EP3327393A1 - Method and device for creating a high purity oxygen product flow by the cryogenic decomposition of air - Google Patents
Method and device for creating a high purity oxygen product flow by the cryogenic decomposition of air Download PDFInfo
- Publication number
- EP3327393A1 EP3327393A1 EP16020468.1A EP16020468A EP3327393A1 EP 3327393 A1 EP3327393 A1 EP 3327393A1 EP 16020468 A EP16020468 A EP 16020468A EP 3327393 A1 EP3327393 A1 EP 3327393A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- column
- pure oxygen
- mass transfer
- oxygen
- transfer section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04654—Producing crude argon in a crude argon column
- F25J3/04709—Producing crude argon in a crude argon column as an auxiliary column system in at least a dual pressure main column system
- F25J3/04715—The auxiliary column system simultaneously produces oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04333—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04351—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
- F25J3/04357—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04721—Producing pure argon, e.g. recovered from a crude argon column
- F25J3/04727—Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04866—Construction and layout of air fractionation equipments, e.g. valves, machines
- F25J3/04872—Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
- F25J3/04878—Side by side arrangement of multiple vessels in a main column system, wherein the vessels are normally mounted one upon the other or forming different sections of the same column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04866—Construction and layout of air fractionation equipments, e.g. valves, machines
- F25J3/04896—Details of columns, e.g. internals, inlet/outlet devices
- F25J3/04903—Plates or trays
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04866—Construction and layout of air fractionation equipments, e.g. valves, machines
- F25J3/04896—Details of columns, e.g. internals, inlet/outlet devices
- F25J3/04909—Structured packings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04866—Construction and layout of air fractionation equipments, e.g. valves, machines
- F25J3/04896—Details of columns, e.g. internals, inlet/outlet devices
- F25J3/04915—Combinations of different material exchange elements, e.g. within different columns
- F25J3/04921—Combinations of different material exchange elements, e.g. within different columns within the same column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/04—Processes or apparatus using separation by rectification in a dual pressure main column system
- F25J2200/06—Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/34—Processes or apparatus using separation by rectification using a side column fed by a stream from the low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/90—Details relating to column internals, e.g. structured packing, gas or liquid distribution
- F25J2200/92—Details relating to the feed point
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/50—Oxygen or special cases, e.g. isotope-mixtures or low purity O2
- F25J2215/52—Oxygen production with multiple purity O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/50—Oxygen or special cases, e.g. isotope-mixtures or low purity O2
- F25J2215/56—Ultra high purity oxygen, i.e. generally more than 99,9% O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/50—Separating low boiling, i.e. more volatile components from oxygen, e.g. N2, Ar
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/52—Separating high boiling, i.e. less volatile components from oxygen, e.g. Kr, Xe, Hydrocarbons, Nitrous oxides, O3
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/50—Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/12—Particular process parameters like pressure, temperature, ratios
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/44—Particular materials used, e.g. copper, steel or alloys thereof or surface treatments used, e.g. enhanced surface
Definitions
- the invention relates to a method for obtaining a high-purity oxygen product stream by cryogenic separation of air according to the preamble of patent claim 1.
- the distillation column system for nitrogen-oxygen separation can be designed as a two-column system (for example as a classic Linde double column system), or as a three or more column system.
- Fig.2 from US 4977746 a method of the type mentioned above with a classic double column, a classic crude argon column and a pure oxygen column is known, which is connected to the crude argon column.
- a high purity oxygen product stream can be recovered that is largely free of less volatile components.
- no oxygen-free crude argon can be obtained in this system, but the simple crude argon column is too short.
- an oxygen content in the percentage range at the top of the crude argon column can be achieved here;
- the crude argon column then required two pumps, one from the intermediate point of the crude argon column to the top of the pure oxygen column and one from the bottom of the crude argon column to the low pressure column.
- the invention is therefore based on the object of obtaining both a high-purity oxygen product stream and oxygen-free crude argon without the need for a particularly complex apparatus.
- the argon transition stream (the "Argon-enriched stream”) is not introduced as usual in the crude argon column, but in the pure oxygen column, at an intermediate point.
- the upper mass transfer section of the pure oxygen column above the intermediate point also serves for the removal of methane and less volatile components and the argon-oxygen separation.
- the feed gas for the crude argon column comes from the top of the pure oxygen column and is already enriched in argon (from 11.3% to 15.3% argon, for example).
- the crude argon column for the production of oxygen-free Rohargon can be made correspondingly smaller and one-piece.
- oxygen-free is meant here an oxygen content of less than 10 ppm, preferably less than 1 ppm.
- methane-free oxygen fraction is simultaneously obtained, which is fed to the pure oxygen mass transfer section of the pure oxygen column, from the bottom of which the high-purity oxygen product stream is withdrawn.
- This oxygen fraction is referred to below as methane-free.
- methane-free is meant here a methane content which is below 0.1 ppm, for example below 10 ppb, preferably below 1 ppm.
- the pure oxygen column can consist of two containers which have the pure oxygen mass transfer section or the upper mass transfer section for hydrocarbon removal.
- the pure oxygen column is realized as a continuous container, in which the ascending gas is passed without pipelines at the intermediate point. In this way, the Verrohrungsaufwand can be reduced.
- the upper mass transfer section of the pure oxygen column can be formed by structured packing (also referred to as "ordered packing” in German) and the pure oxygen mass transfer section by conventional rectification trays. In this way, the two corresponding column sections may have the same or similar diameter despite different throughput.
- a packing density of 350 to 750 m 2 / m 3 is used in the upper mass transfer section.
- the rectification soils are preferably realized by sieve trays.
- both the upper mass transfer section of the pure oxygen column and the pure oxygen mass transfer section are formed by structured packing.
- the packing is then preferably designed as a copper packing, ie the sheets from which the packing is made have a copper content of at least 95 mol%, in particular of at least 99%.
- the packing density in the pure oxygen mass transfer section (7) of the pure oxygen column (5) is more than 1000 m 2 / m 3 and that in the upper mass transfer section (6) of the pure oxygen column (5) is less than 800 m 2 / m 3 ,
- the invention also relates to a device according to claim 12.
- the device according to the invention can be supplemented by device features which correspond to the characteristics of individual, several or all dependent method claims.
- This double column here forms the distillation column system for nitrogen-oxygen separation. It is classically designed with high-pressure column 1 under a main condenser 2, which is located at the lower end of a low-pressure column 3.
- a gaseous intermediate fraction from the low-pressure column forms the argon-enriched stream 4 from the distillation column system for nitrogen-oxygen separation and is fed to the pure oxygen column 5 at an intermediate point.
- the inflowing gas flows into the upper mass transfer section 6 of the pure oxygen column 5, where it is depleted of oxygen and methane.
- the upper mass transfer section 6 thus simultaneously forms the first section of the argon-oxygen separation which otherwise takes place in the following crude argon column 10. This is applied in the sump with the head gas 9 of the pure oxygen column.
- the crude argon column 10 has a top condenser 11 in which the overhead gas of the crude argon column is completely liquefied except for the crude argon product stream 12.
- the raw argon product gas 12 is further processed here in a classical pure argon column 13 with removal of the residual nitrogen.
- a high purity argon product HLAR is withdrawn via line 14 from the bottom of the pure argon column 13.
- the bottom liquid 15 of the crude argon column is introduced by means of a pump 16 into the pure oxygen column 5, namely at two different locations.
- a first part 17 is led to the head of the pure oxygen column 5 and there introduced as reflux liquid to the upper mass transfer section 5;
- a second part 18 of the bottom liquid 15 of the crude argon column 10 is used as a methane-free liquid oxygen fraction and applied to the top of a pure oxygen mass transfer section 7 of the pure oxygen column 5, which is located below the intermediate point is located at which the argon-enriched stream 4 is introduced from the low-pressure column 3.
- This liquid forms the reflux in the pure oxygen mass transfer section 7.
- both mass transfer sections 6, 7 of the pure oxygen column 5 are formed by structured packing, the lower mass transfer section 7 having two packing beds, the upper mass transfer section 6 of a.
- the upper mass transfer section 6 is operated with a lower packing density (specific surface area) than that under 7.
- the packing density is, for example, 500 m 2 / m 3 in the upper mass transfer section 6 and 1200 m 2 / m 3 in the lower mass transfer section 7.
- a "similar column diameter is understood here to mean a difference in column diameters of less than 40%. in which the liquid oxygen or the high purity oxygen product stream are only byproducts of relatively small amount (for example, in a system with internally compressed oxygen as the main product), the difference in the column diameters can also be higher.
- the top condenser 11 of the crude argon column is conventionally cooled by means of oxygen-enriched bottom liquid 22, 23, 24 from the high-pressure column 1 or the subcooling countercurrent 19.
- the heating of the sump evaporator 8 of the pure argon column is carried out with a partial flow 25 of the cold feed air 26 under high-pressure column pressure.
- Atmospheric air AIR is drawn in via a line 27 and a filter 28 from a main air compressor and brought there to a pressure of about 6 bar.
- the compressed air is cooled in a pre-cooler, which is formed here by a direct contact cooler, and cleaned in a cleaning device, which is formed by a pair of switchable molecular sieve adsorber.
- the purified high-pressure air 32 is introduced into a main heat exchanger 33 and cooled there to about dew point.
- the cold feed air 26 flows in gaseous form into the high-pressure column 1 via line 77.
- a part 25 is used in this embodiment for heating the sump of the pure oxygen column 5.
- the liquid air 34 from the sump evaporator 8 is introduced via line 35 into the evaporation space of the top condenser 36 of the pure argon column 13.
- a first part 37 of the top gas of the high-pressure column is liquefied in the main condenser 2.
- This liquid nitrogen obtained is partly used as reflux in the high pressure column 1, partially withdrawn via line 39, cooled in the subcooling countercurrent 19 and withdrawn via lines 40 and 41 as a high purity liquid nitrogen product HLIN.
- the remainder 42 of the overhead gas is warmed in the main heat exchanger 33 and fed via line 43 for use as a sealing gas (seal gas).
- stream 43 may be withdrawn as part of stream 50 from an intermediate location of the high pressure column and warmed in the main heat exchanger.
- the oxygen-enriched bottom liquid 22, 23 is used in a conventional manner for heating and cooling the pure argon column 13 and for cooling the crude argon column 10. Steam 44 and liquids 45/46 from the respective capacitors are introduced separately into the low-pressure column 3.
- a somewhat less pure nitrogen liquid 47 having, for example, 1 ppm oxygen content is withdrawn from an intermediate point of the high-pressure column and, after supercooling 19, fed via line 48/49 as reflux liquid to the top of the low-pressure column 3.
- a gaseous nitrogen stream 50 is withdrawn and fed into a nitrogen cycle consisting of a feed gas compressor 51 with aftercooler 52, a cycle compressor 53 with aftercooler 54, two serial turbine-driven booster 55, 56, with aftercoolers 57, 58, two nitrogen turbines 59, 60, a separator 61 and the left part of the main heat exchanger 33 shown in the drawing consists.
- the invention works in principle, regardless of the specific design of the high-pressure column - for example, with or without pure nitrogen section - and regardless of the nitrogen cycle and in particular its entry and exit points to the high-pressure column.
- Liquid generated in the nitrogen cycle is fed on the one hand via line 62 into the high-pressure column, on the other hand via lines 63, 49 into the low-pressure column 3.
- Gaseous nitrogen 64 from the top of the low-pressure column 3 is heated in the supercooling countercurrent 19 and further (line 65) in the main heat exchanger 33 to about ambient temperature.
- a first portion 66 of the warm impure nitrogen may be introduced via the feed gas compressor 51 into the circuit; another part 67 serves as a cooling gas for an evaporative cooler 72 for cooling cooling water 73.
- the gaseous oxygen product 68 from the low-pressure column 3 is mixed here with the residual gas 69 from an intermediate point of the low-pressure column 3.
- the mixture 70 is warmed in the main heat exchanger and finally used as regeneration gas 71 or blown off into the atmosphere ATM.
- FIG. 2 is different from this FIG. 1 in that the low-pressure column 3 has an additional mass transfer section between the residual gas outlet 69 and the liquid feed 45.
- the liquid air 34/235 from the liquefaction space of the bottom evaporator 8 of the pure oxygen column 5 is introduced here into the intermediate point which is thus created.
- the required process and liquefaction refrigerants are not generated in a nitrogen cycle, but by the work-performing expansion of part of the feed air in one or more turbines.
- the main products are in this process Oxygen products and not nitrogen products as in the other embodiments, each having a nitrogen cycle.
- the cold generated thereby is registered for the most part by a liquid air stream 301 in the distillation column system, which is introduced into the high-pressure column 1.
- a part 302 is removed immediately, cooled in the subcooling countercurrent 319 and introduced via line 303 together with the liquid air 34/235 from the evaporator 8 in the low pressure column.
- FIG. 4 is again largely identical to FIG. 1 ; However, the sump evaporator 8 of the pure oxygen column 5 is not cooled here with air, but with a portion 451 of the gaseous nitrogen stream 450 from the high-pressure column. The liquid nitrogen 452 obtained in this process is fed via lines 453, 449 into the low-pressure column.
- FIG. 5 In the lower mass transfer section 507 of the pure oxygen column 5, conventional rectification trays, for example sieve trays, are used, whereas in the embodiments described so far only structured packings were used. In this way, the different load in the upper 6 and lower mass transfer section 507 can be compensated.
- the packing density in the upper mass transfer section 6 is 500 m 2 / m 3 . Otherwise it is different FIG. 5 not from FIG. 1 ,
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Das Verfahren und die Vorrichtung dienen zur Gewinnung eines Hochreinsauerstoffproduktstroms durch Tieftemperaturzerlegung von Luft mit einem Destillationssäulen-System zur Stickstoff-Sauerstoff-Trennung und einem Zusatzsäulensystem, das eine Rohargonsäule (10) mit Kopfkondensator (11) und eine Reinsauerstoffsäule (5) mit Sumpfverdampfer (8) aufweist. Ein argonangereicherter Strom (4) aus dem Destillationssäulen-System zur Stickstoff-Sauerstoff-Trennung wird in das Zusatzsäulensystem eingeleitet wird. Ein Rohargonproduktstrom (12) wird vom Kopf der Rohargonsäule (10) abgezogen. Ein Hochreinsauerstoffproduktstrom (90) wird vom Sumpf der Reinsauerstoffsäule (5) abgezogen. Die Reinsauerstoffsäule (5) weist einen Reinsauerstoff-Stoffaustauschabschnitt (7) auf. Der argonangereicherte Strom (4) aus dem Destillationssäulen-System zur Stickstoff-Sauerstoff-Trennung wird der Reinsauerstoffsäule (5) an einer Zwischenstelle oberhalb des Reinsauerstoff-Stoffaustauschabschnitts (7) zugeführt. Die Reinsauerstoffsäule (5) weist oberhalb der Zwischenstelle einen oberen Stoffaustauschabschnitt (6) zur Argon-Sauerstofftrennung. Kopfgas (9) aus der Reinsauerstoffsäule (5) wird in den Sumpf der Rohargonsäule (10) eingeleitet. Die aus dem oberen Stoffaustauschabschnitt (6) ablaufende Flüssigkeit wird vollständig aus der Reinsauerstoffsäule (5) abgezogen (20). Ein erster Teil (17) der Sumpfflüssigkeit (15) der Rohargonsäule (10) wird zum Kopf der Reinsauerstoffsäule (5) geführt. Ein zweiter Teil der Sumpfflüssigkeit (15) der Rohargonsäule (10) wird als methanfreie flüssige Sauerstofffraktion (18) auf den Kopf des Reinsauerstoff-Stoffaustauschabschnitts (7) der Reinsauerstoffsäule (5) aufgegeben. Mindestens ein Teil des oben aus dem Reinsauerstoff-Stoffaustauschabschnitt (7) austretenden Gases wird in den oberen Stoffaustauschabschnitt (6) eingeleitet.The method and apparatus are for obtaining a high purity oxygen product stream by cryogenic separation of air with a distillation column nitrogen-oxygen separation system and an auxiliary column system comprising a crude argon column (10) with top condenser (11) and a bottom oxygen column (5) with bottom evaporator (8 ) having. An argon-enriched stream (4) from the distillation column system for nitrogen-oxygen separation is introduced into the auxiliary column system. A crude argon product stream (12) is withdrawn from the top of the crude argon column (10). A high purity oxygen product stream (90) is withdrawn from the bottom of the pure oxygen column (5). The pure oxygen column (5) has a pure oxygen mass transfer section (7). The argon-enriched stream (4) from the distillation column nitrogen-oxygen separation system is fed to the pure oxygen column (5) at an intermediate point above the pure oxygen mass transfer section (7). The pure oxygen column (5) has above the intermediate point an upper mass transfer section (6) for argon-oxygen separation. Top gas (9) from the pure oxygen column (5) is introduced into the bottom of the crude argon column (10). The effluent from the upper mass transfer section (6) liquid is completely withdrawn from the pure oxygen column (5) (20). A first part (17) of the bottom liquid (15) of the crude argon column (10) is led to the top of the pure oxygen column (5). A second part of the bottom liquid (15) of the crude argon column (10) is fed as methane-free liquid oxygen fraction (18) to the top of the pure oxygen mass transfer section (7) of the pure oxygen column (5). At least a part of the gas exiting from the pure oxygen mass transfer section (7) above is introduced into the upper mass transfer section (6).
Description
Die Erfindung betrifft ein Verfahren zur Gewinnung eines Hochreinsauerstoffproduktstroms durch Tieftemperaturzerlegung von Luft gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a method for obtaining a high-purity oxygen product stream by cryogenic separation of air according to the preamble of
Verfahren und Vorrichtungen zur Tieftemperaturzerlegung von Luft sind zum Beispiel aus Hausen/Linde,
Das Destillationssäulen-System zur Stickstoff-Sauerstoff-Trennung kann als Zwei-Säulen-System (zum Beispiel als klassisches Linde-Doppelsäulensystem) ausgebildet sein, oder auch als Drei- oder Mehr-Säulen-System.The distillation column system for nitrogen-oxygen separation can be designed as a two-column system (for example as a classic Linde double column system), or as a three or more column system.
Aus
Der Erfindung liegt daher die Aufgabe zugrunde, sowohl einen Hochreinsauerstoffproduktstrom als auch sauerstofffreies Rohargon zu gewinnen, ohne dass ein besonders komplexer Apparat notwendig ist.The invention is therefore based on the object of obtaining both a high-purity oxygen product stream and oxygen-free crude argon without the need for a particularly complex apparatus.
Diese Aufgabe wird durch die Merkmale des kennzeichnenden Teils des Patentanspruchs 1 gelöst. Bei der Erfindung wird der Argonübergangsstrom (der "argonangereicherte Strom") nicht wie üblich in die Rohargonsäule eingeleitet, sondern in die Reinsauerstoffsäule, und zwar an einer Zwischenstelle. Der obere Stoffaustauschabschnitt der Reinsauerstoffsäule oberhalb der Zwischenstelle dient gleichzeitig der Entfernung von Methan und schwererflüchtigen Komponenten und der Argon-Sauerstofftrennung. Das Einsatzgas für die Rohargonsäule kommt vom Kopf der Reinsauerstoffsäule und ist bereits weiter an Argon angereichert (von beispielweise 11,3% auf 15,3% Argon).
Die Rohargonsäule zur Herstellung von sauerstofffreiem Rohargon kann dabei entsprechend kleiner und einteilig ausgeführt werden. Unter "sauerstofffrei" wird hier ein Sauerstoffgehalt von weniger als 10 ppm, vorzugsweise weniger als 1 ppm verstanden.This object is solved by the features of the characterizing part of
The crude argon column for the production of oxygen-free Rohargon can be made correspondingly smaller and one-piece. By "oxygen-free" is meant here an oxygen content of less than 10 ppm, preferably less than 1 ppm.
Im Sumpf der Rohargonsäule wird gleichzeitig eine methanfreie Sauerstofffraktion gewonnen, die auf den Reinsauerstoff-Stoffaustauschabschnitt der Reinsauerstoffsäule aufgegeben wird, von dessen Sumpf der Hochreinsauerstoffproduktstrom abgezogen wird. Diese Sauerstofffraktion wird im Weiteren als methanfrei bezeichnet. Unter "methanfrei wird hier ein Methangehalt verstanden, der unter 0,1 ppm, zum Beispiel unter 10 ppb, vorzugsweise unter 1 ppm liegt.In the bottom of the crude argon column, a methane-free oxygen fraction is simultaneously obtained, which is fed to the pure oxygen mass transfer section of the pure oxygen column, from the bottom of which the high-purity oxygen product stream is withdrawn. This oxygen fraction is referred to below as methane-free. By "methane-free" is meant here a methane content which is below 0.1 ppm, for example below 10 ppb, preferably below 1 ppm.
Grundsätzlich kann die Reinsauerstoffsäule aus zwei Behältern bestehen, welche den Reinsauerstoff-Stoffaustauschabschnitt beziehungsweise den oberen Stoffaustauschabschnitt zur Kohlenwasserstoffabtrennung aufweisen. Es ist jedoch günstiger, wenn die Reinsauerstoffsäule als ein durchgehender Behälter realisiert ist, bei dem das aufsteigende Gas ohne Rohrleitungen an der Zwischenstelle vorbeigeführt wird. Auf diese Weise kann der Verrohrungsaufwand vermindert werden.In principle, the pure oxygen column can consist of two containers which have the pure oxygen mass transfer section or the upper mass transfer section for hydrocarbon removal. However, it is more favorable if the pure oxygen column is realized as a continuous container, in which the ascending gas is passed without pipelines at the intermediate point. In this way, the Verrohrungsaufwand can be reduced.
Der obere Stoffaustauschabschnitt der Reinsauerstoffsäule kann durch strukturierte Packung (im Deutschen auch als "geordnete Packung" bezeichnet) und der Reinsauerstoff-Stoffaustauschabschnitt durch konventionelle Rektifizierböden gebildet werden. Auf diese Weise können die beiden entsprechenden Kolonnenabschnitte trotz unterschiedlichen Durchsatzes einen gleichen oder ähnlichen Durchmesser aufweisen. Vorzugsweise wird eine Packungsdichte von 350 bis 750 m2/m3 im oberen Stoffaustauschabschnitt eingesetzt. Die Rektifizierböden werden vorzugsweise durch Siebböden realisiert.The upper mass transfer section of the pure oxygen column can be formed by structured packing (also referred to as "ordered packing" in German) and the pure oxygen mass transfer section by conventional rectification trays. In this way, the two corresponding column sections may have the same or similar diameter despite different throughput. Preferably, a packing density of 350 to 750 m 2 / m 3 is used in the upper mass transfer section. The rectification soils are preferably realized by sieve trays.
Alternativ werden sowohl der obere Stoffaustauschabschnitt der Reinsauerstoffsäule als auch der Reinsauerstoff-Stoffaustauschabschnitt durch strukturierte Packung gebildet. Im Reinsauerstoff-Stoffaustauschabschnitt wird die Packung dann vorzugsweise als Kupferpackung ausgeführt, das heißt die Bleche, aus denen die Packung gefertigt ist, weisen einen Kupfergehalt von mindestens 95 mol-%, insbesondere von mindestens 99% auf.Alternatively, both the upper mass transfer section of the pure oxygen column and the pure oxygen mass transfer section are formed by structured packing. In the pure oxygen mass transfer section, the packing is then preferably designed as a copper packing, ie the sheets from which the packing is made have a copper content of at least 95 mol%, in particular of at least 99%.
Dann ist es günstig, wenn die Packungsdichte (spezifische Oberfläche) im Reinsauerstoff-Stoffaustauschabschnitt der Reinsauerstoffsäule um mindestens den Faktor 1,5 höher als im oberen Stoffaustauschabschnitt ist; der Faktor liegt beispielsweise zwischen 1,5 und 3,4. Die absoluten Packungsdichten betragen beispielsweise:
- im oberen Stoffaustauschabschnitt: 350 bis 750 m2/m3
- im Reinsauerstoff-Stoffaustauschabschnitt: 500 bis 1200 m2/m3
- in the upper mass transfer section: 350 to 750 m 2 / m 3
- in the pure oxygen mass transfer section: 500 to 1200 m 2 / m 3
Es ist günstig, wenn die Packungsdichte im Reinsauerstoff-Stoffaustauschabschnitt (7) der Reinsauerstoffsäule (5) mehr als 1.000 m2/m3 beträgt, und diejenige im oberen Stoffaustauschabschnitt (6) der Reinsauerstoffsäule (5) weniger als 800 m2/m3.It is favorable if the packing density in the pure oxygen mass transfer section (7) of the pure oxygen column (5) is more than 1000 m 2 / m 3 and that in the upper mass transfer section (6) of the pure oxygen column (5) is less than 800 m 2 / m 3 ,
Die Erfindung betrifft außerdem eine Vorrichtung gemäß Patentanspruch 12. Die erfindungsgemäße Vorrichtung kann durch Vorrichtungsmerkmale ergänzt werden, die den Merkmalen einzelner, mehrerer oder aller abhängigen Verfahrensansprüche entsprechen.The invention also relates to a device according to
Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:
Figur 1- eine erstes Ausführungsbeispiel der Erfindung mit Ausheizung der Reinsauerstoffsäule mittels Luft und Packungen in der Reinsauerstoffsäule;
Figur 2- ein zweites Ausführungsbeispiel, das einen zusätzlichen Stoffaustauschabschnitt in der Niederdrucksäule des Destillationssäulen-Systems zur Stickstoff-Sauerstoff-Trennung aufweist,
Figur 3- ein drittes Ausführungsbeispiel mit Einleitung flüssiger Luft in die Hochdrucksäule des Destillationssäulen-Systems zur Stickstoff-Sauerstoff-Trennung,
Figur 4- ein viertes Ausführungsbeispiel mit Ausheizung der Reinsauerstoffsäule mit einer Zwischenfraktion der Hochdrucksäule und
Figur 5- ein fünftes Ausführungsbeispiel mit Einsatz von konventionellen Rektifizierböden im Reinsauerstoff-Stoffaustauschabschnitt.
- FIG. 1
- a first embodiment of the invention with heating of the pure oxygen column by means of air and packings in the pure oxygen column;
- FIG. 2
- a second embodiment having an additional mass transfer section in the low-pressure column of the nitrogen-oxygen separation distillation column system,
- FIG. 3
- A third embodiment with introduction of liquid air into the high-pressure column of the distillation column system for nitrogen-oxygen separation,
- FIG. 4
- a fourth embodiment with heating of the pure oxygen column with an intermediate fraction of the high pressure column and
- FIG. 5
- a fifth embodiment using conventional rectification soils in the pure oxygen mass transfer section.
Im Folgenden wird zunächst der erfindungswesentliche Teil der
Eine gasförmige Zwischenfraktion aus der Niederdrucksäule bildet den argonangereicherten Strom 4 aus dem Destillationssäulen-System zur Stickstoff-Sauerstoff-Trennung und wird der Reinsauerstoffsäule 5 an einer Zwischenstelle zugeleitet. Das einströmende Gas fließt in den oberen Stoffaustauschabschnitt 6 der Reinsauerstoffsäule 5 und wird dort an Sauerstoff und Methan abgereichert. Der obere Stoffaustauschabschnitt 6 bildet damit gleichzeitig den ersten Abschnitt der Argon-Sauerstoff-Trennung, die ansonsten in der folgenden Rohargonsäule 10 stattfindet. Diese wird im Sumpf mit dem Kopfgas 9 der Reinsauerstoffsäule beaufschlagt. Die Rohargonsäule 10 weist einen Kopfkondensator 11 auf, in der das Kopfgas der Rohargonsäule mit Ausnahme des Rohargonproduktstroms 12 vollständig verflüssigt wird. Das Rohargonproduktgas 12 wird hier in einer klassischen Reinargonsäule 13 unter Abtrennung des Reststickstoffs weiterverarbeitet. Ein hochreines Argonprodukt HLAR wird über Leitung 14 vom Sumpf der Reinargonsäule 13 abgezogen.A gaseous intermediate fraction from the low-pressure column forms the argon-enriched
Die Sumpfflüssigkeit 15 der Rohargonsäule wird mittels einer Pumpe 16 in die Reinsauerstoffsäule 5 eingeleitet, und zwar an zwei verschiedenen Stellen. Ein erster Teil 17 wird zum Kopf der Reinsauerstoffsäule 5 geführt und dort als Rücklaufflüssigkeit auf den oberen Stoffaustauschabschnitt 5 aufgegeben; ein zweiter Teil 18 der Sumpfflüssigkeit 15 der Rohargonsäule 10 wird als methanfreie flüssige Sauerstofffraktion genutzt und auf den Kopf eines Reinsauerstoff-Stoffaustauschabschnitts 7 der Reinsauerstoffsäule 5 aufgegeben, der sich unterhalb der Zwischenstelle befindet, an der der argonangereicherte Strom 4 aus der Niederdrucksäule 3 eingeleitet wird. Diese Flüssigkeit bildet den Rücklauf im Reinsauerstoff-Stoffaustauschabschnitt 7. Die Flüssigkeit, die aus diesem Stoffaustauschabschnitt abläuft wird zu einem ersten Teil im Sumpfverdampfer 8 verdampft und strömt als aufsteigendes Gas zurück in den Reinsauerstoff-Stoffaustauschabschnitt 7 und weiter in den oberen Stoffaustauschabschnitt 6. Der Rest wird flüssig als Hochreinsauerstoffproduktstrom 90 abgezogen und - gegebenenfalls nach Unterkühlung in einem Unterkühlungs-Gegenströmer 19 als flüssiges Hochreinprodukt HLOX gewonnen.The
Die aus dem oberen Stoffaustauschabschnitt der Reinsauerstoffsäule 5 ablaufende Flüssigkeit wird an der Zwischenstelle vollständig durch eine Sammeleinrichtung 21 aufgefangen und über Leitung 20 in die Niederdrucksäule 3 zurückgeleitet.The effluent from the upper mass transfer section of the
In dem Ausführungsbeispiel werden beide Stoffaustauschabschnitte 6, 7 der Reinsauerstoffsäule 5 durch strukturierte Packung gebildet, wobei der untere Stoffaustauschabschnitt 7 zwei Packungsbetten aufweist, der obere Stoffaustauschabschnitt 6 eines. Um die unterschiedlichen Belastungen bei ähnlichem oder gleichem Kolonnendurchmesser auszugleichen, wird der obere Stoffaustauschabschnitt 6 mit einer niedrigeren Packungsdichte (spezifischen Oberfläche) als der unter 7 betrieben. Die Packungsdichte beträgt beispielsweise 500 m2/m3 im oberen Stoffaustauschabschnitt 6 und 1.200 m2/m3 im unteren Stoffaustauschabschnitt 7. Unter einem "ähnlichen Kolonnendurchmesser wird hier ein Unterschied in den Kolonnendurchmessern von weniger als 40 % verstanden. Im Falle einer Luftzerlegungsanlage, bei welcher der Flüssigsauerstoff beziehungsweise der Hochreinsauerstoffproduktstrom nur Nebenprodukte relativ geringer Menge sind (beispielsweise bei einer Anlage mit innenverdichtetem Sauerstoff als Hauptprodukt), kann der Unterschied in den Kolonnendurchmessern auch höher ausfallen.In the exemplary embodiment, both
Der Kopfkondensator 11 der Rohargonsäule wird konventionell mittels sauerstoffangereicherter Sumpfflüssigkeit 22, 23, 24 aus der Hochdrucksäule 1 beziehungsweise dem Unterkühlungs-Gegenströmer 19 gekühlt. Die Beheizung des Sumpfverdampfers 8 der Reinargonsäule erfolgt mit einem Teilstrom 25 der kalten Einsatzluft 26 unter Hochdrucksäulendruck.The
Nun folgt die Beschreibung des Luftzerlegungsprozesses der
Atmosphärische Luft AIR wird über eine Leitung 27 und ein Filter 28 von einem Hauptluftverdichter angesaugt und dort auf einen Druck von etwa 6 bar gebracht. Die verdichtete Luft wird in einer Vorkühleinrichtung, die hier durch einen Direktkontaktkühler gebildet wird, abgekühlt und in einer Reinigungseinrichtung gereinigt, die durch ein Paar umschaltbarer Molsiebadsorber gebildet wird.Atmospheric air AIR is drawn in via a
Die gereinigte Hochdruckluft 32 wird in einen Hauptwärmetauscher 33 eingeleitet und dort auf etwa Taupunkt abgekühlt. Die kalte Einsatzluft 26 strömt zum größten Teil über Leitung 77 gasförmig in die Hochdrucksäule 1 ein. Ein Teil 25 wird bei diesem Ausführungsbeispiel für die Beheizung des Sumpfs der Reinsauerstoffsäule 5 eingesetzt. Die flüssige Luft 34 aus dem Sumpfverdampfer 8 wird über Leitung 35 in den Verdampfungsraum des Kopfkondensators 36 der Reinargonsäule 13 eingeleitet.The purified high-
Ein erster Teil 37 des Kopfgases der Hochdrucksäule wird im Hauptkondensator 2 verflüssigt. Dabei gewonnener Flüssigstickstoff wird zum Teil als Rücklauf in der Hochdrucksäule 1 eingesetzt, zum Teil über Leitung 39 abgezogen, im Unterkühlungs-Gegenströmer 19 abgekühlt und über die Leitungen 40 und 41 als hochreines Flüssigstickstoffprodukt HLIN abgezogen. Der Rest 42 des Kopfgases wird im Hauptwärmetauscher 33 angewärmt und über Leitung 43 einer Verwendung als Sperrgas (Sealgas) zugeführt. Alternativ kann der Strom 43 als ein Teil des Stroms 50 von einer Zwischenstelle der Hochdrucksäule entnommen und im Hauptwärmetauscher angewärmt werden.A
Die sauerstoffangereicherte Sumpfflüssigkeit 22, 23, wird auf konventionelle Weise zur Heizung und Kühlung der Reinargonsäule 13 sowie zur Kühlung der Rohargonsäule 10 eingesetzt. Dampf 44 und Flüssigkeiten 45/46 aus den entsprechenden Kondensatoren werden separat in die Niederdrucksäule 3 eingeleitet.The oxygen-enriched
Eine etwas weniger reine Stickstoffflüssigkeit 47 mit beispielsweise 1 ppm Sauerstoffgehalt wird von einer Zwischenstelle der Hochdrucksäule abgezogen und nach Unterkühlung 19 über Leitung 48/49 als Rücklaufflüssigkeit auf den Kopf der Niederdrucksäule 3 aufgegeben. An derselben Zwischenstelle der Hochdrucksäule wird ein gasförmiger Stickstoffstrom 50 abgezogen und in einen Stickstoffkreislauf eingespeist, der aus einem Feedgasverdichter 51 mit Nachkühler 52, einem Kreislaufverdichter 53 mit Nachkühler 54, zwei seriellen turbinengetriebenen Nachverdichtern 55, 56, mit Nachkühlern 57, 58, zwei Stickstoffturbinen 59, 60, einem Abscheider 61 und dem in der Zeichnung links dargestellten Teil des Hauptwärmetauschers 33 besteht. Die Erfindung funktioniert jedoch prinzipiell unabhängig von der speziellen Ausführung der Hochdrucksäule - zum Beispiel mit oder ohne Reinstickstoffabschnitt - und unabhängig von dem Sickstoffkreislauf und insbesondere dessen Ein- und Ausspeisestellen an der Hochdrucksäule.A somewhat less pure nitrogen liquid 47 having, for example, 1 ppm oxygen content is withdrawn from an intermediate point of the high-pressure column and, after supercooling 19, fed via
Im Stickstoffkreislauf erzeugte Flüssigkeit wird einerseits über Leitung 62 in die Hochdrucksäule, andererseits über die Leitungen 63, 49 in die Niederdrucksäule 3 eingespeist. Gasförmiger Stickstoff 64 vom Kopf der Niederdrucksäule 3 wird im Unterkühlungs-Gegenströmer 19 und weiter (Leitung 65) im Hauptwärmetauscher 33 auf etwa Umgebungstemperatur angewärmt. Ein erster Teil 66 des warmen Unreinstickstoffs kann über den Feedgasverdichter 51 in den Kreislauf eingeführt werden; ein anderer Teil 67 dient als Kühlgas für einen Verdunstungskühler 72 zur Abkühlung von Kühlwasser 73.Liquid generated in the nitrogen cycle is fed on the one hand via
Das gasförmige Sauerstoffprodukt 68 aus der Niederdrucksäule 3 wird hier mit dem Restgas 69 von einer Zwischenstelle der Niederdrucksäule 3 vermischt. Das Gemisch 70 wird im Hauptwärmetauscher angewärmt und schließlich als Regeneriergas 71 verwendet oder in die Atmosphäre ATM abgeblasen.The
Bei
Die dadurch erzeugte Kälte wird zum Großteil durch einen Flüssigluftstrom 301 in das Destillationssäulen-System eingetragen, der in die Hochdrucksäule 1 eingeleitet wird. Ein Teil 302 wird gleich wieder entnommen, im Unterkühlungs-Gegenströmer 319 abgekühlt und über Leitung 303 gemeinsam mit der Flüssigluft 34/235 aus dem Verdampfer 8 in die Niederdrucksäule eingeleitet.The cold generated thereby is registered for the most part by a
In
Claims (12)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16020468.1A EP3327393A1 (en) | 2016-11-25 | 2016-11-25 | Method and device for creating a high purity oxygen product flow by the cryogenic decomposition of air |
DE102017010786.6A DE102017010786A1 (en) | 2016-11-25 | 2017-11-22 | A method and apparatus for recovering a high purity oxygen product stream by cryogenic separation of air |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16020468.1A EP3327393A1 (en) | 2016-11-25 | 2016-11-25 | Method and device for creating a high purity oxygen product flow by the cryogenic decomposition of air |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3327393A1 true EP3327393A1 (en) | 2018-05-30 |
Family
ID=57460299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16020468.1A Withdrawn EP3327393A1 (en) | 2016-11-25 | 2016-11-25 | Method and device for creating a high purity oxygen product flow by the cryogenic decomposition of air |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3327393A1 (en) |
DE (1) | DE102017010786A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021078405A1 (en) * | 2019-10-23 | 2021-04-29 | Linde Gmbh | Method and system for low-temperature air separation |
WO2021204424A3 (en) * | 2020-04-09 | 2021-12-02 | Linde Gmbh | Process for cryogenic fractionation of air, air fractionation plant and integrated system composed of at least two air fractionation plants |
WO2023030679A1 (en) * | 2021-09-01 | 2023-03-09 | Linde Gmbh | Method for the low-temperature separation of air and air separation plant |
WO2024052279A1 (en) * | 2022-09-06 | 2024-03-14 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Air separation unit and air separation method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0299364A2 (en) * | 1987-07-09 | 1989-01-18 | Linde Aktiengesellschaft | Process and apparatus for air separation by rectification |
US4977746A (en) | 1989-01-20 | 1990-12-18 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process and plant for separating air and producing ultra-pure oxygen |
EP0467395A1 (en) * | 1990-07-20 | 1992-01-22 | Praxair Technology, Inc. | Variable density structured packing cryogenic distillation system |
DE10152356A1 (en) * | 2001-10-24 | 2002-12-12 | Linde Ag | Recovering argon in a low temperature decomposition comprises removing an oxygen fraction deficient in volatile components from an intermediate point of a rectification section and fed to a pure oxygen column |
EP3067649A1 (en) * | 2015-03-13 | 2016-09-14 | Linde Aktiengesellschaft | Distillation column system and method for the production of oxygen by cryogenic decomposition of air |
-
2016
- 2016-11-25 EP EP16020468.1A patent/EP3327393A1/en not_active Withdrawn
-
2017
- 2017-11-22 DE DE102017010786.6A patent/DE102017010786A1/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0299364A2 (en) * | 1987-07-09 | 1989-01-18 | Linde Aktiengesellschaft | Process and apparatus for air separation by rectification |
US4977746A (en) | 1989-01-20 | 1990-12-18 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process and plant for separating air and producing ultra-pure oxygen |
EP0467395A1 (en) * | 1990-07-20 | 1992-01-22 | Praxair Technology, Inc. | Variable density structured packing cryogenic distillation system |
DE10152356A1 (en) * | 2001-10-24 | 2002-12-12 | Linde Ag | Recovering argon in a low temperature decomposition comprises removing an oxygen fraction deficient in volatile components from an intermediate point of a rectification section and fed to a pure oxygen column |
EP3067649A1 (en) * | 2015-03-13 | 2016-09-14 | Linde Aktiengesellschaft | Distillation column system and method for the production of oxygen by cryogenic decomposition of air |
Non-Patent Citations (4)
Title |
---|
"Megapur-Produktion in der Luftzerlegungsanlage Frankfurt", GAS AKTUELL, MESSER GRIESHEIM,. KREFELD, DE, vol. 39, 1 January 1990 (1990-01-01), pages 4 - 8, XP009143412, ISSN: 0340-6067 * |
"PROCESS AND FACILITY WITH PARTICULARLY HIGH AVAILABILITY", NOT KNOWN, MASON PUBLICATIONS, HAMPSHIRE, GB, no. 397, 1 May 1997 (1997-05-01), pages 276 - 279, XP000726402, ISSN: 0374-4353 * |
F.G. KERRY: "Industrial Gas Handbook: Gas Separation and Purification", 2006, CRC PRESS, article "Air Separation Technology bekannt" |
HAUSEN; LINDE: "Tieftemperaturtechnik", 1985, pages: 281 - 337 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021078405A1 (en) * | 2019-10-23 | 2021-04-29 | Linde Gmbh | Method and system for low-temperature air separation |
WO2021204424A3 (en) * | 2020-04-09 | 2021-12-02 | Linde Gmbh | Process for cryogenic fractionation of air, air fractionation plant and integrated system composed of at least two air fractionation plants |
WO2023030679A1 (en) * | 2021-09-01 | 2023-03-09 | Linde Gmbh | Method for the low-temperature separation of air and air separation plant |
WO2024052279A1 (en) * | 2022-09-06 | 2024-03-14 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Air separation unit and air separation method |
Also Published As
Publication number | Publication date |
---|---|
DE102017010786A1 (en) | 2018-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2236964B1 (en) | Method and device for low-temperature air separation | |
EP1482266B1 (en) | Process and device for the recovery of Krypton and/or Xenon by cryogenic separation of air | |
DE69503095T2 (en) | Air separation | |
EP2026024A1 (en) | Process and device for producing argon by cryogenic separation of air | |
WO2014135271A2 (en) | Air separation plant, method for obtaining a product containing argon, and method for creating an air separation plant | |
EP3327393A1 (en) | Method and device for creating a high purity oxygen product flow by the cryogenic decomposition of air | |
DE10228111A1 (en) | Air separation process and plant with mixing column and krypton-xenon extraction | |
DE102007035619A1 (en) | Process and apparatus for recovering argon by cryogenic separation of air | |
DE10334559A1 (en) | Process for recovering krypton/xenon by the cryogenic separation of air comprises feeding an argon-enriched vapor from a crude argon rectification system into a sump evaporator | |
EP0669508A1 (en) | Process and apparatus for obtaining pure argon | |
DE102005040508A1 (en) | Krypton and/or xenon production by low temperature air decomposition involves drawing off a krypton-xenon concentrate from a second condenser-evaporator | |
DE102007051183A1 (en) | Method for cryogenic air separation | |
DE69613279T2 (en) | air separation | |
WO2016058666A1 (en) | Method and device for variably obtaining argon by means of low-temperature separation | |
WO2016146246A1 (en) | Plant for producing oxygen by cryogenic air separation | |
DE102016002115A1 (en) | Distillation column system and method for producing oxygen by cryogenic separation of air | |
DE19933558B4 (en) | Three-column process and apparatus for the cryogenic separation of air | |
DE69912020T2 (en) | Cryogenic rectification system with integrated phase separator with product cooker | |
EP3067650B1 (en) | Installation and method for producing gaseous oxygen by cryogenic air decomposition | |
DE102016011084A1 (en) | A method and apparatus for recovering a high purity oxygen product stream by cryogenic separation of air | |
DE10332862A1 (en) | Cryogenic assembly to extract krypton and/or xenon gas from air has intermediate pipe on the methane removal column alongside a base panel above the sump | |
EP3067648A1 (en) | Distillation column system and method for the production of oxygen by cryogenic decomposition of air | |
EP2865978A1 (en) | Method for low-temperature air separation and low temperature air separation plant | |
DE69100539T3 (en) | Cryogenic air separation system with hybrid argon column. | |
DE69813061T2 (en) | Manufacture of cryogenic liquid mixtures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20181201 |