EP3281279A1 - Stator de démarreur pour véhicule automobile muni d'un aimant permanent formant une pluralite de poles - Google Patents

Stator de démarreur pour véhicule automobile muni d'un aimant permanent formant une pluralite de poles

Info

Publication number
EP3281279A1
EP3281279A1 EP16717192.5A EP16717192A EP3281279A1 EP 3281279 A1 EP3281279 A1 EP 3281279A1 EP 16717192 A EP16717192 A EP 16717192A EP 3281279 A1 EP3281279 A1 EP 3281279A1
Authority
EP
European Patent Office
Prior art keywords
stator
poles
permanent magnet
starter according
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16717192.5A
Other languages
German (de)
English (en)
Inventor
Jean-Marc Dubus
Nicolas Labbe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Equipements Electriques Moteur SAS
Original Assignee
Valeo Equipements Electriques Moteur SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Equipements Electriques Moteur SAS filed Critical Valeo Equipements Electriques Moteur SAS
Publication of EP3281279A1 publication Critical patent/EP3281279A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/003Methods and devices for magnetising permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0231Magnetic circuits with PM for power or force generation
    • H01F7/0252PM holding devices
    • H01F7/0268Magnetic cylinders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/02DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting
    • H02K23/04DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting having permanent magnet excitation

Definitions

  • the present invention relates to a starter stator for a motor vehicle provided with a permanent magnet forming a plurality of poles.
  • Motor vehicle starters are known having a stator, or inductor, comprising a plurality of permanent magnets and a rotor, or induced, having a cylindrical body and a coil formed by conductive wires.
  • the inductor comprises a metal yoke whose inner face supports a plurality of permanent magnets for producing an inductive field.
  • the permanent magnets are shaped according to cylindrical segments, being angularly distributed at regular intervals inside the yoke, and uniformly separated from the armature by a radial gap.
  • the fixing of the permanent magnets on the internal face of the yoke is generally effected by means of staples extending in the longitudinal direction in the gaps provided between the permanent magnets.
  • the rotor body consists of a bundle of metal sheets having longitudinal notches into which the winding wires constituted for example by pin-shaped conductors are inserted.
  • the rotor is further provided with a manifold comprising a plurality of contact pieces electrically connected to the winding wires.
  • the invention aims at facilitating the production of such a starter by proposing a starter for a motor vehicle engine comprising:
  • a rotary electric machine provided with a stator, said stator comprising a set of magnetic poles,
  • a permanent magnet forms at least two poles of all said magnetic poles.
  • the invention makes it possible to limit the number of magnets used in the stator, which limits the number of assembly operations to be carried out in the assembly line during the manufacture of the starter.
  • said permanent magnet forms all of said magnetic poles. Such a configuration makes it possible to create a uniform inductive field in the gap.
  • the magnet comprises different directions of the magnetic polarization field.
  • the magnet comprises at least two directions forming an angle of at least 90 ° between these two directions.
  • a solid monoblock piece that can include several directions of magnetizations.
  • a magnet can not include several magnets (several pieces of magnets) contiguous forming a block.
  • said permanent magnet has a cylindrical shape.
  • said permanent magnet is in one piece.
  • said stator further comprises a yoke.
  • the cylinder head essentially ensures a mechanical maintenance of the stator.
  • said permanent magnet is a magnet molded based on magnetic particles embedded in a binder made of a non-magnetic material.
  • the magnet already has the magnetic domains that are aligned during overmolding so before mounting in the engine.
  • This has the advantage of being able to mount the magnet already oriented in the motor.
  • said binder has a melting temperature equal to or greater than the Curie temperature of said magnetic particles.
  • said binder is made of a plastic material.
  • said magnetic particles are made of neodymium-iron-boron.
  • the material used preferably has a remanence of the order of 0.6 Tesla. The measurement method for the remanence of the material is that described by the standard NFEN60404-5.
  • said magnetic particles are made of Samarium-Iron-Nitrogen.
  • said machine comprises a rotor separated from said stator by an air gap, said magnetic particles being magnetized so that a magnetic field in said air gap varies sinusoidally along a circumference of said gap.
  • the direction of the magnetic field generated by said permanent magnet gradually varies along a circumference of said stator,
  • the direction of the magnetic field varies in a curved direction.
  • said permanent magnet is magnetized according to a "Halbach” type configuration.
  • the plastomagnets are anisotropic, that is to say that the magnetic domains are aligned during overmolding to obtain the structure of Halbach.
  • the level of Br is fixed at 0.6-0.7T while remaining ANISOTROPIC.
  • the charge rate of the plastomagnets material is varied.
  • the injection of the Binder + powder mixture, for example NdFeB, is made in the field in order to orient the magnetic domains in order to conserve the anisole and to obtain the Halbach structure.
  • the invention also relates to a starter for a motor vehicle engine comprising:
  • stator an electric machine provided with a stator, said stator comprising
  • the starter has a Halbach oriented on the side of the outer stator towards the armature. Indeed, this makes it possible to improve the efficiency of the starter because of the very high level of the armature reaction field H.
  • the starter is also broom.
  • the gradual variation of the magnetic field makes it possible for the direction of the magnetic field in the magnet to vary constantly with respect to a radial plane passing through one of the central portions of the two poles.
  • the direction of the magnetic field has in a zone a direction substantially orthoradial with respect to a radial plane (perpendicular to axis comprising radiuses of the axis over 360 °) passing through this zone and then gradually the direction of the magnetic field varies. on either side of this zone with respect to this plane towards the central portions of two poles to a radial direction and in that the direction of the magnetic field direction varies in the same direction.
  • all the variations of the magnetic field form a concave shape seen from inside the stator.
  • Figure 1 is a schematic side view of a starter according to the present invention.
  • Figure 2 is a partial cross sectional view of the rotor and the stator of the electric machine belonging to the starter of Figure 1;
  • FIG. 3 represents the device making it possible to produce a one-piece permanent magnet of the stator according to the present invention.
  • FIG. 1 shows schematically a starter 1 for an internal combustion engine of a motor vehicle.
  • This DC starter 1 comprises, on the one hand, a rotor 2, also called an armature, rotatable about an axis X, and on the other hand, a stator 3, also called an inductor, positioned around the rotor 2.
  • the rotor 2 is separated from the stator 3 by an air gap 6.
  • the rotating electrical machine formed by the stator 3 and the rotor 2 is of the six-pole type. Alternatively, the machine may be of the four-pole type.
  • This stator 3 described in more detail below includes a yoke 4 carrying a permanent magnet 5 forming a set of poles.
  • the rotor 2 comprises a rotor body 7 and a winding 8 wound in notches of the rotor body 7.
  • the body of the rotor 7 consists of a bundle of sheets having longitudinal notches.
  • pin-shaped lead wires 1 1 (best seen in Figure 2) are threaded into the notches 16 generally on two separate layers.
  • the winding 8 forms, on either side of the rotor body 7, buns 9.
  • the rotor 2 is provided, at the rear, with a collector 12 comprising a plurality of contact pieces electrically connected to the conductive elements, constituted here by the pins 1 1 of the winding 8.
  • a group of brushes 13 and 14 is provided for the electrical supply of the winding 8, one of the brushes 13 being connected to the ground of the starter 1 and another of the brushes 14 being connected to an electrical terminal 15 of a contactor 17
  • the brooms are for example four in number.
  • the brushes 13 and 14 rub against the collector 12 when the rotor 2 is rotating, which allows the supply of the rotor 2 by switching the electric current in sections of the rotor 2.
  • the switch 17 comprises, in addition to the terminal 15 connected brush 14, a terminal 29 connected via an electrical connection element, to a power supply of the vehicle, including a battery.
  • the starter 1 further comprises a launcher assembly 19 slidably mounted on a drive shaft 18 and drivable in rotation about the X axis by the rotor 2.
  • a gear reduction unit 20 is interposed between a shaft of the rotor 2 and the drive shaft 18.
  • the launcher assembly 19 comprises a drive element formed by a pinion 21 intended to engage a drive member. of the engine, such as a drive ring. Alternatively, it would be possible to use a pulley system.
  • the launcher assembly 19 further comprises a freewheel 22 and a pulley washer 23 defining between them a groove 24 for receiving the end 25 of a fork 27.
  • the fork 27 is actuated by the switch 17 to move the launcher assembly 19 relative to the drive shaft 18, along the X axis, between a first position in which the launcher assembly 19 drives the engine through the drive pinion 21, and a second position in which the launcher assembly 19 is disengaged from the drive ring of the engine.
  • an internal contact plate (not shown) makes it possible to establish a connection between the terminals 15 and 29 in order to power up the electric motor. This connection will be cut off when switch 17 is turned off.
  • the stator 3 comprises a magnet 5 which has a cylindrical shape.
  • This magnet 5 forms all of the poles P1 - P6 of the stator 3, which makes it possible to create a uniform inductive field in the gap 6.
  • the magnet 5 has a cylinder portion shape so as to form two poles or more than all the magnetic poles.
  • the magnet 5 can travel an angular portion of a cylinder equal to (360 / K) * N degrees with K being the total number of poles of the stator 3 and N the number of poles formed by the magnet 5 at least equal to two and at most equal to K.
  • K is 6 but could alternatively have another value, for example equal to 4 or greater than 6.
  • the magnet 5 is monoblock, that is, that is to say that there is a crystallographic continuity in the matter of the magnet which forms the different poles P1-P6.
  • the magnet 5 is a molded magnet based on magnetic particles 31 embedded in a binder 32 made of a non-magnetic material.
  • the binder 32 is heated to its melting temperature which is equal to or greater than the Curie temperature of the magnetic particles 31. It is recalled here that the Curie temperature is the temperature at which the magnetic particles 31 are demagnetized.
  • the binder 32 is placed in a mold 34 of cylindrical shape which surrounds a core composed of a set of permanent magnets 35 whose number corresponds to the number of poles of the stator 3.
  • Each of the magnets 35 is magnetically oriented radially.
  • Two consecutive magnets 35 have magnetic field orientations B1, B2 which are opposite to one another.
  • the magnetic particles 31 are introduced inside the mold 34 and are magnetized according to the configuration of the magnetic flux generated by the magnets 35 while the temperature inside the mold 35 decreases, which causes a hardening
  • the magnetized particles 31 are trapped in the binder 32 while having been magnetized in such a way that between two central parts of two consecutive poles P1-P6, the direction of the magnetic field generated by the magnet 5 varies progressively along a circumference of the stator 3.
  • the direction of the magnetic field evolves between a substantially radial orientation D1 in a first direction, for example from the gap 6 to the 4, to reach a substantially orthoradial orientation D2 in an area situated substantially in the middle of the two central parts of the two consecutive poles P1 and P2 and continues to vary gradually to reach a substantially radial orientation D3 in a second direction opposite to the first direction, by example of the cylinder head 4 to the gap 6 of the machine.
  • the evolution of the direction of the magnetic field is of course reversed in the case where one starts with a radial orientation going from the yoke 4 to the gap 6.
  • the direction of the magnetic field varies in a substantially curved direction.
  • cylindrical magnet 5 is magnetized according to a "Halbach” type configuration.
  • the magnetic field in the gap 6 varies sinusoidally along the circumference of the gap 6 of the electric machine.
  • the binder 32 is made of a plastic material, while the magnetic particles 31 may be made of Neodymium-Iron-Boron or Samarium-Iron-Nitrogen.
  • the material used preferably has a remanence of the order of 0.6 Tesla.
  • the magnetic particles 31 and the binder 32 may be made of any other suitable material for the application. The value of the remanence may also be adapted according to the desired magnetic power of the electric machine.
  • the yoke 4 against the inner face 41 of which is plated the magnet 5 essentially ensures a mechanical holding of the stator 3, inasmuch as the level of the magnetic fields passing through the yoke 4 is very low.
  • Fixing the magnet 5 on the inner face 41 of the yoke 4 is generally effected by means of one or more staples.
  • Fixing the staples ensures in particular an axial and radial retention of the magnet 5 in the yoke 4 by opposing the mechanical forces (vibrations, shocks), and the magnetic attraction forces during engine operation.
  • the staples further guarantee a spacing between the magnets 5 to create a uniform inductive field in the gap 6.
  • the foregoing description has been given by way of example only and does not limit the field of the invention which one would not go out by replacing the various elements by all other equivalents.

Abstract

L'invention porte principalement sur un démarreur pour moteur thermique de véhicule automobile comportant: - une machine électrique tournante munie d'un stator (3), ledit stator (3) comportant: - un ensemble de pôles magnétiques, caractérisé en ce qu'un aimant permanent (5) forme au moins deux pôles de l'ensemble desdits pôles magnétiques.

Description

STATOR DE DEMARREUR POUR VEHICULE AUTOMOBILE MUNI D'UN AIMANT PERMANENT FORMANT UNE PLURALITE DE POLES
La présente invention porte sur un stator de démarreur pour véhicule automobile muni d'un aimant permanent formant une pluralité de pôles. On connaît des démarreurs pour véhicule automobile munis d'un stator, ou inducteur, comportant plusieurs aimants permanents et d'un rotor, ou induit, doté d'un corps de forme cylindrique et d'un bobinage formé par des fils conducteurs.
De façon connue en soi, l'inducteur comporte une culasse métallique dont la face interne supporte une pluralité d'aimants permanents destinés à produire un champ inducteur. Les aimants permanents sont conformés selon des segments cylindriques, en étant angulairement répartis à intervalles réguliers à l'intérieur de la culasse, et séparés uniformément de l'induit par un entrefer radial. La fixation des aimants permanents sur la face interne de la culasse s'effectue généralement au moyen d'agrafes s'étendant dans la direction longitudinale dans les intervalles ménagés entre les aimants permanents.
Par ailleurs, le corps du rotor consiste en un paquet de tôles présentant des encoches longitudinales dans lequel sont insérés les fils du bobinage constitués par exemple par des conducteurs en forme d'épingle. Le rotor est pourvu en outre d'un collecteur comprenant une pluralité de pièces de contact connectées électriquement aux fils du bobinage.
L'invention vise à faciliter la réalisation d'un tel démarreur en proposant un démarreur pour moteur thermique de véhicule automobile comportant :
- une machine électrique tournante munie d'un stator, ledit stator comportant - un ensemble de pôles magnétiques,
caractérisé en ce qu'un aimant permanent forme au moins deux pôles de l'ensemble desdits pôles magnétiques.
Ainsi, l'invention permet de limiter le nombre d'aimants utilisés dans le stator, ce qui limite le nombre d'opérations d'assemblage à réaliser en chaîne de montage lors de la fabrication du démarreur. Selon une réalisation, ledit aimant permanent forme l'ensemble desdits pôles magnétiques. Une telle configuration permet de créer un champ inducteur uniforme dans l'entrefer.
Selon une réalisation, l'aimant comprend différentes directions du champ de polarisation magnétique. En l'occurrence, l'aimant comprend au moins deux directions formant un angle d'au moins 90° entre ces deux directions.
Par un aimant on en entend, une pièce monobloc solide qui peut comprendre plusieurs directions d'aimantations. Autrement dit un aimant ne peux pas comprendre plusieurs aimants (plusieurs pièces d'aimants) accolés formant un bloc.
Selon une réalisation, ledit aimant permanent présente une forme cylindrique.
Selon une réalisation, ledit aimant permanent est monobloc.
Selon une réalisation, ledit stator comporte en outre une culasse. La culasse assure essentiellement un maintien mécanique du stator.
Selon une réalisation, ledit aimant permanent est un aimant moulé à base de particules magnétiques noyées dans un liant réalisé dans une matière non magnétique.
Ainsi l'aimant a déjà les domaines magnétiques qui sont alignés pendant le surmoulage donc avant son montage dans le moteur. Cela a pour avantage de pouvoir monter l'aimant déjà orienté dans le moteur.
Selon une réalisation, ledit liant a une température de fusion égale ou supérieure à la température de Curie desdites particules magnétiques.
Selon une réalisation, ledit liant est réalisé dans un matériau plastique. Selon une réalisation, lesdites particules magnétiques sont réalisées en Néodyme-Fer-Bore. Selon une réalisation, le matériau utilisé présente de préférence une rémanence de l'ordre de 0.6 Tesla. Le procédé de mesure pour la rémanence du matériau est celle décrite par la norme NFEN60404-5.
Selon une réalisation, lesdites particules magnétiques sont réalisées en Samarium-Fer-Azote.
Selon une réalisation, ladite machine comprend un rotor séparé dudit stator par un entrefer, lesdites particules magnétiques étant magnétisées de manière qu'un champ magnétique dans ledit entrefer varie de manière sinusoïdale le long d'une circonférence dudit entrefer. Selon une réalisation, entre deux parties centrales de deux pôles consécutifs, la direction du champ magnétique généré par ledit aimant permanent varie progressivement suivant une circonférence dudit stator,
- entre une orientation sensiblement radiale suivant un premier sens,
- pour atteindre une orientation sensiblement orthoradiale dans une zone située sensiblement au milieu des deux parties centrales, et
- continue de varier progressivement pour atteindre une orientation sensiblement radiale suivant un deuxième sens opposé audit premier sens.
Selon une réalisation, entre les deux parties centrales de deux pôles consécutifs, la direction du champ magnétique varie suivant une direction courbe.
Selon une réalisation, ledit aimant permanent est magnétisé suivant une configuration de type "Halbach".
Dans ce cas les plastoaimants sont Anisotropiques , c'est-à-dire que les domaines magnétiques sont alignés pendant le surmoulage afin d'obtenir la structure de Halbach .
Selon un exemple on fixe le niveau de Br à 0.6-0.7T en restant ANISOTROPIQUE . Pour cela on fait varier le taux de charge du matériau plastoaimants L injection du mélange Liant + poudre par exemple NdFeB est faite sous champ afin d'orienter ies domaines magnétiques pour conserver l'anisoîmpie et obtenir la structure de Halbach.
L'invention a également pour objet un démarreur pour moteur thermique de véhicule automobile comportant:
- une machine électrique munie d'un stator, ledit stator comportant
- un ensemble de pôles magnétiques,
caractérisé en ce que, au moins entre deux parties centrales de deux pôles consécutifs, la direction du champ magnétique d'un aimant permanent varie progressivement suivant une circonférence dudit stator,
- entre une orientation sensiblement radiale suivant un premier sens,
- pour atteindre une orientation sensiblement orthoradiale dans une zone située sensiblement au milieu des deux parties centrales, et
- continue de varier progressivement pour atteindre une orientation sensiblement radiale suivant un deuxième sens opposé audit premier sens.
Ainsi, Contrairement à ce qui est préconisé, le démarreur a un Halbach orienté du côté du stator extérieur vers l'induit. En effet, cela permet d'améliorer le rendement du démarreur du fait du niveau très élevé du champ H de réaction d'induit.
Le démarreur est en outre à balai.
En outre, la variation progressive du champ magnétique permet que la direction du champs magnétique dans l'aimant varie constamment par rapport à un plan radial passant par une des parties centrales des deux pôles.
En outre, la direction du champs magnétique a dans une zone une direction sensiblement orthoradiale par rapport à un plan radial (perpendiculaire à 'axe comprenant des rayons de l'axes sur 360°) passant par cette zone puis progressivement la direction du champ magnétique varie de part et d'autre de cette zone par rapport à ce plan en direction des parties centrales de deux pôles vers une direction radiale et en ce que le sens de la direction du champs magnétique varie dans le même sens. En outre entre les deux parties centrales des deux pôles, l'ensemble des variations du champ magnétique forment une forme concave vu de l'intérieur du stator.
L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Ces figures ne sont données qu'à titre illustratif mais nullement limitatif de l'invention. La figure 1 est une vue schématique de côté d'un démarreur selon la présente invention;
La figure 2 est une vue en coupe transversale partielle du rotor et du stator de la machine électrique appartenant au démarreur de la figure 1 ;
La figure 3 représente le dispositif permettant de réaliser un aimant permanent monobloc du stator selon la présente invention.
Les éléments identiques, similaires ou analogues conservent les mêmes références d'une figure à l'autre.
On a représenté schématiquement sur la figure 1 un démarreur 1 pour moteur à combustion interne de véhicule automobile. Ce démarreur 1 à courant continu comprend, d'une part, un rotor 2, encore appelé induit, pouvant tourner autour d'un axe X, et d'autre part, un stator 3, encore appelé inducteur, positionné autour du rotor 2. Le rotor 2 est séparé du stator 3 par un entrefer 6. Dans l'exemple illustré, la machine électrique tournante formée par le stator 3 et le rotor 2 est de type six pôles. En variante, la machine pourra être du type quatre pôles.
Ce stator 3 décrit plus en détails ci-après comporte une culasse 4 portant un aimant permanents 5 formant un ensemble de pôles.
Le rotor 2 comporte un corps de rotor 7 et un bobinage 8 enroulé dans des encoches du corps de rotor 7. Le corps du rotor 7 consiste en un paquet de tôles présentant des encoches longitudinales. Pour former le bobinage 8, des fils conducteurs en forme d'épingle 1 1 (mieux visibles sur la figure 2) sont enfilés à l'intérieur des encoches 16 généralement sur deux couches distinctes. Le bobinage 8 forme, de part et d'autre du corps de rotor 7, des chignons 9. Le rotor 2 est pourvu, à l'arrière, d'un collecteur 12 comprenant une pluralité de pièces de contact connectées électriquement aux éléments conducteurs, constitués ici par les épingles 1 1 du bobinage 8.
Un groupe de balais 13 et 14 est prévu pour l'alimentation électrique du bobinage 8, l'un des balais 13 étant relié à la masse du démarreur 1 et un autre des balais 14 étant relié à une borne électrique 15 d'un contacteur 17. Les balais sont par exemple au nombre de quatre.
Les balais 13 et 14 viennent frotter sur le collecteur 12 lorsque le rotor 2 est en rotation, ce qui permet l'alimentation du rotor 2 par commutation du courant électrique dans des sections du rotor 2. Le contacteur 17 comprend, outre la borne 15 reliée au balai 14, une borne 29 reliée, via un élément de liaison électrique, à une alimentation électrique du véhicule, notamment une batterie.
Le démarreur 1 comporte en outre un ensemble lanceur 19 monté de manière coulissante sur un arbre d'entraînement 18 et pouvant être entraîné en rotation autour de l'axe X par le rotor 2.
Un ensemble réducteur de vitesses 20 est interposé entre un arbre du rotor 2 et l'arbre d'entraînement 18. L'ensemble lanceur 19 comporte un élément d'entraînement formé par un pignon 21 destiné à s'engager sur un organe d'entraînement du moteur thermique, tel qu'une couronne d'entraînement. En variante, il serait possible d'utiliser un système à poulie.
L'ensemble lanceur 19 comprend en outre une roue libre 22 et une rondelle poulie 23 définissant entre elles une gorge 24 pour recevoir l'extrémité 25 d'une fourchette 27.
La fourchette 27 est actionnée par le contacteur 17 pour déplacer l'ensemble lanceur 19 par rapport à l'arbre d'entraînement 18, suivant l'axe X, entre une première position dans laquelle l'ensemble lanceur 19 entraîne le moteur thermique par l'intermédiaire du pignon d'entraînement 21 , et une deuxième position dans laquelle l'ensemble lanceur 19 est désengagé de la couronne d'entraînement du moteur thermique. Lors de l'activation du contacteur 17, une plaque de contact interne (non représentée) permet d'établir une connexion entre les bornes 15 et 29 afin de mettre sous tension le moteur électrique. Cette connexion sera coupée lors de la désactivation du contacteur 17.
Comme on peut le voir sur la figure 2, le stator 3 comporte un aimant 5 qui présente une forme cylindrique. Cet aimant 5 forme l'ensemble des pôles P1 - P6 du stator 3, ce qui permet de créer un champ inducteur uniforme dans l'entrefer 6. Alternativement, l'aimant 5 présente une forme de portion de cylindre de manière à former deux pôles ou plus de l'ensemble des pôles magnétiques. Ainsi, de manière générale, l'aimant 5 pourra parcourir une portion angulaire d'un cylindre valant (360/K)*N degrés avec K étant le nombre de pôles total du stator 3 et N le nombre de pôles formés par l'aimant 5 au moins égal à deux et au plus égal à K. Dans l'exemple, K vaut 6 mais pourrait en variante avoir une autre valeur par exemple égale à 4 ou supérieure à 6. L'aimant 5 est monobloc, c'est-à-dire qu'il existe une continuité cristallographique dans la matière de l'aimant qui forme les différents pôles P1 -P6.
En l'occurrence, comme cela est illustré sur la figure 3, l'aimant 5 est un aimant moulé à base de particules magnétiques 31 noyées dans un liant 32 réalisé dans une matière non magnétique. A cet effet, le liant 32 est chauffé jusqu'à sa température de fusion qui est égale ou supérieure à la température de Curie des particules magnétiques 31 . On rappelle ici que la température de Curie est la température à laquelle les particules magnétiques 31 sont démagnétisées.
Le liant 32 est placé dans un moule 34 de forme cylindrique qui entoure un noyau composé par un ensemble d'aimants permanents 35 dont le nombre correspond au nombre de pôles du stator 3. Chacun des aimants 35 est magnétiquement orienté radialement. Deux aimants 35 consécutifs présentent des orientations de champ magnétique B1 , B2 qui sont opposées l'une par rapport à l'autre.
Les particules magnétiques 31 (au départ démagnétisées) sont introduites à l'intérieur du moule 34 et sont magnétisées suivant la configuration du flux magnétique générée par les aimants 35 pendant que la température à l'intérieur du moule 35 diminue, ce qui cause un durcissement progressif du liant 32. A la fin du procédé, les particules 31 magnétisées sont prisonnières du liant 32 tout en ayant été magnétisée de telle façon qu'entre deux parties centrales de deux pôles consécutifs P1 -P6, la direction du champ magnétique générée par l'aimant 5 varie progressivement suivant une circonférence du stator 3.
Plus précisément, comme cela est visible sur la figure 2, entre les parties centrales des deux pôles P1 et P2 consécutifs, la direction du champ magnétique évolue entre une orientation D1 sensiblement radiale suivant un premier sens, par exemple de l'entrefer 6 vers la culasse 4, pour atteindre une orientation D2 sensiblement orthoradiale dans une zone située sensiblement au milieu des deux parties centrales des deux pôles consécutifs P1 et P2 et continue de varier progressivement pour atteindre une orientation D3 sensiblement radiale dans un deuxième sens opposé au premier sens, par exemple de la culasse 4 vers l'entrefer 6 de la machine. L'évolution de la direction du champ magnétique est bien entendu inverse dans le cas où l'on commence par une orientation radiale allant de la culasse 4 vers l'entrefer 6.
Entre les deux parties centrales de deux pôles consécutifs P1 -P6, la direction du champ magnétique varie suivant une direction sensiblement courbe.
Autrement dit, l'aimant cylindrique 5 est magnétisé suivant une configuration de type "Halbach".
Dans une telle configuration, le champ magnétique dans l'entrefer 6 varie de manière sinusoïdale le long de la circonférence de l'entrefer 6 de la machine électrique. Dans un exemple de réalisation, le liant 32 est réalisé dans un matériau plastique, tandis que les particules magnétiques 31 pourront être réalisées en Néodyme-Fer-Bore ou en Samarium-Fer-Azote. Le matériau utilisé présente de préférence une rémanence de l'ordre de 0.6 Tesla. En variante, les particules magnétiques 31 et le liant 32 pourront être réalisées dans tout autre matériau adapté à l'application. La valeur de la rémanence pourra également être adaptée en fonction de la puissance magnétique recherchée de la machine électrique.
Il est à noter que la culasse 4 contre la face interne 41 de laquelle est plaqué l'aimant 5 assure essentiellement un maintien mécanique du stator 3, dans la mesure le niveau des champs magnétiques qui traversent la culasse 4 est très faible. La fixation de l'aimant 5 sur la face interne 41 de la culasse 4, s'effectue généralement au moyen d'une ou plusieurs agrafes. La fixation des agrafes assure notamment un maintien axial et radial de l'aimant 5 dans la culasse 4 en s'opposant aux forces mécaniques (vibrations, chocs), et aux forces d'attraction magnétique lors du fonctionnement du moteur. Dans le cas où plusieurs aimants 5 sont utilisés, les agrafes garantissent en outre un écartement entre les aimants 5 pour créer un champ inducteur uniforme dans l'entrefer 6. Bien entendu, la description qui précède a été donnée à titre d'exemple uniquement et ne limite pas le domaine de l'invention dont on ne sortirait pas en remplaçant les différents éléments par tous autres équivalents.

Claims

REVENDICATIONS
1 . Démarreur (1 ) pour moteur thermique de véhicule automobile comportant :
- une machine électrique tournante munie d'un stator (3), ledit stator (3) comportant
- un ensemble de pôles magnétiques (P1 -P6),
caractérisé en ce qu'un aimant permanent (5) forme au moins deux pôles de l'ensemble desdits pôles magnétiques (P1 -P6) et en ce que ledit aimant permanent (5) est un aimant moulé à base de particules magnétiques (31 ) noyées dans un liant (32) réalisé dans une matière non magnétique.
2. Démarreur selon la revendication 1 , caractérisé en ce que ledit aimant permanent (5) forme l'ensemble desdits pôles magnétiques (P1 -P6).
3. Démarreur selon la revendication 1 ou 2, caractérisé en ce que ledit aimant permanent (5) présente une forme cylindrique. 4. Démarreur selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit aimant permanent (5) est monobloc.
5. Démarreur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ledit stator (3) comporte en outre une culasse (4).
7. Démarreur selon la revendication 1 , caractérisé en ce que ledit liant (32) a une température de fusion égale ou supérieure à la température de Curie desdites particules magnétiques (31 ).
8. Démarreur selon l'une des revendications 1 à 7, caractérisé en ce que ledit liant (32) est réalisé dans un matériau plastique.
9. Démarreur selon l'une quelconque des revendications 1 à 8, caractérisé en ce que lesdites particules magnétiques (31 ) sont réalisées en
Néodyme-Fer-Bore.
10. Démarreur selon l'une quelconque des revendications 1 à 8, caractérisé en ce que lesdites particules magnétiques (31 ) sont réalisées en Samarium-Fer-Azote.
1 1 . Démarreur selon l'une quelconque des revendications 1 à 10, caractérisé en ce que ladite machine comprend un rotor (2) séparé dudit stator (3) par un entrefer (6), et en ce que lesdites particules magnétiques (31 ) sont magnétisées de manière qu'un champ magnétique dans ledit entrefer (6) varie de manière sinusoïdale le long d'une circonférence dudit entrefer (6).
12. Démarreur selon l'une quelconque des revendications 1 à 1 1 , caractérisé en ce que, entre deux parties centrales de deux pôles (P1 -P6) consécutifs, la direction d'un champ magnétique généré par ledit aimant permanent (5) varie progressivement suivant une circonférence dudit stator, entre une orientation (D1 ) sensiblement radiale suivant un premier sens,
- pour atteindre une orientation (D2) sensiblement orthoradiale dans une zone située sensiblement au milieu des deux parties centrales, et
- continue de varier progressivement pour atteindre une orientation
(D3) sensiblement radiale suivant un deuxième sens opposé audit premier sens.
13. Démarreur selon la revendication 12, caractérisé en ce que, entre les deux parties centrales de deux pôles consécutifs, la direction du champ magnétique varie suivant une direction courbe.
14. Démarreur selon l'une quelconque des revendications 1 à 13, caractérisé en ce que ledit aimant permanent (5) est magnétisé suivant une configuration de type "Halbach".
15. Démarreur pour moteur thermique de véhicule automobile comportant:
- une machine électrique munie d'un stator (3), ledit stator (3) comportant
- un ensemble de pôles magnétiques (P1 -P6),
caractérisé en ce que au moins entre deux parties centrales de deux pôles consécutifs (P1 -P6), la direction du champ magnétique d'un aimant permanent (5) varie progressivement suivant une circonférence dudit stator (3), entre une orientation (D1 ) sensiblement radiale suivant un premier sens,
- pour atteindre une orientation (D2) sensiblement orthoradiale dans une zone située sensiblement au milieu des deux parties centrales, et
- continue de varier progressivement pour atteindre une orientation
(D3) sensiblement radiale suivant un deuxième sens opposé audit premier sens.
EP16717192.5A 2015-04-07 2016-04-07 Stator de démarreur pour véhicule automobile muni d'un aimant permanent formant une pluralite de poles Withdrawn EP3281279A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1552947A FR3034918B1 (fr) 2015-04-07 2015-04-07 Stator de demarreur pour vehicule automobile muni d'un aimant permanent formant une pluralite de poles
PCT/FR2016/050791 WO2016162636A1 (fr) 2015-04-07 2016-04-07 Stator de demarreur pour vehicule automobile muni d'un aimant permanent formant une pluralite de poles

Publications (1)

Publication Number Publication Date
EP3281279A1 true EP3281279A1 (fr) 2018-02-14

Family

ID=54199746

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16717192.5A Withdrawn EP3281279A1 (fr) 2015-04-07 2016-04-07 Stator de démarreur pour véhicule automobile muni d'un aimant permanent formant une pluralite de poles

Country Status (5)

Country Link
US (1) US20180097410A1 (fr)
EP (1) EP3281279A1 (fr)
CN (1) CN107636936A (fr)
FR (1) FR3034918B1 (fr)
WO (1) WO2016162636A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10581358B2 (en) * 2018-03-30 2020-03-03 Kohler Co. Alternator flux shaping
WO2020083511A1 (fr) 2018-10-26 2020-04-30 Aichi Steel Corporation Stator pour machine électrique tournante comprenant au moins un aimant permanent à épaisseur radiale variable
CN111933384A (zh) * 2020-07-01 2020-11-13 四川大学 瓦形磁体组合为空心圆柱的磁场组合方法、永磁体及用途
CN112564436A (zh) * 2020-11-26 2021-03-26 浙江英洛华磁业有限公司 一种制造转子组件的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004167A (en) * 1975-01-29 1977-01-18 Magna Motors Corporation Permanent magnet stators
DE3913276A1 (de) * 1989-04-22 1990-10-25 Siemens Ag Eletrische maschine, insbesondere gleichstrom-kleinmotor
JP2002095230A (ja) * 2000-09-13 2002-03-29 Asmo Co Ltd 直流機
US6992553B2 (en) * 2002-06-18 2006-01-31 Hitachi Metals, Ltd. Magnetic-field molding apparatus
JP2005312166A (ja) * 2004-04-20 2005-11-04 Aichi Steel Works Ltd 4磁極モータ用異方性ボンド磁石及びそれを用いたモータ
TWI289967B (en) * 2004-04-20 2007-11-11 Aichi Steel Corp Anisotropic bond magnet for four-magnetic-pole motor, motor using the same, device for orientation processing of anisotropic bond magnet for four-magnetic-pole motor
FR2910194B1 (fr) * 2006-12-15 2015-03-06 Valeo Equip Electr Moteur Machine electrique tournante, notamment pour demarreur de vehicule automobile
WO2009057742A1 (fr) * 2007-11-02 2009-05-07 Asahi Kasei Kabushiki Kaisha Matériau magnétique composite pour aimant et procédé de fabrication de ce matériau
US9601976B2 (en) * 2013-05-17 2017-03-21 GM Global Technology Operations LLC Method for injection molding rotor magnets

Also Published As

Publication number Publication date
FR3034918B1 (fr) 2018-12-07
WO2016162636A1 (fr) 2016-10-13
CN107636936A (zh) 2018-01-26
US20180097410A1 (en) 2018-04-05
FR3034918A1 (fr) 2016-10-14

Similar Documents

Publication Publication Date Title
EP2564491B1 (fr) Machine electrique tournante en particulier pour un demarreur de vehicule automobile
EP3281279A1 (fr) Stator de démarreur pour véhicule automobile muni d'un aimant permanent formant une pluralite de poles
EP2209193B1 (fr) Machine électrique tournante à pôles saillants
WO2015052432A2 (fr) Machine électrique sans encoches à bobinage concentré
WO2015071618A1 (fr) Démarreur de véhicule automobile de faible puissance a taille optimisée
WO2011135233A1 (fr) Machine electrique comportant un rotor muni d'un bobinage permettant de faciliter la commutation, et demarreur associe
FR3039017A1 (fr) Machine electrique tournante pour vehicule automobile
EP3084938A2 (fr) Demarreur pour moteur thermique de vehicule automobile muni d'une machine electrique tournante a inducteur a poles saillants perfectionne et masse polaire correspondante
EP3281278A1 (fr) Stator de demarreur pour vehicule automobile a plage de remanence optimisee
WO2017013325A1 (fr) Stator de demarreur pour vehicule automobile a performances magnetiques ameliorees
WO2020260320A1 (fr) Machine electrique tournante munie d'un organe de precontrainte de roulement
FR3111750A1 (fr) ensemble comprenant une machine électrique tournante, un connecteur et un module électronique
WO2017203137A1 (fr) Rotor de machine électrique tournante muni d'aimants en terre rare à faible taux de dysprosium
FR3054742B1 (fr) Rotor pour machine electrique tournante
WO2017153672A1 (fr) Pignon de demarreur de vehicule automobile muni d'un pied de dent a rayon de courbure variable
FR3123519A1 (fr) Machine electrique tournante à configuration co-axiale
FR3091426A1 (fr) Stator apte à équiper une machine électrique à flux radial d’un démarreur
FR2947967A1 (fr) Collecteur de machine electrique tournante pour vehicule automobile
FR3098040A1 (fr) Machine electrique tournante à refroidissement par eau
FR3067882A1 (fr) Stator de machine electrique tournante
FR2928790A1 (fr) Procede d'enroulement d'un bobinage.
WO2017037389A1 (fr) Rotor pour machine electrique tournante
WO2017021647A1 (fr) Rotor de machine electrique tournante muni d'un noyau formant un support de roue polaire
FR3053542A1 (fr) Rotor a double excitation pour machine electrique tournante
FR3034833A1 (fr) Pignon de demarreur pour moteur thermique de vehicule automobile a performances mecaniques ameliorees

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20171025

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20181113

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190326