EP3288059B1 - Commandable trip unit for an electrical circuit breaker - Google Patents
Commandable trip unit for an electrical circuit breaker Download PDFInfo
- Publication number
- EP3288059B1 EP3288059B1 EP17187020.7A EP17187020A EP3288059B1 EP 3288059 B1 EP3288059 B1 EP 3288059B1 EP 17187020 A EP17187020 A EP 17187020A EP 3288059 B1 EP3288059 B1 EP 3288059B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- order
- vcmd
- control signal
- circuit breaker
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005284 excitation Effects 0.000 claims description 76
- 230000008878 coupling Effects 0.000 claims description 45
- 238000010168 coupling process Methods 0.000 claims description 45
- 238000005859 coupling reaction Methods 0.000 claims description 45
- 230000007246 mechanism Effects 0.000 claims description 31
- 230000001105 regulatory effect Effects 0.000 claims description 17
- 230000004044 response Effects 0.000 claims description 17
- 239000000523 sample Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 8
- 230000000903 blocking effect Effects 0.000 claims description 6
- 230000005764 inhibitory process Effects 0.000 claims description 6
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 230000001276 controlling effect Effects 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 3
- 230000003213 activating effect Effects 0.000 claims description 2
- 125000004122 cyclic group Chemical group 0.000 claims 1
- 230000002401 inhibitory effect Effects 0.000 claims 1
- 230000001960 triggered effect Effects 0.000 description 20
- 101100100125 Mus musculus Traip gene Proteins 0.000 description 12
- 238000001514 detection method Methods 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000017525 heat dissipation Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 235000021183 entrée Nutrition 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101100536354 Drosophila melanogaster tant gene Proteins 0.000 description 1
- 241001272720 Medialuna californiensis Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229940082150 encore Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H50/00—Details of electromagnetic relays
- H01H50/02—Bases; Casings; Covers
- H01H50/021—Bases; Casings; Covers structurally combining a relay and an electronic component, e.g. varistor, RC circuit
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H71/00—Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
- H01H71/10—Operating or release mechanisms
- H01H71/12—Automatic release mechanisms with or without manual release
- H01H71/24—Electromagnetic mechanisms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H47/00—Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
- H01H47/02—Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
- H01H47/04—Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H71/00—Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
- H01H71/10—Operating or release mechanisms
- H01H71/66—Power reset mechanisms
- H01H71/68—Power reset mechanisms actuated by electromagnet
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H89/00—Combinations of two or more different basic types of electric switches, relays, selectors and emergency protective devices, not covered by any single one of the other main groups of this subclass
- H01H89/06—Combination of a manual reset circuit with a contactor, i.e. the same circuit controlled by both a protective and a remote control device
- H01H89/08—Combination of a manual reset circuit with a contactor, i.e. the same circuit controlled by both a protective and a remote control device with both devices using the same contact pair
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H47/00—Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
- H01H47/002—Monitoring or fail-safe circuits
- H01H2047/006—Detecting unwanted movement of contacts and applying pulses to coil for restoring to normal status
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H47/00—Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
- H01H47/02—Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
- H01H2047/025—Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay with taking into account of the thermal influences, e.g. change in resistivity of the coil or being adapted to high temperatures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H71/00—Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
- H01H71/10—Operating or release mechanisms
- H01H71/66—Power reset mechanisms
- H01H2071/665—Power reset mechanisms the reset mechanism operating directly on the normal manual operator, e.g. electromagnet pushes manual release lever back into "ON" position
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2300/00—Orthogonal indexing scheme relating to electric switches, relays, selectors or emergency protective devices covered by H01H
- H01H2300/024—Avoid unwanted operation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H51/00—Electromagnetic relays
Definitions
- the present invention relates to a controllable trigger for an electric circuit breaker.
- the invention also relates to an electrical apparatus comprising an electric circuit breaker and such a trigger associated with this electric circuit breaker.
- the invention finally relates to a method of operating such a trigger.
- a trigger for an electric circuit breaker has the function of opening the circuit breaker with which it is associated, so as to interrupt the flow of an electric current between input and output terminals of the circuit breaker, when the trip unit receives a dedicated command signal.
- this control signal is issued by an operator by pressing an emergency stop button.
- the purpose of the release is to open the circuit breaker as soon as possible after receiving this control signal, even if a control circuit integrated in the circuit breaker has not detected any malfunction of the circuit breaker. It is therefore essential that the trigger provided by the trigger is made as quickly and reliably as possible.
- Mechanically latching releases are known, which are intended to be mechanically coupled to a switching mechanism of the circuit breaker.
- these triggers include a motorized actuator to move and hold a breaker switch mechanism in place to open the circuit breaker.
- a disadvantage of these known triggers is that they dissipate significant energy in thermal form during their operation, due to the power supply requirements of the motorized actuator. Another disadvantage is that it is necessary to continuously power the motorized actuator to maintain the switching mechanism in the open state. This generates a significant power consumption, and therefore heat dissipation also important. Such heat dissipation is undesirable because it causes the trigger to heat up, which can affect its operation. In addition, such heating is particularly detrimental in cases where it is desired to miniaturize the trigger or in cases where the trigger is used in a constrained environment.
- EP-1209712-A1 discloses an example of a known circuit breaker having the features of the preamble of claim 1. Furthermore, this document discloses a method of controlling such a trigger, this method comprising steps of providing the trigger and acquiring a trigger. Trigger command signal from the trigger.
- the invention more particularly intends to remedy by proposing a controllable trigger for an electric circuit breaker, which has a reduced thermal energy dissipation during its operation.
- the displacement of the coupling member to its tripped position requires only a small amount of energy, provided by the pulse of electric current in the coil.
- the circuit breaker lock in the open state is achieved by activating the coil at successive times over time, thanks to the succession of current pulses.
- the limitation of the intensity of the current pulses to a value of intensity lower than the second predefined threshold makes it possible not to supply too much energy to the coil and to limit the amount of energy that is supplied to the coil. the amount of energy required to release the coupling member to the triggered position.
- the power consumption is reduced compared to known triggers, the amount of energy that is dissipated by the trigger in thermal form is actually reduced.
- the figure 1 represents a block diagram of an electrical apparatus 1 comprising an electric circuit breaker 10 and a controllable trigger 20, here coupled to the circuit breaker 10 to control this circuit breaker 10.
- the circuit breaker 10 is an electrical circuit breaker, for example a low-voltage and high-current circuit breaker.
- the voltage is of the order of 690V.
- the circuit breaker 10 comprises input and output terminals, which are selectively electrically connected to each other or isolated from each other by separable electrical contacts.
- the circuit breaker 10 comprises a switching mechanism 110 configured to move these separable electrical contacts between an open state and a closed state.
- the switching mechanism 110 is here a rocking mechanism, known as the "tumbler" in the English language.
- the circuit breaker 10 In the open state, the circuit breaker 10 inhibits the flow of electric current between the input and output terminals. In the closed state, the circuit breaker allows the circulation of electric currents between the input and output terminals.
- the term "opening" is the passage of the circuit breaker 10 from the closed state to the open state.
- the circuit breaker 10 further comprises a control lever, or crank pin, coupled to the switching mechanism 110 to allow a user to manually switch the circuit breaker between the open and closed states.
- the circuit breaker 10 also comprises a detection circuit configured to switch the mechanism 110 to the open state in the event of detection of an electrical anomaly, such as an overcurrent or a short circuit.
- a detection circuit configured to switch the mechanism 110 to the open state in the event of detection of an electrical anomaly, such as an overcurrent or a short circuit.
- the trip unit 20 is configured to force the circuit breaker 10 to switch from its closed state to its open state when the trip unit receives a trip control signal.
- the trigger 20 thus makes it possible to force the switching of the circuit breaker 10 to the open state independently of the detection circuit of the circuit breaker 10.
- this trip control signal is generated following the action of a user on a switch or an emergency stop type push button which controls a power supply unit which generates the control signal.
- control signal is an electrical voltage, denoted Vcmd.
- Vcmd is a DC voltage.
- it may be an alternating voltage.
- the trigger 20 should preferentially provide a locking function of the circuit breaker 10 in the open state after having triggered its opening.
- the trigger 20 thus comprises an actuator 210, a control device 220 of the actuator and an input 230 of the control signal Vcmd.
- the input 230 comprises two terminals, one of which is connected to an electric ground GND of the control device 220.
- the actuator 210 is a magnetic actuator, comprising a coil 2101 and a coupling member 2102, adapted to be mechanically coupled to the switching mechanism 110.
- the actuator 210 is adapted to be controlled by the control device 220.
- the member 2102 is selectively movable between a rest position and a triggered position.
- the member 2102 is configured so that the movement of its rest position to its triggered position causes the mechanism 110 to switch to open the circuit breaker 10.
- the coupling member 2102 is mechanically coupled to the mechanism 110, for example with the control lever of the circuit breaker 10.
- the coil 2101 is configured to move the coupling member 2102 from the rest position to the triggered position when energized with a pulse of an electric current of intensity greater than a first predefined threshold I-min for a period of time. greater than or equal to a predefined duration T-on.
- the coupling member 2102 does not automatically return to its rest position as soon as the coil 2101 stops being energized when it is coupled with the control mechanism 110.
- the actuator 210 comprises a magnet, integral with the fixed part of the actuator 210 and a spring, also called trigger spring.
- the actuator 210 also comprises a movable part, for example mechanically connected to the sensing member 2102.
- the magnet exerts a magnetic force on the movable part, so that the movable part holds the spring in a compressed state.
- the restoring force exerted by the spring on the moving part is less than the magnetic force exerted by the magnet. This keeps the coupling member 2102 in the rest position. In other words, the restoring force exerted by the trigger spring is not sufficient to it alone to overcome the magnetic force and move the member 2102 to the triggered position.
- the coil 2101 is at least partially adapted to the magnet when it is powered by each of said pulses of electric current applied by the controller 220, so as to reduce the intensity of the magnetic force to a value less than that of the restoring force exerted by the spring, or even to interrupt the magnetic force, and thus allow the movement of the coupling member 2102 from its rest position to the triggered position, under the effect of the restoring force exerted by the trigger spring.
- the coil 2101 is configured to move the coupling member 2102 from the rest position to the indirectly triggered position, in particular via the magnet and the triggering spring. .
- the coil 2101 comprises an electrical conductor, such as a copper wire, wound around this magnet to form turns.
- the coil 2101 When the coil 2101 is powered by the electric current pulse, it thus creates a magnetic flux, within the magnet, which opposes the magnetic flux proper to the magnet, thus interrupting the magnetic force.
- the coil 2101 is supplied with an electrical pulse of intensity greater than the threshold current intensity I-min for the duration at least equal to T-on ( figure 3 ). It is not necessary, unlike known motorized actuators, to maintain a continuous power supply over time. The energy consumption, and therefore the energy dissipation in thermal form, are thus reduced.
- the values of the predefined threshold I-min and of the predefined duration T-on are chosen as a function of the actuator 210 and in particular of the quantity of energy that it is necessary to supply to the coil 2101 in order to reduce the magnetic force. at a level below the restoring force of the trigger spring, to cause the displacement of the member 2102 to the triggered position.
- the predefined duration T-on is here equal to 1ms.
- the minimum intensity I min is such that the magnetic force generated by the coil 2101 is equal to 150 amperes.
- the magnetic force generated by the coil 2101 is expressed as the product of the intensity of the current which supplies this coil 2101 multiplied by the number of turns of this coil 2101.
- the value of the magnetic induction generated by the coil 2101 is sufficient to demagnetize the magnet but not too important to remain lower than the saturation induction of the materials forming the movable and fixed parts of the actuator 210, here equal to 1.5 Tesla.
- the controller 220 is configured to power the actuator 210 in response to receiving the control signal Vcmd.
- the device 220 is also configured to lock the circuit breaker in the open state as long as the control signal Vcmd continues to be applied to the input 230.
- control device 220 is configured to electrically power the coil 2101, upon receipt of the control signal Vcmd and as long as the control signal Vcmd is maintained, with a series of pulses of electric current each of duration equal to the predefined duration T-on.
- the intensity of each of the current pulses of the series is greater than or equal to the first threshold I-min and less than or equal to a second threshold I-max, also called "current limit".
- the I-max limit current is greater than the I-min threshold and is less than or equal to 120% of the I-min threshold, preferably less than or equal to 110% of the I-min threshold, more preferably less than or equal to 105% the threshold I-min.
- the I-max limit current is equal to 10 mA.
- the coil 2101 comprises a number of turns, denoted N, between 500 and 10000, advantageously chosen as a function of the control voltage Vcmd.
- the limit current I-max here is equal to I-min x 1.2 / N, or preferably I-min x 1.1 / N, more preferably I-min x 1.05 / N .
- the limit current I-max is for example between 15 mA and 265mA.
- the power supply of the coil 2101 is optimized according to the characteristics of the actuator 210, so that the coil 2101 is powered with a quantity of energy which is just sufficient to allow the displacement of the coupling member 2102, by demagnetizing the magnet, so as to release the spring but which is not too much greater than what is necessary for this movement. This avoids unnecessary energy consumption and therefore reduces heat dissipation.
- control signal Vcmd is an electrical voltage
- the control device 220 is adapted to be powered electrically by this control signal Vcmd.
- the control device 220 comprises a voltage rectifier 2209 which is connected to the input 230.
- the rectifier 2209 is here a single-wave rectifier. In this example, it is realized by means of a diode D1 which is placed at the output of the input 230.
- the rectifier 2209 is a rectifier of the full-wave type.
- the actuator 210 is then adapted to be used both in a trigger 20 to be controlled by a DC voltage control signal Vcmd or by an AC voltage control signal Vcmd.
- control device 220 is able to operate, safely, without the need for an on-board power source other than that provided by the control signal Vcmd.
- the control device 220 here comprises a current-limited regulated voltage source 2201 and an excitation module 2206.
- the excitation module 2206 comprises a programmable microcontroller or a microprocessor.
- the source 2201 is here connected in series with the coil 2101 between the input 230 and the GND electrical ground.
- the source 2201 is configured to deliver a supply voltage Vcc as soon as it is powered by the control signal Vcmd.
- the source 2201 is configured to inject into the coil 2101 an electric current with a maximum amplitude equal to the I-max limit current when it is controlled by the excitation module 2206.
- the source 2201 comprises for this purpose a voltage regulator 2202 and a current limiter 2203.
- the voltage regulator 2202 is here a linear regulator, comprising a resistor R, a Zener Z diode and a power transistor 2204.
- the diode Z and the resistor R are connected in series with each other between the output of the rectifier 2209 and the ground GND and a midpoint between the diode Z and the resistor R is connected to a control electrode of the transistor 2204.
- the transistor 2204 is here a field effect transistor of MOSFET technology. As a variant, it is replaced by a power transistor of the IGBT type, for "insulated gate bipolar transistor", in particular when the amplitude of the control signal Vcmd is greater.
- the type of transistor 2204 used depends on the expected maximum amplitude of the control signal Vcmd. In practice, the control signal Vcmd may have a maximum amplitude value of between 12V and 690V.
- the voltage regulator 2202 is thus adapted to deliver a supply voltage Vcc on a supply rail Vdd when the control signal Vcmd is applied to the input 230.
- the voltage Vcc is a DC voltage of amplitude equal to 3.3 volts.
- the current limiter 2203 is configured to limit the flow of current therein to the I-max limit value described above. Thus, when the excitation module 2206 allows the injection of a current into the coil 2101, the limiter 2203 prevents the amplitude of this current from exceeding the I-max limit current.
- the excitation module 2206 is configured to be electrically powered by the supply voltage Vcc and to control the generation of electric current pulses by means of the source 2201.
- the excitation module 2206 is programmed to, successively, activate and then inhibit the injection of the electric current by the current-limited regulated voltage source 2201, to generate each pulse of electric current, the activation then the inhibition being separated by a delay greater than or equal to the predefined delay T-on.
- the current-limited regulated voltage source 2201 is configured to inject into the coil 2101 an electric current in response to a trip command issued by the excitation module 2206, and, alternately, to interrupt the flow of this current. in response to an interrupt command generated by the excitation module 2206.
- control device 220 comprises a controllable switch T1 connected in series with the coil 2101 and the source 2201 between the input 230 and the GND electrical ground.
- a control electrode of the transistor T1 is electrically connected to a control output of the excitation module 2206.
- the switch T1 is here a MOSFET transistor.
- the switch T1 is by default in a blocking state, thus preventing the flow of an electric current between the output of the source 2201 and the electrical ground and thus preventing the supply of the coil 2101.
- the module 2206 When the module 2206 sends an interrupt command to the transistor T1, the latter returns to its blocking state, again preventing the flow of electric current through the coil 2101.
- the module 2206 controls the source 2201 by means of the switch T1.
- the voltage regulator 2202 also comprises a stabilization circuit of the supply voltage Vcc.
- This stabilization circuit is here formed by a diode D2 and a capacitor C, connected in series between the supply rail Vdd and the ground GND in parallel with the switch T1.
- This stabilization circuit is intended to prevent the supply voltage Vcc collapses during operation of the excitation module 2206 and in particular when the switch T1 goes into the on state.
- control device comprises a measuring probe 2205 of the current flowing through the coil 2101.
- the excitation module 2206 is programmed to control the inhibition of the power supply by emitting a command. interruption at the expiration of the predetermined time T-on, this time being counted by the excitation module 2206, from the moment when the current measured by the measuring probe 2205 exceeds the threshold value I-min.
- the measurement probe 2205 is here a precision resistor connected in series with the coil 2101 and connected to a measurement input of the excitation module 2206.
- the figure 2 represents, as a function of time t, the evolution of a control signal of the switch T1 between its on states, denoted “ON” and blocking, denoted “OFF” emitted by the module 2206.
- Note t0 instant called “trigger time”, from which the module 2206 sends a trip command to switch the switch T1 in the on state.
- the rate at which the current increases from the instant t0 depends on the position of the coupling member 2102. Depending on whether the member 2102 is in the rest position or in the triggered position, the inductance value of the 2101 coil is not the same. Here, the inductance of the coil 2101 is higher when the member 2102 is in the idle state. In fact, the response of the coil 2101 to the current flowing through it is different.
- the curve C1 represents the change in the intensity of the current flowing in the coil 2101 after the instant t0 when the member 2102 is in the tripped position.
- t1 the moment from which this current exceeds the threshold I-min. After this time t1, the current continues to increase until reaching the I-max limit current.
- the excitation module 2206 counts down the elapsed time, for example by means of a timer, from the instant t1, while keeping the switch T1 in the on state.
- the excitation module 2206 sends an interrupt command at a time t3.
- the switch T1 returns to its blocking state and the current thus ceases to flow in the coil 2101.
- the curve C2 represents the change in the intensity of the current flowing in the coil after the instant t0 when the member 2102 is in the rest position.
- t2 the instant from which the current exceeds the threshold value I MIN .
- I MIN the threshold value
- the current continues to increase until reaching the I-max limit current.
- the excitation module 2206 holds the switch T1 in the on state and sends an interrupt command at a time t4 at the expiration of the delay T-on. The current then ceases to flow through the coil 2101.
- the excitation module 2206 does not allow the circulation of an electric current longer than necessary to form a pulse of duration T-on, which reduces the electrical consumption of the trigger 20, and thus reduces the heat dissipation.
- the closing time of transistor T1 as being equal to the difference of times t4 and t0, based on the worst case scenario, which is that where the self inductance of the coil is minimal, so as to be sure to always have a pulse of duration at least equal to the duration T-one whatever the state of the coil 2101.
- the duration of the pulse would have been too long, since the current would have continued to be applied between instants t3 and t4, then the coil 2101 had received enough energy for the displacement of the organ 2102 is ensured. It would therefore have generated excessive heating for nothing, because the current supplied between times t1 and t3 is sufficient to excite the coil and cause switching.
- the excitation module 2206 comprises a detection module configured to measure the nature of the control signal Vcmd and in particular to determine whether it is an electrical or alternating voltage. This determination is made here from the voltage of the rail Vdd.
- Synchronization with the control signal Vcmd makes it possible to generate the pulses of electric current when the latter has a minimum value, and thus to limit the electrical power consumed by the control device 220.
- the excitation module 2206 is programmed so that the delay between two consecutive pulses is less than or equal to 100 ms, preferably less than or equal to 50 ms.
- T-off This delay, or interval, is noted T-off and is defined as the time interval between two current pulses at an intensity value greater than or equal to the I-min threshold. In this example, the T-off delay is 40ms.
- the duty cycle between the T-on delay and the T-off delay is advantageously between 1 10 and 1 100 , preferably equal to 1 40 , which reduces the power consumed.
- the switching mechanisms 110 of the toggle type comprise an open limit position, denoted P1, and a dead position closing, noted P2. These points P1 and P2 correspond to intermediate positions of the switching mechanism between the open state and the closed state.
- the point P1 corresponds to the position of the mechanism 110 from which the opening of the circuit breaker is guaranteed. In other words, when the mechanism 110 passes the point P1 from the closed position, the opening of the circuit breaker 10 is guaranteed.
- the point P1 corresponds to the release position of an element of the trigger mechanism 110 known as the trigger half-moon.
- the point P1 coincides with the opening position of the circuit breaker.
- the point P2 corresponds to the position of the mechanism 110 from which the closure of the circuit breaker can no longer be prevented. In other words, when the mechanism 110 crosses the point P2 coming from the open position, the closure of the circuit breaker 10 is provided. This is due to the action of mechanical springs included within the switching mechanism 110.
- this choice of value of the T-off delay makes it possible to guarantee that at least one pulse is generated from the module 2206 when the switching mechanism 110 is between the points P1 and P2 during its movement between the closed and open states. . With this pulse, the coupling member 2102 is again moved to its tripped position and again forces the opening of the circuit breaker before the switching mechanism 110 crosses the point P2.
- control device 220 also comprises an analog excitation module 2208 configured to generate, in addition, a single pulse of electric current of intensity greater than or equal to the first predetermined threshold I-min, as soon as the signal is received. Vcmd command by the controller 220.
- This analog excitation module 2208 is distinct from the excitation module 2206. Similarly, the single current pulse generated using this module 2208 is distinct from the series of pulses generated by means of the excitation module. 2206.
- the module 2208 comprises a comparator 2210 and a monostable flip-flop 2211.
- the control device 220 comprises meanwhile a controllable switch T2, for example identical to the switch T1.
- the switch T2 is here connected in parallel with the switch T1 between the source 2201 and the ground GND.
- the switch T2 plays, vis-à-vis the source 2201, a role similar to that described for the switch T1 with reference to the module 2206.
- the comparator 2210 is configured to compare the supply voltage value Vcc with a predefined reference value Vref.
- the comparator 2210 delivers a voltage, here denoted V1, to an input of the monostable flip-flop 2211.
- Vref is equal to 3 volts.
- Monostable flip-flop 2211 is configured to output a single output voltage pulse, which pulse has a predefined duration T '. This output is connected to a control electrode of the transistor T2 and acts as a switching command of the switch T2.
- the monostable flip-flop 2211 is chosen so as to have a duration T 'long enough to guarantee that the pulse of electric current generated has a duration greater than the duration T-on.
- the duration T ' is here equal to 18 ms.
- the switch T2 can be omitted.
- the module 2208 is adapted to control the switch T1 in parallel with the module 2206, for example by means of an "AND" logic gate which collects the commands issued by the modules 2206 and 2208 and which consequently controls the switch T1.
- the module 2208 is used in addition to the module 2206 and makes it possible to ensure that at least one pulse of electric current is injected into the coil 2201 as soon as the control signal Vcmd is received on the input 230, even in case of failure. of the module 2206.
- This single pulse has a duration and intensity sufficient to ensure the movement of the member 2102 to its tripped position.
- the module 2208 is made from simple analog components, and not from programmable microcontrollers or microprocessors, it has a more reliable and robust operation than the module 2206. This ensures a good operational safety of the module. trigger 20.
- the module 2208 does not allow to optimize the duration of the single pulse as finely as the module 2206 allows, this is not detrimental since only one current pulse is generated. by means of the module 2208 each time the control signal Vcmd is initiated. The additional energy cost is thus minimal.
- the trip unit 20 has an average consumption, in steady state, of less than or equal to 1 W and a transient consumption during power-up, that is to say the reception of the signal.
- Vcmd control is less than or equal to 10 W.
- the average steady-state consumption is greater than 5 W and transient consumption is greater than 30 W. Thanks to the In the invention, the heat dissipation is considerably reduced.
- the circuit breaker 10 is in a closed state, allowing the passage of an electric power current between its input and output terminals.
- No control signal Vcmd is received on the input 230.
- the coupling member 2102 is held in the home position. No electric current is injected into the coil 2101.
- control signal Vcmd is applied to the input 230 to the trigger 20, for example in response to the action of a user who press an emergency stop button to request opening of the circuit breaker 10.
- This voltage Vcmd feeds the rectifier 2209 and therefore the source 2201. Since the transistors T1 and T2 are both in the open state, no current flows at that moment through the coil 2101. The source 2201 therefore does not charge any electric current at that time. However, the voltage regulator 2202 generates the voltage Vcc on the power rail, which in turn powers the excitation modules 2206 and 2208.
- the excitation module 2208 controls the generation, by the source 2201, of a single current pulse to the coil 2101.
- the comparator 2210 delivers the voltage V1 to the input of the monostable flip-flop 2211.
- the monostable flip-flop 2211 goes into an excited state during the duration T ', during which it outputs a non-zero voltage V2 and then returns to a state of rest at the end of this period T'. In doing so, the monostable flip-flop 2211 sends an opening switching and then closing order of the switch T2, separated by this delay T '.
- the coil 2101 demagnetizes the magnet and allows the spring to move to its relaxed position, which allows the displacement of the coupling member 2102 from its rest state to the triggered state .
- the coupling member 2102 acts on the switching mechanism 110 which causes the circuit breaker 10 to open.
- the excitation module 2206 is powered by the supply voltage Vcc in order to generate the series of current pulses.
- the excitation module 2206 automatically detects whether the control signal Vcmd is a DC voltage or an AC voltage.
- the current pulses are generated periodically over time, here with a delay equal to the T-off delay.
- the excitation module 2206 detects, by virtue of the current probe 2205, the instant from which the current flowing in the coil 2101 becomes greater than or equal to the threshold voltage I-min and then sends an interrupt command of the switch T1 on expiration of the delay T-on after this instant.
- the control signal Vcmd is determined as being an alternating voltage
- the current pulses are generated. synchronously with the instants for which the control signal Vcmd is detected as taking a zero value. More precisely, it is the tripping times t0 for which the excitation module 2206 sends a tripping order of the switch T1 which are synchronized with the times for which the control signal Vcmd is detected as taking a zero value.
- the generation of each of the pulses from this triggering instant t0 is here the same as that described for step 1010.
- the pulses generated by means of the excitation module 2206 make it possible to bring and / or maintain the circuit breaker 10 in the open state.
- the excitation module 2206 continues to generate the pulses so that the coil 2101 continues to demagnetize the magnet so as to allow the spring of remain in its relaxed position and thus maintain the coupling member 2102 in its triggered state.
- control signal Vcmd ceases to be applied and is no longer received on the input 230.
- the source 2201 is interrupted and the supply voltage Vcc becomes zero.
- the excitation module 2206 then stops working, and no electric current pulse is sent into the coil 2101.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Breakers (AREA)
- Keying Circuit Devices (AREA)
- Relay Circuits (AREA)
- Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
Description
La présente invention concerne un déclencheur commandable pour un disjoncteur électrique. L'invention concerne également un appareil électrique comportant un disjoncteur électrique et un tel déclencheur associé à ce disjoncteur électrique. L'invention concerne enfin un procédé de fonctionnement d'un tel déclencheur.The present invention relates to a controllable trigger for an electric circuit breaker. The invention also relates to an electrical apparatus comprising an electric circuit breaker and such a trigger associated with this electric circuit breaker. The invention finally relates to a method of operating such a trigger.
De façon connue, un déclencheur pour un disjoncteur électrique a pour fonction d'ouvrir le disjoncteur auquel il est associé, de manière à interrompre la circulation d'un courant électrique entre des terminaux d'entrée et de sortie du disjoncteur, lorsque le déclencheur reçoit un signal de commande dédié. Par exemple, ce signal de commande est émis par un opérateur en appuyant sur un bouton d'arrêt d'urgence. Le déclencheur a pour but d'ouvrir le disjoncteur le plus rapidement possible après la réception de ce signal de commande, même si un circuit de commande intégré au disjoncteur n'a pas détecté d'anomalie de fonctionnement du disjoncteur. Il est donc primordial que le déclenchement assuré par le déclencheur se fasse le plus rapidement possible et de façon fiable.In known manner, a trigger for an electric circuit breaker has the function of opening the circuit breaker with which it is associated, so as to interrupt the flow of an electric current between input and output terminals of the circuit breaker, when the trip unit receives a dedicated command signal. For example, this control signal is issued by an operator by pressing an emergency stop button. The purpose of the release is to open the circuit breaker as soon as possible after receiving this control signal, even if a control circuit integrated in the circuit breaker has not detected any malfunction of the circuit breaker. It is therefore essential that the trigger provided by the trigger is made as quickly and reliably as possible.
On connaît notamment des déclencheurs à accrochage mécanique, qui sont destinés à être couplés mécaniquement à un mécanisme de commutation du disjoncteur. Typiquement, ces déclencheurs comportent un actionneur motorisé pour déplacer et maintenir en place un mécanisme de commutation du disjoncteur pour ouvrir le disjoncteur.Mechanically latching releases are known, which are intended to be mechanically coupled to a switching mechanism of the circuit breaker. Typically, these triggers include a motorized actuator to move and hold a breaker switch mechanism in place to open the circuit breaker.
Un inconvénient de ces déclencheurs connus est qu'ils dissipent une énergie importante sous forme thermique lors de leur fonctionnement, du fait des besoins d'alimentation électrique de l'actionneur motorisé. Un autre inconvénient est qu'il est nécessaire d'alimenter électriquement en permanence l'actionneur motorisé pour maintenir le mécanisme de commutation dans l'état ouvert. Cela engendre une consommation électrique importante, et donc une dissipation de chaleur elle aussi importante. Une telle dissipation d'énergie thermique n'est pas souhaitable, car elle engendre un échauffement du déclencheur, ce qui peut nuire à son fonctionnement. De plus, un tel échauffement est particulièrement préjudiciable dans les cas où on souhaite miniaturiser le déclencheur ou encore dans les cas où le déclencheur est utilisé dans un environnement contraint.A disadvantage of these known triggers is that they dissipate significant energy in thermal form during their operation, due to the power supply requirements of the motorized actuator. Another disadvantage is that it is necessary to continuously power the motorized actuator to maintain the switching mechanism in the open state. This generates a significant power consumption, and therefore heat dissipation also important. Such heat dissipation is undesirable because it causes the trigger to heat up, which can affect its operation. In addition, such heating is particularly detrimental in cases where it is desired to miniaturize the trigger or in cases where the trigger is used in a constrained environment.
La demande de brevet
C'est à ces inconvénients qu'entend plus particulièrement remédier l'invention en proposant un déclencheur commandable pour un disjoncteur électrique, qui présente une dissipation d'énergie thermique réduite lors de son fonctionnement.It is to these drawbacks that the invention more particularly intends to remedy by proposing a controllable trigger for an electric circuit breaker, which has a reduced thermal energy dissipation during its operation.
L'invention a donc pour objet un déclencheur commandable pour un disjoncteur électrique, le disjoncteur est commutable entre un état ouvert et un état fermé, ce déclencheur comporte :
- un actionneur , comprenant un organe de couplage déplaçable entre une position de repos et une position déclenchée, l'organe de couplage étant destiné à être couplé mécaniquement à un mécanisme de commutation d'un disjoncteur électrique pour entraîner la commutation du disjoncteur depuis un état fermé vers un état ouvert lorsque l'organe de couplage passe de la position de repos vers la position déclenchée, et
- un dispositif de commande, configuré pour alimenter l'actionneur en réponse à la réception, par le déclencheur, d'un signal de commande de déclenchement, pour déplacer l'organe de couplage de la position de repos vers la position déclenchée.
- an actuator, comprising a coupling member movable between a rest position and a triggered position, the coupling member being adapted to be mechanically coupled to a switching mechanism of an electric circuit breaker to cause switching of the circuit breaker from a closed state to an open state when the coupling member moves from the rest position to the tripped position, and
- a controller configured to supply the actuator in response to the trigger being received by a trigger control signal to move the coupling member from the home position to the triggered position.
Grâce à l'invention, en utilisant un tel actionneur magnétique, le déplacement de l'organe de couplage vers sa position déclenchée ne nécessite qu'une faible quantité d'énergie, fournie par l'impulsion de courant électrique dans la bobine. En outre, le verrouillage du disjoncteur dans l'état ouvert est réalisé en activant la bobine à des instants successifs au cours du temps, grâce à la succession d'impulsions de courant.Thanks to the invention, by using such a magnetic actuator, the displacement of the coupling member to its tripped position requires only a small amount of energy, provided by the pulse of electric current in the coil. In addition, the circuit breaker lock in the open state is achieved by activating the coil at successive times over time, thanks to the succession of current pulses.
Au contraire, dans les actionneurs motorisés selon l'état de la technique, il est nécessaire de fournir une alimentation électrique en permanence pour déclencher la commutation du disjoncteur vers l'état ouvert et pour le maintenir verrouillé dans l'état ouvert, ce qui consomme plus d'énergie.On the contrary, in motorized actuators according to the state of the art, it is necessary to supply a power supply at all times in order to trigger the switching of the circuit breaker to the open state and to keep it locked in the open state, which consumes more energy.
Enfin, la limitation de l'intensité des impulsions de courant à une valeur d'intensité inférieure au deuxième seuil prédéfini permet de ne pas fournir trop d'énergie à la bobine et de limiter la quantité d'énergie qui est fournie à la bobine à la quantité d'énergie nécessaire pour qu'elle libère l'organe de couplage vers la position déclenchée.Finally, the limitation of the intensity of the current pulses to a value of intensity lower than the second predefined threshold makes it possible not to supply too much energy to the coil and to limit the amount of energy that is supplied to the coil. the amount of energy required to release the coupling member to the triggered position.
Du fait que la consommation d'énergie électrique est réduite par rapport aux déclencheurs connus, la quantité d'énergie qui est dissipée par le déclencheur sous forme thermique s'en trouve de fait réduite.Because the power consumption is reduced compared to known triggers, the amount of energy that is dissipated by the trigger in thermal form is actually reduced.
Selon l'invention, un tel déclencheur comporte les caractéristiques suivantes
- Le signal de commande est une tension électrique, reçue sur une entrée du déclencheur, le dispositif de commande étant adapté pour être alimenté électriquement par le signal de commande, et le dispositif de commande comporte :
- une source de tension régulée limitée en courant, connectée en série avec la bobine entre l'entrée et une masse électrique du dispositif de commande, cette source de tension régulée limitée en courant étant configurée pour délivrer une tension d'alimentation sur un rail d'alimentation dès qu'elle est alimentée par le signal de commande,
- un module d'excitation, configuré pour être alimenté électriquement par la tension d'alimentation et pour commander la génération des impulsions de courant électrique,
- Le dispositif de commande comporte une sonde de mesure du courant qui circule au travers de la bobine, et le module d'excitation est programmé pour, successivement, activer puis inhiber l'injection du courant électrique par la source de tension régulée limitée en courant, pour générer chaque impulsion de courant électrique, le module d'excitation étant programmé pour commander cette inhibition à l'expiration du délai prédéterminé, ce délai étant décompté par le module d'excitation, à partir de l'instant où le courant mesuré par la sonde de mesure dépasse la première valeur seuil ;
- Le dispositif de commande comporte un interrupteur commandable, connecté en série avec la bobine et la source de tension régulée limitée en courant entre l'entrée et la masse électrique, la commande de la source étant réalisée par le module d'excitation au moyen de cet interrupteur, l'interrupteur étant à cet effet raccordé au module d'excitation et étant apte à commuter entre un état passant et un état bloquant pour, respectivement, autoriser ou inhiber la circulation du courant électrique, en réponse aux ordres de déclenchement et d'interruption, respectivement, générés par le module d'excitation ;
- Le module d'excitation est programmé pour détecter si le signal de commande est une tension électrique ou alternative, et pour :
- synchroniser automatiquement la génération des impulsions de courant électrique avec le signal de commande, si le signal de commande est détecté comme étant une tension électrique alternative, cette synchronisation étant réalisée par le module d'excitation en générant les ordres de déclenchement aux instants où le signal de commande prend une valeur nulle, et, alternativement,
- commander la génération des impulsions de courant électrique avec une période prédéfinie, si le signal de commande est détecté comme étant une tension électrique continue ;
- Le module d'excitation est programmé pour commander la génération des impulsions de courant électrique avec un intervalle prédéfini entre deux impulsions de courant électrique consécutives, l'intervalle prédéfini étant inférieur ou égal à 100ms.
- Le rapport cyclique entre le délai prédéterminé et l'intervalle prédéfini est compris entre
- Le dispositif de commande comporte un module d'excitation analogique configuré pour générer, en outre, une unique impulsion de courant électrique, d'intensité supérieure ou égale au premier seuil prédéterminé, dès la réception du signal de commande par le dispositif de commande ;
- L'actionneur comporte en outre un aimant, une partie mobile reliée mécaniquement à l'organe de couplage et un ressort de déclenchement,
- Le module d'excitation est programmé pour détecter si le signal de commande est une tension électrique ou alternative, et pour :
la bobine étant adaptée pour réduire la force d'attraction magnétique exercée par l'aimant lorsqu'elle est alimentée par chacune desdites impulsions du courant électrique appliquées par le dispositif de commande, de manière à autoriser le mouvement de l'organe de couplage de sa position de repos vers la position déclenchée, sous l'effet de la force de rappel exercée par le ressort de déclenchement ;According to the invention, such a trigger has the following characteristics
- The control signal is an electrical voltage, received on a trigger input, the controller being adapted to be electrically powered by the control signal, and the controller includes:
- a current-limited regulated voltage source, connected in series with the coil between the input and an electrical ground of the control device, the current-limited regulated voltage source being configured to supply a supply voltage on a rail of power supply as soon as it is powered by the command signal,
- an excitation module, configured to be electrically powered by the supply voltage and to control the generation of electrical current pulses,
- The control device comprises a current measurement probe which circulates through the coil, and the excitation module is programmed to, successively, activate and then inhibit the injection of the electric current by the regulated voltage source limited in current, to generate each pulse of electric current, the excitation module being programmed to control this inhibition at the expiration of the predetermined delay, this delay being counted by the excitation module, from the instant when the current measured by the measurement probe exceeds the first threshold value;
- The control device comprises a controllable switch, connected in series with the coil and the regulated voltage source limited in current between the input and the electrical ground, the control of the source being carried out by the excitation module by means of this switch, the switch being for this purpose connected to the excitation module and being able to switch between an on state and a blocking state to, respectively, allow or inhibit the flow of electric current, in response to the trip commands and interrupt, respectively, generated by the excitation module;
- The excitation module is programmed to detect whether the control signal is an electrical or alternating voltage, and for:
- automatically synchronize the generation of the electric current pulses with the control signal, if the control signal is detected as an AC voltage, this synchronization being performed by the excitation module by generating the trip commands at the times when the signal command takes a null value, and, alternatively,
- controlling the generation of electrical current pulses with a predefined period, if the control signal is detected as a DC voltage;
- The excitation module is programmed to control the generation of electrical current pulses with a predefined interval between two consecutive electrical current pulses, the predefined interval being less than or equal to 100ms.
- The duty cycle between the predetermined delay and the predefined interval is between
- The control device comprises an analog excitation module configured to generate, in addition, a single pulse of electric current of intensity greater than or equal to the first predetermined threshold, on receipt of the control signal by the control device;
- The actuator further comprises a magnet, a movable part mechanically connected to the coupling member and a trigger spring,
- The excitation module is programmed to detect whether the control signal is an electrical or alternating voltage, and for:
the coil being adapted to reduce the magnetic attraction force exerted by the magnet when powered by each of said pulses of electric current applied by the control device, so as to allow movement of the coupling member from its rest position to the triggered position under the effect of the biasing force exerted by the trigger spring;
Selon un autre aspect, l'invention concerne un appareil électrique comportant un disjoncteur et un déclencheur commandable associé au disjoncteur,
- le disjoncteur comporte un mécanisme de commutation destiné à commuter le disjoncteur entre un état ouvert et un état fermé,
- le déclencheur comporte :
- un actionneur, comprenant un organe de couplage déplaçable entre une position de repos et une position déclenchée, l'organe de couplage étant couplé mécaniquement au mécanisme de commutation pour entraîner la commutation du disjoncteur depuis l'état fermé vers l'état ouvert lorsqu'il passe de la position de repos vers la position déclenchée, et
- un dispositif de commande, configuré pour alimenter l'actionneur en réponse à la réception, par le déclencheur, d'un signal de commande de déclenchement, pour déplacer l'organe de couplage de la position de repos vers la position déclenchée ;
- the circuit breaker comprises a switching mechanism for switching the circuit breaker between an open state and a closed state,
- the trigger includes:
- an actuator, comprising a coupling member movable between a rest position and a triggered position, the coupling member being mechanically coupled to the switching mechanism to cause circuit breaker switching from the closed state to the open state when moves from the rest position to the triggered position, and
- a controller configured to supply the actuator in response to the trigger being received by a trigger control signal to move the coupling member from the home position to the triggered position;
L'invention sera mieux comprise et d'autres avantages de celle-ci apparaîtront plus clairement à la lumière de la description qui va suivre, d'un mode de réalisation d'un déclencheur commandable, donné uniquement à titre d'exemple et faite en référence aux dessins annexés dans lesquels :
- la
figure 1 est une représentation schématique simplifiée d'un appareil électrique comportant un déclencheur commandable conforme à l'invention associé à un disjoncteur électrique : - la
figure 2 représente schématiquement un ordre de déclenchement et d'interruption d'un interrupteur commandable par un module d'excitation d'un dispositif de commande du déclencheur de lafigure 1 ; - la
figure 3 représente schématiquement l'évolution, au cours du temps, du courant électrique qui circule au travers d'une bobine d'un actionneur de l'appareil électrique de lafigure 1 , en réponse aux ordres de déclenchement et d'interruption de lafigure 2 ; - la
figure 4 représente schématiquement un module de déclenchement analogique appartenant au dispositif de commande du déclencheur de lafigure 1 ; - la
figure 5 représente l'évolution, au cours du temps, de tensions électriques au sein du module de lafigure 4 au cours de son fonctionnement ; - la
figure 6 est un ordinogramme d'un procédé de fonctionnement du déclencheur de lafigure 1 .
- the
figure 1 is a simplified schematic representation of an electrical apparatus comprising a controllable trigger according to the invention associated with an electric circuit breaker: - the
figure 2 schematically represents an order of triggering and interrupting a switch controllable by an excitation module of a control device of the trigger of thefigure 1 ; - the
figure 3 schematically represents the evolution, over time, of the electric current flowing through a coil of an actuator of the electrical apparatus of thefigure 1 , in response to the trigger and interrupt commands of thefigure 2 ; - the
figure 4 schematically represents an analog trigger module belonging to the control device of the trigger of thefigure 1 ; - the
figure 5 represents the evolution, over time, of electrical voltages within the module of thefigure 4 during its operation; - the
figure 6 is a flowchart of a method of operation of the trigger of thefigure 1 .
La
Le disjoncteur 10 est un disjoncteur électrique, par exemple un disjoncteur à basse tension et à haute intensité. Par exemple, la tension électrique est de l'ordre de 690V.The
Le disjoncteur 10 comporte des terminaux d'entrée et de sortie, qui sont sélectivement raccordés électriquement entre eux ou isolés l'un de l'autre par des contacts électriques séparables. Le disjoncteur 10 comporte un mécanisme de commutation 110 configuré pour déplacer ces contacts électriques séparables entre un état ouvert et un état fermé. Le mécanisme de commutation 110 est ici un mécanisme à bascule, connu sous le nom de « tumbler » en langue anglaise.The
Dans l'état ouvert, le disjoncteur 10 inhibe la circulation d'un courant électrique entre les terminaux d'entrée et de sortie. Dans l'état fermé, le disjoncteur autorise la circulation de courants électriques entre les terminaux d'entrée et de sortie. On nomme « ouverture » le passage du disjoncteur 10 de l'état fermé vers l'état ouvert.In the open state, the
Le disjoncteur 10 comporte en outre un levier de commande, ou maneton, couplé au mécanisme de commutation 110 pour permettre à un utilisateur de commuter manuellement le disjoncteur entre les états ouverts et fermés.The
Le disjoncteur 10 comporte également un circuit de détection configuré pour commuter le mécanisme 110 vers l'état ouvert en cas de détection d'une anomalie électrique, telle qu'une surintensité ou un court-circuit.The
Le déclencheur 20 est configuré pour forcer la commutation du disjoncteur 10 depuis son état fermé vers son état ouvert lorsque le déclencheur reçoit un signal de commande de déclenchement.The
Le déclencheur 20 permet ainsi de forcer la commutation du disjoncteur 10 vers l'état ouvert indépendamment du circuit de détection du disjoncteur 10. Par exemple, ce signal de commande de déclenchement est généré suite à l'action d'un utilisateur sur un interrupteur ou un bouton poussoir de type arrêt d'urgence, qui commande une unité d'alimentation qui génère le signal de commande.The
Dans cet exemple, le signal de commande est une tension électrique, notée Vcmd. Par exemple, le signal de commande Vcmd est une tension continue. En variante, il peut s'agir d'une tension alternative.In this example, the control signal is an electrical voltage, denoted Vcmd. For example, the control signal Vcmd is a DC voltage. Alternatively, it may be an alternating voltage.
Tant que le signal de commande Vcmd est fourni au déclencheur 20, celui-ci doit maintenir le disjoncteur 10 dans l'état ouvert. En particulier, le déclencheur 20 doit préférentiellement assurer une fonction de verrouillage du disjoncteur 10 dans l'état ouvert après avoir déclenché son ouverture.As long as the control signal Vcmd is supplied to the
En effet, il existe un risque que les contacts mobiles du disjoncteur 10 se referment si le levier de commande du disjoncteur 10 est manoeuvré de la position ouverte vers la position fermée. Une telle fermeture n'est pas autorisée et donc doit être empêchée, car elle serait contraire aux exigences de sécurité.Indeed, there is a risk that the moving contacts of the
Le déclencheur 20 comporte ainsi un actionneur 210, un dispositif de commande 220 de l'actionneur et une entrée 230 du signal de commande Vcmd. Ici, l'entrée 230 comporte deux bornes dont l'une est reliée à une masse électrique GND du dispositif de commande 220.The
L'actionneur 210 est un actionneur magnétique, comportant une bobine 2101 et un organe de couplage 2102, adapté pour être couplé mécaniquement au mécanisme de commutation 110.The
L'actionneur 210 est adapté pour être piloté par le dispositif de commande 220.The
L'organe 2102 est sélectivement déplaçable entre une position de repos et une position déclenchée. L'organe 2102 est configuré pour que le déplacement de sa position de repos vers sa position déclenchée entraîne une commutation du mécanisme 110 pour ouvrir le disjoncteur 10.The
Dans cet exemple, l'organe de couplage 2102 est couplé mécaniquement au mécanisme 110, par exemple avec le levier de commande du disjoncteur 10.In this example, the
En revanche, dans cet exemple, le déplacement de l'organe 2102 de la position déclenchée vers la position de repos n'entraîne pas automatiquement la commutation du mécanisme 110 de l'état ouvert vers l'état fermé. Cette commutation doit ici être réalisée manuellement en agissant sur le levier de commande du disjoncteur 10, pour des raisons de sécurité.In contrast, in this example, moving the
La bobine 2101 est configurée pour déplacer l'organe de couplage 2102 depuis la position de repos vers la position déclenchée lorsqu'elle est alimentée avec une impulsion d'un courant électrique d'intensité supérieure à un premier seuil prédéfini I-min pendant une durée supérieure ou égale à une durée prédéfinie T-on.The
Ici, l'organe de couplage 2102 ne retrouve pas automatiquement sa position de repos dès que la bobine 2101 cesse d'être alimentée lorsqu'il est couplé avec le mécanisme de commande 110.Here, the
Dans cet exemple, l'actionneur 210 comporte un aimant, solidaire de la partie fixe de l'actionneur 210 et un ressort, aussi nommé ressort de déclenchement. L'actionneur 210 comporte également une partie mobile, par exemple reliée mécaniquement à l'organe de captage 2102. L'aimant exerce une force magnétique sur la partie mobile, de sorte que la partie mobile maintient le ressort dans un état comprimé. La force de rappel exercée par le ressort sur la partie mobile est inférieure à la force magnétique exercée par l'aimant. Cela maintient l'organe de couplage 2102 dans la position de repos. En d'autres termes, la force de rappel exercée par le ressort de déclenchement n'est pas suffisante à elle seule pour surmonter la force magnétique et déplacer l'organe 2102 vers la position déclenchée.In this example, the
La bobine 2101 est adaptée pour au moins partiellement l'aimant lorsqu'elle est alimentée par chacune desdites impulsions du courant électrique appliquées par le dispositif de commande 220, de manière à réduire l'intensité de la force magnétique à une valeur inférieure à celle de la force de rappel exercée par le ressort, voire à interrompre la force magnétique, et ainsi autoriser le mouvement de l'organe de couplage 2102 de sa position de repos vers la position déclenchée, sous l'effet de la force de rappel exercée par le ressort de déclenchement. En d'autres termes, dans cet exemple, la bobine 2101 est configurée pour déplacer l'organe de couplage 2102 depuis la position de repos vers la position déclenchée de façon indirecte, notamment par l'intermédiaire de l'aimant et du ressort de déclenchement.The
Par exemple, la bobine 2101 comporte un conducteur électrique, tel qu'un fil de cuivre, enroulé autour de cet aimant pour former des spires. Lorsque la bobine 2101 est alimentée par l'impulsion de courant électrique, elle crée ainsi un flux magnétique, au sein de l'aimant, qui s'oppose au flux magnétique propre de l'aimant, interrompant ainsi la force magnétique.For example, the
Ainsi, pour déplacer, ou libérer, l'organe 2102 vers la position déclenchée, la bobine 2101 est alimentée avec une impulsion électrique d'intensité supérieure à l'intensité de courant seuil I-min pendant la durée au moins égale à T-on (
Les valeurs du seuil prédéfini I-min et de la durée prédéfinie T-on sont choisis en fonction de l'actionneur 210 et notamment de la quantité d'énergie qu'il est nécessaire de fournir à la bobine 2101 afin de réduire la force magnétique à un niveau inférieur à la force de rappel du ressort de déclenchement, pour provoquer le déplacement de l'organe 2102 vers la position déclenchée.The values of the predefined threshold I-min and of the predefined duration T-on are chosen as a function of the
Dans cet exemple, la durée prédéfinie T-on est ici égale à 1ms. L'intensité minimale I-min est telle que la force magnétique générée par la bobine 2101 est égale à 150 ampères.tour.In this example, the predefined duration T-on is here equal to 1ms. The minimum intensity I min is such that the magnetic force generated by the
De façon connue, dans le système d'unités MKS, la force magnétique générée par la bobine 2101 est exprimée comme le produit de l'intensité du courant qui alimente cette bobine 2101 multiplié par le nombre de spires de cette bobine 2101.In known manner, in the system of units MKS, the magnetic force generated by the
Par exemple, la valeur de l'induction magnétique générée par la bobine 2101 est suffisante pour démagnétiser l'aimant mais pas trop importante pour rester inférieure à l'induction à saturation des matériaux formant les parties mobile et fixe de l'actionneur 210, ici égale à 1,5 Tesla.For example, the value of the magnetic induction generated by the
Le dispositif de commande 220 est configuré pour alimenter l'actionneur 210 en réponse à la réception du signal de commande Vcmd. Le dispositif 220 est également configuré pour verrouiller le disjoncteur dans l'état ouvert, tant que le signal de commande Vcmd continue à être appliqué sur l'entrée 230.The
Plus précisément, le dispositif de commande 220 est configuré pour alimenter électriquement la bobine 2101, dès réception du signal de commande Vcmd et tant que le signal de commande Vcmd est maintenu, avec une série d'impulsions de courant électrique chacune de durée égale à la durée prédéfinie T-on. L'intensité de chacune des impulsions de courant de la série est supérieure ou égale au premier seuil I-min et inférieure ou égale à un deuxième seuil I-max, aussi nommé « courant limite ».More specifically, the
Le courant limite I-max est supérieur au seuil I-min et est inférieur ou égal à 120% du seuil I-min, de préférence inférieur ou égal à 110% du seuil I-min, de préférence encore inférieur ou égal à 105% du seuil I-min.The I-max limit current is greater than the I-min threshold and is less than or equal to 120% of the I-min threshold, preferably less than or equal to 110% of the I-min threshold, more preferably less than or equal to 105% the threshold I-min.
Par exemple, le courant limite I-max est égal à 10 mA.For example, the I-max limit current is equal to 10 mA.
Dans cet exemple, la bobine 2101 comporte un nombre de spires, noté N, compris entre 500 et 10000, choisi avantageusement en fonction de la tension de commande Vcmd. Le courant limite I-max est donc ici égal à I-min x 1.2 / N, ou de préférence I-min x 1.1 / N, de préférence encore I-min x 1.05 / N .En fonction de la tension de commande Vcmd, le courant limite I-max est par exemple compris entre 15 mA et 265mA.In this example, the
Grâce au choix de la valeur du courant limite I-max, l'alimentation en courant de la bobine 2101 est optimisée en fonction des caractéristiques de l'actionneur 210, de façon à ce que la bobine 2101 soit alimentée avec une quantité d'énergie qui soit juste suffisante pour autoriser le déplacement de l'organe de couplage 2102, en démagnétisant l'aimant, de manière à libérer le ressort mais qui ne soit pas trop supérieure à ce qui est nécessaire pour ce déplacement. Cela évite une consommation d'énergie inutile et réduit donc la dissipation thermique.By choosing the value of the I-max limit current, the power supply of the
Dans cet exemple, comme le signal de commande Vcmd est une tension électrique, le dispositif de commande 220 est adapté pour être alimenté électriquement par ce signal de commande Vcmd.In this example, since the control signal Vcmd is an electrical voltage, the
Avantageusement, à cet effet, le dispositif de commande 220 comporte un redresseur de tension 2209 qui est connecté à l'entrée 230. Le redresseur 2209 est ici un redresseur mono-alternance. Dans cet exemple, il est réalisé au moyen d'une diode D1 qui est placée en sortie de l'entrée 230.Advantageously, for this purpose, the
En variante, le redresseur 2209 est un redresseur de type à double alternance. L'actionneur 210 est alors apte à être utilisé aussi bien dans un déclencheur 20 destiné à être commandé par un signal de commande Vcmd à tension continue ou par un signal de commande Vcmd à tension alternative.In a variant, the
Ainsi, le dispositif de commande 220 est apte à fonctionner, de façon sûre, sans avoir besoin d'une source d'énergie embarquée autre que celle fournie par le signal de commande Vcmd.Thus, the
Le dispositif de commande 220 comporte ici une source de tension régulée limitée en courant 2201 et un module d'excitation 2206. Dans cet exemple, le module d'excitation 2206 comporte un microcontrôleur programmable ou un microprocesseur.The
La source 2201 est ici connectée en série avec la bobine 2101 entre l'entrée 230 et la masse électrique GND.The
La source 2201 est configurée pour délivrer une tension d'alimentation Vcc dès qu'elle est alimentée par le signal de commande Vcmd. En outre, la source 2201 est configurée pour injecter dans la bobine 2101 un courant électrique avec une amplitude maximale égale au courant limite I-max lorsqu'elle est commandée par le module d'excitation 2206.The
La source 2201 comporte à cet effet un régulateur de tension 2202 et un limiteur de courant 2203.The
Le régulateur de tension 2202 est ici un régulateur linéaire, comprenant une résistance R, une diode Zéner Z et un transistor de puissance 2204. La diode Z et la résistance R sont connectées en série l'une avec l'autre entre la sortie du redresseur 2209 et la masse GND et un point médian entre la diode Z et la résistance R est relié à une électrode de commande du transistor 2204.The
Le transistor 2204 est ici un transistor à effet de champ de technologie MOSFET. En variante, il est remplacé par un transistor de puissance de type IGBT, pour « transistor bipolaire à grille isolé », notamment lorsque l'amplitude du signal de commande Vcmd est plus importante. Le type de transistor 2204 utilisé dépend de l'amplitude maximale attendue du signal de commande Vcmd. En pratique, le signal de commande Vcmd peut présenter une valeur d'amplitude maximale comprise entre 12V et 690V.The
Le régulateur de tension 2202 est ainsi adapté pour délivrer une tension d'alimentation Vcc sur un rail d'alimentation Vdd lorsque le signal de commande Vcmd est appliqué sur l'entrée 230. Par exemple, la tension Vcc est une tension continue d'amplitude égale à 3,3 Volts.The
Lorsqu'aucun signal de commande Vcmd n'est appliqué sur l'entrée 230, le régulateur de tension 2202 et donc la source 2201 ne fournissent ni tension ni courant électrique.When no control signal Vcmd is applied to the
Le limiteur de courant 2203 est configuré pour limiter le passage du courant en son sein à la valeur limite I-max précédemment décrite. Ainsi, lorsque le module d'excitation 2206 autorise l'injection d'un courant dans la bobine 2101, le limiteur 2203 évite que l'amplitude de ce courant ne dépasse le courant limite I-max.The
Le module d'excitation 2206 est configuré pour être alimenté électriquement par la tension d'alimentation Vcc et pour commander la génération des impulsions de courant électrique au moyen de la source 2201.The
Plus précisément, le module d'excitation 2206 est programmé pour, successivement, activer puis inhiber l'injection du courant électrique par la source de tension régulée limitée en courant 2201, pour générer chaque impulsion de courant électrique, l'activation puis l'inhibition étant séparées par un délai supérieur ou égal au délai prédéfini T-on.More specifically, the
La source de tension régulée limitée en courant 2201 est configurée pour injecter, dans la bobine 2101, un courant électrique en réponse à un ordre de déclenchement émis par le module d'excitation 2206, et, en alternance, à interrompre la circulation de ce courant électrique en réponse à un ordre d'interruption généré par le module d'excitation 2206.The current-limited
Dans cet exemple, le dispositif de commande 220 comporte un interrupteur commandable T1, connecté en série avec la bobine 2101 et la source 2201 entre l'entrée 230 et la masse électrique GND. Une électrode de commande du transistor T1 est reliée électriquement à une sortie de commande du module d'excitation 2206.In this example, the
L'interrupteur T1 est ici un transistor MOSFET.The switch T1 is here a MOSFET transistor.
Dans cet exemple, l'interrupteur T1 est par défaut dans un état bloquant, empêchant ainsi la circulation d'un courant électrique entre la sortie de la source 2201 et la masse électrique et donc empêchant l'alimentation de la bobine 2101.In this example, the switch T1 is by default in a blocking state, thus preventing the flow of an electric current between the output of the
Lorsque le module 2206 envoie un ordre de déclenchement sur le transistor T1, ce dernier passe dans un état passant, autorisant ainsi la circulation du courant électrique au travers de la bobine 2101.When the
Lorsque le module 2206 envoie un ordre d'interruption vers le transistor T1, ce dernier repasse dans son état bloquant, empêchant à nouveau la circulation du courant électrique au travers de la bobine 2101.When the
Ainsi, le module 2206 commande la source 2201 au moyen de l'interrupteur T1.Thus, the
Avantageusement, le régulateur de tension 2202 comporte également un circuit de stabilisation de la tension d'alimentation Vcc. Ce circuit de stabilisation est ici formé par une diode D2 et un condensateur C, connectés en série entre le rail d'alimentation Vdd et la masse GND en parallèle avec l'interrupteur T1. Ce circuit de stabilisation a pour but d'éviter que la tension d'alimentation Vcc ne s'effondre lors du fonctionnement du module d'excitation 2206 et notamment lorsque l'interrupteur T1 passe dans l'état passant.Advantageously, the
Avantageusement, le dispositif de commande comporte une sonde de mesure 2205 du courant qui circule au travers de la bobine 2101. Alors, le module d'excitation 2206 est programmé pour commander l'inhibition de l'alimentation en courant en émettant un ordre d'interruption à l'expiration du délai prédéterminé T-on, ce délai étant décompté par le module d'excitation 2206, à partir de l'instant où le courant mesuré par la sonde de mesure 2205 dépasse la valeur seuil I-min.Advantageously, the control device comprises a
La sonde de mesure 2205 est ici une résistance de précision connectée en série avec la bobine2101 et reliée à une entrée de mesure du module d'excitation 2206.The
La
Comme illustré à la
La vitesse à laquelle le courant augmente à partir de l'instant t0 dépend de la position de l'organe de couplage 2102. Selon que l'organe 2102 se trouve dans la position de repos ou dans la position déclenchée, la valeur d'inductance de la bobine 2101 n'est pas la même. Ici, l'inductance de la bobine 2101 est plus élevée lorsque l'organe 2102 est dans l'état de repos. De fait, la réponse de la bobine 2101 au courant qui la traverse est différente.The rate at which the current increases from the instant t0 depends on the position of the
La courbe C1 représente l'évolution de l'intensité du courant circulant dans la bobine 2101 après l'instant t0 lorsque l'organe 2102 se trouve dans la position déclenchée.The curve C1 represents the change in the intensity of the current flowing in the
On note « t1 » l'instant à partir duquel ce courant dépasse le seuil I-min. Après cet instant t1, le courant continue à augmenter jusqu'à atteindre le courant limite I-max. Le module d'excitation 2206 décompte le temps qui s'écoule, par exemple au moyen d'un minuteur, à partir de l'instant t1, tout en maintenant l'interrupteur T1 dans l'état passant.We denote "t1" the moment from which this current exceeds the threshold I-min. After this time t1, the current continues to increase until reaching the I-max limit current. The
Lorsque le délai décompté excède la durée prédéfinie T-on, le module d'excitation 2206 envoie un ordre d'interruption à un instant t3. L'interrupteur T1 repasse dans son état bloquant et le courant cesse ainsi de circuler dans la bobine 2101.When the countdown time exceeds the preset time T-on, the
La courbe C2 représente l'évolution de l'intensité du courant circulant dans la bobine après l'instant t0 lorsque l'organe 2102 se trouve dans la position repos.The curve C2 represents the change in the intensity of the current flowing in the coil after the instant t0 when the
Du fait de la différence d'inductance de la bobine 2101, le courant électrique augmente, depuis l'instant t0, plus lentement que pour la courbe C1.Due to the inductance difference of the
On note « t2 » l'instant à partir duquel le courant dépasse la valeur seuil IMIN. L'écart entre les instants t2 et t0 est supérieur à l'écart entre les instants t1 et t0.We denote by "t2" the instant from which the current exceeds the threshold value I MIN . The difference between the instants t2 and t0 is greater than the difference between the instants t1 and t0.
Après cet instant t2, le courant continue à augmenter jusqu'à atteindre le courant limite I-max. De même que précédemment, le module d'excitation 2206 maintient l'interrupteur T1 dans l'état passant et envoie un ordre d'interruption à un instant t4 à l'expiration du délai T-on. Le courant cesse alors de circuler au travers de la bobine 2101.After this time t2, the current continues to increase until reaching the I-max limit current. As before, the
Ainsi, le module d'excitation 2206 ne permet pas la circulation d'un courant électrique plus longtemps que nécessaire pour former une impulsion de durée T-on, ce qui réduit la consommation électrique du déclencheur 20, et réduit ainsi la dissipation thermique.Thus, the
Plus précisément si une telle régulation n'était pas appliquée, alors il serait nécessaire de prédéfinir la durée de fermeture du transistor T1 comme étant égale à la différence des instants t4 et t0, en se basant sur le cas de figure le plus défavorable, qui est celui où l'inductance self de la bobine est minimale, de manière à être sûr d'avoir toujours une impulsion de durée au moins égale à la durée T-on quelque soit l'état de la bobine 2101. Dans ce cas, la durée de l'impulsion aurait été trop longue, puisque le courant aurait continué à être appliqué entre les instants t3 et t4, alors la bobine 2101 avait reçu assez d'énergie pour que le déplacement de l'organe 2102 soit assuré. On aurait donc généré un échauffement excessif pour rien, car le courant fourni entre les instants t1 et t3 est suffisant pour exciter la bobine et provoquer la commutation.More precisely, if such a regulation were not applied, then it would be necessary to predefine the closing time of transistor T1 as being equal to the difference of times t4 and t0, based on the worst case scenario, which is that where the self inductance of the coil is minimal, so as to be sure to always have a pulse of duration at least equal to the duration T-one whatever the state of the
Avantageusement, le module d'excitation 2206 comporte un module de détection configuré pour mesurer la nature du signal de commande Vcmd et notamment déterminer s'il s'agit d'une tension électrique ou alternative. Cette détermination est ici réalisée à partir de la tension du rail Vdd.Advantageously, the
Le module d'excitation 2206 est en outre programmé pour détecter la nature du signal de commande à l'aide de ce module de détection et pour adapter l'émission dans le temps des ordres de déclenchement, et notamment pour :
- synchroniser automatiquement la génération des impulsions de courant électrique avec le signal de commande Vcmd, lorsque le signal de commande Vcmd est détecté comme étant une tension électrique continue ou alternative, c'est-à-dire lorsque la tension du rail Vdd est détectée comme étant alternative redressée à mono alternance ou double alternance, cette synchronisation étant réalisée en générant les ordres de déclenchement aux instants où le signal de commande Vcmd prend une valeur nulle, et, alternativement,
- commander la génération des impulsions de courant électrique avec une période prédéfinie, si le signal de commande Vcmd est détecté comme étant une tension électrique continue.
- automatically synchronize the generation of the pulses of electric current with the control signal Vcmd, when the control signal Vcmd is detected as being a DC or AC voltage, that is to say when the voltage of the rail Vdd is detected as alternating rectified with mono alternation or double alternation, this synchronization being achieved by generating the trigger commands at times when the control signal Vcmd takes a null value, and, alternatively,
- controlling the generation of electrical current pulses with a predefined period, if the control signal Vcmd is detected as a DC voltage.
La synchronisation avec le signal de commande Vcmd permet de générer les impulsions de courant électrique lorsque ce dernier présente une valeur minimale, et donc de limiter la puissance électrique consommée par le dispositif de commande 220.Synchronization with the control signal Vcmd makes it possible to generate the pulses of electric current when the latter has a minimum value, and thus to limit the electrical power consumed by the
De préférence, le module d'excitation 2206 est programmé pour que le délai entre deux impulsions consécutives soit inférieur ou égal à 100ms, de préférence inférieur ou égal à 50ms.Preferably, the
Ce délai, ou intervalle, est noté T-off et est défini comme l'intervalle de temps entre deux impulsions de courant à une valeur d'intensité supérieure ou égale au seuil I-min. Dans cet exemple, le délai T-off est égal à 40ms.This delay, or interval, is noted T-off and is defined as the time interval between two current pulses at an intensity value greater than or equal to the I-min threshold. In this example, the T-off delay is 40ms.
Le rapport cyclique entre le délai T-on et le délai T-off, défini comme étant le rapport T-on/T-off entre les délais T-on et T-off, est avantageusement compris entre
Ce délai est choisi de manière à limiter le risque d'un échec d'ouverture du disjoncteur 10. De façon connue, les mécanismes de commutation 110 de type à bascule comportent une position de limite d'ouverture, noté P1, et une position morte de fermeture, noté P2. Ces points P1 et P2 correspondent à des positions intermédiaires du mécanisme de commutation entre l'état ouvert et l'état fermé.This delay is chosen so as to limit the risk of failure to open the
Le point P1 correspond à la position du mécanisme 110 à partir de laquelle l'ouverture du disjoncteur est garantie. Autrement dit, lorsque le mécanisme 110 franchit le point P1 depuis la position fermée, l'ouverture du disjoncteur 10 est garantie. Le point P1 correspond à la position de libération d'un élément du mécanisme de déclenchement 110 connu sous le nom de demi-lune de déclenchement.The point P1 corresponds to the position of the
En variante, le disjoncteur 10, le point P1 est confondu avec la position d'ouverture du disjoncteur.Alternatively, the
Le point P2 correspond à la position du mécanisme 110 à partir de laquelle la fermeture du disjoncteur ne peut plus être empêchée. Autrement dit, lorsque le mécanisme 110 franchit le point P2 en venant depuis la position ouverte, la fermeture du disjoncteur 10 est assurée. Cela est dû à l'action de ressorts mécaniques compris à l'intérieur du mécanisme de commutation 110.The point P2 corresponds to the position of the
Ainsi, ce choix de valeur du délai T-off permet de garantir qu'au moins une impulsion est générée à partir du module 2206 lorsque le mécanisme de commutation 110 se trouve entre les points P1 et P2 pendant son déplacement entre les états fermé et ouvert. Grâce à cette impulsion, l'organe de couplage 2102 est à nouveau déplacé vers sa position déclenchée et force à nouveau l'ouverture du disjoncteur avant que le mécanisme de commutation 110 ne franchisse le point P2.Thus, this choice of value of the T-off delay makes it possible to guarantee that at least one pulse is generated from the
Avantageusement, le dispositif de commande 220 comporte également un module d'excitation analogique 2208 configuré pour générer, en outre, une unique impulsion de courant électrique, d'intensité supérieure ou égale au premier seuil I-min prédéterminé, dès la réception du signal de commande Vcmd par le dispositif de commande 220.Advantageously, the
Ce module d'excitation analogique 2208 est distinct du module d'excitation 2206. De même, l'unique impulsion de courant générée à l'aide de ce module 2208 est distincte de la série d'impulsions générées au moyen du module d'excitation 2206.This
Comme illustré à la
L'interrupteur T2 est ici connecté en parallèle avec l'interrupteur T1 entre la source 2201 et la masse GND. L'interrupteur T2 joue, vis-à-vis de la source 2201, un rôle analogue à celui décrit pour l'interrupteur T1 en référence au module 2206.The switch T2 is here connected in parallel with the switch T1 between the
Le comparateur 2210 est configuré pour comparer la valeur de tension d'alimentation Vcc avec une valeur de référence Vref prédéfinie.The
Comme illustré à la
Par exemple, la valeur Vref est égale à 3 Volts.For example, the value Vref is equal to 3 volts.
La bascule monostable 2211 est configurée pour délivrer une unique impulsion de tension en sortie, cette impulsion présentant une durée T' prédéfinie. Cette sortie est raccordée à une électrode de commande du transistor T2 et joue le rôle d'un ordre de commutation de l'interrupteur T2.Monostable flip-
La bascule monostable 2211 est choisie de façon à présenter une durée T' suffisamment longue pour garantir que l'impulsion de courant électrique générée présente une durée supérieure à la durée T-on. A titre d'exemple illustratif, la durée T' est ici égale à 18ms.The monostable flip-
En variante, l'interrupteur T2 peut être omis. Dans ce cas, le module 2208 est adapté pour commander l'interrupteur T1 en parallèle du module 2206, par exemple au moyen d'une porte logique « ET » qui collecte les ordres émis par les modules 2206 et 2208 et qui commande en conséquence l'interrupteur T1.Alternatively, the switch T2 can be omitted. In this case, the
Le module 2208 est utilisé en complément du module 2206 et permet d'assurer qu'au moins une impulsion de courant électrique est injectée dans la bobine 2201 dès que le signal de commande Vcmd est reçu sur l'entrée 230, même en cas de défaillance du module 2206. Cette impulsion unique présente une durée et une intensité suffisantes pour assurer le déplacement de l'organe 2102 vers sa position déclenchée.The
En effet, du fait que le module 2208 est réalisé à partir de composants analogiques simples, et non à partir de microcontrôleurs ou microprocesseurs programmables, il présente un fonctionnement plus fiable et plus robuste que le module 2206. Cela garantit une bonne sécurité de fonctionnement du déclencheur 20.Indeed, since the
Bien que le module 2208 ne permette pas d'optimiser la durée de l'impulsion unique aussi finement que le permet le module 2206, cela n'est pas préjudiciable, puisqu'il n'y a qu'une seule impulsion de courant est générée au moyen du module 2208 à chaque fois que le signal de commande Vcmd est initié. Le surcoût en énergie est ainsi minime.Although the
Dans l'exemple illustré, le déclencheur 20 a une consommation moyenne, en régime permanent, inférieure ou égale à 1 W et une consommation en régime transitoire, lors de la mise sous tension, c'est-à-dire de la réception du signal de commande Vcmd, est inférieure ou égale à 10 W. Par comparaison, dans les déclencheurs à actionneur motorisé connus, la consommation moyenne en régime permanent est supérieure à 5 W et la consommation en régime transitoire est supérieure à 30 W. Grâce à l'invention, la dissipation thermique s'en trouve considérablement réduite.In the example illustrated, the
Un exemple de fonctionnement de l'appareil électrique 1 et du déclencheur 20 est maintenant décrit en référence à l'ordinogramme de la
Initialement, lors d'une l'étape 1000, le disjoncteur 10 est dans un état fermé, autorisant le passage d'un courant électrique de puissance entre ses terminaux d'entrée et de sortie. Aucun signal de commande Vcmd n'est reçu sur l'entrée 230. L'organe de couplage 2102 est maintenu dans la position de repos. Aucun courant électrique n'est injecté dans la bobine 2101.Initially, during a
Ensuite, lors d'une étape 1002, le signal de commande Vcmd est appliqué sur l'entrée 230 vers le déclencheur 20, par exemple en réponse à l'action d'un utilisateur qui appuie sur un bouton d'arrêt d'urgence, en vue de demander l'ouverture du disjoncteur 10.Then, in a
Cette tension Vcmd alimente le redresseur 2209 et donc la source 2201. Comme les transistors T1 et T2 sont tous deux dans l'état ouvert, aucun courant ne circule à ce moment là au travers de la bobine 2101. La source 2201 ne débite donc aucun courant électrique à ce moment-là. Toutefois, le régulateur de tension 2202 génère la tension Vcc sur le rail d'alimentation, qui alimente à son tour les modules d'excitation 2206 et 2208.This voltage Vcmd feeds the
Lors d'une étape 1004, le module d'excitation 2208 commande la génération, par la source 2201, d'une unique impulsion de courant à destination de la bobine 2101.During a
Par exemple, dès que le module d'excitation 2208 est alimenté par la tension d'alimentation Vcc supérieure à la valeur de référence Vref, le comparateur 2210 délivre la tension V1 vers l'entrée de la bascule monostable 2211.For example, as soon as the
En réponse, la bascule monostable 2211 passe dans un état excité pendant la durée T', pendant laquelle elle délivre en sortie une tension V2 non nulle, puis repasse dans un état de repos à la fin de ce délai T'. Ce faisant, la bascule monostable 2211 envoie un ordre de commutation d'ouverture puis de fermeture de l'interrupteur T2, séparés de ce délai T'.In response, the monostable flip-
En conséquence, lors d'une étape 1006, la bobine 2101 démagnétise l'aimant et permet au ressort de passer vers sa position détendue, ce qui autorise le déplacement de l'organe de couplage 2102 de son état de repos vers l'état déclenché. L'organe de couplage 2102 agit sur le mécanisme de commutation 110 qui entraîne l'ouverture du disjoncteur 10.Accordingly, in a
En parallèle de l'étape 1004, le module d'excitation 2206 est alimenté par la tension d'alimentation Vcc en vue de générer la série d'impulsions de courant.In parallel with
Ainsi, lors d'une étape 1008, le module d'excitation 2206 détecte automatiquement si le signal de commande Vcmd est une tension continue ou une tension alternative.Thus, in a
Si le signal de commande Vcmd est déterminé comme étant une tension continue, alors, lors d'une étape 1010, les impulsions de courant sont générées périodiquement au cours du temps, ici avec un délai égal au délai T-off. Avantageusement, pour chaque impulsion, à partir de l'instant de déclenchement t0 de l'interrupteur T1, le module d'excitation 2206 détecte, grâce à la sonde de courant 2205, l'instant à partir duquel le courant qui circule dans la bobine 2101 devient supérieur ou égal à la tension seuil I-min puis envoie un ordre d'interruption de l'interrupteur T1 à l'expiration du délai T-on après cet instant.If the control signal Vcmd is determined to be a DC voltage, then, in a
Si, au contraire, le signal de commande Vcmd est déterminé comme étant une tension alternative, alors, lors d'une étape 1012, les impulsions de courant sont générées de façon synchronisée avec les instants pour lesquels le signal de commande Vcmd est détecté comme prenant une valeur nulle. Plus précisément, ce sont les instants de déclenchement t0 pour lesquels le module d'excitation 2206 envoie un ordre de déclenchement de l'interrupteur T1 qui sont synchronisés avec les instants pour lesquels le signal de commande Vcmd est détecté comme prenant une valeur nulle. La génération de chacune des impulsions à partir de cet instant de déclenchement t0 est ici la même que celle décrite pour l'étape 1010.If, on the contrary, the control signal Vcmd is determined as being an alternating voltage, then, during a
Les impulsions générées au moyen du module d'excitation 2206 permettent d'amener et/ou de maintenir le disjoncteur 10 dans l'état ouvert. Dans l'étape 1006, tant que le signal de commande Vcmd est appliqué sur l'entrée 230, le module d'excitation 2206 continue à générer les impulsions pour que la bobine 2101 continue à démagnétiser l'aimant de sorte à permettre au ressort de rester dans sa position détendue et donc de maintenir l'organe de couplage 2102 dans son état déclenché.The pulses generated by means of the
Enfin, lors d'une étape 1014, le signal de commande Vcmd cesse d'être appliqué et n'est plus reçu sur l'entrée 230. La source 2201 s'interrompt et la tension d'alimentation Vcc devient nulle. Le module d'excitation 2206 cesse alors de fonctionner, et plus aucune impulsion de courant électrique n'est envoyée dans la bobine 2101.Finally, in a
Un opérateur peut alors réarmer manuellement le disjoncteur 10 pour le ramener dans l'état fermé, au moyen du levier de commande. Le procédé décrit peut alors être répété.An operator can then manually reset the
Les modes de réalisation et les variantes envisagés ci-dessus peuvent être combinés entre eux pour générer de nouveaux modes de réalisation, toujours dans le cadre des revendications ci-jointes.The embodiments and alternatives contemplated above may be combined with one another to generate new embodiments, still within the scope of the appended claims.
Claims (9)
- Controllable release switch (20) for an electrical circuit breaker (10), the circuit breaker being switchable between an open state and a closed state, this release switch comprising:- an actuator (210) comprising a coupling element (2102) which is displaceable between an inoperative position and a released position, the coupling element (2102) being intended to be coupled mechanically to a switching mechanism (110) of an electrical circuit breaker (10) in order to cause the switching of the circuit breaker (10) from a closed state towards an open state when the coupling element (2102) passes from the inoperative position towards the released position, and- a control device (220), configured in order to supply the actuator, in response to receipt, by the release switch (20), of a release control signal (Vcmd), in order to displace the coupling element (2102) from the inoperative position towards the released position;the actuator (210) being a magnetic actuator comprising a coil (2101), configured in order to displace the coupling element (2102) from the inoperative position towards the released position when it is supplied with an electrical current pulse of intensity greater than a first predefined threshold (I-min) for a duration greater than or equal to a predefined duration (T-on), the release switch (20) being characterised
in that the control device (220) is configured in order to supply electrically the coil (2101), upon receipt of the control signal (Vcmd) and as long as the control signal (Vcmd) is maintained, with a series of electrical current pulses of duration equal to the predefined duration (T-on) and of intensity greater than or equal to the first threshold (I-min) and less than or equal to a second threshold (I-max), this second threshold (I-max) being at most equal to 120% of the first threshold (I-min);
in that the control signal (Vcmd) is an electrical voltage, received at an input (230) of the release switch (20), the control device (220) being adapted in order to be supplied electrically by the control signal (Vcmd), in that the control device (220) comprises:- a regulated, current-limited voltage source (2201), connected in series with the coil (2101) between the input (230) and an electrical earth (GND) of the control device (220), this regulated, current-limited voltage source (2201) being configured in order to deliver a supply voltage (Vcc) on a supply rail as long as it is supplied by the control signal (Vcmd),- an excitation module (2206), configured in order to be supplied electrically by the supply voltage (Vcc) and in order to control the generation of the electric current pulses,the regulated, current-limited voltage source (2201) being, furthermore, configured in order to inject selectively into the coil (2101) an electrical current of intensity equal to the second predetermined threshold (I-max) and, alternately, to interrupt the circulation of this electrical current, in response to release and interruption orders generated by the excitation module (2206);
in that the control device (220) comprises a probe (2205) for measuring the current which circulates through the coil (2101), and in that the excitation module (2206) is programmed in order, successively, to activate then inhibit the injection of the electrical current by the regulated, current-limited voltage source (2201), in order to generate each electrical current pulse, the excitation module (2206) being programmed in order to control this inhibition at the end of the predetermined delay (T-on), this delay being counted by the excitation module (2206) from the moment when the current measured by the measuring probe (2205) exceeds the first threshold value (I-min). - Release switch according to claim 1, characterised in that the control device (220) comprises a controllable interrupter (T1), connected in series with the coil (2101) and the regulated, current-limited voltage source (2201) between the input (230) and the electrical earth (GND), the control of the source being produced by the excitation module (2206) by means of this interrupter (T1), the interrupter (T1) being for this purpose connected to the excitation module (2206) and being able to switch between a passing state and a blocking state in order, respectively, to allow or inhibit the circulation of the electrical current, in response to the release and interruption orders, respectively, generated by the excitation module (2206).
- Release switch according to any of the claims 1 to 2, characterised in that the excitation module (2206) is programmed in order to detect if the control signal (Vcmd) is a continuous or alternating electrical voltage, and in order to:- synchronise automatically generation of the electrical current pulses with the control signal (Vcmd) if the control signal (Vcmd) is detected as being an alternating electrical voltage, this synchronisation being produced by the excitation module (2206) by generating the release orders at the moments when the control signal (Vcmd) assumes a zero value, and, alternatively,- control the generation of the electrical current pulses with a predefined period if the control signal (Vcmd) is detected as being a continuous electrical voltage.
- Release switch according to any of the claims 1 to 3, characterised in that the excitation module (2206) is programmed in order to control the generation of the electrical current pulses with a predefined interval (T-off) between two consecutive electrical current pulses, the predefined interval (T-off) being less than or equal to 100 ms.
- Release switch according to any of the preceding claims, characterised in that the control device (220) comprises an analogue excitation module (2208), configured in order to generate, furthermore, a single electrical current pulse, of intensity greater than or equal to the first predetermined threshold (I-min), upon receipt of the control signal (Vcmd) by the control device (220).
- Release switch according to any of the preceding claims, characterised in that the actuator (210) comprises furthermore a magnet, a mobile part connected mechanically to the coupling element (2102) and a release spring, the magnet being integral with a fixed part of the actuator (210) and exerting a magnetic force on the mobile part when the coupling element (2102) is in the inoperative position, such that the mobile part compresses the spring in order to maintain the coupling element (2102) in the inoperative position, the spring exerting a restoring force in opposition to the magnetic force, and having an intensity less than the magnetic force, the coil (2101) being adapted in order to reduce the magnetic attraction force exerted by the magnet when it is supplied by each of said electrical current pulses applied by the control device (220), so as to allow movement of the coupling element (2102) from its inoperative position towards the released position, under the effect of the restoring force exerted by the release spring.
- Electrical assembly (1) comprising a circuit breaker (10) and a release switch (20) which is controllable and connected to the circuit breaker,- the circuit breaker (10) comprising a switching mechanism (110) intended to switch the circuit breaker between an open state and a closed state,- the release switch (20) comprising:the release switch (20) being characterised in that it is according to any of the preceding claims.- an actuator (210), comprising a coupling element (2102) which is displaceable between an inoperative position and a released position, the coupling element (2102) being coupled mechanically to the switching mechanism (110) in order to cause switching of the circuit breaker (10) from the closed state towards the open state when it passes from the inoperative position towards the released position, and- a control device (220), configured in order to supply the actuator in response to receipt, by the release switch (20), of a release control signal (Vcmd), in order to displace the coupling element (2102) from the inoperative position towards the released position;
- Method for controlling a release switch (20) for an electrical circuit breaker (10), this method being characterised in that it comprises the steps:a) of providing a release switch, comprising- an actuator (210), comprising a coupling element (2102) which is displaceable between an inoperative position and a released position, the coupling element (2102) being intended to be coupled mechanically to a switching mechanism (110) of an electrical circuit breaker (10) in order to cause switching of the circuit breaker (10) from a closed state towards an open state when the coupling element (2102) passes from the inoperative position towards the released position, the actuator (210) being a magnetic actuator comprising a coil (2101), configured in order to displace the coupling element (2102) from the inoperative position towards the released position when it is supplied with an electrical current pulse of intensity greater than a first predefined threshold (I-min) for a duration greater than or equal to a predefined duration (T-on), and- a control device (220), configured in order to supply the actuator, in response to receipt, by the release switch (20), of a release control signal (Vcmd), in order to displace the coupling element (2102) from the inoperative position towards the released position, the control device (220) comprising:- a source of regulated, current-limited voltage (2201), connected in series with the coil (2101) between the input (230) and an electrical earth (GND) of the control device (220), this source of regulated, current-limited voltage (2201) being configured in order to deliver a supply voltage (Vcc) on a supply rail as long as it is supplied by the control signal (Vcmd),- an excitation module (2206), configured in order to be supplied electrically by the supply voltage (Vcc) and in order to control the generation of the electrical current pulses, the control device (220) comprising furthermore a probe (2205) for measuring the current which circulates through the coil (2101);b) of acquiring a release control signal (Vcmd) by the release switch (20), the control signal (Vcmd) being an electrical voltage, received on an input (230) of the release switch (20), the control device (220) being adapted in order to be supplied electrically by the control signal (Vcmd);c) of supplying the coil (2101) by the control device (220) with a series of electrical current pulses of duration equal to the predefined duration (T-on) and of intensity greater than or equal to the first threshold (I-min) and less than or equal to a second threshold (I-max), this second threshold (I-max) being at most equal to 120% of the first threshold (I-min), this supply being applied upon receipt of the control signal (Vcmd) and as long as the control signal (Vcmd) continues to be received by the release switch (20), the regulated, current-limited voltage source (2201) injecting into the coil (2101) an electrical current of intensity equal to the predetermined second threshold (I-max) and, alternately, interrupting the circulation of this electrical current, in response to the release and interruption orders generated by the excitation module (2206), the excitation module (2206) activating then inhibiting the injection of the electrical current by the regulated, current-limited voltage source (2201), by controlling this inhibition at the end of the predetermined delay (T-on), this delay being counted by the excitation module (2206), from the moment when the current measured by the measuring probe (2205) exceeds the first threshold value (I-min).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL17187020T PL3288059T3 (en) | 2016-08-23 | 2017-08-21 | Commandable trip unit for an electrical circuit breaker |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1657867A FR3055465B1 (en) | 2016-08-23 | 2016-08-23 | COMMANDABLE TRIGGER FOR AN ELECTRIC CIRCUIT BREAKER |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3288059A1 EP3288059A1 (en) | 2018-02-28 |
EP3288059B1 true EP3288059B1 (en) | 2019-01-23 |
Family
ID=57680352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17187020.7A Active EP3288059B1 (en) | 2016-08-23 | 2017-08-21 | Commandable trip unit for an electrical circuit breaker |
Country Status (8)
Country | Link |
---|---|
US (1) | US10249461B2 (en) |
EP (1) | EP3288059B1 (en) |
CN (1) | CN107768204B (en) |
BR (1) | BR102017013872B1 (en) |
ES (1) | ES2721229T3 (en) |
FR (1) | FR3055465B1 (en) |
PL (1) | PL3288059T3 (en) |
RU (1) | RU2752849C2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE1026605B1 (en) * | 2018-09-12 | 2020-04-09 | Phoenix Contact Gmbh & Co | Relay module |
FR3114680B1 (en) * | 2020-09-30 | 2023-01-20 | Schneider Electric Ind Sas | Communication device for an electrical switchgear |
FR3114681B1 (en) * | 2020-09-30 | 2023-02-10 | Schneider Electric Ind Sas | Electrical protection device |
CN112992619B (en) * | 2021-02-07 | 2022-06-03 | 青岛博宁福田智能交通科技发展有限公司 | Emergency button switch interface and subway floodgate machine |
CN116666172B (en) * | 2023-06-16 | 2024-04-05 | 上海正泰智能科技有限公司 | Circuit breaker control method and circuit breaker system |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1105956A1 (en) * | 1982-09-02 | 1984-07-30 | Ленинградское Электромашиностроительное Объединение "Электросила" Им.С.М.Кирова | Automatic starter |
SU1576927A1 (en) * | 1988-06-27 | 1990-07-07 | Военно-воздушная инженерная Краснознаменная академия им.проф.Н.Е.Жуковского | Automatic switch with electron control |
SU1700633A1 (en) * | 1989-10-18 | 1991-12-23 | Московский энергетический институт | Automatic switch with remote control |
US5180051A (en) * | 1991-06-28 | 1993-01-19 | Square D Company | Remote control circuit breaker |
US5539608A (en) * | 1993-02-25 | 1996-07-23 | Eaton Corporation | Electronic interlock for electromagnetic contactor |
DE19522582C2 (en) * | 1995-06-16 | 1997-07-17 | Siemens Ag | Circuit arrangement for operating an electromagnet |
DE19635358C2 (en) * | 1996-08-22 | 2001-03-01 | Siemens Ag | Circuit arrangement with an electromagnetic relay |
US5757598A (en) * | 1996-12-27 | 1998-05-26 | Tower Manufacturing Corporation | Ground fault circuit interrupter |
US6052266A (en) * | 1998-10-01 | 2000-04-18 | Tower Manufacturing Corporation | Ground fault circuit interrupter |
WO2001004922A1 (en) * | 1999-07-12 | 2001-01-18 | Mitsubishi Denki Kabushiki Kaisha | Electromagnetic contactor |
FR2817078B1 (en) * | 2000-11-21 | 2003-02-14 | Hager Electro | REMOTE CONTROL DEVICE FOR MODULAR PROTECTION APPARATUS |
RU2214662C2 (en) * | 2001-08-09 | 2003-10-20 | Пономаренко Андрей Иванович | Method for controlling circuit-protection disconnecting device |
JP4413724B2 (en) * | 2003-12-11 | 2010-02-10 | アンデン株式会社 | Relay device |
US9577419B2 (en) * | 2013-12-16 | 2017-02-21 | Eaton Corporation | Shunt trip control circuits using shunt trip signal accumulator and methods of operating the same |
-
2016
- 2016-08-23 FR FR1657867A patent/FR3055465B1/en active Active
-
2017
- 2017-06-27 BR BR102017013872-0A patent/BR102017013872B1/en active IP Right Grant
- 2017-08-03 US US15/668,199 patent/US10249461B2/en active Active
- 2017-08-16 CN CN201710700948.1A patent/CN107768204B/en active Active
- 2017-08-16 RU RU2017129112A patent/RU2752849C2/en active
- 2017-08-21 ES ES17187020T patent/ES2721229T3/en active Active
- 2017-08-21 PL PL17187020T patent/PL3288059T3/en unknown
- 2017-08-21 EP EP17187020.7A patent/EP3288059B1/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
ES2721229T3 (en) | 2019-07-29 |
US10249461B2 (en) | 2019-04-02 |
BR102017013872A2 (en) | 2018-03-13 |
PL3288059T3 (en) | 2019-07-31 |
RU2752849C2 (en) | 2021-08-11 |
EP3288059A1 (en) | 2018-02-28 |
RU2017129112A (en) | 2019-02-18 |
CN107768204B (en) | 2021-08-10 |
US20180061604A1 (en) | 2018-03-01 |
RU2017129112A3 (en) | 2020-09-28 |
CN107768204A (en) | 2018-03-06 |
FR3055465A1 (en) | 2018-03-02 |
FR3055465B1 (en) | 2019-11-22 |
BR102017013872B1 (en) | 2023-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3288059B1 (en) | Commandable trip unit for an electrical circuit breaker | |
EP1009006B1 (en) | Standard control device for an electromagnet for opening or closing a circuit breaker | |
EP2019396B1 (en) | Electromagnetic actuator with at least two coils | |
CA1253578A (en) | Plasma welding or cutting system equipped with a delay component | |
WO2008135670A9 (en) | Bistable electromagnetic actuator, control circuit for a dual coil electromagnetic actuator, and dual coil electromagnetic actuator including such control circuit | |
EP2899343B1 (en) | Anti-remanence device for electromagnetic lock | |
FR2517842A1 (en) | CONTROL CIRCUIT FOR A MOTORIZED TOOL ACTIVATED ELECTROMAGNETICALLY | |
EP1009004B1 (en) | Control device for an electromagnet, with detection of accidental movement of the movable core of the electromagnet | |
FR2618270A1 (en) | CIRCUIT AND APPARATUS FOR PROTECTED LOAD POWER SUPPLY USING STATIC AND ELECTROMECHANICAL SWITCHES. | |
EP0841670B1 (en) | Current transformer, trip device and circuit breaker comprising such a transformer | |
FR2601811A1 (en) | Control circuit for EM relay coil | |
FR2919109A1 (en) | Mobile part's position e.g. closing position, detecting device for e.g. circuit breaker, has electrical quantity processing units for processing measured electrical quantity so as to determine position of mobile part | |
EP3291271B1 (en) | Control method for an actuating device, related actuating device and switching device | |
FR2841707A1 (en) | ORDERING A THYRISTOR FROM A RECTIFIER BRIDGE | |
FR2828668A1 (en) | SEAT BELT RETRACTOR | |
EP2320438B1 (en) | Electromagnetic actuator and electrical contactor comprising such actuator | |
FR2612276A1 (en) | Bistable electromagnetic inductor methods and devices for solenoid valves and connected electrical circuits, with very low electrical consumption; with application to automatic watering controlled by the water requirements of the plants at the desired depth | |
EP0093804B1 (en) | Electronic circuit for the ignition of a detonator | |
CA1227832A (en) | Appartus for delectinf failures in a chopper equipped electrical power supply | |
FR2803956A1 (en) | Supply of actuating winding on power contactor, uses control of DC -DC converter connected between DC supply and coil to regulate current in coil | |
FR2923936A1 (en) | Magnetic hooking type bistable electromagnetic actuator for vacuum bulb of switchgear, has mobile core separated from yoke surface by radial airgap in unhooking position, and shunt separated from core by axial airgap | |
EP0021867A1 (en) | Supply means comprising a chopper, regulated against variations of input voltage and output power, particularly for a television receiver | |
EP4139946B1 (en) | Circuit breaker with electronic trip control | |
FR2951015A1 (en) | Protection device for electrical circuit, has limitation unit comprising field-effect transistor to increase voltage drop when current exceeds limitation value, and actuating unit supplied from voltage drop in limitation unit | |
FR2459542A1 (en) | DEVICE FOR SWITCHING CONTINUOUS CURRENT CIRCUITS, IN PARTICULAR FOR SUPPRESSING THE FORMATION OF ARCS AND REDUCING VOLTAGE VARIANCES DUE TO SWITCHES |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180801 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01H 89/08 20060101ALI20180817BHEP Ipc: H01H 71/68 20060101AFI20180817BHEP |
|
INTG | Intention to grant announced |
Effective date: 20180914 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: URANKAR, LIONEL Inventor name: BORDET, BRUNO |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1092123 Country of ref document: AT Kind code of ref document: T Effective date: 20190215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017001905 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2721229 Country of ref document: ES Kind code of ref document: T3 Effective date: 20190729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190523 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190423 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1092123 Country of ref document: AT Kind code of ref document: T Effective date: 20190123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190424 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190523 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190423 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017001905 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 |
|
26N | No opposition filed |
Effective date: 20191024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190821 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190821 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170821 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190123 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230822 Year of fee payment: 7 Ref country code: ES Payment date: 20230914 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20230809 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240828 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240827 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240826 Year of fee payment: 8 |