EP3286412B1 - Dispositif de stockage d'énergie et procédé de stockage d'énergie thermique - Google Patents

Dispositif de stockage d'énergie et procédé de stockage d'énergie thermique Download PDF

Info

Publication number
EP3286412B1
EP3286412B1 EP16722795.8A EP16722795A EP3286412B1 EP 3286412 B1 EP3286412 B1 EP 3286412B1 EP 16722795 A EP16722795 A EP 16722795A EP 3286412 B1 EP3286412 B1 EP 3286412B1
Authority
EP
European Patent Office
Prior art keywords
compressor
circuit
temperature regenerator
expander
working gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP16722795.8A
Other languages
German (de)
English (en)
Other versions
EP3286412A1 (fr
Inventor
Peter Ortmann
Werner Graf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to PL16722795T priority Critical patent/PL3286412T3/pl
Publication of EP3286412A1 publication Critical patent/EP3286412A1/fr
Application granted granted Critical
Publication of EP3286412B1 publication Critical patent/EP3286412B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/006Accumulators and steam compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/005Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for the working fluid being steam, created by combustion of hydrogen with oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/06Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein the engine being of extraction or non-condensing type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/12Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having two or more accumulators

Definitions

  • the invention relates to an energy storage device for storing energy.
  • the invention also relates to a method for storing energy.
  • Renewable energy sources such as wind energy or solar energy are increasingly used for energy production.
  • it is necessary to store the energy recovered and release it again with a time delay.
  • low-cost energy storage devices are required, which cache excess energy and can deliver again with a time delay.
  • the document EP2147193B1 discloses on the one hand a device and a method for storing thermal energy.
  • the document also discloses an apparatus for storing and staggered delivery of electrical energy.
  • electrical energy is converted into heat for charging the energy storage and stored as thermal energy.
  • thermal energy is converted back into electrical energy and then released.
  • This device, or this method have the disadvantages that for their operation two separate energy storage, a heat storage and a cold storage, are required, which also still very high temperature of up to 2000 ° C or very low temperature of up to -. 80 ° C must be operated, which has the consequence that the creation, operation and maintenance of the device, including in addition to the heat or cold storage also still compressors, heat exchangers, etc., is very complicated and expensive.
  • the required compressors are also relatively large and their power density low.
  • the document DE 10 2011 088380 A1 discloses an energy storage device for storing seasonal excess electrical energy.
  • the energy storage takes place very long term.
  • the storage of stored energy via a steam cycle.
  • This device is disadvantageous in terms of efficiency and cost.
  • the object of the present invention is, in particular, to form an economically more advantageous device or a more economically advantageous method for storing and recovering electrical energy.
  • the dependent claims 2 to 10 relate to further advantageous embodiments.
  • the object is further achieved by a method comprising the features of claim 11.
  • the dependent claims 12 to 14 relate to further advantageous method steps.
  • the object is further achieved, in particular, with methods for storing thermal energy in an energy storage device comprising a high-temperature regenerator containing a solid storage material by circulating a working gas as a heat transfer medium in a closed charge cycle, wherein the working gas exchanges heat with the storage material, and wherein the working gas after the Hochtemperaturregenerator is cooled in a first recuperator, is subsequently expanded in a first expander, then preheated in a first preheater, then heated in the first recuperator, then compressed in a compressor and heated, and the thus heated working gas is fed to the high-temperature regenerator and wherein the high temperature regenerator heat energy is removed via a closed discharge circuit, wherein the high temperature regenerator either a part of the charging circuit or a part of the discharge eniklaufs forms by the Hochtemperaturregenerator fluid is switched either in the charging circuit or in the discharge circuit, so that a closed circuit is formed, in which the working gas circulates.
  • the same working gas is located in the charging circuit, in the discharge
  • the energy storage device comprises a high-temperature regenerator containing a solid storage material and a working gas as heat transfer medium in order to exchange heat between the working gas and the storage material via the working gas flowing along the storage material.
  • recuperator In heat exchangers, a distinction is made among other things between a recuperator and a regenerator.
  • a recuperator two fluids are conducted in mutually separated spaces, with heat transfer between the spaces.
  • two fluids are completely separated, for example, by means of a dividing wall, heat energy being transferred between the two fluids via the common dividing wall.
  • a regenerator is a heat exchanger in which the heat is temporarily stored in a medium during the exchange process.
  • the storage material In a regenerator, the storage material is flowed around directly in a possible embodiment of working gas. When loading the regenerator, the heat energy supplied by the working gas is released to the storage material and stored in the storage material.
  • the working gas When discharging the regenerator, heat energy is extracted from the storage material by the working gas, the storage material is cooled, and the heat energy withdrawn from the working gas is supplied to a subsequent process.
  • the working gas advantageously comes into direct contact with the storage material both during loading and during unloading.
  • the inventive energy storage device has the advantage that only one energy storage, and possibly even a hot water tank is required.
  • the energy storage device according to the invention also comprises a charging circuit, a discharging circuit, and switching means for charging the charging circuit or for discharging the discharging circuit with the high-temperature regenerator.
  • a storage material in the high temperature regenerator is a solid material such as porous refractory bricks, sand, gravel, concrete, graphite or ceramic suitable.
  • the storage material may be heated to a temperature of preferably in the range between 600-1000 ° C and if necessary also up to 1500 ° C.
  • the charging circuit and the discharge circuit are designed as a closed circuit.
  • This embodiment has the Advantage on that the working gas can also have an overpressure, which increases the power density of the compressor and turbine accordingly.
  • argon or nitrogen is used as working gas.
  • working gases but other gases are suitable.
  • the inventive energy storage device has the advantage that it has a high energy density, so that the high temperature generator can be made relatively compact.
  • the high-temperature regenerator is inexpensive to produce, since the storage material is very cheap and also environmentally friendly.
  • the inventive energy storage device also has the advantage that the Entladeniklauf can be configured differently depending on needs, for example, to generate electrical energy.
  • the energy storage device comprises an electric generator, and in a preferred embodiment also an electric motor, so that the inventive energy storage device can be charged with electrical energy, and emits electrical energy again during discharge.
  • an energy storage device is also referred to in English as “Electricity Energy Storage System by Means of Pumped Heat (ESSPH)”.
  • ESSPH Electronicity Energy Storage System by Means of Pumped Heat
  • the inventive energy storage device comprising an electric generator and an electric motor is thus able to convert electrical energy into heat energy, to store the heat energy, and to convert the stored heat energy back into electrical energy.
  • the energy storage device according to the invention can thus also be referred to as a "thermal battery" which can be charged via a charging process and discharged via an unloading process, wherein the charging process takes place with the aid of a hot gas heat pump and the discharging process preferably takes place with the aid of a gas turbine process.
  • a thermal battery for compressing and relaxing in particular rotating turbomachinery or linear piston machines are suitable.
  • the energy storage device according to the invention can be charged and discharged similarly to an electric battery inasmuch as a partial load or a partial discharge is also possible at any time. That the According to the energy storage device according to the invention underlying storage concept allows to store by an appropriate design of the sub-components power in the range between 1 to 50 MW and amounts of energy in the range between 1 to 250 MWh and deliver time-delayed again. In a particularly advantageous embodiment of the electric generator and the electric motor are designed as a single machine in the form of a motor generator.
  • the energy storage device according to the invention is outstandingly suitable for shunting electrical energy, for example, to store solar energy generated in an electrical network during the day and to dispense it at night.
  • the inventive energy storage device is also ideal for stabilizing the electrical network, in particular for frequency stabilization, provided that the compressor and expander of the energy storage device are designed as rotating machines.
  • the energy storage device is operated at constant speed and is connected to the electrical network.
  • Fig. 1 shows an energy storage device 1 for storing thermal energy, comprising a charging circuit 100 with lines 101, a discharge circuit 200 with lines 201, a Hochtemperaturregenerator 120 and switching means 400, 401 wherein the switching means 400, 401 are connected to the lines 101, 201, that Hochtemperaturregenerator 120 fluid can be connected to either the charging circuit 100 or the discharge circuit 200 so that the Hochtemperaturregenerator 120 forms part of the charging circuit 100 and a portion of the Entladenikanks 200.
  • a control device 500 is signal-conducting connected to the switching means 400, 401 and other sensors and actuators, not shown in detail, in order to control the energy storage device 1.
  • the Figures 2 and 3 show the in FIG. 1 illustrated charging circuit 100 and discharge circuit 200 in detail.
  • the Hochtemperaturregenerator 120 includes a solid storage material and a working gas A as the heat transfer medium to exchange heat between the storage material and the working gas A flowing through.
  • a solid storage material for example, porous refractory materials, sand, gravel, rock, concrete, graphite or a ceramic such as silicon carbide are suitable as a solid storage material for the high-temperature regenerator.
  • the high-temperature regenerator 120 comprises an outer shell 120a and an inner space, wherein the solid storage material is arranged and / or configured in the interior such that the storage material for heat exchange can be flowed through or flowed around by the working gas A.
  • the high temperature regenerator 120 includes, as shown in FIG FIG.
  • FIG. 1 shows a vertically running or arranged Hochtemperaturregenerator 120, wherein the working gas A when charging flows from top to bottom and flows during discharge from bottom to top.
  • FIG. 2 shows the in FIG. 1 illustrated closed charging circuit 100 in detail.
  • the closed charging circuit 100 for the working gas A comprises a first compressor 110, a first expander 140, a first recuperator 130 with a first and a second heat exchange channel 130a, 130b, the Hochtemperaturregenerator 120 and a preheater 151, wherein the first compressor 110 via a common Wave 114 is coupled to the first expander 140.
  • the designed as valves switching means 400 are connected to flow and the in FIG. 2 Switching means 401, not shown, are blocked, so that a closed charging circuit 100 is formed, in which the working gas A flows in the flow direction A1 or in the charging flow direction A1.
  • As the working gas A argon or nitrogen is preferably used.
  • the working gas A is advantageously maintained under an overpressure in order to increase the power density of the compressor 110 and the turbine 140 and to improve the heat transfer in the caloric apparatus.
  • the pressure is preferably in a range of 1 to 20 bar.
  • the working gas A is successively supplied to at least the first heat exchange channel 130a of the recuperator 130, the first expander 140, the preheater 151, the second heat exchange channel 130b of the recuperator 130, the first compressor 110 and then again the high-temperature regenerator 120, forming a closed, fluid conducting circuit.
  • the first compressor 110, the first expander 140, the first recuperator 130 and the preheater 151 form a heat pump.
  • the preheated by the preheater 151 and the recuperator 130 working gas A is supplied as input gas to the first compressor 110, compressed therein, and thereby undergoes a temperature and pressure increase.
  • the compressed working gas A is supplied to the high-temperature generator 120, therein cooled, then further cooled in the recuperator 130, and then expanded in the first expander 140, to be subsequently preheated in the preheater 151 and the recuperator 130 again.
  • the first expander 140 and the compressor 110 are disposed on the same shaft 114 so that the first expander 140 assists in driving the first compressor 110.
  • the shaft 114 is driven by a drive device, not shown, such as an electric motor, a turbine, or generally an engine.
  • FIG. 3 shows the in FIG. 1 shown closed discharge circuit 200, which is configured as a gas turbine process, in detail.
  • the working gas A the same gas as in the charging circuit 100 is used, preferably argon or nitrogen.
  • the closed discharge circuit 200 for the working gas A comprises a second compressor 210, a second expander 250, a second recuperator 230 having a first and a second heat exchange channel 230a, 230b, the Hochtemperaturregenerator 120 and a first cooler 270, the second compressor 210 via the Wave 214 is coupled to the second expander 250.
  • the designed as valves switching means 401 are connected to flow and the in FIG. 3 Switching means 400, not shown, are blocked, so that a closed discharge circuit 200 is formed, in which the working gas A flows in the flow direction A2 or in the discharge flow direction A2.
  • the discharge circuit 200 is configured such that, starting from the high-temperature regenerator 120, at least the second expander 250, the first heat exchange channel 230a of the second recuperator 230, the first cooler 270, the second compressor 210, the second heat exchange channel 230b of the recuperator 230, and then the second heat exchanger 230 High-temperature regenerator 120 are fluidly connected to one another with formation of the closed circuit fluid, wherein the working gas A flows in the discharge circuit 200 in the flow direction A2 and in Entladeströmungscardi A2.
  • the first cooler 270 is preferably cooled to ambient temperature U. Like from the Figures 2 and 3 visible flows in High temperature regenerator 120, the discharge flow direction A2 in the opposite direction to the charging flow direction A1.
  • the effluent from the Hochtemperaturregenerator 120 working gas A is expanded via the second expander 250 and thereby cooled, and is then further cooled in the second recuperator 230 and the first cooler 270 before the working gas A is compressed in the second compressor 210 and then in the second recuperator 230th is preheated to then flow back into the Hochtemperaturregenerator 120.
  • the second compressor 210 and the second expander 250 are disposed on the same shaft 214 so that the second expander 250 drives the second compressor 210.
  • the shaft 214 is taken from an unillustrated arrangement of energy, for example, a generator or a working machine may be connected to the shaft 214.
  • FIG. 4 shows a particularly advantageous embodiment of an energy storage device 1.
  • the in FIG. 4 illustrated energy storage device 1 a single, common recuperator 130.
  • the working gas A is conducted with the aid of switching means 400, 401 such as valves so switchable that a charging circuit 100 and a discharge circuit 200 is formed, similar to that in FIG. 2 or 3 illustrated charging circuit 100 ref.
  • Discharge cycle 200 with the exception that only a single, common recuperator 130 is present.
  • the energy storage device 1 in addition to the charging circuit 100 and the discharge circuit 200, also comprises a preheating system 150 for a circulating preheating fluid V.
  • the preheating system 150 comprises, in particular, a first fluid reservoir 152, in which a heated preheating fluid V1 is stored second fluid reservoir 222, in which a cooled Vormérmfluid V2 is stored, and fluid lines 155, 224 and optionally conveying means 153, 223 to circulate the preheating fluid V in the preheating system 150 and in particular the preheater 151 and the radiator 221 supply.
  • the preheating fluid V starting from the first fluid reservoir 152, the heated preheating fluid V is supplied to the preheater 151, and the then cooled Vorierrmfluid V the second fluid reservoir 222 supplied.
  • the cooled preheating fluid V of the second fluid reservoir 222 is supplied to a radiator 221, and the preheating fluid V heated thereafter is supplied to the first fluid reservoir 152.
  • Water is preferably used as preheating fluid V, since water has a high storage density with respect to heat.
  • the second fluid reservoir 222 could be configured as a fluid reservoir so that the preheat system 150 forms a closed circuit.
  • the second fluid reservoir 222 could also be designed to be open, wherein, instead of a container, a body of water, for example a lake, would be suitable for receiving the cooled preheating fluid V or for providing cooling fluid V.
  • the energy storage device 1 is used for the storage of electrical energy and for the staggered delivery of electrical energy.
  • FIG. 4 shows such a storage device for electrical energy comprising the energy storage device 1 and comprising an electric motor 170 and a generator 290.
  • the electric motor 170 and the generator 290 are combined into a single machine to form a so-called motor generator.
  • energy storage device 1 is therefore particularly low to produce because only a single motor generator 170/290, a single Hochtemperaturregenerator 120 and a single recuperator 130 is required.
  • the first compressor 110, the first expander 140, the first recuperator 130 and the preheater 151 form a heat pump in the charging circuit 100.
  • the preheated working gas A is supplied to the first compressor 110 and brought therein to the maximum pressure or to the maximum temperature in the charging circuit 100.
  • the working gas A is then passed through the Hochtemperaturregenerator 120, thereby cooled and then cooled again in the recuperator 130.
  • the working gas A is then expanded in the first expander 140 to the lowest pressure in the charging circuit 100, wherein the energy released thereby in the first expander 140 is used for the partial drive of the first compressor 110.
  • the working gas A then flows through the preheater 151 and is preheated.
  • the preheater 151 is connected to the preheating system 150 and draws the heat energy from the first fluid storage 152 for the warm preheating fluid, in the illustrated embodiment as warm water.
  • the discharge circuit 200 includes a second compressor 210 configured as an intercooled gas turbine compressor with a radiator 221 and includes the recuperator 130, the high temperature regenerator 120, the second expander 250, and the first radiator 270 that cools to ambient temperature U.
  • the radiator 221 is connected to the preheating system 150 via lines 224, with cool fluid being removed from the reservoir 222, via which conveyor 223 is supplied to the radiator 221, and the heated fluid is supplied to the accumulator 152.
  • FIG. 5 1 schematically shows an exemplary embodiment of an intercooled second compressor 210 comprising a low pressure compressor part 210b, an intercooler 221 and a high pressure compressor part 210a.
  • the working gas A which has been cooled almost to ambient temperature in the first radiator 270, enters the second compressor 210, and is further compressed.
  • Intercooler 221 reduces the required compression energy and provides approximately isothermal compression.
  • the heat dissipated by the intercooler 221 is stored in the first fluid reservoir 152, a hot water tank.
  • the working gas A is then supplied to the recuperator 130 and is heated.
  • the maximum cycle temperature is reached at the exit of the high temperature regenerator 120.
  • the second expander 250 drives both the second compressor 210 and the generator 290 via the common shaft 214.
  • the in FIG. 5 illustrated second compressor 210 with intercooler 221 has the advantage that the discharge circuit 200 has a high power density.
  • the gas turbine efficiency can be further increased by additional intercoolers 221 as the compression thereby
  • FIG. 6 shows a further arrangement in which the second radiator 221 is connected downstream of the second compressor 210.
  • FIG. 7 shows a further arrangement in which the second radiator 221 is connected upstream of the second compressor 210.
  • the two, in FIGS. 6 and 7 shown, in itself also advantageous embodiments have opposite to in FIG. 5 illustrated embodiment, a lower power density and storage efficiency.
  • FIG. 8 shows a twin-shaft gas turbine arrangement.
  • the second expander 250 comprises a high-pressure expander 250b and a low-pressure expander 250a, wherein the high-pressure expander 250a is connected to the second compressor 210 via a second shaft 214b and drives it as a free-running unit, and wherein the low-pressure expander 250a is connected to the generator via a first shaft 214a 290 is connected.
  • This arrangement has the advantage that twin-shaft systems have a partial-load performance that is better than single-shaft systems, and that standard components such as Compander, a combination of expander and compressor, can be used with economic advantage.
  • switching means 400, 401 or valves are shown, which are required in order to switch between the charging process and the discharging process or between the charging circuit 100 and the discharging circuit 200 in the illustrated energy storage device 1.
  • the energy storage device 1 has, inter alia, the advantage that, if desired, heat energy can also be dissipated directly, and heat energy can also be dissipated also at different locations and to different high temperatures.
  • the second fluid reservoir 222 may be configured, for example, as a closed container, wherein in the preheating circuit 150, an additional heat exchanger 154 is arranged, which exchanges heat with the environment.
  • FIG. 10 shows a further embodiment of an energy storage device 1, which in turn comprises a charging circuit 100 with lines 101, a discharge circuit 200 with lines 201 and a preheating circuit 150.
  • the preheating circuit 150 is not shown in detail, but is configured the same as in FIG. 9 shown.
  • the radiator 221 and the preheater 151 are fed by the preheating circuit 150.
  • the radiator 270 cools to ambient temperature U.
  • FIG. 10 show the Energy storage device 1 during the discharging process, wherein the lines 201 of the Entladeniklaufs 200 are shown in solid lines, and wherein all the valves 401 are opened and all valves 400 are closed.
  • the lines 101 of the charging circuit 100 are shown in dashed lines.
  • the illustrated energy storage device 1 is designed as a two-shaft system and comprises a single turbocharger, also referred to as Compander, which comprises the second compressor 210, the high-pressure part of the second expander 250b, and the second shaft 214b.
  • the turbocharger is either utilized as described above or used to form the first expander 140 and the first compressor 110b, with the first expander 140 and the first compressor 110b being connected via the second shaft 114b connected to each other.
  • the low pressure part of the expander 250a is directly connected to the generator 290 via the first shaft 214a.
  • the low pressure part of the first compressor 110a is connected to the engine 170 via the first shaft 114a directly or via a transmission.
  • the compressor 110a could also be connected to the engine 170 via a transmission 172, as in FIGS Figures 11c or 11d shown.
  • An advantage of in FIG. 10 shown energy storage device 1 is thus that this requires a single turbocharger or Compander, which is designed to run freely.
  • each energy storage device 1 shown two turbochargers, so that they are designed as a two-shaft arrangement.
  • FIG. 11a shows an arrangement of motor 170, first compressor 110 and first expander 140, which are arranged on a common shaft 114.
  • the first compressor 110 is configured as an axial or inline radial compressor or as a combination of axial and radial compressors.
  • the arrangement is operated at a speed of 3000 revolutions per minute, in particular to operate the motor 170 with a mains frequency of 50 Hz.
  • the arrangement may, for example, also be operated at a speed of 3600 revolutions per minute, in particular when the motor 170 is operated at a mains frequency of 60 Hz. This arrangement is particularly suitable for a large system of more than 15 MW in particular.
  • FIG. 11a shows an arrangement of motor 170, first compressor 110 and first expander 140, which are arranged on a common shaft 114.
  • the first compressor 110 is configured as an axial or inline radial compressor or as a combination of axial and radial compressors.
  • the arrangement is operated at a speed of 3000 revolutions per minute,
  • FIG. 11b shows an arrangement of gear 172, first compressor 110 and first expander 140, which are arranged on a common shaft 114.
  • the engine 170 is connected to the transmission 172.
  • the first compressor 110 is configured as an axial or in-line radial compressor or as a combination of axial and radial compressors.
  • the arrangement is operated at a speed of 3000 revolutions per minute. This arrangement is particularly suitable for a smaller system of particular less than 20 MW.
  • 11c 1 shows an arrangement of the engine 170, the first compressor 110 and the first expander 140, wherein the first compressor 110 is designed to be divided, and the low-pressure part 110a via a first shaft 114a to the motor 170 and the high-pressure part 110b via a second shaft 114b to the expander 140 connected, free-running, and in particular designed as a compander.
  • the low pressure compressor 110a is configured as an axial or radial low pressure compressor 110a.
  • the low-pressure compressor 110a is operated at a speed of 3000 revolutions per minute, and the Compander rotates freely, preferably at a speed of over 3000 revolutions per minute. This arrangement is particularly suitable for a large system of more than 15 MW in particular.
  • 11d 1 shows an arrangement of transmission 172, first compressor 110 and first expander 140, wherein the first compressor 110 is designed to be split, and one part via a first shaft 114a with the gear 172 and the other part via a second shaft 114b with the expander 140th connected, freely running and in particular forms a Compander.
  • the engine 170 is connected to the transmission 172.
  • the low-pressure compressor 110a is operated at a speed of over 3000 revolutions per minute, and the Compander rotates free-running also preferably with a speed of over 3000 revolutions per minute. This arrangement is particularly suitable for a small system of particular less than 20 MW.
  • 11e 11 shows an arrangement of transmission 172, first compressor 110, and first expander 140, with first compressor 110 and first expander 140 connected to transmission 172 to adjust their speed via transmission 172.
  • the engine 170 is connected to the transmission 172.
  • the first compressor 110 is designed as a radial compressor.
  • the transmission 172 allows the speed of the first compressor 110 and first expander 140 to match each other. Due to the inherent flexibility of the arrangement, it is suitable for a wide power range of up to 40 MW.
  • 11f 11 shows an arrangement of transmission 172, first compressor 110 and first expander 140, wherein first compressor 110 includes a low pressure compressor 110a and a high pressure compressor 110b, with low pressure compressor 110a, high pressure compressor 110b and first expander 140 connected to transmission 172 Adjust their speed via the transmission 172.
  • the low-pressure compressor 110a and the high-pressure compressor 110b are designed as radial compressors. Due to the inherent flexibility of the arrangement, it is suitable for a wide power range of up to 40 MW.
  • Figure 11g 1 shows an arrangement of the engine 170, the first compressor 110 and the first expander 140, with the first compressor 110 divided and the high-pressure compressor 110b via a first shaft 114a to the engine 170 and the low-pressure compressor 110a via a second shaft 114b to the expander 140 connected, freely running, and in particular designed as a turbocharger.
  • the high-pressure compressor 110b is designed as a piston compressor, which is preferably driven by the motor 170 without an intermediate gearbox.
  • the low pressure compressor 110a is configured as an axial or radial low pressure compressor 110a.
  • the expander 140 is configured as an axial or radial expander and forms the turbocharger together with the low-pressure compressor 110a.
  • the high-pressure compressor 110b is operated at a speed of 3000 revolutions or 1500 revolutions per minute, and the turbocharger rotates freely, preferably at a speed of more than 3000 revolutions per minute Minute.
  • This arrangement is particularly suitable for a small system of particular less than 2 MW.
  • Figure 11h shows a further embodiment of a heat pump, which in contrast to the in Figure 11g
  • a transmission 172 comprises, so that the high-pressure compressor 110b, which is configured as a piston compressor, is driven by the engine 170 via the transmission 172.
  • the motor 170 is operated at a mains frequency of 50 Hz, and in particular at a speed of 3000 revolutions or 1500 revolutions per minute, whereas the piston compressor with an increased by the gear ratio of the transmission 172 speed, for example greater 3000 revolutions per minute.
  • FIG. 11i shows components of a discharge circuit 200 in detail.
  • Figure 11i shows an arrangement with a second expander 250 which drives a transmission 172, wherein the transmission 172 drives a second compressor 210 comprising four partial compressors 210a, 210b, 210c, 210d and a generator 290.
  • the in the FIGS. 11a to 11h Arrangements could also be used for a discharge circuit 200 by replacing the motor 170 by a generator 290, the first compressor 110 by the second compressor 210, and the first expander 140 by the second expander 250.
  • the charging circuit 100 and the discharge circuit 200 is advantageously operated pressure charged.
  • the first compressor 110 and the second compressor 210 are preferably configured as a radial compressor or as an axial compressor. Particularly advantageous is the use of a gear compressor, on the transmission 172 as in FIG. 11e or 11f shown, also the expander 140 can be connected.
  • the first and / or second compressor 110, 210 could also be used as a reciprocating compressor, as in FIGS Figures 11g and 11h shown to be configured as a screw compressor.
  • the first compressor 110 and the second compressor 210 are preferably equipped without a control device. However, the first and second compressors 110, 210 could also be equipped with a flow control device.
  • the first compressor or second compressor 110, 210 of the type radial and axial the Flow control device of one or more Vorleitizern In one possible embodiment, in a first compressor 110 or a second compressor 210 of the radial and axial type, the flow control device could consist of one or more adjustable diffusers. Optionally, for the first or second radial or axial type compressor 110, 210, the flow control could consist of a combination of pilot and diffuser control.
  • the first compressor 110 is uncooled.
  • the first compressor 110 may also be equipped with a cooling device.
  • the Hochtemperaturregenerator 120 is advantageously a pressure-resistant, temperature-resistant, heat-insulated container.
  • the high-temperature regenerator 120 is advantageously equipped with a porous, temperature-resistant heat storage material 121, wherein in the free spaces of the Hochtemperaturregenerators 120, the working gas A flows.
  • the Hochtemperaturregenerators 120 is arranged vertically and is preferably flowed through during loading from top to bottom and when unloading from bottom to top.
  • the first expander 140 and the second expander 250 are preferably of the radial or axial expander type.
  • the first and second expander 140, 250 may be piston expander type.
  • the first and second expanders 140, 250 of the radial or axial type are preferably unregulated.
  • the first and second expanders 140, 250 of the radial and axial type may be equipped with a volume flow control.
  • the fluid in the preheating loop 150 is preferably water.
  • other fluids such as a mixture of water and (mono) ethylene glycol could be used.
  • the preheating loop 150 is preferably operated without pressure.
  • the preheating circuit 150 can be operated pressurized. In this case, the preheating circuit 150 is pressure-resistant.
  • the drive 170 of the charging circuit 100 is designed as an electric motor.
  • the electric motor is equipped with a frequency converter.
  • the Drive 170 of the charging circuit 100 a steam turbine.
  • the drive 170 of the charging circuit 100 is a gas turbine.
  • the drive 170 of the charging circuit is an internal combustion engine.
  • the rotating components of the charging circuit 100 are operated at a constant speed.
  • the rotating components of the charging circuit 100 are operated variable speed.
  • the load 290 of the discharge circuit 200 is configured as a generator.
  • the generator is equipped with a frequency converter.
  • the load 290 of the discharge circuit 200 is a compressor.
  • the load 290 of the discharge circuit 200 is a pump.
  • the load 290 of the unloading circuit 200 is a propeller.
  • the rotating components of the discharge circuit 200 are operated at a constant speed.
  • the rotating components of the discharge circuit 200 are operated variable speed.
  • air could also be used as the working gas, it then being necessary to ensure that the storage material in the high-temperature regenerator 120 consists of a non-combustible material.
  • a transmission 172 may include a plurality of rotating shafts. For example, this could be in FIG. 11f gearboxes 172 driven by the motor 170 also comprise more than four shafts, for example also five, six, seven or eight.
  • Such a transmission 172 has the advantage that, for example, identical compressors can be operated in parallel.
  • the two compressors 110a and 110b be configured identically, and have a common supply or a common discharge for the fluid, so that the two compressors 110a, 110b can be operated at the same speed and in parallel.
  • the transmission 172 also allows, for example, the two compressors 110a, 110b to be operated in series.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Claims (15)

  1. Dispositif de stockage d'énergie (1) pour stocker de l'énergie, comprenant :
    - un régénérateur à haute température (120) contenant un matériau accumulateur solide, en particulier poreux, ainsi qu'un gaz de travail (A) en tant que milieu caloporteur, pour échanger de la chaleur entre le matériau accumulateur et le gaz de travail (A) en circulation,
    - un circuit de charge fermé (100) pour le gaz de travail (A), comprenant un premier compresseur (110), un premier expanseur (140), un premier récupérateur (130) avec un premier et un deuxième canal d'échange thermique (130a, 130b), le régénérateur à haute température (120) ainsi qu'un préchauffeur (151),
    le premier compresseur (110) étant accouplé au premier expanseur (140) au moyen d'un arbre (114), et le circuit de charge (100) étant réalisé de telle sorte que, partant du régénérateur à haute température (120), au moins le premier canal d'échange thermique (130a) du récupérateur (130), le premier expanseur (140), le préchauffeur (151), le deuxième canal d'échange thermique (130b) du récupérateur (130), le premier compresseur (110) puis le générateur à haute température (120) soient connectés fluidiquement les uns aux autres en réalisant un circuit fermé, et
    - un circuit de décharge fermé (200), caractérisé en ce qu'un moyen de commutation (400, 401) relie fluidiquement le régénérateur à haute température (120) de manière commandable au circuit de charge (100) ou au circuit de décharge (200) de telle sorte que le régénérateur à haute température (120) forme soit une partie du circuit de charge (100) soit une partie du circuit de décharge (200), et que le circuit de charge (100), le circuit de décharge (200) et le régénérateur à haute température (120) présentent le même gaz de travail (A) de telle sorte que le gaz de travail (A) vienne en contact direct avec le matériau accumulateur à la fois dans le circuit de charge (100) et dans le circuit de décharge (200).
  2. Dispositif de stockage d'énergie selon la revendication 1, caractérisé en ce que le circuit de décharge (200) comprend un deuxième compresseur (210), un deuxième expanseur (250), un deuxième récupérateur (230) avec un premier et un deuxième canal d'échange thermique (230a, 230b), le régénérateur à haute température (120) ainsi qu'un premier radiateur (270), le deuxième compresseur (210) étant accouplé au deuxième expanseur (250) par le biais d'un arbre (214), et le circuit de décharge (200) étant réalisé de telle sorte que, partant du régénérateur à haute température (120), au moins le deuxième expanseur (250), le premier canal d'échange thermique (230a) du deuxième récupérateur (230), le premier radiateur (270), le deuxième compresseur (210), le deuxième canal d'échange thermique (230b) du récupérateur (230), puis le régénérateur à haute température (120) soient connectés fluidiquement les uns aux autres en réalisant le circuit fermé.
  3. Dispositif de stockage d'énergie selon la revendication 2, caractérisé en ce que le circuit de décharge (200) comprend un deuxième radiateur (221) qui est monté dans le circuit de décharge (200) par rapport au deuxième compresseur (210), en amont, en position interposée, ou en aval.
  4. Dispositif de stockage d'énergie selon la revendication 3, caractérisé en ce qu'un circuit de préchauffage (150) comprend un accumulateur d'eau froide (222), un accumulateur d'eau chaude (152), le deuxième radiateur (221) ainsi que le préchauffeur (151), le circuit de préchauffage (150) étant réalisé de telle sorte que partant de l'accumulateur d'eau froide (222), au moins le deuxième radiateur (221), l'accumulateur d'eau chaude (152), le préchauffeur (151) puis l'accumulateur d'eau froide (222) soient connectés fluidiquement les uns aux autres en réalisant un circuit.
  5. Dispositif de stockage d'énergie selon l'une quelconque des revendications précédentes, caractérisé en ce que le compresseur (110) comprend au moins deux compresseurs partiels, un compresseur partiel basse pression (110a) et un compresseur partiel haute pression (110b), en ce que le compresseur (110) comprend au moins deux arbres séparés (W1, W2) et en ce que l'expanseur (140) et le compresseur partiel haute pression (110b) sont disposés sur un arbre commun.
  6. Dispositif de stockage d'énergie selon l'une quelconque des revendications 2 à 5, caractérisé en ce que le premier et le deuxième récupérateur (130, 230) sont réalisés sous la forme d'un récupérateur commun (130), et en ce que les moyens de commutation (400, 401) sont disposés de telle sorte que le récupérateur commun (130) constitue de manière commandable soit une partie du circuit de charge (100) soit une partie du circuit de décharge (200).
  7. Dispositif de stockage d'énergie selon l'une quelconque des revendications 2 à 6, caractérisé en ce que le premier expanseur (140) et le premier compresseur (110) sont connectés par le biais d'un arbre commun (114) à un moteur (170) et en ce que le deuxième expanseur (250) et le deuxième compresseur (210) sont connectés par le biais d'un arbre commun (214) à un générateur (290).
  8. Dispositif de stockage d'énergie selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau accumulateur du régénérateur à haute température (120) est constitué par des matériaux poreux, du sable, de la silice, de la roche, du béton, du graphite ou une céramique telle que du carbure de silicium.
  9. Dispositif de stockage d'énergie selon l'une quelconque des revendications précédentes, caractérisé en ce que le gaz de travail (A) est de l'argon ou de l'azote.
  10. Dispositif de stockage d'énergie selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un chauffage supplémentaire (190) est prévu, lequel est branché dans le circuit de charge (100) avant le régénérateur à haute température (120), de telle sorte que le gaz de travail (A) puisse être chauffé avant son entrée dans le régénérateur à haute température (120).
  11. Procédé de stockage d'énergie dans un dispositif de stockage d'énergie (1) comprenant un régénérateur à haute température (120) contenant un matériau accumulateur solide, en faisant circuler dans un circuit de charge fermé (100) un gaz de travail (A) en tant que milieu caloporteur, le gaz de travail (A) échangeant de la chaleur avec le matériau accumulateur, et le gaz de travail (A) étant refroidi après le régénérateur à haute température (120) dans un premier récupérateur (130), puis étant détendu dans un premier expanseur (140), puis étant préchauffé dans un premier préchauffeur (151), puis étant réchauffé dans le premier récupérateur (130), puis étant comprimé et chauffé dans un compresseur (110), et le gaz de travail ainsi chauffé (A) étant acheminé au régénérateur à haute température (120), et de l'énergie thermique étant prélevée du régénérateur à haute température (120) par le biais d'un circuit de décharge fermé (200), caractérisé en ce que le régénérateur à haute température (120) forme soit une partie du circuit de charge (100) soit une partie du circuit de décharge (200), par le fait que le régénérateur à haute température (120) est branché fluidiquement soit dans le circuit de charge (100) soit dans le circuit de décharge (200), le circuit de charge (100), le circuit de décharge (200) ainsi que le régénérateur à haute température (120) étant parcourus par le même gaz de travail (A) de telle sorte que le matériau accumulateur soit enveloppé directement par le gaz de travail (A) à la fois dans le circuit de charge (100) et dans le circuit de décharge (200).
  12. Procédé selon la revendication 11, caractérisé en ce que le gaz de travail (A) dans le circuit de décharge (200), après sa sortie hors du régénérateur à haute température (120), est détendu dans un deuxième expanseur (250), puis est refroidi dans un deuxième récupérateur (230), puis est refroidi dans un premier radiateur (270), puis est comprimé dans un deuxième compresseur (210) et ainsi chauffé, puis est à nouveau chauffé dans le récupérateur (130) et est ensuite à nouveau acheminé au régénérateur à haute température (120).
  13. Procédé selon la revendication 12, caractérisé en ce que le premier compresseur (110) est entraîné par un moteur électrique (170) et en ce qu'un générateur (290) est entraîné par le deuxième expanseur (250) afin d'acheminer et d'évacuer l'énergie électrique.
  14. Procédé selon l'une quelconque des revendications 11 à 13, caractérisé en ce qu'un circuit de préchauffage (150) comprend au moins un accumulateur d'eau (222, 152), et en ce qu'au moins le préchauffeur (151) est chauffé avec de l'eau par le biais du circuit de préchauffage (150).
  15. Utilisation d'un dispositif de stockage d'énergie selon l'une quelconque des revendications 1 à 10 pour stocker de l'énergie électrique et pour restituer ultérieurement de l'énergie électrique.
EP16722795.8A 2015-04-24 2016-04-19 Dispositif de stockage d'énergie et procédé de stockage d'énergie thermique Not-in-force EP3286412B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16722795T PL3286412T3 (pl) 2015-04-24 2016-04-19 Urządzenie do magazynowania energii oraz sposób magazynowania energii

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15165025 2015-04-24
PCT/EP2016/058654 WO2016169928A1 (fr) 2015-04-24 2016-04-19 Dispositif de stockage d'énergie et procédé de stockage d'énergie

Publications (2)

Publication Number Publication Date
EP3286412A1 EP3286412A1 (fr) 2018-02-28
EP3286412B1 true EP3286412B1 (fr) 2019-04-03

Family

ID=53016498

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16722795.8A Not-in-force EP3286412B1 (fr) 2015-04-24 2016-04-19 Dispositif de stockage d'énergie et procédé de stockage d'énergie thermique

Country Status (6)

Country Link
US (1) US10280803B2 (fr)
EP (1) EP3286412B1 (fr)
CN (1) CN107810312B (fr)
ES (1) ES2733503T3 (fr)
PL (1) PL3286412T3 (fr)
WO (1) WO2016169928A1 (fr)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10094219B2 (en) 2010-03-04 2018-10-09 X Development Llc Adiabatic salt energy storage
WO2014052927A1 (fr) 2012-09-27 2014-04-03 Gigawatt Day Storage Systems, Inc. Systèmes et procédés de récupération et de stockage d'énergie
US10739088B2 (en) * 2016-07-20 2020-08-11 Petrus Norlin Apparatus for heating gas
EP3532710B1 (fr) 2016-10-26 2020-08-26 Peter Ortmann Dispositif de stockage d'énergie et procédé de stockage d'énergie thermique
US10233787B2 (en) 2016-12-28 2019-03-19 Malta Inc. Storage of excess heat in cold side of heat engine
US11053847B2 (en) 2016-12-28 2021-07-06 Malta Inc. Baffled thermoclines in thermodynamic cycle systems
US10458284B2 (en) 2016-12-28 2019-10-29 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US10233833B2 (en) 2016-12-28 2019-03-19 Malta Inc. Pump control of closed cycle power generation system
US10221775B2 (en) 2016-12-29 2019-03-05 Malta Inc. Use of external air for closed cycle inventory control
US10436109B2 (en) 2016-12-31 2019-10-08 Malta Inc. Modular thermal storage
US20190186786A1 (en) * 2017-11-10 2019-06-20 Paul NEISER Refrigeration apparatus and method
US10775111B2 (en) * 2017-11-29 2020-09-15 Dresser-Rand Company Pumped heat energy storage system with convey able solid thermal storage media directly thermally coupled to working fluid
WO2019113575A1 (fr) * 2017-12-08 2019-06-13 Schlumberger Technology Corporation N2 comprimé pour stockage d'énergie
EP3584414A1 (fr) * 2018-06-19 2019-12-25 Siemens Aktiengesellschaft Dispositif et procédé de fourniture de la chaleur, du froid et/ou de l'énergie électrique
FI128161B (en) 2019-03-12 2019-11-29 Polar Night Energy Oy SYSTEM AND METHOD FOR THE STORAGE AND TRANSFER OF HEAT
CN110513166B (zh) * 2019-08-23 2022-02-08 中国科学院上海应用物理研究所 回热式交替储能发电系统
US11852043B2 (en) 2019-11-16 2023-12-26 Malta Inc. Pumped heat electric storage system with recirculation
US11396826B2 (en) 2020-08-12 2022-07-26 Malta Inc. Pumped heat energy storage system with electric heating integration
US11286804B2 (en) * 2020-08-12 2022-03-29 Malta Inc. Pumped heat energy storage system with charge cycle thermal integration
US11480067B2 (en) 2020-08-12 2022-10-25 Malta Inc. Pumped heat energy storage system with generation cycle thermal integration
US11486305B2 (en) 2020-08-12 2022-11-01 Malta Inc. Pumped heat energy storage system with load following
US11454167B1 (en) 2020-08-12 2022-09-27 Malta Inc. Pumped heat energy storage system with hot-side thermal integration
WO2022036106A1 (fr) 2020-08-12 2022-02-17 Malta Inc. Intégration de système d'accumulation d'énergie thermique par pompage dans une centrale thermique
US11473442B1 (en) * 2020-09-22 2022-10-18 Aetherdynamic Power Systems Llc Re-circulating heat pump turbine
CN113417710B (zh) * 2021-06-02 2022-07-22 中国科学院理化技术研究所 基于紧凑式冷箱的液态空气储能装置
DK181199B1 (en) * 2021-09-20 2023-04-25 Stiesdal Storage As A thermal energy storage system with environmental air exchange and a method of its operation
CN114233651A (zh) * 2021-12-20 2022-03-25 中国科学院工程热物理研究所 一种轴流压缩膨胀式能量转换装置及控制方法
CN114251136A (zh) * 2021-12-20 2022-03-29 中国科学院工程热物理研究所 一种压缩膨胀式储能系统及储能控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4121460A1 (de) * 1991-06-28 1993-01-14 Deutsche Forsch Luft Raumfahrt Waermespeichersystem mit kombiniertem waermespeicher
US8261552B2 (en) 2007-01-25 2012-09-11 Dresser Rand Company Advanced adiabatic compressed air energy storage system
FR2916101B1 (fr) 2007-05-11 2009-08-21 Saipem Sa Installation et procedes de stockage et restitution d'energie electrique
EP2220343B8 (fr) * 2007-10-03 2013-07-24 Isentropic Limited Appareil de stockage d'énergie et procédé de stockage d'énergie
US9518786B2 (en) * 2010-02-24 2016-12-13 Energy Technologies Institute Llp Heat storage system
GB201104867D0 (en) * 2011-03-23 2011-05-04 Isentropic Ltd Improved thermal storage system
DE102011086374A1 (de) * 2011-11-15 2013-05-16 Siemens Aktiengesellschaft Hochtemperatur-Energiespeicher mit Rekuperator
DE102011088380A1 (de) 2011-12-13 2013-06-13 Siemens Aktiengesellschaft Energiespeichervorrichtung mit offenem Ladekreislauf zur Speicherung saisonal anfallender elektrischer Überschussenergie
GB2501685A (en) 2012-04-30 2013-11-06 Isentropic Ltd Apparatus for storing energy
DE102013217607B4 (de) * 2013-09-04 2023-12-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zum Bereitstellen von Dampf, Verfahren zum Speichern und späteren Bereitstellen von Energie, Dampfbereitstellungsvorrichtungund Verwendung einer Dampfbereitstellungsvorrichtung
FR3011626B1 (fr) * 2013-10-03 2016-07-08 Culti'wh Normands Systeme thermodynamique de stockage/production d'energie electrique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN107810312A (zh) 2018-03-16
CN107810312B (zh) 2020-07-10
PL3286412T3 (pl) 2019-11-29
EP3286412A1 (fr) 2018-02-28
WO2016169928A1 (fr) 2016-10-27
US20180142577A1 (en) 2018-05-24
ES2733503T3 (es) 2019-11-29
US10280803B2 (en) 2019-05-07

Similar Documents

Publication Publication Date Title
EP3286412B1 (fr) Dispositif de stockage d'énergie et procédé de stockage d'énergie thermique
EP3532710B1 (fr) Dispositif de stockage d'énergie et procédé de stockage d'énergie thermique
EP2530283B1 (fr) Centrale d'accumulation d'air comprimé adiabatique
EP1830046B1 (fr) Unité d'entraînement dotée d'un gain de retour de chaleur
EP2574756B1 (fr) Procédé de fonctionnement d'une centrale d'accumulation d'air comprimé adiabatique et centrale d'accumulation d'air comprimé adiabatique
DE4410440C2 (de) Druckluftenergiespeicherverfahren und -system
DE102010027302A1 (de) Energiespeichersystem
WO2003076781A1 (fr) Systeme de production d'energie
EP0079624A2 (fr) Centrale à turbine à gaz avec système d'accumulation d'air
DE4210541A1 (de) Verfahren zum Betrieb einer Gasturbogruppe
EP3186506B1 (fr) Dispositif et procédé de stockage d'énergie
DE102010050428A1 (de) Druckstufen-Wärme-Speicherkraftwerk bzw. Energiespeicherverfahren zum zeitweiligen Speichern von Energie in Form von Druckenergie in einem kompressiblen Medium und in Form von Wärmeenergie
DE202005003611U1 (de) Wärmekraftwerk mit Druckluftspeichervorrichtung zum Ausgleich fluktuierender Energieeinspeisung aus regenerativen Energiequellen
DE102010042792A1 (de) System zur Erzeugung mechanischer und/oder elektrischer Energie
EP3006682B1 (fr) Dispositif et procédé de fonctionnement d'une station de transmission thermique
EP4244470A1 (fr) Accumulateur d'énergie thermique pour le stockage d'énergie électrique
EP2825737A1 (fr) Installation d'accumulation et de distribution d'énergie thermique au moyen d'un accumulateur de chaleur et d'un accumulateur de froid et procédé de fonctionnement de ladite installation
DE10358233A1 (de) Luftspeicherkraftanlage
WO2022112063A1 (fr) Système et procédé de stockage d'énergie électrique sous forme d'énergie thermique et de libération de celle-ci
EP2458174B1 (fr) Procédé de fonctionnement d'une centrale d'accumulation d'air comprimé adiabatique et centrale d'accumulation d'air comprimé adiabatique
DE102005060831B4 (de) Geschlossener Gasturbinenprozess
EP3374603B1 (fr) Dispositif de stockage de courant-chaleur-courant et son procede de compensation de charge
WO2017025466A1 (fr) Dispositif et procédé de conversion d'énergie électrique en chaleur et de stockage de ladite chaleur
EP2989310B1 (fr) Système de stockage couplé à des turbines à gaz pour préchauffer un fluide d'admission
DE102022134154A1 (de) Verfahren zur Abkühlung mindestens eines Kältemittels und/oder mindestens eines Kälteträgers in einem offenen Prozess

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181023

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1116010

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016004022

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DR. GRAF AND PARTNER AG INTELLECTUAL PROPERTY, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190403

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190803

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190704

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2733503

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20191129

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190803

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190419

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016004022

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

26N No opposition filed

Effective date: 20200106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210427

Year of fee payment: 6

Ref country code: DE

Payment date: 20210420

Year of fee payment: 6

Ref country code: FR

Payment date: 20210423

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20210629

Year of fee payment: 6

Ref country code: ES

Payment date: 20210621

Year of fee payment: 6

Ref country code: GB

Payment date: 20210422

Year of fee payment: 6

Ref country code: PL

Payment date: 20210408

Year of fee payment: 6

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1116010

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210419

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502016004022

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220419

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220419

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220420