EP3309081B1 - Wrapping machine and associated pneumatic system - Google Patents

Wrapping machine and associated pneumatic system Download PDF

Info

Publication number
EP3309081B1
EP3309081B1 EP17195704.6A EP17195704A EP3309081B1 EP 3309081 B1 EP3309081 B1 EP 3309081B1 EP 17195704 A EP17195704 A EP 17195704A EP 3309081 B1 EP3309081 B1 EP 3309081B1
Authority
EP
European Patent Office
Prior art keywords
receiver tank
air
outlet
drain
machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP17195704.6A
Other languages
German (de)
French (fr)
Other versions
EP3309081A3 (en
EP3309081A2 (en
Inventor
Gary W. CORNISH
Brian S. Elliott
Robert S. Davis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Illinois Tool Works Inc
Original Assignee
Illinois Tool Works Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Illinois Tool Works Inc filed Critical Illinois Tool Works Inc
Publication of EP3309081A2 publication Critical patent/EP3309081A2/en
Publication of EP3309081A3 publication Critical patent/EP3309081A3/en
Application granted granted Critical
Publication of EP3309081B1 publication Critical patent/EP3309081B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B65/00Details peculiar to packaging machines and not otherwise provided for; Arrangements of such details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B11/00Wrapping, e.g. partially or wholly enclosing, articles or quantities of material, in strips, sheets or blanks, of flexible material
    • B65B11/02Wrapping articles or quantities of material, without changing their position during the wrapping operation, e.g. in moulds with hinged folders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B11/00Wrapping, e.g. partially or wholly enclosing, articles or quantities of material, in strips, sheets or blanks, of flexible material
    • B65B11/06Wrapping articles, or quantities of material, by conveying wrapper and contents in common defined paths
    • B65B11/08Wrapping articles, or quantities of material, by conveying wrapper and contents in common defined paths in a single straight path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B11/00Wrapping, e.g. partially or wholly enclosing, articles or quantities of material, in strips, sheets or blanks, of flexible material
    • B65B11/54Wrapping by causing the wrapper to embrace one end and all sides of the contents, and closing the wrapper onto the opposite end by forming regular or irregular pleats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B25/00Packaging other articles presenting special problems
    • B65B25/06Packaging slices or specially-shaped pieces of meat, cheese, or other plastic or tacky products
    • B65B25/065Packaging slices or specially-shaped pieces of meat, cheese, or other plastic or tacky products of meat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B35/00Supplying, feeding, arranging or orientating articles to be packaged
    • B65B35/10Feeding, e.g. conveying, single articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B41/00Supplying or feeding container-forming sheets or wrapping material
    • B65B41/02Feeding sheets or wrapper blanks
    • B65B41/04Feeding sheets or wrapper blanks by grippers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B41/00Supplying or feeding container-forming sheets or wrapping material
    • B65B41/12Feeding webs from rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B41/00Supplying or feeding container-forming sheets or wrapping material
    • B65B41/12Feeding webs from rolls
    • B65B41/14Feeding webs from rolls by grippers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B51/00Devices for, or methods of, sealing or securing package folds or closures; Devices for gathering or twisting wrappers, or necks of bags
    • B65B51/10Applying or generating heat or pressure or combinations thereof
    • B65B51/18Applying or generating heat or pressure or combinations thereof by endless bands or chains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B57/00Automatic control, checking, warning, or safety devices
    • B65B57/10Automatic control, checking, warning, or safety devices responsive to absence, presence, abnormal feed, or misplacement of articles or materials to be packaged
    • B65B57/12Automatic control, checking, warning, or safety devices responsive to absence, presence, abnormal feed, or misplacement of articles or materials to be packaged and operating to control, or stop, the feed of wrapping materials, containers, or packages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/12Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/16Filtration; Moisture separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/02Pumping installations or systems specially adapted for elastic fluids having reservoirs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B2210/00Specific aspects of the packaging machine
    • B65B2210/04Customised on demand packaging by determining a specific characteristic, e.g. shape or height, of articles or material to be packaged and selecting, creating or adapting a packaging accordingly, e.g. making a carton starting from web material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B2210/00Specific aspects of the packaging machine
    • B65B2210/06Sterilising or cleaning machinery or conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/869Means to drive or to guide tool
    • Y10T83/8691Unicyclic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/869Means to drive or to guide tool
    • Y10T83/8821With simple rectilinear reciprocating motion only
    • Y10T83/8841Tool driver movable relative to tool support
    • Y10T83/8848Connecting rod articulated with tool support

Definitions

  • This application relates generally to wrapping machines used for wrapping food items and, more specifically, to a wrapping machine and associated pneumatic system that is suited for operation in cool environments.
  • Pneumatic systems such as those used to control components in a trayed item (e.g., trayed meat items) wrapping machine (see e.g. JP 2013 133162 ), require consistent response times from all of the actuation cylinders and valves in the system and therefore must maintain dry air throughout the system. Water in such a pneumatic system will cause lubricants in cylinders and valves to break down and rust to build up on surfaces not tolerant to water. The result, assuming the cylinder or valve still functions, is typically slower or less consistent response times for the cylinder or valve to move from its home point to end of travel. This scenario may jeopardize any hard deadlines of an automated system to meet specific timing requirements.
  • a wrapping machine for wrapping trayed food products includes a plurality of pneumatic components that are actuatable by delivery of pressurized air to the pneumatic components.
  • a pneumatic arrangement produces pressurized air for actuating the pneumatic components.
  • the pneumatic arrangement is configured to reduce moisture in the pressurized air.
  • a wrapping machine for wrapping trayed food products includes a plurality of pneumatic components that are actuatable by delivery of pressurized air to the pneumatic components.
  • a pneumatic arrangement produces pressurized air for actuating the pneumatic components.
  • the pneumatic arrangement includes first and second receiver tanks connected in series along a flow path from the compressor to the pneumatic components.
  • a wrapping machine for wrapping food products includes a wrap station at which food products are wrapped and a film dispensing system for drawing out film over food products at the wrap station.
  • a conveying system moves food products along a path to the wrap station.
  • a plurality of pneumatic components are provided, each pneumatic component actuatable by delivery of pressurized air, and a pneumatic arrangement produces pressurized air for actuating the pneumatic components.
  • the pneumatic arrangement includes a compressor, first receiver tank and second receiver tank.
  • the compressor tank includes an air inlet and an air outlet.
  • the first receiver tank includes an air inlet fluidly connected to the air outlet of the compressor to receive pressurized air, the first receiver tank is sized to enable water in the pressurized air to condense, the first receiver tank includes a drain outlet for draining condensed water, and the first receiver tank has an air outlet.
  • An air inlet of the second receiver tank is fluidly connected to the air outlet of the first receiver tank to receive pressurized air.
  • the second receiver tank is sized to enable water in the pressurized air that enters the second receiver tank to condense, the second receiver tank includes a drain outlet for draining condensed water, and the second receiver tank having an air outlet that is fluidly connected to a path for delivery of pressurized air to the pneumatic components.
  • a wrapping machine for wrapping food products includes a wrap station at which food products are wrapped and a film dispensing system for drawing out film over food products at the wrap station.
  • a conveying system moves food products along a path to the wrap station.
  • a plurality of pneumatic components are provided, each pneumatic component actuatable by delivery of pressurized air, and a pneumatic arrangement produces pressurized air for actuating the pneumatic components.
  • the pneumatic arrangement includes a compressor and a receiver tank.
  • the receiver tank includes an air inlet fluidly connected to the air outlet of the compressor to receive pressurized air, and the receiver tank is sized to enable water in the pressurized air to condense, the receiver tank includes a drain outlet for draining condensed water, and the receiver tank has an air outlet.
  • the receiver tank also has an air outlet fluidly connected to a path for delivery of pressurized air to the pneumatic components.
  • a drain valve is associated with the drain outlet (e.g., downsteam along a drain path that is connected to the drain outlet).
  • a controller is configured for controlling wrap operations of the wrapping machine, including controlling the conveying system, the pneumatic components and the compressor. The controller is also configured to selectively open the drain valve (i) upon completion of a wrap sequence and/or (ii) upon start-up of a wrap sequence.
  • a wrapping machine in still another aspect, includes wrap station at which food products are wrapped and a film dispensing system for drawing out film over food products at the wrap station.
  • a conveying system moves food products along a path to the wrap station.
  • a plurality of pneumatic components are provided, each pneumatic component actuatable by delivery of pressurized air.
  • a pneumatic arrangement produces pressurized air for actuating the pneumatic components.
  • the pneumatic arrangement includes a compressor with an air inlet and an air outlet, the outlet fluidly connected to a path for delivery of pressurized air to the pneumatic components.
  • a pressurized air wand is connected to an outlet of the path such that pressurized air produced on-board of the wrapping machine can be selectively output by the pressurized air wand under manual control.
  • a food product wrapping machine 10 includes an inner frame and outer housing 12.
  • An inlet area 14 provides a location at which products to be wrapped (e.g., food items 16, such as meats in trays) are input to the machine for wrapping in plastic film.
  • the inlet area 14 is part of a conveying system 18 that carries packages into the machine (right to left in Figs. 2 and 3 ) and then up into a wrap station 20 at which the food products are wrapped.
  • the conveying system includes one or more horizontal conveyors 18A that feed from the front of the machine back to an elevator mechanism 18B.
  • a film dispensing system 22 is provided for drawing out film over food products at the wrap station 20 (e.g., under control of a film gripper 24 that moves left to right in Fig. 3 in order to draw off film from one or more film rolls 26).
  • an actuatable film selector 28 provides the ability to select the desired film for a given wrap operation (e.g., depending upon size of the food product).
  • An actuatable film knife 30 is provided to cut the film at the appropriate time to enable the wrap operation to be completed.
  • the wrap station may include side clamps 32A, 32B to grip the lateral sides of the film, as well as side underfolders and a rear underfolder (not shown).
  • a weighing mechanism 34 is located at the inlet area for weighing the food product as it is placed into the machine. Once a stable weight is determined, the food product 16 is moved laterally into the machine through a light curtain imaging system 38 and past a height sensor array 40 for determining size of the food product and location of the food product on the conveyor. Part of the horizontal conveying system 18A may shift be shifted (e.g., into or out of the page in Fig. 3 ) as necessary to assure that the food product is properly centered when it is transferred onto the elevator mechanism 18B.
  • the wrapped food product is conveyed by a conveyor 42 back toward the front of the machine and deposited onto another horizontal conveyor 44, which here moves left or right (into or out of the page in Fig. 3 ).
  • the conveyor 42 includes an associated sealer belt that heats the bottom of the wrapped food product to seal the film, and a label printing mechanism 46 prints and applies a pricing label to the wrapped food product.
  • An exemplary controller 50 is shown for controlling machine operation.
  • controller is intended to broadly encompass any circuit (e.g., solid state, application specific integrated circuit (ASIC), an electronic circuit, a combinational logic circuit, a field programmable gate array (FPGA)), processor(s) (e.g., shared, dedicated, or group - including hardware or software that executes code), software, firmware and/or other components, or a combination of some or all of the above, that carries out the control functions of the machine or the control functions of any component thereof.
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Various motors M are shown and are used primarily for movement of the conveyor components, gripper components and underfolders. However, a plurality of pneumatic components are also provided for control of components, where each pneumatic component is actuatable by delivery of pressurized air.
  • Fig. 4 shows an exemplary pneumatic arrangement 60 for the wrapping machine.
  • the illustrated system employs pneumatics to perform actuation of various components and utilizes a design that can remove the heat and humidity from the compressor and the environment from which the compressor is pulling air.
  • This design solves the problem of maintaining a dew point within the pneumatic system that is below the ambient temperature of the environment (in this case the environment is typically the meat processing environment, which may be 10°C (50 °F) or less, such as less than 7,78 °C (46 °F)).
  • the exemplary automated wrapping system includes a pair of pneumatic cylinders 62A, 62B to actuate the side clamps 32A, 32B, a set of pneumatic gripper cylinders 64A, 64B, 64C to actuate the gripping operation of the film gripper 24 (which has a center grip and two side grips), a pneumatic cylinder 66 to actuate the film knife assembly 30 to cut the film, a pair of film selector pneumatic cylinders 68A, 68B to select from the two film rolls, and a pneumatic cylinder 70 to actuate a label applier.
  • All of these actuation points should be free from any material amount of water in the pressurized air system to operate at specific response rates required to wrap product in trays at desired speeds (e.g., 30 Packages Per Minute (PPM) or more).
  • PPM Packages Per Minute
  • the system components described below help to develop pressure in the system and maintain a dew point in the system that is below the ambient temperature, even in low temperature environments.
  • the air flow of the system starts at the compressor 100 with arrows indicating the flow through all key components.
  • the compressor 100 includes an air inlet and an air outlet and generates a high pressure (e.g., at least 827 kPa (120 PSI), such at least 896 kPa (130 PSI) (e.g., a 930 kPa (135 PSI) target)) as it moves air from the walk-in cooler environment into a closed pressure system.
  • a high pressure e.g., at least 827 kPa (120 PSI), such at least 896 kPa (130 PSI) (e.g., a 930 kPa (135 PSI) target)
  • the compressor 100 may be sized that it only needs to be operated at no more than a 50% duty cycle, such as at most a 40% duty cycle or at most a 35% duty cycle to provide adequate air pressure even when the wrapping machine is wrapping at a rated high speed of 25 or more PPM.
  • the negative by product of the compression is heat that will affect the dew point and should be removed, and a fan may be provided for this purpose.
  • the compressor 100 is also pulling in high humidity air in the walk-in cooler environment, making it more difficult to create a dry pressurized air flow to the components.
  • the illustrated fluid connections between components may be formed of suitable tubing (e.g., copper and/or flexible).
  • Tubing in the system between the compressor and a receiver tank 102 may be of a specified length and diameter (e.g., 1,27 cm (1/2") OD) to provide an adequate amount of flow of the 930 kPa (135 PSI) system as well as a suitable surface area for the compressed air to cool as it travels to the air inlet of a receiver tank 102.
  • An unloader valve 104 with associated pressure sensor is provided between the compressor 100 and receiver tank 102 to remove pressure in the supply line between the compressor 100 and the receiver tank 102 to allow the compressor to start without back pressure.
  • the air outlet of receiver tank 102 feeds to an air inlet of a receiver tank 108.
  • Receiver tank 102 includes a drain outlet 110 and receiver tank 108 includes a drain outlet 112.
  • Drain outlet 110 feeds to a controllable drain valve 114.
  • the drain outlet 112 feeds along a path 116 into receiver tank 102 for eventual draining through drain outlet 110.
  • drain outlet 112 could feed along a separate external path 118 to the input side of the drain valve 114.
  • the air outlet of second receiver tank 108 feeds to path that leads to an air inlet of an auto drain trap 120, which in turn has an air outlet that feeds to an air inlet of another auto drain trap 122.
  • a pressure regulator 124 is positioned between the two auto drain traps and reduces the pressure to a desired set level for component operation.
  • the air outlet of auto drain trap 122 feeds to a low pressure dump valve 126, which in turn feeds to a valve manifold 128 with a plurality of controllable valves that enable controlled and selective delivery of pressurized air to the various pneumatic components.
  • Another valve manifold 130 selectively connects the high pressure air flow to the label applier cylinder, at either side according actuation desired.
  • a vacuum pump 132 creates a vacuum pull along path 134 that also feeds through the valve manifold 130 for selectively controlling application of the vacuum to an label application wand 136 to hold a label at the end of the wand.
  • each receiver tank 102 and 108 are positioned, sized and configured such that the hot, humid, high pressure air (e.g., at least 689 kPa (100 PSI)) expands and cools since the surface of the tanks are cooled by the meat processing environment.
  • each receiver tank may be cylindrical in configuration having a capacity of between about one and about three gallons.
  • the expansion and cooling process forces moisture out of the compressed air through condensation, thereby lowering the moisture level in the pressurized air.
  • the cool surface area of the first tank 102 causes condensation of the water as it passes thru the tank inlet, which condensation falls to the bottom of the tank 102. The air is subsequently cooled further within the tank during this first stage of condensation and cooling.
  • Water can collect on the bottom of the tank 102. The water is expelled on a selective basis under control of the drain valve 114. Alternatively, the water in tank 108 drains along path 118. By using two receiver tanks instead of one, the likelihood of blow through of condensed water is reduced, and the overall tank surface area is increased and/or more effectively utilized.
  • a pressure relief valve 115 may be provided on one or both of the receiver tanks to limit pressure within the tanks, and a pressure gauge 117 may also be provided for visual inspection by operators.
  • the high pressure air then enters the second receiver tank 108 for subsequent further cooling of the pressurized air and further condensation of remaining water in the pressurized air.
  • Tank 108 is located above tank 102, and this condensed water is freely drained by gravity into the bottom receiver tank 102 for subsequent removal under control of the drain valve.
  • the two downstream auto drain traps 120 and 122 provide a final filtering of the air in the system and expel any remaining condensed water particulates outside of the closed air system.
  • the pressure reduction between traps 120 and 122 and resulting expansion of the air results in a lower dew point of the pressurized air at the downstream side of regulator 124.
  • the result is a pressurized air flow from drain trap 122 having a dew point below the temperature of the ambient working environment of the machine (e.g., below 10 °C (50 °F)), which pressurized air is made available to the downstream components through the valve manifold 128. Because the dew point of the pressurized air is lower than the relatively cool temperature of the ambient environment, moisture condensation on the downstream side of the regulator 124 is significantly reduced and/or substantially eliminated from the system.
  • the controller 50 is connected for selective control of each valve.
  • the drain valve 114 may be opened on a predefined basis for draining of condensed water.
  • the drain valve 114 may be momentarily opened (e.g., for less than one second) to permit draining each time the wrapping machine is started to initiate a wrap sequence or operation (e.g., when a start button 160 ( Fig. 2 ) is pushed, or as part of an machine initialization sequence carried out responsive to pushing of the start button 160).
  • the draining may take place each time a wrap sequence or operation is stopped (e.g., when the machine is turned off).
  • Periodic draining e.g., every X minutes
  • draining based upon operating time e.g., after Y minutes of compressor operation
  • the compressor 100 and receiver tank volume can be collectively sized such that adequate air pressure is made available for all pneumatic components to operate properly as necessary for sequential wrapping operations at a rated high speed of at least 25 PPM (such as at least 30 PPM), while at the same time requiring the compressor to be operated at no more than a 50% duty cycle (e.g., at most a 40% duty cycle or at most a 35% duty cycle). This reduces overall heat production by the compressor and also enables overall quieter operation of the machine.
  • a pressure sensor may be used to control when the compressor is turned ON/OFF.
  • the compressor 100 and vacuum pump 132 may be located in a rear compartment 170 of the machine 10, where the rear compartment includes one or more louvered cover panels 172 that enable ventilation of the compartment.
  • a fan may be provided for moving air through the compartment if needed for heat reduction.
  • the heat produced by the compressor 100 and/or vacuum pump 132 may also be put to use to warm film and the sealer belt by heat capture and flow along paths 140, 142 ( Fig. 4 ). Due to the cold environment of the walk-in cooler film can be cold and will stretch less than desired during wrap of a product. Ideal wraps occur when the film temperature is maintained at or above 15,56 °C (60 °F).
  • the sealer belt of the system also requires a substantial amount of heat (upwards of 148,89 °C (300 °F)) to be applied to the bottom of a wrapped product tray to seal the film.
  • the compressor 100 and the vacuum pump 132 generate heat that may be captured and output (e.g., as a heated air flow) to the film and/or sealer belt areas of the machine to passively heat these areas.
  • the pressure regulator 124 provides a higher pressure zone upstream of the pressure regulator 124 and a lower pressure zone downstream of the pressure regulator 124.
  • a pressure in the higher pressure zone may be at least 827 kPa (120 PSI) (per above), and a pressure in the lower pressure zone may no more than 517 kPa (75 PSI), (e.g., no more than 413 kPa (60 PSI), such as a 344 kPa (50 PSI), target).
  • a pressurized air cleaning/drying wand 150 may be connected to a high pressure outlet 152 of the higher pressure zone.
  • the high pressure outlet 152 may include a quick disconnect coupler to which a flexible feed tube 154 of the pressurized air cleaning/drying wand is connected for this purpose.
  • the operator may selectively use the wand 150 for cleaning of the wrapping machine and/or the area around the wrapping machine.
  • An openable/closeable valve 106 e.g., manual lever valve or electrically/electronically controllable valve
  • the operator opens the valve when there is desire to use the wand 150.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Basic Packing Technique (AREA)
  • Buffer Packaging (AREA)
  • Drying Of Gases (AREA)

Description

    TECHNICAL FIELD
  • This application relates generally to wrapping machines used for wrapping food items and, more specifically, to a wrapping machine and associated pneumatic system that is suited for operation in cool environments.
  • BACKGROUND
  • Pneumatic systems, such as those used to control components in a trayed item (e.g., trayed meat items) wrapping machine (see e.g. JP 2013 133162 ), require consistent response times from all of the actuation cylinders and valves in the system and therefore must maintain dry air throughout the system. Water in such a pneumatic system will cause lubricants in cylinders and valves to break down and rust to build up on surfaces not tolerant to water. The result, assuming the cylinder or valve still functions, is typically slower or less consistent response times for the cylinder or valve to move from its home point to end of travel. This scenario may jeopardize any hard deadlines of an automated system to meet specific timing requirements.
  • It would be desirable to provide an automated wrapping system with a pneumatic arrangement that facilitates operation in a typical 90%+ relative humidity and 4,44°C (40°F) meat processing environment, yet can maintain a dry air actuation system to achieve consistent actuation response times.
  • SUMMARY
  • In one aspect, a wrapping machine for wrapping trayed food products includes a plurality of pneumatic components that are actuatable by delivery of pressurized air to the pneumatic components. A pneumatic arrangement produces pressurized air for actuating the pneumatic components. The pneumatic arrangement is configured to reduce moisture in the pressurized air.
  • In another aspect, a wrapping machine for wrapping trayed food products includes a plurality of pneumatic components that are actuatable by delivery of pressurized air to the pneumatic components. A pneumatic arrangement produces pressurized air for actuating the pneumatic components. The pneumatic arrangement includes first and second receiver tanks connected in series along a flow path from the compressor to the pneumatic components.
  • In a further aspect, a wrapping machine for wrapping food products includes a wrap station at which food products are wrapped and a film dispensing system for drawing out film over food products at the wrap station. A conveying system moves food products along a path to the wrap station. A plurality of pneumatic components are provided, each pneumatic component actuatable by delivery of pressurized air, and a pneumatic arrangement produces pressurized air for actuating the pneumatic components. The pneumatic arrangement includes a compressor, first receiver tank and second receiver tank. The compressor tank includes an air inlet and an air outlet. The first receiver tank includes an air inlet fluidly connected to the air outlet of the compressor to receive pressurized air, the first receiver tank is sized to enable water in the pressurized air to condense, the first receiver tank includes a drain outlet for draining condensed water, and the first receiver tank has an air outlet. An air inlet of the second receiver tank is fluidly connected to the air outlet of the first receiver tank to receive pressurized air. The second receiver tank is sized to enable water in the pressurized air that enters the second receiver tank to condense, the second receiver tank includes a drain outlet for draining condensed water, and the second receiver tank having an air outlet that is fluidly connected to a path for delivery of pressurized air to the pneumatic components.
  • In yet another aspect, a wrapping machine for wrapping food products includes a wrap station at which food products are wrapped and a film dispensing system for drawing out film over food products at the wrap station. A conveying system moves food products along a path to the wrap station. A plurality of pneumatic components are provided, each pneumatic component actuatable by delivery of pressurized air, and a pneumatic arrangement produces pressurized air for actuating the pneumatic components. The pneumatic arrangement includes a compressor and a receiver tank. The receiver tank includes an air inlet fluidly connected to the air outlet of the compressor to receive pressurized air, and the receiver tank is sized to enable water in the pressurized air to condense, the receiver tank includes a drain outlet for draining condensed water, and the receiver tank has an air outlet. The receiver tank also has an air outlet fluidly connected to a path for delivery of pressurized air to the pneumatic components. A drain valve is associated with the drain outlet (e.g., downsteam along a drain path that is connected to the drain outlet). A controller is configured for controlling wrap operations of the wrapping machine, including controlling the conveying system, the pneumatic components and the compressor. The controller is also configured to selectively open the drain valve (i) upon completion of a wrap sequence and/or (ii) upon start-up of a wrap sequence.
  • In still another aspect, a wrapping machine includes wrap station at which food products are wrapped and a film dispensing system for drawing out film over food products at the wrap station. A conveying system moves food products along a path to the wrap station. A plurality of pneumatic components are provided, each pneumatic component actuatable by delivery of pressurized air. A pneumatic arrangement produces pressurized air for actuating the pneumatic components. The pneumatic arrangement includes a compressor with an air inlet and an air outlet, the outlet fluidly connected to a path for delivery of pressurized air to the pneumatic components. A pressurized air wand is connected to an outlet of the path such that pressurized air produced on-board of the wrapping machine can be selectively output by the pressurized air wand under manual control.
  • The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
    • Fig. 1 is a perspective front view of a wrapping machine;
    • Fig. 2 is a side elevation of the wrapping machine;
    • Fig. 3 is a schematic side view showing product movement through the machine during wrapping;
    • Fig. 4 is a schematic depiction of wrapping machine components and a pneumatic arrangement of the machine; and
    • Figs. 5 and 6 are perspective rear views of the wrapping machine.
    DETAILED DESCRIPTION
  • Referring to Figs. 1-3, a food product wrapping machine 10 includes an inner frame and outer housing 12. An inlet area 14 provides a location at which products to be wrapped (e.g., food items 16, such as meats in trays) are input to the machine for wrapping in plastic film. The inlet area 14 is part of a conveying system 18 that carries packages into the machine (right to left in Figs. 2 and 3) and then up into a wrap station 20 at which the food products are wrapped. Here the conveying system includes one or more horizontal conveyors 18A that feed from the front of the machine back to an elevator mechanism 18B. A film dispensing system 22 is provided for drawing out film over food products at the wrap station 20 (e.g., under control of a film gripper 24 that moves left to right in Fig. 3 in order to draw off film from one or more film rolls 26). Where more than one film roll is provided (e.g., of differing film widths), an actuatable film selector 28 provides the ability to select the desired film for a given wrap operation (e.g., depending upon size of the food product). An actuatable film knife 30 is provided to cut the film at the appropriate time to enable the wrap operation to be completed. The wrap station may include side clamps 32A, 32B to grip the lateral sides of the film, as well as side underfolders and a rear underfolder (not shown).
  • A weighing mechanism 34 is located at the inlet area for weighing the food product as it is placed into the machine. Once a stable weight is determined, the food product 16 is moved laterally into the machine through a light curtain imaging system 38 and past a height sensor array 40 for determining size of the food product and location of the food product on the conveyor. Part of the horizontal conveying system 18A may shift be shifted (e.g., into or out of the page in Fig. 3) as necessary to assure that the food product is properly centered when it is transferred onto the elevator mechanism 18B. After the food product is moved up into the wrap station 20 and wrapped, the wrapped food product is conveyed by a conveyor 42 back toward the front of the machine and deposited onto another horizontal conveyor 44, which here moves left or right (into or out of the page in Fig. 3). The conveyor 42 includes an associated sealer belt that heats the bottom of the wrapped food product to seal the film, and a label printing mechanism 46 prints and applies a pricing label to the wrapped food product. An exemplary controller 50 is shown for controlling machine operation.
  • As used herein, the term controller is intended to broadly encompass any circuit (e.g., solid state, application specific integrated circuit (ASIC), an electronic circuit, a combinational logic circuit, a field programmable gate array (FPGA)), processor(s) (e.g., shared, dedicated, or group - including hardware or software that executes code), software, firmware and/or other components, or a combination of some or all of the above, that carries out the control functions of the machine or the control functions of any component thereof.
  • Various motors M are shown and are used primarily for movement of the conveyor components, gripper components and underfolders. However, a plurality of pneumatic components are also provided for control of components, where each pneumatic component is actuatable by delivery of pressurized air.
  • In this regard, Fig. 4 shows an exemplary pneumatic arrangement 60 for the wrapping machine. The illustrated system employs pneumatics to perform actuation of various components and utilizes a design that can remove the heat and humidity from the compressor and the environment from which the compressor is pulling air. This design solves the problem of maintaining a dew point within the pneumatic system that is below the ambient temperature of the environment (in this case the environment is typically the meat processing environment, which may be 10°C (50 °F) or less, such as less than 7,78 °C (46 °F)).
  • The exemplary automated wrapping system includes a pair of pneumatic cylinders 62A, 62B to actuate the side clamps 32A, 32B, a set of pneumatic gripper cylinders 64A, 64B, 64C to actuate the gripping operation of the film gripper 24 (which has a center grip and two side grips), a pneumatic cylinder 66 to actuate the film knife assembly 30 to cut the film, a pair of film selector pneumatic cylinders 68A, 68B to select from the two film rolls, and a pneumatic cylinder 70 to actuate a label applier. All of these actuation points should be free from any material amount of water in the pressurized air system to operate at specific response rates required to wrap product in trays at desired speeds (e.g., 30 Packages Per Minute (PPM) or more). The system components described below help to develop pressure in the system and maintain a dew point in the system that is below the ambient temperature, even in low temperature environments.
  • The air flow of the system starts at the compressor 100 with arrows indicating the flow through all key components. The compressor 100 includes an air inlet and an air outlet and generates a high pressure (e.g., at least 827 kPa (120 PSI), such at least 896 kPa (130 PSI) (e.g., a 930 kPa (135 PSI) target)) as it moves air from the walk-in cooler environment into a closed pressure system. To reduce overall noise, the compressor 100 may be sized that it only needs to be operated at no more than a 50% duty cycle, such as at most a 40% duty cycle or at most a 35% duty cycle to provide adequate air pressure even when the wrapping machine is wrapping at a rated high speed of 25 or more PPM. However, even at a 30% duty cycle the negative by product of the compression is heat that will affect the dew point and should be removed, and a fan may be provided for this purpose. The compressor 100 is also pulling in high humidity air in the walk-in cooler environment, making it more difficult to create a dry pressurized air flow to the components.
  • The illustrated fluid connections between components may be formed of suitable tubing (e.g., copper and/or flexible). Tubing in the system between the compressor and a receiver tank 102 may be of a specified length and diameter (e.g., 1,27 cm (1/2") OD) to provide an adequate amount of flow of the 930 kPa (135 PSI) system as well as a suitable surface area for the compressed air to cool as it travels to the air inlet of a receiver tank 102. An unloader valve 104 with associated pressure sensor is provided between the compressor 100 and receiver tank 102 to remove pressure in the supply line between the compressor 100 and the receiver tank 102 to allow the compressor to start without back pressure. The air outlet of receiver tank 102 feeds to an air inlet of a receiver tank 108. Receiver tank 102 includes a drain outlet 110 and receiver tank 108 includes a drain outlet 112.
  • Drain outlet 110 feeds to a controllable drain valve 114. Here, the drain outlet 112 feeds along a path 116 into receiver tank 102 for eventual draining through drain outlet 110. However, alternatively drain outlet 112 could feed along a separate external path 118 to the input side of the drain valve 114.
  • The air outlet of second receiver tank 108 feeds to path that leads to an air inlet of an auto drain trap 120, which in turn has an air outlet that feeds to an air inlet of another auto drain trap 122. A pressure regulator 124 is positioned between the two auto drain traps and reduces the pressure to a desired set level for component operation. The air outlet of auto drain trap 122 feeds to a low pressure dump valve 126, which in turn feeds to a valve manifold 128 with a plurality of controllable valves that enable controlled and selective delivery of pressurized air to the various pneumatic components.
  • Another valve manifold 130 selectively connects the high pressure air flow to the label applier cylinder, at either side according actuation desired. A vacuum pump 132 creates a vacuum pull along path 134 that also feeds through the valve manifold 130 for selectively controlling application of the vacuum to an label application wand 136 to hold a label at the end of the wand.
  • Notably, the receiver tanks 102 and 108 are positioned, sized and configured such that the hot, humid, high pressure air (e.g., at least 689 kPa (100 PSI)) expands and cools since the surface of the tanks are cooled by the meat processing environment. In one example, each receiver tank may be cylindrical in configuration having a capacity of between about one and about three gallons. The expansion and cooling process forces moisture out of the compressed air through condensation, thereby lowering the moisture level in the pressurized air. The cool surface area of the first tank 102 causes condensation of the water as it passes thru the tank inlet, which condensation falls to the bottom of the tank 102. The air is subsequently cooled further within the tank during this first stage of condensation and cooling. Water can collect on the bottom of the tank 102. The water is expelled on a selective basis under control of the drain valve 114. Alternatively, the water in tank 108 drains along path 118. By using two receiver tanks instead of one, the likelihood of blow through of condensed water is reduced, and the overall tank surface area is increased and/or more effectively utilized. A pressure relief valve 115 may be provided on one or both of the receiver tanks to limit pressure within the tanks, and a pressure gauge 117 may also be provided for visual inspection by operators.
  • The high pressure air then enters the second receiver tank 108 for subsequent further cooling of the pressurized air and further condensation of remaining water in the pressurized air. Tank 108 is located above tank 102, and this condensed water is freely drained by gravity into the bottom receiver tank 102 for subsequent removal under control of the drain valve. The combined cooled surface area of the two receiver tanks 102 and 108, the volume of the tanks to handle water condensation and drain the water, and the high pressure force water droplets to separate from the pressurized air. The two downstream auto drain traps 120 and 122 provide a final filtering of the air in the system and expel any remaining condensed water particulates outside of the closed air system. The pressure reduction between traps 120 and 122 and resulting expansion of the air results in a lower dew point of the pressurized air at the downstream side of regulator 124. The result is a pressurized air flow from drain trap 122 having a dew point below the temperature of the ambient working environment of the machine (e.g., below 10 °C (50 °F)), which pressurized air is made available to the downstream components through the valve manifold 128. Because the dew point of the pressurized air is lower than the relatively cool temperature of the ambient environment, moisture condensation on the downstream side of the regulator 124 is significantly reduced and/or substantially eliminated from the system. The controller 50 is connected for selective control of each valve.
  • The drain valve 114 may be opened on a predefined basis for draining of condensed water. By way of example, in one implementation the drain valve 114 may be momentarily opened (e.g., for less than one second) to permit draining each time the wrapping machine is started to initiate a wrap sequence or operation (e.g., when a start button 160 (Fig. 2) is pushed, or as part of an machine initialization sequence carried out responsive to pushing of the start button 160). In another example, the draining may take place each time a wrap sequence or operation is stopped (e.g., when the machine is turned off). Periodic draining (e.g., every X minutes) or draining based upon operating time (e.g., after Y minutes of compressor operation) could also be implemented.
  • The compressor 100 and receiver tank volume can be collectively sized such that adequate air pressure is made available for all pneumatic components to operate properly as necessary for sequential wrapping operations at a rated high speed of at least 25 PPM (such as at least 30 PPM), while at the same time requiring the compressor to be operated at no more than a 50% duty cycle (e.g., at most a 40% duty cycle or at most a 35% duty cycle). This reduces overall heat production by the compressor and also enables overall quieter operation of the machine. A pressure sensor may be used to control when the compressor is turned ON/OFF.
  • As seen in the rear perspectives of Figs. 5 and 6, the compressor 100 and vacuum pump 132 may be located in a rear compartment 170 of the machine 10, where the rear compartment includes one or more louvered cover panels 172 that enable ventilation of the compartment. A fan may be provided for moving air through the compartment if needed for heat reduction.
  • The heat produced by the compressor 100 and/or vacuum pump 132 may also be put to use to warm film and the sealer belt by heat capture and flow along paths 140, 142 (Fig. 4). Due to the cold environment of the walk-in cooler film can be cold and will stretch less than desired during wrap of a product. Ideal wraps occur when the film temperature is maintained at or above 15,56 °C (60 °F). The sealer belt of the system also requires a substantial amount of heat (upwards of 148,89 °C (300 °F)) to be applied to the bottom of a wrapped product tray to seal the film. The compressor 100 and the vacuum pump 132 generate heat that may be captured and output (e.g., as a heated air flow) to the film and/or sealer belt areas of the machine to passively heat these areas.
  • Notably, and referring again to Fig. 4, the pressure regulator 124 provides a higher pressure zone upstream of the pressure regulator 124 and a lower pressure zone downstream of the pressure regulator 124. By way of example, a pressure in the higher pressure zone may be at least 827 kPa (120 PSI) (per above), and a pressure in the lower pressure zone may no more than 517 kPa (75 PSI), (e.g., no more than 413 kPa (60 PSI), such as a 344 kPa (50 PSI), target).
  • As shown, a pressurized air cleaning/drying wand 150 may be connected to a high pressure outlet 152 of the higher pressure zone. The high pressure outlet 152 may include a quick disconnect coupler to which a flexible feed tube 154 of the pressurized air cleaning/drying wand is connected for this purpose. The operator may selectively use the wand 150 for cleaning of the wrapping machine and/or the area around the wrapping machine. An openable/closeable valve 106 (e.g., manual lever valve or electrically/electronically controllable valve) may be provided along the flow path to the high pressure outlet 152 for controlling whether high pressure air is present at the outlet 152. The operator opens the valve when there is desire to use the wand 150.
  • It is to be clearly understood that the above description is intended by way of illustration and example only, is not intended to be taken by way of limitation, and that other changes and modifications are possible.

Claims (9)

  1. A wrapping machine (10) for wrapping food products (16), comprising:
    - a wrap station (20) at which food products (16) are wrapped;
    - a film dispensing system (22) for drawing out film over food products (16) at the wrap station (20);
    - a conveying system (18A, 18B, 42, 44) for moving food products (16) along a path to the wrap station (20);
    - a plurality of pneumatic components (62A, 62B, 64A, 64B, 64C, 66, 68A, 68B, 70), each pneumatic component actuatable by delivery of pressurized air;
    - a pneumatic arrangement (60) for producing pressurized air for actuating the pneumatic components (62A, 62B, 64A, 64B, 64C, 66, 68A, 68B, 70), the pneumatic arrangement (60) including:
    - a compressor (100) including an air inlet and an air outlet;
    - a first receiver tank (102) having an air inlet fluidly connected to the air outlet of the compressor (100) to receive pressurized air, the first receiver tank (102) sized to enable water in the pressurized air to condense, the first receiver tank (102) including a drain outlet (110) for draining condensed water, the first receiver tank (102) having an air outlet;
    characterized by
    - a second receiver tank (108) having an air inlet fluidly connected to the air outlet of the first receiver tank (102) to receive pressurized air, the second receiver tank (108) sized to enable water in the pressurized air that enters the second receiver tank (108) to condense, the second receiver tank (108) including a drain outlet (112) for draining condensed water, the second receiver tank (108) having an air outlet that is fluidly connected to a path for delivery of pressurized air to the pneumatic components (62A, 62B, 64A, 64B, 64C, 66, 68A, 68B, 70);
    - a first auto drain trap (120) along the path and having an air inlet fluidly connected to the air outlet of the second receiver tank (108), the first auto drain trap (120) configured for capturing water and particulate in the pressurized air, the first auto drain trap having an air outlet,
    - a second auto drain trap (122) having an air inlet fluidly connected to the air outlet of the first auto drain trap (120), the second auto drain trap (122) configured for capturing water and particulate in the pressurized air, the second auto drain trap (122) having an air outlet, wherein the air outlet of the second auto drain trap is fluidly connected to the plurality of pneumatic components (62A, 62B, 64A, 64B, 64C, 66, 68A, 68B, 70); and
    - a pressure regulator (124) positioned between the first auto drain trap (120) and the second auto drain trap (122) to reduce pressure to a desired set level for component operation.
  2. The machine (10) of claim 1,
    wherein the second receiver tank (108) is positioned above the first receiver tank (102).
  3. The machine (10) of claim 1 or 2,
    wherein the drain outlet (112) of the second receiver tank (108) is connected to a drain inlet of the first receiver tank (102) such that water drained from the second receiver tank (108) passes through the first receiver tank (102).
  4. The machine of one of the preceding claims,
    wherein the drain outlet (110) of the first receiver tank (102) is spaced from the air outlet of the first receiver tank (102) to limit moisture blow through to the second receiver tank (108), and the drain outlet (112) of the second receiver tank (108) is spaced from the air outlet of the second receiver tank (108) to limit moisture blow through to the path.
  5. The machine (10) of one of the preceding claims,
    wherein one or more controllable air valves (126, 128) fluidly connect the air outlet of the second receiver tank (108) to the plurality of pneumatic components (62A, 62B, 64A, 64B, 64C, 66, 68A, 68B, 70) to enable selective delivery of pressurized air from the second receiver tank (108) to the pneumatic components,
    wherein the drain outlet (110) of the first receiver tank (102) and the drain outlet (112) of the second receiver tank (108) feed to a common and controllable drain valve (114).
  6. The machine of claim 5,
    wherein a controller (50) is connected for selective control of each of the air valves (126, 128), selective control of the drain valve (110, 112), and selective operation of the compressor (100).
  7. The machine of claim 5 or 6,
    wherein the pressure regulator (124) is positioned between the air outlet of the second receiver tank (108) and the controllable air valves (126, 128) to provide a higher pressure zone upstream of the pressure regulator (124) and a lower pressure zone downstream of the pressure regulator (124).
  8. The machine of claim 7,
    wherein a pressure in the higher pressure zone is at least 827 kPa (120 psi) and a pressure in the lower pressure zone is no more than 517 kPa (75 psi).
  9. The machine of one of the preceding claims,
    wherein the drain outlet (110) of the first receiver tank (102) and the drain outlet (112) of the second receiver tank (108) feed to a common and controllable drain valve (114), the controller (50) is connected for selective control of the drain valve (114) and selective operation of the compressor (100), the controller (50) configured to selectively open the drain valve (114).
EP17195704.6A 2016-10-14 2017-10-10 Wrapping machine and associated pneumatic system Not-in-force EP3309081B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662408117P 2016-10-14 2016-10-14
US15/482,027 US20180105309A1 (en) 2016-10-14 2017-04-07 Wrapping machine and associated pneumatic system

Publications (3)

Publication Number Publication Date
EP3309081A2 EP3309081A2 (en) 2018-04-18
EP3309081A3 EP3309081A3 (en) 2018-05-30
EP3309081B1 true EP3309081B1 (en) 2019-06-19

Family

ID=60083109

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17195704.6A Not-in-force EP3309081B1 (en) 2016-10-14 2017-10-10 Wrapping machine and associated pneumatic system

Country Status (3)

Country Link
US (1) US20180105309A1 (en)
EP (1) EP3309081B1 (en)
CN (1) CN107954013B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3167774A4 (en) * 2014-07-11 2018-03-07 Nichirei Foods Inc. Food heating device
CN221003073U (en) * 2022-09-19 2024-05-24 贝克顿·迪金森公司 Pump assembly

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3534521A (en) * 1968-10-18 1970-10-20 Stone Container Corp Vacuum system for skin-packaging machines
JP3223406B2 (en) * 1993-12-20 2001-10-29 トキコ株式会社 Package type air compressor
US5730816A (en) * 1995-07-24 1998-03-24 Imtec, Inc. Selective label stripping method and apparatus
US5917139A (en) * 1997-12-18 1999-06-29 Alliedsignal Truck Brake Systems Company Air dryer reservoir module
CN201647173U (en) * 2009-09-11 2010-11-24 王良忠 Automatic cylinder packing machine with gear fold device and novel piston pump
JP5544546B2 (en) * 2011-05-10 2014-07-09 株式会社フクハラ Clean compressed air production apparatus and production method that are dry and compatible with bacteria
JP2013133162A (en) * 2011-12-27 2013-07-08 Teraoka Seiko Co Ltd Packaging device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN107954013B (en) 2022-03-11
EP3309081A3 (en) 2018-05-30
EP3309081A2 (en) 2018-04-18
US20180105309A1 (en) 2018-04-19
CN107954013A (en) 2018-04-24

Similar Documents

Publication Publication Date Title
US11148844B2 (en) Wrapping machine and associated control system
EP3309081B1 (en) Wrapping machine and associated pneumatic system
RU2656360C1 (en) Method and device for gas extraction from packaging
US9617088B2 (en) Pneumatic conveyor for transporting bulk materials
US20140109511A1 (en) Vacuum Packaging and Sealing Appliance with Liquid Detection
RU2697271C1 (en) Device and method of package degassing
RU2578527C2 (en) Device and manufacture method with interlacer
US20150027089A1 (en) Vacuum Packaging and Sealing Appliance with Cooling Fan
JP2016525880A (en) Peeling system and peeling machine for peeling foodstuff strands
US11592236B2 (en) Continuous roll-to-roll freeze-drying system and process
JP6323898B2 (en) Inert gas replacement packaging equipment
CN209971203U (en) Plastic particle VOC processing apparatus
EP3009255B1 (en) Vacuum packaging and sealing appliance with cooling fan
US20050115209A1 (en) Product overwrap machine
JP2019077473A (en) Vacuum chamber
JP6278802B2 (en) Tofu dough reversing device
KR102181594B1 (en) Packaging Apparatus Having Triple Sealer
KR101416746B1 (en) Roll Cleaner System and Method
JP6309278B2 (en) Vacuum processing circuit for packaging machines
RU116837U1 (en) DEVICE FOR DELIVERY OF CONTAINERS WITH A PRODUCT, INTENDED FOR THE TECHNOLOGICAL LINE OF EQUIPMENT OF A CONTAINER WITH A PRODUCT AS A GIFT
WO2009070427A1 (en) Bubble reduction system
JP2004132594A (en) Vacuum cooling method and vacuum cooling device
JP2004198047A (en) Vacuum cooling device control method, and vacuum cooling device
JPS606520A (en) Conveying device for container, cover and the like
IE20100324A1 (en) A food production process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171010

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F04B 41/02 20060101ALI20180424BHEP

Ipc: B65B 11/00 20060101ALI20180424BHEP

Ipc: B65B 25/06 20060101ALI20180424BHEP

Ipc: F04B 39/16 20060101ALI20180424BHEP

Ipc: B65B 65/02 20060101ALI20180424BHEP

Ipc: B65B 35/00 20060101ALI20180424BHEP

Ipc: B65B 11/48 20060101AFI20180424BHEP

Ipc: B65B 65/00 20060101ALI20180424BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190103

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1145214

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017004646

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190919

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190920

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190919

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1145214

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191021

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191019

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602017004646

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191010

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201031

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171010

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211010