EP3326734B1 - Method for producing a foundry ceramic core - Google Patents

Method for producing a foundry ceramic core Download PDF

Info

Publication number
EP3326734B1
EP3326734B1 EP17202768.2A EP17202768A EP3326734B1 EP 3326734 B1 EP3326734 B1 EP 3326734B1 EP 17202768 A EP17202768 A EP 17202768A EP 3326734 B1 EP3326734 B1 EP 3326734B1
Authority
EP
European Patent Office
Prior art keywords
machining
core
process according
production process
material block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17202768.2A
Other languages
German (de)
French (fr)
Other versions
EP3326734A1 (en
Inventor
Jean-Yves BALDUINI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jy'nove Sarl
Original Assignee
Jy'nove Sarl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jy'nove Sarl filed Critical Jy'nove Sarl
Publication of EP3326734A1 publication Critical patent/EP3326734A1/en
Application granted granted Critical
Publication of EP3326734B1 publication Critical patent/EP3326734B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/18Finishing

Definitions

  • the present invention relates to a method of manufacturing a ceramic foundry core for the production of a complex cavity hollow casting part by lost-wax casting, such as a gas turbine rotor or stator, of a motor. airplane, reactor, a combustion nozzle or the like, said core being an image of the complex cavity of the hollow part to be manufactured.
  • This lost wax foundry fabrication process is to manufacture a ceramic core having a complex geometry and walls or partitions that can be very thin, of the order of a millimeter, since this core must be hollowed out and perforated. to be able to define the exact and precise interior volume of the hollow part to be manufactured.
  • This ceramic core is preferably made of a technical ceramic material or any other compatible material, that is to say which has a high mechanical strength and a high hardness and which withstands very high temperatures given the temperature of melting of metals and metal alloys which are of the order of 1500 Ā° C.
  • this technical ceramic material or the like must be able to dissolve chemically to release the complex interior cavity of the hollow part obtained after casting.
  • This ceramic core is intended to be embedded in a wax blank obtained by molding and whose outer geometry defines the external volume of the hollow part to be manufactured.
  • the wax blank is dipped in a ceramic bath to coat it with a hard ceramic shell.
  • the ceramic shell is raised in temperature to the melting temperature of the wax allowing the removal of the wax that flows from the shell leaving inside the shell a negative volume defined between the inner wall of the carapace. the carapace and the outer wall of the inner core.
  • the molten metal is then cast inside the ceramic shell.
  • the outer ceramic shell and the inner core are removed by shaking to clear the resulting hollow part.
  • the foundry technique makes it possible to obtain quality finished parts without any subsequent finishing operation.
  • the ceramic casting cores are manufactured by molding in a multi-drawer mold.
  • the manufacture of the mold is particularly tedious because the prints, which are the negative images of the core to be made, are very complex and make the design of the mold and its manufacture very expensive and very long.
  • the average manufacturing time of such a mold is about a year and represents an investment of about one million euros.
  • One of the techniques consists in providing a contact machining step of a previously molded ceramic core blank, with or without an inner recess.
  • This machining step allows either to machine the recess as such, or to perfect the inner recess already partially produced by molding, or to deburr the blank obtained.
  • the machining step can be carried out either by removal of material such as by milling or by abrasion, as the examples described in the publications FR 2 878 458 A1 , FR 2 930 188 A1 and FR 2900850 A1 .
  • Another technique consists in providing a non-contact machining step of a previously molded ceramic core blank, this machining step being performed on a fired ceramic, by laser or ultrasound to perfect the dimensional characteristics of said core, such as the examples described in the publications US 5,465,780 A and WO 97/02914 A1 .
  • the publication WO 2015/051916 A1 proposes to machine on a numerically controlled machine the ceramic core and the outer blank of lost wax disposed around said core without however specify the operating mode given the difficulties in machining said core.
  • the present invention proposes a new manufacturing process for solving the problems mentioned above, to substantially shorten the manufacturing process of the ceramic cores for the lost wax foundry, and correspondingly reduce the investment cost for the purpose. to reduce the cycle and development cost of new gas turbine parts, aircraft engines, engines, combustion nozzles and any complex cavity hollow part, to provide flexibility in the management of industrial projects , to allow an evolution of the geometry of already existing pieces.
  • the development time of the manufacturing method according to the invention can be divided by a coefficient of 10 and its cost by a coefficient of 40 relative to the process of classic molding.
  • This new manufacturing process also allows the production of pre-series and the manufacture of parts on demand.
  • the invention relates to a manufacturing method of the kind indicated in the preamble, characterized in that said core is manufactured by machining a block of cooked ceramic material by mechanical removal of material, in that the operation machining tool comprises at least a first machining step for producing a first machined surface in said block of material, and a second machining step for producing a second machined surface in said block of material, substantially opposite said first machined surface, and in that, prior to said second machining step, is applied to all or part of said first machined surface a reinforcing layer in a stiffening solution to protect said block of material from breakage the second machining step and it is expected solidification of said reinforcing layer before starting the second machining step.
  • the machining operation comprises several machining steps, then the application of a reinforcing layer is renewed before each new machining step on all or part of a surface of said block of material substantially opposite to said new surface to be machined.
  • stiffening solution it is advantageous to use a machining glue in the liquid or semi-liquid state having machinable and dissolvable properties. And one can apply said reinforcing layer in one or more applications of stiffening solution.
  • a block of material having at least two parallel opposite faces arranged to form two clamping faces on which the jaws of a clamping vice are applied is preferably used.
  • the said core may be dipped in a solvent bath, or the said core may be subjected to a temperature corresponding to the melting temperature of the stiffening solution.
  • the said core is suspended from a bracket to allow the removal of the molten stiffening solution by gravity flow.
  • FIGS. 1 to 4 show schematically and in front view several steps of a method of manufacturing a ceramic ceramic core according to the invention, in which the figure 1 illustrates the mounting of a ceramic block between two clamping jaws of a machining machine for machining a first face of a blank of said core, the figure 2 illustrates the application of a stiffening solution on the first machined face of the blank, the figure 3 illustrates the machining of a second face of the blank of said core, located opposite the first machined and stiffened face, and the figure 4 illustrates the removal of the stiffening solution after the machining of the second face of the blank.
  • a machining center may be a numerically controlled multi-axis machining center for producing a plurality of simple to very complex shapes.
  • any other type of mechanical machining machine may be suitable.
  • a five-axis milling center was used which makes it possible to machine complex shapes, which are very common in ceramic cores.
  • the manufacturing method comprises a step of mounting a ceramic block 1 between two jaws 2 of a clamping vise 3 of a machining machine (not shown) in the direction of the arrows F.
  • the ceramic block 1 is a machinable technical ceramic blank, namely a block of fired ceramic, which presents by way of example a hardness equivalent or comparable to that of glass fiber-filled composites.
  • This ceramic block 1 may have a parallelepipedal shape as illustrated, or any other form depending on the general shape of the core 20 to be machined, such as for example a polyhedron, a cylinder.
  • the positioning and indexing of the ceramic block 1 on the machining machine are important to ensure the accuracy of the different machining steps regardless of the number of disassembly and reassembly of said block.
  • the ceramic block 1 when it is parallelepiped, it must have two opposite and parallel clamping faces 4 with a precision for example at most equal to 0.1 mm.
  • the clamping height h of the two jaws 2 on the clamping faces 4 of the ceramic block 1 must be minimal but sufficient to ensure the immobilization of the ceramic block 1, and for example equal to at least 3 mm for a lower block height or equal to 30mm, and beyond this height, equal to at least 10% of the height of said block.
  • the height H of the two jaws 2 must be large and at least equal to 70 mm to facilitate the accessibility of the machining tools to the different faces of the ceramic block 1, and in particular to its underside.
  • the tightening of the ceramic block 1 must be controlled to apply a weak but sufficient clamping force, by example between 1 kN and 5 kN.
  • a torque wrench will be used to tighten the two jaws 2 according to the arrows F.
  • the values indicated above are given by way of example and have no limiting effect.
  • the method of mounting the ceramic block 1 on a machining machine may vary according to the shape of said block. By way of example, if it is cylindrical, a cylindrical chuck will be used and the peripheral base of said block may serve as a reference surface.
  • the machining of the ceramic block 1 is started by producing a reference surface 5 which will allow disassembly and reassembly of the ceramic block 1 with a precision of at most 0.05 mm.
  • a reference surface 5 which will allow disassembly and reassembly of the ceramic block 1 with a precision of at most 0.05 mm.
  • a first machining step can then be performed on a first portion of the ceramic block 1 to produce a first machined surface 6 (see FIG. figure 2 ).
  • this first machined surface 6 was made on the left side (in the figure) of the ceramic block 1 by releasing the corresponding angle of the block and in particular creating cavities 7.
  • the ceramic block 1 Prior to this application, the ceramic block 1 must preferably be cleaned and degreased to remove dust and machining oil and thus allow the adhesion of the stiffening solution to the surface of the ceramic block 1. For this cleaning phase, an automatic washing device adapted to prevent any degradation of the ceramic can be used.
  • the stiffening solution is then applied at least to the first machined surface 6, taking care to fill the cavities 7.
  • This stiffening solution which is preferably a machining glue, can be applied by any suitable means in a or several applications.
  • the thickness of the reinforcing layer 8 obtained must be at least equal to 2 mm to obtain the expected stiffening effect.
  • the stiffening solution can be applied when it is in the liquid state by means of a brush or by gravity by pouring it from a determined height not too high, of the order of a few centimeters, from a container containing a quantity sufficient solution. This technique for applying a stiffening solution in the liquid state is the most suitable for filling cavities 7 more than 2 mm deep.
  • any other method of application may of course be suitable according to the geometry of the machined surface 6 to be stiffened and according to the fluidity of the stiffening solution.
  • the stiffening solution must be able to be cleaned in order to be removed from the ceramic block 1 after machining. If it does not have this faculty, its residues must not make impossible the use nor the functions of the obtained ceramic core. It must also retain its stiffening properties up to a temperature of at least 50 Ā° C, corresponding to the temperature rise experienced by the ceramic block 1 during machining even with lubrication.
  • Suitable stiffening solutions are, by way of example, existing machining glues such as the adhesive pastes sold under the names Araldite 2011 and Araldite 2012, the machining glue sold under the name Rigidax by the company Paramelt, or any other stiffening solution in pasty or semi-fluid form, adhesive or not, having the following particular characteristics: it must be machinable and dissoluble without causing the dissolution of the ceramic on which it is applied.
  • the solvents which exist and which make it possible to dissolve these machining glues, adhesive pastes or any other stiffening solution may be, by way of example, a universal paint sold under the name Syntilor Chrono 10, a gelled spray cleaner marketed under the acronym 1310, a foaming cleaner sold under the name Sansil, etc. These examples are of course not limiting.
  • the figure 3 illustrates the ceramic block 1 remaining after the second machining step of the process which has been carried out on the right side (in the figure) of the block and during which the corresponding angle of the block has been made to create a second surface of the block.
  • machining 9 This second machining surface 9 is substantially located opposite or at the rear of the first machining surface 6.
  • the terms "oppositeā€ and ā€œrearā€ must not be interpreted in a restrictive sense .
  • the second machined surface may be the back of the first machined surface forming the front of the core, or the inner face of the first machined surface forming the outer face of the core.
  • the forces and vibrations induced in the ceramic block 1 by the cutting tool or tools are directed towards the first machined surface 6 and may cause breaks in the block However, they will have no detrimental effect on the first machined surface 6 nor on the cavities 7 since they have been protected and filled by the reinforcing layer 8.
  • a stiffening solution for forming a second reinforcing layer 11 at the rear of the third surface 10 to be machined As explained above, the remaining ceramic block 1 must be cleaned and degreased to remove dust and machining oil and thus allow the adhesion of the stiffening solution to the surface of the ceramic block 1. It is applied then the stiffening solution in the angle formed between the first machined surface 6 and the remaining portion of the ceramic block 1 opposite the third surface 10 to be machined.
  • This second reinforcing layer 11 thus allows the maintenance of the core 20 obtained after calibration during a third machining step, namely after separation between the core 20 obtained and the remaining portion of the ceramic block 1 commonly called a heel.
  • the figure 4 illustrates the last step of the manufacturing method according to the invention which corresponds to the cleaning of the core 20 obtained after the third machining step which made it possible to machine the third surface 10 separating the core 20 from the ceramic block 1.
  • the heel of the ceramic block 1 is turned by a quarter turn and held vertically by a holding flange 12.
  • a bracket 13 arranged to support the core 20 by any suitable suspension means such as a link 14 which can pass through the openings of the core 20 to retain it when the stiffening solution has melted.
  • the assembly is placed in a recovery tank 15 resistant at least to a temperature of the order of 200 Ā° C.
  • the whole is placed in an oven, an oven or the like for at least 3h at least 120 Ā° C to cause the fusion of the stiffening solution 16 which will flow from the core 20 and the remaining ceramic block 1, by gravity in the bottom of the receiving tray 15.
  • the core 20 will be positioned in such a way that the stiffening solution flows without defiling the areas of the core 20 that were not provided with it. Similarly, we will have the link 14 through the core 20 so as not to damage it.
  • the stiffening solution recovered in the receiving pan 15 can be recycled one or more times according to its degree of impurities.
  • any other assembly and / or technical means for removing the stiffening solution 16 of the machined ceramic core 20 may be suitable.
  • the core can be immersed in a solvent bath.
  • machining the different surfaces of the ceramic block 1 from the top to the low, which preserves the rigidity of said block and use natural diamond cutting tools or super-abrasive type PCD or CBN.
  • the machining operations can be carried out dry or with a soluble cutting oil or other suitable lubricant.
  • the use of a cutting oil reduces the wear of the cutting tool but requires cleaning the ceramic block 1 before each application of the stiffening solution.
  • the cutting conditions must also be adapted to the rigidity of the ceramic block 1 and the core 20 to be machined. If it is not very hollow, of the order of approximately 30% of vacuum, it is possible to maintain high machining conditions, for example greater than 300m / min until the last machining step.
  • the machining conditions should be divided by at least 2. It is still possible to complete the machining of the ceramic block 1 by traditional cutting tools with an ultrasonic pin to machine the weakest parts of the core 20, as for example the milling center Tongtai VU-5 .
  • the invention achieves the goals set, namely the manufacture of a ceramic core only by mechanical machining and without going through a molding step, to greatly shorten the time of completion and reduce production costs.
  • the method of the invention thus allows to consider new developments of faster parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

Domaine technique :Technical area :

La prĆ©sente invention concerne un procĆ©dĆ© de fabrication d'un noyau cĆ©ramique de fonderie pour la fabrication d'une piĆØce creuse Ć  cavitĆ© complexe par fonderie Ć  la cire perdue, telle qu'un rotor ou un stator de turbine Ć  gaz, de moteur d'avion, de rĆ©acteur, une tuyĆØre de combustion ou similaire, ledit noyau Ć©tant une image de la cavitĆ© complexe de la piĆØce creuse Ć  fabriquer.The present invention relates to a method of manufacturing a ceramic foundry core for the production of a complex cavity hollow casting part by lost-wax casting, such as a gas turbine rotor or stator, of a motor. airplane, reactor, a combustion nozzle or the like, said core being an image of the complex cavity of the hollow part to be manufactured.

Technique antƩrieure :Prior art:

La technique de fabrication de piĆØces mĆ©talliques par fonderie de prĆ©cision Ć  la cire perdue est largement rĆ©pandue et utilisĆ©e tout particuliĆØrement pour fabriquer des piĆØces mĆ©talliques creuses de prĆ©cision, pouvant avoir des formes intĆ©rieures et extĆ©rieures trĆØs complexes, telles qu'Ć  titre d'exemple des rotors et des stators de turbines Ć  gaz, de moteurs d'avion, de rĆ©acteurs, des tuyĆØres de combustion, etc., ces piĆØces Ć©tant utilisĆ©es dans des domaines divers tels que l'Ć©nergie, l'aĆ©ronautique, l'aĆ©rospatial, etc. Ces piĆØces sont trĆØs techniques et leurs formes intĆ©rieures et extĆ©rieures sont dictĆ©es par des contraintes aĆ©rauliques. Elles sont Ć©vidĆ©es pour des questions de poids mais surtout pour abriter un rĆ©seau de canaux intĆ©rieurs permettant la circulation d'un fluide de refroidissement. Ces exemples ne sont bien entendu pas limitatifs.The technique of manufacturing metal parts by precision casting with lost wax is widely used and particularly used to manufacture precision hollow metal parts, which can have very complex internal and external forms, such as for example rotors and stators of gas turbines, aircraft engines, reactors, combustion nozzles, etc., these parts being used in various fields such as energy, aeronautics, aerospace, etc. These pieces are very technical and their internal and external forms are dictated by aeraulic constraints. They are hollowed out for reasons of weight but especially to house a network of internal channels allowing the circulation of a cooling fluid. These examples are of course not limiting.

Cette technique de fabrication par fonderie Ć  la cire perdue est trĆØs complexe Ć  mettre en oeuvre et nĆ©cessite une pluralitĆ© d'Ć©tapes de fabrication intermĆ©diaires chacune complexe et fastidieuse Ć  rĆ©aliser, rendant ce procĆ©dĆ© de fabrication particuliĆØrement long et coĆ»teux. Ainsi, toute nouvelle piĆØce Ć  fabriquer, ou toute modification ou Ć©volution que l'on souhaite apporter Ć  une piĆØce existante, demande un dĆ©lai trĆØs long prĆ©judiciable en phase de recherche et dĆ©veloppement pour gĆ©nĆ©rer de nouvelles piĆØces et optimiser les caractĆ©ristiques aĆ©rodynamiques, aĆ©rauliques, etc. desdites piĆØces.This lost wax foundry manufacturing technique is very complex to implement and requires a plurality of intermediate manufacturing steps each complex and tedious to perform, making this manufacturing process particularly long and expensive. Thus, any new part to be manufactured, or any modification or evolution that one wishes to bring to an existing part, requires a very long detrimental in the research and development phase to generate new parts and optimize aerodynamic characteristics, aeraulics, etc. said pieces.

Une des Ć©tapes de ce procĆ©dĆ© de fabrication par fonderie Ć  la cire perdue consiste Ć  fabriquer un noyau cĆ©ramique prĆ©sentant une gĆ©omĆ©trie complexe et des parois ou cloisons qui peuvent ĆŖtre trĆØs fines, de l'ordre du millimĆØtre, puisque ce noyau doit ĆŖtre Ć©vidĆ© et ajourĆ© pour pouvoir dĆ©finir le volume intĆ©rieur exact et prĆ©cis de la piĆØce creuse Ć  fabriquer. Ce noyau cĆ©ramique est de prĆ©fĆ©rence rĆ©alisĆ© en une matiĆØre cĆ©ramique technique ou en toute autre matiĆØre compatible, c'est-Ć -dire qui possĆØde une grande rĆ©sistance mĆ©canique et une forte duretĆ© et qui rĆ©siste Ć  des tempĆ©ratures trĆØs Ć©levĆ©es compte tenu de la tempĆ©rature de fusion des mĆ©taux et alliages mĆ©talliques qui sont de l'ordre de 1500Ā°C. De plus, cette matiĆØre cĆ©ramique technique ou similaire doit pouvoir se dissoudre chimiquement pour pouvoir libĆ©rer le la cavitĆ© intĆ©rieure complexe de la piĆØce creuse obtenue aprĆØs fonderie. Ce noyau cĆ©ramique est destinĆ© Ć  ĆŖtre noyĆ© dans une Ć©bauche en cire obtenue par moulage et dont la gĆ©omĆ©trie extĆ©rieure dĆ©finit le volume extĆ©rieur de la piĆØce creuse Ć  fabriquer. L'Ć©bauche en cire est trempĆ©e dans un bain de cĆ©ramique pour l'enrober d'une carapace en cĆ©ramique dure. La carapace en cĆ©ramique est montĆ©e en tempĆ©rature jusqu'Ć  la tempĆ©rature de fusion de la cire permettant le retrait de la cire qui s'Ć©coule de la carapace en laissant Ć  l'intĆ©rieur de la carapace un volume en nĆ©gatif dĆ©fini entre la paroi intĆ©rieure de la carapace et la paroi extĆ©rieure du noyau intĆ©rieur. Le mĆ©tal en fusion est ensuite coulĆ© Ć  l'intĆ©rieur de la carapace en cĆ©ramique. AprĆØs refroidissement, la carapace cĆ©ramique extĆ©rieure et le noyau intĆ©rieur sont retirĆ©s par dĆ©cochage pour dĆ©gager la piĆØce creuse obtenue. La technique de fonderie permet d'obtenir des piĆØces finies de qualitĆ© sans opĆ©ration de finition ultĆ©rieure.One of the steps of this lost wax foundry fabrication process is to manufacture a ceramic core having a complex geometry and walls or partitions that can be very thin, of the order of a millimeter, since this core must be hollowed out and perforated. to be able to define the exact and precise interior volume of the hollow part to be manufactured. This ceramic core is preferably made of a technical ceramic material or any other compatible material, that is to say which has a high mechanical strength and a high hardness and which withstands very high temperatures given the temperature of melting of metals and metal alloys which are of the order of 1500 Ā° C. In addition, this technical ceramic material or the like must be able to dissolve chemically to release the complex interior cavity of the hollow part obtained after casting. This ceramic core is intended to be embedded in a wax blank obtained by molding and whose outer geometry defines the external volume of the hollow part to be manufactured. The wax blank is dipped in a ceramic bath to coat it with a hard ceramic shell. The ceramic shell is raised in temperature to the melting temperature of the wax allowing the removal of the wax that flows from the shell leaving inside the shell a negative volume defined between the inner wall of the carapace. the carapace and the outer wall of the inner core. The molten metal is then cast inside the ceramic shell. After cooling, the outer ceramic shell and the inner core are removed by shaking to clear the resulting hollow part. The foundry technique makes it possible to obtain quality finished parts without any subsequent finishing operation.

Classiquement, les noyaux de coulĆ©e en cĆ©ramique sont fabriquĆ©s par moulage dans un moule Ć  multi-tiroirs. La fabrication du moule est particuliĆØrement fastidieuse car les empreintes, qui sont les images nĆ©gatives du noyau Ć  rĆ©aliser, sont trĆØs complexes et rendent la conception du moule et sa fabrication trĆØs coĆ»teuse et trĆØs longue. Uniquement Ć  titre d'exemple, le temps moyen de fabrication d'un tel moule est d'environ un an et reprĆ©sente un investissement d'environ un million d'euros.Conventionally, the ceramic casting cores are manufactured by molding in a multi-drawer mold. The manufacture of the mold is particularly tedious because the prints, which are the negative images of the core to be made, are very complex and make the design of the mold and its manufacture very expensive and very long. As an example, the average manufacturing time of such a mold is about a year and represents an investment of about one million euros.

DiffƩrents procƩdƩs de fabrication ont ƩtƩ dƩveloppƩs pour rƩsoudre en partie ces inconvƩnients et tenter de rƩduire la durƩe et le coƻt de fabrication des moules et par voie de consƩquence le coƻt de production des noyaux de coulƩe en cƩramique.Various manufacturing processes have been developed to partially overcome these disadvantages and to try to reduce the time and cost of manufacturing the molds and consequently the cost of production of the ceramic casting cores.

Une des techniques consiste Ć  prĆ©voir une Ć©tape d'usinage par contact d'une Ć©bauche de noyau en cĆ©ramique prĆ©alablement moulĆ©e, avec ou sans Ć©videment intĆ©rieur. Cette Ć©tape d'usinage permet soit d'usiner l'Ć©videment en tant que tel, soit de parfaire l'Ć©videment intĆ©rieur dĆ©jĆ  rĆ©alisĆ© en partie par moulage, soit d'Ć©bavurer l'Ć©bauche obtenue. Selon que l'Ć©tape d'usinage est rĆ©alisĆ©e sur une cĆ©ramique crue et souple, c'est-Ć -dire avant cuisson, ou sur une cĆ©ramique cuite et dure, elle peut ĆŖtre effectuĆ©e soit par enlĆØvement de matiĆØre tel que par fraisage ou par abrasion, comme les exemples dĆ©crits dans les publications FR 2 878 458 A1 , FR 2 930 188 A1 et FR 2900850 A1 . Une autre technique consiste Ć  prĆ©voir une Ć©tape d'usinage sans contact d'une Ć©bauche de noyau en cĆ©ramique prĆ©alablement moulĆ©e, cette Ć©tape d'usinage Ć©tant rĆ©alisĆ©e sur une cĆ©ramique cuite, par laser ou ultrasons pour parfaire les caractĆ©ristiques dimensionnelles dudit noyau, tels que les exemples dĆ©crits dans les publications US 5 465 780 A et WO 97/02914 A1 .One of the techniques consists in providing a contact machining step of a previously molded ceramic core blank, with or without an inner recess. This machining step allows either to machine the recess as such, or to perfect the inner recess already partially produced by molding, or to deburr the blank obtained. Depending on whether the machining step is performed on a raw and flexible ceramic, that is to say before cooking, or on a cooked and hard ceramic, it can be carried out either by removal of material such as by milling or by abrasion, as the examples described in the publications FR 2 878 458 A1 , FR 2 930 188 A1 and FR 2900850 A1 . Another technique consists in providing a non-contact machining step of a previously molded ceramic core blank, this machining step being performed on a fired ceramic, by laser or ultrasound to perfect the dimensional characteristics of said core, such as the examples described in the publications US 5,465,780 A and WO 97/02914 A1 .

Ces techniques d'usinage par contact ou sans contact ne permettent toutefois pas de s'affranchir de l'Ć©tape de moulage prĆ©alable d'une Ć©bauche de noyau en cĆ©ramique, imposant les contraintes Ć©voquĆ©es ci-dessus. Le temps nĆ©cessaire et l'investissement des moules ne sont donc pas rĆ©duits de maniĆØre substantiels.These contact or non-contact machining techniques do not, however, make it possible to dispense with the preliminary molding step of a ceramic core blank, imposing the constraints mentioned above. The time required and the investment of the molds are therefore not substantially reduced.

Avec l'avĆØnement de la fabrication additive, de nouvelles techniques ont vu le jour permettant de fabriquer des noyaux en cĆ©ramique sur des machines d'impression 3D Ć  partir de modĆØles de noyaux 3D numĆ©risĆ©s, tels que les exemples dĆ©crits dans les publications DE102008037534 A1 et DE 102005021664 A1 . Toutefois, les matiĆØres compatibles avec cette nouvelle technique posent des soucis de retrait aprĆØs fonderie car elles sont difficiles Ć  dissoudre. En effet, elles ne correspondent pas aux cĆ©ramiques actuellement qualifiĆ©es pour la fonderie Ć  la cire perdue de piĆØces creuses en sĆ©rie car leur composition a Ć©tĆ© obtenue de maniĆØre empirique dans les procĆ©dĆ©s traditionnels, et n'a pas encore pu ĆŖtre reproduite en impression 3D. De plus, le coĆ»t d'obtention d'un noyau cĆ©ramique en impression 3D est d'environ vingt fois supĆ©rieur Ć  celui obtenu par moulage. Ce coĆ»t est totalement prohibitif et en dehors du prix que le marchĆ© est prĆŖt Ć  accepter. En effet, il n'y a pas Ć  ce jour de noyau cĆ©ramique obtenu par impression 3D qualifiĆ© sur une piĆØce Ā« sĆ©rie Ā», ce qui prouve l'inadĆ©quation de cette solution.With the advent of additive manufacturing, new techniques have emerged for making ceramic cores on 3D printing machines from digitized 3D core models, such as the examples described in publications DE102008037534 A1 and DE 102005021664 A1 . However, the materials compatible with this new technique pose problems of shrinkage after foundry because they are difficult to dissolve. In fact, they do not correspond to the ceramics currently qualified for the lost-wax foundry of hollow parts in series because their composition has been obtained empirically in traditional processes, and has not yet been reproduced in 3D printing. In addition, the cost of obtaining a ceramic core in 3D printing is about twenty times greater than that obtained by molding. This cost is totally prohibitive and out of the price that the market is willing to accept. Indeed, there is currently no ceramic core obtained by qualified 3D printing on a "serial" part, which proves the inadequacy of this solution.

La publication WO 2015/051916 A1 propose d'usiner sur une machine Ơ commande numƩrique le noyau cƩramique ainsi que l'Ʃbauche externe en cire perdue disposƩe autour dudit noyau sans toutefois prƩciser le mode opƩratoire compte tenu des difficultƩs d'usinage dudit noyau.The publication WO 2015/051916 A1 proposes to machine on a numerically controlled machine the ceramic core and the outer blank of lost wax disposed around said core without however specify the operating mode given the difficulties in machining said core.

ExposƩ de l'invention :Presentation of the invention

La prĆ©sente invention propose un nouveau procĆ©dĆ© de fabrication permettant de rĆ©soudre les problĆØmes Ć©voquĆ©s ci-dessus, d'Ć©courter sensiblement le processus de fabrication des noyaux cĆ©ramique pour la fonderie Ć  cire perdue, et de rĆ©duire corrĆ©lativement le coĆ»t d'investissement, dans le but de rĆ©duire le cycle et le cout de dĆ©veloppement de nouvelles piĆØces de turbines Ć  gaz, de moteurs d'avion, de rĆ©acteurs, de tuyĆØres de combustion et de toute piĆØce creuse Ć  cavitĆ© complexe, d'apporter une souplesse dans la gestion de projets industriels, d'autoriser une Ć©volution de la gĆ©omĆ©trie des piĆØces dĆ©jĆ  existantes. A titre d'exemple uniquement, la durĆ©e de mise au point du procĆ©dĆ© de fabrication selon l'invention peut ĆŖtre divisĆ© par un coefficient de 10 et son coĆ»t par un coefficient de 40 par rapport au procĆ©dĆ© de moulage classique. Ce nouveau procĆ©dĆ© de fabrication permet en outre la rĆ©alisation de prĆ©sĆ©ries ainsi que la fabrication de piĆØces Ć  la demande.The present invention proposes a new manufacturing process for solving the problems mentioned above, to substantially shorten the manufacturing process of the ceramic cores for the lost wax foundry, and correspondingly reduce the investment cost for the purpose. to reduce the cycle and development cost of new gas turbine parts, aircraft engines, engines, combustion nozzles and any complex cavity hollow part, to provide flexibility in the management of industrial projects , to allow an evolution of the geometry of already existing pieces. By way of example only, the development time of the manufacturing method according to the invention can be divided by a coefficient of 10 and its cost by a coefficient of 40 relative to the process of classic molding. This new manufacturing process also allows the production of pre-series and the manufacture of parts on demand.

Dans ce but, l'invention concerne un procĆ©dĆ© de fabrication du genre indiquĆ© en prĆ©ambule, caractĆ©risĆ© en ce que l'on fabrique ledit noyau par usinage d'un bloc de matiĆØre cĆ©ramique cuite par enlĆØvement mĆ©canique de matiĆØre, en ce que l'opĆ©ration d'usinage comporte au moins une premiĆØre Ć©tape d'usinage pour rĆ©aliser une premiĆØre surface usinĆ©e dans ledit bloc de matiĆØre, et une deuxiĆØme Ć©tape d'usinage pour rĆ©aliser une deuxiĆØme surface usinĆ©e dans ledit bloc de matiĆØre, sensiblement Ć  l'opposĆ© de ladite premiĆØre surface usinĆ©e, et en ce que, prĆ©alablement Ć  ladite deuxiĆØme Ć©tape d'usinage, l'on applique sur tout ou partie de ladite premiĆØre surface usinĆ©e une couche de renfort dans une solution de rigidification pour protĆ©ger de la casse ledit bloc de matiĆØre pendant la deuxiĆØme Ć©tape d'usinage et l'on attend la solidification de ladite couche de renfort avant d'entamer la deuxiĆØme Ć©tape d'usinage.For this purpose, the invention relates to a manufacturing method of the kind indicated in the preamble, characterized in that said core is manufactured by machining a block of cooked ceramic material by mechanical removal of material, in that the operation machining tool comprises at least a first machining step for producing a first machined surface in said block of material, and a second machining step for producing a second machined surface in said block of material, substantially opposite said first machined surface, and in that, prior to said second machining step, is applied to all or part of said first machined surface a reinforcing layer in a stiffening solution to protect said block of material from breakage the second machining step and it is expected solidification of said reinforcing layer before starting the second machining step.

Ainsi, ce procĆ©dĆ© de fabrication par usinage va Ć  l'encontre d'un prĆ©jugĆ© qui consiste Ć  dire que l'usinage d'un noyau en cĆ©ramique par enlĆØvement mĆ©canique de matiĆØre est difficile voire impossible. A titre d'exemple, les publications US 5 565 780 A et WO 2001/89738 A1 indiquent clairement l'impossibilitĆ© d'un tel usinage par des techniques traditionnelles qui mettent en oeuvre un outil d'usinage en contact avec le noyau, ainsi que la taille limite des usinages en deƧƠ de laquelle il est impossible d'utiliser un outil de coupe. En effet, ce noyau devant ĆŖtre Ć©vidĆ© et ajourĆ© de maniĆØre importante, le vide pouvant reprĆ©senter plus de 30% dudit noyau, et ses parois ou cloisons restantes Ć©tant souvent trĆØs fines, de l'ordre du millimĆØtre, le noyau est particuliĆØrement fragile et cassant. Aussi, l'usinage mĆ©canique par contact ne peut ĆŖtre obtenu sans dĆ©tĆ©riorer ni casser en partie ou en totalitĆ© le noyau en cĆ©ramique du fait des vibrations que l'outil de coupe engendrent Ć  l'intĆ©rieur du noyau qui provoquent la rupture des zones fragilisĆ©es.Thus, this manufacturing method by machining goes against a prejudice that is to say that the machining of a ceramic core by mechanical removal of material is difficult or impossible. For example, publications US 5,565,780 A and WO 2001/89738 A1 clearly indicate the impossibility of such machining by traditional techniques that implement a machining tool in contact with the core, and the size limit machining below which it is impossible to use a cutting tool . Indeed, this core to be hollowed out and perforated significantly, the vacuum may represent more than 30% of said core, and its walls or walls remaining often very thin, of the order of one millimeter, the core is particularly fragile and brittle . Also, the mechanical machining by contact can not be obtained without damaging or breaking part or all of the ceramic core due to vibrations that the cutting tool generates inside the core which cause the rupture of the weakened areas.

Si l'opĆ©ration d'usinage comporte plusieurs Ć©tapes d'usinage, alors l'on renouvelle l'application d'une couche de renfort avant chaque nouvelle Ć©tape d'usinage sur tout ou partie d'une surface dudit bloc de matiĆØre sensiblement opposĆ©e Ć  ladite nouvelle surface Ć  usiner.If the machining operation comprises several machining steps, then the application of a reinforcing layer is renewed before each new machining step on all or part of a surface of said block of material substantially opposite to said new surface to be machined.

PrĆ©alablement Ć  l'application de ladite couche de renfort, l'on peut nettoyer et dĆ©graisser ledit bloc de matiĆØre pour favoriser l'accroche de ladite solution de rigidification.Prior to the application of said reinforcing layer, one can clean and degrease said block of material to promote the attachment of said stiffening solution.

L'on peut utiliser comme solution de rigidification avantageusement une colle d'usinage Ơ l'Ʃtat liquide ou semi-liquide, ayant des propriƩtƩs usinables et dissolubles. Et l'on peut appliquer ladite couche de renfort en une ou plusieurs applications de solution de rigidification.As a stiffening solution, it is advantageous to use a machining glue in the liquid or semi-liquid state having machinable and dissolvable properties. And one can apply said reinforcing layer in one or more applications of stiffening solution.

Selon la surface Ć  renforcer sur ledit bloc de matiĆØre, l'on peut appliquer ladite solution de rigidification au moyen d'un pinceau, ou par gravitĆ© en versant ladite solution sur ledit bloc de matiĆØre.Depending on the surface to be reinforced on said block of material, one can apply said stiffening solution by means of a brush, or by gravity by pouring said solution on said block of material.

Pour usiner ledit noyau dans ledit bloc de matiĆØre, l'on utilise avantageusement un centre d'usinage multiaxe Ć  commande numĆ©rique, et des outils de coupe en diamant.In order to machine said core in said block of material, a numerically controlled multi-axis machining center and diamond cutting tools are advantageously used.

Pour usiner ledit noyau dans ledit bloc de matiĆØre, l'on utilise de maniĆØre prĆ©fĆ©rentielle un bloc de matiĆØre comportant au moins deux faces opposĆ©es parallĆØles agencĆ©es pour former deux faces de serrage sur lesquelles s'appliquent les mors d'un Ć©tau de serrage d'une machine d'usinage.To machine said core in said block of material, a block of material having at least two parallel opposite faces arranged to form two clamping faces on which the jaws of a clamping vice are applied is preferably used. a machining machine.

PrĆ©alablement Ć  l'opĆ©ration d'usinage dudit noyau, l'on usine avantageusement dans ledit bloc de matiĆØre au moins une surface de rĆ©fĆ©rence permettant de dĆ©monter et de remonter ledit bloc de matiĆØre sur une machine d'usinage en respectant une prĆ©cision infĆ©rieure Ć  0,05mm.Prior to the machining operation of said core, it is advantageously machined in said block of material at least one reference surface for disassembling and reassembling said block of material on a machining machine with a precision of less than 0 , 05mm.

De maniĆØre prĆ©fĆ©rentielle, aprĆØs l'opĆ©ration d'usinage dudit noyau, l'on procĆØde au retrait de la ou des couches de renfort. Pour procĆ©der Ć  ce retrait, l'on peut tremper ledit noyau dans un bain de dissolvant, ou soumettre ledit noyau Ć  une tempĆ©rature correspondante Ć  la tempĆ©rature de fusion de la solution de rigidification.Preferably, after the machining operation of said core, it is proceeded to the removal of the reinforcing layer or layers. To carry out this withdrawal, the said core may be dipped in a solvent bath, or the said core may be subjected to a temperature corresponding to the melting temperature of the stiffening solution.

Dans ce cas, l'on suspend ledit noyau Ć  une potence pour permettre le retrait de la solution de rigidification fondue par Ć©coulement gravitaire.In this case, the said core is suspended from a bracket to allow the removal of the molten stiffening solution by gravity flow.

Description sommaire des dessins :Brief description of the drawings:

La prĆ©sente invention et ses avantages apparaĆ®tront mieux dans la description suivante d'un mode de rĆ©alisation donnĆ© Ć  titre d'exemple non limitatif, en rĆ©fĆ©rence aux dessins annexĆ©s, dans lesquels les figures 1 Ć  4 reprĆ©sentent schĆ©matiquement et en vue de face plusieurs Ć©tapes d'un procĆ©dĆ© de fabrication d'un noyau cĆ©ramique en cĆ©ramique selon l'invention, dans lesquels la figure 1 illustre le montage d'un bloc de cĆ©ramique entre deux mors de serrage d'une machine d'usinage pour usiner une premiĆØre face d'une Ć©bauche dudit noyau, la figure 2 illustre l'application d'une solution de rigidification sur la premiĆØre face usinĆ©e de l'Ć©bauche, la figure 3 illustre l'usinage d'une seconde face de l'Ć©bauche dudit noyau, situĆ©e Ć  l'opposĆ© de la premiĆØre face usinĆ©e et rigidifiĆ©e, et la figure 4 illustre le retrait de la solution de rigidification aprĆØs l'usinage de la seconde face de l'Ć©bauche.The present invention and its advantages will appear better in the following description of an embodiment given by way of non-limiting example, with reference to the appended drawings, in which the Figures 1 to 4 show schematically and in front view several steps of a method of manufacturing a ceramic ceramic core according to the invention, in which the figure 1 illustrates the mounting of a ceramic block between two clamping jaws of a machining machine for machining a first face of a blank of said core, the figure 2 illustrates the application of a stiffening solution on the first machined face of the blank, the figure 3 illustrates the machining of a second face of the blank of said core, located opposite the first machined and stiffened face, and the figure 4 illustrates the removal of the stiffening solution after the machining of the second face of the blank.

Illustrations de l'invention et meilleure maniĆØre de la rĆ©aliser :Illustrations of the invention and best way to achieve it:

Le procĆ©dĆ© de fabrication d'un noyau cĆ©ramique 10 en matiĆØre cĆ©ramique ou similaire selon l'invention s'effectue par usinage mĆ©canique dudit noyau directement dans la masse d'un bloc de cĆ©ramique technique usinable destinĆ© Ć  la fonderie de prĆ©cision, l'usinage s'effectuant par enlĆØvement de matiĆØre au moyen d'un ou de plusieurs outils de coupe sur une machine d'usinage traditionnelle. Cette machine d'usinage peut ĆŖtre Ć  titre d'exemple un centre d'usinage multiaxe Ć  commande numĆ©rique permettant la rĆ©alisation d'une pluralitĆ© de formes simples Ć  trĆØs complexes. Bien entendu, tout autre type de machine d'usinage mĆ©canique peut convenir. Dans l'exemple de rĆ©alisation dĆ©crit ci-aprĆØs, on a utilisĆ© un centre de fraisage Ć  cinq axes qui permet d'usiner des formes complexes, trĆØs courantes dans les noyaux en cĆ©ramique. Il existe bien entendu des centres d'usinage Ć©quipĆ©s spĆ©cifiquement pour usiner des cĆ©ramiques et qui permettent d'amĆ©liorer la productivitĆ©, mais leur coĆ»t n'est pas toujours amortissable.The method of manufacturing a ceramic core 10 of ceramic material or the like according to the invention is carried out by mechanical machining of said core directly in the mass of a machinable technical ceramic block intended for precision casting, machining effected by removal of material by means of one or more cutting tools on a conventional machining machine. This machine For example, a machining center may be a numerically controlled multi-axis machining center for producing a plurality of simple to very complex shapes. Of course, any other type of mechanical machining machine may be suitable. In the embodiment described hereinafter, a five-axis milling center was used which makes it possible to machine complex shapes, which are very common in ceramic cores. There are of course machining centers specifically equipped for machining ceramics and which can improve productivity, but their cost is not always depreciable.

Plus particuliĆØrement et en rĆ©fĆ©rence Ć  la figure 1, le procĆ©dĆ© de fabrication comporte une Ć©tape de montage d'un bloc de cĆ©ramique 1 entre deux mors 2 d'un Ć©tau de serrage 3 d'une machine d'usinage (non reprĆ©sentĆ©e) dans le sens des flĆØches F. Le bloc de cĆ©ramique 1 est un brut de cĆ©ramique technique usinable, Ć  savoir un bloc de cĆ©ramique cuite, qui prĆ©sente Ć  titre d'exemple une duretĆ© Ć©quivalente ou comparable Ć  celle des composites chargĆ©s de fibres de verre. Ce bloc de cĆ©ramique 1 peut avoir une forme parallĆ©lĆ©pipĆ©dique comme illustrĆ©e, ou toute autre forme en fonction de la forme gĆ©nĆ©rale du noyau 20 Ć  usiner, tel que par exemple un polyĆØdre, un cylindre. Le positionnement et l'indexage du bloc de cĆ©ramique 1 sur la machine d'usinage sont importants pour assurer la prĆ©cision des diffĆ©rentes Ć©tapes d'usinage quel que soit le nombre de dĆ©montage et de remontage dudit bloc. Ainsi, lorsque le bloc de cĆ©ramique 1 est parallĆ©lĆ©pipĆ©dique, il doit prĆ©senter deux faces de serrage 4 opposĆ©es et parallĆØles moyennant une prĆ©cision par exemple au plus Ć©gale Ć  0,1mm. La hauteur h de serrage des deux mors 2 sur les faces de serrage 4 du bloc de cĆ©ramique 1 doit ĆŖtre minimale mais suffisante pour assurer l'immobilisation du bloc de cĆ©ramique 1, et par exemple Ć©gale Ć  au moins 3mm pour une hauteur de bloc infĆ©rieure ou Ć©gale Ć  30mm, et au-delĆ  de cette hauteur, Ć©gale Ć  au moins 10% de la hauteur dudit bloc. La hauteur H des deux mors 2 doit ĆŖtre importante et au moins Ć©gale Ć  70mm pour faciliter l'accessibilitĆ© des outils d'usinage aux diffĆ©rentes faces du bloc de cĆ©ramique 1, et notamment Ć  sa face infĆ©rieure. Le serrage du bloc de cĆ©ramique 1 doit ĆŖtre maĆ®trisĆ© pour appliquer une force de serrage faible mais suffisante, par exemple entre 1 kN et 5 kN. On utilisera Ć  cet effet une clĆ© dynamomĆ©trique pour serrer les deux mors 2 selon les flĆØches F. Les valeurs indiquĆ©es ci-dessus le sont Ć  titre d'exemple et n'ont pas d'effet limitatif. De mĆŖme, le mode de montage du bloc de cĆ©ramique 1 sur une machine d'usinage peut varier en fonction de la forme dudit bloc. A titre d'exemple, s'il est cylindrique, on utilisera un mandrin de serrage cylindrique et la base pĆ©riphĆ©rique dudit bloc pourra servir de surface de rĆ©fĆ©rence.More particularly and with reference to the figure 1 , the manufacturing method comprises a step of mounting a ceramic block 1 between two jaws 2 of a clamping vise 3 of a machining machine (not shown) in the direction of the arrows F. The ceramic block 1 is a machinable technical ceramic blank, namely a block of fired ceramic, which presents by way of example a hardness equivalent or comparable to that of glass fiber-filled composites. This ceramic block 1 may have a parallelepipedal shape as illustrated, or any other form depending on the general shape of the core 20 to be machined, such as for example a polyhedron, a cylinder. The positioning and indexing of the ceramic block 1 on the machining machine are important to ensure the accuracy of the different machining steps regardless of the number of disassembly and reassembly of said block. Thus, when the ceramic block 1 is parallelepiped, it must have two opposite and parallel clamping faces 4 with a precision for example at most equal to 0.1 mm. The clamping height h of the two jaws 2 on the clamping faces 4 of the ceramic block 1 must be minimal but sufficient to ensure the immobilization of the ceramic block 1, and for example equal to at least 3 mm for a lower block height or equal to 30mm, and beyond this height, equal to at least 10% of the height of said block. The height H of the two jaws 2 must be large and at least equal to 70 mm to facilitate the accessibility of the machining tools to the different faces of the ceramic block 1, and in particular to its underside. The tightening of the ceramic block 1 must be controlled to apply a weak but sufficient clamping force, by example between 1 kN and 5 kN. To this end, a torque wrench will be used to tighten the two jaws 2 according to the arrows F. The values indicated above are given by way of example and have no limiting effect. Likewise, the method of mounting the ceramic block 1 on a machining machine may vary according to the shape of said block. By way of example, if it is cylindrical, a cylindrical chuck will be used and the peripheral base of said block may serve as a reference surface.

On dĆ©marre l'usinage du bloc de cĆ©ramique 1 en rĆ©alisant une surface de rĆ©fĆ©rence 5 qui permettra un dĆ©montage et un remontage du bloc de cĆ©ramique 1 moyennant une prĆ©cision d'au plus 0,05mm. Dans l'exemple illustrĆ©, on pourra choisir au moins la face infĆ©rieure et une des faces de serrage 4 du bloc de cĆ©ramique 1 en tant que surface de rĆ©fĆ©rence 5 qui a l'avantage de rester accessible et disponible jusqu'Ć  la derniĆØre Ć©tape du processus d'usinage. On peut ensuite procĆ©der Ć  une premiĆØre Ć©tape d'usinage sur une premiĆØre partie du bloc de cĆ©ramique 1 pour rĆ©aliser une premiĆØre surface usinĆ©e 6 (voir figure 2).The machining of the ceramic block 1 is started by producing a reference surface 5 which will allow disassembly and reassembly of the ceramic block 1 with a precision of at most 0.05 mm. In the example illustrated, it will be possible to choose at least the lower face and one of the clamp faces 4 of the ceramic block 1 as reference surface 5 which has the advantage of remaining accessible and available until the last step of the machining process. A first machining step can then be performed on a first portion of the ceramic block 1 to produce a first machined surface 6 (see FIG. figure 2 ).

En rĆ©fĆ©rence Ć  la figure 2, on a rĆ©alisĆ© cette premiĆØre surface usinĆ©e 6 du cĆ“tĆ© gauche (sur la figure) du bloc de cĆ©ramique 1 en dĆ©gageant l'angle correspondant du bloc et en crĆ©ant notamment des cavitĆ©s 7. AprĆØs cette premiĆØre Ć©tape d'usinage et avant d'effectuer la prochaine Ć©tape d'usinage, on va rigidifier la surface usinĆ©e 6 par application d'une solution de rigidification pour former une couche de renfort 8 et on attendra la solidification de cette couche de renfort 8 avant d'entamer la deuxiĆØme Ć©tape d'usinage. PrĆ©alablement Ć  cette application, le bloc de cĆ©ramique 1 doit ĆŖtre de prĆ©fĆ©rence nettoyĆ© et dĆ©graissĆ© pour le dĆ©barrasser des poussiĆØres et de l'huile d'usinage et permettre ainsi l'adhĆ©rence de la solution de rigidification Ć  la surface du bloc de cĆ©ramique 1. Pour cette phase de nettoyage, on peut utiliser un dispositif de lavage automatique adaptĆ© pour Ć©viter toute dĆ©gradation de la cĆ©ramique. On applique ensuite la solution de rigidification au moins sur la premiĆØre surface usinĆ©e 6 en prenant soin de remplir les cavitĆ©s 7. Cette solution de rigidification, qui est de prĆ©fĆ©rence une colle d'usinage, peut ĆŖtre appliquĆ©e par tout moyen appropriĆ© en une ou plusieurs applications. L'Ć©paisseur de la couche de renfort 8 obtenue doit ĆŖtre au moins Ć©gale Ć  2mm pour obtenir l'effet de rigidification escomptĆ©. On peut appliquer la solution de rigidification lorsqu'elle est Ć  l'Ć©tat liquide au moyen d'un pinceau ou par gravitĆ© en la versant depuis une hauteur dĆ©terminĆ©e pas trop Ć©levĆ©e, de l'ordre de quelques centimĆØtres, depuis un rĆ©cipient contenant une quantitĆ© suffisante de solution. Cette technique d'application d'une solution de rigidification Ć  l'Ć©tat liquide est la plus adaptĆ©e pour remplir des cavitĆ©s 7 de plus de 2mm de profondeur. Toute autre mĆ©thode d'application peut bien entendu convenir selon la gĆ©omĆ©trie de la surface usinĆ©e 6 Ć  rigidifier et selon la fluiditĆ© de la solution de rigidification. La solution de rigidification doit pouvoir ĆŖtre nettoyĆ©e pour pouvoir ĆŖtre retirĆ©e du bloc de cĆ©ramique 1 aprĆØs usinage. Si elle n'a pas cette facultĆ©, ses rĆ©sidus ne doivent pas rendre impossible l'utilisation ni les fonctions du noyau cĆ©ramique obtenu. Elle doit Ć©galement conserver ses propriĆ©tĆ©s de rigidification jusqu'Ć  une tempĆ©rature d'au moins Ć©gale Ć  50Ā°C, correspondant Ć  l'Ć©lĆ©vation de tempĆ©rature que subit le bloc de cĆ©ramique 1 en cours d'usinage mĆŖme avec une lubrification.With reference to the figure 2 , this first machined surface 6 was made on the left side (in the figure) of the ceramic block 1 by releasing the corresponding angle of the block and in particular creating cavities 7. After this first machining step and before performing the next machining step, we will stiffen the machined surface 6 by applying a stiffening solution to form a reinforcing layer 8 and will wait for the solidification of this reinforcing layer 8 before starting the second machining step . Prior to this application, the ceramic block 1 must preferably be cleaned and degreased to remove dust and machining oil and thus allow the adhesion of the stiffening solution to the surface of the ceramic block 1. For this cleaning phase, an automatic washing device adapted to prevent any degradation of the ceramic can be used. The stiffening solution is then applied at least to the first machined surface 6, taking care to fill the cavities 7. This stiffening solution, which is preferably a machining glue, can be applied by any suitable means in a or several applications. The thickness of the reinforcing layer 8 obtained must be at least equal to 2 mm to obtain the expected stiffening effect. The stiffening solution can be applied when it is in the liquid state by means of a brush or by gravity by pouring it from a determined height not too high, of the order of a few centimeters, from a container containing a quantity sufficient solution. This technique for applying a stiffening solution in the liquid state is the most suitable for filling cavities 7 more than 2 mm deep. Any other method of application may of course be suitable according to the geometry of the machined surface 6 to be stiffened and according to the fluidity of the stiffening solution. The stiffening solution must be able to be cleaned in order to be removed from the ceramic block 1 after machining. If it does not have this faculty, its residues must not make impossible the use nor the functions of the obtained ceramic core. It must also retain its stiffening properties up to a temperature of at least 50 Ā° C, corresponding to the temperature rise experienced by the ceramic block 1 during machining even with lubrication.

Les solutions de rigidification adaptĆ©es sont Ć  titre d'exemple des colles d'usinage existantes telles que les pĆ¢tes adhĆ©sives commercialisĆ©es sous les dĆ©nominations Araldite 2011 et Araldite 2012, la colle d'usinage commercialisĆ©e sous la dĆ©nomination Rigidax par la sociĆ©tĆ© Paramelt, ou toute autre solution de rigidification sous forme pĆ¢teuse ou semi-fluide, adhĆ©sive ou non, ayant les caractĆ©ristiques particuliĆØres suivantes : elle doit ĆŖtre usinable et dissoluble sans provoquer la dissolution de la cĆ©ramique sur laquelle elle est appliquĆ©e. Les dissolvants qui existent et qui permettent de dissoudre ces colles d'usinage, pĆ¢tes adhĆ©sives ou toute autre solution de rigidification peuvent ĆŖtre Ć  titre d'exemple un dĆ©capant universel commercialisĆ© sous la dĆ©nomination Syntilor Chrono 10, un dĆ©capant gĆ©lifiĆ© en aĆ©rosol commercialisĆ© sous le sigle 1310, un dĆ©capant moussant commercialisĆ© sous la dĆ©nomination Sansil, etc. Ces exemples ne sont bien entendu pas limitatifs.Suitable stiffening solutions are, by way of example, existing machining glues such as the adhesive pastes sold under the names Araldite 2011 and Araldite 2012, the machining glue sold under the name Rigidax by the company Paramelt, or any other stiffening solution in pasty or semi-fluid form, adhesive or not, having the following particular characteristics: it must be machinable and dissoluble without causing the dissolution of the ceramic on which it is applied. The solvents which exist and which make it possible to dissolve these machining glues, adhesive pastes or any other stiffening solution may be, by way of example, a universal paint sold under the name Syntilor Chrono 10, a gelled spray cleaner marketed under the acronym 1310, a foaming cleaner sold under the name Sansil, etc. These examples are of course not limiting.

La figure 3 illustre le bloc de cĆ©ramique 1 restant aprĆØs la deuxiĆØme Ć©tape d'usinage du procĆ©dĆ© qui a Ć©tĆ© rĆ©alisĆ©e du cĆ“tĆ© droit (sur la figure) du bloc et au cours de laquelle on a dĆ©gagĆ© l'angle correspondant du bloc pour crĆ©er une deuxiĆØme surface d'usinage 9. Cette deuxiĆØme surface d'usinage 9 est sensiblement situĆ©e Ć  l'opposĆ© ou Ć  l'arriĆØre de la premiĆØre surface d'usinage 6. Les termes Ā« opposĆ© Ā» et Ā« arriĆØre Ā» ne doivent pas ĆŖtre interprĆ©tĆ©s dans un sens restrictif. A titre d'exemple, la deuxiĆØme surface usinĆ©e peut ĆŖtre le verso de la premiĆØre surface usinĆ©e formant le recto du noyau, ou la face intĆ©rieure de la premiĆØre surface usinĆ©e formant la face extĆ©rieure du noyau. Ainsi, en cours d'usinage, les forces et vibrations induites dans le bloc de cĆ©ramique 1 par le ou les outils de coupe (non reprĆ©sentĆ©s) sont dirigĆ©es en direction de la premiĆØre surface usinĆ©e 6 et susceptibles d'engendrer des ruptures dans le bloc de cĆ©ramique 1. Toutefois, elles n'auront aucun effet nĆ©faste sur la premiĆØre surface usinĆ©e 6 ni sur les cavitĆ©s 7 Ć©tant donnĆ© qu'elles ont Ć©tĆ© protĆ©gĆ©es et comblĆ©es par la couche de renfort 8.The figure 3 illustrates the ceramic block 1 remaining after the second machining step of the process which has been carried out on the right side (in the figure) of the block and during which the corresponding angle of the block has been made to create a second surface of the block. machining 9. This second machining surface 9 is substantially located opposite or at the rear of the first machining surface 6. The terms "opposite" and "rear" must not be interpreted in a restrictive sense . For example, the second machined surface may be the back of the first machined surface forming the front of the core, or the inner face of the first machined surface forming the outer face of the core. Thus, during machining, the forces and vibrations induced in the ceramic block 1 by the cutting tool or tools (not shown) are directed towards the first machined surface 6 and may cause breaks in the block However, they will have no detrimental effect on the first machined surface 6 nor on the cavities 7 since they have been protected and filled by the reinforcing layer 8.

A l'issue de cette deuxiĆØme Ć©tape d'usinage et avant de rĆ©aliser la prochaine Ć©tape d'usinage consistant Ć  usiner une troisiĆØme surface 10 pour sĆ©parer le noyau 20 du bloc de cĆ©ramique 1 restant, on applique une nouvelle fois une solution de rigidification pour former une deuxiĆØme couche de renfort 11 Ć  l'arriĆØre de la troisiĆØme surface 10 Ć  usiner. Comme expliquĆ© prĆ©cĆ©demment, le bloc de cĆ©ramique 1 restant doit ĆŖtre nettoyĆ© et dĆ©graissĆ© pour le dĆ©barrasser des poussiĆØres et de l'huile d'usinage et permettre ainsi l'adhĆ©rence de la solution de rigidification Ć  la surface du bloc de cĆ©ramique 1. On applique ensuite la solution de rigidification dans l'angle formĆ© entre la premiĆØre surface usinĆ©e 6 et la partie restante du bloc de cĆ©ramique 1 Ć  l'opposĆ© de la troisiĆØme surface 10 Ć  usiner. Cette deuxiĆØme couche de renfort 11 permet ainsi le maintien du noyau 20 obtenu aprĆØs dĆ©talonnage lors d'une troisiĆØme Ć©tape d'usinage, Ć  savoir aprĆØs la sĆ©paration entre le noyau 20 obtenu et la partie restante du bloc de cĆ©ramique 1 appelĆ©e communĆ©ment un talon.At the end of this second machining step and before performing the next machining step of machining a third surface 10 to separate the core 20 from the remaining ceramic block 1, a stiffening solution for forming a second reinforcing layer 11 at the rear of the third surface 10 to be machined. As explained above, the remaining ceramic block 1 must be cleaned and degreased to remove dust and machining oil and thus allow the adhesion of the stiffening solution to the surface of the ceramic block 1. It is applied then the stiffening solution in the angle formed between the first machined surface 6 and the remaining portion of the ceramic block 1 opposite the third surface 10 to be machined. This second reinforcing layer 11 thus allows the maintenance of the core 20 obtained after calibration during a third machining step, namely after separation between the core 20 obtained and the remaining portion of the ceramic block 1 commonly called a heel.

La figure 4 illustre la derniĆØre Ć©tape du procĆ©dĆ© de fabrication selon l'invention qui correspond au nettoyage du noyau 20 obtenu aprĆØs la troisiĆØme Ć©tape d'usinage ayant permis d'usiner la troisiĆØme surface 10 sĆ©parant le noyau 20 du bloc de cĆ©ramique 1. Dans cet exemple, le talon du bloc de cĆ©ramique 1 est retournĆ© d'un quart de tour et maintenu verticalement par une bride de maintien 12. Face Ć  la bride de maintien 12, est prĆ©vue une potence 13 agencĆ©e pour supporter le noyau 20 par tout moyen de suspension adaptĆ© telle qu'un lien 14 qui peut passer Ć  travers les ouvertures du noyau 20 pour le retenir lors que la solution de rigidification aura fondu. L'ensemble est disposĆ© dans un bac de rĆ©cupĆ©ration 15 rĆ©sistant au moins Ć  une tempĆ©rature de l'ordre de 200Ā°C. Le tout est placĆ© dans un four, une Ć©tuve ou similaire, pendant au moins 3h Ć  au moins 120Ā°C pour provoquer la fusion de la solution de rigidification 16 qui va s'Ć©couler du noyau 20 et du bloc de cĆ©ramique 1 restant, par gravitĆ© dans le fond du bac de rĆ©ception 15. On positionnera le noyau 20 de maniĆØre telle que la solution de rigidification s'Ć©coule sans souiller les zones du noyau 20 qui n'en n'Ć©taient pas pourvues. De mĆŖme, l'on disposera le lien 14 au travers du noyau 20 de maniĆØre Ć  ne pas le dĆ©tĆ©riorer. La solution de rigidification rĆ©cupĆ©rĆ©e dans le bac de rĆ©ception 15 peut ĆŖtre recyclĆ©e une ou plusieurs fois selon son degrĆ© d'impuretĆ©s. Bien entendu, tout autre montage et/ou moyen technique permettant d'Ć©liminer la solution de rigidification 16 du noyau cĆ©ramique 20 usinĆ© peut convenir. On peut Ć  titre d'exemple plonger le noyau 20 dans un bain de dissolvant.The figure 4 illustrates the last step of the manufacturing method according to the invention which corresponds to the cleaning of the core 20 obtained after the third machining step which made it possible to machine the third surface 10 separating the core 20 from the ceramic block 1. In this example, the heel of the ceramic block 1 is turned by a quarter turn and held vertically by a holding flange 12. Faced with the holding flange 12, there is provided a bracket 13 arranged to support the core 20 by any suitable suspension means such as a link 14 which can pass through the openings of the core 20 to retain it when the stiffening solution has melted. The assembly is placed in a recovery tank 15 resistant at least to a temperature of the order of 200 Ā° C. The whole is placed in an oven, an oven or the like for at least 3h at least 120 Ā° C to cause the fusion of the stiffening solution 16 which will flow from the core 20 and the remaining ceramic block 1, by gravity in the bottom of the receiving tray 15. The core 20 will be positioned in such a way that the stiffening solution flows without defiling the areas of the core 20 that were not provided with it. Similarly, we will have the link 14 through the core 20 so as not to damage it. The stiffening solution recovered in the receiving pan 15 can be recycled one or more times according to its degree of impurities. Of course, any other assembly and / or technical means for removing the stiffening solution 16 of the machined ceramic core 20 may be suitable. For example, the core can be immersed in a solvent bath.

La description qui vient d'ĆŖtre faite du procĆ©dĆ© de fabrication selon l'invention en rĆ©fĆ©rence aux dessins annexĆ©s est basĆ©e sur un exemple de mise en oeuvre et de rĆ©alisation d'un noyau trĆØs simplifiĆ© et schĆ©matisĆ© Ć  l'extrĆŖme. L'essentiel de l'invention rĆ©side dans le fait d'appliquer rĆ©guliĆØrement, voir Ć  chaque Ć©tape du processus d'usinage, une solution de rigidification sur les zones usinĆ©es donc fragilisĆ©es du bloc de cĆ©ramique 1 pour Ć©viter la casse de la cĆ©ramique.The description that has just been given of the manufacturing method according to the invention with reference to the accompanying drawings is based on an example of implementation and realization of a very simplified core and schematized in the extreme. The essence of the invention lies in the fact of regularly applying, or at each stage of the machining process, a stiffening solution on the machined and therefore weakened areas of the ceramic block 1 to prevent breakage of the ceramic.

D'autres prĆ©cautions additionnelles peuvent ĆŖtre Ć©galement recommandĆ©es. Il s'agit notamment d'usiner les diffĆ©rentes surfaces du bloc de cĆ©ramique 1 du haut vers le bas, ce qui permet de prĆ©server la rigiditĆ© dudit bloc, et d'utiliser des outils de coupe en diamant naturel ou en super abrasifs de type PCD ou CBN. L'on peut effectuer les opĆ©rations d'usinage Ć  sec ou avec une huile de coupe soluble ou tout autre lubrifiant adaptĆ©. L'utilisation d'une huile de coupe permet de rĆ©duire l'usure de l'outil de coupe mais nĆ©cessite de nettoyer le bloc de cĆ©ramique 1 avant chaque application de la solution de rigidification. Les conditions de coupe doivent Ć©galement ĆŖtre adaptĆ©es Ć  la rigiditĆ© du bloc de cĆ©ramique 1 et au noyau 20 Ć  usiner. S'il est peu Ć©vidĆ©, de l'ordre d'environ 30% de vide, il est possible de maintenir des conditions d'usinage Ć©levĆ©es par exemple supĆ©rieures Ć  300m/mn jusqu'Ć  la derniĆØre Ć©tape d'usinage. Si le noyau 20 est trĆØs Ć©vidĆ©, par exemple au-delĆ  de 30% de vide, alors il convient de diviser par au moins 2 les conditions d'usinage. Il est encore possible de complĆ©ter l'usinage du bloc de cĆ©ramique 1 par des outils de coupe traditionnels par une broche Ć  ultrasons pour usiner les parties les plus fragiles du noyau 20, comme Ć  titre d'exemple le centre de fraisage Tongtai VU-5.Other additional precautions may also be recommended. These include machining the different surfaces of the ceramic block 1 from the top to the low, which preserves the rigidity of said block, and use natural diamond cutting tools or super-abrasive type PCD or CBN. The machining operations can be carried out dry or with a soluble cutting oil or other suitable lubricant. The use of a cutting oil reduces the wear of the cutting tool but requires cleaning the ceramic block 1 before each application of the stiffening solution. The cutting conditions must also be adapted to the rigidity of the ceramic block 1 and the core 20 to be machined. If it is not very hollow, of the order of approximately 30% of vacuum, it is possible to maintain high machining conditions, for example greater than 300m / min until the last machining step. If the core 20 is very hollow, for example beyond 30% vacuum, then the machining conditions should be divided by at least 2. It is still possible to complete the machining of the ceramic block 1 by traditional cutting tools with an ultrasonic pin to machine the weakest parts of the core 20, as for example the milling center Tongtai VU-5 .

PossibilitƩs d'application industrielle :Possibilities of industrial application:

Il ressort clairement de cette description que l'invention permet d'atteindre les buts fixĆ©s, Ć  savoir la fabrication d'un noyau cĆ©ramique uniquement par usinage mĆ©canique et sans passer par une Ć©tape de moulage, permettant de raccourcir considĆ©rablement les dĆ©lais de rĆ©alisation et de rĆ©duire les coĆ»ts de production. Le procĆ©dĆ© selon l'invention permet ainsi d'envisager des nouveaux dĆ©veloppements de piĆØces plus rapides.It is clear from this description that the invention achieves the goals set, namely the manufacture of a ceramic core only by mechanical machining and without going through a molding step, to greatly shorten the time of completion and reduce production costs. The method of the invention thus allows to consider new developments of faster parts.

La prƩsente invention n'est pas limitƩe Ơ l'exemple de rƩalisation dƩcrit mais s'Ʃtend Ơ toute modification et variante Ʃvidentes selon les revendications prƩsentes. Notamment, les donnƩes chiffrƩes ne sont que des exemples et sont issues des essais rƩalisƩs Ơ ce jour pour valider ledit procƩdƩ. Ils n'ont aucun effet limitatif sur l'Ʃtendue de l'invention.The present invention is not limited to the embodiment described but extends to any obvious modification and variant according to the present claims. In particular, the figures are only examples and are derived from the tests carried out to date to validate said method. They have no limiting effect on the scope of the invention.

Claims (15)

  1. Process for producing a ceramic casting core (20) for the manufacture of a hollow part with a complex cavity by lost-wax casting, such as a rotor or stator for a gas turbine, an aircraft engine, a reactor, a combustion chamber or the like, said core (20) being an image of the complex cavity of the hollow part to be produced, characterized in that one manufactures said core (20) by machining a fired ceramic material block (1), said machining being performed by mechanical material removal by means of a cutting tool, in that the machining operation comprises at least a first machining step to realize a first machined surface (6, 7) in said material block (1), and a second machining step to realize a second machined surface (9) in said material block (1), substantially opposite to said first machined surface (6, 7), and in that, prior to said second machining step, one applies on the whole or on a part of said first machined surface (6, 7) a reinforcement layer (8, 11) made of a stiffening solution to protect said material block (1) from breaking during the second machining step and one waits for the solidification of said reinforcement layer (8, 11) before carrying out the second machining step.
  2. Production process according to claim 1, characterized in that the machining operation comprises several machining steps and in that one repeats the application of a reinforcement layer (8, 11) before every new machining step on the whole or a part of a surface of said material block (1) substantially opposite to said new surface to be machined.
  3. Production process according to any of claims 1 and 2, characterized in that, prior to the application of said reinforcement layer (8, 11), one cleans and degreases said material block (1) to further the adhesion of said stiffening solution.
  4. Production process according to any of claims 1 and 2, characterized in that one uses as a stiffening solution a liquid or semi-liquid machining glue having machinable and dissolvable properties.
  5. Production process according to claim 4, characterized in that one applies said reinforcement layer (8, 11) in one or several stiffening solution applications.
  6. Production process according to claim 4, characterized in that one applies said stiffening solution with a brush on said material block (1).
  7. Production process according to claim 4, characterized in that one applies said stiffening solution by gravity, pouring said solution on said material block (1).
  8. Production process according to claim 1, characterized in that, to machine said core (20) in said material block (1), one uses a numerically controlled multi-axis machining center.
  9. Production process according to claim 1, characterized in that, to machine said core (20) in said material block (1), one uses diamond cutting tools
  10. Production process according to claim 1, characterized in that, to machine said core (20) in said material block (1), one uses a material block (1) comprising at least two parallel opposite sides arranged to form two clamping faces (4) on which the jaws (2) of a clamping vise (3) of a machining equipment are applied.
  11. Production process according to claim 1, characterized in that, prior to the machining operation of said core (20), one machines in said material block (1) at least one reference surface (5) that will allow removing and putting back in place said material block (1) on a machining equipment respecting a parallelism deviation lower than 0.05mm.
  12. Production process according to any of the previous claims, characterized in that, after the machining operations of said core (20), one removes the reinforcement layer(s) (8, 11).
  13. Production process according to claim 12, characterized in that, to remove said reinforcement layer(s) (8, 11), one dips said core (20) in a solvent bath.
  14. Production process according to claim 12, characterized in that, to remove said reinforcement layer(s) (8, 11), one subjects said core (20) to a temperature raise up to at least the melting temperature of the stiffening solution.
  15. Production process according to claim 14, characterized in that one suspends said core (20) on a bracket to allow draining the molten stiffening solution by gravity flow.
EP17202768.2A 2016-11-29 2017-11-21 Method for producing a foundry ceramic core Active EP3326734B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1661623A FR3059259B1 (en) 2016-11-29 2016-11-29 PROCESS FOR PRODUCING A CERAMIC FOUNDRY CORE

Publications (2)

Publication Number Publication Date
EP3326734A1 EP3326734A1 (en) 2018-05-30
EP3326734B1 true EP3326734B1 (en) 2019-08-07

Family

ID=58609476

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17202768.2A Active EP3326734B1 (en) 2016-11-29 2017-11-21 Method for producing a foundry ceramic core

Country Status (3)

Country Link
US (1) US10758969B2 (en)
EP (1) EP3326734B1 (en)
FR (1) FR3059259B1 (en)

Families Citing this family (3)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017122973A1 (en) * 2017-10-04 2019-04-04 Flc Flowcastings Gmbh Method for producing a ceramic core for producing a cavity-type casting and ceramic core
PT3616806T (en) * 2018-09-03 2021-09-29 Johannes Michael Otto Gbr Vertreten Durch Die Ges Johannes Otto Und Michael Otto Method for producing a model form core blank, a model form core and an investment casting molds and a casting method for producing a cast piece with a hollow structure
TWI741705B (en) * 2020-07-28 2021-10-01 國ē«‹äø­čˆˆå¤§å­ø Power supply outside the spindle

Family Cites Families (12)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117936B1 (en) * 1971-04-01 1976-06-05
US5315251A (en) 1990-12-19 1994-05-24 Toshiba America Mri, Inc. NMR radio-frequency coil
US5465780A (en) 1993-11-23 1995-11-14 Alliedsignal Inc. Laser machining of ceramic cores
US5735335A (en) * 1995-07-11 1998-04-07 Extrude Hone Corporation Investment casting molds and cores
US6397922B1 (en) 2000-05-24 2002-06-04 Massachusetts Institute Of Technology Molds for casting with customized internal structure to collapse upon cooling and to facilitate control of heat transfer
US7302990B2 (en) 2004-05-06 2007-12-04 General Electric Company Method of forming concavities in the surface of a metal component, and related processes and articles
FR2878458B1 (en) 2004-11-26 2008-07-11 Snecma Moteurs Sa METHOD FOR MANUFACTURING CERAMIC FOUNDRY CORES FOR TURBOMACHINE BLADES, TOOL FOR IMPLEMENTING THE METHOD
FR2900850B1 (en) * 2006-05-10 2009-02-06 Snecma Sa PROCESS FOR MANUFACTURING CERAMIC FOUNDRY CORES FOR TURBOMACHINE BLADES
FR2930188B1 (en) 2008-04-18 2013-09-20 Snecma PROCESS FOR DAMURING A PIECE OF CERAMIC MATERIAL
DE102008037534A1 (en) 2008-11-07 2010-05-12 General Electric Co. Production of a gas turbine component, e.g. blade, comprises forming a one-part disposable core and shell mold of a gas turbine component, introducing a rod through the mold and further processing
FR2989917B1 (en) * 2012-04-27 2015-01-16 Carl METHOD FOR MANUFACTURING A MODEL INTENDED FOR USE IN PRODUCING COMPOSITE MATERIALS
DE102013016868A1 (en) 2013-10-11 2015-04-16 Flc Flowcastings Gmbh Investment casting of hollow components

Non-Patent Citations (1)

* Cited by examiner, ā€  Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR3059259A1 (en) 2018-06-01
EP3326734A1 (en) 2018-05-30
US10758969B2 (en) 2020-09-01
US20180147622A1 (en) 2018-05-31
FR3059259B1 (en) 2019-05-10

Similar Documents

Publication Publication Date Title
EP3326734B1 (en) Method for producing a foundry ceramic core
EP3544754B1 (en) Cluster model and shell for obtaining an accessory for the independent handling of formed parts, and associated method
CA2885896C (en) Shell mould having a heat shield
EP3414031B1 (en) Method for forming dust-removal holes for a turbine blade and associated ceramic core
EP2895285B1 (en) Foundry model
EP2906374B1 (en) Method for manufacturing at least one metal turbine engine part
EP3134219B1 (en) Mould for monocrystalline casting
EP4021663B1 (en) Improved method for manufacturing a ceramic core for manufacturing turbomachine vanes and ceramic core
EP2397245B1 (en) Set of strata, mould, methods for producing said model and for manufacturing a part using said model
CA2960059C (en) Method for producing a ceramic core
FR3102382A1 (en) Manufacturing process of metal parts of complex shapes by diffusion welding.
EP3812087B1 (en) Method for manufacturing metal parts with complex shapes by diffusion welding
EP4107307B1 (en) Method for chemical pickling of a cast metal part with porous ceramic core(s)
FR3076752A1 (en) METHOD FOR MAKING A MULTI-PALE MODEL, TOOLING AND ASSEMBLY OF A MULTI-PALE MODEL AND A HOLDING ELEMENT
WO2024126841A1 (en) Coreless molding manufacturing method for hollow metal parts
FR3081734A1 (en) LOST MODEL FOR MOLDING A METAL PART COMPRISING A METAL COVERING PLATE
FR3108539A1 (en) DIRECTED SOLIDIFICATION PROCESS FOR METAL ALLOYS AND MODEL IN ELIMINABLE MATERIAL FOR THE PROCESS
FR3038703A1 (en) TOOLS FOR SUPPORTING A PREFORM IN POWDER DURING THERMAL TREATMENT
FR2911079A1 (en) Fabricating a membrane for restructuring internal surface of tube, comprises coating spindle of thermofusible material layer, machining the thermofusible material layer, placing coated spindle in a mold, and flowing a material in the mold

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181121

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: B22C 9/18 20060101ALI20181217BHEP

Ipc: B22C 9/10 20060101AFI20181217BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190212

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1163054

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017005928

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190807

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191209

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191107

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191107

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1163054

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191108

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191207

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017005928

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191121

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171121

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231120

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231124

Year of fee payment: 7

Ref country code: DE

Payment date: 20231107

Year of fee payment: 7