EP3292894B1 - Dispositif de mesure de l orientation de deux skis ou deux chaussures de ski - Google Patents

Dispositif de mesure de l orientation de deux skis ou deux chaussures de ski Download PDF

Info

Publication number
EP3292894B1
EP3292894B1 EP16187935.8A EP16187935A EP3292894B1 EP 3292894 B1 EP3292894 B1 EP 3292894B1 EP 16187935 A EP16187935 A EP 16187935A EP 3292894 B1 EP3292894 B1 EP 3292894B1
Authority
EP
European Patent Office
Prior art keywords
ski
longitudinal axis
angle
boot
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16187935.8A
Other languages
German (de)
English (en)
Other versions
EP3292894A1 (fr
Inventor
Gilles Hamou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brison SA
Original Assignee
Brison SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brison SA filed Critical Brison SA
Priority to EP16187935.8A priority Critical patent/EP3292894B1/fr
Publication of EP3292894A1 publication Critical patent/EP3292894A1/fr
Application granted granted Critical
Publication of EP3292894B1 publication Critical patent/EP3292894B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C9/00Ski bindings
    • A63C9/08Ski bindings yieldable or self-releasing in the event of an accident, i.e. safety bindings
    • A63C9/0802Ski bindings yieldable or self-releasing in the event of an accident, i.e. safety bindings other than mechanically controlled, e.g. electric, electronic, hydraulic, pneumatic, magnetic, pyrotechnic devices; Remote control
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C5/00Skis or snowboards
    • A63C5/06Skis or snowboards with special devices thereon, e.g. steering devices
    • A63C5/065Anti-crossing devices
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C2203/00Special features of skates, skis, roller-skates, snowboards and courts
    • A63C2203/18Measuring a physical parameter, e.g. speed, distance
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C2203/00Special features of skates, skis, roller-skates, snowboards and courts
    • A63C2203/24Processing or storing data, e.g. with electronic chip

Definitions

  • the invention relates to a device for measuring the orientation of two skis or two ski boots.
  • the detection of risky situations for a skier requires knowing the orientation of the left ski relative to the orientation of the right ski in order to know for example if the two skis are parallel or on the contrary if the skis are oriented so as to cross each other or if they deviate from each other.
  • Such teaching is described in the document WO 2014/122366 .
  • the two skis can be equipped with autonomous devices, that is to say that they are equipped with all the sensors making it possible to determine in an absolute manner the position and the orientation of each ski as well as sensors making it possible to distinguish right ski and left ski. Under these conditions, the two sets of sensors just have to exchange information with a control circuit which will calculate which is the right ski and which is the left ski as well as the orientation of each of the skis in space. It is then easier to determine whether the two orientations of the skis represent risky configurations or not.
  • a simple way to obtain this information is to use a common repository, for example, magnetic north.
  • the document WO 2014/122366 proposes to integrate a magnetometer on a ski in order to know at all times the orientation of the ski in relation to magnetic north. In this case, the relative positions and orientations of the first ski relative to the second ski are easier to determine.
  • ski boot has a binding member which is configured to facilitate the separation between the boot and the ski under particular conditions. These particular conditions are materialized by an angular difference between the two boots and the ski and the determination of a forward progression of the ski boots. The deviation value angle is compared to a threshold value to detect a dangerous configuration.
  • the invention relates to the provision of a device for measuring the relative orientation of first and second skis or first and second ski boots which is more robust and / or makes it possible to dispense with magnetometers.
  • control circuit is further configured to ⁇ initiate a release of the first shoe with the first ski and / or the release of the second shoe with the second ski when the angle between the longitudinal axis of the first ski or of the first ski boot and the longitudinal axis of the second ski or second ski boot reaches a threshold value.
  • first additional sensor and the second additional sensor are configured to respectively provide a third additional information relating to the orientation of a second axis of the first ski or of the first ski boot relative to a second fixed spatial reference frame and a fourth additional item of information relating to the orientation of a second axis of the second ski or of the second ski boot relative to the second fixed spatial reference frame, the second axis being different from the longitudinal axis of the ski or of the ski boot and preferably orthogonal to the longitudinal axis.
  • the second axis of the first ski or of the first ski boot is perpendicular to the longitudinal axis and is included in the first plane.
  • control circuit is devoid of information from a magnetometer. It is also possible to provide in a particular embodiment, that the control circuit is devoid of information coming from a geolocation system.
  • control circuit is coupled to an additional sensor measuring the acceleration or the linear speed of the first ski or of the first ski boot along its longitudinal axis and that the control circuit is configured to record the orientation of the longitudinal axis of the first ski or of the first ski boot and the orientation of the longitudinal axis of the second ski or of the second ski boot as corresponding to a configuration where the longitudinal axis of the first ski is parallel to the longitudinal axis of the second ski when the first angle is equal second angle if the acceleration or the linear speed of the first ski or of the first ski boot along its longitudinal axis reaches a threshold value.
  • a pressure sensor is connected to the control circuit and is configured to detect the weight of the user on the first ski or on the first boot, the control circuit being configured to record the orientation of the longitudinal axis of the first ski or first ski boot and the orientation of the longitudinal axis of the second ski or second ski boot as corresponding to a configuration where the longitudinal axis of the first ski is parallel to the longitudinal axis of the second ski when the first plane is parallel to the second plane and when the pressure sensor detects a pressure greater than a threshold pressure.
  • control circuit is further configured to calculate the angle existing between the longitudinal axis of the first ski or of the first boot and the longitudinal axis of the second ski or of the second boot and define if the first ski is a right ski or a left ski or if the first shoe is a right shoe or a left shoe depending on the sign of said angle.
  • the first additional sensor is part of the first sensor and the second additional sensor is part of the second sensor.
  • This fixed spatial reference system comprises one or more fixed spatial directions which represent reference directions.
  • the vertical is particularly advantageous to use the vertical as a fixed spatial direction because the measurement can be easily carried out by means of gravity. Gravity can be measured using an accelerometer or a gyroscope. Another interesting spatial direction may be the direction which points to magnetic north. Magnetic north can be determined using a magnetometer.
  • a device for determining the position of a ski relative to the other ski and / or the orientation of a ski relative to the other ski It is also advantageous to provide that the device is also configured to discriminate between the right ski and the left ski.
  • a determination system by means of a magnetometer also has some drawbacks.
  • the use of a magnetometer makes it possible to absolutely define the orientation of a ski. As indicated above, if the magnetometer is faulty or unable to provide relevant information, it becomes very difficult for the control circuit to distinguish an acceptable situation from a risky situation.
  • the magnetometer can nevertheless be used to adjust an inertial unit, for example of the micro-electromechanical system (MEMS) type, which drifts over time, that is to say to readjust the inertial unit.
  • MEMS micro-electromechanical system
  • a simple way to solve this problem can be to impose a calibration step on the user, also called the adjustment step.
  • the user may be encouraged to place his two skis in a predefined configuration at the start of each session or each time he puts on his skis, for example parallel and flat.
  • the control circuit collects the relevant information from the various sensors and recalculates the criteria representative of the risk situations or corrects the data from the sensors.
  • the inertial unit can then operate with a certain autonomy for a limited period of time.
  • This calibration step can be particularly effective if it is carried out carefully by the skier.
  • the calibration step requires feedback to the user to indicate that the procedure is started and / or finished, which consumes specific resources, therefore costs and energy. It also imposes a formalism to be respected over a more or less long period of time and in an environment that one cannot always control. For example, a calibration step on a flat and substantially horizontal surface of a few seconds can be difficult to obtain at the exit of a gondola or chairlift. This step can therefore lead to reliability concerns.
  • ski positions are found very regularly among skiers and they propose to use these specific positions to calibrate, that is to say adjust the control circuit of a device for measuring the orientation of skis or ski boots.
  • the measuring device can be placed on the two skis or on the two ski boots which are attached to the two skis. It is even possible to combine the use of devices on the ski and on the boot.
  • the measuring device comprises several sensors C 1 and C 2 configured to measure the orientation of axes and / or planes representative of the first and second ski S 1 and S 2 and / or of first and second ski boots B 1 and B 2 .
  • the sensors are in particular configured to measure the orientation of a plane representative of the ski or ski boot relative to the vertical and follow the orientation of one or more axes which are not perpendicular to this plane.
  • ski boots B1 and B2 in the embodiments to be followed.
  • a person skilled in the art will keep in mind that what is presented for a ski can also be presented for a ski boot because in ski action, these two elements are fixed to each other.
  • the embodiments of the skis and ski boots will be explained.
  • the sensor C 1 comprises a first sensor which is configured to be arranged on a first ski S 1 .
  • the first sensor is configured to provide first information relating to the orientation of a first plane representative of the sole of the first ski S 1 .
  • the first sensor is configured to measure the orientation of a first plane relative to the first ski S 1 .
  • the first plane can be the plane of the sole or any other fixed plane which is not perpendicular to the plane of the sole. In the case where the sole is not flat, the plane of the sole is represented by the surface located directly under the foot of the user.
  • the first plane is for example the plane defined by the axes X 1 and Y 1 .
  • the sensor C 2 also includes a second sensor which is configured to be arranged on a second ski S 2 .
  • the second sensor is configured to provide second information relating to the orientation of a second plane representative of the sole of the second ski S 2 .
  • the second sensor is configured to measure the orientation of a second plane relative to the second ski S 2 .
  • the second plane can be the plane of the sole or any other fixed plane which is not perpendicular to the plane of the sole. In the case where the sole is not flat, the plane of the sole is represented by the surface located directly under the foot of the user.
  • the first plane is for example the plane defined by the axes X 2 and Y 2 .
  • the first sensor and the second sensor are configured to measure the angle that exists respectively between the first plane and the vertical direction and between the second plane and the vertical direction.
  • the angle between the vertical direction and the foreground is called the first angle.
  • the angle between the vertical direction and the second plane is called the second angle.
  • the vertical direction is represented by the acceleration vector of gravity g.
  • the foreground intersects the vertical direction and does not contain the vertical direction.
  • the second plane intersects the vertical direction and does not contain the vertical direction.
  • the first plane and the second plane each have at least two reference axes which are included in the plan to be followed.
  • the first reference axis is different from the second reference axis, preferably perpendicular to the second reference axis.
  • the angle between the vertical direction and the first plane and between the vertical direction and the second plane can be broken down into at least two distinct components.
  • the first component represents the angle that exists between the vertical direction and the first reference axis.
  • the second component represents the angle that exists between the vertical direction and the first reference axis.
  • the sensor C 1 comprises a first additional sensor which is configured to be arranged on the first ski S 1 .
  • the first additional sensor is configured to provide first additional information relating to the orientation of the longitudinal axis of the first ski S 1 .
  • the information relating to the orientation of the longitudinal axis of the first ski S 1 may be the orientation of the longitudinal axis or of any other axis which is fixed relative to the axis longitudinal and which is not perpendicular to the plane of the sole.
  • the longitudinal axis is shown on the figures 1 and 2 , by the axis X 1 .
  • the orientation of the longitudinal axis of the first ski or of the first boot is also called first orientation.
  • the orientation of the first additional sensor with respect to the ski can be arbitrary.
  • the first orientation is followed over time so as to follow the evolution of the orientation of the longitudinal axis of the ski over time.
  • the first orientation can be followed by means of a 3-axis gyroscope possibly supplemented by a 3-axis acceler
  • the sensor C 2 comprises a second additional sensor which is configured to be arranged on the second ski S 2 .
  • the second additional sensor is configured to provide second additional information relating to the orientation of the longitudinal axis of the second ski S 2 .
  • the information relating to the orientation of the longitudinal axis of the second ski S 2 may be the orientation of the longitudinal axis or of any other axis which is fixed relative to the longitudinal axis and which is not perpendicular in the plane of the sole.
  • the longitudinal axis is shown on the figures 1 and 2 , by the axis X 2 .
  • the orientation of the longitudinal axis of the second ski or of the second boot is also called the second orientation.
  • the orientation of the second additional sensor with respect to the ski can be arbitrary.
  • the second orientation is followed over time so as to follow the evolution of the orientation of the longitudinal axis of the ski over time.
  • the second orientation can be followed by means of a 3-axis gyroscope possibly supplemented by a 3-axis
  • Each additional sensor is configured to measure the orientation of the longitudinal axis of the ski S 1 or S 2 or of the boot B 1 or B 2 .
  • Each additional sensor can directly measure the longitudinal axis or any axis fixed relative to the longitudinal axis. Tracking the longitudinal axis of the ski or the shoe made by adding or removing a fixed angular value to the data provided by the additional sensor.
  • the first additional sensor is configured to provide, in addition, third additional information relating to the orientation of a second axis of the first ski or of the first ski boot relative to the fixed spatial reference system.
  • the second additional sensor is configured to provide, in addition, fourth additional information relating to the orientation of a second axis of the second ski or of the second ski boot relative to the fixed spatial reference system.
  • the second axis is different from the axis used to follow the longitudinal axis, preferably orthogonal to the longitudinal axis.
  • the first additional sensor C 1 can be part of the first sensor or even be a dissociated element.
  • the second additional sensor C 2 can be part of the second sensor or else be a dissociated element.
  • the measuring device also comprises a control circuit A which is connected to the first and second sensors and which is configured to compare the value of the angle existing between the first plane and the vertical with the value of the angle existing between the second plane and vertical.
  • the control circuit A receives information from the sensors C 1 and C 2 by any suitable technique, for example by a radiofrequency signal.
  • the comparison of the first angle with the second angle can be carried out in different ways by means of the first information and the second information.
  • one or more values representative of the two components of the first angle are compared to one or more values representative of the two components of the second angle.
  • first sensor and the second sensor in order to facilitate comparison of the first angle with the second angle, it appears particularly advantageous to configure the first sensor and the second sensor in an identical manner in order to follow the same planes and the same reference axes.
  • the first components are compared with each other. The same is true for the second components.
  • a reference axis is formed by the longitudinal axis of the ski.
  • the other reference axis is formed by the transverse axis of the ski.
  • the comparison of the first angle with the second angle is carried out by comparing only the minimum angle which exists between the plane to be followed and the vertical and its sign relative to the half-plane of the first and second plane. delimited by the longitudinal axis.
  • the modes of comparison between the two angles can vary for example as a function of the speed of the skier, his acceleration, his deceleration, his level of skiing.
  • the first sensor and the first additional sensor are part of the sensor C 1 .
  • the first sensor or the first additional sensor can be dissociated from the sensor C 1 . It can be the same for the sensor C 2 .
  • the sensor C 1 and / or the sensor C 2 can be 3-axis sensors configured to measure linear and / or angular accelerations.
  • the control circuit A is connected to the first and second additional sensors and is configured to compare the orientation of the first longitudinal axis with the second longitudinal axis.
  • control circuit receives information making it possible to calculate the orientation of the first ski in space and information making it possible to calculate the orientation of the second ski in space. All this information is processed to find out whether the ski orientations represent risky orientations or not.
  • the angular difference which exists between the orientation of the first longitudinal axis and the orientation of the second longitudinal axis is compared with one or more threshold values. Based on this comparison, the control circuit decides whether or not to trigger the heaving of at least one shoe with the associated ski.
  • the relative position of the skis is defined by means of 3 angular deviations.
  • a first angular difference corresponds to the angle formed between the longitudinal axes X1 and X2.
  • a second angular difference is formed between the transverse axes Y1 and Y2.
  • a third gap is formed between the axes Z1 and Z2.
  • Each angular deviation value can be independently compared to a specific threshold in order to detect whether the position of the skis corresponds to a risk situation or to a normal situation. Furthermore, the different angular deviation values can be compared in combination with one or more thresholds so as to detect whether the position of the skis corresponds to a risk situation or to a normal situation.
  • the different angular differences which exist between the two skis are calculated by considering that each ski has a reference point and that these two reference points are merged.
  • the reference point of a ski is the intersection between the X, Y and Z axes.
  • the reference point is located in the plane of the sole under the heel of the ski boot. In this configuration, the angular deviations are easier to calculate.
  • the angular difference which exists between the axis X1 and the axis X2, between the axis Y1 and the axis Y2 or between the axis Z1 and the axis Z2 is signed that is say that the control circuit takes into account the orientation of one ski relative to the other.
  • the control circuit is able to determine that the longitudinal axes of the skis approach or move away, more particularly the front or rear tips. It is the same for the angles between the axes Y1 and Y2 and between the axes Z1 and Z2.
  • the device is configured to operate in the absence of reliable information on a fixed geographical direction, for example magnetic north.
  • a magnetometer failure the orientation provided may be false and / or random. However, this does not prevent the device from tracking the relative evolution of the two skis reliably.
  • the control circuit is advantageously configured to compare the angle which exists between the orientation of the first plane and the vertical with the angle which exists between the orientation of the second plane and vertical.
  • the first angle is represented by the angle which exists between the axis g and the axis Z 1 .
  • the second angle is represented by the angle which exists between the axis g and the axis Z 2 .
  • the vertical that is to say the acceleration vector of gravity g, is used as a common reference frame for the first and second planes.
  • the orientation of the plane can be easily measured using an accelerometer, possibly supplemented by a gyroscope.
  • the control circuit can search if the first plane is parallel to the second plane. This search can be done simply by comparing the values of the first angle and the second angle to determine if they are equal or different. If the first angle is equal to the second angle, the two planes can be considered parallel.
  • the first angle is considered to be equal to the second angle, if the difference is less than or equal to 5 ° in absolute value.
  • the comparison of the orientation of the first and second planes can be carried out by comparing the value of the first angle with the value of the second angle. It is also possible to compare the difference between the first angle and the second angle with one or more threshold values.
  • the two sensors are installed identically on the two skis so that the first plane relating to the first ski is the equivalent of the second plane relating to the second ski.
  • the comparison between the orientations of the first and second planes can be facilitated by simply comparing the value of the first and second angles or the value of the difference.
  • control circuit considers that the two planes are parallel if the value of the first angle is equal to the value of the second angle at plus or minus 5 °. For example, the control circuit considers that the two planes are parallel if the difference between the first angle and the second angle is less than or equal to 5 ° in absolute value.
  • the inventor has discovered that during skiing, preferably when the skis are in motion, when the plane of the sole of the first ski S 1 is parallel to the plane of the sole of the second ski S 2 , the skis are mostly parallel.
  • the inventor has discovered that when skiing, preferably when the skis are in motion, when the angle formed between the plane of the sole of the first ski S 1 and the vertical is identical to the angle formed between the plane of the sole of the second ski S 2 and the vertical, the skis are mainly parallel.
  • the value of the angle takes into account its sign, that is to say the orientation of the ski.
  • the value of the first angle and the value of the second are different from 90 °, that is to say that the soles of the skis are not in a horizontal plane, it is advantageous to deduce therefrom that the skis are moving and therefore the skis are mostly parallel.
  • skis are parallel. Skis are considered parallel when the longitudinal axis of the first ski X 1 is parallel to the longitudinal axis of the second ski X 2 with a tolerance of a few degrees.
  • the planes of the two ski soles are not parallel .
  • the first and second angles formed by these planes with the vertical can be identical in absolute value but they have opposite signs. It can be the same during a turn.
  • the measurement of the first angle and of the second angle can be easily carried out by means of a 3-axis accelerometer possibly supplemented by a 3-axis gyroscope.
  • the control circuit A is configured to compare the orientation of the first and second planes. If the first and second planes form the same angle with the vertical, the control circuit A considers that the longitudinal axes are also parallel and it records this information by recalibrating the orientation of the two longitudinal axes. This record makes it possible to adjust the comparison between the first longitudinal axis and the second longitudinal axis to detect possible risk situations later. Only the relative position of the skis is used. It is therefore sufficient to redefine the measurement of the position of the longitudinal axes of the skis relative to one another and not to redefine the position of the longitudinal axes with respect to a reference geographic direction, for example magnetic north.
  • skis S 1 and S 2 are considered parallel, that is to say that the longitudinal axes are considered parallel, it is possible to readjust the additional sensors by sending information on the orientation of the first axis and / or of the second axis. It is also possible to correct the information transmitted within the measurement circuit for example by adding or removing a few degrees to the orientation of one of the skis or to the two skis S 1 and S 2 . It is still possible to recalculate the thresholds leading to the detection of a risk situation. These different options can be used independently or in any possible combination.
  • This embodiment is particularly advantageous since it is carried out when the skier is in ski action, that is to say in masked time. It can for example avoid fixed calibration periods which should be carried out regularly.
  • the skier moves on the track and the control circuit A detects one or more situations where the two soles of the skis S 1 and S 2 form the same angle with the vertical and it deduces therefrom that these situations correspond to times when the skis S 1 and S 2 are parallel.
  • the measurement circuit is recalibrated on the basis of this information in order to be able to detect risk situations more reliably thereafter.
  • the control circuit A can correct the drift of the inertial units by redefining the values corresponding to the two parallel skis.
  • the control circuit A can correct the drift of the gyroscope.
  • accelerometers configured to measure linear and / or angular velocities.
  • the axis longitudinal X 1 of the first ski S 1 is parallel to the longitudinal axis X 2 of the second ski S 2 .
  • the data relating to the first longitudinal axis or the second longitudinal axis remains relative data which are correlated by the measurement circuit.
  • This measurement can be used to replace a magnetometer or a calibration procedure. This measurement can also be used to supplement the measurement carried out by a magnetometer in the event of failure and / or absence of signal.
  • the figure 3 illustrates schematically the different actions of the control circuit for the recalibration of the longitudinal axes.
  • control circuit A receives information relating to the orientation of the first plane and the second plane.
  • the control circuit A calculates if the first angle is equal to the second angle, that is to say if the first plane forms the same angle with the vertical as the angle formed between the vertical and the second plan based on previous information.
  • the control circuit leaves the recalibration protocol. If the first and second planes form the same angle with the vertical and are therefore parallel (output O), the control circuit A can pass directly to a step S3 where the first and second longitudinal axes are considered to be parallel.
  • control circuit 1 records this information by adjusting the information relating to the first longitudinal axis and to the second longitudinal axis to secure the detection of a possible risk situation.
  • the comparison is not carried out or the result is not taken into account depending on the occurrence of another event.
  • the information indicating that the first plane and the second plane form the same angle with the vertical is only taken into account if the first plane and / or the second plane are different from the horizontal plane, c that is to say if the first and second planes intersect vertically without the vertical being perpendicular to these two planes.
  • This additional condition is represented for example by step S5 placed after the output O of step S2.
  • control circuit A can leave the recalibration protocol (output N) or condition the continuation of the protocol to the occurrence of another event (not shown).
  • control circuit A also measures the distance between the first ski S 1 and the second ski S 2 or the distance d between the first shoe B 1 and the second shoe B 2 .
  • the measured distance d is compared with a first threshold distance d1.
  • This additional condition is represented for example by step S6 placed after the output O of step S5.
  • the distance d is compared with two different threshold values.
  • control circuit A comprises or is coupled to an additional sensor measuring the linear acceleration of the first ski or of the first boot along its longitudinal axis X.
  • This additional sensor may be present in the sensor C1 and / or in sensor C2.
  • the control circuit A is configured to take into account the comparison between the first plane and the second plane if the linear speed of the first ski along its longitudinal axis reaches a threshold value, for example exceeds a threshold value (v> vseuil).
  • a threshold value for example exceeds a threshold value (v> vseuil).
  • This additional condition is represented for example by step S7 placed after the output O of step S6.
  • This precision makes it possible, for example, to eliminate the configurations where the skier is stopped or possibly at a very low speed and he voluntarily places his skis in positions incompatible with the practice of skiing at a conventional pace.
  • the speed compared can be an absolute measure, that is to say it does not take into account the direction of progression of the skier or relative that is to say that it differentiates a forward and a reverse.
  • control circuit can be configured to take into account the comparison between the first plane and the second plane when the acceleration measured by the sensor reaches a threshold value or is not zero.
  • This additional condition is represented for example by step S8 placed after the output O of step S7.
  • control circuit can be coupled to a pressure detector.
  • the pressure sensor is configured to detect whether the weight of the skier is present on the skis, for example for making a turn or braking, or more generally if it is in sliding action on the snow. This additional condition is represented for example by step S9 placed after the output N of step S8.
  • the control circuit can be configured to take into account the comparison between the foreground and the second plane when the pressure sensor sends a signal which reaches a threshold value.
  • the pressure sensor is placed in the ski, it is possible to discriminate the presence or absence of skiers.
  • the sensor is placed in the boot, provision must be made for the sensor or an additional sensor to be configured to detect the connection between the ski and the boot.
  • the control circuit can be configured to take into account the comparison between the first plane and the second plane when the sensor detects the connection between the ski and the associated boot.
  • control circuit is connected to means for analyzing the deformation of the ski or to means for analyzing vibrations in skiing.
  • This information can come, for example, from one or more strain gauges and / or from one or more blades made of piezoelectric material.
  • control circuit can be configured to take into account the comparison between the first plane and the second plane when the information provided by the means of analysis of the deformation of the ski or the analysis means vibrations in the ski return a first value.
  • steps S2, S5, S6, S7, S8 and S9 can be carried out in any order. It is even possible to provide that steps S5, S6, S7, S8 and S9 or a part of these steps are carried out between steps S3 and S4.
  • control circuit is devoid of information from a magnetometer.
  • This embodiment makes it possible to provide a measuring device devoid of a magnetometer to gain compactness and cost.
  • control circuit is devoid of information from a geolocation system to save energy. It is even more advantageous to provide a measurement device without a geolocation system to gain compactness and cost.
  • a clever way to distinguish the right sensor and the left sensor and therefore the right ski / right boot assembly from the left ski / left boot assembly is to measure the angle which exists between the longitudinal axis of the first ski S 1 and the longitudinal axis of the second ski S 2 during a ski descent.
  • the inventor observed that in skiing action, a skier very largely changes the orientation of his skis between a first position where the skis are parallel and a second position where the front tips are directed one towards the other to brake or to turn.
  • the angle formed at the level of the tip tips of the skis is for the most part an acute angle, in particular when the skis are not horizontal or are not close to horizontal.
  • the control circuit is able to deduce whether the first ski is the right ski or the left ski and vice versa for the second ski, c that is to say if the acute angle is formed on the side of the front spatulas or on the contrary on the rear part of the skis.
  • This measurement can be combined with a second measurement intended to analyze the direction of progression of the skier.
  • the acute angle formed by the skis is directed in the direction of progression of the skier which makes it possible to take into consideration a skier who chooses to ski in reverse.
  • This calibration phase can be carried out over a first period of time which follows the fixing of the ski boots on the skis. This calibration phase can also be carried out over a first period of time after a predefined duration of use of the ski.
  • the calibration phase can be initiated if the control circuit detects that the skis have been unused for a predetermined period, for example 5 minutes, and / or if the skis are in a particular position, for example the longitudinal axis of the ski is placed vertically.
  • the calibration phase can be carried out repeatedly, for example after a predefined duration, a predefined distance traveled and / or a predefined elevation. This calibration phase can also be carried out permanently.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Description

    Domaine technique de l'invention
  • L'invention est relative à un dispositif de mesure de l'orientation de deux skis ou de deux chaussures de ski.
  • État de la technique
  • Dans la pratique du ski, pour identifier des situations à risque, il est important de pouvoir détecter, à chaque instant, la position relative du premier ski par rapport au deuxième ski, tout en sachant distinguer le ski droit du ski gauche. En particulier, il est important de pouvoir détecter l'orientation de l'axe longitudinal d'un premier ski et l'orientation de l'axe longitudinal d'un deuxième ski.
  • En d'autres termes, la détection des situations à risque pour un skieur nécessite de connaître l'orientation du ski gauche par rapport à l'orientation du ski droit afin de savoir par exemple si les deux skis sont parallèles ou au contraire si les skis sont orientés de manière à venir se croiser ou s'ils s'écartent l'un de l'autre. Un tel enseignement est décrit dans le document WO 2014/122366 .
  • Différentes possibilités sont offertes à l'homme du métier pour connaître l'orientation relative des deux skis. En premier lieu, les deux skis peuvent être équipés de dispositifs autonomes c'est-à-dire qu'ils sont équipés de tous les capteurs permettant de déterminer de manière absolue la position et l'orientation de chaque ski ainsi que des capteurs permettant de discriminer ski droit et ski gauche. Dans ces conditions, les deux jeux de capteurs ont juste à échanger les informations à un circuit de commande qui va calculer qui est le ski droit et qui est le ski gauche ainsi que l'orientation de chacun des skis dans l'espace. Il est alors plus aisé de déterminer si les deux orientations des skis représentent des configurations à risque ou non.
  • Dans ce cadre, une manière simple d'obtenir ces informations est d'utiliser un référentiel commun, par exemple, le nord magnétique. Le document WO 2014/122366 propose d'intégrer un magnétomètre sur un ski afin de connaître à chaque instant l'orientation du ski par rapport au nord magnétique. Dans ce cas de figure, les positions et orientations relatives du premier ski par rapport au deuxième ski sont plus faciles à déterminer.
  • Or, des essais ont été menés et ont montré que l'utilisation d'un magnétomètre n'est pas toujours compatible avec la détection du nord magnétique comme référentiel pour l'orientation des skis. Il semble que dans certains environnements, la mesure du magnétomètre est perturbée, par exemple si des éléments métalliques se trouvent à proximité du capteur.
  • Par ailleurs, la pratique du ski est réalisée dans des conditions difficiles notamment à cause des vibrations, de la large gamme de température rencontrée lors de la pratique du ski ainsi que des changements de température. Utiliser un magnétomètre peut donc s'avérer difficile.
  • Il est également connu du document WO2015/166143 , un mode de réalisation où la chaussure de ski possède un organe de fixation qui est configuré pour faciliter la désolidarisation entre la chaussure et le ski dans des conditions particulières. Ces conditions particulières sont matérialisées par un écart angulaire entre les deux chaussures et ski et la détermination d'une progression vers l'avant des chaussures de skis. La valeur d'écart angulaire est comparée à une valeur seuil pour détecter une configuration dangereuse.
  • Objet de l'invention
  • L'invention a pour objet la fourniture d'un dispositif de mesure de l'orientation relative de premier et deuxième skis ou de première et deuxième chaussure de ski qui soit plus robuste et/ou permettant de se passer de magnétomètres.
  • Le dispositif de mesure de l'orientation relative de deux skis et/ou de deux chaussures de skis est remarquable en ce qu'il comporte:
    • un premier capteur configuré pour être agencé sur un premier ski ou sur une première chaussure de ski, le premier capteur étant configuré pour fournir une première information relative à un premier angle existant entre un premier plan et la verticale, le premier plan étant représentatif de la semelle du premier ski ou de la semelle de la première chaussure de ski,
    • un premier capteur additionnel configuré pour être agencé sur le premier ski ou sur la première chaussure de ski, le premier capteur additionnel étant configuré pour fournir une première information additionnelle relative à l'orientation de l'axe longitudinal du premier ski ou de la première chaussure de ski par rapport à un premier référentiel spatial fixe,
    • un deuxième capteur configuré pour être agencé sur un deuxième ski ou sur une deuxième chaussure de ski, le deuxième capteur étant configuré pour fournir une deuxième information relative à un deuxième angle existant entre un deuxième plan et la verticale, le deuxième plan étant représentatif de la semelle du deuxième ski ou de la semelle de la deuxième chaussure de ski,
    • un deuxième capteur additionnel configuré pour être agencé sur le deuxième ski ou sur la deuxième chaussure de ski, le deuxième capteur additionnel étant configuré pour fournir une deuxième information additionnelle relative à l'orientation de l'axe longitudinal du deuxième ski ou de la deuxième chaussure de ski par rapport au premier référentiel spatial fixe,
    • un circuit de commande configuré pour
      • ∘ comparer la valeur du premier angle avec la valeur du deuxième angle,
      • ∘ enregistrer l'orientation de l'axe longitudinal du premier ski ou de la première chaussure de ski et l'orientation de l'axe longitudinal du deuxième ski ou de la deuxième chaussure de ski comme correspondant à une configuration où l'axe longitudinal du premier ski est parallèle à l'axe longitudinal du deuxième ski lorsque la valeur du premier angle est égale à la valeur du deuxième angle.
  • Dans une variante de réalisation avantageuse, le circuit de commande est configuré en outre pour
    ∘ initier un déchaussement de la première chaussure avec le premier ski et/ou le déchaussement de la deuxième chaussure avec le deuxième ski lorsque l'angle entre l'axe longitudinal du premier ski ou de la première chaussure de ski et l'axe longitudinal du deuxième ski ou de la deuxième chaussure de ski atteint une valeur seuil.
  • Il est également intéressant de choisir que le premier capteur additionnel et le second capteur additionnel soient configurés pour fournir respectivement une troisième information additionnelle relative à l'orientation d'un second axe du premier ski ou de la première chaussure de ski par rapport à un deuxième référentiel spatial fixe et une quatrième information additionnelle relative à l'orientation d'un second axe du deuxième ski ou de la deuxième chaussure de ski par rapport au deuxième référentiel spatial fixe, le second axe étant différent de l'axe longitudinal du ski ou de la chaussure de ski et de préférence orthogonal à l'axe longitudinal.
  • Dans un mode de réalisation avantageux, le circuit de commande est configuré en outre pour
    • ∘ calculer au moins un paramètre à partir de l'angle existant entre l'axe longitudinal du premier ski et l'axe longitudinal du deuxième ski, de la différence entre le premier angle et le deuxième angle et des troisième et quatrième informations additionnelles,
    • ∘ comparer ledit au moins un paramètre à au moins un paramètre seuil,
    • ∘ initier un déchaussement de la première chaussure avec le premier ski et/ou le déchaussement de la deuxième chaussure avec le deuxième ski en fonction de la comparaison.
  • Avantageusement, le second axe du premier ski ou de la première chaussure de ski est perpendiculaire à l'axe longitudinal et est inclus dans le premier plan.
  • Afin de gagner en compacité et en coût, il est avantageux de prévoir que le circuit de commande soit dépourvu d'information en provenance d'un magnétomètre. Il est également possible de prévoir dans un mode de réalisation particulier, que le circuit de commande soit dépourvu d'information en provenance d'un système de géolocalisation.
  • Il est également intéressant de prévoir que le circuit de commande soit couplé à un capteur supplémentaire mesurant l'accélération ou la vitesse linéaire du premier ski ou de la première chaussure de ski selon son axe longitudinal et que le circuit de commande soit configuré pour enregistrer l'orientation de l'axe longitudinal du premier ski ou de la première chaussure de ski et l'orientation de l'axe longitudinal du deuxième ski ou de la deuxième chaussure de ski comme correspondant à une configuration où l'axe longitudinal du premier ski est parallèle à l'axe longitudinal du deuxième ski lorsque le premier angle est égale deuxième angle si l'accélération ou la vitesse linéaire du premier ski ou de la première chaussure de ski selon son axe longitudinal atteint une valeur seuil.
  • Dans une variante de réalisation, un capteur de pression est connecté au circuit de commande et est configuré pour détecter le poids de l'utilisateur sur le premier ski ou sur la première chaussure, le circuit de commande étant configuré pour enregistrer l'orientation de l'axe longitudinal du premier ski ou de la première chaussure de ski et l'orientation de l'axe longitudinal du deuxième ski ou de la deuxième chaussure de ski comme correspondant à une configuration où l'axe longitudinal du premier ski est parallèle à l'axe longitudinal du deuxième ski lorsque le premier plan est parallèle au deuxième plan et lorsque le capteur de pression détecte une pression supérieure à une pression seuil.
  • Dans un mode de réalisation préférentiel, le circuit de commande est configuré en plus pour calculer l'angle existant entre l'axe longitudinal du premier ski ou de la première chaussure et l'axe longitudinal du deuxième ski ou de la deuxième chaussure et définir si le premier ski est un ski droit ou un ski gauche ou si la première chaussure est une chaussure droite ou une chaussure gauche en fonction du signe dudit angle.
  • Il est avantageux de prévoir que le premier capteur additionnel fasse partie du premier capteur et le deuxième capteur additionnel fasse partie du deuxième capteur.
  • Description sommaire des dessins
  • D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :
    • la figure 1 représente, de manière schématique, en vue de dessus deux skis,
    • la figure 2 représente, de manière schématique, en vue de coupe deux skis,
    • la figure 3 illustre de manière schématique, un protocole de calibration de la position de deux skis.
    Description de modes de réalisation préférentiels de l'invention
  • L'inventeur a observé que la détermination absolue de la position d'un ski par rapport à l'autre ski et/ou de la détermination absolue l'orientation d'un ski par rapport à l'autre ski n'est pas toujours possible. En effet, pour pouvoir déterminer la position relative des deux skis, il est intéressant de connaître la position de chacun des skis par rapport à un référentiel spatial fixe. Ce référentiel spatial fixe comporte une ou plusieurs directions spatiales fixes qui représentent des directions de référence.
  • Il est particulièrement avantageux d'utiliser la verticale comme direction spatiale fixe car la mesure peut être réalisée facilement au moyen de la gravité. La gravité peut être mesurée au moyen d'un accéléromètre ou d'un gyroscope.
    Une autre direction spatiale intéressante peut être la direction qui pointe vers le nord magnétique. Le nord magnétique peut être déterminé au moyen d'un magnétomètre.
  • De plus, il est nécessaire de différencier le ski droit et le ski gauche pour mesurer l'orientation du ski droit par rapport au ski gauche. La différentiation du ski droit par rapport au ski gauche peut être réalisée de différentes manières, par exemple au moyen de capteurs d'identification qui indiquent si le ski est un ski droit ou gauche ou qui reconnaissent que la chaussure associée est une chaussure droite ou gauche. Cependant, il est avantageux de ne pas utiliser des capteurs d'identification.
  • Il est donc avantageux d'utiliser un dispositif de détermination relatif de la position d'un ski par rapport à l'autre ski et/ou de l'orientation d'un ski par rapport à l'autre ski. Il est également avantageux de prévoir que le dispositif est également configuré pour discriminer le ski droit du ski gauche.
  • Il est apparu également que l'utilisation d'un système de détermination au moyen d'un magnétomètre présente également quelques inconvénients. L'utilisation d'un magnétomètre permet de définir de manière absolue l'orientation d'un ski. Comme indiqué plus haut, si le magnétomètre est défaillant ou dans l'incapacité de fournir une information pertinente, il devient très difficile au circuit de commande de distinguer une situation acceptable d'une situation à risque. Le magnétomètre peut être utilisé néanmoins pour ajuster une centrale inertielle, par exemple de type système micro-électromécanique (MEMS), qui dérive dans le temps, c'est-à-dire pour réajuster la centrale inertielle.
  • Une manière simple de résoudre ce problème peut être d'imposer une étape de calibrage à l'utilisateur également appelée étape d'ajustement. Par exemple, l'utilisateur peut être incité à placer ses deux skis dans une configuration prédéfinie à chaque début de séance ou à chaque fois qu'il chausse ses skis, par exemple parallèles et à plat. Durant l'étape de calibrage, le circuit de commande récupère les informations pertinentes des différents capteurs et il recalcule les critères représentatifs des situations à risque ou il corrige les données en provenance des capteurs. La centrale inertielle peut ensuite fonctionner avec une certaine autonomie pendant une période de temps limitée.
  • Cette étape de calibrage peut être particulièrement efficace si elle est réalisée minutieusement par le skieur. Cependant, elle présente deux inconvénients importants. L'étape de calibrage requiert un retour d'information à l'utilisateur pour lui indiquer que la procédure est démarrée et/ou terminée ce qui est consommateur de ressources spécifiques, donc de coûts et d'énergie. Elle impose également un formalisme à respecter sur une période de temps plus ou moins longue et dans un environnement que l'on ne peut pas toujours maitriser. Par exemple, une étape de calibrage sur une surface plane et sensiblement horizontale de quelques secondes peut être difficile à obtenir à la sortie d'une télécabine ou d'un télésiège. Cette étape peut donc entrainer des soucis de fiabilité.
  • Pour éviter ou réduire l'utilisation de l'étape de calibrage, l'inventeur a découvert que des positions de skis se retrouvent très régulièrement chez les skieurs et ils proposent d'utiliser ces positions spécifiques pour calibrer c'est-à-dire ajuster le circuit de commande d'un dispositif de mesure de l'orientation des skis ou des chaussures de ski. En effet, selon les technologies, le dispositif de mesure peut être mis en place sur les deux skis ou sur les deux chaussures de ski qui sont fixées aux deux skis. Il est même possible de combiner l'utilisation de dispositifs sur le ski et sur la chaussure.
  • Pour fournir un dispositif de mesure de l'orientation relative entre les premier et deuxième skis ou entre les première et deuxième chaussures, il est avantageux de remplacer ou de compléter le magnétomètre par une autre mesure. En effet, si le magnétomètre est conservé, cette autre mesure du dispositif de mesure permet de le seconder en cas de défaillance. Cette autre mesure peut encore suppléer une absence de signal pertinent.
  • Comme illustré aux figures 1 et 2, le dispositif de mesure comporte plusieurs capteurs C1 et C2 configurés pour mesurer l'orientation d'axes et/ou plans représentatifs des premier et deuxième ski S1 et S2 et/ou de première et deuxième chaussures de ski B1 et B2. Les capteurs sont notamment configurés pour mesurer l'orientation d'un plan représentatif du ski ou de la chaussure de ski par rapport à la verticale et suivre l'orientation d'un ou plusieurs axes qui ne sont pas perpendiculaires à ce plan.
  • Afin de faciliter la compréhension, il ne sera plus fait référence aux chaussures de ski B1 et B2 dans les modes de réalisation à suivre. Cependant, l'homme du métier gardera à l'esprit que ce qui est présenté pour un ski peut également être présenté pour une chaussure de ski car en action de ski, ces deux éléments sont fixés l'un à l'autre. Les modes de réalisation des skis et des chaussures de ski seront explicités.
  • Dans un mode de réalisation avantageux, le capteur C1 comporte un premier capteur qui est configuré pour être agencé sur un premier ski S1. Le premier capteur est configuré pour fournir une première information relative à l'orientation d'un premier plan représentatif de la semelle du premier ski S1. En d'autres termes, le premier capteur est configuré pour mesurer l'orientation d'un premier plan relatif au premier ski S1. Le premier plan peut être le plan de la semelle ou tout autre plan fixe qui n'est pas perpendiculaire au plan de la semelle. Dans le cas où la semelle n'est pas plane, le plan de la semelle est représenté par la surface se trouvant directement sous le pied de l'utilisateur. Le premier plan est par exemple le plan défini par les axes X1 et Y1.
  • Le capteur C2 comporte également un deuxième capteur qui est configuré pour être agencé sur un deuxième ski S2. Le deuxième capteur est configuré pour fournir une deuxième information relative à l'orientation d'un deuxième plan représentatif de la semelle du deuxième ski S2. En d'autres termes, le deuxième capteur est configuré pour mesurer l'orientation d'un deuxième plan relatif au deuxième ski S2. Le deuxième plan peut être le plan de la semelle ou tout autre plan fixe qui n'est pas perpendiculaire au plan de la semelle. Dans le cas où la semelle n'est pas plane, le plan de la semelle est représenté par la surface se trouvant directement sous le pied de l'utilisateur. Le premier plan est par exemple le plan défini par les axes X2 et Y2.
  • Le premier capteur et le deuxième capteur sont configurés pour mesurer l'angle qui existe respectivement entre le premier plan et la direction verticale et entre le deuxième plan et la direction verticale. L'angle qui existe entre la direction verticale et le premier plan est appelé premier angle. L'angle qui existe entre la direction verticale et le deuxième plan est appelé deuxième angle. La direction verticale est représentée par le vecteur d'accélération de la pesanteur g. Le premier plan est sécant à la direction verticale et ne contient pas la direction verticale. Le deuxième plan est sécant à la direction verticale et ne contient pas la direction verticale.
  • Le premier plan et le deuxième plan comportent chacun au moins deux axes de référence qui sont inclus dans le plan à suivre. Le premier axe de référence est différent du deuxième axe de référence, de préférence perpendiculaire au deuxième axe de référence. L'angle qui existe entre la direction verticale et le premier plan et entre la direction verticale et le deuxième plan peut se décomposer en au moins deux composantes distinctes. La première composante représente l'angle qui existe entre la direction verticale et le premier axe de référence. La deuxième composante représente l'angle qui existe entre la direction verticale et le premier axe de référence.
  • Le capteur C1 comporte un premier capteur additionnel qui est configuré pour être agencé sur le premier ski S1. Le premier capteur additionnel est configuré pour fournir une première information additionnelle relative à l'orientation de l'axe longitudinal du premier ski S1. L'information relative à l'orientation de l'axe longitudinal du premier ski S1 peut être l'orientation de l'axe longitudinal ou de tout autre axe qui est fixe par rapport à l'axe longitudinal et qui n'est pas perpendiculaire au plan de la semelle. L'axe longitudinal est représenté, sur les figures 1 et 2, par l'axe X1. L'orientation de l'axe longitudinal du premier ski ou de la première chaussure est également appelée première orientation. L'orientation du premier capteur additionnel par rapport au ski peut être quelconque. La première orientation est suivie dans le temps de manière à suivre l'évolution de l'orientation de l'axe longitudinal du ski dans le temps. La première orientation peut être suivie au moyen d'un gyroscope 3 axes éventuellement complété d'un accéléromètre 3 axes.
  • Le capteur C2 comporte un deuxième capteur additionnel qui est configuré pour être agencé sur le deuxième ski S2. Le deuxième capteur additionnel est configuré pour fournir une deuxième information additionnelle relative à l'orientation de l'axe longitudinal du deuxième ski S2. L'information relative à l'orientation de l'axe longitudinal du deuxième ski S2 peut être l'orientation de l'axe longitudinal ou de tout autre axe qui est fixe par rapport à l'axe longitudinal et qui n'est pas perpendiculaire au plan de la semelle. L'axe longitudinal est représenté, sur les figures 1 et 2, par l'axe X2. L'orientation de l'axe longitudinal du deuxième ski ou de la deuxième chaussure est également appelée deuxième orientation. L'orientation du deuxième capteur additionnel par rapport au ski peut être quelconque. La deuxième orientation est suivie dans le temps de manière à suivre l'évolution de l'orientation de l'axe longitudinal du ski dans le temps. La deuxième orientation peut être suivie au moyen d'un gyroscope 3 axes éventuellement complété d'un accéléromètre 3 axes.
  • Chaque capteur additionnel est configuré pour mesurer l'orientation l'axe longitudinal du ski S1 ou S2 ou de la chaussure B1 ou B2. Chaque capteur additionnel peut mesurer directement l'axe longitudinal ou alors tout axe fixe par rapport à l'axe longitudinal. Le suivi de l'axe longitudinal du ski ou de la chaussure se faisant en ajoutant ou en retirant une valeur angulaire fixe à la donnée fournie par le capteur additionnel.
  • De manière avantageuse, le premier capteur additionnel est configuré pour fournir, en plus, une troisième information additionnelle relative à l'orientation d'un second axe du premier ski ou de la première chaussure de ski par rapport au référentiel spatial fixe.
  • Le second capteur additionnel est configuré pour fournir, en plus, une quatrième information additionnelle relative à l'orientation d'un second axe du deuxième ski ou de la deuxième chaussure de ski par rapport au référentiel spatial fixe.
  • Pour chacun des skis ou chaussures de ski, le second axe est différent de l'axe utilisé pour suivre l'axe longitudinal, de préférence orthogonal à l'axe longitudinal.
  • Le premier capteur additionnel C1 peut faire partie du premier capteur ou bien être un élément dissocié. Le deuxième capteur additionnel C2 peut faire partie du deuxième capteur ou bien être un élément dissocié.
  • Le dispositif de mesure comporte encore un circuit de commande A qui est connecté aux premier et deuxième capteurs et qui est configuré pour comparer la valeur de l'angle existant entre le premier plan et la verticale avec la valeur de l'angle existant entre le deuxième plan et la verticale. Le circuit de commande A reçoit des informations des capteurs C1 et C2 par toute technique adaptée, par exemple par un signal radiofréquence.
  • La comparaison du premier angle avec le deuxième angle peut être réalisée de différentes manières au moyen de la première information et de la deuxième information.
  • Dans un mode de réalisation particulier, lors de la comparaison du premier angle avec le deuxième angle, une ou plusieurs valeurs représentatives des deux composantes du premier angle sont comparées à une ou plusieurs valeurs représentatives des deux composantes du deuxième angle.
  • Afin de faciliter la comparaison du premier angle par rapport au deuxième angle, il apparaît particulièrement avantageux de configurer le premier capteur et le deuxième capteur de manière identique afin de suivre les mêmes plans et les mêmes axes de référence. Les premières composantes sont comparées entre elles. Il en est de même pour les deuxièmes composantes.
  • A titre d'exemple, un axe de référence est formé par l'axe longitudinal du ski. L'autre axe de référence est formé par l'axe transversal du ski.
  • Il est encore possible de prévoir que la comparaison du premier angle avec le deuxième angle soit réalisée en ne comparant que l'angle minimal qui existe entre le plan à suivre et la verticale et son signe par rapport au demi-plan du premier et deuxième plan délimité par l'axe longitudinal.
  • Les modes de comparaisons entre les deux angles peuvent varier par exemple en fonctions de la vitesse du skieur, de son accélération, de sa décélération, de son niveau de ski.
  • Dans l'exemple illustré, le premier capteur et le premier capteur additionnel font partie du capteur C1. En variante, le premier capteur ou le premier capteur additionnel peut être dissocié du capteur C1. Il peut en être de même pour le capteur C2. Le capteur C1 et/ou le capteur C2 peuvent être des capteurs 3 axes configurés pour mesurer des accélérations linéaires et/ou angulaires.
  • Le circuit de commande A est connecté aux premier et deuxième capteurs additionnels et il est configuré pour comparer l'orientation du premier axe longitudinal avec le deuxième axe longitudinal.
  • A chaque instant, le circuit de commande reçoit des informations permettant de calculer l'orientation du premier ski dans l'espace et des informations permettant de calculer l'orientation du deuxième ski dans l'espace. Toutes ces informations sont traitées pour savoir si les orientations des skis représentent des orientations à risque ou non.
  • A titre d'exemple, la différence angulaire qui existe entre l'orientation du premier axe longitudinal et l'orientation du deuxième axe longitudinal est comparée à une ou plusieurs valeurs seuils. En fonction de cette comparaison, le circuit de commande décide de déclencher ou non le déchaussage d'au moins une chaussure avec le ski associé.
  • Dans un mode de réalisation avantageux, la position relative des skis est définie au moyen de 3 écarts angulaires. Un premier écart angulaire correspond à l'angle formé entre les axes longitudinaux X1 et X2. Un deuxième écart angulaire est formé entre les axes transversaux Y1 et Y2. Un troisième écart est formé entre les axes Z1 et Z2.
  • Chaque valeur d'écart angulaire peut être comparée de manière indépendante à un seuil spécifique afin de détecter si la position des skis correspond à une situation à risque ou à une situation normale. Par ailleurs, les différentes valeurs d'écart angulaire peuvent être comparées en combinaison à un ou plusieurs seuils de manière à de détecter si la position des skis correspond à une situation à risque ou à une situation normale.
  • Dans un mode de réalisation avantageux, les différents écarts angulaires qui existent entre les deux skis sont calculés en considérant que chaque ski possède un point de référence et que ces deux points de référence sont confondus. Par exemple, le point de référence d'un ski est l'intersection entre les axes X, Y et Z. Dans l'exemple de la figure 2, le point de référence est situé dans le plan de la semelle sous le talon de la chaussure de ski. Dans cette configuration, les écarts angulaires sont plus faciles à calculer.
  • De manière avantageuse, l'écart angulaire qui existe entre l'axe X1 et l'axe X2, entre l'axe Y1 et l'axe Y2 ou entre l'axe Z1 et l'axe Z2 est signé c'est-à-dire que le circuit de commande tient compte de l'orientation d'un ski par rapport à l'autre. Ainsi, selon que la valeur de l'angle entre X1 et X2 est positive ou négative, le circuit de commande est en mesure de déterminer que les axes longitudinaux des skis se rapprochent ou s'éloignent, plus particulièrement les spatules avant ou arrière. Il en est de même pour les angles entre les axes Y1 et Y2 et entre les axes Z1 et Z2.
  • Pour un instant donné, le circuit de commande A reçoit :
    • une première donnée qui est le premier angle ou une information relative au premier angle,
    • une deuxième donnée qui est le deuxième angle ou une information relative au deuxième angle,
    • une troisième donnée qui est la première direction ou une information relative à la première direction,
    • une quatrième donnée qui est la deuxième direction ou une information relative à la deuxième direction.
  • Le dispositif est configuré de manière à fonctionner en l'absence d'informations fiables sur une direction géographique fixe, par exemple le nord magnétique. Par exemple, en cas de défaillance d'un magnétomètre, l'orientation fournie peut être fausse et/ou aléatoire. Néanmoins, cela n'empêche pas le dispositif de suivre l'évolution relative des deux skis de manière fiable.
  • Pour comparer l'orientation du premier plan par rapport au deuxième plan, le circuit de commande est avantageusement configuré pour comparer l'angle qui existe entre l'orientation du premier plan et la verticale avec l'angle qui existe entre l'orientation du deuxième plan et la verticale. Sur la figure 2, le premier angle est représenté par l'angle qui existe entre l'axe g et l'axe Z1. Le deuxième angle est représenté par l'angle qui existe entre l'axe g et l'axe Z2.
  • La verticale, c'est-à-dire le vecteur d'accélération de la pesanteur g, est utilisée comme référentiel commun pour les premier et deuxième plans. La mesure de l'orientation du plan peut être facilement réalisée au moyen d'un accéléromètre éventuellement complété d'un gyroscope.
  • Après avoir mesuré l'orientation du premier plan par rapport à la verticale et l'orientation du deuxième plan par rapport à la verticale à partir des premier et deuxième capteurs, le circuit de commande peut rechercher si le premier plan est parallèle au deuxième plan. Cette recherche peut se faire simplement en comparant les valeurs du premier angle et du deuxième angle afin de déterminer si elles sont égales ou différentes. Si le premier angle est égal au deuxième angle, les deux plans peuvent être considérés parallèles.
  • Le premier angle est considéré comme égal au deuxième angle, si la différence est inférieure ou égale à 5° en valeur absolue.
  • La comparaison de l'orientation des premier et deuxième plans peut être réalisée en comparant la valeur du premier angle avec la valeur du deuxième angle. Il est également possible de comparer la différence entre le premier angle et le deuxième angle à une ou plusieurs valeurs seuils.
  • Dans un mode de réalisation avantageux, les deux capteurs sont installés de manière identique sur les deux skis de façon à ce que le premier plan relatif au premier ski soit l'équivalent du deuxième plan relatif au deuxième ski. Dans ce cas de figure particulièrement avantageux. La comparaison entre les orientations des premier et deuxième plans peut être facilitée en comparant simplement la valeur des premier et deuxième angles ou la valeur de la différence.
  • Par exemple, le circuit de commande considère que les deux plans sont parallèles si la valeur du premier angle est égale à la valeur du deuxième angle à plus ou moins 5°. Par exemple, le circuit de commande considère que les deux plans sont parallèles si la différence entre le premier angle et le deuxième angle est inférieure ou égale à 5° en valeur absolue.
  • En effet, l'inventeur a découvert que lors de la pratique du ski, de préférence lorsque les skis sont en mouvement, quand le plan de la semelle du premier ski S1 est parallèle au plan de la semelle du deuxième ski S2, les skis sont majoritairement parallèles. L'inventeur a découvert que lors de la pratique du ski, de préférence lorsque les skis sont en mouvement, quand l'angle formé entre le plan de la semelle du premier ski S1 et la verticale est identique à l'angle formé entre le plan de la semelle du deuxième ski S2 et la verticale, les skis sont majoritairement parallèles. La valeur de l'angle tient compte de son signe, c'est-à-dire de l'orientation du ski.
  • Par ailleurs, si la valeur du premier angle et la valeur du deuxième sont différentes de 90°, c'est-à-dire que les semelles des skis ne sont pas selon un plan horizontal, il est avantageux d'en déduire que les skis sont en mouvement et donc que les skis sont majoritairement parallèles.
  • Il a été observé que la période où les axes longitudinaux des skis sont parallèles augmente au fur et à mesure que l'angle s'écarte de 90°, c'est-à-dire que la pente augmente.
  • Par majoritairement parallèle, on entend que dans la majorité du temps d'étude les skis sont parallèles. Les skis sont considérés parallèles quand l'axe longitudinal du premier ski X1 est parallèle à l'axe longitudinal du deuxième ski X2 avec une tolérance de quelques degrés.
  • Si le skieur freine en appuyant sur ses talons et en rapprochant les spatules avant de ses skis S1 et S2, par exemple dans le cas communément appelé chasse-neige, il est observé que les plans des deux semelles des skis ne sont pas parallèles. Les premier et deuxième angles formés par ces plans avec la verticale peuvent être identique en valeur absolue mais ils ont des signes opposés. Il peut en être de même lors d'un virage.
  • La mesure du premier angle et du deuxième angle peut être réalisée facilement au moyen d'un accéléromètre 3 axes éventuellement complété par un gyroscope 3 axes.
  • Sur la base de cette observation, le circuit de commande A est configuré pour comparer l'orientation des premier et deuxième plans. Si les premier et deuxième plans forment le même angle avec la verticale, le circuit de commande A considère que les axes longitudinaux sont également parallèles et il enregistre cette information en recalibrant l'orientation des deux axes longitudinaux. Cet enregistrement permet d'ajuster la comparaison entre le premier axe longitudinal et le deuxième axe longitudinal pour détecter d'éventuelles situations à risque plus tard. Seule la position relative des skis est exploitée. Il suffit donc de redéfinir la mesure de la position des axes longitudinaux des skis l'un par rapport à l'autre et non pas de redéfinir la position des axes longitudinaux par rapport à une direction géographique de référence, par exemple le nord magnétique.
  • Si les skis S1 et S2 sont considérés parallèles, c'est-à-dire que les axes longitudinaux sont considérés parallèles, il est possible de réajuster les capteurs additionnels en envoyant les informations sur l'orientation du premier axe et/ou du deuxième axe. Il est également possible de corriger les informations transmises à l'intérieur du circuit de mesure par exemple en ajoutant ou en retirant quelques degrés à l'orientation d'un des skis ou aux deux skis S1 et S2. Il est encore possible de recalculer les seuils entrainant la détection d'une situation à risque. Ces différentes options peuvent être utilisées indépendamment ou dans toute combinaison possible.
  • Sur la base de cette calibration, il est ensuite possible de détecter les situations à risque pour le skieur, par exemple un futur croisement de skis.
  • Ce mode de réalisation est particulièrement avantageux car il est réalisé lorsque le skieur est en action de ski, c'est-à-dire en temps masqué. Il peut par exemple éviter des périodes fixes de calibration qu'il faudrait effectuer régulièrement. Le skieur se déplace sur la piste et le circuit de commande A détecte une ou plusieurs situations où les deux semelles des skis S1 et S2 forment le même angle avec la verticale et il en déduit que ces situations correspondent à des instants où les skis S1 et S2 sont parallèles. Le circuit de mesure se recalibre sur la base de ces informations pour pouvoir détecter par la suite des situations à risque de manière plus sure.
  • Si le dispositif de mesure comporte une ou plusieurs centrales inertielles afin de mesurer ou suivre l'orientation de l'axe longitudinal du premier ski S1 et/ou du deuxième ski S2, le circuit de commande A peut corriger la dérive des centrales inertielles en redéfinissant les valeurs correspondant aux deux skis parallèles.
  • De la même manière, si le dispositif de mesure comporte un ou plusieurs gyroscopes afin de mesurer ou suivre l'orientation de l'axe longitudinal du premier ski et/ou du deuxième ski, le circuit de commande A peut corriger la dérive du gyroscope. Il peut en être de même pour les accéléromètres configurés pour mesurer des vitesses linéaires et/ou angulaires.
  • Ainsi, en mesurant l'orientation du premier plan par rapport à la verticale et l'orientation du deuxième plan par rapport à la verticale et en comparant ces deux valeurs, il est possible de définir avec un faible taux d'erreur que l'axe longitudinal X1 du premier ski S1 est parallèle à l'axe longitudinal X2 du deuxième ski S2. Les données concernant le premier axe longitudinal ou le deuxième axe longitudinal restent des données relatives qui sont corrélées par le circuit de mesure.
  • Cette mesure peut être utilisée pour remplacer un magnétomètre ou une procédure de calibration. Cette mesure peut également être utilisée pour compléter la mesure réalisée par un magnétomètre en cas de défaillance et/ou d'absence de signal.
  • La figure 3 illustre de manière schématique les différentes actions du circuit de commande pour la recalibration des axes longitudinaux.
  • Dans une étape S1, le circuit de commande A reçoit des informations relatives à l'orientation du premier plan et du deuxième plan.
  • Dans une étape S2, le circuit de commande A calcule si le premier angle est égal au deuxième angle, c'est-à-dire si le premier plan forme un même angle avec la verticale que l'angle formé entre la verticale et le deuxième plan sur la base des informations précédentes.
  • Si les premier et deuxième plans ne forment pas un même angle avec la verticale (sortie N), le circuit de commande quitte le protocole de recalibration. Si les premier et deuxième plans forment un même angle avec la verticale et sont donc parallèles (sortie O), le circuit de commande A peut passer directement à une étape S3 où les premier et deuxième axes longitudinaux sont considérés parallèles.
  • A une étape S4, le circuit de commande 1 enregistre cette information en ajustant les informations relatives au premier axe longitudinal et au deuxième axe longitudinal pour sécuriser la détection d'une éventuelle situation à risque.
  • Dans un mode de réalisation avantageux illustré à la figure 3, la prise en compte de la comparaison de l'orientation du premier plan avec le deuxième plan pour savoir si ces derniers forment un même angle avec la verticale peut être conditionnée par l'occurrence d'un autre événement.
  • Selon les modes de réalisation, la comparaison n'est pas réalisée ou le résultat n'est pas pris en compte en fonction de l'occurrence d'un autre événement.
  • Dans un mode de réalisation avantageux, l'information indiquant que le premier plan et le deuxième plan forment un même angle avec la verticale n'est prise en compte que si le premier plan et/ou le deuxième plan sont différents du plan horizontal, c'est-à-dire si les premier et deuxième plans sont sécants à la verticale sans que la verticale soit perpendiculaire à ces deux plans. Cette condition supplémentaire est représentée par exemple par l'étape S5 placée après la sortie O de l'étape S2.
  • Dans le cas où le premier plan et/ou le deuxième plan sont parallèles au plan horizontal, le circuit de commande A peut quitter le protocole de recalibration (sortie N) ou conditionner la poursuite du protocole à l'occurrence d'un autre événement (non représenté).
  • Dans un mode de réalisation préférentiel, le circuit de commande A mesure également la distance entre le premier ski S1 et le deuxième ski S2 ou la distance d entre la première chaussure B1 et la deuxième chaussure B2. La distance d mesurée est comparée à une première distance seuil d1. Ce mode de réalisation permet une analyse plus fine des situations dangereuses où il faudrait déchausser. Cette condition supplémentaire est représentée par exemple par l'étape S6 placée après la sortie O de l'étape S5. Dans ce cas particulier, la distance d est comparée à deux valeurs seuil différentes.
  • Dans une configuration avantageuse, le circuit de commande A comprend ou est couplé à un capteur additionnel mesurant l'accélération linéaire du premier ski ou de la première chaussure selon son axe longitudinal X. Ce capteur additionnel peut être présent dans le capteur C1 et/ou dans le capteur C2. Le circuit de commande A est configuré pour prendre en compte la comparaison entre le premier plan et le deuxième plan si la vitesse linéaire du premier ski selon son axe longitudinal atteint une valeur seuil, par exemple dépasse une valeur seuil (v>vseuil). Cette condition supplémentaire est représentée par exemple par l'étape S7 placée après la sortie O de l'étape S6.
  • Cette précision permet par exemple, d'éliminer les configurations où le skieur est à l'arrêt ou éventuellement à une vitesse très faible et il place volontairement ses skis dans des positions incompatibles avec la pratique du ski à une allure classique.
  • La vitesse comparée peut être une mesure absolue, c'est-à-dire qu'elle ne tient pas compte du sens de progression du skieur ou relative c'est-à-dire qu'elle différencie une marche avant et une marche arrière.
  • Il est encore avantageux de prévoir que le circuit de commande peut être configuré pour prendre en compte la comparaison entre le premier plan et le deuxième plan lorsque l'accélération mesurée par le capteur atteint une valeur seuil ou est non nul. Cette condition supplémentaire est représentée par exemple par l'étape S8 placée après la sortie O de l'étape S7.
  • Dans un mode de réalisation avantageux, le circuit de commande peut être couplé à un détecteur de pression. Le détecteur de pression est configuré pour détecter si le poids du skieur est présent sur les skis par exemple pour réaliser un virage ou un freinage ou d'une manière plus générale si il est en action de glisse sur la neige. Cette condition supplémentaire est représentée par exemple par l'étape S9 placée après la sortie N de l'étape S8.
  • De cette manière, il est possible de discriminer si le skieur est en train de descendre une piste ou au contraire s'il se trouve sur un télésiège ou dans une cabine.
  • Si le skieur est dans un télésiège, il n'applique pas de pression sur la chaussure et/ou sur le ski ou une pression bien plus faible ce qui avertit le circuit de commande. Le circuit de commande peut être configuré pour tenir compte de la comparaison entre le premier plan et le deuxième plan lorsque le capteur de pression envoie un signal qui atteint une valeur seuil.
  • Si le skieur est debout dans une cabine, il n'applique pas de pression sur le ski mais la pression sur la chaussure peut être identique à celle de la pratique du ski. Si le capteur de pression est placé dans le ski, il est possible de discriminer la présence ou l'absence de skieur. En revanche, si le capteur est placé dans la chaussure, il faut prévoir que le capteur ou un capteur supplémentaire soit configuré pour détecter la connexion entre le ski et la chaussure. Le circuit de commande peut être configuré pour tenir compte de la comparaison entre le premier plan et le deuxième plan lorsque le capteur détecte la connexion entre le ski et la chaussure associée.
  • L'utilisation d'un capteur de pression permet également de détecter si le skieur réalise un saut et il se trouve alors dans une position différente de la position de ski. Il est donc intéressant de ne pas tenir compte de la position de ses skis.
  • En variante, pour discriminer si le skieur est en train de skier ou s'il est transporté par une cabine ou un siège, il est également possible de rechercher si le skieur est en train de descendre la pente ou si au contraire il remonte la pente.
  • En alternative, pour savoir si le skieur est en train de skier ou s'il se trouve dans une autre condition, il est également intéressant de prévoir que le circuit de commande soit connecté à des moyens d'analyse de la déformation du ski ou à des moyens d'analyse des vibrations dans le ski. Ces informations peuvent provenir par exemple, d'une ou plusieurs jauges de contrainte et/ou d'une ou plusieurs lames en matériau piézoélectrique.
  • Il est alors avantageux de prévoir que le circuit de commande peut être configuré pour prendre en compte la comparaison entre le premier plan et le deuxième plan lorsque l'information fournie par les moyens d'analyse de la déformation du ski ou les moyens d'analyse des vibrations dans le ski renvoient une première valeur.
  • Les différentes étapes S2, S5, S6, S7, S8 et S9 peuvent être réalisées dans n'importe quel ordre. Il est même possible de prévoir que les étapes S5, S6, S7, S8 et S9 ou une partie de ces étapes soient réalisées entre les étapes S3 et S4.
  • Dans les différentes configurations exposées, il est avantageux de prévoir que le circuit de commande est dépourvu d'information en provenance d'un magnétomètre. Ce mode de réalisation permet de prévoir un dispositif de mesure dépourvu de magnétomètre pour gagner en compacité et en coût.
  • Il est encore possible de prévoir que le circuit de commande est dépourvu d'information en provenance d'un système de géolocalisation pour économiser de l'énergie. Il est encore plus avantageux de prévoir un dispositif de mesures dépourvu de système de géolocalisation pour gagner en compacité et en coût.
  • Afin de faciliter l'utilisation du circuit de mesure, il est avantageux de ne pas prévoir un capteur relatif à un ski droit et un capteur relatif à un ski gauche. La dissociation des capteurs peut être réalisée facilement lorsqu'ils sont intégrés à une chaussure car il y a une chaussure droite et une chaussure gauche. En revanche, il est plus difficile de réaliser ce type d'opération pour les skis qui sont majoritairement identiques dans une paire de skis.
  • Une manière astucieuse de distinguer le capteur droit et le capteur gauche et donc l'ensemble ski droit / chaussure droite de l'ensemble ski gauche / chaussure gauche est de mesurer l'angle qui existe entre l'axe longitudinal du premier ski S1 et l'axe longitudinal du deuxième ski S2 lors d'une descente à ski.
  • Comme indiqué précédemment, l'inventeur a observé que en action de ski, un skieur fait très majoritairement évoluer l'orientation de ses skis entre une première position où les skis sont parallèles et une seconde position où les spatules avant sont dirigées l'une vers l'autre pour freiner ou pour tourner. En mesurant l'orientation des axes longitudinaux des deux skis, sur une période de temps prédéfinie et en calculant la valeur moyenne de l'angle qui existe entre les deux axes longitudinaux, il est possible de déduire si le premier ski est le ski droit ou le ski gauche et inversement pour le deuxième ski. En effet, l'angle formé au niveau des spatules avant des skis est très majoritairement un angle aigu, en particulier lorsque les skis ne sont pas à l'horizontale ou ne sont pas proches de l'horizontale. En variante, en contrôlant le signe de la différence entre la première orientation et la deuxième orientation sur plusieurs instants, le circuit de commande est capable de déduire si le premier ski est le ski droit ou le ski gauche et inversement pour le deuxième ski, c'est-à-dire si l'angle aigu est formé du côté des spatules avant ou au contraire sur la partie arrière des skis.
  • Cette mesure peut être associée à une seconde mesure destinée à analyser le sens de progression du skieur. L'angle aigu formé par les skis est dirigé dans le sens de progression du skieur ce qui permet de prendre en considération un skieur qui choisit de skier en marche arrière.
  • Cette phase de calibration peut être réalisée sur une première période de temps qui suit la fixation des chaussures de ski sur les skis. Cette phase de calibration peut encore être réalisée sur une première période de temps après une durée prédéfinie d'utilisation du ski. La phase de calibration peut être initiée si le circuit de commande détecte que les skis ont été inutilisés pendant une période prédéterminée, par exemple 5 minutes, et/ou si les skis sont dans une position particulière par exemple l'axe longitudinal du ski est placé à la verticale. La phase de calibration peut être réalisée de manière répétitive, par exemple après une durée prédéfinie, une distance parcourue prédéfinie et/ou un dénivelé prédéfini. Cette phase de calibration peut aussi être réalisée en permanence.

Claims (12)

  1. Dispositif de mesure de l'orientation relative de deux skis comportant:
    - un premier capteur (c1) configuré pour être agencé sur un premier ski (s1) ou sur une première chaussure (b1) de ski, le premier capteur étant configuré pour fournir une première information relative à un premier angle existant entre un premier plan (x1, y1) et la verticale, le premier plan étant représentatif de la semelle du premier ski ou de la semelle de la première chaussure de ski,
    - un premier capteur additionnel configuré pour être agencé sur le premier ski ou sur la première chaussure de ski, le premier capteur additionnel étant configuré pour fournir une première information additionnelle relative à l'orientation de l'axe longitudinal du premier ski ou de la première chaussure de ski par rapport à un premier référentiel spatial fixe,
    - un deuxième capteur (c2) configuré pour être agencé sur un deuxième ski (s2) ou sur une deuxième chaussure (b2) de ski, le deuxième capteur étant configuré pour fournir une deuxième information relative à un deuxième angle existant entre un deuxième plan (x2, y2) et la verticale, le deuxième plan étant représentatif de la semelle du deuxième ski ou de la semelle de la deuxième chaussure de ski,
    - un deuxième capteur additionnel configuré pour être agencé sur le deuxième ski ou sur la deuxième chaussure de ski, le deuxième capteur additionnel étant configuré pour fournir une deuxième information additionnelle relative à l'orientation de l'axe longitudinal du deuxième ski ou de la deuxième chaussure de ski par rapport au premier référentiel spatial fixe,
    - un circuit de commande configuré pour
    ∘ comparer la valeur du premier angle avec la valeur du deuxième angle,
    ∘ enregistrer l'orientation de l'axe longitudinal du premier ski ou de la première chaussure de ski et l'orientation de l'axe longitudinal du deuxième ski ou de la deuxième chaussure de ski comme correspondant à une configuration où l'axe longitudinal du premier ski est parallèle à l'axe longitudinal du deuxième ski lorsque la valeur du premier angle est égale à la valeur du deuxième angle.
  2. Dispositif selon la revendication 1, dans lequel la première information comporte une valeur d'un angle existant entre une première direction de référence du premier plan et la verticale et une valeur d'un angle existant entre une deuxième direction de référence du premier plan et la verticale, la première direction de référence étant différente de la deuxième direction de référence dans le premier plan et dans lequel la deuxième information comporte une valeur d'un angle existant entre une première direction de référence du deuxième plan et la verticale et une valeur d'un angle existant entre une deuxième direction de référence du deuxième plan et la verticale, la première direction de référence étant différente de la deuxième direction de référence dans le deuxième plan.
  3. Dispositif selon l'une des revendications 1 et 2, dans lequel le circuit de commande est configuré en outre pour
    ∘ initier un déchaussement de la première chaussure avec le premier ski et/ou le déchaussement de la deuxième chaussure avec le deuxième ski lorsque l'angle entre l'axe longitudinal du premier ski ou de la première chaussure de ski et l'axe longitudinal du deuxième ski ou de la deuxième chaussure de ski atteint une valeur seuil.
  4. Dispositif selon l'une des revendications 1 à 3, dans lequel le premier capteur additionnel et le second capteur additionnel sont configurés pour fournir respectivement une troisième information additionnelle relative à l'orientation d'un second axe du premier ski ou de la première chaussure de ski par rapport au référentiel spatial fixe et une quatrième information additionnelle relative à l'orientation d'un second axe du deuxième ski ou de la deuxième chaussure de ski par rapport au référentiel spatial fixe, le second axe étant différent de l'axe longitudinal du ski ou de la chaussure de ski et de préférence orthogonal à l'axe longitudinal.
  5. Dispositif selon la revendication 4, dans lequel le circuit de commande est configuré en outre pour
    ∘ calculer au moins un paramètre à partir de l'angle existant entre l'axe longitudinal du premier ski et l'axe longitudinal du deuxième ski, de la différence entre le premier angle et le deuxième angle et des troisième et quatrième informations additionnelles,
    ∘ comparer ledit au moins un paramètre à au moins un paramètre seuil,
    ∘ initier un déchaussement de la première chaussure avec le premier ski et/ou le déchaussement de la deuxième chaussure avec le deuxième ski en fonction de la comparaison.
  6. Dispositif selon l'une des revendications 4 et 5, dans lequel le second axe du premier ski ou de la première chaussure de ski est perpendiculaire à l'axe longitudinal et est inclus dans le premier plan.
  7. Dispositif selon l'une des revendications 1 à 6, dans lequel le circuit de commande est dépourvu d'information en provenance d'un magnétomètre.
  8. Dispositif selon l'une des revendications 1 à 7, dans lequel le circuit de commande est dépourvu d'information en provenance d'un système de géolocalisation.
  9. Dispositif selon l'une des revendications 1 à 8, dans le circuit de commande est couplé à un capteur supplémentaire mesurant l'accélération ou la vitesse linéaire du premier ski ou de la première chaussure de ski selon son axe longitudinal et dans lequel le circuit de commande est configuré pour enregistrer l'orientation de l'axe longitudinal du premier ski ou de la première chaussure de ski et l'orientation de l'axe longitudinal du deuxième ski ou de la deuxième chaussure de ski comme correspondant à une configuration où l'axe longitudinal du premier ski est parallèle à l'axe longitudinal du deuxième ski lorsque le premier angle est égal au deuxième angle si l'accélération ou la vitesse linéaire du premier ski ou de la première chaussure de ski selon son axe longitudinal atteint une valeur seuil.
  10. Dispositif selon l'une des revendications 1 à 9, comportant un capteur de pression connecté au circuit de commande et configuré pour détecter le poids de l'utilisateur sur le premier ski ou sur la première chaussure, le circuit de commande étant configuré pour enregistrer l'orientation de l'axe longitudinal du premier ski ou de la première chaussure de ski et l'orientation de l'axe longitudinal du deuxième ski ou de la deuxième chaussure de ski comme correspondant à une configuration où l'axe longitudinal du premier ski est parallèle à l'axe longitudinal du deuxième ski lorsque le premier angle est égal au deuxième angle et lorsque le capteur de pression détecte une pression supérieure à une pression seuil.
  11. Dispositif selon l'une des revendications 1 à 10, dans lequel le circuit de commande est configuré en plus pour calculer l'angle existant entre l'axe longitudinal du premier ski ou de la première chaussure et l'axe longitudinal du deuxième ski ou de la deuxième chaussure et définir si le premier ski est un ski droit ou un ski gauche ou si la première chaussure est une chaussure droite ou une chaussure gauche en fonction du signe dudit angle.
  12. Dispositif selon l'une des revendications précédentes, dans lequel le premier capteur additionnel fait partie du premier capteur et le deuxième capteur additionnel fait partie du deuxième capteur.
EP16187935.8A 2016-09-08 2016-09-08 Dispositif de mesure de l orientation de deux skis ou deux chaussures de ski Active EP3292894B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16187935.8A EP3292894B1 (fr) 2016-09-08 2016-09-08 Dispositif de mesure de l orientation de deux skis ou deux chaussures de ski

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16187935.8A EP3292894B1 (fr) 2016-09-08 2016-09-08 Dispositif de mesure de l orientation de deux skis ou deux chaussures de ski

Publications (2)

Publication Number Publication Date
EP3292894A1 EP3292894A1 (fr) 2018-03-14
EP3292894B1 true EP3292894B1 (fr) 2020-02-12

Family

ID=56896396

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16187935.8A Active EP3292894B1 (fr) 2016-09-08 2016-09-08 Dispositif de mesure de l orientation de deux skis ou deux chaussures de ski

Country Status (1)

Country Link
EP (1) EP3292894B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3613480B1 (fr) * 2018-08-22 2021-04-21 Swiss Timing Ltd. Procede et systeme de classement continu d'un concurrent lors d'un parcours d'une discipline sportive de glisse de type slalom

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2578432B1 (fr) * 1985-03-11 1987-06-12 Imberteche Rene Dispositif pour glisser et marcher sur la neige a bandes de glissement a geometrie variable, avec amortisseur et frein de securite
US6266623B1 (en) * 1994-11-21 2001-07-24 Phatrat Technology, Inc. Sport monitoring apparatus for determining loft time, speed, power absorbed and other factors such as height
US20160038788A1 (en) * 2013-02-06 2016-02-11 Blur Sports Inc. Performance monitoring systems and methods for edging sports
FR3001898B1 (fr) 2013-02-11 2015-04-03 Fabrice Devaux Fixation securisee de chaussure sur un ski
WO2015166143A1 (fr) * 2014-05-02 2015-11-05 Brison S.A. Dispositif de fixation securisee d'une chaussure sur un ski

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3292894A1 (fr) 2018-03-14

Similar Documents

Publication Publication Date Title
EP2351988B1 (fr) Estimation stabilisée en virage des angles d'assiettes d'un aéronef
EP2921863B1 (fr) Procédé et dispositif d'estimation automatique de paramètres liés à un vol d'un aéronef
EP3359915A1 (fr) Procédé d'estimation du mouvement d'un piéton
EP2938965B1 (fr) Procede de comparaison de deux centrales inertielles solidaires d'un meme porteur
EP2560009A1 (fr) Dispositif et procédé d'estimation pour estimer la vitesse instantanée d'un individu ou d'un objet
FR3007841A1 (fr) Procede de detection d'une panne d'au moins un capteur present sur un aeronef, mettant en oeuvre une boucle baro-inertielle et systeme associe
EP1157254B1 (fr) Appareil a gyrometres et accelerometres pour la determination des attitudes d'un aerodyne
WO2013144157A1 (fr) Procédé de détermination d'un état de crédibilité de mesures d'un capteur d'incidence d'un aéronef et système correspondant
FR2959112A1 (fr) Systeme d'analyse de foulees d'un utilisateur
WO2010046364A1 (fr) Dispositif et procede de determination d'une caracteristique d'une trajectoire formee de positions successives d'un accelerometre triaxial lie de maniere solidaire a un element mobile
FR2944888A1 (fr) Procede d'aide a la navigation pour la determination de la trajectoire d'un aeronef
EP3765818A1 (fr) Procédé de calibration d'un gyromètre équipant un véhicule
FR3007840A1 (fr) Procede de detection d'une panne d'au moins un capteur present sur un aeronef, mettant en oeuvre une boucle anemo-inertielle, et systeme associe
EP3292894B1 (fr) Dispositif de mesure de l orientation de deux skis ou deux chaussures de ski
EP2223047A1 (fr) Procede d'alignement autonome d'unite de mesure inertielle pour instrument de bord d'aeronef.
FR3039890A1 (fr) Dispositif de mesure de l'orientation de deux skis ou deux chaussures de ski
EP1913336B1 (fr) Procede et dispositif de determination de la vitesse d'un coureur
EP2953694B1 (fr) Fixation sécurisée de chaussure sur un ski
FR3037413A1 (fr) Dispositif electronique et procede d'aide au pilotage d'un aeronef, avec calcul et affichage d'au moins une marge en roulis, produit programme d'ordinateur associe
WO2020011900A1 (fr) Apprentissage de la position angulaire d'un accéléromètre à trois axes intégré à une unité de commande électronique d'un moteur de véhicule
WO2015166143A1 (fr) Dispositif de fixation securisee d'une chaussure sur un ski
EP3896398B1 (fr) Procédé d'identification d'une phase statique d'un véhicule
FR3041753B1 (fr) Methode de determination de la surface de trainee aerodynamique d'un vehicule
EP3336486A1 (fr) Procédé de détection et de calcul de hauteur d'un saut
FR2864225A1 (fr) Procede de mesure du mouvement d'un solide, utilisant une mesure absolue associee a une mesure par double integration

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180914

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190828

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1231317

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016029414

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200612

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200705

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016029414

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1231317

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200212

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602016029414

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200908

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200908

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200908

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212