordnet ist. Weiterhin weist die Magneteinheit einen zweiten Bereich auf, der für radial zur Untersuchungsachse ausgesendete Strahlung der zweiten Strahlungseinheit transparent ist. Weiterhin ist die zweite Strahlungseinheit dazu ausgebildet, Strahlung durch den zweiten Bereich der Magneteinheit in Richtung der Untersuchungsöffnung zu senden, weiterhin ist die zweite Strahlungseinheit dazu ausgebildet ist, um die Untersuchungsöffnung zu rotieren. Insbesondere kann die zweite Strahleneinheit außerhalb der Magneteinheit angeordnet sein. Die Erfinder haben erkannt, dass durch eine zusätzlich zu einer ersten Röntgenquelle vorhandene zweite Strahlungseinheit basierend auf der MR-Bildgebung und der Röntgenbildgebung mittels der ersten Röntgenquelle mit der zweiten Strahlungseinheit bestrahlt werden kann. Hierdurch können die sich ergänzenden Bildinformationen der MR-Bildgebung und der ersten Röntgenbildgebung verwendet werden. Hierdurch kann die zweite Strahlungseinheit besonders effizient eingesetzt werden.According to a further aspect of the invention, the medical imaging system further comprises a second radiation unit, wherein the second radiation unit is arranged on the side of the magnet unit facing away from the examination opening. Furthermore, the magnet unit has a second region which is transparent to radiation of the second radiation unit emitted radially to the examination axis. Furthermore, the second radiation unit is designed to transmit radiation through the second region of the magnet unit in the direction of the examination opening, furthermore, the second radiation unit is designed to rotate about the examination opening. In particular, the second beam unit can be arranged outside the magnet unit. The inventors have recognized that a second radiation unit that is present in addition to a first x-ray source can be irradiated with the second radiation unit based on the MR imaging and the x-ray imaging by means of the first x-ray source. As a result, the complementary image information of the MR imaging and the first X-ray imaging can be used. As a result, the second radiation unit can be used particularly efficiently.

Der zweite Bereich der Magneteinheit ist insbesondere derart für Strahlung der zweiten Strahlungseinheit transparent, dass die Intensität von radial zur Untersuchungsachse und durch den zweiten Bereich verlaufende Strahlung der zweiten Strahlungseinheit in einem geringeren Maße abgeschwächt wird als die Intensität von radial zur Untersuchungsachse und nicht durch den ersten Bereich und nicht durch den zweiten Bereich verlaufende Strahlung der zweiten Strahlungseinheit. Insbesondere beträgt die Abschwächung der Intensität der den zweiten Bereich durchlaufenden Strahlung bei Durchlauf weniger als die Hälfte oder weniger als 10% oder weniger als 1% der Abschwächung der Intensität der nicht durch den ersten und nicht durch den zweiten Bereich laufenden Strahlung.The second region of the magnet unit is in particular so transparent to radiation of the second radiation unit that the intensity of radial to the examination axis and through the radiation of the second radiation unit extending to the second region is attenuated to a lesser extent than the intensity of radiation of the second radiation unit extending radially to the examination axis and not through the first region and not through the second region. In particular, the attenuation of the intensity of the radiation passing through the second region when passing is less than half or less than 10% or less than 1% of the attenuation of the intensity of the radiation not passing through the first and not the second region.

Nach einem weiteren Aspekt er Erfindung ist die zweite Strahlungseinheit eine zweite Röntgenquelle, weiterhin weist das medizinische Bildgebungssystem einen zweiten Röntgendetektor auf, wobei der zweite Röntgendetektor auf der von der zweiten Röntgenquelle abgewandten Seite des Untersuchungsobjekts angeordnet ist. Weiterhin ist der zweite Röntgendetektor dazu ausgebildet, simultan mit der zweiten Röntgenquelle um die Untersuchungsöffnung zu rotieren. Weiterhin sind die zweite Röntgenquelle und der zweite Röntgendetektor zur Röntgenbildgebung des Untersuchungsobjekts ausgebildet Die Erfinder haben erkannt, dass es mit einer solchen Anordnung möglich ist, gleichzeitig zwei Röntgenprojektionen aus zwei unterschiedlichen Richtungen aufzunehmen, ohne eine Rotation der Röntgenquellen oder eine Rotation der Magneteinheit durchführen zu müssen. Hiermit ist es möglich, einen dreidimensionalen Röntgenbilddatensatz ohne Rotation der Röntgenquellen oder eine Rotation der Magneteinheit zu rekonstruieren.According to another aspect of the invention, the second radiation unit is a second X-ray source, furthermore, the medical imaging system has a second X-ray detector, wherein the second X-ray detector is arranged on the side of the examination subject which is remote from the second X-ray source. Furthermore, the second X-ray detector is designed to rotate simultaneously with the second X-ray source around the examination opening. Further, the second X-ray source and the second X-ray detector are formed for X-ray imaging of the examination subject. The inventors have recognized that with such an arrangement, it is possible to simultaneously record two X-ray projections from two different directions without having to perform rotation of the X-ray sources or rotation of the magnet unit , This makes it possible to reconstruct a three-dimensional X-ray image data set without rotation of the X-ray sources or a rotation of the magnet unit.

Nach einem weiteren möglichen Aspekt der Erfindung weist die Magneteinheit weiterhin einen zweiten Austrittsbereich auf, der für radial zur Untersuchungsachse durch den zweiten Bereich und das Untersuchungsobjekt gesendete Strahlung der zweiten Strahlungseinheit transparent ist, wobei der zweite Austrittsbereich nicht mit dem zweiten Bereich überlappt. Die Erfinder haben erkannt, dass durch eine zusätzliche zweiten Austrittsbereich zum einen ein Strahlungsdetektor auch außerhalb der Magneteinheit angeordnet werden kann. Weiterhin kann durch einen zweiten Austrittsbereich die ungestreute Strahlung der zweiten Strahlungseinheit aus der Magneteinheit ausgeleitet werden, ohne mit der Magneteinheit zu interagieren und diese zu beschädigen.According to a further possible aspect of the invention, the magnet unit further has a second exit area, which is transparent to radiation of the second radiation unit transmitted radially to the examination axis through the second area and the examination object, wherein the second exit area does not overlap with the second area. The inventors have recognized that by means of an additional second exit region, on the one hand, a radiation detector can also be arranged outside the magnet unit. Furthermore, can be discharged through a second exit region, the unscattered radiation of the second radiation unit from the magnet unit without interacting with the magnet unit and damage it.

Nach einem weiteren Aspekt der Erfindung kann der zweite Röntgendetektor alle weiteren Merkmale des ersten Röntgendetektors aufweisen. Alle Vorteile, die einer Ausführungsform des ersten Röntgendetektors zugeordnet werden, können auch der entsprechenden Ausführungsform des zweiten Röntgendetektors zugeordnet werden.According to a further aspect of the invention, the second X-ray detector may have all further features of the first X-ray detector. All the advantages associated with an embodiment of the first X-ray detector can also be assigned to the corresponding embodiment of the second X-ray detector.

Nach einem weiteren Aspekt der Erfindung können der zweite Bereich der Magneteinheit, der erste Austrittsbereich und/oder der zweite Austrittsbereich alle weiteren Merkmale des ersten Bereichs der Magneteinheit aufweisen. Alle Vorteile, die einer Ausführungsform des ersten Bereichs der Magneteinheit zugeordnet werden, können auch den entsprechenden Ausführungsformen des zweiten Bereichs, des ersten Austrittsbereich und/oder des zweite Austrittsbereich zugeordnet werden.According to a further aspect of the invention, the second area of the magnet unit, the first exit area and / or the second exit area may have all further features of the first area of the magnet unit. All the advantages associated with an embodiment of the first region of the magnet unit can also be assigned to the corresponding embodiments of the second region, the first exit region and / or the second exit region.

Nach einem weiteren Aspekt der Erfindung schließt die Verbindungslinie von erster Röntgenquelle und erstem Röntgendetektor mit der Verbindungslinie von zweiter Röntgenquelle und zweitem Röntgendetektor einen Winkel zwischen 60 und 120 Grad oder zwischen 80 und 100 Grad oder zwischen 85 und 95 Grad ein. Die Erfinder haben erkannt, dass der Winkel zwischen den Verbindungslinien dem Winkel zwischen den Projektionsrichtungen der mit den beiden Röntgenquellen und den beiden Röntgendetektoren aufgenommen Röntgenprojektionen entspricht. Mit einem derartigen Winkel zwischen den Röntgenprojektionen können besonders effizient dreidimensionale Röntgendaten aus den zweidimensionalen Röntgenprojektionen rekonstruiert werden.According to a further aspect of the invention, the line connecting the first X-ray source and the first X-ray detector with the connecting line of the second X-ray source and the second X-ray detector forms an angle between 60 and 120 degrees or between 80 and 100 degrees or between 85 and 95 degrees. The inventors have recognized that the angle between the connecting lines corresponds to the angle between the projection directions of the X-ray projections recorded with the two X-ray sources and the two X-ray detectors. With such an angle between the X-ray projections, three-dimensional X-ray data from the two-dimensional X-ray projections can be reconstructed in a particularly efficient manner.

Eine Magneteinheit kann insbesondere zylinderförmig, ringförmig und/oder torusförmig ausgebildet sein. Weiterhin weist die Magneteinheit eine der Untersuchungsöffnung zugewandte Seite auf, die als innere Seite bezeichnet wird, weiterhin weist die Magneteinheit eine der Untersuchungsöffnung abgewandte Seite auf, die als äußere Seite bezeichnet wird. Die Magneteinheit umschließt die Untersuchungsöffnung derart, dass sie die Untersuchungsöffnung entlang eines Umlaufs um die Vorzugsrichtung umschließt, es die Untersuchungsöffnung ist also insbesondere an zwei Enden offen. Die Magneteinheit umschließt eine Untersuchungsöffnung auch, wenn sie konstruktionsbedingte Aussparungen aufweist.A magnet unit may in particular be cylindrical, annular and / or toroidal. Furthermore, the magnet unit has one of the examination opening facing Side, which is referred to as the inner side, further, the magnet unit has a side facing away from the examination opening, which is referred to as the outer side. The magnet unit encloses the examination opening in such a way that it encloses the examination opening along a circulation around the preferred direction, ie the examination opening is in particular open at two ends. The magnet unit also encloses an inspection opening when it has design-related recesses.

Eine Strahlungseinheit sendet elektromagnetische Strahlung oder Teilchenstrahlung aus. Bei elektromagnetischer Strahlung kann es sich insbesondere um Röntgenstrahlung oder um Gammastrahlung handeln. Als Röntgenstrahlung bezeichnet man insbesondere elektromagnetische Strahlung mit einer Wellenlänge zwischen 1 pm und 500 pm, insbesondere zwischen 5 pm und 250 pm, insbesondere zwischen 5 pm und 60 pm. Als Gammastrahlung bezeichnet man insbesondere elektromagnetische Strahlung mit einer Wellenlänge unter 5 pm, insbesondere unter 1 pm, unabhängig von der Erzeugung der Strahlung. Das Spektrum von sowohl Röntgenstrahlung als auch Gammastrahlung kann monochromatisch oder polychromatisch sein. Teilchenstrahlung entspricht insbesondere einem Strom von Teilchen in eine gemeinsame Richtung. Bei Teilchen kann es sich insbesondere um Leptonen oder Baryonen handeln. Bei Baryonen kann es sich insbesondere um Protonen oder Neutronen handeln. Bei Leptonen kann es sich insbesondere um Elektronen, Positronen oder Myonen handeln.A radiation unit emits electromagnetic radiation or particle radiation. Electromagnetic radiation may in particular be X-radiation or gamma radiation. In particular, electromagnetic radiation having a wavelength of between 1 μm and 500 μm, in particular between 5 μm and 250 μm, in particular between 5 μm and 60 μm, is referred to as X-radiation. In particular, electromagnetic radiation having a wavelength of less than 5 μm, in particular less than 1 μm, is referred to as gamma radiation, regardless of the generation of the radiation. The spectrum of both X-rays and gamma rays can be monochromatic or polychromatic. In particular, particle radiation corresponds to a stream of particles in a common direction. Particles may in particular be leptons or baryons. Baryons may in particular be protons or neutrons. Leptons may in particular be electrons, positrons or muons.

Ein erster Bereich, ein zweiter Bereich und/oder ein Austrittsbereich der Magneteinheit sind insbesondere für die Strahlung der ersten Strahlungseinheit transparent, wenn die Intensität der Strahlung nach dem Durchgang durch den ersten Bereich, den zweiten Bereich und/oder den Austrittsbereich mindestens 10%, insbesondere mindestens 50%, insbesondere mindestens 90%, insbesondere mindestens 95%, insbesondere mindestens 99%, insbesondere mindestens 99,9% der Intensität der Strahlung vor dem Durchgang durch den ersten Bereich, den zweiten Bereich und/oder den Austrittsbereich beträgt. Die Magneteinheit ist insbesondere für radial zur Untersuchungsachse und durch den ersten Bereich, den zweiten Bereich und/oder den Austrittsbereich verlaufende Strahlung der ersten Strahlungseinheit transparenter als für radial zur Untersuchungsachse und nicht durch den ersten Bereich, den zweiten Bereich und/oder den Austrittsbereich verlaufende Strahlung der ersten Strahlungseinheit, falls die Abschwächung der Intensität der radial zur Untersuchungsachse und nicht durch den ersten Bereich, den zweiten Bereich und/oder den Austrittsbereich verlaufende Strahlung um mehr als einen Faktor 2, insbesondere um mehr als einen Faktor 5, insbesondere um mehr als einen Faktor 10, insbesondere um mehr als einen Faktor 50 größer ist als die Abschwächung der Intensität der radial zur Untersuchungsachse und durch den ersten Bereich, den zweiten Bereich und/oder den Austrittsbereich verlaufende Strahlung. Hierbei bezeichnet die Intensität die Energie der Strahlung pro Flächeneinheit und pro Zeiteinheit. Bei einer monochromatischen elektromagnetischen Strahlung ist die Intensität der Strahlung insbesondere proportional zur quadratischen Amplitude des variablen elektrischen Feldes. Bei einer Teilchenstrahlung ist die Intensität der Strahlung insbesondere proportional zur Energie der Teilchen sowie zur Zahl der Teilchen pro Zeiteinheit.A first region, a second region and / or an exit region of the magnet unit are transparent, in particular for the radiation of the first radiation unit, if the intensity of the radiation after passing through the first region, the second region and / or the exit region is at least 10%, in particular at least 50%, in particular at least 90%, in particular at least 95%, in particular at least 99%, in particular at least 99.9%, of the intensity of the radiation before passing through the first region, the second area and / or the exit area is. The magnet unit is more transparent, in particular for radiation of the first radiation unit extending radially to the examination axis and through the first area, the second area and / or the outlet area, than for the radiation extending radially to the examination axis and not through the first area, the second area and / or the exit area the first radiation unit, if the attenuation of the intensity of the radiation extending radially to the examination axis and not by the first region, the second region and / or the outlet region by more than a factor of 2, in particular by more than a factor of 5, in particular by more than one Factor 10, in particular by more than a factor 50, is greater than the attenuation of the intensity of the radiation extending radially to the examination axis and through the first region, the second region and / or the exit region. Here, the intensity denotes the energy of the radiation per unit area and per unit of time. In monochromatic electromagnetic radiation, the intensity of the radiation is particularly proportional to the quadratic amplitude of the variable electric field. In the case of particle radiation, the intensity of the radiation is, in particular, proportional to the energy of the particles and to the number of particles per unit of time.

Eine erste Einheit und eine zweite Einheit rotieren insbesondere simultan um eine Achse oder einen Bereich, wenn sie mit der gleichen Winkelgeschwindigkeit rotieren um die Achse oder den Bereich rotieren. Insbesondere bleibt also auch der Winkel zwischen der ersten Verbindungslinie der ersten Einheit mit der Achse oder dem Bereich und der zweiten Verbindungslinie der zweiten Einheit mit der Achse oder dem Bereich konstant.In particular, a first unit and a second unit simultaneously rotate about an axis or a region as they rotate at the same angular velocity about the axis or region. In particular, therefore, the angle between the first connecting line of the first unit with the axis or the region and the second connecting line of the second unit with the axis or the region remains constant.

Die Kühlung der Spulenelemente eines Magneten kann durch Wärmeleitung, Wärmekonvektion und/oder Wärmestrahlung erfolgen. Die Spulenelemente des Hauptmagneten eines MR-Geräts sind beispielsweise zur Kühlung mittels Wärmekonvektion ausgebildet, indem sie in flüssigem Helium gelagert werden. Weiterhin können die Spulenelemente des Hauptmagneten eines MR-Geräts zur Kühlung mittels Wärmeleitung ausgelegt sein.The cooling of the coil elements of a magnet can be effected by heat conduction, heat convection and / or thermal radiation. The coil elements of the main magnet of an MR device are designed, for example, for cooling by means of thermal convection, by being stored in liquid helium. Furthermore, the coil elements of the main magnet of an MR device can be designed for cooling by means of heat conduction.

Als Supraleiter werden Materialien bezeichnet, deren elektrischer Widerstand beim Unterschreiten einer kritischen Temperatur (ein anderer Fachbegriff ist Sprungtemperatur) auf null fällt. Supraleitende Materialien werden insbesondere in Spulen und Spulenelementen zur Erzeugung von starken Magnetfeldern genutzt.Superconductors are materials whose electrical resistance falls below zero at a critical temperature (another technical term is the critical temperature). Superconducting materials are used in particular in coils and coil elements for generating strong magnetic fields.

Eine erste Einheit, die auf der von einer zweiten Einheit abgewandten Seite einer dritten Einheit angeordnet ist, muss nicht Teil der dritten Einheit sein oder von der dritten Einheit umfasst werden. Eine erste Einheit ist in diesem Fall insbesondere von der dritten Einheit aus gesehen hinter der zweiten Einheit angeordnet, insbesondere kann die erste Einheit aber auch direkt an der zweiten Einheit befestigt oder angeordnet sein. Eine erste Einheit, die auf der von einer zweiten Einheit zugewandten Seite einer dritten Einheit angeordnet ist, muss nicht Teil der dritten Einheit sein oder von der dritten Einheit umfasst werden. Eine erste Einheit ist in diesem Fall insbesondere von der dritten Einheit aus gesehen vor der zweiten Einheit angeordnet, insbesondere kann die erste Einheit aber auch direkt an der zweiten Einheit befestigt oder angeordnet sein.A first unit, which is arranged on the side facing away from a second unit side of a third unit, does not have to be part of the third unit or be included by the third unit. In this case, a first unit is arranged behind the second unit, viewed in particular from the third unit, but in particular the first unit can also be fastened or arranged directly on the second unit. A first unit arranged on the side of a third unit facing a second unit does not have to be part of the third unit or be included in the third unit. In this case, a first unit is arranged in front of the second unit, in particular from the third unit, but in particular the first unit can also be fastened or arranged directly on the second unit.

Im Folgenden wird die Erfindung anhand der in den Figuren dargestellten Ausführungsbeispiele näher beschrieben und erläutert.In the following the invention will be described and explained in more detail with reference to the embodiments illustrated in the figures.

Es zeigen:

Fig. 1
eine perspektivische Ansicht eines medizinischen Bildgebungssystems,
Fig. 2
eine Magneteinheit mit einem inneren und einem äußeren Fenster,
Fig. 3
eine Magneteinheit mit einem Trichter,
Fig. 4
einen Schnitt durch das medizinische Bildgebungssystem senkrecht zur Untersuchungsachse,
Fig. 5
einen Schnitt durch das medizinische Bildgebungssystem senkrecht zur Untersuchungsachse, wobei die Magneteinheit gedreht wurde,
Fig. 6
einen Schnitt durch das medizinische Bildgebungssystem parallel zur Untersuchungsachse,
Fig. 7
einen Schnitt durch den Trichter einer Magneteinheit,
Fig. 8
einen Schnitt durch die Fenster einer Magneteinheit,
Fig. 9
ein medizinische Bildgebungssystem mit einer zweiten Röntgenquelle und einem zweiten Röntgendetektor,
Fig. 10
ein medizinisches Bildgebungssystem mit einer ersten Teilchenstrahlungseinheit umfassend einen Teilchenbeschleuniger und eine Teilchenstrahlführung,
Fig. 11
ein medizinisches Bildgebungssystem mit einer Teilchenstrahlungseinheit, wobei die Teilchenstrahlungseinheit elektrisch geladenen Teilchenstrahlung sendet.
Show it:
Fig. 1
a perspective view of a medical imaging system,
Fig. 2
a magnet unit with an inner and an outer window,
Fig. 3
a magnet unit with a funnel,
Fig. 4
a section through the medical imaging system perpendicular to the examination axis,
Fig. 5
a section through the medical imaging system perpendicular to the examination axis, wherein the magnet unit was rotated,
Fig. 6
a section through the medical imaging system parallel to the examination axis,
Fig. 7
a section through the funnel of a magnet unit,
Fig. 8
a section through the windows of a magnet unit,
Fig. 9
a medical imaging system having a second x-ray source and a second x-ray detector,
Fig. 10
a medical imaging system having a first particle radiation unit comprising a particle accelerator and a particle beam guide,
Fig. 11
a medical imaging system having a particle radiation unit, wherein the particle radiation unit transmits electrically charged particle radiation.

Fig. 1 zeigt eine perspektivische Ansicht eines medizinischen Bildgebungssystems 10. In diesem Ausführungsbeispiel umfasst das medizinischen Bildgebungssystem 10 eine Magneteinheit 20, eine erste Röntgenquelle 30, eine Lagerungs- und Rotationsvorrichtung 40, eine MR-Steuer- und Auswerteeinheit 50, eine Röntgensteuer- und Auswerteeinheit 60 sowie eine Lagerungsvorrichtung 70, auf der sich ein Untersuchungsobjekt 80 befindet. Die Magneteinheit 20 bildet eine Untersuchungsöffnung 90 aus, der zur Aufnahme der Patientenlagerungsvorrichtung 70 mit dem Patienten 80 ausgebildet ist. Fig. 1 shows a perspective view of a medical imaging system 10. In this embodiment, the medical imaging system 10 comprises a magnet unit 20, a first X-ray source 30, a storage and rotation device 40, an MR control and evaluation unit 50, an X-ray control and evaluation unit 60 and a storage device 70, on which an examination object 80 is located. The magnet unit 20 forms an examination opening 90, which is designed to receive the patient support device 70 with the patient 80.

In diesem Ausführungsbeispiel ist die Magneteinheit 20 hohlzylinderförmig um eine Untersuchungsachse 91 ausgebildet, wobei die Untersuchungsachse 91 parallel zu einer dritten Koordinatenachse z verläuft. Weiterhin sind eine erste Koordinatenachse x und eine zweite Koordinatenachse y abgebildet, die zusammen mit der dritten Koordinatenachse z ein dreidimensionales karthesisches Koordinatensystem bilden.In this embodiment, the magnet unit 20 is formed in the form of a hollow cylinder about an examination axis 91, the examination axis 91 extending parallel to a third coordinate axis z. Furthermore, a first coordinate axis x and a second coordinate axis y are shown, which together with the third coordinate axis z form a three-dimensional Cartesian coordinate system.

In diesem Ausführungsbeispiel ist die Magneteinheit 20 mittels der Lagerungs- und Rotationsvorrichtung 40 rotierbar um die Untersuchungsöffnung 90, insbesondere rotierbar um die Untersuchungsachse 91 ausgebildet. Gleichzeitig ist die erste Röntgenquelle 30 fest mit der Magneteinheit 20 verbunden, so dass bei einer Rotation der Magneteinheit 20 um die Untersuchungsachse 91 auch die erste Röntgenquelle 30 um die Untersuchungsachse 91 sowie um die Untersuchungsöffnung 90 rotiert wird.In this exemplary embodiment, the magnet unit 20 is rotatable about the examination opening 90, in particular rotatably around the examination axis 91, by means of the mounting and rotating device 40. At the same time, the first x-ray source 30 is fixedly connected to the magnet unit 20, so that upon rotation of the magnet unit 20 about the examination axis 91, the first x-ray source 30 is also rotated about the examination axis 91 and about the examination opening 90.

Die Magneteinheit 20 ist mit der MR-Steuer- und Auswerteeinheit 50 verbunden. Die erste Strahlungseinheit 30 ist mit der Strahlungssteuer- und Auswerteeinheit 60 verbunden. Weiterhin ist die MR-Steuer- und Auswerteeinheit 50 mit der Strahlungssteuer- und Auswerteeinheit 60 verbunden, insbesondere können die MR-Steuer- und Auswerteeinheit 50 und die Strahlungssteuer- und Auswerteeinheit 60 untereinander Bildinformationen und/oder Steuersignale austauschen. Es ist auch alternativ möglich, dass die MR-Steuer- und Auswerteeinheit 50 und die Strahlungssteuer- und Auswerteeinheit 60 in einer gemeinsamen Steuer- und Auswerteeinheit ausgeführt sind.The magnet unit 20 is connected to the MR control and evaluation unit 50. The first radiation unit 30 is connected to the radiation control and evaluation unit 60. Furthermore, the MR control and evaluation unit 50 is connected to the radiation control and evaluation unit 60; in particular, the MR control and evaluation unit 50 and the radiation control and evaluation unit 60 can exchange image information and / or control signals with one another. It is also alternatively possible for the MR control and evaluation unit 50 and the radiation control and evaluation unit 60 to be designed in a common control and evaluation unit.

Im dargestellten Ausführungsbeispiel ist das Untersuchungsobjekt 80 ein Patient 80, und die Lagerungsvorrichtung 70 eine Patientenlagerungsvorrichtung 70. Die Patientenlagerungsvorrichtung 70 ist dazu ausgebildet, den Patienten 80 in die zylindrisch ausgebildete Untersuchungsöffnung 90 zu transportieren.In the illustrated embodiment, the examination object 80 is a patient 80, and the storage device 70 is a patient support device 70. The patient support device 70 is adapted to transport the patient 80 into the cylindrically shaped examination opening 90.

Fig. 2 zeigt eine Magneteinheit 20 mit einem äußeren Fenster 25.1 und einem inneren Fenster 25.2, wobei die Fenster als Teil des Gehäuses 26 der Magneteinheit 20 ausgebildet sind. In diesem Ausführungsbeispiels ist der erste Bereich der Magneteinheit 20 durch das äußere Fenster 25.1 und das innere Fenster 25.2 begrenzt. Das äußere Fenster 25.1 und das innere Fenster 25.2 sind hier aus Glas ausgebildet. Die beiden Fenster 25.1, 25.2 können aber auch aus Beryllium, Aluminium oder einem anderen Material ausgebildet sein, wobei das andere Material transparent für die Strahlung 32 der ersten Strahlungseinheit 30 ist. Im gezeigten Ausführungsbeispiel ist das äußere Fenster 25.1 und das innere Fenster 25.2 rechteckig ausgebildet. Die beiden Fenster 25.1, 25.2 können aber auch rund, oval oder in einer anderen Form ausgebildet sein. Bei der Gestaltung des äußeren Fensters 25.1 und des inneren Fensters 25.2 können insbesondere die notwendige Stabilität der Magneteinheit 20 und die geometrische Form des Strahlengangs der Strahlung 32 der ersten Strahlungseinheit 30 berücksichtigt werden. Fig. 2 shows a magnet unit 20 with an outer window 25.1 and an inner window 25.2, wherein the windows are formed as part of the housing 26 of the magnet unit 20. In this embodiment, the first area of the magnet unit 20 is bounded by the outer window 25.1 and the inner window 25.2. The outer window 25.1 and the inner window 25.2 are here made of glass. However, the two windows 25.1, 25.2 can also be made of beryllium, aluminum or another material, the other material being transparent to the radiation 32 of the first radiation unit 30. In the illustrated embodiment, the outer window 25.1 and the inner window 25.2 is rectangular. However, the two windows 25.1, 25.2 can also be round, oval or in another form. In the design of the outer window 25.1 and the inner window 25.2, in particular the necessary stability of the magnet unit 20 and the geometric shape of the beam path of the radiation 32 of the first radiation unit 30 can be taken into account.

In dem in Fig. 2 gezeigten Ausführungsbeispiel ist die Magneteinheit 20 zum Rotieren um die Untersuchungsachse 91 ausgebildet und nur genau ein erster Bereich der Magneteinheit 20 durch das äußere Fenster 25.1 und das innere Fenster 25.2 begrenzt. Falls die Magneteinheit 20 nicht zum Rotieren um die Untersuchungsachse 91 ausgebildet ist, ist es alternativ möglich, eine Magneteinheit 20 mit mehreren ersten Bereichen und damit mehreren äußere Fenster 25.1 und innere Fenstern 25.2 zu verwenden, oder eine Magneteinheit 20 mit einem größeren ersten Bereich definiert durch ein größeres äußeres Fenster 25.1 und durch ein größeres inneres Fenster 25.2 zu verwenden, um mit der ersten Strahlungseinheit 30 aus verschiedenen Richtungen auf das Untersuchungsobjekt 80 zu strahlen. Im gezeigten Ausführungsbeispiel sind das äußere Fenster 25.1 und das innere Fenster 25.2 bogenförmig an die Krümmung des Gehäuses 26 der Magneteinheit 20 angepasst. Es ist auch möglich, ein flaches äußeres Fenster 25.1 und/oder ein flaches inneres Fenster 25.2 zu verwenden.In the in Fig. 2 In the embodiment shown, the magnet unit 20 is designed to rotate around the examination axis 91 and only exactly a first area of the magnet unit 20 is bounded by the outer window 25.1 and the inner window 25.2. If the magnet unit 20 is not designed to rotate around the examination axis 91, it is alternatively possible to use a magnet unit 20 having a plurality of first areas and thus a plurality of outer windows 25.1 and inner windows 25.2, or a magnet unit 20 having a larger first area defined by To use a larger outer window 25.1 and a larger inner window 25.2 to radiate with the first radiation unit 30 from different directions on the object to be examined 80. In the embodiment shown are the outer Window 25.1 and the inner window 25.2 arcuately adapted to the curvature of the housing 26 of the magnet unit 20. It is also possible to use a flat outer window 25.1 and / or a flat inner window 25.2.

Fig. 3 zeigt eine Magneteinheit 20, die als ersten Bereich einen Trichter 24 ausbildet. Der Trichter 24 wird insbesondere durch das Gehäuse 26 der Magneteinheit 20 ausgebildet. Der Trichter 24 ist in diesem Ausführungsbeispiel als Prisma mit rechteckiger Grundfläche ausgebildet. Der Trichter 24 kann aber auch als Prisma mit einer andersförmigen Grundfläche ausgebildet sein, oder als Pyramidenstumpf oder als Kegelstumpf. Insbesondere ist es möglich, dass der Trichter 24 zylinderförmig ausgebildet ist. Bei der Gestaltung des Trichters 24 können insbesondere die notwendige Stabilität der Magneteinheit 20 und die geometrische Form des Strahlengangs der Strahlung 32 der ersten Strahlungseinheit 30 berücksichtigt werden. Im dargestellten Ausführungsbeispiel ist der Trichter 24 mit Luft gefüllt. Es ist aber auch möglich, den Trichter 24 mit einem anderen Material zu füllen, das von der von der ersten Strahlungseinheit 30 ausgesendeten Strahlung 32 durchdrungen werden kann. Wenn es sich bei der ersten Strahlungseinheit 30 um eine erste Röntgenquelle 30 handelt, kann der Trichter 24 insbesondere auch mit Plexiglas ausgefüllt sein. Fig. 3 shows a magnet unit 20, which forms a funnel 24 as a first region. The funnel 24 is formed in particular by the housing 26 of the magnet unit 20. The funnel 24 is formed in this embodiment as a prism with a rectangular base. However, the funnel 24 may also be formed as a prism with a different base area, or as a truncated pyramid or truncated cone. In particular, it is possible that the funnel 24 is cylindrical. In the design of the funnel 24, in particular the necessary stability of the magnet unit 20 and the geometric shape of the beam path of the radiation 32 of the first radiation unit 30 can be taken into account. In the illustrated embodiment, the hopper 24 is filled with air. However, it is also possible to fill the funnel 24 with another material that can be penetrated by the radiation 32 emitted by the first radiation unit 30. If the first radiation unit 30 is a first x-ray source 30, the funnel 24 can in particular also be filled with plexiglass.

In dem in Fig. 3 gezeigten Ausführungsbeispiel ist die Magneteinheit 20 zum Rotieren um die Untersuchungsachse 91 ausgebildet und nur genau ein erster Bereich der Magneteinheit 20 durch einen Trichter 24 ausgebildet. Falls die Magneteinheit 20 nicht zum Rotieren um die Untersuchungsachse 91 ausgebildet ist, ist es alternativ möglich, eine Magneteinheit 20 mit mehreren ersten Bereichen und damit mehrere Trichter 24 zu verwenden, oder eine Magneteinheit 20 mit einem größeren ersten Bereich mit einem größeren Trichter 24 zu verwenden, um mit der ersten Strahlungseinheit 30 aus verschiedenen Richtungen auf das Untersuchungsobjekt 80 zu strahlen.In the in Fig. 3 In the embodiment shown, the magnet unit 20 is designed to rotate around the examination axis 91 and only exactly a first area of the magnet unit 20 is formed by a funnel 24. Alternatively, if the magnet unit 20 is not configured to rotate around the inspection axis 91, it is possible to use a magnet unit 20 having a plurality of first areas and thus multiple funnels 24, or a magnet unit 20 having a larger first area with a larger funnel 24 for irradiating the examination subject 80 with the first radiation unit 30 from different directions.

Fig. 4 zeigt einen Schnitt durch das medizinische Bildgebungssystem 10 orthogonal zur Untersuchungsachse 91, insbesondere einen Schnitt durch die Magneteinheit 20. Fig. 5 zeigt ebenfalls einen Schnitt durch das medizinische Bildgebungssystem 10 orthogonal zur Untersuchungsachse 91, insbesondere einen Schnitt durch die Magneteinheit 20. Im gezeigten Ausführungsbeispiel ist die Magneteinheit 20 zum Rotieren ausgebildet, weiterhin ist die erste Strahlungseinheit 30 fest mit der Magneteinheit 20 verbunden und dazu ausgebildet, gemeinsam und simultan mit der Magneteinheit 20 um die Untersuchungsöffnung 90 zu rotieren. Die Orientierung der Magneteinheit 20 ist durch eine erste gedrehte Koordinatenachse x' und eine zweite gedrehte Koordinatenachse y' gegeben, wobei die zweite gedrehte Koordinatenachse y' orthogonal zur ersten gedrehten Koordinatenachse x' ist, und wobei der erste gedrehte Koordinatenachse x' und die zweite gedrehte Koordinatenachse y' orthogonal zur Untersuchungsachse 91 und damit zur dritten Koordinatenachse z sind. Im gezeigten Ausführungsbeispiel entspricht die erste Strahlungseinheit 30 einer ersten Röntgenquelle, weiterhin umfasst das medizinische Bildgebungssystem 10 einen ersten Röntgendetektor 31. Es ist natürlich auch möglich, dass die Magneteinheit 20 mit einer anderen ersten Strahlungseinheit 30 verbunden und gleichzeitig zum Rotieren um die Untersuchungsachse 91 ausgebildet ist. Im gezeigten Ausführungsbeispiel der Fig. 4 und der Fig. 5 ist der erste Röntgendetektor 31 dazu ausgebildet, simultan mit der ersten Röntgenquelle 30 und damit simultan mit der Magneteinheit 20 zu rotieren. Alternativ könnte der erste Röntgendetektor 31 auch ortsfest ausgebildet sein, in diesem Fall muss ein deutlich größerer und/oder ein gekrümmter erster Röntgendetektor 31 verwendet werden, um die Röntgenstrahlung 32 der ersten Röntgenquelle 30 aus verschiedenen Richtungen zu detektieren. Fig. 4 shows a section through the medical imaging system 10 orthogonal to the examination axis 91, in particular a section through the magnet unit 20th Fig. 5 also shows a section through the medical imaging system 10 orthogonal to the examination axis 91, in particular a section through the magnet unit 20. In the illustrated embodiment, the magnet unit 20 is adapted to rotate, further, the first radiation unit 30 is fixedly connected to the magnet unit 20 and adapted to be common and to rotate simultaneously with the magnet unit 20 about the inspection opening 90. The orientation of the magnet unit 20 is given by a first rotated coordinate axis x 'and a second rotated coordinate axis y', the second rotated coordinate axis y 'being orthogonal to the first rotated coordinate axis x', and the first rotated coordinate axis x 'and the second rotated coordinate axis x' Coordinate axis y 'are orthogonal to the examination axis 91 and thus the third coordinate axis z. In the exemplary embodiment shown, the first radiation unit 30 corresponds to a first X-ray source, furthermore, the medical imaging system 10 comprises a first X-ray detector 31. It is, of course, also possible that the magnet unit 20 is connected to another first radiation unit 30 and at the same time configured to rotate about the examination axis 91 , In the illustrated embodiment of the Fig. 4 and the Fig. 5 the first X-ray detector 31 is designed to rotate simultaneously with the first X-ray source 30 and thus simultaneously with the magnet unit 20. Alternatively, the first X-ray detector 31 could also be stationary, in which case a significantly larger and / or a curved first X-ray detector 31 must be used in order to detect the X-ray radiation 32 of the first X-ray source 30 from different directions.

Im gezeigten Ausführungsbeispiel handelt es sich bei der ersten Strahlungseinheit 30 um eine erste Röntgenquelle 30, die dazu ausgebildet ist, Röntgenstrahlung 32 zu senden. Die erste Strahlungseinheit 30 kann aber auch dazu ausgebildet sein, Gammastrahlung oder Teilchenstrahlung zu senden.In the exemplary embodiment shown, the first radiation unit 30 is a first x-ray source 30, which is designed to transmit x-ray radiation 32. The first However, radiation unit 30 can also be designed to transmit gamma radiation or particle radiation.

Im gezeigten Ausführungsbeispiel ist die erste Röntgenquelle 30 als erste Röntgenröhre 30 mit einer rotierenden Anode (ein englischer Fachbegriff ist "rotating anode") ausgebildet. Eine erste Röntgenröhre 30 kann insbesondere zusammen mit einem ersten Röntgendetektor 31 zur Röntgenbildgebung des Untersuchungsobjekts 80 ausgebildet sein, indem Röntgenprojektionen des Untersuchungsobjekts 80 aufgenommen werden. Dabei sind eine erste Röntgenröhre mit rotierender Anode und ein erster Röntgendetektor 31 aus dem Stand der Technik bekannt. Unter Verwendung mehrerer Röntgenprojektionen eines Untersuchungsobjekts bezüglich verschiedener Projektionsrichtungen kann auch ein dreidimensionaler Röntgenbilddatensatz rekonstruiert werden.In the exemplary embodiment shown, the first X-ray source 30 is designed as a first X-ray tube 30 with a rotating anode (an English technical term is "rotating anode"). A first x-ray tube 30 may in particular be formed together with a first x-ray detector 31 for x-ray imaging of the examination subject 80 by taking x-ray projections of the examination subject 80. In this case, a first x-ray tube with rotating anode and a first x-ray detector 31 are known from the prior art. By using a plurality of X-ray projections of an examination object with respect to different projection directions, a three-dimensional X-ray image data set can also be reconstructed.

Eine erste Röntgenquelle 30 kann alternativ auch als erste Röntgenröhre mit statischer Anode (ein englischer Fachbegriff ist "static anode") oder mit einer Anode bestehend aus einem flüssigen Metallstrahl (ein englischer Fachbegriff ist "liquid metal jet anode"). Weiterhin kann eine erste Röntgenquelle als Linearbeschleuniger ausgebildet sein (ein englischer Fachbegriff ist "linear accelerator", kurz LINAC). Im Vergleich mit einer Röntgenröhre kann mit einem Linearbeschleuniger insbesondere Röntgenstrahlung mit einer kleineren Wellenlänge erzeugt werden. Diese Röntgenstrahlung kann dann insbesondere für die Manipulation eines Bereichs des Untersuchungsobjekts 80 verwendet werden. Dabei kann insbesondere durch die Bestrahlung Gewebe zerstört werden, insbesondere Tumorgewebe. Mit einem Linearbeschleuniger können auch Teilchenstrahlung erzeugt werden.Alternatively, a first X-ray source 30 may also be the first static anode X-ray tube ("static anode") or an liquid metal jet anode ("liquid metal jet anode"). Furthermore, a first X-ray source can be designed as a linear accelerator (an English technical term is "linear accelerator", short LINAC). In comparison with an X-ray tube, X-ray radiation having a smaller wavelength can be generated with a linear accelerator, in particular. This X-ray radiation can then be used in particular for the manipulation of a region of the examination object 80. It can be destroyed in particular by the irradiation tissue, especially tumor tissue. With a linear accelerator and particle radiation can be generated.

Ein Linearbeschleuniger weist eine entlang einer Achse ausgebildete lineare Beschleunigungseinheit auf. Die lineare Beschleunigungseinheit kann parallel zur ersten gedrehten Koordinatenachse x' ausgebildet sein. Die lineare Beschleunigungseinheit kann auch in eine andere Richtung ausgebildet sein, insbesondere parallel zur dritten Koordinatenachse z oder parallel zur zweiten gedrehten Koordinatenachse y'. In diesem Fall ist der Platzbedarf oberhalb der Magneteinheit 20 besonders klein, und das medizinische Bildgebungssystem 10 kann in standardisierten Untersuchungsräumen eingesetzt werden, es muss aber bei Teilchenstrahlung dann eine zusätzliche Umlenkeinheit verwendet werden, um die Strahlung 32 korrekt durch den ersten Bereich der Magneteinheit 20 zu senden.A linear accelerator has a linear acceleration unit formed along an axis. The linear acceleration unit may be formed parallel to the first rotated coordinate axis x '. The linear acceleration unit can also be designed in a different direction be, in particular parallel to the third coordinate axis z or parallel to the second rotated coordinate axis y '. In this case, the space requirement above the magnet unit 20 is particularly small, and the medical imaging system 10 can be used in standardized examination rooms, but with particle radiation then an additional deflection unit must be used to correct the radiation 32 through the first area of the magnet unit 20 send.

Ein erster Röntgendetektor 31 kann wie im dargestellten Ausführungsbeispiel flächig ausgebildet sein. Hierbei sind für einen flachen Röntgendetektor 31 verschiedene Ausführungsformen bekannt, beispielsweise bestehend aus amorphem Silicium oder bestehend aus sich ergänzenden Metall-Oxid-Halbleitern (ein englischer Fachbegriff ist "complementary metal-oxidsemiconductor", eine gebräuchliche Abkürzung ist "CMOS"). Weiterhin sind photonenzählende erste Röntgendetektoren sowie erste Röntgendetektoren umfassend einen Schirm bekannt (ein englischer Fachbegriff ist "screen-film"), wobei der Schirm Röntgenstrahlung 32 in sichtbares Licht umwandelt. Der erste Röntgendetektor 31 kann alternativ auch gekrümmt oder stückweise gekrümmt ausgebildet sein.A first X-ray detector 31 may be formed flat as in the illustrated embodiment. Here, for a flat X-ray detector 31 different embodiments are known, for example consisting of amorphous silicon or consisting of complementary metal oxide semiconductors (an English term is "complementary metal oxide semiconductor", a common abbreviation is "CMOS"). Furthermore, photon counting first X-ray detectors as well as first X-ray detectors comprising a screen are known (a technical term is "screen-film"), wherein the screen converts X-ray radiation 32 into visible light. The first X-ray detector 31 may alternatively also be curved or piecewise curved.

Der erste Röntgendetektor 31 kann wie im gezeigten Ausführungsbeispiel der Fig. 4 und Fig. 5 innerhalb der Untersuchungsöffnung 90 ausgebildet sein. Weiterhin kann der Röntgendetektor auch zwischen dem Hauptmagneten 21 und der Untersuchungsöffnung 90 ausgebildet sein, insbesondere zwischen den Teilen oder innerhalb der Gradientenspuleneinheit 22 oder den Teilen oder innerhalb der Hochfrequenzantenneneinheit 23. Alternativ kann der erste Röntgendetektor 31 aber auch außerhalb der Magneteinheit 20 auf der von der ersten Röntgenquelle abgewandten Seite der Magneteinheit 20 angeordnet sein. In diesem Fall weist die Magneteinheit 20 einen für die Strahlung 32 der ersten Strahlungseinheit 30 transparenten Austrittsbereich 27 auf, wobei die Strahlung 32 nach dem Passieren des Untersuchungsobjekts 80 durch den Austrittsbereich 27 verläuft.The first X-ray detector 31 may, as in the embodiment shown, the Fig. 4 and Fig. 5 be formed within the examination opening 90. Furthermore, the X-ray detector can also be formed between the main magnet 21 and the examination opening 90, in particular between the parts or within the gradient coil unit 22 or the parts or within the high-frequency antenna unit 23. Alternatively, the first X-ray detector 31 can also be outside of the magnet unit 20 on the of the The first X-ray source facing away from the magnet unit 20 may be arranged. In this case, the magnet unit 20 has an outlet region 27 that is transparent to the radiation 32 of the first radiation unit 30, wherein the radiation 32 passes through the exit region 27 after the examination object 80 has passed.

In Fig. 6 ist die Funktionsweise einer Magneteinheit 20 schematisch anhand eines Schnitts orthogonal zur zweiten Koordinatenachse y dargestellt. Die Magneteinheit 20 umschließt eine Untersuchungsöffnung 90 zu einer Aufnahme eines Patienten 80. Die Untersuchungsöffnung 90 im vorliegenden Ausführungsbeispiel ist zylinderförmig ausgebildet und in einer Umfangsrichtung von der Magneteinheit 20 hohlzylinderförmig umgeben. Grundsätzlich ist jedoch eine davon abweichende Ausbildung der Untersuchungsöffnung 90 jederzeit denkbar. Der Patient 80 kann mittels einer Patientenlagerungsvorrichtung 70 des in die Untersuchungsöffnung 90 geschoben werden. Die Patientenlagerungsvorrichtung 70 weist hierzu einen innerhalb der Untersuchungsöffnung 90 bewegbar ausgestalteten Patiententisch auf. Die Magneteinheit 20 umfasst einen Hauptmagneten 21 zu einem Erzeugen eines starken und insbesondere homogenen Hauptmagnetfelds innerhalb der Untersuchungsöffnung 90. Die Magneteinheit 20 ist mittels eines Gehäuses 26 nach außen abgeschirmt.In Fig. 6 the mode of operation of a magnet unit 20 is shown schematically on the basis of a section orthogonal to the second coordinate axis y. The magnet unit 20 encloses an examination opening 90 for receiving a patient 80. The examination opening 90 in the present exemplary embodiment has a cylindrical shape and is surrounded by a hollow cylinder in a circumferential direction by the magnet unit 20. In principle, however, a different design of the examination opening 90 is conceivable at any time. The patient 80 can be pushed into the examination opening 90 by means of a patient support device 70. For this purpose, the patient support device 70 has a patient table designed to be movable within the examination opening 90. The magnet unit 20 comprises a main magnet 21 for generating a strong and in particular homogeneous main magnetic field within the examination opening 90. The magnet unit 20 is shielded by means of a housing 26 to the outside.

Die Magneteinheit 20 weist weiterhin eine Gradientenspuleneinheit 22 zu einer Erzeugung von Magnetfeldgradienten auf, die für eine Ortskodierung während einer Bildgebung verwendet werden. Die Gradientenspuleneinheit 22 wird mittels einer Gradientensteuereinheit 53 der MR-Steuer- und Auswerteeinheit 50 gesteuert. Die Magneteinheit 20 umfasst weiterhin eine Hochfrequenzantenneneinheit 23, welche im vorliegenden Ausführungsbeispiel als fest in die Magneteinheit 20 integrierte Körperspule ausgebildet ist. Die Hochfrequenzantenneneinheit 23 ist zu einer Anregung von Atomkernen, die sich in dem von dem Hauptmagneten 21 erzeugten Hauptmagnetfeld einstellt, ausgelegt. Die Hochfrequenzantenneneinheit 23 wird von einer Hochfrequenzantennensteuereinheit 52 der MR-Steuer- und Auswerteeinheit 50 gesteuert und strahlt hochfrequente Wechselfelder in einen Untersuchungsraum ein, der im Wesentlichen von einer Untersuchungsöffnung 90 der Magneteinheit 20 gebildet ist. Die Hochfrequenzantenneneinheit 23 ist weiterhin zum Empfang von Magnetresonanzsignalen ausgebildet.The magnet unit 20 further includes a gradient coil unit 22 for generating magnetic field gradients used for spatial coding during imaging. The gradient coil unit 22 is controlled by means of a gradient control unit 53 of the MR control and evaluation unit 50. The magnet unit 20 furthermore comprises a high-frequency antenna unit 23, which in the present exemplary embodiment is designed as a body coil permanently integrated in the magnet unit 20. The high-frequency antenna unit 23 is designed to excite atomic nuclei established in the main magnetic field generated by the main magnet 21. The high-frequency antenna unit 23 is controlled by a high-frequency antenna control unit 52 of the MR control and evaluation unit 50 and radiates high-frequency alternating fields into an examination space, which is essentially formed by an examination opening 90 of the magnet unit 20. The high frequency antenna unit 23 is further configured to receive magnetic resonance signals.

Die Gradientenspuleneinheit 22 kann insbesondere Magnetfelder mit einem Gradienten in Richtung der ersten gedrehten Koordinatenachse x', in Richtung der zweiten gedrehten Koordinatenachse y' oder in Richtung der dritten Koordinatenachse y erzeugen. Die Gradientenspuleneinheit 22 umfasst hierfür in diesem Ausführungsbeispiel drei Gradientenspulenteileinheiten, die jeweils ein Magnetfeld mit einem Gradienten in Richtung einer der Koordinatenachsen x', y', z' erzeugen können. Für jede der drei Gradientenspulenteileinheiten ist hierbei eine Anordnung bekannt, so dass jede Gradientenspulenteileinheit außerhalb des ersten Bereichs der Magneteinheit 20 angeordnet ist.In particular, the gradient coil unit 22 can generate magnetic fields with a gradient in the direction of the first rotated coordinate axis x ', in the direction of the second rotated coordinate axis y' or in the direction of the third coordinate axis y. For this purpose, the gradient coil unit 22 in this exemplary embodiment comprises three gradient coil subunits which can each generate a magnetic field with a gradient in the direction of one of the coordinate axes x ', y', z '. In this case, an arrangement is known for each of the three gradient coil unit units, so that each gradient coil unit unit is arranged outside the first area of the magnet unit 20.

Zu einer Steuerung des Hauptmagneten 21, der Gradientenspuleneinheit 22 und zur Steuerung der Hochfrequenzantenneneinheit 23 ist die Magneteinheit 20 mit einer MR-Steuer- und Auswerteeinheit 50 verbunden. Die MR-Steuer- und Auswerteeinheit 50 steuert zentral mittels einer Systemsteuereinheit 51 die Magneteinheit 20, wie beispielsweise das Durchführen einer vorbestimmten bildgebenden Gradientenechosequenz. Dabei erfolgt die Steuerung über eine Hochfrequenzantennensteuereinheit 52 und eine Gradientensteuereinheit 53. Zudem umfasst die MR-Steuer- und Auswerteeinheit 50 eine nicht näher dargestellte Auswerteeinheit zu einer Auswertung von medizinischen Bilddaten, die während der Magnetresonanzuntersuchung erfasst werden. Des Weiteren umfasst die MR-Steuer- und Auswerteeinheit 50 eine nicht näher dargestellte Benutzerschnittstelle, diese umfasst eine Anzeigeeinheit 54 und eine Eingabeeinheit 55, die jeweils mit der Systemsteuereinheit 51 verbunden sind. Steuerinformationen wie beispielsweise Bildgebungsparameter, sowie rekonstruierte Magnetresonanzbilder können auf der Anzeigeeinheit 54, beispielsweise auf zumindest einem Monitor, für ein medizinisches Bedienpersonal angezeigt werden. Mittels der Eingabeeinheit 55 können Informationen und/oder Parameter während eines Messvorgangs von dem medizinischen Bedienpersonal eingegeben werde.For a control of the main magnet 21, the gradient coil unit 22 and for controlling the high-frequency antenna unit 23, the magnet unit 20 is connected to an MR control and evaluation unit 50. The MR control and evaluation unit 50 controls the magnet unit 20 centrally by means of a system control unit 51, such as, for example, carrying out a predetermined imaging gradient echo sequence. In this case, the control takes place via a high-frequency antenna control unit 52 and a gradient control unit 53. In addition, the MR control and evaluation unit 50 comprises an evaluation unit (not shown) for evaluating medical image data acquired during the magnetic resonance examination. Furthermore, the MR control and evaluation unit 50 comprises a user interface (not shown), which comprises a display unit 54 and an input unit 55, which are each connected to the system control unit 51. Control information, such as imaging parameters, as well as reconstructed magnetic resonance images may be displayed on the display unit 54, for example on at least one monitor, for a medical operator. By means of the input unit 55, information and / or parameters can be input during a measuring process by the medical operating personnel.

Fig. 7 zeigt einen Schnitt orthogonal zur ersten gedrehten Koordinatenachse y' durch einen Trichter 24 durch die Magneteinheit 20. Im gezeigten Ausführungsbeispiel verläuft der Trichter 24 durch den Hauptmagneten 21 und die Gradientenspuleneinheit 22, aber nicht durch die Hochfrequenzantenneneinheit 23. In diesem Ausführungsbeispiel ist die Hochfrequenzantenneneinheit 23 zumindest teilweise für Strahlung 32 der ersten Strahlungseinheit 30 durchdringbar ausgebildet. Es ist auch möglich, dass der Trichter 24 die Hochfrequenzantenneneinheit 23 durchdringt. Weiterhin ist es ebenfalls möglich, dass der Trichter 24 die Gradientenspuleneinheit 22 nicht durchdringt, in diesem Fall muss die Gradientenspuleneinheit 22 zumindest teilweise für Strahlung 32 der ersten Strahlungseinheit 30 durchdringbar ausgebildet sein. Der Trichter 24 durchdringt den Hauptmagneten 21 derart, dass der Hauptmagnet 21, insbesondere die Spulenelemente 21.1, ein homogenes Magnetfeld in der Untersuchungsöffnung 90 erzeugen kann. Im gezeigten Ausführungsbeispiel umfasst der Hauptmagnet 21 mehrere supraleitende Spulenelemente 21.1 auf einem Spulenträger 21.2, die von einem Kühlmittel 21.3 umgeben sind. Die supraleitenden Spulenelemente 21.1 umlaufen hierbei die Untersuchungsöffnung 90. Der Spulenträger 21.2 sorgt einerseits für die mechanische Stabilität und die Formstabilität der Spulenelemente 21.1, als auch für die Kühlung der Spulenelemente 21.1. Fig. 7 shows a section orthogonal to the first rotated coordinate axis y 'through a funnel 24 through the magnet unit 20. In the illustrated embodiment, the funnel 24 passes through the main magnet 21 and the gradient coil unit 22, but not through the high-frequency antenna unit 23. In this embodiment, the high-frequency antenna unit 23 is at least partially formed permeable to radiation 32 of the first radiation unit 30. It is also possible that the funnel 24 penetrates the high-frequency antenna unit 23. Furthermore, it is also possible that the funnel 24 does not penetrate the gradient coil unit 22, in which case the gradient coil unit 22 must be at least partially permeable to radiation 32 of the first radiation unit 30. The funnel 24 penetrates the main magnet 21 in such a way that the main magnet 21, in particular the coil elements 21. 1, can generate a homogeneous magnetic field in the examination opening 90. In the exemplary embodiment shown, the main magnet 21 comprises a plurality of superconducting coil elements 21.1 on a coil support 21.2, which are surrounded by a coolant 21.3. The superconducting coil elements 21.1 in this case revolve around the examination opening 90. The coil support 21.2 on the one hand ensures the mechanical stability and the dimensional stability of the coil elements 21.1, as well as for the cooling of the coil elements 21.1.

Fig. 8 zeigt einen Schnitt orthogonal zur ersten gedrehten Koordinatenachse y' durch das äußere Fenster 25.1 und das innere Fenster 25.2 der Magneteinheit 20. Das äußere Fenster 25.1 und das innere Fenster 25.2 sind im gezeigten Ausführungsbeispiel ein Teil des Gehäuses 26 der Magneteinheit 20. Sowohl das äußere Fenster 25.1 als auch das innere Fenster 25.2 sind hier rechteckig ausgebildet. Es sind natürlich auch andere Fensterformen möglich, insbesondere runde Fenster 25.1, 25.2. In diesem Ausführungsbeispiel weist die thermische Isolierung 21.4 ebenfalls Bereiche 21.5 auf, die für die Strahlung 32 der ersten Strahlungseinheit 30 durchdringbar sind. Diese Bereiche 21.5 der thermischen Isolierung 21.4 können beispielsweise aus dem Material der thermischen Isolierung 21.4 aufgebaut sein, jedoch dünner ausgebildet sein als das Gehäuse 26 außerhalb des Bereichs. Die Bereiche 21.5 der thermischen Isolierung 21.4 können auch aus einer Metallfolie ausgebildet sein, insbesondere aus einer Aluminiumfolie oder einer Kupferfolie. Fig. 8 shows a section orthogonal to the first rotated coordinate axis y 'through the outer window 25.1 and the inner window 25.2 of the magnet unit 20. The outer window 25.1 and the inner window 25.2 are in the embodiment shown a part of the housing 26 of the magnet unit 20. Both the outer window 25.1 and the inner window 25.2 are rectangular here. Of course, other window shapes are possible, in particular round windows 25.1, 25.2. In this exemplary embodiment, the thermal insulation 21.4 likewise has regions 21.5 which are permeable to the radiation 32 of the first radiation unit 30. These areas 21.5 of the thermal insulation 21.4 For example, they may be constructed of the material of thermal insulation 21.4, but may be made thinner than the housing 26 outside the region. The regions 21.5 of the thermal insulation 21.4 can also be formed from a metal foil, in particular from an aluminum foil or a copper foil.

Das äußere Fenster 25.1 und das innere Fenster 25.2 bestehen im gezeigten Ausführungsbeispiel aus Beryllium. Es ist weiterhin möglich, die Fenster 25.1, 25.2 aus einem anderen Material auszubilden, dass für die Strahlung 32 der ersten Strahlungseinheit 30 transparent ist, beispielsweise aus Aluminium oder Glas.The outer window 25.1 and the inner window 25.2 consist in the illustrated embodiment of beryllium. It is also possible to form the windows 25.1, 25.2 of a different material that is transparent to the radiation 32 of the first radiation unit 30, for example made of aluminum or glass.

Im gezeigten Ausführungsbeispiel ist das elektrisch leitende Material der Spulenelemente 21.1 Magnesiumdiborid MgB2. Die kritische Temperatur 39 K von Magnesiumdiborid MgB2 liegt über der Siedetemperatur 4.2 K von Helium bei Normaldruck 1013 hPa. Es sind auch alternative elektrisch leitende Materialien für die Spulenelemente 21.1 vorstellbar, insbesondere supraleitende Materialien, und insbesondere supraleitende Materialien mit einer kritischen Temperatur über der Siedetemperatur 4.2 K von Helium bei Normaldruck 1013 hPa, beispielsweise Niobgermanium Nb3Ge mit einer kritischen Temperatur von 23 K.In the exemplary embodiment shown, the electrically conductive material of the coil elements 21.1 is magnesium diboride MgB 2 . The critical temperature of 39 K of magnesium diboride MgB 2 is above the boiling point of 4.2 K helium at atmospheric pressure 1013 hPa. There are also alternative electrically conductive materials for the coil elements 21.1 to imagine, especially superconducting materials, and especially superconducting materials having a critical temperature above the boiling point 4.2 K of helium at normal pressure 1013 hPa, for example niobium germanium Nb 3 Ge with a critical temperature of 23 K.

Sowohl in dem in Fig. 7 als auch in dem in Fig. 8 dargestellten Ausführungsbeispiel erfolgt die Kühlung durch Wärmeleitung über den Spulenträger 21.2, indem der Spulenträger 21.2 mittels eines Röhrensystems gekühlt wird, wobei im Röhrensystem ein Kühlmittel zum Wärmetransport zirkuliert und die Wärme zu einem Wärmetauscher transportiert. Dabei kann unterstützend mittels eines optionalen gasförmigen Kühlmittels 21.3 gekühlt werden. Das in der Fig. 7 nicht dargestellte Röhrensystem ist derart ausgebildet, dass es nicht im ersten Bereich der Magneteinheit 20 ausgebildet ist, um die Transparenz des ersten Bereichs für Strahlung 32 der ersten Strahlungseinheit 30 zu verbessern. Alternativ und insbesondere bei nicht zum Rotieren ausgelegten Magneteinheiten 20 kann die Kühlung der Spulenelemente 21.1 durch Immersion in ein Kühlmittel 21.3, beispielsweise in flüssiges Helium 21.3 erfolgen. Ein derartiges Röhrensystem ist beispielsweise aus der Druckschrift DE 10 2004 061 869 B4 bekannt.Both in the in Fig. 7 as well as in the Fig. 8 illustrated embodiment, the cooling is carried out by heat conduction through the bobbin 21.2 by the bobbin 21.2 is cooled by means of a tube system, wherein circulated in the tube system, a coolant for heat transfer and the heat is transported to a heat exchanger. It can be supported by means of an optional gaseous coolant 21.3 cooled. That in the Fig. 7 not shown tube system is formed such that it is not formed in the first region of the magnet unit 20 in order to improve the transparency of the first region for radiation 32 of the first radiation unit 30. Alternatively and in particular When not designed for rotating magnetic units 20, the cooling of the coil elements 21.1 can be done by immersion in a coolant 21.3, for example, in liquid helium 21.3. Such a tube system is for example from the document DE 10 2004 061 869 B4 known.

Sowohl in dem in Fig. 7 als auch in dem in Fig. 8 dargestellten Ausführungsbeispiel sind die Spulenelemente 21.1 des Hauptmagneten 21 und der Spulenträger 21.2 des Hauptmagneten 21 nicht im ersten Bereich der Magneteinheit 20 angeordnet. Auch sind keine Teile der Spulenelemente 21.1 und keine Teile des Spulenträgers 21.2 im ersten Bereich der Magneteinheit 20 angeordnet. Bei einer Magneteinheit 20 umlaufen die Spulenelemente 21.1 üblicherweise ringförmig die Untersuchungsachse 91, um bei Stromdurchfluss in der Untersuchungsöffnung 90 ein homogenes Magnetfeld in Richtung der dritten Koordinatenachse z zu erzeugen. Die ringförmigen Spulenelemente 21.1 weisen zueinander einen Abstand bezüglich der dritten Koordinatenachse z auf. Damit keine Teile der Spulenelemente 21.1 im ersten Bereich der Magneteinheit 20 ausgebildet sind, kann zwischen zwei verschiedenen Spulenelementen 21.1 insbesondere ein Abstand gewählt werden, der größer ist als die Ausdehnung des ersten Bereichs bezüglich der dritten Koordinatenachse Z, und die zwei verschiedenen Spulenelemente 21.1 können auf unterschiedlichen Seiten des ersten Bereichs angeordnet werden. Dieser Abstand kann insbesondere größer sein als die Abstände zwischen allen anderen benachbarten Spulenelementen 21.1. In dem in Fig. 7 als auch in dem in Fig. 8 dargestellten Ausführungsbeispiel bildet der Spulenträger 21.2 im ersten Bereich eine durchgehende Öffnung aus, die größer ist als die Ausdehnung des Strahlengangs der Strahlung 32 durch den Spulenträger 21.2. Alternativ ist es denkbar, auf unterschiedlichen Seiten des ersten Bereichs jeweils mindestens einen separaten Spulenträger 21.2 anzuordnen. Weiterhin ist es auch möglich, als Material des Spulenträgers 21.2 ein Material zu verwenden, das für die Strahlung 32 der ersten Strahlungseinheit 30 transparent ist. Der Spulenträger 21.2 besteht vorteilhafterweise aus einem Material mit hoher Wärmeleitfähigkeit und niedriger mechanischer Verformbarkeit, insbesondere aus Metall, insbesondere aus Aluminium.Both in the in Fig. 7 as well as in the Fig. 8 illustrated embodiment, the coil elements 21.1 of the main magnet 21 and the bobbin 21.2 of the main magnet 21 are not arranged in the first region of the magnet unit 20. Also, no parts of the coil elements 21.1 and no parts of the coil support 21.2 are arranged in the first region of the magnet unit 20. In the case of a magnet unit 20, the coil elements 21.1 usually surround the examination axis 91 in a ring shape in order to generate a homogeneous magnetic field in the direction of the third coordinate axis z when current flows through the examination opening 90. The annular coil elements 21.1 are at a distance from one another with respect to the third coordinate axis z. In order that no parts of the coil elements 21.1 are formed in the first region of the magnet unit 20, a distance greater than the extent of the first region with respect to the third coordinate axis Z can be selected between two different coil elements 21.1, and the two different coil elements 21.1 can different sides of the first area are arranged. This distance may in particular be greater than the distances between all other adjacent coil elements 21.1. In the in Fig. 7 as well as in the Fig. 8 illustrated embodiment, the bobbin 21.2 forms in the first region of a through opening, which is greater than the extension of the beam path of the radiation 32 through the bobbin 21.2. Alternatively, it is conceivable to arrange at least one separate coil support 21.2 on different sides of the first region. Furthermore, it is also possible to use as the material of the coil carrier 21.2 a material that is transparent to the radiation 32 of the first radiation unit 30. The bobbin 21.2 is advantageously made of a material with high thermal conductivity and low mechanical deformability, in particular of metal, in particular of aluminum.

Fig. 9 zeigt einen schematischen Schnitt durch ein medizinisches Bildgebungssystem 10 mit einer ersten Röntgenquelle 30, einer zweiten Röntgenquelle 33, einem ersten Röntgendetektor 31 und einem zweiten Röntgendetektor 34. Hierbei ist die erste Röntgenquelle 30 dazu ausgebildet, Röntgenstrahlung 32 durch die Magneteinheit 20 und durch das Untersuchungsobjekts 80 in Richtung der ersten gedrehten Koordinatenachse x' zum ersten Röntgendetektor 31 auszusenden, die zweite Röntgenquelle 33 ist dazu ausgebildet, Röntgenstrahlung 35 durch die Magneteinheit 20 und durch das Untersuchungsobjekts 80 in Richtung der zweiten gedrehten Koordinatenachse y' zum zweiten Röntgendetektors 34 auszusenden. Dabei ist die gedrehte Koordinatenachse x' orthogonal zur gedrehten Koordinatenachse y', und beide gedrehte Koordinatenachsen sind orthogonal zur Untersuchungsachse 91 und damit zur Koordinatenachse z. Durch diese Anordnung können gleichzeitig zwei Röntgenprojektionen bezüglich orthogonaler Projektionsrichtungen aufgenommen werden. Mit den zwei Röntgenprojektionen kann ein dreidimensionaler Bilddatensatz rekonstruiert werden. Im gezeigten Ausführungsbeispiel ist die Magneteinheit 20 dazu ausgebildet, um die Untersuchungsöffnung 90, insbesondere um die Untersuchungsachse 91 zu rotieren. Die erste Röntgenquelle 30, der erste Röntgendetektor 31, die zweite Röntgenquelle 33 und der zweite Röntgendetektor 34 sind dazu ausgebildet, simultan mit der Magneteinheit 20 um die Untersuchungsöffnung 90, insbesondere um die Untersuchungsachse 91 zu rotieren, beispielsweise indem sie fest mit der Magneteinheit 20 verbunden sind. Fig. 9 11 shows a schematic section through a medical imaging system 10 with a first X-ray source 30, a second X-ray source 33, a first X-ray detector 31 and a second X-ray detector 34. In this case, the first X-ray source 30 is designed to receive X-radiation 32 through the magnet unit 20 and through the examination subject 80 in the direction of the first rotated coordinate axis x 'to the first x-ray detector 31, the second x-ray source 33 is designed to emit x-ray radiation 35 through the magnet unit 20 and through the examination subject 80 in the direction of the second rotated coordinate axis y' to the second x-ray detector 34. The rotated coordinate axis x 'is orthogonal to the rotated coordinate axis y', and both rotated coordinate axes are orthogonal to the examination axis 91 and thus to the coordinate axis z. By this arrangement, two X-ray projections with respect to orthogonal projection directions can be recorded simultaneously. With the two X-ray projections, a three-dimensional image data set can be reconstructed. In the embodiment shown, the magnet unit 20 is designed to rotate the examination opening 90, in particular about the examination axis 91. The first X-ray source 30, the first X-ray detector 31, the second X-ray source 33 and the second X-ray detector 34 are designed to rotate simultaneously with the magnet unit 20 around the examination opening 90, in particular around the examination axis 91, for example by being firmly connected to the magnet unit 20 are.

Die Verbindungslinie zwischen der ersten Röntgenquelle 30 und dem ersten Röntgendetektor 31 entspricht in der Fig. 9 der Koordinatenachse x', die Verbindungslinie zwischen der zweiten Röntgenquelle 33 und dem zweiten Röntgendetektor 34 entspricht der Koordinatenachse y'. In diesem Ausführungsbeispiel sind die Verbindungslinien zueinander orthogonal, es sind aber auch andere Winkel möglich.The connecting line between the first X-ray source 30 and the first X-ray detector 31 corresponds to FIG Fig. 9 of the coordinate axis x ', the connecting line between the second x-ray source 33 and the second x-ray detector 34 corresponds to the coordinate axis y'. In this embodiment, the connecting lines are orthogonal to each other, but other angles are possible.

Fig. 10 zeigt einen schematischen Schnitt durch ein medizinisches Bildgebungssystem 10 orthogonal zur zweiten Koordinatenachse y. Das medizinische Bildgebungssystem 10 umfasst neben der Magneteinheit 20 eine Strahlungseinheit 30, die einen Teilchenbeschleuniger 30.1 und einer bewegliche Teilchenstrahlführung 30.2 für geladene Teilchen umfasst (ein englischer Fachbegriff für eine bewegliche Teilchenstrahlführung ist "gantry"). In diesem Ausführungsbeispiel ist der Teilchenbeschleuniger 30.1 ortsfest ausgebildet, und die Teilchenstrahlführung 30.2 ist dazu ausgebildet, um die Untersuchungsöffnung 90, insbesondere um die Untersuchungsachse 91 zu rotieren. Weiterhin ist im gezeigten Ausführungsbeispiel die Magneteinheit 20 dazu ausgebildet, um die Untersuchungsöffnung 90 zu rotieren. Dabei sind die Teilchenstrahlführung 30.2 und die Magneteinheit 20 zum simultanen Rotieren ausgebildet. Die bewegliche Teilchenstrahlführung 30.2 umfasst Umlenkeinheiten, die ein Magnetfeld erzeugen und mittels der auf geladene Teilchen wirkende Lorentzkraft die Teilchen auf Kurven entlang der Teilchenstrahlführung 30.2 leitet. Dabei kann die Stärke der Magnetfelder der Teilchenstrahlführung 30.2 an die Masse, die Ladung und die Geschwindigkeit der geführten Teilchen angepasst werden. Fig. 10 shows a schematic section through a medical imaging system 10 orthogonal to the second coordinate axis y. The medical imaging system 10 comprises, in addition to the magnet unit 20, a radiation unit 30 which comprises a particle accelerator 30.1 and a charged particle beam guide 30.2 for charged particles (an English term for a mobile particle beam guidance is "gantry"). In this exemplary embodiment, the particle accelerator 30. 1 is stationary, and the particle beam guide 30. 2 is designed to rotate the examination opening 90, in particular around the examination axis 91. Furthermore, in the exemplary embodiment shown, the magnet unit 20 is designed to rotate about the examination opening 90. In this case, the particle beam guide 30.2 and the magnet unit 20 are designed for simultaneous rotation. The movable particle beam guide 30.2 comprises deflection units which generate a magnetic field and, by means of the Lorentz force acting on charged particles, guide the particles to curves along the particle beam guidance 30.2. In this case, the strength of the magnetic fields of the particle beam guide 30.2 can be adapted to the mass, the charge and the velocity of the guided particles.

Das medizinische Bildgebungssystem 10 umfasst in diesem Ausführungsbeispiel weiterhin einen Austrittsbereich 27 sowie eine Abschirmung 28. Der Austrittsbereich 27 ist derart ausgebildet, dass die von der Strahlungseinheit 30 durch den Trichter 24 auf das Untersuchungsobjekt 80 gesendeten Strahlung 32 die Magneteinheit 20 durch den Austrittsbereich 27 verlassen. Dadurch kann die Teilchenstrahlung 32 die Magneteinheit 20 nicht beschädigen. Die Abschirmung 28, die vorteilhafterweise aus Blei ausgebildet ist, absorbiert den Teilchenstrahl 32, um eine Gefährdung durch die Teilchenstrahlung 32 zu verhindern.The medical imaging system 10 further comprises an exit region 27 and a shield 28 in this exemplary embodiment. The exit region 27 is configured such that the radiation 32 emitted by the radiation unit 30 through the funnel 24 onto the examination object 80 leaves the magnet unit 20 through the exit region 27. As a result, the particle radiation 32 can not damage the magnet unit 20. The shield 28, which is advantageously made of lead, absorbs the particle beam 32 in order to prevent a danger from the particle radiation 32.

Im dargestellten Ausführungsbeispiel ist der Austrittsbereich 27 der Magneteinheit 20 bezüglich der Untersuchungsachse 91 dem Trichter 24 der Magneteinheit 20 direkt gegenüber angeordnet. Es ist aber auch möglich, den Austrittsbereich 27 an einer anderen Position auszubilden, so dass die Ablenkung der Strahlung 32 durch das Hauptmagnetfeld des Hauptmagneten 21 berücksichtigt wird.In the exemplary embodiment shown, the exit region 27 of the magnet unit 20 is relative to the examination axis 91 the funnel 24 of the magnet unit 20 is arranged directly opposite. However, it is also possible to form the exit region 27 at another position, so that the deflection of the radiation 32 by the main magnetic field of the main magnet 21 is taken into account.

Fig. 11 zeigt einen weiteren Schnitt des in Fig. 10 dargestellten medizinischen Bildgebungssystems 10. Da der Hauptmagnet 21, die Gradientenspuleneinheit 22 und die Hochfrequenzantenneneinheit 23 zeitlich konstante oder zeitlich variable magnetische oder elektrische Felder erzeugen, wird Strahlung 32 bestehend aus elektrisch geladenen Teilchen durch die Lorentzkraft abgelenkt. Die erste Strahlungseinheit 30 ist in diesem Beispiel dazu ausgebildet, die Geschwindigkeit und die Richtung der elektrisch geladenen Teilchen im Teilchenstrahl 32 derart anzupassen, dass diese unter Berücksichtigung der in der Untersuchungsöffnung 90 herrschenden elektrischen und magnetischen Felder auf einen vordefinierten Teil des Untersuchungsobjekts 80 treffen. Fig. 11 shows a further section of the in Fig. 10 Since the main magnet 21, the gradient coil unit 22 and the high-frequency antenna unit 23 generate temporally constant or temporally variable magnetic or electric fields, radiation 32 consisting of electrically charged particles is deflected by the Lorentz force. In this example, the first radiation unit 30 is designed to adapt the speed and direction of the electrically charged particles in the particle beam 32 such that they strike a predefined part of the examination object 80, taking into account the electrical and magnetic fields prevailing in the examination opening 90.

Um die Teilchenstrahlungsquelle 30 mit dem Magnetfeld der Magneteinheit 20 abzustimmen, sind in diesem Ausführungsbeispiel die Strahlungssteuer- und Auswerteeinheit 60 und die MR-Steuer- und Auswerteeinheit 50 verbunden, dabei gibt die MR-Steuer- und Auswerteeinheit 50 Informationen über das Magnetfeld in der Magneteinheit 20 an die Strahlungssteuer- und Auswerteeinheit 60, welche die Geschwindigkeit und die Richtung der Teilchen der Teilchenstrahlung 32 anpasst. Es ist aber auch möglich, die Strahlungssteuer- und Auswerteeinheit 60 und die MR-Steuer- und Auswerteeinheit 50 als eine gemeinsame Steuer- und Auswerteeinheit auszuführen, die sowohl die Magneteinheit 20 als auch die erste Strahlungseinheit 30 steuert und die gewonnenen Daten auswertet.In order to tune the particle radiation source 30 with the magnetic field of the magnet unit 20, the radiation control and evaluation unit 60 and the MR control and evaluation unit 50 are connected in this embodiment, while the MR control and evaluation unit 50 provides information about the magnetic field in the magnet unit 20 to the radiation control and evaluation unit 60, which adjusts the speed and direction of the particles of the particle radiation 32. However, it is also possible to execute the radiation control and evaluation unit 60 and the MR control and evaluation unit 50 as a common control and evaluation unit which controls both the magnet unit 20 and the first radiation unit 30 and evaluates the data obtained.

Weiterhin überträgt im gezeigten Ausführungsbeispiel die MR-Steuer- und Auswerteeinheit 50 MR-Bilddatensätze an die Strahlungssteuer- und Auswerteeinheit 60. Die Strahlungssteuer- und Auswerteeinheit 60 kann dann die Strahlungseinheit 30 derart steuern, dass die Strahlung 32 auf einen vorbestimmten Teil des Untersuchungsobjekts 80 trifft. Eine mögliche Bewegung des vorbestimmten Teils des Untersuchungsobjekts 80 aufgrund von Veränderungen oder Bewegungen des Untersuchungsobjekts 80 kann dabei durch eine Analyse der MR-Bilddatensätze erkannt und mittels der Strahlungssteuer- und Auswerteeinheit 60 ausgeglichen werden.Furthermore, in the exemplary embodiment shown, the MR control and evaluation unit 50 transmits MR image data sets to the radiation control and evaluation unit 60. The radiation control and evaluation unit 60 can then transmit the radiation unit 30 so that the radiation 32 strikes a predetermined part of the examination object 80. A possible movement of the predetermined part of the examination object 80 due to changes or movements of the examination subject 80 can be detected by an analysis of the MR image data sets and compensated by means of the radiation control and evaluation unit 60.

Claims (15)

Medizinisches Bildgebungssystem (10), umfassend eine Magneteinheit (20) ausgebildet zur Magnetresonanzbildgebung eines Untersuchungsobjekts (80) sowie eine erste Strahlungseinheit (30) ausgebildet zum Bestrahlen des Untersuchungsobjekts (80), - wobei die Magneteinheit (20) einen Hauptmagneten (21) sowie ein Gehäuse (26) aufweist, wobei der Hauptmagnet (21) innerhalb des Gehäuses (26) angeordnet ist, und wobei der Hauptmagnet (21) Spulenelemente (21.1) und wenigstens einen Spulenträger (21.2) aufweist, - wobei die Magneteinheit (20) derart eine Untersuchungsöffnung (90) entlang einer Untersuchungsachse (91) definiert, dass die Magneteinheit (20) die Untersuchungsöffnung (90) umschließt, - wobei die Magneteinheit (20) einen ersten Bereich aufweist, der für radial zur Untersuchungsachse (91) ausgesendete Strahlung (32) der ersten Strahlungseinheit (30) transparent ist, - wobei die erste Strahlungseinheit (30) auf der von der Untersuchungsöffnung (90) abgewandten Seite der Magneteinheit (20) angeordnet ist, - wobei die erste Strahlungseinheit (30) dazu ausgebildet ist, Strahlung (32) durch den ersten Bereich der Magneteinheit (20) in Richtung der Untersuchungsöffnung (90) zu senden, - und wobei die erste Strahlungseinheit (30) weiterhin dazu ausgebildet ist, um die Untersuchungsöffnung (90) zu rotieren. A medical imaging system (10) comprising a magnet unit (20) designed for magnetic resonance imaging of an examination object (80) and a first radiation unit (30) designed to irradiate the examination subject (80), - wherein the magnet unit (20) has a main magnet (21) and a housing (26), wherein the main magnet (21) within the housing (26) is arranged, and wherein the main magnet (21) coil elements (21.1) and at least one coil carrier (21.2), wherein the magnet unit (20) defines such an examination opening (90) along an examination axis (91) that the magnet unit (20) encloses the examination opening (90), - wherein the magnet unit (20) has a first region which is transparent to radiation (32) of the first radiation unit (30) emitted radially to the examination axis (91), - wherein the first radiation unit (30) is arranged on the side remote from the examination opening (90) side of the magnet unit (20), wherein the first radiation unit (30) is configured to transmit radiation (32) through the first area of the magnet unit (20) in the direction of the examination opening (90), - And wherein the first radiation unit (30) is further adapted to rotate around the examination opening (90). Medizinisches Bildgebungssystem (10) nach dem vorherigen Anspruch, wobei die Spulenelemente (21.1) des Hauptmagneten (21) und der wenigstens eine Spulenträger (21.2) außerhalb des ersten Bereichs der Magneteinheit (20) angeordnet sind.A medical imaging system (10) according to the preceding claim, wherein the coil elements (21.1) of the main magnet (21) and the at least one coil carrier (21.2) outside the first region of the magnet unit (20) are arranged. Medizinisches Bildgebungssystem (10) nach einem der vorherigen Ansprüche, wobei die Magneteinheit (20) im ersten Bereich wenigstens ein inneres Fenster (25.2) und wenigstens ein äußeres Fenster (25.1) im Gehäuse (26) aufweist, wobei das innere Fenster (25.2) und das äußere Fenster (25.1) für die von der ersten Strahlungseinheit (30) ausgesendete Strahlung (32) transparent sind.The medical imaging system (10) of any one of the preceding claims, wherein the magnet unit (20) is in the first region at least one inner window (25.2) and at least one outer window (25.1) in the housing (26), wherein the inner window (25.2) and the outer window (25.1) for the radiation (32) emitted by the first radiation unit (30) are transparent. Medizinisches Bildgebungssystem (10) nach Anspruch 1 oder 2, wobei der erste Bereich als Trichter (24) in der Magneteinheit (20) ausgebildet ist, der sich radial zur Untersuchungsachse (91) erstreckt und der für die von der ersten Strahlungseinheit (30) radial zur Untersuchungsachse (91) ausgesendete Strahlung (32) transparent ist.A medical imaging system (10) according to claim 1 or 2, wherein the first region is formed as a funnel (24) in the magnet unit (20) extending radially to the examination axis (91) and radial to that of the first radiation unit (30) to the examination axis (91) emitted radiation (32) is transparent. Medizinisches Bildgebungssystem (10) einem der vorherigen Ansprüche, wobei die erste Strahlungseinheit (30) eine Teilchenstrahlungsquelle ist, die dazu ausgebildet ist, Teilchenstrahlung (32) zu erzeugen.The medical imaging system (10) of any preceding claim, wherein the first radiation unit (30) is a particle radiation source configured to generate particle radiation (32). Medizinisches Bildgebungssystem (10) nach einem der Ansprüche 1 bis 3, - wobei die erste Strahlungseinheit (30) eine erste Röntgenquelle (30) ist, - wobei das medizinisches Bildgebungssystem (10) weiterhin einen ersten Röntgendetektor (31) aufweist, - wobei der erste Röntgendetektor (31) auf der von der ersten Röntgenquelle (30) abgewandten Seite des Untersuchungsobjekts (80) angeordnet ist, - und wobei die erste Röntgenquelle (30) und der erste Röntgendetektor (31) zur Röntgenbildgebung des Untersuchungsobjekts (80) ausgebildet sind. A medical imaging system (10) according to any one of claims 1 to 3, - wherein the first radiation unit (30) is a first X-ray source (30), - wherein the medical imaging system (10) further comprises a first X-ray detector (31), wherein the first X-ray detector (31) is arranged on the side of the examination subject (80) which is remote from the first X-ray source (30), - And wherein the first X-ray source (30) and the first X-ray detector (31) for X-ray imaging of the examination object (80) are formed. Medizinisches Bildgebungssystem (10) nach Anspruch 6, wobei der erste Röntgendetektor (31) dazu ausgebildet ist, simultan mit der ersten Röntgenquelle (30) um die Untersuchungsöffnung (90) zu rotieren.The medical imaging system (10) of claim 6, wherein the first x-ray detector (31) is adapted to rotate simultaneously with the first x-ray source (30) about the examination port (90). Medizinisches Bildgebungssystem (10) nach einem der vorherigen Ansprüche, wobei die Magneteinheit (20) dazu ausgebildet ist, um die Untersuchungsöffnung (90) zu rotieren.The medical imaging system (10) of any one of the preceding claims, wherein the magnet unit (20) is adapted to rotate about the inspection port (90). Medizinisches Bildgebungssystem (10) nach Anspruch 8, wobei die erste Strahlungseinheit (30) und die Magneteinheit (20) dazu ausgebildet sind, simultan um die Untersuchungsöffnung (90) zu rotieren.The medical imaging system (10) of claim 8, wherein the first radiation unit (30) and the magnet unit (20) are configured to simultaneously rotate about the examination port (90). Medizinisches Bildgebungssystem (10) nach einem der vorherigen Ansprüche, wobei die Magneteinheit (20) dazu ausgelegt ist, die Spulenelemente (21.1) des Hauptmagneten (21) mittels Wärmeleitung zu kühlen.Medical imaging system (10) according to one of the preceding claims, wherein the magnet unit (20) is adapted to cool the coil elements (21.1) of the main magnet (21) by means of heat conduction. Medizinisches Bildgebungssystem (10) nach Anspruch 10, wobei die Abwärme der Spulenelemente (21.1) des Hauptmagneten (21) durch Röhrenleitungen umfassend ein zirkulierendes Kühlmittel abgeleitet wird.The medical imaging system (10) of claim 10 wherein the waste heat of the coil elements (21.1) of the main magnet (21) is dissipated through tubing comprising circulating coolant. Medizinisches Bildgebungssystem (10) nach einem der vorherigen Ansprüche, wobei die Spulenelemente (21.1) des Hauptmagneten (21) aus elektrisch supraleitendem Material ausgebildet sind, wobei die kritische Temperatur des supraleitenden Materials höher ist als der Siedepunkt von Helium.A medical imaging system (10) according to any one of the preceding claims, wherein the coil elements (21.1) of the main magnet (21) are formed of electrically superconductive material, the critical temperature of the superconducting material being higher than the boiling point of helium. Medizinisches Bildgebungssystem (10) nach einem der Ansprüche 6 bis 12, weiterhin umfassend eine zweite Strahlungseinheit (33), - wobei die Magneteinheit (20) einen zweiten Bereich aufweist, der für radial zur Untersuchungsachse (91) ausgesendete Strahlung (35) der zweiten Strahlungseinheit (33) transparent ist, - wobei die zweite Strahlungseinheit (33) auf der von der Untersuchungsöffnung (90) abgewandten Seite der Magneteinheit (20) angeordnet ist, - wobei die zweite Strahlungseinheit (33) dazu ausgebildet ist, Strahlung (35) durch den zweiten Bereich der Magneteinheit (20) in Richtung der Untersuchungsöffnung (90) zu senden, - und wobei die zweite Strahlungseinheit (33) weiterhin dazu ausgebildet ist, um die Untersuchungsöffnung (90) zu rotieren. The medical imaging system (10) of any of claims 6 to 12, further comprising a second radiation unit (33), - wherein the magnet unit (20) has a second region, which is transparent to radiation (35) of the second radiation unit (33) emitted radially to the examination axis (91), wherein the second radiation unit (33) is arranged on the side of the magnet unit (20) facing away from the examination opening (90), - Wherein the second radiation unit (33) is adapted to radiation (35) through the second region of the magnet unit (20) towards the examination opening (90), - And wherein the second radiation unit (33) is further adapted to rotate around the examination opening (90). Medizinisches Bildgebungssystem (10) nach Anspruch 13, weiterhin aufweisend einen zweiten Röntgendetektor (34), - wobei die zweite Strahlungseinheit (33) eine zweite Röntgenquelle (33) ist, - wobei der zweite Röntgendetektor (34) auf der von der zweiten Röntgenquelle (33) abgewandten Seite des Untersuchungsobjekts (80) angeordnet ist, - wobei der zweite Röntgendetektor (34) dazu ausgebildet ist, simultan mit der zweiten Röntgenquelle (33) um die Untersuchungsöffnung (90) zu rotieren, - und wobei die zweite Röntgenquelle (33) und der zweite Röntgendetektor (34) zur Röntgenbildgebung des Untersuchungsobjekts (80) ausgebildet sind. The medical imaging system (10) of claim 13, further comprising a second x-ray detector (34), - wherein the second radiation unit (33) is a second X-ray source (33), wherein the second X-ray detector (34) is arranged on the side of the examination subject (80) which is remote from the second X-ray source (33), wherein the second X-ray detector (34) is designed to rotate simultaneously with the second X-ray source (33) around the examination opening (90), - And wherein the second X-ray source (33) and the second X-ray detector (34) for X-ray imaging of the examination object (80) are formed. Medizinisches Bildgebungssystem (10) nach Anspruch 14, wobei die Verbindungslinie von erster Röntgenquelle (30) und erstem Röntgendetektor (31) mit der Verbindungslinie von zweiter Röntgenquelle (33) und zweitem Röntgendetektor (34) einen Winkel zwischen 60 und 120 Grad oder zwischen 80 und 100 Grad oder zwischen 85 und 95 Grad einschließen.The medical imaging system (10) of claim 14, wherein the line of connection of the first x-ray source (30) and first x-ray detector (31) to the line of connection of the second x-ray source (33) and the second x-ray detector (34) is between 60 and 120 degrees or between 80 and 120 degrees 100 degrees or between 85 and 95 degrees.
EP16200280.2A 2016-11-23 2016-11-23 Medical imaging system comprising a magnet unit and a radiation unit Withdrawn EP3327457A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16200280.2A EP3327457A1 (en) 2016-11-23 2016-11-23 Medical imaging system comprising a magnet unit and a radiation unit
US16/461,159 US11464469B2 (en) 2016-11-23 2017-04-25 Medical imaging system comprising a magnet unit and a radiation unit
EP17720431.0A EP3519844B1 (en) 2016-11-23 2017-04-25 Medical imaging system comprising a magnet unit and a radiation unit
JP2019527177A JP6827114B2 (en) 2016-11-23 2017-04-25 Medical imaging system with magnet unit and irradiation unit
PCT/EP2017/059690 WO2018095587A1 (en) 2016-11-23 2017-04-25 Medical imaging system comprising a magnet unit and a radiation unit
CN201780070663.2A CN109983356B (en) 2016-11-23 2017-04-25 Medical imaging system comprising a magnet unit and a radiation unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16200280.2A EP3327457A1 (en) 2016-11-23 2016-11-23 Medical imaging system comprising a magnet unit and a radiation unit

Publications (1)

Publication Number Publication Date
EP3327457A1 true EP3327457A1 (en) 2018-05-30

Family

ID=57396289

Family Applications (2)

Application Number Title Priority Date Filing Date
EP16200280.2A Withdrawn EP3327457A1 (en) 2016-11-23 2016-11-23 Medical imaging system comprising a magnet unit and a radiation unit
EP17720431.0A Active EP3519844B1 (en) 2016-11-23 2017-04-25 Medical imaging system comprising a magnet unit and a radiation unit

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP17720431.0A Active EP3519844B1 (en) 2016-11-23 2017-04-25 Medical imaging system comprising a magnet unit and a radiation unit

Country Status (5)

Country Link
US (1) US11464469B2 (en)
EP (2) EP3327457A1 (en)
JP (1) JP6827114B2 (en)
CN (1) CN109983356B (en)
WO (1) WO2018095587A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3578106A1 (en) * 2018-06-04 2019-12-11 Siemens Healthcare GmbH X-ray detector
WO2020097821A1 (en) * 2018-11-14 2020-05-22 Shanghai United Imaging Healthcare Co., Ltd. Radiation therapy system and method
EP4152030A1 (en) * 2021-09-17 2023-03-22 Siemens Healthcare GmbH Gradient coil assembly for a magnetic resonance imaging device and magnetic resonance imaging device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020155137A1 (en) 2019-02-02 2020-08-06 Shanghai United Imaging Healthcare Co., Ltd. Radiation therapy system and method
GB2582009B (en) * 2019-03-08 2021-04-07 Siemens Healthcare Ltd Split magnet with rotating central component
JP7236894B2 (en) * 2019-03-20 2023-03-10 住友重機械工業株式会社 Charged particle beam therapy system
CN110559004B (en) 2019-09-18 2024-05-10 上海联影医疗科技股份有限公司 Medical system
CN111580030B (en) * 2020-05-13 2022-04-22 山东省肿瘤防治研究院(山东省肿瘤医院) Magnetic field preparation structure, equipment and system for fusion of nuclear magnetic resonance and radiotherapy
DE102020214568A1 (en) 2020-11-19 2022-05-19 Siemens Healthcare Gmbh Computer-implemented method for imaging support in brachytherapy treatment, imaging device, computer program and electronically readable data carrier

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030181808A1 (en) * 1999-03-15 2003-09-25 Mckinnon Graeme C. Integrated multi-modality imaging system and method
GB2393373A (en) * 2002-09-13 2004-03-24 Elekta Ab MRI in guided radiotherapy and position verification
DE102004061869B4 (en) 2004-12-22 2008-06-05 Siemens Ag Device for superconductivity and magnetic resonance device
US20110196227A1 (en) * 2010-02-10 2011-08-11 Patrick Gross Apparatus with a Combination of a Magnetic Resonance Apparatus and a Radiotherapy Apparatus
WO2012164527A1 (en) * 2011-05-31 2012-12-06 Koninklijke Philips Electronics N.V. Correcting the static magnetic field of an mri radiotherapy apparatus
US20140135615A1 (en) * 2012-11-12 2014-05-15 Marcel Kruip Combined mri and radiation therapy system
US8788016B2 (en) * 2007-11-14 2014-07-22 Siemens Aktiengesellschaft Device for radiation therapy under image monitoring
US20150173699A1 (en) * 2013-12-20 2015-06-25 Yiannis Kyriakou Generating an at Least Three-Dimensional Display Data Sheet
US20150247907A1 (en) 2012-09-21 2015-09-03 Siemens Aktiengesellschaft Hybrid examination system having an mr scanner, an x ray source and an x ray detector
GB2527538A (en) * 2014-06-25 2015-12-30 Elekta Ab Control of breathing during MRI-based procedures

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996000520A1 (en) 1994-06-30 1996-01-11 Philips Electronics N.V. Magnetic resonance device comprising an x-ray device
JP5334582B2 (en) 2005-10-17 2013-11-06 アルバータ ヘルス サービシズ Integrated system of external beam radiation therapy and MRI
DE102008007245B4 (en) 2007-02-28 2010-10-14 Siemens Aktiengesellschaft Combined radiotherapy and magnetic resonance device
CA2760055C (en) 2009-07-15 2021-04-06 Viewray Incorporated Method and apparatus for shielding a linear accelerator and a magnetic resonance imaging device from each other
US20110201920A1 (en) * 2010-02-12 2011-08-18 Elekta Ab (Publ) Radiotherapy and imaging apparatus
WO2012080894A2 (en) * 2010-12-13 2012-06-21 Koninklijke Philips Electronics N.V. Therapeutic apparatus comprising a radiotherapy apparatus, a mechanical positioning system, and a magnetic resonance imaging system
GB2490325B (en) * 2011-04-21 2013-04-10 Siemens Plc Combined MRI and radiation therapy equipment
US20130345546A1 (en) 2011-09-25 2013-12-26 Georges HOBEIKA Ct-mri hybrid apparatus with larger ct core-diameter and method of implementing the same
US20140136615A1 (en) 2012-11-13 2014-05-15 Cellco Partnership D/B/A Verizon Wireless Address book for businesses
WO2015055473A1 (en) 2013-10-17 2015-04-23 Koninklijke Philips N.V. Medical apparatus with a radiation therapy device and a radiation detection system
CN105873509A (en) 2013-11-29 2016-08-17 株式会社日立制作所 Magnetic resonance imaging apparatus
WO2015181939A1 (en) 2014-05-30 2015-12-03 株式会社日立製作所 Superconducting magnet device
GB2531730A (en) * 2014-10-28 2016-05-04 Elekta ltd Radiotherapy apparatus
US11278250B2 (en) * 2015-11-13 2022-03-22 Rensselaer Polytechnic Institute Simultaneous interior MRI X-ray imaging system (MRX)

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030181808A1 (en) * 1999-03-15 2003-09-25 Mckinnon Graeme C. Integrated multi-modality imaging system and method
GB2393373A (en) * 2002-09-13 2004-03-24 Elekta Ab MRI in guided radiotherapy and position verification
DE102004061869B4 (en) 2004-12-22 2008-06-05 Siemens Ag Device for superconductivity and magnetic resonance device
US8788016B2 (en) * 2007-11-14 2014-07-22 Siemens Aktiengesellschaft Device for radiation therapy under image monitoring
US20110196227A1 (en) * 2010-02-10 2011-08-11 Patrick Gross Apparatus with a Combination of a Magnetic Resonance Apparatus and a Radiotherapy Apparatus
WO2012164527A1 (en) * 2011-05-31 2012-12-06 Koninklijke Philips Electronics N.V. Correcting the static magnetic field of an mri radiotherapy apparatus
US20150247907A1 (en) 2012-09-21 2015-09-03 Siemens Aktiengesellschaft Hybrid examination system having an mr scanner, an x ray source and an x ray detector
US20140135615A1 (en) * 2012-11-12 2014-05-15 Marcel Kruip Combined mri and radiation therapy system
US20150173699A1 (en) * 2013-12-20 2015-06-25 Yiannis Kyriakou Generating an at Least Three-Dimensional Display Data Sheet
GB2527538A (en) * 2014-06-25 2015-12-30 Elekta Ab Control of breathing during MRI-based procedures

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GANGULY; ARUNDHUTI ET AL.: "Truly Hybrid X-Ray/MR Imaging: Toward a Streamlined Clinical System", ACADEMIC RADIOLOGY, 2005, pages 1167 - 1177
LAGENDIJK ET AL: "MRI/linac integration", RADIOTHERAPY AND ONCOLOGY, ELSEVIER, IRELAND, vol. 86, no. 1, 26 November 2007 (2007-11-26), pages 25 - 29, XP022423061, ISSN: 0167-8140, DOI: 10.1016/J.RADONC.2007.10.034 *
REBECCA FAHRIG ET AL: "A truly hybrid interventional MR/X-ray system: Feasibility demonstration", JOURNAL OF MAGNETIC RESONANCE IMAGING, 1 February 2001 (2001-02-01), New York, pages 294 - 300, XP055375629, Retrieved from the Internet <URL:http://onlinelibrary.wiley.com/doi/10.1002/1522-2586%28200102%2913:2%3C294::AID-JMRI1042%3E3.0.CO;2-X/pdf> [retrieved on 20170524], DOI: 10.1002/1522-2586(200102)13:2<294::AID-JMRI1042>3.0.CO;2-X *
WANG GE ET AL: "Vision 20/20: Simultaneous CT-MRI - Next chapter of multimodality ima", MEDICAL PHYSICS, AIP, MELVILLE, NY, US, vol. 42, no. 10, 17 September 2015 (2015-09-17), pages 5879 - 5889, XP012200566, ISSN: 0094-2405, [retrieved on 19010101], DOI: 10.1118/1.4929559 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3578106A1 (en) * 2018-06-04 2019-12-11 Siemens Healthcare GmbH X-ray detector
WO2020097821A1 (en) * 2018-11-14 2020-05-22 Shanghai United Imaging Healthcare Co., Ltd. Radiation therapy system and method
EP4152030A1 (en) * 2021-09-17 2023-03-22 Siemens Healthcare GmbH Gradient coil assembly for a magnetic resonance imaging device and magnetic resonance imaging device

Also Published As

Publication number Publication date
JP6827114B2 (en) 2021-02-10
CN109983356A (en) 2019-07-05
US20190274649A1 (en) 2019-09-12
JP2019535419A (en) 2019-12-12
CN109983356B (en) 2021-12-07
US11464469B2 (en) 2022-10-11
EP3519844B1 (en) 2023-06-28
WO2018095587A1 (en) 2018-05-31
EP3519844A1 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
EP3327457A1 (en) Medical imaging system comprising a magnet unit and a radiation unit
DE102010001743B4 (en) Device with a combination of a magnetic resonance device and a radiotherapy device
CA2728111C (en) Radiation therapy system
DE69830480T2 (en) COMBINED RADIO THERAPY AND MR IMAGING SYSTEM
DE102010001746B4 (en) Device with a combination of a magnetic resonance device and a radiotherapy device
JP2022116041A (en) magnetic resonance imaging
EP1754969B1 (en) Computer tomograph and method for examining objects of different sizes
EP2880459B1 (en) Hybrid examination system having an mr scanner, an x-ray source and an x-ray detector
Prall et al. High-energy proton imaging for biomedical applications
DE102009021740A1 (en) Radiotherapy device with an imaging unit
EP1883093A2 (en) CT scanner
DE102015213503B4 (en) Magnetic shield of an X-ray source
EP2252216B1 (en) Arrangement for three-dimensional electron beam tomography
DE102008048873B4 (en) Method for designing a gradient coil, method for producing a gradient coil, gradient coil, magnetic resonance apparatus and combined PET-MR system
Takada et al. Proton computed tomography with a 250 MeV pulsed beam
DE202018102335U9 (en) Medical device for magnetic resonance tomography-guided radiotherapy
EP0757790A1 (en) X-ray device for analysing substances and structures
Tirao et al. X‐ray spectra by means of Monte Carlo simulations for imaging applications
Long An industrial computed laminography imaging system
DE102012217439A1 (en) Patient couch for combined magnetic resonance and PET examination
EP0276437B1 (en) X-ray source
Ghosh et al. MRI, CT, and PETSCAN: Engineer’s Perspective
WO2018184610A1 (en) Method and device for the two-dimensional imaging of a positron emitter distribution of weakly positron-absorbing objects
DE102007019176A1 (en) Computer tomograph for e.g. radiation therapy, has x-ray source with circular target, which includes multiple focus surfaces, which are scannable by focusing electron beam in discrete manner
Brito Del Pino et al. Contro system for the improvement of CMOS-Technology for X-RAY contrast phase imaging

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20181201