EP3325280B1 - Device and method for optically encoding an image - Google Patents

Device and method for optically encoding an image Download PDF

Info

Publication number
EP3325280B1
EP3325280B1 EP16745418.0A EP16745418A EP3325280B1 EP 3325280 B1 EP3325280 B1 EP 3325280B1 EP 16745418 A EP16745418 A EP 16745418A EP 3325280 B1 EP3325280 B1 EP 3325280B1
Authority
EP
European Patent Office
Prior art keywords
spectral band
observation
image
plasmonic
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16745418.0A
Other languages
German (de)
French (fr)
Other versions
EP3325280A1 (en
Inventor
Patrick BOUCHON
Julien JAECK
Mathilde MAKHSIYAN
Riad Haïdar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Office National dEtudes et de Recherches Aerospatiales ONERA
Original Assignee
Office National dEtudes et de Recherches Aerospatiales ONERA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Office National dEtudes et de Recherches Aerospatiales ONERA filed Critical Office National dEtudes et de Recherches Aerospatiales ONERA
Publication of EP3325280A1 publication Critical patent/EP3325280A1/en
Application granted granted Critical
Publication of EP3325280B1 publication Critical patent/EP3325280B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06009Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
    • G06K19/06037Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking multi-dimensional coding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/305Associated digital information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/324Reliefs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/008Surface plasmon devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06009Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
    • G06K19/06018Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking one-dimensional coding
    • G06K19/06028Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking one-dimensional coding using bar codes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06009Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
    • G06K19/06046Constructional details
    • G06K19/0614Constructional details the marking being selective to wavelength, e.g. color barcode or barcodes only visible under UV or IR

Definitions

  • the present invention relates to a device for optical coding an image-type spatial information and a method for optical coding of such information; the invention applies in particular to the protection against counterfeiting of valuables.
  • optical security elements which provide variable visual effects depending on the angle of incidence and / or observation, such as diffractive elements, holograms, etc. It is thus possible by means of these optical elements to mark valuables securely by spatial information, for example identification information such as images, alphanumeric characters, etc.
  • plasmonic devices comprising metal-dielectric interfaces, the metal layer being structured in the form of arrays to allow the coupling of an incident wave of a given wavelength to a surface plasmon.
  • the patent application US 20120015118 describes for example a method for controlling the color of a metal, using the excitation of surface plasmons on a metal-dielectric interface when the interface is illuminated by incident optical radiation. This method is applied in particular to the protection against counterfeiting of valuables such as banknotes. More specifically, the aforementioned patent application describes the formation of a set of sub-wavelength metal structures, arranged in a repetitive manner and obtained for example by embossing a metal surface, so as to allow the coupling at a given resonance wavelength of incident lightwaves with surface plasmons.
  • the observed optical effect strongly dependent on the angle of incidence and / or observation, includes in particular a changing the color of the metal surface, making it possible to create metallic patterns of variable color on valuables for aesthetic purposes and / or protection against counterfeiting.
  • a coupling structure etched in the form of a network requires dimensions of the order of a dozen or so wavelengths to obtain an efficient coupling of an incident light wave with a surface plasmon, the coupling resulting from the collective effect of sub-wavelength structures.
  • the method thus described in the application US 20120015118 is therefore not suited to the formation of miniature marking devices objects to secure, typically less than a few tens of microns, for example for the protection against counterfeiting of small objects.
  • the angular dependence of the visual effect obtained can be a strong constraint for certain applications such as jewelery or jewelery, where one seeks to obtain colors independent of the angle of observation.
  • WO 2013/039454 A1 discloses an optical coding device of the same kind as that of claim 1, except that the nano-antennas are of Insulator-Metal type.
  • the present description aims to propose an optical coding device allowing the spatial coding of data on elementary meshes whose dimensions can be of the order of the wavelength, notably allowing the realization of miniature marking devices for protection against counterfeiting.
  • a plasmonic nano-antenna is resonant at a given wavelength ⁇ R , called the resonance wavelength, if its length, measured in a given direction, is equal to ⁇ R / 2np, where n is the refractive index of the dielectric material forming the metal - dielectric - metal structure, p is a non - zero natural integer.
  • Such a plasmonic nano-antenna has a localized resonance, that is to say that it is able to generate an optical response in a spectral band centered around the resonance wavelength, on an effective section whose surface is of the order of the square of the resonance wavelength.
  • optical response is meant in the present description an optical response measured in far field, that is to say at a distance greater than twice the wavelength; the optical response can result from a measurement of a reflected luminous flux or the measurement of a flux emitted due to the thermal emission of the nano-antennas.
  • a set of plasmonic nano-antennas it is thus possible thanks to an arrangement of a set of plasmonic nano-antennas, to encode spatial information comprising a set of "pixels" (or elementary information elements) each defined by a position and one or more values (s). ): the geometrical parameters (shape, dimensions, orientation) of a plasmonic nano-antenna arranged on the support at a given position are chosen to generate, in a spectral band included in the spectral band of observation, an optical response corresponding to the value of a pixel located at a corresponding position in the image.
  • Such a coding device can be observed in emission (thermal emission of nano-antennas heated by an external heat source) or in reflection (under illumination with a given incident flow). In the latter case, the resonant absorption of the nano-antennas results in a modification of the spectrum of the wave reflected with respect to the incident wave.
  • the spectral band of observation can be in a range of wavelengths ranging from UV (300 - 450 nm) to THz (up to 300 microns).
  • the first spatial coding comprises a grayscale coding; the geometrical parameters of the subset of one or more nano-antenna (s) associated with a pixel are chosen to generate an optical response measured according to a polarization and in a given spectral band included in the spectral band is observed, exhibiting a relative intensity ("gray level") varies according to the position and corresponding to the value of the pixel, itself defined as a gray level in a scale of gray levels.
  • the materials of which are formed the metal-dielectric-metal structures constituting the nano-antennas as well as the shape of the nano-antennas being chosen makes it possible to vary the relative intensity of the optical response in a given spectral band and / or according to a given polarization by degrading the optimal conditions for resonant absorption or emission of the nano-antennas.
  • a subset of plasmonic nano-antennas associated with a pixel comprises plasmonic nano-antennas having different resonance wavelengths for the same polarization; an optical response is then obtained in a spectral band covering all the resonant wavelengths resulting from an additive synthesis of the optical responses of each of the nano-antennas in the case of a transmission observation or we obtain a optical response resulting from a subtractive synthesis of the optical responses of each of the nano-antennas in the case of an observation in reflection.
  • a grayscale coding can be obtained by adjusting the presence or absence of resonant nano-antennas at different wavelengths.
  • the first spatial coding is a "color coding" of the image; a pixel of the image having at least first and second values defined for example at distinct wavelengths, it is possible to associate with each pixel a subset of nano-antennas having a given polarization, at least a first and a second optical response respectively in a first and a second spectral band in the first observation spectral band, the first and second optical responses corresponding to the first and second pixel values, in order to reproduce the color coding of the 'picture.
  • the plasmonic nano-antennas of the set of plasmonic nano-antennas is resonant according to a first polarization and at least a portion of the plasmonic nano-antennas of the set of nano-antennas plasmonic is resonant according to a second polarization; in these examples, the plasmonic nano-antennas may be arranged spatially on the support so as to form a first spatial coding of a first spatial or image information, observable according to the first polarization, and a second spatial coding of a second spatial information or image, observable according to the second polarization.
  • At least a part of the plasmonic nano-antennas of the set of plasmonic nano-antennas is resonant in a first observation spectral band and at least a part of the plasmonic nano-antennas of the set. of plasmonic nano-antennas is resonant in a second spectral band of observation; in these examples, the plasmonic nano-antennas may be arranged spatially on the support so as to form a first spatial coding of a first spatial information or image, observable in the first observation spectral band, and a second spatial coding of a second spatial information or image, observable in the second spectral band of observation.
  • the plasmonic nano-antennas are distributed in elementary cells of similar shapes and dimensions, each elementary cell comprising one of said subsets of one or more plasmonic nano-antennas (s). ), the dimensions of an elementary mesh corresponding for example to the dimensions of a pixel.
  • the plasmonic nano-antennas are distributed according to first elementary meshes of similar shapes and dimensions, each of the first elementary meshes having an optical response in a first spectral band of observation, and the first elementary meshes are distributed according to second elemental meshes of similar shapes and sizes, each of the second elementary meshes having an optical response in a second spectral band of observation.
  • This variant notably allows the coding of two spatial information in two different spectral observation bands.
  • the plasmonic nano-antennas are spatially distributed on the substrate to code at least in a first spectral band of observation and according to a given polarization a spatial information, or image, forming a QR code.
  • the plasmonic nano-antennas are spatially distributed on the substrate to code at least in a first observation spectral band and according to a given polarization spatial information, or image, forming a recognizable pattern.
  • the set of plasmonic nano-antennas comprises a first continuous metal layer, a second continuous layer of dielectric material formed on the first metal layer, a third metal layer structured to locally form metal-dielectric overlays.
  • a coding device thus constituted can be produced by means of simple processes and industrially controlled by "nano-imprint" techniques.
  • dielectric material any material or combination of materials whose imaginary part of the index does not exceed 0.2 in the spectral band of interest.
  • the coding device further comprises a substrate forming the support and on which is deposited the first continuous layer of metallic material.
  • the support can be formed directly by the first layer of metallic material.
  • the support can be formed directly by a metal part of an object to be secured.
  • the support can be formed directly by the second layer of dielectric material, for coding devices of reduced lateral dimensions because of the limited thickness of the second layer of dielectric material (typically less than one-tenth of the wavelength minimum spectral band of observation considered).
  • the present description relates to a secure object provided with a coding device according to any one of the preceding claims.
  • the secure object is for example an object chosen from one of the following categories: jewelry, perfume bottles, clothing, bank cards, bank notes, identity documents (identity cards, passports, driving licenses, etc. .) or any valuable document (gift certificates, etc.).
  • the present description relates to a method of coding a spatial information, or image, in a given spectral observation band, by means of a coding device according to the first aspect.
  • the coding method comprises for each pixel the determination of an elementary mesh defined by a position on the support, a shape and a dimension corresponding respectively to the position of the pixel in the image, the shape and the size of the pixel and, for each elementary mesh, the determination of said set of nano-antennas whose optical response is equal to the value of the pixel.
  • FIGS. 1A and 1B illustrate two examples of coding devices according to the present description.
  • the coding device 10 comprises, in each of these examples, a substrate 11 forming a support, a first continuous metal layer 12 deposited on said substrate, a layer of dielectric material 13 deposited on the metal material layer 12 and a second metal layer structured to form a set of metal "studs" 400 whose geometrical characteristics are chosen so as to form, with the layer 13 of dielectric material, metal-dielectric-metal (MDM) structures each forming a plasmonic nano-antenna and which will be described in more detail later.
  • MDM metal-dielectric-metal
  • the substrate is for example chosen from glass, silicon or plastic.
  • the dielectric material is chosen from any material or combination of materials whose imaginary part of the index does not exceed 0.2 in the spectral band of interest and which, preferably, does not exhibit absorption.
  • the layer of dielectric material comprises an oxide (eg silica (SiO 2), titanium oxide (TiO 2), magnesium oxide (MgO 2), alumina (Al 2 O 3), zinc sulphide (ZnS), a glass, a material plastic or resin (eg polymethylmethacrylate (PMMA), polyethylene terephthalate (PET), capton, benzocyclobutene (BCB) ...), a textile material (eg silk), or a combination of two or more layers of these materials, including or not a layer of air. These materials cover the spectral range from UV to THz.
  • the first and second metal layers are for example chosen from gold, aluminum, copper, or silver.
  • Aluminum and silver make it possible to extend the operation of the coding device to the UV range (300-450 nm), and all these materials operate from visible to THz (typically 300 ⁇ m).
  • the support may be formed by one or other of the metal layer 12 and the dielectric material layer 13, in which case the substrate 11 is not necessary.
  • the continuous metallic layer 12 may be formed by a metal part of said object and form a support.
  • the geometric characteristics of the pads 400 are chosen as a function of their position in the plane of the support for coding a spatial information or "image" formed of a set of pixels defined by a position and one or more values (eg, gray level, color).
  • the pads 400 are grouped in the form of a set of elementary meshes 100 of similar shapes and dimensions, distributed evenly over the substrate.
  • the shapes of the elementary meshes can be various: square, rectangular, triangular, hexagonal, octagonal, etc.
  • the elementary meshes each correspond to a "pixel" of the spatial information that one seeks to encode and their dimensions are therefore adapted to the dimensions of the pixels.
  • the dimensions of the pixels can be chosen according to the device for authenticating the coding device and more precisely the detector and the image forming lens on the detector.
  • the minimum dimensions of the pixels will be of the order of half of the maximum wavelength of the observation spectral band, which corresponds to the diffraction limit of the imaging objective.
  • each elementary cell comprises a subset of pads 400 forming plasmonic nano-antennas.
  • the pads are rectangular parallelepipeds whose length defines the resonance wavelength. They are oriented in one direction in the example of the Figure 1A , while in the example of the Figure 1B the studs are rectangular parallelepipeds oriented in two perpendicular directions.
  • the optical response is observed according to a polarization and results from an additive synthesis of the optical responses of each of the nano-antennas in the case of an emission observation or results from a subtractive synthesis of the optical responses of each of the nanoparticles. antennas in the case of an observation in reflection.
  • the optical response of an elementary cell in the case of the example of the Figure 1B differs depending on whether the TM or TE polarization coding device is observed and results, as in the example of FIG. Figure 1A of an additive or subtractive synthesis of the responses of each nano-antenna of the elementary cell, according to one or other of the polarizations.
  • a coding device as shown in the Figure 1B thus allows the coding of two spatial information, a first spatial information according to a first polarization and a second spatial information according to a second polarization.
  • the observation of a coding device as represented on the Figure 1B and coding the first and second spatial information can be done in reflection or in transmission through a polarizer whose axis is oriented according to one or the other of the polarizations.
  • FIGS. Figures 1A or 1B respectively illustrate a diagram of an elementary cell 101 of a coding device as illustrated in FIGS. Figures 1A or 1B and a sectional view of this elementary mesh.
  • the elementary mesh is square, and has a side of dimension A.
  • the Figure 2B represents a sectional view at the level of the stud 401.
  • the height of the studs is advantageously greater than the skin thickness of the metal (typically 25 nm for gold 600 nm to 12 microns) to prevent leakage of the MDM cavity via the upper metal layer.
  • a metal-dielectric-metal structure thus formed at each of the metal pads 401, 402 forms a nano-plasmonic antenna having a resonance wavelength (respectively ⁇ R1 , ⁇ R2 ) depending on the length the nano-antenna (respectively L 1 , L 2 ) and the choice of the dielectric material. It is shown that in first approximation (see for example Cui et al., Laser & Photonics Review pp 500 - 502 (2014 )), the length L i of a rectangular nano-antenna sets the resonance wavelength ⁇ Ri to within 10% according to equation (1) below: ⁇ Ri ⁇ 2 not D The i
  • n D is the refractive index of the dielectric material.
  • Such a nano-antenna has an extraordinary absorption of an incident wave at said wavelength and for a so-called transverse polarization (TE) of the incident light wave, that is to say for the component of the wave incident light whose magnetic field H is perpendicular to the direction of the nano-antenna according to which the length L is measured; (see Figure 2A ).
  • TE transverse polarization
  • Such a nano-antenna also has an extraordinary emission at said wavelength of a light wave having a transverse polarization, the emission response (or luminance) of the nano-antenna at a given temperature T being the product of the resonant emission (emissivity) with the emission of the black body at temperature T (luminance of the black body).
  • the Figure 2C thus illustrates curves showing the absorption (dashed) and the emission (solid line) of plasmonic nano-antennas having different resonant wavelengths.
  • the 2D figure represents the luminance curve of the blackbody at 373K and plasmonic nano-antennas of MDM type optimized to absorb 100% of the flux (emissivity of 1) at different resonant wavelengths (4, 4.5, 5, 5, 5 and 6 ⁇ m).
  • the quality factor Q of such a nano-antenna equal to the ratio between the resonance wavelength ⁇ Ri and the half-width of the resonance (FWHM), once the chosen materials, depends in a known manner several geometrical parameters such as the thickness e of the layer of dielectric material, the width l and the length L of the nano-antenna.
  • FWHM half-width of the resonance
  • the spectral range of operation of a nano-antenna therefore depends only on the choice of the dielectric material and can range from UV (from 350 nm) to THz (up to 300 ⁇ m).
  • nano-antennas of rectangular parallelepipedal shape as described on the Figures 2A and 2B , or in the examples of Figures 1A and 1B , it is possible to carry out an encoding of one or more spatial information, in color or in gray level, for an observation in reflection or in emission, according to a given polarization and / or at a given wavelength or in a given range of observation.
  • the following paragraphs give examples of grayscale or color coding using rectangular nano-antennas.
  • a grayscale image for example a two-dimensional pixelated image.
  • Each pixel is therefore associated with a pixel value, which is a gray level.
  • the measurement spectral band has a width typically of ⁇ / 10, and corresponding to the width of the response of a resonant nano-antenna at the wavelength of observation (see FIG. Figure 2C ).
  • the measurement can be done through an appropriate filter.
  • a nano-antenna of metal-dielectric-metal type of rectangular shape is used.
  • the length L of the nano-antenna sets the wavelength of the maximum absorption or thermal emission (see equation 1).
  • the thickness of the dielectric which is then a fixed parameter for all the nano-antennas
  • the "0%" level may in practice correspond at best to the residual absorption of the metal, typically of the order of 5% in the visible, 2 - 3% in the infrared and 1% in the THz, but with a variability that depends on the nature of the metal.
  • the figure 2E thus shows optical responses measured in reflection at 4.2 ⁇ m as a function of the width w of plasmonic nano-antennas for a 1.2 ⁇ m long nano-antenna, a silica dielectric material (thickness 220 nm, index 1.4 ).
  • the metal is gold and the continuous metal layer has a uniform thickness greater than 100 nm and therefore optically opaque. It is observed in this example that for a width of the nano-antenna of about 100 nm, the reflection is minimal (the absorption is maximum); by varying the width, one increases the reflection, this increase resulting from a less good absorption by the nano-antenna.
  • the pixel can be encoded on an elementary cell whose minimum dimensions are ⁇ / 2, corresponding to the diffraction limit below which far-field structuring can not be attributed. If one tries to have a pixel of side bigger than ⁇ , one can put several nano-antennas by mesh elementary. For example, if we look for a pixel side ⁇ N * ⁇ , then we can repeat periodically the nano-antenna, for example with a period in the 2 directions of ⁇ / 2.
  • the gray level can be obtained by virtue of the density of nano-antennas only.
  • the gray level in the given spectral band of width equal to typically ⁇ / 10, by increasing / decreasing the length of the nano-antenna.
  • the response of the antenna is typically Lorentzian (see Figure 2C ); thus, when the length of the antenna is changed, the wavelength of resonance is shifted wavelength and therefore the response is lower in the spectral band of observation.
  • a gray-level coding can also be obtained by modifying the length of the bar forming the plasmonic nano-antenna, which results in a displacement of the emission curve of the nano-antenna on the curve of the black body and of this makes a change in the optical response.
  • the gray level by varying the orientation of the rectangular antenna in the plane. If the optimized antenna is along the u axis, we will have the gray level of cos ( ⁇ ) 2 for the same rotated antenna of ⁇ .
  • the spectral band for measuring the optical response may be wider.
  • a gray level can be obtained by combining several nano-antennas, for example several nano-antennas of different lengths each having a resonance wavelength in the observation spectral band.
  • the gray level can then be obtained by adjusting the response of each nano-antenna according to one of the examples described above (width of the antenna, orientation, density), or by the absence of certain antennas.
  • a color spatial information for example a pixelated, two-dimensional image.
  • a level "RGB” red green blue
  • RGB red green blue
  • each of the three colors it is possible to define a gray-scale image and to encode it according to the previously described method of grayscale encoding.
  • three resonant nano-antennas with three increasing wavelengths ⁇ r1 , ⁇ r2 and ⁇ r3 are chosen.
  • the observation can be made with the naked eye, by means of a multi spectral camera with RGB filters on each pixel or through three filters respectively.
  • These three wavelengths are advantageously spectrally separated by at least ⁇ r3 / 10.
  • the gray level of each antenna can be determined for example by the width of the antenna or its orientation (polarized response only).
  • the pixel can be encoded on an elementary cell whose minimum dimensions are of ⁇ r3 / 2, corresponding to the diffraction limit below which far-field structuring can not be attributed.
  • the 2 encoding pixels have dimensions that are multiples of one another (for example, a visible encoding grid with pixels of 250 nm and an infrared grid with pixels of 2 ⁇ m), each infrared pixel containing 64 visible pixels.
  • nano-antennas formed by means of rectangular parallelepiped shaped pads it is known to those skilled in the art that nano-antennas of different shapes can be realized. and that the shape of the metal pads for the formation of the plasmonic nano-antennas is not limited to rectangular parallelepipeds.
  • Figures 3A to 3H represent according to views from above a set of metal studs adapted for the formation of metal-dielectric-metal structures forming plasmonic nano-antennas.
  • the structures having a top view of square-type shapes ( FIG. 3A ) circle ( FIG. 3B ), cross ( FIG. 3C ) and combination of rectangles of the same length and along two perpendicular axes ( FIG. 3D ) have polarization-insensitive responses
  • Structures with rectangular shapes in top view ( FIG. 3E ), ellipse ( FIG. 3F ), asymmetric cross ( FIG. 3G ) and combination of several rectangles of different lengths along perpendicular axes ( FIG. 3H ) have an optical response that depends on the polarization.
  • the Figures 3E, 3D and 3H present combinations of rectangular parallelepiped shaped pads already described by means of Figures 2A to 2D .
  • the optical response may vary in "color" or gray level as previously described.
  • the Figures 3C and 3G have plasmonic nano-antennas which in top view have cross shapes. These structures have behaviors that are substantially similar to the behaviors respectively of the nano-antennas represented on the 3D figures (rectangles of the same length) and 3G (rectangles of different lengths) and have dimensioning rules described for example in Cui et al., Laser & Photonics Review 8, 495 (2014) ).
  • Plasmonic nano-antennas obtained by means of square metal studs have, for example, been described in Cui et al., Laser & Photonics Review 8, 495 (2014) ).
  • the sizing rules are similar to those of nano-antennas of rectangular parallelepiped shape but they have an optical response independent of the polarization.
  • gray level coding can be obtained by observing in a given spectral band of observation and by varying the size of the square, as has been described previously.
  • Plasmonic nano-antennas having a circular shape in a top view are for example described in the same review article. Cui et al., Laser & Photonics Review 8, 495 (2014) ). Again, the optical response is polarization independent and the sizing rules are substantially similar to those of square-shaped plasmonic nano-antennas. In the same way as for square-shaped nano-antennas, gray-level coding can be obtained by observing in a given spectral band of observation and varying the diameter of the circle.
  • Plasmonic nano-antennas having an elliptical shape in plan view have dimensioning rules substantially similar to those of the rectangular-shaped plasmonic nano-antennas.
  • FIGS. 4A to 4D illustrate, also in plan views, elementary meshes in which are associated plasmonic nano-antennas having different geometric shapes.
  • each nano-antenna having a resonance length of its own makes it possible to generate an optical response that results from an additive or subtractive synthesis, depending on whether the transmission or reflection coding device is being observed.
  • different nano-antennas In the case of spectral coding of the information, this allows access to a greater number of optical responses or "colors".
  • some of the elementary meshes have insensitive responses to polarization ( FIG. 4A, FIG. 4B, 4C ) while the FIG. 4D illustrates an example in which "color" depends on polarization.
  • FIGS. 5 to 9 illustrate in more detail exemplary embodiments of the coding device according to the present description. They implement nano-antennas form rectangular but could equally well be designed with nano-antennas having different shapes such as those described above, the choice depending in particular the desire to have nano-antennas are the optical responses are polarized or not.
  • FIGS. 5A and 5B illustrate an example of application of a coding device 10 according to the present description, allowing a first spectral coding according to a first polarization and a second spectral coding according to a second polarization, the device being intended to be observed in reflection in a spectral band given.
  • the Figure 5A represents the coding device 10 seen from above; only the shapes of the elementary meshes and the plasmonic nano-antennas arranged in each of the meshes are represented.
  • the coding device is composed of 12 identical elementary cells 101 - 112 of square shape, the size of which is adapted to the size of the pixel of the information that is to be encoded.
  • Within each elementary cell are associated plasmonic nano-antennas with responses according to each of the two polarizations.
  • the horizontal nano-antennas (according to x) encode the TM polarization and the vertical antennas (according to y) encode the TE polarization.
  • each plasmonic nano-antenna has a rectangular shape arranged in one or the other of two perpendicular directions.
  • each elementary cell it can have up to 4 nano-plasmonic antennas of different lengths in one direction, which therefore have in the spectral band of observation 4 different resonance wavelengths.
  • the Figure 5B thus illustrates the optical responses 301 - 312 as a function of the wavelength calculated for each elementary cell according to each of the TE and TM polarizations (the spectra are represented respectively in full line (TE) and dotted line (TM)).
  • the figure 6 represents an exemplary encoding device 10 applied to the realization of a QR-type code (abbreviation of "Quick Response") or two-dimensional barcode type code, in color, observable in two spectral bands (visible and infrared ) and according to two polarizations (TE, TM).
  • QR-type code abbreviation of "Quick Response”
  • two-dimensional barcode type code in color, observable in two spectral bands (visible and infrared ) and according to two polarizations (TE, TM).
  • TE, TM two polarizations
  • the figure 6 comprises a first set of elementary meshes 100 and a second set of elemental meshes 200, the elementary meshes 200 each comprising a subset of elementary meshes 100.
  • each elementary cell comprises a first set of nano-antennas oriented in a first direction (for example parallelepiped-shaped nano-antennas) for coding a first information according to a first polarization and a second set of oriented nano-antennas. in a direction perpendicular to the coding of a second information according to a second polarization.
  • a first direction for example parallelepiped-shaped nano-antennas
  • each nano-antenna can take one of three lengths allowing resonant absorption at one of the three resonance wavelengths ⁇ r1 , ⁇ r2 and ⁇ r3 located respectively in blue, green and red.
  • each nano-antenna is either present or absent, which results in 8 possible combinations to form 8 colors, namely red, dark blue, green, white, black, pink, light blue and yellow, as this is illustrated on the Figures 7A and 7B .
  • the observation can be done with the naked eye, but also by all cameras / cameras.
  • the elementary meshes 200 are sized to form an optical response in the infrared (around 2 - 3 ⁇ m), also according to two orthogonal polarizations.
  • each elementary cell 200 comprises a first set of at most 2 nano-antennas oriented in a first direction for the coding of a first information in the infrared according to a first polarization and a second set of at most 2 nano-antennas oriented in a perpendicular direction for the coding of a second information in the infrared according to a second polarization.
  • the coding is also in this example a "color coding" as previously described.
  • Each nano-antenna may take one of two lengths allowing resonant absorption at one of the two resonance wavelengths ⁇ r4 , ⁇ r5 located respectively in the band 2 - 3 ⁇ m.
  • each nano-antenna is either present or absent, which results in 4 possible combinations making it possible to form 4 colors as illustrated on the Figures 7C and 7D .
  • Observation can be done through a polarizer, using a standard infrared camera.
  • the Figures 8A and 8B , 9A to 9E illustrate the transmission observation of a coding device according to the present description, produced by means of rectangular parallelepiped-shaped plasmonic nano-antennas arranged on elementary meshes of dimensions 30 ⁇ 30 microns.
  • the substrate is silicon
  • the metal is gold
  • the lower metal layer has a thickness of 200 nm (optically opaque layer).
  • the thickness of the dielectric layer is 220 nm.
  • the metal pads have a thickness of 50 nm.
  • the antennas have widths of 100 nm and their lengths in one of the directions vary between 900 and 1450 nm, in steps of 50 nm to encode 11 levels of gray emission in one polarization and have 5 different lengths in the other direction .
  • the temperature of the sample is 373 ° C for an observable emission in the spectral band 3 - 5 microns.
  • a first "Molière" image ( figure 8A ) is coded according to a first polarization and a second image, formed of a superposition of the letters "M", “I”, “N”, “A”, “O” is coded according to a second polarization.
  • Figures 8A and 8B result from the emission observation of the heated device through two crossed polarizers.
  • the coding of the "Molière” is done in gray level, by modifying the length of the bar forming the plasmonic nano-antenna, which results in a displacement of the emission curve of the nano-antenna on the curve. black body (see 2D figure ) and thus a change in the optical response.
  • the coding of all the letters is done in grayscale in 5 different spectral bands, centered respectively 3.20 microns, 3.71 microns, 4.22 microns, 4.73 microns, 5.24 microns.
  • the gray level is obtained for each letter by changing the length of each antenna.
  • the Figures 9A to 9E thus show the observation through filters respectively centered on each of the wavelengths.
  • a coding method as represented on the figure 10 can be used.
  • the figure 10 illustrates an exemplary method of encoding at least one spatial information or "image" by means of an encoding device according to the present description, for example a coding device comprising plasmonic nano-antennas as described above.
  • Spatial information is, for example, spatial information forming a recognizable pattern (for example the "Molière" or the letters of Figures 8A and 8B ), or spatial information forming a QR-type bar code as described in average of figures 6 and 7A to 7D , or can be an image representative of one-dimensional spatial information, for example a one-dimensional bar code.
  • the image (s) are firstly cut into pixels or "pixelated" (step S1), the pixel size depending on the parameters of the detection systems.
  • a value is assigned which can be, as previously described, a gray level in a range of given observation, or a "color", that is to say a set of several values of gray levels for different wavelengths or ranges of wavelengths (step S 2 ).
  • step S 3 the elementary mesh at position i is determined on the support of the coding device which will make it possible to form the optical response (s) of given value for each pixel, according to the encoding methods. previously described.
  • the last step (S4) then consists in manufacturing the coding device, according to known manufacturing methods, for example metallic deposition on a substrate, deposition of the dielectric layer, electronic lithography (but which can be replaced by UV or nanoimprint lithography) for the formation of metal pads, followed by a lift off (see for example Levesque et al. "Plasmonic planar antenna for wideband and efficient linear polarization conversion", Appl. Phys. Lett 104, 111105 (2014) )).
  • FIGS. 11A and 11B are two examples of secure product authentication devices by means of encoding device according to the present description, for an authentication respectively in reflection and in transmission.
  • the authentication device represented on the figure 11A is adapted to authentication in reflection of a coding device 10 according to the present description.
  • the coding device 10 is for example integrated in an object to be secured (not shown).
  • the authentication device comprises a transmission channel with a source of emission 20 for the emission of a collimated light beam I intended to illuminate the coding device 10.
  • the emission source comprises, for example, a transmitter 21 and a transmitter. optical collimation lens 22.
  • the transmitter is adapted to the desired spectral observation band.
  • the emitter is a visible light source or a light source in the infrared, for example one of the spectral bands 3 - 5 ⁇ m or 8 -12 ⁇ m corresponding to atmospheric transmission bands.
  • the authentication device further comprises a detection channel with a detection system 30 for receiving a beam R resulting from the reflection of the illumination beam I by the coding device.
  • the detection system 30 comprises an optical focusing element 31 which can be formed for example of an objective, an optical lens or any combination of these elements, and a detector 32 for the detection in the spectral observation band .
  • the detector comprises for example a CCD or CMOS camera for observation in the visible, with pixel sizes of 1 to 10 ⁇ m. In the infrared, the detectors may comprise, for example: microbolometer detectors (3 - 14 ⁇ m), MCT detectors I (1.5 - 5 ⁇ m), InGaAs detectors (1 - 1.8 ⁇ m).
  • the detection path further comprises, in one or more embodiments, one or more polarizers 50 and one or more spectral filters 40.
  • the detection system defines a "pixel size" limited by the opening of the optics of focusing 31 or the size of an elementary detector of the detector 32.
  • the pixel size is typically 1 to 10 ⁇ m in a visible detection system; it is limited by the diffraction limit, with an influence on the signal-to-noise ratio which decreases when the pixels become small.
  • the pixel size is typically 15 ⁇ m in an infrared detection system but should drop to 10 ⁇ m for next-generation detectors.
  • the authentication device represented on the Figure 11B is adapted to transmit authentication of a coding device 10 according to the present description. It comprises a detection path substantially similar to that shown on the figure 11A but no transmission path since it is the thermal emission of the coding device which is measured and not the reflection of an incident optical wave. According to one or more exemplary embodiments, the authentication device comprises heating means 60 enabling thermal emission at wavelengths in conventional infrared detection bands.
  • the coding devices can also be authenticated with the naked eye.
  • an individual can distinguish patterns with an angular resolution of 1 minute arc, which corresponds for an object observed at the punctum proximum (typically at a distance of 25 cms) to see pixels on the object that are between 7 and 8 ⁇ m. It is possible to go down to the visible diffraction limit with conventional devices (magnifying glass, microscope).
  • the device and the coding method according to the present description comprise different variants, modifications and improvements which will become apparent to those skilled in the art, it being understood that these various variants, modifications and improvements are within the scope of the invention, as defined by the following claims.

Description

ETAT DE L'ARTSTATE OF THE ART Domaine techniqueTechnical area

La présente invention concerne un dispositif de codage optique d'une information spatiale de type image ainsi qu'un procédé de codage optique d'une telle information ; l'invention s'applique notamment à la protection contre la contrefaçon d'objets de valeur.The present invention relates to a device for optical coding an image-type spatial information and a method for optical coding of such information; the invention applies in particular to the protection against counterfeiting of valuables.

Etat de l'artState of the art

De nombreux dispositifs sont connus pour la protection contre la contrefaçon d'objets de valeurs tels que des bijoux, flacons de parfum, vêtements, cartes bancaires, billets de banque.Many devices are known for protecting against counterfeit valuable objects such as jewelry, perfume bottles, clothing, bank cards, bank notes.

Ces dispositifs comprennent par exemple des éléments optiques de sécurité qui procurent des effets visuels variables en fonction de l'angle d'incidence et/ou d'observation, comme des éléments diffractifs, des hologrammes, etc. Il est ainsi possible au moyen de ces éléments optique de marquer les objets de valeur de façon sécurisée par des informations spatiales, par exemple des informations d'identification telles que des images, des caractères alphanumériques, etc.These devices include, for example, optical security elements which provide variable visual effects depending on the angle of incidence and / or observation, such as diffractive elements, holograms, etc. It is thus possible by means of these optical elements to mark valuables securely by spatial information, for example identification information such as images, alphanumeric characters, etc.

Parmi les éléments optiques de sécurité, on connait également des dispositifs plasmoniques comprenant des interfaces métal-diélectrique, la couche métallique étant structurée sous forme de réseaux pour permettre le couplage d'une onde incidente de longueur d'onde donnée à un plasmon de surface.Among the optical security elements, there are also known plasmonic devices comprising metal-dielectric interfaces, the metal layer being structured in the form of arrays to allow the coupling of an incident wave of a given wavelength to a surface plasmon.

La demande de brevet US 20120015118 décrit par exemple une méthode pour le contrôle de la couleur d'un métal, mettant en oeuvre l'excitation de plasmons de surface sur une interface métal-diélectrique lorsque l'interface est illuminée par une radiation optique incidente. Cette méthode est appliquée notamment à la protection contre la contrefaçon d'objets de valeur tels que des billets de banque. Plus précisément, la demande de brevet ci-dessus citée décrit la formation d'un ensemble de structures métalliques sub longueurs d'onde, agencées de façon répétitive et obtenues par exemple par embossage d'une surface métallique, de telle sorte à permettre le couplage à une longueur d'onde de résonance donnée d'onde lumineuses incidentes avec des plasmons de surface. L'effet optique observé, fortement dépendant de l'angle d'incidence et/ou d'observation, comprend notamment un changement de couleur de la surface métallique, permettant de créer des motifs métalliques de couleur variable sur des objets de valeur à des fins esthétiques et/ou de protection contre la contrefaçon.The patent application US 20120015118 describes for example a method for controlling the color of a metal, using the excitation of surface plasmons on a metal-dielectric interface when the interface is illuminated by incident optical radiation. This method is applied in particular to the protection against counterfeiting of valuables such as banknotes. More specifically, the aforementioned patent application describes the formation of a set of sub-wavelength metal structures, arranged in a repetitive manner and obtained for example by embossing a metal surface, so as to allow the coupling at a given resonance wavelength of incident lightwaves with surface plasmons. The observed optical effect, strongly dependent on the angle of incidence and / or observation, includes in particular a changing the color of the metal surface, making it possible to create metallic patterns of variable color on valuables for aesthetic purposes and / or protection against counterfeiting.

Cependant, une structure de couplage gravée sous forme d'un réseau nécessite des dimensions de l'ordre d'une dizaine de longueurs d'onde au minimum pour obtenir un couplage efficace d'une onde lumineuse incidente avec un plasmon de surface, le couplage résultant de l'effet collectif des structures sub-longueurs d'onde. La méthode ainsi décrite dans la demande US 20120015118 n'est de ce fait pas adaptée à la formation de dispositifs de marquage miniatures d'objets à sécuriser, de dimensions typiquement inférieures à quelques dizaines de microns, par exemple pour la protection contre la contrefaçon de petits objets. Par ailleurs, la dépendance angulaire de l'effet visuel obtenu peut être une contrainte forte pour certaines applications comme la bijouterie ou la joaillerie, où l'on cherche à obtenir des couleurs indépendantes de l'angle d'observation.However, a coupling structure etched in the form of a network requires dimensions of the order of a dozen or so wavelengths to obtain an efficient coupling of an incident light wave with a surface plasmon, the coupling resulting from the collective effect of sub-wavelength structures. The method thus described in the application US 20120015118 is therefore not suited to the formation of miniature marking devices objects to secure, typically less than a few tens of microns, for example for the protection against counterfeiting of small objects. Furthermore, the angular dependence of the visual effect obtained can be a strong constraint for certain applications such as jewelery or jewelery, where one seeks to obtain colors independent of the angle of observation.

WO 2013/039454 A1 décrit un dispositif de codage optique de même nature que celui de la revendication 1, sauf que les nano-antennes sont de type Isolant-Métal. WO 2013/039454 A1 discloses an optical coding device of the same kind as that of claim 1, except that the nano-antennas are of Insulator-Metal type.

La publication CUI ET AL: "Plasmonic and metamaterial structures as electromagnetic absorbers", LASER PHOTONICS REV., vol. 8, no. 4, 2014, pages 495-520, Wiley Online Library [DOI: 10.1002/ lpor.201400026], décrit une structure avec des nano-antennes plasmoniques de type MIM (Metal-Dielectrique-Metal), mais ne codant pas une image comprenant au moins deux pixels de valeurs différentes.The publication CUI ET AL: "Plasmonic and metamaterial structures as electromagnetic absorbers", LASER PHOTONICS REV., Vol. 8, no. 4, 2014, pp. 495-520, Wiley Online Library [DOI: 10.1002 / lpor.201400026], describes a structure with plasmonic nano-antennas of MIM (Metal-Dielectric-Metal) type, but not coding an image comprising at least two pixels of different values.

La présente description vise à proposer un dispositif de codage optique permettant le codage spatial de données sur des mailles élémentaires dont les dimensions peuvent être de l'ordre de la longueur d'onde, permettant notamment la réalisation de dispositifs de marquage miniatures pour la protection contre la contrefaçon.The present description aims to propose an optical coding device allowing the spatial coding of data on elementary meshes whose dimensions can be of the order of the wavelength, notably allowing the realization of miniature marking devices for protection against counterfeiting.

RESUMEABSTRACT

Selon un premier aspect, la présente description concerne un dispositif de codage optique d'au moins une information spatiale ou « image », qui peut être décomposée en pixels définis chacun par une position dans l'image et au moins une valeur, une image comprenant au moins deux pixels de valeurs différentes. Le dispositif de codage est destiné à être observé dans au moins une première bande spectrale d'observation et comprend un support et un ensemble de nano-antennes plasmoniques de type métal - diélectrique - métal formées sur ledit support, telles que :

  • chaque nano-antenne plasmonique est résonante à au moins une longueur d'onde comprise dans ladite première bande spectrale d'observation,
  • les nano-antennes plasmoniques sont agencées spatialement sur le support de telle sorte à ce qu'à un pixel de l'image soit associé un sous-ensemble d'une ou plusieurs nano-antenne(s) plasmonique(s) dont la réponse optique selon une polarisation et dans une bande spectrale comprise dans la première bande spectrale d'observation correspond à une valeur dudit pixel, l'ensemble des nano-antennes plasmoniques formant ainsi au moins un premier codage spatial de ladite image dans ladite première bande spectrale d'observation.
According to a first aspect, the present description relates to a device for optical coding of at least one spatial information or "image", which can be decomposed into pixels each defined by a position in the image and at least one value, an image comprising at least two pixels of different values. The coding device is intended to be observed in at least a first observation spectral band and comprises a support and a set of metal-dielectric-metal plasmon nano-antennas formed on said support, such as:
  • each plasmonic nano-antenna is resonant at at least one wavelength included in said first spectral band of observation,
  • the plasmonic nano-antennas are arranged spatially on the support so that at a pixel of the image is associated a subset of one or more plasmonic nano-antenna (s) whose optical response according to a polarization and in a spectral band included in the first spectral band of observation corresponds to a value of said pixel, the set of plasmonic nano-antennas thus forming at least a first spatial coding of said image in said first spectral band of observation.

De façon connue, une nano-antenne plasmonique est résonante à une longueur d'onde donnée λR, appelée longueur d'onde de résonance, si sa longueur, mesurée selon une direction donnée, est égale à λR/2np, où n est l'indice de réfraction du matériau diélectrique formant la structure métal - diélectrique - métal, p est un entier naturel non nul.In known manner, a plasmonic nano-antenna is resonant at a given wavelength λ R , called the resonance wavelength, if its length, measured in a given direction, is equal to λ R / 2np, where n is the refractive index of the dielectric material forming the metal - dielectric - metal structure, p is a non - zero natural integer.

Une telle nano-antenne plasmonique présente une résonnance localisée, c'est-à-dire qu'elle est apte à générer une réponse optique dans une bande spectrale centrée autour de la longueur d'onde de résonance, sur une section efficace dont la surface est de l'ordre du carré de la longueur d'onde de résonance.Such a plasmonic nano-antenna has a localized resonance, that is to say that it is able to generate an optical response in a spectral band centered around the resonance wavelength, on an effective section whose surface is of the order of the square of the resonance wavelength.

Par « réponse optique », on entend dans la présente description une réponse optique mesurée en champ lointain, c'est-à-dire à une distance supérieure à deux fois la longueur d'onde ; la réponse optique peut résulter d'une mesure d'un flux lumineux réfléchi ou de la mesure d'un flux émis du fait de l'émission thermique des nano-antennes.By "optical response" is meant in the present description an optical response measured in far field, that is to say at a distance greater than twice the wavelength; the optical response can result from a measurement of a reflected luminous flux or the measurement of a flux emitted due to the thermal emission of the nano-antennas.

Il est ainsi possible grâce à un arrangement d'un ensemble de nano-antennes plasmoniques, de coder une information spatiale comprenant un ensemble de « pixels » (ou éléments d'information élémentaire) définis chacun par une position et une ou plusieurs valeur(s): les paramètres géométriques (forme, dimensions, orientation) d'une nano-antenne plasmonique agencée sur le support à une position donnée sont choisis pour générer, dans une bande spectrale comprise dans la bande spectrale d'observation, une réponse optique correspondant à la valeur d'un pixel situé à une position correspondante dans l'image.It is thus possible thanks to an arrangement of a set of plasmonic nano-antennas, to encode spatial information comprising a set of "pixels" (or elementary information elements) each defined by a position and one or more values (s). ): the geometrical parameters (shape, dimensions, orientation) of a plasmonic nano-antenna arranged on the support at a given position are chosen to generate, in a spectral band included in the spectral band of observation, an optical response corresponding to the value of a pixel located at a corresponding position in the image.

Un tel dispositif de codage peut être observé en émission (émission thermique des nano-antennes chauffées grâce à une source de chaleur externe) ou en réflexion (sous éclairage avec un flux incident donné). Dans ce dernier cas, l'absorption résonante des nano-antennes se traduit par une modification du spectre de l'onde réfléchie par rapport à l'onde incidente.Such a coding device can be observed in emission (thermal emission of nano-antennas heated by an external heat source) or in reflection (under illumination with a given incident flow). In the latter case, the resonant absorption of the nano-antennas results in a modification of the spectrum of the wave reflected with respect to the incident wave.

La bande spectrale d'observation peut être comprise dans une plage de longueurs d'onde allant de l'UV (300 - 450 nm) au THz (jusqu'à 300 microns).The spectral band of observation can be in a range of wavelengths ranging from UV (300 - 450 nm) to THz (up to 300 microns).

Selon un ou plusieurs exemples de réalisation, le premier codage spatial comprend un codage en niveaux de gris ; les paramètres géométriques du sous-ensemble d'une ou plusieurs nano-antenne(s) associé à un pixel sont choisis pour générer une réponse optique mesurée selon une polarisation et dans une bande spectrale donnée comprise dans la bande spectrale s'observation, présentant une intensité relative (« niveau de gris ») variable en fonction de la position et correspondant à la valeur du pixel, elle-même définie comme un niveau de gris dans une échelle de niveaux de gris.According to one or more exemplary embodiments, the first spatial coding comprises a grayscale coding; the geometrical parameters of the subset of one or more nano-antenna (s) associated with a pixel are chosen to generate an optical response measured according to a polarization and in a given spectral band included in the spectral band is observed, exhibiting a relative intensity ("gray level") varies according to the position and corresponding to the value of the pixel, itself defined as a gray level in a scale of gray levels.

Selon un ou plusieurs exemples de réalisation, les matériaux dont sont formées les structures métal-diélectrique-métal constituant les nano-antennes ainsi que la forme des nano-antennes étant choisis, une variation des dimensions et/ou de l'orientation des nano-antennes permet de faire varier l'intensité relative de la réponse optique dans une bande spectrale donnée et/ou selon une polarisation donnée en dégradant les conditions optimales d'absorption ou d'émission résonantes des nano-antennes.According to one or more exemplary embodiments, the materials of which are formed the metal-dielectric-metal structures constituting the nano-antennas as well as the shape of the nano-antennas being chosen, a variation of the dimensions and / or the orientation of the nano- antennas makes it possible to vary the relative intensity of the optical response in a given spectral band and / or according to a given polarization by degrading the optimal conditions for resonant absorption or emission of the nano-antennas.

Selon un ou plusieurs exemples de réalisation, un sous-ensemble de nano-antennes plasmoniques associé à un pixel comprend des nano-antennes plasmoniques présentant des longueurs d'onde de résonnance différentes pour une même polarisation ; on obtient alors une réponse optique dans une bande spectrale recouvrant l'ensemble des longueurs d'onde de résonance qui résulte d'une synthèse additive des réponses optiques de chacune des nano-antennes dans le cas d'une observation en émission ou on obtient une réponse optique qui résulte d'une synthèse soustractive des réponses optiques de chacune des nano-antennes dans le cas d'une observation en réflexion. Dans ce cas, un codage en niveaux de gris peut être obtenu en ajustant sur la présence ou non des nano-antennes résonantes aux différentes longueurs d'onde.According to one or more exemplary embodiments, a subset of plasmonic nano-antennas associated with a pixel comprises plasmonic nano-antennas having different resonance wavelengths for the same polarization; an optical response is then obtained in a spectral band covering all the resonant wavelengths resulting from an additive synthesis of the optical responses of each of the nano-antennas in the case of a transmission observation or we obtain a optical response resulting from a subtractive synthesis of the optical responses of each of the nano-antennas in the case of an observation in reflection. In this case, a grayscale coding can be obtained by adjusting the presence or absence of resonant nano-antennas at different wavelengths.

Selon un ou plusieurs exemples de réalisation, le premier codage spatial est un codage « en couleurs » de l'image ; un pixel de l'image présentant au moins une première et une deuxième valeurs définis par exemple à des longueurs d'onde distinctes, il est possible d'associer à chaque pixel un sous ensemble de nano-antennes présentant selon une polarisation donnée, au moins une première et une deuxième réponses optiques dans respectivement une première et une deuxième bandes spectrales comprises dans la première bande spectrale d'observation, les première et deuxième réponses optiques correspondant aux première et deuxième valeurs du pixel, afin de reproduire le codage en couleur de l'image.According to one or more exemplary embodiments, the first spatial coding is a "color coding" of the image; a pixel of the image having at least first and second values defined for example at distinct wavelengths, it is possible to associate with each pixel a subset of nano-antennas having a given polarization, at least a first and a second optical response respectively in a first and a second spectral band in the first observation spectral band, the first and second optical responses corresponding to the first and second pixel values, in order to reproduce the color coding of the 'picture.

Selon un ou plusieurs exemples de réalisation, au moins une partie des nano-antennes plasmoniques de l'ensemble de nano-antennes plasmoniques est résonante selon une première polarisation et au moins une partie des nano-antennes plasmoniques de l'ensemble de nano-antennes plasmoniques est résonante selon une deuxième polarisation ; dans ces exemples, les nano-antennes plasmoniques peuvent être agencées spatialement sur le support de telle sorte à former un premier codage spatial d'une première information spatiale ou image, observable selon la première polarisation, et un deuxième codage spatial d'une deuxième information spatiale ou image, observable selon la deuxième polarisation.According to one or more exemplary embodiments, at least a portion of the plasmonic nano-antennas of the set of plasmonic nano-antennas is resonant according to a first polarization and at least a portion of the plasmonic nano-antennas of the set of nano-antennas plasmonic is resonant according to a second polarization; in these examples, the plasmonic nano-antennas may be arranged spatially on the support so as to form a first spatial coding of a first spatial or image information, observable according to the first polarization, and a second spatial coding of a second spatial information or image, observable according to the second polarization.

Selon un ou plusieurs exemples de réalisation, au moins une partie des nano-antennes plasmoniques de l'ensemble de nano-antennes plasmoniques est résonante dans une première bande spectrale d'observation et au moins une partie des nano-antennes plasmoniques de l'ensemble de nano-antennes plasmoniques est résonante dans une deuxième bande spectrale d'observation ; dans ces exemples, les nano-antennes plasmoniques peuvent être agencées spatialement sur le support de telle sorte à former un premier codage spatial d'une première information spatiale ou image, observable dans la première bande spectrale d'observation, et un deuxième codage spatial d'une deuxième information spatiale ou image, observable dans la deuxième bande spectrale d'observation.According to one or more exemplary embodiments, at least a part of the plasmonic nano-antennas of the set of plasmonic nano-antennas is resonant in a first observation spectral band and at least a part of the plasmonic nano-antennas of the set. of plasmonic nano-antennas is resonant in a second spectral band of observation; in these examples, the plasmonic nano-antennas may be arranged spatially on the support so as to form a first spatial coding of a first spatial information or image, observable in the first observation spectral band, and a second spatial coding of a second spatial information or image, observable in the second spectral band of observation.

Selon un ou plusieurs exemples de réalisation, les nano-antennes plasmoniques sont réparties selon des mailles élémentaires de formes et de dimensions similaires, chaque maille élémentaire comprenant un des desdits sous-ensembles d'une ou plusieurs nano-antenne(s) plasmonique(s), les dimensions d'une maille élémentaire correspondant par exemple aux dimensions d'un pixel.According to one or more exemplary embodiments, the plasmonic nano-antennas are distributed in elementary cells of similar shapes and dimensions, each elementary cell comprising one of said subsets of one or more plasmonic nano-antennas (s). ), the dimensions of an elementary mesh corresponding for example to the dimensions of a pixel.

Selon un ou plusieurs exemples de réalisation, il est possible au sein d'une même maille élémentaire, de combiner des nano-antennes plasmoniques présentant des longueurs d'onde de résonnance différentes pour une même polarisation ; on obtient alors une réponse optique dans une bande spectrale recouvrant l'ensemble des longueurs d'onde de résonance qui résulte d'une synthèse additive des réponses optiques de chacune des nano-antennes dans le cas d'une observation en émission ou on obtient une réponse optique qui résulte d'une synthèse soustractive des réponses optiques de chacune des nano-antennes dans le cas d'une observation en réflexion.According to one or more exemplary embodiments, it is possible within the same elementary cell, to combine plasmonic nano-antennas having different resonance wavelengths for the same polarization; an optical response is then obtained in a spectral band covering all the resonant wavelengths resulting from an additive synthesis of the optical responses of each of the nano-antennas in the case of a transmission observation or we obtain a optical response resulting from a subtractive synthesis of the optical responses of each of the nano-antennas in the case of an observation in reflection.

Selon un ou plusieurs exemples de réalisation, il est également possible au sein d'une même maille élémentaire, de combiner des nano-antennes plasmoniques présentant des longueurs d'onde de résonnance différentes pour des polarisations orthogonales. Il est ainsi possible de coder une première information spatiale selon une première polarisation et une deuxième information spatiale selon une deuxième polarisation.According to one or more exemplary embodiments, it is also possible within the same elementary cell, to combine plasmonic nano-antennas having different resonance wavelengths for orthogonal polarizations. It is thus possible to code a first spatial information according to a first polarization and a second spatial information according to a second polarization.

Selon un ou plusieurs exemples de réalisation, les nano-antennes plasmoniques sont réparties selon des premières mailles élémentaires de formes et de dimensions similaires, chacune des premières mailles élémentaires présentant une réponse optique dans une première bande spectrale d'observation, et les premières mailles élémentaires sont réparties selon des deuxièmes mailles élémentaires de formes et de dimensions similaires, chacune des deuxièmes mailles élémentaires présentant une réponse optique dans une deuxième bande spectrale d'observation. Cette variante permet notamment le codage de deux informations spatiales dans deux bandes spectrales d'observation différentes.According to one or more exemplary embodiments, the plasmonic nano-antennas are distributed according to first elementary meshes of similar shapes and dimensions, each of the first elementary meshes having an optical response in a first spectral band of observation, and the first elementary meshes are distributed according to second elemental meshes of similar shapes and sizes, each of the second elementary meshes having an optical response in a second spectral band of observation. This variant notably allows the coding of two spatial information in two different spectral observation bands.

Selon un ou plusieurs exemples de réalisation, les nano-antennes plasmoniques sont réparties spatialement sur le substrat pour coder au moins dans une première bande spectrale d'observation et selon une polarisation donnée une information spatiale, ou image, formant un code QR.According to one or more exemplary embodiments, the plasmonic nano-antennas are spatially distributed on the substrate to code at least in a first spectral band of observation and according to a given polarization a spatial information, or image, forming a QR code.

Selon un ou plusieurs exemples de réalisation, les nano-antennes plasmoniques sont réparties spatialement sur le substrat pour coder au moins dans une première bande spectrale d'observation et selon une polarisation donnée une information spatiale, ou image, formant un motif reconnaissable.According to one or more exemplary embodiments, the plasmonic nano-antennas are spatially distributed on the substrate to code at least in a first observation spectral band and according to a given polarization spatial information, or image, forming a recognizable pattern.

Selon un ou plusieurs exemples de réalisation, l'ensemble des nano-antennes plasmoniques comprend une première couche métallique continue, une deuxième couche continue en matériau diélectrique formée sur la première couche métallique, une troisième couche métallique structurée pour former localement des superpositions métal-diélectrique-métal formant les nano-antennes plasmoniques. Un dispositif de codage ainsi constitué peut être réalisé au moyen de procédés simples et maîtrisés de façon industrielle par des techniques de « nano-imprint ».According to one or more exemplary embodiments, the set of plasmonic nano-antennas comprises a first continuous metal layer, a second continuous layer of dielectric material formed on the first metal layer, a third metal layer structured to locally form metal-dielectric overlays. -metal forming the plasmonic nano-antennas. A coding device thus constituted can be produced by means of simple processes and industrially controlled by "nano-imprint" techniques.

Par matériau diélectrique, on entend n'importe quel matériau ou combinaison de matériaux dont la partie imaginaire de l'indice n'excède pas 0,2 dans la bande spectrale d'intérêt.By dielectric material is meant any material or combination of materials whose imaginary part of the index does not exceed 0.2 in the spectral band of interest.

Selon un ou plusieurs exemples de réalisation, le dispositif de codage comprend en outre un substrat formant le support et sur lequel est déposée la première couche continue en matériau métallique.According to one or more exemplary embodiments, the coding device further comprises a substrate forming the support and on which is deposited the first continuous layer of metallic material.

Alternativement, le support peut être formé directement par la première couche en matériau métallique. Ainsi par exemple, le support peut être formé directement par une partie métallique d'un objet à sécuriser.Alternatively, the support can be formed directly by the first layer of metallic material. For example, the support can be formed directly by a metal part of an object to be secured.

Alternativement, le support peut être formé directement par la deuxième couche en matériau diélectrique, pour des dispositifs de codage de dimensions latérales réduites du fait de l'épaisseur limitée de la deuxième couche en matériau diélectrique (typiquement inférieure au dixième de la longueur d'onde minimale de la bande spectrale d'observation considérée).Alternatively, the support can be formed directly by the second layer of dielectric material, for coding devices of reduced lateral dimensions because of the limited thickness of the second layer of dielectric material (typically less than one-tenth of the wavelength minimum spectral band of observation considered).

Selon un deuxième aspect, la présente description concerne un objet sécurisé muni d'un dispositif de codage selon l'une quelconque des revendications précédentes. L'objet sécurisé est par exemple un objet choisi parmi l'une des catégories suivantes : bijoux, flacons de parfum, vêtements, cartes bancaires, billets de banque, documents d'identité (cartes d'identité, passeports, permis de conduire, etc.) ou tout document de valeur (chèques cadeaux, etc.).According to a second aspect, the present description relates to a secure object provided with a coding device according to any one of the preceding claims. The secure object is for example an object chosen from one of the following categories: jewelry, perfume bottles, clothing, bank cards, bank notes, identity documents (identity cards, passports, driving licenses, etc. .) or any valuable document (gift certificates, etc.).

Selon un troisième aspect, la présente description concerne un procédé de codage d'une information spatiale, ou image, dans une bande spectrale d'observation donnée, au moyen d'un dispositif de codage selon le premier aspect.According to a third aspect, the present description relates to a method of coding a spatial information, or image, in a given spectral observation band, by means of a coding device according to the first aspect.

Selon un ou plusieurs exemples de réalisation, le procédé de codage comprend :

  • la décomposition de l'image en pixels, chaque pixel présentant une position dans l'image ;
  • l'attribution à chaque pixel d'au moins une valeur de pixel;
  • pour chaque pixel, la détermination d'un sous-ensemble d'une ou plusieurs nano-antenne(s) plasmonique(s) dont la réponse optique selon une polarisation et dans une bande spectrale comprise dans la bande spectrale d'observation correspond à la valeur du pixel ;
  • la réalisation des structures métal-diélectrique-métal sur le support pour la formation de l'ensemble des nano-antennes.
According to one or more exemplary embodiments, the coding method comprises:
  • decomposing the image into pixels, each pixel having a position in the image;
  • assigning each pixel at least one pixel value;
  • for each pixel, the determination of a subset of one or more plasmonic nano-antenna (s) whose optical response according to a polarization and in a spectral band included in the spectral band of observation corresponds to the pixel value;
  • the realization of the metal-dielectric-metal structures on the support for the formation of all the nano-antennas.

Selon un ou plusieurs exemples de réalisation, l'image étant décomposée en pixels de formes et de dimensions identiques, le procédé de codage comprend pour chaque pixel la détermination d'une maille élémentaire définie par une position sur le support, une forme et une dimension correspondant respectivement à la position du pixel dans l'image, la forme et la dimension du pixel et, pour chaque maille élémentaire, la détermination dudit ensemble de nano-antennes dont la réponse optique est égale à la valeur du pixel.According to one or more exemplary embodiments, the image being decomposed into pixels of identical shapes and dimensions, the coding method comprises for each pixel the determination of an elementary mesh defined by a position on the support, a shape and a dimension corresponding respectively to the position of the pixel in the image, the shape and the size of the pixel and, for each elementary mesh, the determination of said set of nano-antennas whose optical response is equal to the value of the pixel.

BREVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS

D'autres avantages et caractéristiques de l'invention apparaîtront à la lecture de la description, illustrée par les figures suivantes:

  • FIG. 1A et 1B, des schémas illustrant deux exemples de dispositifs de codage selon la présente description;
  • FIG. 2A et 2B, respectivement un schéma montrant un exemple d'une maille élémentaire d'un dispositif de codage et une vue en coupe de ladite maille élémentaire ;
  • FIG. 2C à 2E des courbes montrant respectivement l'émission et l'absorption normalisées de nano-antennes plasmoniques, pour différentes valeurs de longueurs d'onde de résonance dans la bande 3 - 5 µm ; la luminance du corps noir comparée à des courbes d'émission de nano-antennes plasmoniques, à différentes valeurs de longueurs d'onde de résonance ; un exemple de valeurs en niveaux de gris de la réponse optique en fonction de la largeur de nano-antennes plasmoniques, dans le cas de nano-antennes de forme parallélépipédique rectangle ;
  • FIG. 3A à 3H, des schémas illustrant des motifs élémentaires de nano-antennes MDM, adaptés pour la formation d'un dispositif de codage selon la présente description;
  • FIG. 4A à 4D, des schémas illustrant des motifs formés de combinaisons d'antennes MDM pour la formation de mailles élémentaires d'un dispositif de codage selon la présente description;
  • FIG. 5A et 5B, respectivement un exemple de dispositif de codage selon la présente description formé d'un ensemble de mailles élémentaires comprenant des nano-antennes résonantes selon deux polarisations orthogonales, et les réponses optiques de chacune des mailles élémentaires observées dans la bande 8 - 12 microns, selon chacune des polarisations;
  • FIG. 6, un exemple de dispositif de codage selon la présente description formé d'un ensemble de mailles élémentaires comprenant des nano-antennes résonantes selon deux polarisations orthogonales et agencées pour coder un code QR, selon un exemple de réalisation de la présente description;
  • FIG. 7A à 7D, les réponses optiques du dispositif de codage codant le code QR illustré sur la figure 6, selon chacune des polarisations et dans deux bandes spectrales;
  • FIG. 8A, une première réponse , selon une première polarisation et dans une première bande spectrale, d'un dispositif de codage selon la présente description observé en émission, le dispositif de codage comprenant un ensemble de mailles élémentaires comprenant des nano-antennes résonantes selon deux polarisations orthogonales et agencées pour coder une première image selon une polarisation et une deuxième image selon une deuxième polarisation;
  • FIG. 8B, la réponse optique, selon la deuxième polarisation et dans la première bande spectrale, du dispositif de codage dont une première réponse est illustrée sur la figure 8A, observé en émission;
  • FIG. 9A à 9E, les réponses optiques, selon la deuxième polarisation et dans des sous-bandes spectrales de la première bande spectrale, du dispositif de codage dont une première réponse est illustrée sur la figure 8A, observé en émission.
  • FIG. 10, les étapes d'un procédé de codage selon un exemple de la présente description.
  • FIG. 11A et 11B, deux schémas illustrant des dispositifs adaptés pour l'authentification d'un objet sécurisé respectivement en réflexion, avec une source d'éclairage, et en émission, avec des moyens de chauffe.
Other advantages and characteristics of the invention will appear on reading the description, illustrated by the following figures:
  • FIG. 1A and 1B diagrams illustrating two examples of coding devices according to the present description;
  • FIG. 2A and 2B respectively a diagram showing an example of an elementary mesh of a coding device and a sectional view of said elementary mesh;
  • FIG. 2C to 2E curves respectively showing the normalized emission and absorption of plasmonic nano-antennas, for different resonance wavelength values in the 3 - 5 μm band; the luminance of the black body compared to emission curves of plasmonic nano-antennas at different resonance wavelength values; an example of grayscale values of the optical response as a function of the width of plasmonic nano-antennas, in the case of rectangular parallelepiped-shaped nano-antennas;
  • FIG. 3A to 3H diagrams illustrating elementary patterns of MDM nano-antennas adapted for the formation of a coding device according to the present description;
  • FIG. 4A to 4D diagrams illustrating patterns formed of combinations of MDM antennas for the formation of elementary cells of a coding device according to the present description;
  • FIG. 5A and 5B , respectively an exemplary coding device according to the present description formed of a set of elementary cells comprising resonant nano-antennas according to two orthogonal polarizations, and the optical responses of each of the elementary cells observed in the 8 - 12 micron band, according to each of the polarizations;
  • FIG. 6 an exemplary coding device according to the present description formed of a set of elementary cells comprising resonant nano-antennas according to two orthogonal polarizations and arranged to encode a QR code, according to an exemplary embodiment of the present description;
  • FIG. 7A to 7D , the optical responses of the coding device encoding the QR code illustrated on the figure 6 according to each of the polarizations and in two spectral bands;
  • FIG. 8A , a first response, according to a first polarization and in a first spectral band, of a coding device according to the present description observed in transmission, the coding device comprising a set of elementary cells comprising resonant nano-antennas according to two polarizations orthogonal and arranged to encode a first image according to a polarization and a second image according to a second polarization;
  • FIG. 8B , the optical response, according to the second polarization and in the first spectral band, of the coding device, a first response of which is illustrated on the figure 8A , observed in emission;
  • FIG. 9A to 9E , the optical responses, according to the second polarization and in the spectral sub-bands of the first spectral band, of the coding device, a first response of which is illustrated on the figure 8A , observed in emission.
  • FIG. 10 , the steps of an encoding method according to an example of the present description.
  • FIG. 11A and 11B two diagrams illustrating suitable devices for the authentication of a secure object respectively in reflection, with a light source, and in transmission, with heating means.

DESCRIPTION DETAILLEEDETAILED DESCRIPTION

Les Figures 1A et 1B illustrent deux exemples de dispositifs de codage selon la présente description.The Figures 1A and 1B illustrate two examples of coding devices according to the present description.

Le dispositif de codage 10 comprend, dans chacun de ces exemples, un substrat 11 formant support, une première couche métallique 12 continue, déposée sur ledit substrat, une couche en matériau diélectrique 13 déposée sur la couche en matériau métallique 12 et une deuxième couche métallique structurée pour former un ensemble de « plots » métalliques 400 dont les caractéristiques géométriques sont choisies de telle sorte à former, avec la couche 13 en matériau diélectrique, des structures métal-diélectrique-métal (MDM) formant chacune une nano-antenne plasmonique et qui seront décrits plus en détails par la suite.The coding device 10 comprises, in each of these examples, a substrate 11 forming a support, a first continuous metal layer 12 deposited on said substrate, a layer of dielectric material 13 deposited on the metal material layer 12 and a second metal layer structured to form a set of metal "studs" 400 whose geometrical characteristics are chosen so as to form, with the layer 13 of dielectric material, metal-dielectric-metal (MDM) structures each forming a plasmonic nano-antenna and which will be described in more detail later.

Le substrat est par exemple choisi en verre, silicium ou plastique.The substrate is for example chosen from glass, silicon or plastic.

Le matériau diélectrique est choisi parmi n'importe quel matériau ou combinaison de matériaux dont la partie imaginaire de l'indice n'excède pas 0,2 dans la bande spectrale d'intérêt et qui, préférentiellement, ne présente pas d'absorption. Par exemple, la couche en matériau diélectrique comprend un oxyde (e.g. silice (SiO2), oxyde de titane (TiO2), oxyde de magnésium (MgO2), alumine (Al2O3), du sulfure de zinc (ZnS), un verre, un matériau plastique ou une résine (e.g. polyméthacrylate de méthyle (PMMA), polytéréphtalate d'éthylène (PET), Capton, benzocyclobutène (BCB)...), un matériau textile (e.g. soie), ou une combinaison de deux couches ou plus de ces matériaux, incluant ou non une couche d'air. Ces matériaux permettent de couvrir le domaine spectral de l'UV jusqu'au THz.The dielectric material is chosen from any material or combination of materials whose imaginary part of the index does not exceed 0.2 in the spectral band of interest and which, preferably, does not exhibit absorption. For example, the layer of dielectric material comprises an oxide (eg silica (SiO 2), titanium oxide (TiO 2), magnesium oxide (MgO 2), alumina (Al 2 O 3), zinc sulphide (ZnS), a glass, a material plastic or resin (eg polymethylmethacrylate (PMMA), polyethylene terephthalate (PET), capton, benzocyclobutene (BCB) ...), a textile material (eg silk), or a combination of two or more layers of these materials, including or not a layer of air. These materials cover the spectral range from UV to THz.

Les première et deuxième couches métalliques sont par exemple choisies en or, aluminium, cuivre, ou argent. L'aluminium et l'argent permettent d'étendre le fonctionnement du dispositif de codage au domaine UV (300-450 nm), et tous ces matériaux fonctionnent du visible jusqu'au THz (typiquement 300 µm).The first and second metal layers are for example chosen from gold, aluminum, copper, or silver. Aluminum and silver make it possible to extend the operation of the coding device to the UV range (300-450 nm), and all these materials operate from visible to THz (typically 300 μm).

Selon un autre exemple de réalisation (non représenté sur les figures), le support peut être formé par l'un ou l'autre de la couche métallique 12 et de la couche en matériau diélectrique 13, auquel cas le substrat 11 n'est pas nécessaire. Lorsqu'il s'agit d'un objet à sécuriser au moyen du dispositif de codage selon la présente description, la couche métallique 12 continue peut être formée par une partie métallique dudit objet et former support.According to another embodiment (not shown in the figures), the support may be formed by one or other of the metal layer 12 and the dielectric material layer 13, in which case the substrate 11 is not necessary. When it is an object to be secured by means of the coding device according to the present description, the continuous metallic layer 12 may be formed by a metal part of said object and form a support.

Comme cela est illustré sur les figures 1A et 1B, les caractéristiques géométriques des plots 400 (forme, dimensions, orientation) sont choisies en fonction de leur position dans le plan du support pour coder une information spatiale ou « image » formée d'un ensemble de pixels définis par une position et une ou plusieurs valeurs (e.g., niveau de gris, couleur).As illustrated on the Figures 1A and 1B , the geometric characteristics of the pads 400 (shape, dimensions, orientation) are chosen as a function of their position in the plane of the support for coding a spatial information or "image" formed of a set of pixels defined by a position and one or more values (eg, gray level, color).

Plus précisément, dans les exemples de réalisation illustrés sur les figures 1A et 1B, les plots 400 sont regroupés sous forme d'un ensemble de mailles élémentaires 100 de formes et de dimensions similaires, réparties de façon régulière sur le substrat. Les formes des mailles élémentaires peuvent être diverses : carrés, rectangulaires, triangulaires, hexagonales, octogonales, etc. Les mailles élémentaires correspondent chacune à un « pixel » de l'information spatiale que l'on cherche à coder et leurs dimensions sont de ce fait adaptées aux dimensions des pixels. En pratique les dimensions des pixels peuvent être choisies en fonction du dispositif destiné à authentifier le dispositif de codage et plus précisément du détecteur et de l'objectif de formation de l'image sur le détecteur. Ainsi, les dimensions minimales des pixels seront de l'ordre de la moitié de la longueur d'onde maximale de la bande spectrale d'observation, ce qui correspond à la limite de diffraction de l'objectif de formation d'images. En fonction de la dimension d'une maille élémentaire, il pourra y avoir une ou un sous-ensemble de nano-antennes par maille élémentaire, résonantes à une même longueur d'onde ou à différentes longueurs d'onde.More specifically, in the exemplary embodiments illustrated on the Figures 1A and 1B , the pads 400 are grouped in the form of a set of elementary meshes 100 of similar shapes and dimensions, distributed evenly over the substrate. The shapes of the elementary meshes can be various: square, rectangular, triangular, hexagonal, octagonal, etc. The elementary meshes each correspond to a "pixel" of the spatial information that one seeks to encode and their dimensions are therefore adapted to the dimensions of the pixels. In practice, the dimensions of the pixels can be chosen according to the device for authenticating the coding device and more precisely the detector and the image forming lens on the detector. Thus, the minimum dimensions of the pixels will be of the order of half of the maximum wavelength of the observation spectral band, which corresponds to the diffraction limit of the imaging objective. Depending on the size of an elementary cell, there may be one or a subset of nano-antennas per elementary cell, resonant at the same wavelength or at different wavelengths.

Dans les exemples des figures 1A et 1B, chaque maille élémentaire comprend un sous-ensemble de plots 400 formant des nano-antennes plasmoniques. Les plots sont des parallélépipèdes rectangles dont la longueur définit la longueur d'onde de résonance. Ils sont orientés selon une direction dans l'exemple de la figure 1A, tandis que dans l'exemple de la figure 1B, les plots sont des parallélépipèdes rectangles orientés selon deux directions perpendiculaires.In the examples of Figures 1A and 1B each elementary cell comprises a subset of pads 400 forming plasmonic nano-antennas. The pads are rectangular parallelepipeds whose length defines the resonance wavelength. They are oriented in one direction in the example of the Figure 1A , while in the example of the Figure 1B the studs are rectangular parallelepipeds oriented in two perpendicular directions.

Dans l'exemple de la figure 1A, la réponse optique s'observe selon une polarisation et résulte d'une synthèse additive des réponses optiques de chacune des nano-antennes dans le cas d'une observation en émission ou résulte d'une synthèse soustractive des réponses optiques de chacune des nano-antennes dans le cas d'une observation en réflexion.In the example of the Figure 1A , the optical response is observed according to a polarization and results from an additive synthesis of the optical responses of each of the nano-antennas in the case of an emission observation or results from a subtractive synthesis of the optical responses of each of the nanoparticles. antennas in the case of an observation in reflection.

La réponse optique d'une maille élémentaire dans le cas de l'exemple de la figure 1B diffère selon que l'on observe le dispositif de codage en polarisation TM ou TE et résulte, comme dans l'exemple de la figure 1A, d'une synthèse additive ou soustractive des réponses de chaque nano-antenne de la maille élémentaire, selon l'une ou l'autre des polarisations. Un dispositif de codage tel que représenté sur la figure 1B permet ainsi le codage de deux informations spatiales, une première information spatiale selon une première polarisation et une deuxième information spatiale selon une deuxième polarisation. En pratique, l'observation d'un dispositif de codage tel que représenté sur la figure 1B et codant les première et deuxième informations spatiales peut se faire en réflexion ou en émission à travers un polariseur dont l'axe est orienté selon l'une ou l'autre des polarisations.The optical response of an elementary cell in the case of the example of the Figure 1B differs depending on whether the TM or TE polarization coding device is observed and results, as in the example of FIG. Figure 1A of an additive or subtractive synthesis of the responses of each nano-antenna of the elementary cell, according to one or other of the polarizations. A coding device as shown in the Figure 1B thus allows the coding of two spatial information, a first spatial information according to a first polarization and a second spatial information according to a second polarization. In practice, the observation of a coding device as represented on the Figure 1B and coding the first and second spatial information can be done in reflection or in transmission through a polarizer whose axis is oriented according to one or the other of the polarizations.

Les figures 2A et 2B illustrent respectivement un schéma d'une maille élémentaire 101 d'un dispositif de codage tel qu'illustré sur les figures 1A ou 1B et une vue en coupe de cette maille élémentaire.The Figures 2A and 2B respectively illustrate a diagram of an elementary cell 101 of a coding device as illustrated in FIGS. Figures 1A or 1B and a sectional view of this elementary mesh.

Dans cet exemple, la maille élémentaire est carrée, et présente un côté de dimension A. Sur la maille élémentaire 101 sont agencés deux plots métalliques 401, 402 de forme parallélépipédique, de dimensions respectives (L1, w1), (L2, w2), séparées d'une distance d, orientés selon une même direction qui définit la polarisation de l'onde absorbée (ou émise). La figure 2B représente une vue en coupe au niveau du plot 401.In this example, the elementary mesh is square, and has a side of dimension A. On the elementary mesh 101 are arranged two metal studs 401, 402 of parallelepipedal shape, of respective dimensions (L 1 , w 1 ), (L 2 , w 2 ), separated by a distance d, oriented in the same direction which defines the polarization of the absorbed (or emitted) wave. The Figure 2B represents a sectional view at the level of the stud 401.

La hauteur des plots est avantageusement supérieure à l'épaisseur de peau du métal (typiquement 25 nm pour l'or de 600 nm à 12 µm) afin d'éviter les fuites de la cavité MDM via la couche métallique supérieure.The height of the studs is advantageously greater than the skin thickness of the metal (typically 25 nm for gold 600 nm to 12 microns) to prevent leakage of the MDM cavity via the upper metal layer.

Il est connu qu'une structure métal - diélectrique - métal ainsi formée au niveau de chacun des plots métalliques 401, 402 forme une nano-antenne plasmonique présentant une longueur d'onde de résonance (respectivement λR1, λR2) fonction de la longueur de la nano-antenne (respectivement L1, L2) et du choix du matériau diélectrique. On montre qu'en première approximation (voir par exemple Cui et al., Laser & Photonics Review pp 500 - 502 (2014 )), la longueur Li d'une nano-antenne rectangulaire fixe la longueur d'onde de résonance λRi à 10% près selon l'équation (1) ci-dessous: λ Ri 2 n D L i

Figure imgb0001
It is known that a metal-dielectric-metal structure thus formed at each of the metal pads 401, 402 forms a nano-plasmonic antenna having a resonance wavelength (respectively λ R1 , λ R2 ) depending on the length the nano-antenna (respectively L 1 , L 2 ) and the choice of the dielectric material. It is shown that in first approximation (see for example Cui et al., Laser & Photonics Review pp 500 - 502 (2014 )), the length L i of a rectangular nano-antenna sets the resonance wavelength λ Ri to within 10% according to equation (1) below: λ Ri 2 not D The i
Figure imgb0001

Où nD est l'indice de réfraction du matériau diélectrique.Where n D is the refractive index of the dielectric material.

Une telle nano-antenne présente une absorption extraordinaire d'une onde incidente à ladite longueur d'onde et pour une polarisation dite transverse (TE) de l'onde lumineuse incidente, c'est-à-dire pour la composante de l'onde lumineuse incidente dont le champ magnétique H est perpendiculaire à la direction de la nano-antenne selon laquelle est mesurée la longueur L; (voir figure 2A). Une telle nano-antenne présente également une émission extraordinaire à ladite longueur d'onde d'une onde lumineuse présentant une polarisation transverse, la réponse en émission (ou luminance) de la nano-antenne à une température T donnée étant le produit de l'émission résonante (émissivité) avec l'émission du corps noir à la température T (luminance du corps noir).Such a nano-antenna has an extraordinary absorption of an incident wave at said wavelength and for a so-called transverse polarization (TE) of the incident light wave, that is to say for the component of the wave incident light whose magnetic field H is perpendicular to the direction of the nano-antenna according to which the length L is measured; (see Figure 2A ). Such a nano-antenna also has an extraordinary emission at said wavelength of a light wave having a transverse polarization, the emission response (or luminance) of the nano-antenna at a given temperature T being the product of the resonant emission (emissivity) with the emission of the black body at temperature T (luminance of the black body).

La figure 2C illustre ainsi des courbes montrant l'absorption (en pointillé) et l'émission (trait plein) de nano-antennes plasmoniques présentant différentes longueurs d'onde de résonance.The Figure 2C thus illustrates curves showing the absorption (dashed) and the emission (solid line) of plasmonic nano-antennas having different resonant wavelengths.

La figure 2D représente la courbe de luminance du corps noir à 373K et des nano-antennes plasmoniques de type MDM optimisées pour absorber 100% du flux (émissivité de 1) à différentes longueurs d'onde de résonance (4, 4,5, 5, 5,5 et 6 µm).The 2D figure represents the luminance curve of the blackbody at 373K and plasmonic nano-antennas of MDM type optimized to absorb 100% of the flux (emissivity of 1) at different resonant wavelengths (4, 4.5, 5, 5, 5 and 6 μm).

Le facteur de qualité Q d'une telle nano-antenne, égal au rapport entre la longueur d'onde de résonance λRi et la largeur à mi-hauteur de la résonance (FWHM), une fois les matériaux choisis, dépend de façon connue de plusieurs paramètres géométriques tels que l'épaisseur e de la couche en matériau diélectrique, la largeur l et la longueur L de la nano-antenne. En travaillant avec une épaisseur e donnée de la couche en matériau diélectrique, comprise entre λRi /100 et λRi /5 il est ainsi possible de faire varier la réponse optique en réflexion ou en émission d'une nano-antenne à une longueur d'onde d'observation donnée, de 0% à 100% et selon une polarisation donnée, en jouant sur la largeur, la longueur ou l'orientation. La détermination de ces paramètres pour obtenir une réponse donnée peut se faire au moyen de logiciels de calcul connus, comme le logiciel Comsol©.The quality factor Q of such a nano-antenna, equal to the ratio between the resonance wavelength λ Ri and the half-width of the resonance (FWHM), once the chosen materials, depends in a known manner several geometrical parameters such as the thickness e of the layer of dielectric material, the width l and the length L of the nano-antenna. By working with a given thickness e of the layer of dielectric material, between λ Ri / 100 and λ Ri / 5, it is thus possible to vary the optical response in reflection or in emission of a nano-antenna to a length of given observation wave, from 0% to 100% and according to a given polarization, playing on the width, the length or the orientation. The determination of these parameters to obtain a given response can be done using known calculation software, such as Comsol © software.

Le domaine spectral de fonctionnement d'une nano-antenne ne dépend donc que du choix du matériau diélectrique et peut aller de l'UV (à partir de 350 nm) au THz (jusqu'à 300 µm.).The spectral range of operation of a nano-antenna therefore depends only on the choice of the dielectric material and can range from UV (from 350 nm) to THz (up to 300 μm).

Dans l'exemple illustré sur la figure 2A, le choix de deux plots métalliques agencés dans la même direction mais de longueurs différentes permet une résonance des nano-antennes ainsi formées à deux longueurs d'onde de résonance différentes, pour une même polarisation. Il en résulte au niveau de la maille 101 une réponse optique qui est une synthèse additive ou soustractive des réponses de chacune des nano-antennes, selon que l'on observe le dispositif de codage en émission ou en réflexion, des réponses des deux nano-antennes formées par les plots 401, 402.In the example shown on the Figure 2A the choice of two metal pads arranged in the same direction but of different lengths allows resonance of the nano-antennas thus formed at two different resonance wavelengths, for the same polarization. At the level of the mesh 101, this results in an optical response which is an additive or subtractive synthesis of the responses of each of the nano-antennas, depending on whether the emission or reflection coding device is observed, the responses of the two nano-antennas. antennas formed by the studs 401, 402.

Ainsi, au moyen des nano-antennes de forme parallélépipédique rectangle telles que décrites sur les figures 2A et 2B, ou dans les exemples des figures 1A et 1B, il est possible de réaliser un codage d'une ou plusieurs informations spatiales, en couleurs ou en niveau de gris, pour une observation en réflexion ou en émission, selon une polarisation donnée et/ou à une longueur d'onde donnée ou dans une plage d'observation donnée. Les paragraphes suivant donnent des exemples de codage en niveaux de gris ou en couleurs, utilisant des nano-antennes de forme rectangulaire.Thus, by means of nano-antennas of rectangular parallelepipedal shape as described on the Figures 2A and 2B , or in the examples of Figures 1A and 1B , it is possible to carry out an encoding of one or more spatial information, in color or in gray level, for an observation in reflection or in emission, according to a given polarization and / or at a given wavelength or in a given range of observation. The following paragraphs give examples of grayscale or color coding using rectangular nano-antennas.

Exemples de codage d'une information spatiale en niveau de gris :Examples of coding spatial information in gray level:

On part d'une image en niveaux de gris, par exemple une image à deux dimensions, pixellisée. A chaque pixel est donc associée une valeur de pixel, qui est un niveau de gris.We start from a grayscale image, for example a two-dimensional pixelated image. Each pixel is therefore associated with a pixel value, which is a gray level.

Selon une première variante, on cherche à reproduire ce niveau de gris en réflexion ou en émission dans une bande spectrale de mesure centrée sur une longueur d'onde λ comprise dans la bande spectrale d'observation.According to a first variant, it is sought to reproduce this level of gray in reflection or emission in a spectral measurement band centered on a wavelength λ included in the spectral band of observation.

Selon une première variante, la bande spectrale de mesure présente une largeur typiquement de λ/10, et correspondant à la largeur de la réponse d'une nano-antenne résonante à la longueur d'onde d'observation (voir figure 2C). En pratique, la mesure peut se faire à travers un filtre approprié.According to a first variant, the measurement spectral band has a width typically of λ / 10, and corresponding to the width of the response of a resonant nano-antenna at the wavelength of observation (see FIG. Figure 2C ). In practice, the measurement can be done through an appropriate filter.

Pour obtenir le niveau de gris, on utilise selon cet exemple une nano-antenne de type métal-diélectrique-métal de forme rectangulaire, comme précédemment décrite. La longueur L de la nano-antenne fixe la longueur d'onde du maximum d'absorption ou d'émission thermique (voir équation 1).In order to obtain the gray level, according to this example, a nano-antenna of metal-dielectric-metal type of rectangular shape, as previously described, is used. The length L of the nano-antenna sets the wavelength of the maximum absorption or thermal emission (see equation 1).

En choisissant adéquatement l'épaisseur du diélectrique (qui ensuite est un paramètre fixe pour toutes les nano-antennes), il est ainsi possible selon un premier exemple d'obtenir tous les niveaux d'absorption ou d'émission de « 0% » à « 100% » en modifiant la largeur de la nano-antenne, ce qui entraîne de façon connue une modification de l'efficacité de la nano-antenne par rapport à une largeur calculée pour optimiser la réponse. Par exemple en absorption, le niveau « 0% » pourra correspondre en pratique au mieux à l'absorption résiduelle du métal, typiquement de l'ordre de 5% dans le visible, 2 - 3 % dans l'infrarouge et 1% dans le THz, mais avec une variabilité qui dépend de la nature du métal.By properly choosing the thickness of the dielectric (which is then a fixed parameter for all the nano-antennas), it is thus possible according to a first example to obtain all absorption or emission levels from "0%" to "100%" by changing the width of the nano-antenna, resulting in known manner a change in the efficiency of the nano-antenna compared to a calculated width to optimize the response. For example in absorption, the "0%" level may in practice correspond at best to the residual absorption of the metal, typically of the order of 5% in the visible, 2 - 3% in the infrared and 1% in the THz, but with a variability that depends on the nature of the metal.

La figure 2E montre ainsi des réponses optiques mesurées en réflexion à 4,2 µm en fonction de la largeur w de nano-antennes plasmoniques pour une nano-antenne de longueur 1,2 µm, un matériau diélectrique en silice (épaisseur 220 nm, indice 1,4). Dans cet exemple, le métal est de l'or et la couche métallique continue présente une épaisseur uniforme supérieure à 100 nm donc optiquement opaque. On observe dans cet exemple que pour une largeur de la nano-antenne d'environ 100 nm, la réflexion est minimale (l'absorption est maximale) ; en faisant varier la largeur, on augmente la réflexion, cette augmentation résultant d'une moins bonne absorption par la nano-antenne.The figure 2E thus shows optical responses measured in reflection at 4.2 μm as a function of the width w of plasmonic nano-antennas for a 1.2 μm long nano-antenna, a silica dielectric material (thickness 220 nm, index 1.4 ). In this example, the metal is gold and the continuous metal layer has a uniform thickness greater than 100 nm and therefore optically opaque. It is observed in this example that for a width of the nano-antenna of about 100 nm, the reflection is minimal (the absorption is maximum); by varying the width, one increases the reflection, this increase resulting from a less good absorption by the nano-antenna.

Le pixel peut être encodé sur une maille élémentaire dont les dimensions minimales sont de λ/2, correspondant à la limite de diffraction en-dessous de laquelle on ne pourra décerner de structuration en champ lointain. Si l'on cherche à avoir un pixel de côté plus grand que λ, on peut mettre plusieurs nano-antennes par maille élémentaires. Par exemple, si l'on cherche un pixel de côté ∼Nλ, alors on pourra répéter périodiquement la nano-antenne, par exemple avec une période dans les 2 directions de ∼λ/2.The pixel can be encoded on an elementary cell whose minimum dimensions are λ / 2, corresponding to the diffraction limit below which far-field structuring can not be attributed. If one tries to have a pixel of side bigger than λ, one can put several nano-antennas by mesh elementary. For example, if we look for a pixel side ~N * λ, then we can repeat periodically the nano-antenna, for example with a period in the 2 directions of ~λ / 2.

Selon un deuxième exemple, et dans le cas de pixels de dimensions très grandes devant λ, on peut obtenir le niveau de gris grâce à la densité de nano-antennes uniquement.According to a second example, and in the case of pixels of very large dimensions in front of λ, the gray level can be obtained by virtue of the density of nano-antennas only.

Selon un troisième exemple, on peut aussi obtenir le niveau de gris dans la bande spectrale donnée de largeur égale à typiquement λ/10, en augmentant/diminuant la longueur de la nano-antenne. En effet, la réponse de l'antenne est typiquement Lorentzienne (voir figure 2C) ; ainsi, lorsqu'on modifie la longueur de l'antenne, on décale en longueur d'onde la longueur d'onde de résonance et de ce fait, la réponse est plus faible dans la bande spectrale d'observation.According to a third example, it is also possible to obtain the gray level in the given spectral band of width equal to typically λ / 10, by increasing / decreasing the length of the nano-antenna. Indeed, the response of the antenna is typically Lorentzian (see Figure 2C ); thus, when the length of the antenna is changed, the wavelength of resonance is shifted wavelength and therefore the response is lower in the spectral band of observation.

Dans le cas d'un fonctionnement en émission des nano-antennes (figure 2D), un codage en niveau de gris peut également être obtenu en modifiant la longueur du barreau formant la nano-antenne plasmonique, ce qui résulte dans un déplacement de la courbe d'émission de la nano-antenne sur la courbe du corps noir et de ce fait une modification de la réponse optique.In the case of operation in emission of the nano-antennas ( 2D figure ), a gray-level coding can also be obtained by modifying the length of the bar forming the plasmonic nano-antenna, which results in a displacement of the emission curve of the nano-antenna on the curve of the black body and of this makes a change in the optical response.

Selon un quatrième exemple, on peut obtenir le niveau de gris en jouant sur l'orientation de l'antenne rectangulaire dans le plan. Si l'antenne optimisée est suivant l'axe u, on aura le niveau de gris de cos(ϕ)2 pour la même antenne pivotée de ϕ.According to a fourth example, it is possible to obtain the gray level by varying the orientation of the rectangular antenna in the plane. If the optimized antenna is along the u axis, we will have the gray level of cos (φ) 2 for the same rotated antenna of φ.

Selon une deuxième variante, la bande spectrale pour la mesure de la réponse optique peut être plus large. Dans ce cas, un niveau de gris peut être obtenu en combinant plusieurs nano-antennes, par exemple plusieurs nano-antennes de longueurs différentes présentant chacune une longueur d'onde de résonance propre dans la bande spectrale d'observation. Le niveau de gris peut alors être obtenu en ajustant la réponse de chaque nano-antenne selon l'un des exemples décrits ci-dessus (largeur de l'antenne, orientation, densité), soit par l'absence de certaines antennes.According to a second variant, the spectral band for measuring the optical response may be wider. In this case, a gray level can be obtained by combining several nano-antennas, for example several nano-antennas of different lengths each having a resonance wavelength in the observation spectral band. The gray level can then be obtained by adjusting the response of each nano-antenna according to one of the examples described above (width of the antenna, orientation, density), or by the absence of certain antennas.

Selon l'une ou l'autre des variantes/exemples décrits, on comprend qu'il est possible de coder plusieurs informations spatiales indépendantes. On peut coder par exemple plusieurs informations dans plusieurs bandes spectrales d'observation. Le choix d'un filtre adapté permettra l'observation d'une information donnée. On peut coder des informations spatiales indépendantes selon les deux polarisations orthogonales. Le choix d'un polariseur adapté lors de l'observation permettra l'observation d'une information donnée.According to one or other of the variants / examples described, it is understood that it is possible to code several independent spatial information. For example, several pieces of information can be encoded in several spectral observation bands. The choice of a suitable filter will allow the observation of a given information. It is possible to code independent spatial information according to the two orthogonal polarizations. Choosing a suitable polarizer during the observation will allow the observation of a given piece of information.

Exemples de codage d'une information spatiale en couleurs :Examples of encoding color spatial information:

On part dans cet exemple d'une information spatiale en couleurs, par exemple une image à deux dimensions, pixellisée. Pour chaque pixel de l'image, on peut par exemple définir un niveau « RGB » (rouge vert bleu), qui donne une couleur parmi un nombre de couleurs possibles identifiées, par exemple 16 millions de couleurs possibles.In this example, we start with a color spatial information, for example a pixelated, two-dimensional image. For each pixel of the image, one can for example define a level "RGB" (red green blue), which gives a color among a number of possible colors identified, for example 16 million possible colors.

Selon un exemple, pour chacune des 3 couleurs, on peut définir une image en niveau de gris et l'encoder suivant le procédé précédemment décrit d'encodage en niveau de gris. Ainsi, pour un pixel donné, on choisit 3 nano-antennes résonantes à trois longueurs d'onde croissantes λr1, λr2 et λr3. L'observation peut se faire à l'oeil nu, au moyen d'une caméra multi spectrale avec des filtres RGB sur chaque pixel ou à travers trois filtres respectivement. Ces trois longueurs d'onde sont avantageusement spectralement écartées d'au moins λr3/10. Le niveau de gris de chaque antenne peut être déterminé par exemple par la largeur de l'antenne ou par son orientation (réponse polarisée uniquement). Il est également possible d'ajuster le niveau de gris de chaque antenne en jouant sur sa longueur si la séparation spectrale entre les 3 longueurs d'onde de résonance est grande, i.e. en modifiant la longueur pour obtenir un niveau plus faible d'absorption, on ne crée pas un signal dans la 2ème bande spectrale d'intérêt. Cela se traduit en pratique par une séparation spectrale d'au moins λr3/5.According to one example, for each of the three colors, it is possible to define a gray-scale image and to encode it according to the previously described method of grayscale encoding. Thus, for a given pixel, three resonant nano-antennas with three increasing wavelengths λ r1 , λ r2 and λ r3 are chosen. The observation can be made with the naked eye, by means of a multi spectral camera with RGB filters on each pixel or through three filters respectively. These three wavelengths are advantageously spectrally separated by at least λ r3 / 10. The gray level of each antenna can be determined for example by the width of the antenna or its orientation (polarized response only). It is also possible to adjust the gray level of each antenna by playing on its length if the spectral separation between the 3 resonant wavelengths is large, ie by modifying the length to obtain a lower level of absorption, we do not create a signal in the 2nd spectral band of interest. This results in practice by a spectral separation of at least λ r3 / 5.

Comme précédemment, le pixel peut être encodé sur une maille élémentaire dont les dimensions minimales sont de λr3/2, correspondant à la limite de diffraction en-dessous de laquelle on ne pourra décerner de structuration en champ lointain.As before, the pixel can be encoded on an elementary cell whose minimum dimensions are of λ r3 / 2, corresponding to the diffraction limit below which far-field structuring can not be attributed.

Il est ainsi possible de coder plusieurs informations en couleur dans différentes bandes spectrales, par exemple une image dans le visible et une image dans l'infrarouge. En pratique, les 2 pixels d'encodage présentent des dimensions qui sont des multiples l'une de l'autre (par exemple, une grille d'encodage visible avec des pixels de 250 nm et une grille infrarouge avec des pixels de 2µm), chaque pixel infrarouge contenant 64 pixels visible.It is thus possible to encode several color information in different spectral bands, for example an image in the visible and an image in the infrared. In practice, the 2 encoding pixels have dimensions that are multiples of one another (for example, a visible encoding grid with pixels of 250 nm and an infrared grid with pixels of 2 μm), each infrared pixel containing 64 visible pixels.

Il est également possible de coder une ou plusieurs informations selon l'une ou l'autre des polarisations.It is also possible to encode one or more information according to one or the other of the polarizations.

Il est également possible de coder une ou plusieurs informations en niveaux de gris et une ou plusieurs informations en couleur, dans une ou plusieurs bandes spectrales, selon l'une ou l'autre des polarisations.It is also possible to encode one or more greyscale information and one or more color information, in one or more spectral bands, according to one or other of the polarizations.

Bien qu'un mode de réalisation particulier vient d'être décrit mettant en oeuvre des nano-antennes formées au moyen de plots de forme parallélépipédique rectangle, il est connu par l'homme du métier que des nano-antennes de formes différentes peuvent être réalisées et que la forme des plots métalliques pour la formation des nano-antennes plasmoniques n'est pas limitée à des parallélépipèdes rectangles.Although a particular embodiment has just been described using nano-antennas formed by means of rectangular parallelepiped shaped pads, it is known to those skilled in the art that nano-antennas of different shapes can be realized. and that the shape of the metal pads for the formation of the plasmonic nano-antennas is not limited to rectangular parallelepipeds.

Ainsi, les figures 3A à 3H représentent selon des vues de dessus un ensemble de plots métalliques adaptés pour la formation de structures métal-diélectrique-métal formant des nano-antennes plasmoniques. Les structures présentant en vue de dessus des formes de type plot carré (FIG. 3A), cercle (FIG. 3B), croix (FIG. 3C) et combinaison de rectangles de même longueur et selon deux axes perpendiculaires (FIG. 3D) présentent des réponses insensibles à la polarisation Les structures présentant en vue de dessus des formes de type rectangle (FIG. 3E), ellipse (FIG. 3F), croix asymétrique (FIG. 3G) et combinaison de plusieurs rectangles de longueurs différentes selon des axes perpendiculaires (FIG. 3H) ont une réponse optique qui dépend de la polarisation.Thus, Figures 3A to 3H represent according to views from above a set of metal studs adapted for the formation of metal-dielectric-metal structures forming plasmonic nano-antennas. The structures having a top view of square-type shapes ( FIG. 3A ) circle ( FIG. 3B ), cross ( FIG. 3C ) and combination of rectangles of the same length and along two perpendicular axes ( FIG. 3D ) have polarization-insensitive responses Structures with rectangular shapes in top view ( FIG. 3E ), ellipse ( FIG. 3F ), asymmetric cross ( FIG. 3G ) and combination of several rectangles of different lengths along perpendicular axes ( FIG. 3H ) have an optical response that depends on the polarization.

Les figures 3E, 3D et 3H présentent des combinaisons de plots de forme parallélépipède rectangle déjà décrits au moyen des figures 2A à 2D. La réponse optique peut varier en « couleur » ou en niveau de gris comme cela a précédemment été décrit. Les figures 3C et 3G présentent des nano-antennes plasmoniques qui en vue de dessus ont des formes de croix. Ces structures ont des comportements sensiblement similaires aux comportements respectivement des nano-antennes représentées sur les figures 3D (rectangles de même longueur) et 3G (rectangles de longueurs différentes) et présentent des régles de dimensionnement décrites par exemple dans Cui et al., Laser & Photonics Review 8, 495 (2014 ).The Figures 3E, 3D and 3H present combinations of rectangular parallelepiped shaped pads already described by means of Figures 2A to 2D . The optical response may vary in "color" or gray level as previously described. The Figures 3C and 3G have plasmonic nano-antennas which in top view have cross shapes. These structures have behaviors that are substantially similar to the behaviors respectively of the nano-antennas represented on the 3D figures (rectangles of the same length) and 3G (rectangles of different lengths) and have dimensioning rules described for example in Cui et al., Laser & Photonics Review 8, 495 (2014) ).

Des nano-antennes plasmoniques obtenus au moyen de plots métalliques carrés (voir figure 3A) ont par exemple été décrits dans Cui et al., Laser & Photonics Review 8, 495 (2014 ). Les règles de dimensionnement sont similaires à celles des nano-antennes de forme parallélépipédique rectangle mais ils présentent une réponse optique indépendante de la polarisation. Dans le cas de nano-antennes de forme carrée, un codage en niveau de gris peut être obtenu en observant dans une bande spectrale d'observation donnée et en faisant varier la dimension du carré, comme cela a été décrit précédemment.Plasmonic nano-antennas obtained by means of square metal studs (see figure 3A ) have, for example, been described in Cui et al., Laser & Photonics Review 8, 495 (2014) ). The sizing rules are similar to those of nano-antennas of rectangular parallelepiped shape but they have an optical response independent of the polarization. In the case of square-shaped nano-antennas, gray level coding can be obtained by observing in a given spectral band of observation and by varying the size of the square, as has been described previously.

Des nano-antennes plasmoniques présentant en vue de dessus une forme circulaire sont par exemple été décrits dans le même article de revue Cui et al., Laser & Photonics Review 8, 495 (2014 ). Là encore, la réponse optique est indépendante de la polarisation et les règles de dimensionnement sont sensiblement similaires à celles des nano-antennes plasmoniques de forme carrée. De la même manière que pour les nano-antennes de forme carrée, un codage en niveau de gris peut être obtenu en observant dans une bande spectrale d'observation donnée et en faisant varier le diamètre du cercle.Plasmonic nano-antennas having a circular shape in a top view are for example described in the same review article. Cui et al., Laser & Photonics Review 8, 495 (2014) ). Again, the optical response is polarization independent and the sizing rules are substantially similar to those of square-shaped plasmonic nano-antennas. In the same way as for square-shaped nano-antennas, gray-level coding can be obtained by observing in a given spectral band of observation and varying the diameter of the circle.

Des nano-antennes plasmoniques présentant en vue de dessus une forme elliptique ont des règles de dimensionnement sensiblement similaires à celles des nano-antennes plasmoniques de forme rectangulaire.Plasmonic nano-antennas having an elliptical shape in plan view have dimensioning rules substantially similar to those of the rectangular-shaped plasmonic nano-antennas.

D'autres motifs (étoile, triangle, croix plus complexe, etc.) sont également possibles mais présentent l'inconvénient d'une moins grande souplesse pour concevoir la réponse optique de la maille.Other patterns (star, triangle, cross more complex, etc.) are also possible but have the disadvantage of less flexibility to design the optical response of the mesh.

Les figures 4A à 4D illustrent, également selon des vues de dessus, des mailles élémentaires dans lesquelles sont associées des nano-antennes plasmoniques présentant différentes formes géométriques.The Figures 4A to 4D illustrate, also in plan views, elementary meshes in which are associated plasmonic nano-antennas having different geometric shapes.

Chaque nano-antenne ayant une longueur de résonance propre, une maille élémentaire ainsi conçue permet de générer une réponse optique qui résulte d'une synthèse additive ou soustractive, selon que l'on observe le dispositif de codage en émission ou en réflexion, des réponses des différentes nano-antennes. Dans le cas d'un codage spectral de l'information, cela permet d'accéder à un plus grand nombre de réponses optiques ou « couleurs ». Là encore dans cet exemple, certaines des mailles élémentaires présentent des réponses insensibles à la polarisation (FIG. 4A, FIG. 4B, 4C) tandis que la FIG. 4D illustre un exemple dans lequel la « couleur » dépend de la polarisation.Each nano-antenna having a resonance length of its own, an elementary cell thus conceived makes it possible to generate an optical response that results from an additive or subtractive synthesis, depending on whether the transmission or reflection coding device is being observed. different nano-antennas. In the case of spectral coding of the information, this allows access to a greater number of optical responses or "colors". Here again in this example, some of the elementary meshes have insensitive responses to polarization ( FIG. 4A, FIG. 4B, 4C ) while the FIG. 4D illustrates an example in which "color" depends on polarization.

Les figures 5 à 9 illustrent plus en détails des exemples de réalisation du dispositif de codage selon la présente description. Ils mettent en oeuvre des nano-antennes de forme rectangulaire mais pourraient tout aussi bien être conçus avec des nano-antennes présentant différentes formes comme celles décrites précédemment, le choix dépendant notamment du souhait d'avoir des nano-antennes sont les réponses optiques sont polarisées ou non.The Figures 5 to 9 illustrate in more detail exemplary embodiments of the coding device according to the present description. They implement nano-antennas form rectangular but could equally well be designed with nano-antennas having different shapes such as those described above, the choice depending in particular the desire to have nano-antennas are the optical responses are polarized or not.

Les figures 5A et 5B illustrent un exemple d'application d'un dispositif de codage 10 selon la présente description, permettant un premier codage spectral selon une première polarisation et un deuxième codage spectral selon une deuxième polarisation, le dispositif étant destiné à être observé en réflexion dans une bande spectrale donnée.The Figures 5A and 5B illustrate an example of application of a coding device 10 according to the present description, allowing a first spectral coding according to a first polarization and a second spectral coding according to a second polarization, the device being intended to be observed in reflection in a spectral band given.

La figure 5A représente le dispositif de codage 10 vu de dessus ; seules les formes des mailles élémentaires et des nano-antennes plasmoniques agencées dans chacune des mailles sont représentées. Le dispositif de codage est composé de 12 mailles élémentaires 101 - 112, identiques, de forme carrée, dont la dimension est adaptée à la dimension du pixel de l'information que l'on cherche à coder. Au sein de chaque maille élémentaire sont associées des nano-antennes plasmoniques présentant des réponses selon chacune des deux polarisations. Les nano-antennes horizontales (selon x) codent pour la polarisation TM et les antennes verticales (selon y) codent pour la polarisation TE. Dans cet exemple, chaque nano-antenne plasmonique présente une forme rectangulaire agencée selon l'une ou l'autre de deux directions perpendiculaires. Dans chaque maille élémentaire, il peut avoir jusqu'à 4 nano-antennes plasmoniques de longueurs différentes selon une direction, qui présentent donc dans la bande spectrale d'observation 4 longueurs d'onde de résonance différentes.The Figure 5A represents the coding device 10 seen from above; only the shapes of the elementary meshes and the plasmonic nano-antennas arranged in each of the meshes are represented. The coding device is composed of 12 identical elementary cells 101 - 112 of square shape, the size of which is adapted to the size of the pixel of the information that is to be encoded. Within each elementary cell are associated plasmonic nano-antennas with responses according to each of the two polarizations. The horizontal nano-antennas (according to x) encode the TM polarization and the vertical antennas (according to y) encode the TE polarization. In this example, each plasmonic nano-antenna has a rectangular shape arranged in one or the other of two perpendicular directions. In each elementary cell, it can have up to 4 nano-plasmonic antennas of different lengths in one direction, which therefore have in the spectral band of observation 4 different resonance wavelengths.

La présence ou non de chacune des nano-antennes de longueurs différentes permet de former selon chaque polarisation 24 = 16 réponses optiques différentes dans la bande spectrale d'observation, lorsque le dispositif de codage est observé en réflexion ou en émission. La figure 5B illustre ainsi les réponses optiques 301 - 312 en fonction de la longueur d'onde calculées pour chaque maille élémentaire selon chacune des polarisations TE et TM (les spectres sont représentés respectivement en trait plein (TE) et en trait pointillé (TM)).The presence or absence of each of the nano-antennas of different lengths makes it possible, according to each polarization, to form 2 4 = 16 different optical responses in the spectral band of observation, when the coding device is observed in reflection or in emission. The Figure 5B thus illustrates the optical responses 301 - 312 as a function of the wavelength calculated for each elementary cell according to each of the TE and TM polarizations (the spectra are represented respectively in full line (TE) and dotted line (TM)).

La figure 6 représente un exemple de dispositif de codage 10 appliqué à la réalisation d'un code de type QR (abréviation de « Quick Response ») ou code de type code-barres à deux dimensions, en couleurs, observable dans deux bandes spectrales (visible et infrarouge) et selon deux polarisations (TE, TM). Les figures 7A, 7B et 8A, 8B représentent les réponses optiques dans chacune des bandes spectrales.The figure 6 represents an exemplary encoding device 10 applied to the realization of a QR-type code (abbreviation of "Quick Response") or two-dimensional barcode type code, in color, observable in two spectral bands (visible and infrared ) and according to two polarizations (TE, TM). The Figures 7A, 7B and 8A, 8B represent the optical responses in each of the spectral bands.

La figure 6 comprend un premier ensemble de mailles élémentaires 100 et un deuxième ensemble de mailles élémentaires 200, les mailles élémentaires 200 comprenant chacune un sous-ensemble de mailles élémentaires 100.The figure 6 comprises a first set of elementary meshes 100 and a second set of elemental meshes 200, the elementary meshes 200 each comprising a subset of elementary meshes 100.

Les mailles élémentaires 100 sont dimensionnées pour former une réponse optique dans le visible, selon deux polarisations orthogonales. Ainsi, chaque maille élémentaire comprend un premier ensemble de nano-antennes orientées selon une première direction (par exemple des nano-antennes de forme parallélépipédique) pour le codage d'une première information selon une première polarisation et un deuxième ensemble de nano-antennes orientées selon une direction perpendiculaire pour le codage d'une deuxième information selon une deuxième polarisation. Plus précisément, les nano-antennes représentées horizontalement (selon x) sur la figure 6 codent pour la polarisation « verticale » ou TM et les nano-antennes représentées verticalement (selon y) sur la figure 6 codent pour la polarisation « horizontale » (ou TE). Le codage est dans cet exemple un codage « en couleurs » tel qu'il a été décrit précédemment. Ainsi, chaque nano-antenne peut prendre une longueur parmi trois longueurs permettant une absorption résonante à l'une des trois longueurs d'onde de résonance λr1, λr2 et λr3 situées respectivement dans le bleu, le vert et le rouge. Dans cette exemple, chaque nano-antenne est soit présente, soit absente, ce qui résulte en 8 combinaisons possibles permettant de former 8 couleurs, à savoir rouge, bleu foncé, vert, blanc, noir, rose, bleu clair et jaune, comme cela est illustré sur les figures 7A et 7B. L'observation peut se faire à l'oeil nu, mais aussi par toutes caméras/appareils photos.The elementary meshes 100 are sized to form an optical response in the visible, according to two orthogonal polarizations. Thus, each elementary cell comprises a first set of nano-antennas oriented in a first direction (for example parallelepiped-shaped nano-antennas) for coding a first information according to a first polarization and a second set of oriented nano-antennas. in a direction perpendicular to the coding of a second information according to a second polarization. More precisely, the nano-antennas represented horizontally (according to x) on the figure 6 encode the "vertical" polarization or TM and the nano-antennas represented vertically (according to y) on the figure 6 encode for "horizontal" (or TE) polarization. In this example, the coding is a "color coding" as previously described. Thus, each nano-antenna can take one of three lengths allowing resonant absorption at one of the three resonance wavelengths λ r1 , λ r2 and λ r3 located respectively in blue, green and red. In this example, each nano-antenna is either present or absent, which results in 8 possible combinations to form 8 colors, namely red, dark blue, green, white, black, pink, light blue and yellow, as this is illustrated on the Figures 7A and 7B . The observation can be done with the naked eye, but also by all cameras / cameras.

Les mailles élémentaires 200 sont dimensionnées pour former une réponse optique dans l'infrarouge (autour de 2 - 3 µm), également selon deux polarisations orthogonales. Dans cet exemple, chaque maille élémentaire 200 comprend un premier ensemble d'au plus 2 nano-antennes orientées selon une première direction pour le codage d'une première information dans l'infrarouge selon une première polarisation et un deuxième ensemble d'au plus 2 nano-antennes orientées selon une direction perpendiculaire pour le codage d'une deuxième information dans l'infrarouge selon une deuxième polarisation. Le codage est également dans cet exemple un codage « en couleurs » tel qu'il a été décrit précédemment. Chaque nano-antenne peut prendre une longueur parmi deux longueurs permettant une absorption résonante à l'une des deux longueurs d'onde de résonance λr4, λr5 situées respectivement dans la bande 2 - 3 µm. Dans cette exemple, chaque nano-antenne est soit présente, soit absente, ce qui résulte en 4 combinaisons possibles permettant de former 4 couleurs comme cela est illustré sur les figures 7C et 7D. L'observation peut se faire à travers un polariseur, au moyen d'une caméra infrarouge standard.The elementary meshes 200 are sized to form an optical response in the infrared (around 2 - 3 μm), also according to two orthogonal polarizations. In this example, each elementary cell 200 comprises a first set of at most 2 nano-antennas oriented in a first direction for the coding of a first information in the infrared according to a first polarization and a second set of at most 2 nano-antennas oriented in a perpendicular direction for the coding of a second information in the infrared according to a second polarization. The coding is also in this example a "color coding" as previously described. Each nano-antenna may take one of two lengths allowing resonant absorption at one of the two resonance wavelengths λ r4 , λ r5 located respectively in the band 2 - 3 μm. In this example, each nano-antenna is either present or absent, which results in 4 possible combinations making it possible to form 4 colors as illustrated on the Figures 7C and 7D . Observation can be done through a polarizer, using a standard infrared camera.

Les figures 8A et 8B, 9A à 9E illustrent l'observation en émission d'un dispositif de codage selon la présente description, réalisé au moyen de nano-antennes plasmoniques de forme parallélépipédique rectangle agencées sur des mailles élémentaires de dimensions 30x30 microns. Dans cet exemple, le substrat est en Silicium, le métal en or, le diélectrique formé de silice. La couche métallique inférieure présente une épaisseur de 200 nm (couche optiquement opaque). L'épaisseur de la couche en diélectrique est de 220 nm. Les plots métalliques ont une épaisseur de 50 nm. Les antennes ont des largeurs de 100 nm et leurs longueurs dans l'une des directions varient entre 900 et 1450 nm, par pas de 50 nm pour coder 11 niveaux de gris en émission selon une polarisation et présentent 5 longueurs différentes dans l'autre direction. La température de l'échantillon est de 373°C pour une émission observable dans la bande spectrale 3 - 5 microns. Dans cet exemple, une première image « Molière » (figure 8A) est codée selon une première polarisation et une deuxième image, formée d'une superposition des lettres « M », « I », « N », « A », « O » est codée selon une deuxième polarisation. Ainsi, les figures 8A et 8B résultent de l'observation en émission du dispositif chauffé au travers de deux polariseurs croisés. Dans ces exemples, le codage du « Molière » est effectué en niveau de gris, en modifiant la longueur du barreau formant la nano-antenne plasmonique, ce qui résulte dans un déplacement de la courbe d'émission de la nano-antenne sur la courbe du corps noir (voir figure 2D) et de ce fait une modification de la réponse optique. Le codage de l'ensemble des lettres est réalisé en niveaux de gris dans 5 bandes spectrales différentes, centrées respectivement 3,20 microns, 3,71 microns, 4,22 microns, 4,73 microns, 5,24 microns. Le niveau de gris est obtenu pour chaque lettre en modifiant la longueur de chaque antenne. Les figures 9A à 9E montrent ainsi l'observation à travers des filtres respectivement centrés sur chacune des longueurs d'onde.The Figures 8A and 8B , 9A to 9E illustrate the transmission observation of a coding device according to the present description, produced by means of rectangular parallelepiped-shaped plasmonic nano-antennas arranged on elementary meshes of dimensions 30 × 30 microns. In this example, the substrate is silicon, the metal is gold, the dielectric formed of silica. The lower metal layer has a thickness of 200 nm (optically opaque layer). The thickness of the dielectric layer is 220 nm. The metal pads have a thickness of 50 nm. The antennas have widths of 100 nm and their lengths in one of the directions vary between 900 and 1450 nm, in steps of 50 nm to encode 11 levels of gray emission in one polarization and have 5 different lengths in the other direction . The temperature of the sample is 373 ° C for an observable emission in the spectral band 3 - 5 microns. In this example, a first "Molière" image ( figure 8A ) is coded according to a first polarization and a second image, formed of a superposition of the letters "M", "I", "N", "A", "O" is coded according to a second polarization. Thus, Figures 8A and 8B result from the emission observation of the heated device through two crossed polarizers. In these examples, the coding of the "Molière" is done in gray level, by modifying the length of the bar forming the plasmonic nano-antenna, which results in a displacement of the emission curve of the nano-antenna on the curve. black body (see 2D figure ) and thus a change in the optical response. The coding of all the letters is done in grayscale in 5 different spectral bands, centered respectively 3.20 microns, 3.71 microns, 4.22 microns, 4.73 microns, 5.24 microns. The gray level is obtained for each letter by changing the length of each antenna. The Figures 9A to 9E thus show the observation through filters respectively centered on each of the wavelengths.

Pour l'ensemble de ces exemples, un procédé de codage tel que représenté sur la figure 10 peut être utilisé.For all these examples, a coding method as represented on the figure 10 can be used.

La figure 10 illustre un exemple de procédé de codage d'au moins une information spatiale ou « image » au moyen d'un dispositif de codage selon la présente description, par exemple un dispositif de codage comprenant des nano-antennes plasmoniques telles que décrites précédemment. L'information spatiale est par exemple une information spatiale formant un motif reconnaissable (comme par exemple le « Molière » ou les lettres des figures 8A et 8B), ou une information spatiale formant un code-barres de type QR tel que décrit au moyen des figures 6 et 7A à 7D, ou peut être une image représentative d'une information spatiale monodimensionnelle, par exemple un code barre à une dimension. Dans tous les cas, on cherche à adapter le codage de l'information aux dispositifs d'authentification et notamment aux paramètres du détecteur (bande spectrale de détection, taille du pixel) et de l'optique de focalisation (ouverture numérique de l'objectif), par exemple tels que décrits sur les figures 11A et 11B.The figure 10 illustrates an exemplary method of encoding at least one spatial information or "image" by means of an encoding device according to the present description, for example a coding device comprising plasmonic nano-antennas as described above. Spatial information is, for example, spatial information forming a recognizable pattern (for example the "Molière" or the letters of Figures 8A and 8B ), or spatial information forming a QR-type bar code as described in average of figures 6 and 7A to 7D , or can be an image representative of one-dimensional spatial information, for example a one-dimensional bar code. In all cases, it is sought to adapt the coding of the information to the authentication devices and in particular to the parameters of the detector (spectral detection band, pixel size) and the focusing optics (numerical aperture of the objective ), for example as described in the Figures 11A and 11B .

La ou les image(s) sont tout d'abord découpées en pixels ou « pixellisés » (étape S1), la dimension des pixels dépendant des paramètres des systèmes de détection. Pour chaque pixel Pj,i de chaque image, où i est la position du pixel dans l'image d'indice j, est attribuée une valeur qui peut être, comme cela a été décrit précédemment, un niveau de gris dans une plage d'observation donnée, ou une « couleur », c'est-à-dire un ensemble de plusieurs valeurs de niveaux de gris pour différentes longueurs d'onde ou plages de longueurs d'onde (étape S2). Puis on détermine (étape S3) la maille élémentaire à la position i sur le support du dispositif de codage qui permettra de former la ou les réponse(s) optique(s) de valeur donnée pour chaque pixel, selon les procédés d'encodage décrits précédemment. La dernière étape (S4) consiste alors à fabriquer le dispositif de codage, selon des méthodes de fabrication connues, par exemple dépôt métallique sur substrat, dépôt de la couche diélectrique, lithographie électronique (mais qui peut être remplacée par une lithographie UV ou nanoimprint) pour la formation des plots métalliques, suivi d'un lift off (voir par exemple Levesque et al. « Plasmonic planar antenna for wideband and efficient linear polarization conversion », Appl. Phys. Lett 104, 111105 (2014 )).The image (s) are firstly cut into pixels or "pixelated" (step S1), the pixel size depending on the parameters of the detection systems. For each pixel P j, i of each image, where i is the position of the pixel in the index image j, a value is assigned which can be, as previously described, a gray level in a range of given observation, or a "color", that is to say a set of several values of gray levels for different wavelengths or ranges of wavelengths (step S 2 ). Then (step S 3 ) the elementary mesh at position i is determined on the support of the coding device which will make it possible to form the optical response (s) of given value for each pixel, according to the encoding methods. previously described. The last step (S4) then consists in manufacturing the coding device, according to known manufacturing methods, for example metallic deposition on a substrate, deposition of the dielectric layer, electronic lithography (but which can be replaced by UV or nanoimprint lithography) for the formation of metal pads, followed by a lift off (see for example Levesque et al. "Plasmonic planar antenna for wideband and efficient linear polarization conversion", Appl. Phys. Lett 104, 111105 (2014) )).

Les figures 11A et 11B représentent deux exemples de dispositifs d'authentification de produits sécurisés au moyen de dispositif de codage selon la présente description, pour une authentification respectivement en réflexion et en émission.The Figures 11A and 11B are two examples of secure product authentication devices by means of encoding device according to the present description, for an authentication respectively in reflection and in transmission.

Le dispositif d'authentification représenté sur la figure 11A est adapté à une authentification en réflexion d'un dispositif de codage 10 selon la présente description. Le dispositif de codage 10 est par exemple intégré dans un objet à sécuriser (non représenté). Le dispositif d'authentification comprend une voie d'émission avec une source démission 20 pour l'émission d'un faisceau lumineux collimaté I, destiné à éclairer le dispositif de codage 10. La source d'émission comprend par exemple un émetteur 21 et une lentille optique de collimation 22. L'émetteur est adapté à la bande spectrale d'observation recherché. Par exemple l'émetteur est une source lumineuse visible ou une source lumineuse dans l'infrarouge, par exemple une des bandes spectrales 3 - 5 µm ou 8 -12 µm correspondant à des bandes de transmission atmosphérique. Le dispositif d'authentification comprend par ailleurs une voie de détection avec un système de détection 30 destiné à recevoir un faisceau R résultant de la réflexion du faisceau I d'éclairage par le dispositif de codage. Le système de détection 30 comprend un élément optique de focalisation 31 qui peut être formé par exemple d'un objectif, d'une lentille optique ou de toute combinaison de ces éléments, et un détecteur 32 pour la détection dans la bande spectrale d'observation. Le détecteur comprend par exemple une caméra CCD ou CMOS pour l'observation dans le visible, avec des tailles de pixels de 1 à 10 µm. Dans l'infrarouge, les détecteurs peuvent comprendre par exemple : des détecteurs microbolomètres (3 - 14 µm), des détecteurs MCT bande I (1,5 - 5 µm), des détecteurs InGaAs (1 - 1,8 µm). La voie de détection comprend en outre, dans un ou plusieurs modes de réalisation, un ou plusieurs polariseurs 50 et un ou plusieurs filtres spectraux 40. Le système de détection définit une « taille de pixel » limitée par l'ouverture de l'optique de focalisation 31 ou la taille d'un détecteur élémentaire du détecteur 32. La taille de pixel est typiquement de 1 à 10 µm dans un système de détection visible ; elle est limitée par la limite de diffraction, avec une influence sur le rapport signal à bruit qui décroît lorsque les pixels deviennent petits. La taille de pixel est typiquement de 15 µm dans un système de détection infrarouge mais devrait descendre à 10 µm pour les détecteurs de prochaine génération.The authentication device represented on the figure 11A is adapted to authentication in reflection of a coding device 10 according to the present description. The coding device 10 is for example integrated in an object to be secured (not shown). The authentication device comprises a transmission channel with a source of emission 20 for the emission of a collimated light beam I intended to illuminate the coding device 10. The emission source comprises, for example, a transmitter 21 and a transmitter. optical collimation lens 22. The transmitter is adapted to the desired spectral observation band. For example, the emitter is a visible light source or a light source in the infrared, for example one of the spectral bands 3 - 5 μm or 8 -12 μm corresponding to atmospheric transmission bands. The authentication device further comprises a detection channel with a detection system 30 for receiving a beam R resulting from the reflection of the illumination beam I by the coding device. The detection system 30 comprises an optical focusing element 31 which can be formed for example of an objective, an optical lens or any combination of these elements, and a detector 32 for the detection in the spectral observation band . The detector comprises for example a CCD or CMOS camera for observation in the visible, with pixel sizes of 1 to 10 μm. In the infrared, the detectors may comprise, for example: microbolometer detectors (3 - 14 μm), MCT detectors I (1.5 - 5 μm), InGaAs detectors (1 - 1.8 μm). The detection path further comprises, in one or more embodiments, one or more polarizers 50 and one or more spectral filters 40. The detection system defines a "pixel size" limited by the opening of the optics of focusing 31 or the size of an elementary detector of the detector 32. The pixel size is typically 1 to 10 μm in a visible detection system; it is limited by the diffraction limit, with an influence on the signal-to-noise ratio which decreases when the pixels become small. The pixel size is typically 15 μm in an infrared detection system but should drop to 10 μm for next-generation detectors.

Le dispositif d'authentification représenté sur la figure 11B est adapté à une authentification en émission d'un dispositif de codage 10 selon la présente description. Il comprend une voie de détection sensiblement similaire à celle représentée sur la figure 11A mais pas de voie d'émission puisque c'est l'émission thermique du dispositif de codage qui est mesurée et non la réflexion d'une onde optique incidente. Selon un ou plusieurs exemples de réalisation, le dispositif d'authentification comprend des moyens de chauffe 60 permettant une émission thermique à des longueurs d'onde dans les bandes de détection infrarouge classiques.The authentication device represented on the Figure 11B is adapted to transmit authentication of a coding device 10 according to the present description. It comprises a detection path substantially similar to that shown on the figure 11A but no transmission path since it is the thermal emission of the coding device which is measured and not the reflection of an incident optical wave. According to one or more exemplary embodiments, the authentication device comprises heating means 60 enabling thermal emission at wavelengths in conventional infrared detection bands.

Dans le visible, les dispositifs de codage peuvent également être authentifiés à l'oeil nu. Ainsi, avec une vision normale, un individu peut distinguer des motifs avec une résolution angulaire de 1 minute d'arc, ce qui correspond pour un objet observé au punctum proximum (typiquement à une distance de 25 cms) à voir des pixels sur l'objet qui font entre 7 et 8 µm. Il est possible de descendre jusqu'à la limite de diffraction du visible avec des appareils classiques (loupe, microscope).In the visible, the coding devices can also be authenticated with the naked eye. Thus, with normal vision, an individual can distinguish patterns with an angular resolution of 1 minute arc, which corresponds for an object observed at the punctum proximum (typically at a distance of 25 cms) to see pixels on the object that are between 7 and 8 μm. It is possible to go down to the visible diffraction limit with conventional devices (magnifying glass, microscope).

Bien que décrite à travers un certain nombre d'exemples de réalisation détaillés, le dispositif et le procédé de codage selon la présente description comprennent différentes variantes, modifications et perfectionnements qui apparaîtront de façon évidente à l'homme de l'art, étant entendu que ces différentes variantes, modifications et perfectionnements font partie de la portée de l'invention, telle que définie par les revendications qui suivent.Although described through a number of detailed exemplary embodiments, the device and the coding method according to the present description comprise different variants, modifications and improvements which will become apparent to those skilled in the art, it being understood that these various variants, modifications and improvements are within the scope of the invention, as defined by the following claims.

Claims (14)

  1. An optical encoding device (10, 20, 30, 40) of an image formed of pixels each defined by a position and at least one value, the image comprising at least two pixels of different values, the encoding device being intended to be observed in at least a first spectral band of observation and comprising:
    - a supporting structure;
    - a set of plasmonic nanoantennas of the metal-dielectric-metal type formed on said supporting structure, such as:
    - each plasmonic nanoantenna is resonant to at least one wavelength comprised in said first spectral band of observation,
    - the plasmonic nanoantennas are arranged spatially on the supporting structure so that at one pixel of the image, a subset of one or more plasmonic nanoantenna(s) is associated, whose optical response according to a polarization and in a spectral band comprised in the first spectral band of observation corresponds to the value of said pixel, the set of plasmonic nanoantennas thus forming at least a first spatial coding of said image in said first spectral band of observation.
  2. The encoding device according to claim 1, wherein at least a first spatial encoding comprises a grayscale coding, said optical response of a subset of one or more plasmonic nanoantenna(s) associated with a pixel having a relative intensity in a scale of intensities corresponding to a pixel value defined by a gray level in a scale of gray levels.
  3. The encoding device according to any of the preceding claims, wherein a pixel of the image having at least a first and a second value, a subset of nanoantennas is associated with each pixel of the image, wherein said subset of nanoantennas has, according to a given polarization, at least a first and a second optical responses respectively in a first and second spectral bands comprised in the first spectral band of observation, the first and second optical responses corresponding to the first and second values of the pixel, thus forming a spatial color coding of the image in said first spectral band of observation.
  4. The encoding device according to any of the preceding claims, wherein:
    - the set of plasmonic nanoantennas comprises resonant plasmonic nanoantennas in a first spectral band of observation and resonant plasmonic nanoantennas in a second spectral band;
    - the resonant plasmonic nanoantennas in the first spectral band are arranged spatially on the substrate so as to form a first spatial encoding of a first image, observable in the first spectral band of observation, and the resonant plasmonic nanoantennas in the second spectral band are arranged spatially on the substrate so as to form a second spatial encoding of a second image, observable in the second spectral band of observation.
  5. The encoding device according to any of the preceding claims, wherein:
    - the set of plasmonic nanoantennas comprises resonant plasmonic nanoantennas according to a first polarization and resonant plasmonic nanoantennas according to a second polarization;
    - the resonant plasmonic nanoantennas according to the first polarization are arranged spatially on the substrate in such a way as to form a first spatial encoding of a first image, observable in said first spectral band of observation according to the first polarization, and the resonant plasmonic nanoantennas according to the second polarization are arranged spatially on the substrate so as to form a second spatial encoding of a second image, observable in said first spectral band of observation according to the second polarization.
  6. The encoding device according to any of the preceding claims, wherein the plasmonic nanoantennas are distributed in elementary cells (101, 201, 301) of similar shapes and dimensions, each elementary cell comprising a subset of one or more plasmonic nanoantennas having an optical response corresponding to a value of one pixel of the image.
  7. The encoding device according to claim 6, wherein the plasmonic antennas are distributed according to first elementary cells (100) of similar shapes and dimensions, each of the first elementary cells (100) comprising a subset of one or more plasmonic nanoantenna(s) presenting an optical response in a first spectral band of observation corresponding to a value of one pixel of a first image, and the first elementary cells are distributed in second elementary cells (200) of similar shapes and dimensions, each of the second elemental cells (200) comprising a subset of one or more plasmonic nanoantenna(s) having an optical response in a second spectral band of observation corresponding to a value of one pixel of a second image.
  8. The encoding device according to any of the preceding claims, wherein the plasmonic nanoantennas are spatially distributed on the substrate to encode in a first spectral band of observation and according to a given polarization, at least a first image forming a QR code.
  9. The encoding device according to any of the preceding claims, wherein the plasmonic nanoantennas are spatially arranged on the substrate to encode in a first spectral band of observation and according to a given polarization, at least a first image forming a recognizable pattern.
  10. The encoding device according to any of the preceding claims, wherein all the plasmonic nanoantennas comprise:
    - a first continuous metal layer (12);
    - a second continuous layer of dielectric material (13) formed on the first continuous metal layer (12);
    - A third metal layer arranged on the second continuous dielectric material layer (13) and structured to locally form metal-dielectric-metal stacks (MDMi) forming said plasmonic nanoantennas.
  11. The encoding device according to claim 10, further comprising a substrate (11) forming the supporting structure on which is deposited the first continuous metal layer (12).
  12. The encoding device according to claim 10, wherein the supporting structure is formed by the first continuous metal layer or by the second layer of dielectric material (13).
  13. A secured object comprising an encoding device according to any one of the preceding claims.
  14. An encoding method in at least a first spectral band of observation of at least one image, by means of an encoding device according to any one of claims 1 to 12, comprising:
    - decomposition of the image into pixels, each pixel having a position in the image;
    - each pixel is assigned the value of at least one pixel;
    - for each pixel, the determination of a subset of one or more plasmonic nanoantenna(s) whose optical response according to a polarization and in a spectral band comprised in the spectral band of observation corresponds to the value of the pixel;
    - the production of the metal-dielectric-metal structures on the supporting structure to form all the nanoantennas.
EP16745418.0A 2015-07-23 2016-07-05 Device and method for optically encoding an image Active EP3325280B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1557021A FR3039298B1 (en) 2015-07-23 2015-07-23 DEVICE AND METHOD FOR OPTICALLY ENCODING AN IMAGE
PCT/EP2016/065877 WO2017012862A1 (en) 2015-07-23 2016-07-05 Device and method for optically encoding an image

Publications (2)

Publication Number Publication Date
EP3325280A1 EP3325280A1 (en) 2018-05-30
EP3325280B1 true EP3325280B1 (en) 2019-08-28

Family

ID=54783746

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16745418.0A Active EP3325280B1 (en) 2015-07-23 2016-07-05 Device and method for optically encoding an image

Country Status (11)

Country Link
US (1) US10776679B2 (en)
EP (1) EP3325280B1 (en)
JP (1) JP6970087B2 (en)
KR (1) KR102505820B1 (en)
CN (1) CN108136810B (en)
CA (1) CA2993122C (en)
ES (1) ES2755707T3 (en)
FR (1) FR3039298B1 (en)
IL (1) IL257054B (en)
SG (1) SG11201800556UA (en)
WO (1) WO2017012862A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11656386B2 (en) * 2015-07-05 2023-05-23 Purdue Research Foundation Tunable plasmonic color device and method of making the same
WO2018146683A1 (en) * 2017-02-09 2018-08-16 Ramot At Tel-Aviv University Ltd. Method and system for characterizing a nanostructure by machine learning
WO2019059223A1 (en) * 2017-09-22 2019-03-28 グローリー株式会社 Counterfeit preventing structure, counterfeit preventing medium, and counterfeit preventing structure inspecting method
US10451447B2 (en) * 2018-01-04 2019-10-22 Mitsubishi Electric Research Laboratories, Inc. Polarization-dependent position encoder
KR102059539B1 (en) * 2018-03-30 2019-12-26 한국과학기술원 Structure for anti counterfeit, method for manufacturing of anti counterfeit structure, discrminating method for anti counterfeit and discrminating system for anti counterfeit
US20210389183A1 (en) * 2018-11-09 2021-12-16 Yale University High-speed ultrathin silicon-on-insulator infrared bolometers and imagers
WO2020180255A1 (en) * 2019-03-07 2020-09-10 Singapore University Of Technology And Design Optical security device, methods of forming and using the same
KR102220770B1 (en) * 2019-03-08 2021-02-26 포항공과대학교 산학협력단 Meta material encryption surface and manufacturing method the same
KR102112800B1 (en) * 2019-09-24 2020-05-19 오준호 Light Emitting Antenna Display
US11674850B1 (en) * 2020-04-22 2023-06-13 National Technology & Engineering Solutions Of Sandia, Llc Continuous full-resolution two-color infrared detector

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649658B2 (en) * 2005-03-15 2011-03-16 独立行政法人 国立印刷局 Hidden image or hidden information authentication method and authentication system
US8547504B2 (en) 2010-04-27 2013-10-01 The Regents Of The University Of Michigan Display device having plasmonic color filters and photovoltaic capabilities
GB201011720D0 (en) 2010-07-13 2010-08-25 Univ Southampton Controlling the colours of metals: bas-relief and intaglio metamaterials
AU2012309205B2 (en) * 2011-09-12 2015-05-14 Agency For Science, Technology And Research An optical arrangement and a method of forming the same
WO2016108990A2 (en) * 2014-10-10 2016-07-07 Duke University Nanopatch antennas and related methods for tailoring the properties of optical materials and metasurfaces
CA2987417A1 (en) * 2015-06-02 2016-12-08 The University Of Melbourne Method and apparatus for representing an image with plasmonic pixels
WO2016191871A1 (en) 2015-06-03 2016-12-08 University Of Saskatchewan 4-piperidone derivatives as antineoplastics
EP4224219A3 (en) * 2016-04-22 2023-08-30 Illumina Inc Photonic stucture-based devices and compositions for use in luminescent imaging of multiple sites within a pixel, and methods of using the same
US10371892B2 (en) * 2017-03-27 2019-08-06 Board Of Regents, The University Of Texas System Nanostructured photonic materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CA2993122A1 (en) 2017-01-26
EP3325280A1 (en) 2018-05-30
US10776679B2 (en) 2020-09-15
US20200082234A1 (en) 2020-03-12
FR3039298A1 (en) 2017-01-27
JP6970087B2 (en) 2021-11-24
CA2993122C (en) 2023-08-01
KR102505820B1 (en) 2023-03-06
ES2755707T3 (en) 2020-04-23
JP2018527628A (en) 2018-09-20
CN108136810A (en) 2018-06-08
CN108136810B (en) 2019-11-05
IL257054A (en) 2018-03-29
IL257054B (en) 2021-08-31
FR3039298B1 (en) 2018-06-22
WO2017012862A1 (en) 2017-01-26
KR20180033256A (en) 2018-04-02
SG11201800556UA (en) 2018-02-27

Similar Documents

Publication Publication Date Title
EP3325280B1 (en) Device and method for optically encoding an image
EP2695006B1 (en) Optical safety component having a transmissive effect, manufacture of such a component, and secure document provided with such a component
EP3334611B1 (en) Optical security component with plasmon effect and method for manufacturing such a component
EP2512822B1 (en) Security element comprising an optical element
EP3634771B1 (en) Optical security component visible in reflection, manufacture of such a component
FR3051565B1 (en) OPTICAL SECURITY COMPONENT AND METHOD FOR MANUFACTURING SUCH COMPONENT
EP3007903B1 (en) Security structure having a diffractive optical element
EP2836371B1 (en) Optical security component, manufacture of such a component, and protected product provided with one such component
EP3969293B1 (en) Optical security component having a plasmonic effect, manufacture of such a component, and secure object provided with such a component
US20170192351A1 (en) Process for plasmonic-based high resolution color printing
FR3124980A1 (en) Optical security components, manufacture of such components and secure documents equipped with such components
EP3727872A1 (en) Optical security component visible in reflection, manufacture of such a component, and secure document provided with such a component

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190404

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1171938

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016019470

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FREIGUTPARTNERS IP LAW FIRM DR. ROLF DITTMANN, CH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191128

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191128

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191129

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191228

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1171938

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2755707

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016019470

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200705

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230622

Year of fee payment: 8

Ref country code: IT

Payment date: 20230620

Year of fee payment: 8

Ref country code: FR

Payment date: 20230621

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230622

Year of fee payment: 8

Ref country code: FI

Payment date: 20230622

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230620

Year of fee payment: 8

Ref country code: ES

Payment date: 20230801

Year of fee payment: 8

Ref country code: CH

Payment date: 20230801

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 8