EP3277925A1 - Building element for creating a tunnel, tunnel comprising such an element and methods of manufacturing such an element and such a tunnel - Google Patents

Building element for creating a tunnel, tunnel comprising such an element and methods of manufacturing such an element and such a tunnel

Info

Publication number
EP3277925A1
EP3277925A1 EP16721868.4A EP16721868A EP3277925A1 EP 3277925 A1 EP3277925 A1 EP 3277925A1 EP 16721868 A EP16721868 A EP 16721868A EP 3277925 A1 EP3277925 A1 EP 3277925A1
Authority
EP
European Patent Office
Prior art keywords
layer
tunnel
construction element
devices
embedded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16721868.4A
Other languages
German (de)
French (fr)
Other versions
EP3277925B1 (en
Inventor
Jean Simon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constructions Mecaniques Consultants
Agence Nationale pour la Gestion des Dechets Radioactifs ANDRA
Original Assignee
Constructions Mecaniques Consultants
Agence Nationale pour la Gestion des Dechets Radioactifs ANDRA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Constructions Mecaniques Consultants, Agence Nationale pour la Gestion des Dechets Radioactifs ANDRA filed Critical Constructions Mecaniques Consultants
Publication of EP3277925A1 publication Critical patent/EP3277925A1/en
Application granted granted Critical
Publication of EP3277925B1 publication Critical patent/EP3277925B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/05Lining with building materials using compressible insertions

Definitions

  • Construction element for the realization of a tunnel, tunnel comprising such an element and methods for manufacturing such an element and such a tunnel
  • the invention relates to the construction of tunnels, in particular underground tunnels, and the construction elements of such tunnels.
  • a cavity is, in general, dug underground, then a tunnel is formed in this cavity using voussoirs.
  • the voussoirs correspond to constituent elements of an annular section of the tunnel, once assembled together.
  • French patent application FR1200989 which discloses a field convergence damping system comprising a coating covering an outer wall of a tunnel and which comprises devices each provided with a through hole. These devices with opening hole create a free space within the coating, noted residual volume, which contributes, in particular, to the damping of the convergence of the ground.
  • residual volume contributes, in particular, to the damping of the convergence of the ground.
  • the thrust of the ground tends to occupy the residual volume, that is to say the volume left unoccupied by the devices, which helps dampen the thrust.
  • elements of the ground can agglutinate in the defined space and obstruct the injection of the devices, which can prevent the devices from being arranged homogeneously around the outer wall of the tunnel .
  • each prefabricated concrete segment comprises a layer of a compressible material, such as a polyethylene foam, glued on the outer surface of the voussoir.
  • a compressible material such as a polyethylene foam
  • An object of the invention is to overcome the disadvantages mentioned above and in particular to provide a means easy to implement and implement to dampen the convergence of a terrain exerted on a tunnel.
  • Another object of the invention is to provide a means for guaranteeing the mechanical damping properties of the convergence of a terrain of a building element during its storage or transport.
  • a construction element for the realization of a tunnel comprising a first incompressible layer of concrete and a second compressible layer secured to the first layer to form a monobloc prefabricated construction element configured to be integrated in a section of the tunnel.
  • the second layer comprises a material comprising aggregates aggregated by a binder, and cavities embedded within the material.
  • a prefabricated building element adapted to make a section of a tunnel.
  • Such a monoblock construction element is easy to handle and its manufacture can be controlled so as to obtain a homogeneous tunnel section, in order to control the behavior of the tunnel facing the convergence of the terrain.
  • the cavities formed in the material determine the compressibility of the second layer. In other words, the cavities allow the ground to converge and unload the stresses exerted on the first layer.
  • the cavities being embedded in the material, they are protected during storage of the construction element so that the construction element retains its compressibility properties when used in a tunnel section.
  • the binder may comprise a cement.
  • the aggregation of the aggregates with cement makes it possible to obtain a mortar as material of the second layer.
  • the mortar is particularly adapted to become solid with the first layer of concrete, while allowing the ground to converge and discharge the stresses exerted on the first layer. This avoids using an adhesive film to secure the two layers of the prefabricated monobloc element.
  • the mortar is impact resistant and protects the cavities of the second layer during transport of the construction element, while retaining the mechanical properties of compressibility and deformation of the building element.
  • the second layer may comprise a plurality of devices embedded in the material, each device having a solid body delimiting at least one closed free space.
  • the solid body of the devices can be made of ceramic or plastic.
  • the second layer may comprise a plurality of parts embedded in the material, each part having a porous solid body provided with several through holes and several closed free spaces.
  • the second layer may also comprise a compound generating a gas within the material forming the cavities.
  • a tunnel located inside a cavity dug in a field, at least one section of the tunnel being made from at least one two-layer construction element as defined above. before.
  • a method for producing a construction element for the realization of a tunnel comprising the following steps:
  • the second layer is produced from a material comprising aggregates aggregated by a binder, and cavities embedded in the material. Within the material, devices can be drowned, each having a solid body delimiting at least one closed free space.
  • the cavities can also be made from an injection of a gas into the material.
  • a method for producing a tunnel comprising the following steps:
  • sections of the tunnel located inside the cavity at least one section being made from at least one two-layer construction element as defined above, as and when the progress tunnel boring machine.
  • FIG. 1 schematically shows a sectional view of an embodiment of a tunnel according to the invention
  • FIG. 2 schematically illustrates an embodiment of a construction element according to the invention
  • FIGS. 3, 5 and 7 schematically illustrate embodiments of an integrated construction element in a tunnel and in an initial state before convergence of the terrain
  • FIGS. 4, 6 and 8 schematically illustrate respectively the embodiments of FIGS. 3, 5 and 7 in a state of equilibrium after convergence of the terrain
  • FIG. 9 schematically illustrates a perspective view of an embodiment of a device provided with a closed cavity
  • FIG. 10 schematically illustrates a sectional view of the device of Figure 9;
  • Figure 1 1 schematically illustrates a left front view of the device of Figure 9;
  • FIG. 17 schematically illustrates a cross-sectional view of a tunneling machine carrying out the tunnel of FIG. 1.
  • the present invention provides particular advantages in the field of tunnels, it is also applicable to any system which is performed in an underground cavity and which is configured to withstand the convergence of terrain, for example containers or tanks partially or completely buried.
  • FIG. 1 there is shown a tunnel 1 made in a cavity 2 dug in a terrain 3, in other words an underground tunnel.
  • the tunnel 1 can be open and have an inverted U shape, it can also be closed and have an ovoid shape, or any other shape.
  • the tunnel 1 has a generally tubular shape.
  • the tunnel 1 comprises sections 4 located within the cavity 2. At least one section 4, and preferably each section 4, is made from construction elements 5 assembled together. At least one construction element 5 comprises a first layer 6 incompressible concrete.
  • the first layer 6 has a shape of a curved hexahedron.
  • the construction element 5 comprises a second compressible layer 7 integral with the first layer 6 to form a prefabricated building element 5 of the monoblock type, as shown in FIG. 2.
  • the second layer 7 being integral with the first layer 6, it matches the shape of the first layer 6.
  • the construction element 5 is configured to be integrated in a section 4 of the tunnel 1.
  • the construction element 5 then forms a segment with a compressible portion 7.
  • the construction element 5 is prefabricated, that is to say it is realized before the realization of the tunnel 1. In other words, the construction element 5 is previously produced, then several construction elements 5 are assembled together so as to form a section 4 of the tunnel 1.
  • the building element 5 incorporates before a compressible layer 7, and therefore has an integrated mechanical damping property.
  • the term monoblock element a movable element that retains its physical integrity and its mechanical properties during transport, for example when moving the element from its manufacturing area to the location of section 4 of the tunnel 1 where it is placed.
  • the building element 5 is configured to be integrated in a section 4 of the tunnel 1, and in particular in a section 4 which is in progress.
  • FIGS. 3 to 8 show different embodiments of the construction element 5.
  • the second layer 7 comprises a material 11 comprising aggregates aggregated by a binder, and cavities 51 to 55 embedded in the within the material.
  • the binder makes it possible to agglomerate the aggregates to obtain a compact material.
  • the compact material 1 1 makes it possible, in particular, to provide properties of mechanical strength to the second layer 7.
  • the cavities 51 to 55 make it possible, in turn, to make the second layer 7 compressible, that is to say that the thickness E of the second layer 7 can decrease during the convergence of the terrain 3 In the initial state, the terrain 3 exerts an initial convergence pressure on the tunnel 1. Due to the movements of the ground 3, it will tend to converge towards the interior of the cavity 2.
  • This convergence of the ground 3 will increase the pressure exerted on the second layer 7.
  • the material 1 1 will take the place of the cavities 51 to 55, and the second layer 7 will deform.
  • the deformation of the second compressible layer 7 will allow a progressive approximation of the ground 3 towards the interior of the tunnel 1, until the ground 3 occupies a state of equilibrium. In the equilibrium state, the convergence pressure is lower than the initial pressure.
  • the second compressible layer 7 thus makes it possible to damp the convergence of the ground 3 to a state of equilibrium for which the convergence pressure is supported by the construction element 5, that is to say that the first layer incompressible 6 does not deform under the pressure of convergence at equilibrium.
  • the thickness E of the second layer 7 is chosen as a function of the damping of the convergence of the terrain 3 that it is desired to obtain.
  • the thickness E is chosen as a function of the displacement of the ground 3, with respect to its initial position, which can be supported by the construction element 5.
  • the ground 3 In the initial position, the ground 3 is at an initial distance F, as illustrated in FIG. 1, of the external surface of the second layer 7.
  • the initial distance F corresponds to the thickness of the free space F.
  • the thickness E also depends on the compressibility of the second layer 7 . More particularly, aggregating the aggregates with a binder makes it possible to obtain a solid material 11 which can provide a resistance force opposed to the stresses exerted by the ground 3 during its convergence.
  • the material 1 1 is also adapted to protect the cavities 51 to 55, during possible shocks during the transport of the construction element 5 to integrate it in a section 4 of the tunnel 1, and to maintain the compressibility properties of the second layer 7.
  • Aggregates may be sand or gravel, or a mixture of both.
  • the binder allows aggregation aggregates, it can be cement, plaster, lime, bitumen, clay, or a plastic such as a synthetic resin.
  • the material 11 may comprise one or more adjuvants to give properties specific to the material 11.
  • a mortar is used as the material 1 1 of the second layer 7, from a mixture of fine aggregates, for example sand, cement and water.
  • the fine aggregates have a diameter of less than 4 mm to improve the deformation of the second layer 7.
  • the water-mixed cement forms a paste which hardens gradually following chemical reactions between the cement and the water.
  • the mortar is particularly suitable because it easily adheres to the first incompressible layer 6 of concrete, which facilitates the realization of the construction element 5. Indeed, it is not necessary to use a specific adhesive to secure the two layers 6, 7 of the element 5.
  • the mortar comprises an air-entraining admixture for causing the formation of air microbubbles in the material 1 1.
  • lignosulfonates or resin abietates can be used as an air entraining aid.
  • the first incompressible layer 6 is made of concrete.
  • Concrete means a material obtained from a mixture of thick aggregates, that is to say with a diameter of between 4 and 50 mm, such as gravel, of fine aggregates whose diameter is less than 4 mm like sand, cement, and water.
  • the concrete of the first layer 6 is devoid of cavities, it is incompressible, that is to say, it does not deform under a constraint exerted by the convergence of the ground 3.
  • the concrete is preferably armed.
  • Reinforced concrete comprises metal rods for reinforcement of the first layer 6.
  • FIGS. 3 and 4 show a preferred embodiment in which the second layer 7 comprises a plurality of devices 8 each having a solid body 9 delimiting at least one closed free space 10, as illustrated in FIGS. 9 to 11 . More particularly, the devices 8 are embedded in the material 1 1 of the second layer 7, in other words the second layer 7 has no gaps between the devices 8. In this case, each closed free space 10 forms a cavity 51 to 55 embedded in the material 1 1. This gives a homogeneous second layer 7 whose compressibility is controlled. Such devices 8 are also illustrated in FIGS. 9 to 11.
  • FIG. 3 shows an initial state in which the ground 3 is in contact with the second layer 7 of the building elements 5 before convergence. In the initial state, the bodies of the devices 8 have an initial shape and the second layer 7 has an initial thickness Gi.
  • the second compressible layer 7 deforms and allows the ground 3 to move towards the center of the tunnel 1.
  • the ground 3 can break or deform the devices 8, until reaching a state of equilibrium in which the ground 3 is at an equilibrium distance Ge of the external surface of the first layer 6, as illustrated in FIG. 4.
  • the equilibrium distance Ge is smaller than the initial distance Gi.
  • the breaking strength of the devices 8 is less than the convergence pressure of the ground 3 so as to allow the crushing of the devices 8.
  • the devices 8a broken devices may comprise, all or some of them, a state in which they are broken. This makes it possible to absorb the displacements of the ground 3 without damaging the tunnel 1.
  • the solid bodies 9 of the devices 8 may deform, breaking or bending, thanks in particular to their closed free space 10, to allow the deformation of the second layer 7.
  • a compressible layer 7 having a residual volume constituted by the sum of the closed free spaces 10 of each of the devices 8, which offers a damping property of the convergence of the ground 3.
  • the devices 8 may be made of ceramic.
  • the ceramic provides good resistance while being breakable to effectively damp the convergence of the ground 3.
  • the ground 3 can converge to the interior of the tunnel 1.
  • the devices 8 can also be made in glass, or mortar which are, like the ceramic, materials that can be broken under the effect of the convergence of the ground 3.
  • the devices 8 can be made of metal or plastic.
  • the devices 8 are all substantially identical in order to obtain a second homogeneous layer 7.
  • FIGS. 5 and 6 show another embodiment in which the second layer 7 comprises parts 40 having a porous solid body provided with several through-holes and with a number of closed free spaces 10. channels or orifices open on the surface of the solid body of the part 40.
  • the diameter of the through holes is smaller than that of the aggregates of the material 1 1. Closed free spaces 10 are also understood to mean empty spaces enclosed within the part 40.
  • the body of the parts 40 may be glass, plastic, or ceramic.
  • the pieces 40 are polystyrene balls.
  • the parts 40 are embedded in the material January 1. That is, the second layer 7 is devoid interstices between the pieces 40.
  • FIG. 5 shows an initial state in which the ground 3 is in contact with the second layer 7 of the building elements 5 before convergence. In the initial state, the pieces 40 have an initial shape and the second layer 7 has an initial thickness Gi. When the ground 3 converges, as illustrated in FIG.
  • the second compressible layer 7 deforms and allows the ground 3 to move towards the center of the tunnel 1.
  • the ground 3 can break or deform the pieces 40, until reaching a state of equilibrium in which the ground 3 is at an equilibrium distance Ge of the external surface of the first layer 6.
  • the equilibrium distance Ge is less than the initial distance Gi.
  • the breaking strength of the parts 40 is less than the convergence pressure of the ground 3 so as to allow the deformation of the parts 40. It is represented by the reference 40a of the broken parts, and by the reference 40b of the deformed parts.
  • the pieces 40 may comprise, all or some of them, a state in which they are broken or deformed. This makes it possible to absorb the displacements of the ground 3 without damaging the tunnel 1.
  • FIGS. 7 and 8 show another embodiment in which the cavities 51 to 55 embedded in the material 11 of the second layer 7 are obtained from an injection of a gas into the material 1 1.
  • a gas for example, air can be injected into a mortar when it is hardening.
  • Cavities 51 to 55 can also be created by adding to the material 11 a compound generating a gas.
  • the gas generating compound reacts with the cement to produce a gassing which forms the cavities 51 to 55.
  • the gas generating compound suitable for the cement may be, for example, a powder aluminum or zinc, or oxygen peroxide, or calcium carbide. The gases that form induce swelling of the material 1 1 to create the cavities 51 to 55.
  • Each cavity 51 to 55 allows the material January 1 to take place in the cavity 51 to 55 during the convergence of the ground 3.
  • Figure 7 an initial state in which the ground 3 is in contact with the second layer 7 construction elements 5 before convergence.
  • the cavities 51 to 55 occupy an initial volume within the material 11, and the second layer 7 has an initial thickness Gi.
  • the second compressible layer 7 is deformed and allows the ground 3 to move towards the center of the tunnel 1.
  • the material 1 1 fills the cavities 51 to 53, until reaching a state of equilibrium in which the ground 3 is at an equilibrium distance Ge of the external surface of the first layer 6.
  • the equilibrium distance Ge is less than the initial distance Gi.
  • the compressive strength of the second layer 7 is less than the land convergence pressure so as to allow the filling of the cavities 51 to 55 of the material.
  • the references 54 and 55 show cavities that persist after the equilibrium state. In other words, the second layer 7 absorbs the movements of the terrain 3 without damaging the tunnel 1.
  • the second layer 7 may comprise different combinations between the aforementioned elements embedded in the material 11, namely cavities 51 to 55 obtained from an injection of a gas into the material and / or devices 8 having a closed free space 10, and / or parts 40 whose body is porous.
  • Figures 9 to 1 1 illustrate an embodiment of the devices 8, the body 9 defines at least one closed free space 10.
  • the devices 8 have a solid body 9 ceramic.
  • the ceramic is adapted to produce these devices 8, because it is malleable before a cooking step so as to form the closed free space 10 within the device 8, and because it becomes solid after cooking.
  • the solid body 9 of the device 8 is particularly liquid-tight, for example mortar-proof pasty before curing and hardened mortar.
  • the body 9 of the device 8 extends along a longitudinal axis A of the device 8 and has two closed ends 13, 14.
  • the closed ends 13, 14 may each have a linear shape.
  • the ends 13, 14 are parallel to each other.
  • the ends 13, 14 may be perpendicular to each other.
  • the body 9 of the device 8 has a cylindrical shape.
  • the term "cylinder" means a solid bounded by a cylindrical surface generated by a straight line, denoted generatrix, traversing a closed planar curve, denoted as a director, and two parallel planes intersecting the generatrices.
  • the body 9 may have a shape of a tube.
  • the device 8 may also comprise several cavities communicating with each other or not.
  • the closed cavities 10 of the devices 8 prevent them from interlocking into each other, regardless of their size and shape.
  • FIG. 12 to 16 there is shown the main steps of an embodiment of a method of producing a construction element 5 as defined above.
  • the construction element 5 is manufactured by performing the following steps:
  • the second compressible layer 7 is produced from a material 11 comprising granulates aggregated by a binder, and cavities 51 to 55 embedded in the material.
  • a material 11 comprising granulates aggregated by a binder, and cavities 51 to 55 embedded in the material.
  • an open and curved parallelepiped formwork 30 is used to form a voussoir shape, as illustrated in FIG. 12.
  • the formwork 30 is open and not curved to produce tunnel sections of various shapes, for example U or ovoid.
  • liquid concrete 31 is poured into the formwork 30, as illustrated in FIG. 13. It is also possible to add metal bars in the liquid concrete 31 to obtain a first incompressible layer of reinforced concrete.
  • a first template 32 is used which is placed on the surface of concrete 31 and is moved along the surface to form a curved outer surface.
  • Concrete 31 is allowed to set, either completely and in this case the concrete has cured entirely, or partially, and in this case the concrete has not completely hardened but has sufficiently hardened at the surface to maintain the curvature given by the first template 32. Then the first template 32 is removed, thereby obtaining a first layer 6 whose base and outer surface are curved, as illustrated in FIG. 14.
  • formwork elements 33 are fixed to the edges of the formwork 30 for raising the formwork 30 and to be able to form the second layer 7, as illustrated in Figure 15. Then is poured into the formwork 30, and more particularly on the outer surface of the first layer 6, the material January 1. According to one embodiment, when pouring the material 1 1, the concrete of the first layer 6 has not completely cured.
  • the adhesion of the material to the outer surface of the first layer 6 which has not yet fully cured is promoted.
  • the material 1 1 is poured in the pasty state before it hardens.
  • the binder of the material 1 1 is cement to obtain a mortar as material 1 1. It is then possible to mix material 1 1 in the pasty state with devices 8 each having a solid body 9 delimiting at least one closed cavity 11.
  • Material 40 having a porous solid body may also be mixed with the material 1 1 in the pasty state. Can be mixed with the material 1 1 in the pasty state, a gas generating compound. It is also possible to inject a gas, using a gas injector, into the material 11 in the pasty state.
  • a material is obtained in which cavities 51 to 55 are embedded.
  • a second template 35 is used which is moved on the surface of the material 11 to form an outer surface curved on the second layer 7, as shown in Figure 15. Then the material 1 1 is allowed to harden to make the second layer 7 integral with the first layer 6. Then the second template 35 is removed and an element is obtained.
  • FIG. 17 shows a mode of implementation of an embodiment of the tunnel 1 described above in FIG.
  • a TBM 15 digs the cavity 2 in the ground 3 along the F1 direction.
  • the front of the tunnel boring machine 20 is equipped with means 21 ensuring the felling of the rock of the ground 3 and includes means for extracting the rock, not shown for purposes of simplification.
  • Part of the tunneling machine 15 ensures the implementation of the construction elements 5 as the tunneling machine 15 progresses along the F1 direction.
  • the TBM 15 comprises injection means 22 for injecting a filler 23, for example mortar or gravel, to fill the free space F delimited between the building elements 5 and the inner wall of the cavity 2, formed by the progress of the TBM 15.
  • the arrow, indicated by the reference F2 illustrates the path taken by the filling product 23 during its injection.
  • the injection of the filling product 23 makes it possible to form a filling layer to occupy the free space F between the building elements 5 and the ground 3.
  • the tunnel production method comprises the following steps:
  • sections 4 of the tunnel 1 situated inside the cavity 2 at least one section 4 being made from at least one element of construction 5, as defined above, as and when the tunneling machine 15 progresses.
  • a free space F delimited between the outer wall of the tunnel 1 and the inner wall of the cavity 2 is kept, to place the building elements 5 in order to form the section 4 of tunnel 1. Then fill the free space F with the filling product 23.
  • the construction element which has just been described makes it possible to facilitate the construction of a tunnel while ensuring damping of the convergence of the terrain in which the tunnel is located. In addition, it offers a better control of the tunnel construction process.
  • Such a construction element reduces the thickness of a classic voussoir, which greatly reduces the amount of concrete needed to build the tunnel.
  • Such a construction element is simple to produce, easily transportable, and which guarantees the conservation of a compressible layer integral with the incompressible layer for its transport and its integration within a tunnel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

Building element for creating a tunnel, comprising an incompressible first layer (6) of concrete and a compressible (11) second layer (7) secured to the first layer (6) to form a one-piece prefabricated building element configured to be incorporated into a tunnel section, the second layer (7) comprising a material (11) comprising granulate agglomerated using a binder, and cavities (51 to 55) embedded within the material (11).

Description

Elément de construction pour la réalisation d'un tunnel, tunnel comprenant un tel élément et procédés de fabrication d'un tel élément et d'un tel tunnel  Construction element for the realization of a tunnel, tunnel comprising such an element and methods for manufacturing such an element and such a tunnel
Domaine technique de l'invention Technical field of the invention
L'invention concerne la réalisation de tunnels, en particulier de tunnels souterrains, et les éléments de construction de tels tunnels. The invention relates to the construction of tunnels, in particular underground tunnels, and the construction elements of such tunnels.
État de la technique State of the art
Dans le domaine des tunnels, une cavité est, en général, creusée sous terre, puis un tunnel est formé dans cette cavité en utilisant des voussoirs. Les voussoirs correspondent à des éléments constitutifs d'une section annulaire du tunnel, une fois assemblés entre eux. Lorsqu'on creuse la cavité dans le terrain, on modifie l'équilibre du terrain et celui-ci exerce des poussées plus ou moins intenses qui tendent à fermer la cavité ainsi créée, on appelle ce phénomène « la convergence du terrain ». In the field of tunnels, a cavity is, in general, dug underground, then a tunnel is formed in this cavity using voussoirs. The voussoirs correspond to constituent elements of an annular section of the tunnel, once assembled together. When one digs the cavity in the ground, one modifies the balance of the ground and this one exerts more or less intense thrusts which tend to close the cavity thus created, one calls this phenomenon "the convergence of the ground".
On peut citer la demande de brevet français FR1200989, qui divulgue un système d'amortissement de la convergence d'un terrain comprenant un revêtement recouvrant une paroi externe d'un tunnel et qui comprend des dispositifs munis chacun d'un trou débouchant. Ces dispositifs à trou débouchant créent un espace libre au sein du revêtement, noté volume résiduel, qui participe, notamment, à l'amortissement de la convergence du terrain. En particulier, la poussée du terrain a tendance à occuper le volume résiduel, c'est-à-dire le volume laissé inoccupé par les dispositifs, ce qui permet d'amortir la poussée. Mais pour réaliser le revêtement, on doit injecter les dispositifs dans un espace délimité entre la paroi externe du tunnel et la paroi interne du terrain. Cependant, lors de la construction du tunnel, des éléments du terrain peuvent s'agglutiner dans l'espace délimité et faire obstacle à l'injection des dispositifs, ce qui peut empêcher de disposer les dispositifs de façon homogène autour de la paroi externe du tunnel. French patent application FR1200989, which discloses a field convergence damping system comprising a coating covering an outer wall of a tunnel and which comprises devices each provided with a through hole. These devices with opening hole create a free space within the coating, noted residual volume, which contributes, in particular, to the damping of the convergence of the ground. In particular, the thrust of the ground tends to occupy the residual volume, that is to say the volume left unoccupied by the devices, which helps dampen the thrust. But to achieve the coating, we must inject the devices in a space delimited between the outer wall of the tunnel and the inner wall of the ground. However, during the construction of the tunnel, elements of the ground can agglutinate in the defined space and obstruct the injection of the devices, which can prevent the devices from being arranged homogeneously around the outer wall of the tunnel .
On peut également citer la demande de brevet britannique GB 2013757 et le brevet américain US 4363565 qui divulguent un procédé de réalisation d'un tunnel à partir de voussoirs préfabriqués en béton. Avant d'être utilisé pour la réalisation du tunnel, chaque voussoir préfabriqué en béton comporte une couche d'un matériau compressible, telle une mousse de polyéthylène, collée sur la surface extérieure du voussoir. Mais la mousse peut être endommagée lors du stockage ou du transport du voussoir, ce qui peut entraîner une perte de ses propriétés mécaniques de compression et de déformation. En outre, il est difficile de coller la mousse pour la rendre solidaire au voussoir. It is also possible to cite British patent application GB 2013757 and US Pat. No. 4,363,565, which disclose a method of producing a tunnel from prefabricated concrete segments. Before being used for the realization of the tunnel, each prefabricated concrete segment comprises a layer of a compressible material, such as a polyethylene foam, glued on the outer surface of the voussoir. But the foam can be damaged during storage or transport of the voussoir, which can lead to a loss of its mechanical properties of compression and deformation. In addition, it is difficult to stick the foam to make it solid with the voussoir.
Il est donc intéressant de fournir un élément de construction adapté à la réalisation des tunnels, et un tunnel réalisé à partir d'un tel élément, et en particulier de fournir des procédés de fabrication d'un tel élément et d'un tel tunnel. It is therefore advantageous to provide a construction element suitable for tunnel construction, and a tunnel made from such an element, and in particular to provide methods of manufacturing such an element and such a tunnel.
Objet de l'invention Object of the invention
Un objet de l'invention consiste à palier les inconvénients cités ci-avant et en particulier à fournir un moyen facile à réaliser et à mettre en œuvre pour amortir la convergence d'un terrain exercée sur un tunnel. An object of the invention is to overcome the disadvantages mentioned above and in particular to provide a means easy to implement and implement to dampen the convergence of a terrain exerted on a tunnel.
Un autre objet de l'invention est de fournir un moyen pour garantir les propriétés mécaniques d'amortissement de la convergence d'un terrain d'un élément de construction lors de son stockage ou son transport. Selon un aspect, il est proposé un élément de construction pour la réalisation d'un tunnel, comprenant une première couche incompressible en béton et une deuxième couche compressible solidaire de la première couche pour former un élément de construction préfabriqué monobloc configuré pour être intégré dans une section du tunnel. Another object of the invention is to provide a means for guaranteeing the mechanical damping properties of the convergence of a terrain of a building element during its storage or transport. According to one aspect, there is provided a construction element for the realization of a tunnel, comprising a first incompressible layer of concrete and a second compressible layer secured to the first layer to form a monobloc prefabricated construction element configured to be integrated in a section of the tunnel.
La deuxième couche comporte un matériau comprenant des granulats agrégés par un liant, et des cavités noyées au sein du matériau. Ainsi, on fournit un élément de construction préfabriqué adapté pour réaliser une section d'un tunnel. Un tel élément de construction monobloc est facile à manipuler et on peut contrôler sa fabrication de manière à obtenir une section de tunnel homogène, afin de maîtriser le comportement du tunnel face à la convergence du terrain. En outre, les cavités formées au sein du matériau déterminent la compressibilité de la deuxième couche. En d'autres termes, les cavités permettent au terrain de converger et de décharger les contraintes exercées sur la première couche. Par ailleurs, les cavités étant noyées dans le matériau, elles sont protégées lors du stockage de l'élément de construction afin que l'élément de construction conserve ses propriétés de compressibilité lors de son utilisation dans une section de tunnel. The second layer comprises a material comprising aggregates aggregated by a binder, and cavities embedded within the material. Thus, there is provided a prefabricated building element adapted to make a section of a tunnel. Such a monoblock construction element is easy to handle and its manufacture can be controlled so as to obtain a homogeneous tunnel section, in order to control the behavior of the tunnel facing the convergence of the terrain. In addition, the cavities formed in the material determine the compressibility of the second layer. In other words, the cavities allow the ground to converge and unload the stresses exerted on the first layer. Moreover, the cavities being embedded in the material, they are protected during storage of the construction element so that the construction element retains its compressibility properties when used in a tunnel section.
Le liant peut comporter un ciment. The binder may comprise a cement.
L'agrégation des granulats avec du ciment permet d'obtenir un mortier comme matériau de la deuxième couche. Le mortier est particulièrement adapté pour se solidariser à la première couche de béton, tout en permettant au terrain de converger et de décharger les contraintes exercées sur la première couche. On évite ainsi d'utiliser une pellicule adhésive pour solidariser les deux couches de l'élément préfabriqué monobloc. En outre, le mortier est résistant aux chocs et permet de protéger les cavités de la deuxième couche lors du transport de l'élément de construction, tout en conservant les propriétés mécaniques de compressibilité et de déformation de l'élément de construction. The aggregation of the aggregates with cement makes it possible to obtain a mortar as material of the second layer. The mortar is particularly adapted to become solid with the first layer of concrete, while allowing the ground to converge and discharge the stresses exerted on the first layer. This avoids using an adhesive film to secure the two layers of the prefabricated monobloc element. In addition, the mortar is impact resistant and protects the cavities of the second layer during transport of the construction element, while retaining the mechanical properties of compressibility and deformation of the building element.
La deuxième couche peut comporter une pluralité de dispositifs noyés au sein du matériau, chaque dispositif ayant un corps solide délimitant au moins un espace libre fermé. The second layer may comprise a plurality of devices embedded in the material, each device having a solid body delimiting at least one closed free space.
Le corps solide des dispositifs peut être réalisé en céramique ou en matière plastique. The solid body of the devices can be made of ceramic or plastic.
La deuxième couche peut comporter une pluralité de pièces noyées au sein du matériau, chaque pièce ayant un corps solide poreux muni de plusieurs trous débouchants et de plusieurs espaces libres fermés. La deuxième couche peut également comporter un composé générant un gaz au sein du matériau formant les cavités. The second layer may comprise a plurality of parts embedded in the material, each part having a porous solid body provided with several through holes and several closed free spaces. The second layer may also comprise a compound generating a gas within the material forming the cavities.
Selon un autre aspect, il est proposé un tunnel situé à l'intérieur d'une cavité creusée dans un terrain, au moins une section du tunnel étant réalisée à partir d'au moins un élément de construction à deux couches tel que défini ci- avant. In another aspect, there is provided a tunnel located inside a cavity dug in a field, at least one section of the tunnel being made from at least one two-layer construction element as defined above. before.
Selon encore un autre aspect, il est proposé un procédé de réalisation d'un élément de construction pour la réalisation d'un tunnel, comprenant les étapes suivantes : According to yet another aspect, there is provided a method for producing a construction element for the realization of a tunnel, comprising the following steps:
- réaliser une première couche incompressible en béton ; et  - Make a first layer incompressible concrete; and
- réaliser une deuxième couche compressible solidaire de la première couche pour former un élément de construction préfabriqué monobloc configuré pour être intégré dans une section du tunnel. Dans ce procédé, on réalise la deuxième couche à partir d'un matériau comprenant des granulats agrégés par un liant, et de cavités noyées au sein du matériau. On peut noyer, au sein du matériau, des dispositifs ayant chacun un corps solide délimitant au moins un espace libre fermé. - Making a second compressible layer secured to the first layer to form a monobloc prefabricated construction element configured to be integrated in a section of the tunnel. In this process, the second layer is produced from a material comprising aggregates aggregated by a binder, and cavities embedded in the material. Within the material, devices can be drowned, each having a solid body delimiting at least one closed free space.
On peut également réaliser les cavités à partir d'une injection d'un gaz au sein du matériau. The cavities can also be made from an injection of a gas into the material.
Selon un autre aspect, il est proposé un procédé de réalisation d'un tunnel comprenant les étapes suivantes : In another aspect, there is provided a method for producing a tunnel comprising the following steps:
- former une cavité dans un terrain à l'aide d'un tunnelier ; et  - form a cavity in a field using a tunnel boring machine; and
- former des sections du tunnel situées à l'intérieur de la cavité, au moins une section étant réalisée à partir d'au moins un élément de construction à deux couches tel que défini ci-avant, au fur et à mesure de l'avancement du tunnelier.  forming sections of the tunnel located inside the cavity, at least one section being made from at least one two-layer construction element as defined above, as and when the progress tunnel boring machine.
Description sommaire des dessins Brief description of the drawings
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation et de mise en œuvre de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels : Other advantages and features will emerge more clearly from the following description of particular embodiments and implementations of the invention given as non-restrictive examples and represented in the accompanying drawings, in which:
- la figure 1 , représente schématiquement une vue en coupe d'un mode de réalisation d'un tunnel selon l'invention ; - Figure 1 schematically shows a sectional view of an embodiment of a tunnel according to the invention;
- la figure 2, illustre de façon schématique un mode de réalisation d'un élément de construction selon l'invention ;  FIG. 2 schematically illustrates an embodiment of a construction element according to the invention;
- les figures 3, 5, et 7, illustrent schématiquement des modes de réalisation d'un élément de construction intégré dans un tunnel et dans un état initial avant convergence du terrain ; - les figures 4, 6, et 8 illustrent schématiquement respectivement les modes de réalisation des figures 3, 5 et 7 dans un état d'équilibre après convergence du terrain ; FIGS. 3, 5 and 7 schematically illustrate embodiments of an integrated construction element in a tunnel and in an initial state before convergence of the terrain; FIGS. 4, 6 and 8 schematically illustrate respectively the embodiments of FIGS. 3, 5 and 7 in a state of equilibrium after convergence of the terrain;
- la figure 9, illustre schématiquement une vue en perspective d'un mode de réalisation d'un dispositif muni d'une cavité fermée ;  FIG. 9 schematically illustrates a perspective view of an embodiment of a device provided with a closed cavity;
- la figure 10, illustre schématiquement une vue en coupe du dispositif de la figure 9 ;  - Figure 10 schematically illustrates a sectional view of the device of Figure 9;
- la figure 1 1 , illustre schématiquement une vue antérieure gauche du dispositif de la figure 9 ;  - Figure 1 1 schematically illustrates a left front view of the device of Figure 9;
- les figures 12 à 16, illustrent schématiquement les principales étapes d'un mode de mise en œuvre d'un procédé de réalisation d'un élément de construction ; et  - Figures 12 to 16 schematically illustrate the main steps of an embodiment of a method of producing a construction element; and
- la figure 17, illustre de façon schématique une vue en coupe d'un tunnelier réalisant le tunnel de la figure 1 .  FIG. 17 schematically illustrates a cross-sectional view of a tunneling machine carrying out the tunnel of FIG. 1.
Description détaillée detailed description
De manière générale, bien que la présente invention procure des avantages particuliers dans le domaine des tunnels, elle est aussi applicable à tout système qui est réalisé dans une cavité souterraine et qui est configuré pour résister à la convergence du terrain, par exemple des réceptacles ou cuves partiellement ou totalement enterrés. In general, although the present invention provides particular advantages in the field of tunnels, it is also applicable to any system which is performed in an underground cavity and which is configured to withstand the convergence of terrain, for example containers or tanks partially or completely buried.
Sur la figure 1 , on a représenté un tunnel 1 réalisé dans une cavité 2 creusée dans un terrain 3, en d'autres termes un tunnel sous-terrain. Le tunnel 1 peut être ouvert et avoir une forme de U renversé, il peut également être fermé et avoir une forme ovoïde, ou toute autre forme. Préférentiellement, le tunnel 1 a une forme globalement tubulaire. Le tunnel 1 comprend des sections 4 situées au sein de la cavité 2. Au moins une section 4, et de préférence chaque section 4, est réalisée à partir d'éléments de construction 5 assemblés entre eux. Au moins un élément de construction 5 comprend une première couche 6 incompressible en béton. Par exemple, lorsque les sections 4 du tunnel 1 ont une forme annulaire, la première couche 6 a une forme d'un hexaèdre incurvé. En outre, l'élément de construction 5 comporte une deuxième couche 7 compressible solidaire de la première couche 6 pour former un élément de construction 5 préfabriqué du type monobloc, comme illustré à la figure 2. La deuxième couche 7 étant solidaire de la première couche 6, elle épouse la forme de la première couche 6. Ainsi, l'élément de construction 5 est configuré pour être intégré dans une section 4 du tunnel 1 . Lorsque les première et deuxième couches 6, 7 ont une forme hexaédrique incurvée, l'élément de construction 5 forme alors un voussoir à partie compressible 7. L'élément de construction 5 est préfabriqué, c'est-à-dire qu'il est réalisé avant la réalisation du tunnel 1 . En d'autres termes, on réalise préalablement l'élément de construction 5, puis on assemble plusieurs éléments de construction 5 entre eux de manière à réaliser une section 4 du tunnel 1 . Ainsi, on s'affranchit de réaliser un revêtement d'amortissement par injection de matière entre un voussoir et le terrain 3. En effet, l'élément de construction 5 incorpore préalablement une couche compressible 7, et a donc une propriété mécanique amortisseur intégrée. Par ailleurs, on entend par élément monobloc, un élément déplaçable qui conserve son intégrité physique et ses propriétés mécaniques lors de son transport, par exemple lorsqu'on déplace l'élément depuis sa zone de fabrication vers l'endroit de la section 4 du tunnel 1 où il est placé. En d'autres termes, l'élément de construction 5 est configuré pour être intégré dans une section 4 du tunnel 1 , et en particulier dans une section 4 qui est en cours de réalisation. In Figure 1, there is shown a tunnel 1 made in a cavity 2 dug in a terrain 3, in other words an underground tunnel. The tunnel 1 can be open and have an inverted U shape, it can also be closed and have an ovoid shape, or any other shape. Preferentially, the tunnel 1 has a generally tubular shape. The tunnel 1 comprises sections 4 located within the cavity 2. At least one section 4, and preferably each section 4, is made from construction elements 5 assembled together. At least one construction element 5 comprises a first layer 6 incompressible concrete. For example, when the sections 4 of the tunnel 1 have an annular shape, the first layer 6 has a shape of a curved hexahedron. In addition, the construction element 5 comprises a second compressible layer 7 integral with the first layer 6 to form a prefabricated building element 5 of the monoblock type, as shown in FIG. 2. The second layer 7 being integral with the first layer 6, it matches the shape of the first layer 6. Thus, the construction element 5 is configured to be integrated in a section 4 of the tunnel 1. When the first and second layers 6, 7 have a curved hexahedral shape, the construction element 5 then forms a segment with a compressible portion 7. The construction element 5 is prefabricated, that is to say it is realized before the realization of the tunnel 1. In other words, the construction element 5 is previously produced, then several construction elements 5 are assembled together so as to form a section 4 of the tunnel 1. Thus, it is avoided to achieve a damping coating by injection of material between a voussoir and the ground 3. Indeed, the building element 5 incorporates before a compressible layer 7, and therefore has an integrated mechanical damping property. Furthermore, the term monoblock element, a movable element that retains its physical integrity and its mechanical properties during transport, for example when moving the element from its manufacturing area to the location of section 4 of the tunnel 1 where it is placed. In other words, the building element 5 is configured to be integrated in a section 4 of the tunnel 1, and in particular in a section 4 which is in progress.
On a illustré aux figures 3 à 8, différents modes de réalisation de l'élément de construction 5. De façon générale, la deuxième couche 7 comporte un matériau 1 1 comprenant des granulats agrégés par un liant, et des cavités 51 à 55 noyées au sein du matériau. Le liant permet d'agglomérer les granulats pour obtenir un matériau 1 1 compact. Le matériau 1 1 compact permet, notamment, de fournir des propriétés de résistances mécaniques à la deuxième couche 7. Les cavités 51 à 55 permettent, quant à elles, de rendre la deuxième couche 7 compressible, c'est-à-dire que l'épaisseur E de la deuxième couche 7 peut diminuer lors de la convergence du terrain 3. Dans l'état initial, le terrain 3 exerce une pression de convergence initiale sur le tunnel 1 . Du fait des mouvements du terrain 3, celui-ci va avoir tendance à converger vers l'intérieur de la cavité 2. Cette convergence du terrain 3 va augmenter la pression exercée sur la deuxième couche 7. Sous l'effet de cette augmentation de pression, le matériau 1 1 va prendre la place des cavités 51 à 55, et la deuxième couche 7 va se déformer. Ainsi, la déformation de la deuxième couche 7 compressible va permettre un rapprochement progressif du terrain 3 vers l'intérieur du tunnel 1 , jusqu'à ce que le terrain 3 occupe un état d'équilibre. Dans l'état d'équilibre, la pression de convergence est inférieure à la pression initiale. La deuxième couche compressible 7 permet donc d'amortir la convergence du terrain 3 jusqu'à un état d'équilibre pour lequel la pression de convergence est supportée par l'élément de construction 5, c'est-à-dire que la première couche incompressible 6 ne se déforme pas sous la pression de convergence à l'équilibre. FIGS. 3 to 8 show different embodiments of the construction element 5. In general, the second layer 7 comprises a material 11 comprising aggregates aggregated by a binder, and cavities 51 to 55 embedded in the within the material. The binder makes it possible to agglomerate the aggregates to obtain a compact material. The compact material 1 1 makes it possible, in particular, to provide properties of mechanical strength to the second layer 7. The cavities 51 to 55 make it possible, in turn, to make the second layer 7 compressible, that is to say that the thickness E of the second layer 7 can decrease during the convergence of the terrain 3 In the initial state, the terrain 3 exerts an initial convergence pressure on the tunnel 1. Due to the movements of the ground 3, it will tend to converge towards the interior of the cavity 2. This convergence of the ground 3 will increase the pressure exerted on the second layer 7. As a result of this increase in pressure the material 1 1 will take the place of the cavities 51 to 55, and the second layer 7 will deform. Thus, the deformation of the second compressible layer 7 will allow a progressive approximation of the ground 3 towards the interior of the tunnel 1, until the ground 3 occupies a state of equilibrium. In the equilibrium state, the convergence pressure is lower than the initial pressure. The second compressible layer 7 thus makes it possible to damp the convergence of the ground 3 to a state of equilibrium for which the convergence pressure is supported by the construction element 5, that is to say that the first layer incompressible 6 does not deform under the pressure of convergence at equilibrium.
L'épaisseur E de la deuxième couche 7 est choisie en fonction de l'amortissement de la convergence du terrain 3 que l'on souhaite obtenir. En particulier l'épaisseur E est choisie en fonction du déplacement du terrain 3, par rapport à sa position initiale, qui peut être supporté par l'élément de construction 5. Dans la position initiale, le terrain 3 est à une distance initiale F, comme illustré sur la figure 1 , de la surface externe de la deuxième couche 7. La distance initiale F correspond à l'épaisseur de l'espace libre F. En outre, l'épaisseur E dépend également de la compressibilité de la deuxième couche 7. Plus particulièrement, l'agrégation des granulats par un liant permet d'obtenir un matériau 1 1 solide qui peut fournir une force de résistance opposée aux contraintes exercées par le terrain 3 lors de sa convergence. Le matériau 1 1 est également adapté pour protéger les cavités 51 à 55, lors de chocs éventuels pendant le transport de l'élément de construction 5 pour l'intégrer dans une section 4 du tunnel 1 , et pour maintenir les propriétés de compressibilité de la deuxième couche 7. Les granulats peuvent être du sable ou du gravier, ou un mélange des deux. Le liant permet l'agrégation des granulats, il peut être du ciment, du plâtre, de la chaux, du bitume, de l'argile, ou encore une matière plastique comme par exemple une résine synthétique. De manière optionnelle, le matériau 1 1 peut comprendre un ou plusieurs adjuvants pour donner des propriétés spécifiques au matériau 1 1 . The thickness E of the second layer 7 is chosen as a function of the damping of the convergence of the terrain 3 that it is desired to obtain. In particular, the thickness E is chosen as a function of the displacement of the ground 3, with respect to its initial position, which can be supported by the construction element 5. In the initial position, the ground 3 is at an initial distance F, as illustrated in FIG. 1, of the external surface of the second layer 7. The initial distance F corresponds to the thickness of the free space F. In addition, the thickness E also depends on the compressibility of the second layer 7 . More particularly, aggregating the aggregates with a binder makes it possible to obtain a solid material 11 which can provide a resistance force opposed to the stresses exerted by the ground 3 during its convergence. The material 1 1 is also adapted to protect the cavities 51 to 55, during possible shocks during the transport of the construction element 5 to integrate it in a section 4 of the tunnel 1, and to maintain the compressibility properties of the second layer 7. Aggregates may be sand or gravel, or a mixture of both. The binder allows aggregation aggregates, it can be cement, plaster, lime, bitumen, clay, or a plastic such as a synthetic resin. Optionally, the material 11 may comprise one or more adjuvants to give properties specific to the material 11.
De préférence, on utilise un mortier comme matériau 1 1 de la deuxième couche 7, à partir d'un mélange de granulats fins, par exemple du sable, de ciment et d'eau. Avantageusement, les granulats fins ont un diamètre inférieur à 4 mm pour améliorer la déformation de la deuxième couche 7. Le ciment mélangé à l'eau forme une pâte qui durcit progressivement suite à des réactions chimiques entre le ciment et l'eau. Le mortier est particulièrement adapté car il adhère facilement à la première couche 6 incompressible en béton, ce qui facilite la réalisation de l'élément de construction 5. En effet, il n'est pas nécessaire d'utiliser un adhésif spécifique pour solidariser les deux couches 6, 7 de l'élément 5. De façon avantageuse, le mortier comprend un adjuvant entraîneur d'air pour entraîner la formation de microbulles d'air dans le matériau 1 1 . Par exemple, on peut utiliser des lignosulfonates ou des abiétates de résines comme adjuvant entraîneur d'air. Preferably, a mortar is used as the material 1 1 of the second layer 7, from a mixture of fine aggregates, for example sand, cement and water. Advantageously, the fine aggregates have a diameter of less than 4 mm to improve the deformation of the second layer 7. The water-mixed cement forms a paste which hardens gradually following chemical reactions between the cement and the water. The mortar is particularly suitable because it easily adheres to the first incompressible layer 6 of concrete, which facilitates the realization of the construction element 5. Indeed, it is not necessary to use a specific adhesive to secure the two layers 6, 7 of the element 5. Advantageously, the mortar comprises an air-entraining admixture for causing the formation of air microbubbles in the material 1 1. For example, lignosulfonates or resin abietates can be used as an air entraining aid.
A la différence du matériau 1 1 de la deuxième couche 7, la première couche 6 incompressible est réalisée en béton. On entend par béton, un matériau obtenu à partir d'un mélange de granulats épais, c'est-à-dire dont le diamètre est compris entre 4 et 50 mm comme le gravier, de granulats fins dont le diamètre est inférieur à 4 mm comme le sable, de ciment, et d'eau. Le béton de la première couche 6 est dépourvu de cavités, il est donc incompressible, c'est-à-dire qu'il ne se déforme pas sous une contrainte exercée par la convergence du terrain 3. Le béton est de préférence armé. Un béton armé comprend des tiges métalliques pour le renfort de la première couche 6. Unlike the material 1 1 of the second layer 7, the first incompressible layer 6 is made of concrete. Concrete means a material obtained from a mixture of thick aggregates, that is to say with a diameter of between 4 and 50 mm, such as gravel, of fine aggregates whose diameter is less than 4 mm like sand, cement, and water. The concrete of the first layer 6 is devoid of cavities, it is incompressible, that is to say, it does not deform under a constraint exerted by the convergence of the ground 3. The concrete is preferably armed. Reinforced concrete comprises metal rods for reinforcement of the first layer 6.
Sur les figures 3 et 4, on a représenté un mode de réalisation préféré dans lequel la deuxième couche 7 comprend une pluralité de dispositifs 8 ayant chacun un corps solide 9 délimitant au moins un espace libre fermé 10, comme illustré aux figures 9 à 1 1 . Plus particulièrement, les dispositifs 8 sont noyés dans le matériau 1 1 de la deuxième couche 7, en d'autres termes la deuxième couche 7 est dépourvue d'interstices entre les dispositifs 8. Dans ce cas, chaque espace libre fermé 10 forme une cavité 51 à 55 noyée au sein du matériau 1 1 . On obtient ainsi une deuxième couche 7 homogène dont la compressibilité est maîtrisée. De tels dispositifs 8 sont également illustrés aux figures 9 à 1 1 . On a représenté à la figure 3, un état initial dans lequel le terrain 3 est en contact avec la deuxième couche 7 des éléments de construction 5 avant convergence. Dans l'état initial, les corps des dispositifs 8 ont une forme initiale et la deuxième couche 7 a une épaisseur Gi initiale. Lorsque le terrain 3 converge, tel qu'illustré sur la figure 4, la deuxième couche compressible 7 se déforme et permet un déplacement du terrain 3 vers le centre du tunnel 1 . Le terrain 3 peut briser ou déformer les dispositifs 8, jusqu'à atteindre un état d'équilibre dans lequel le terrain 3 est à une distance d'équilibre Ge de la surface externe de la première couche 6, comme illustré sur la figure 4. La distance d'équilibre Ge est inférieure à la distance initiale Gi. La résistance à la rupture des dispositifs 8 est inférieure à la pression de convergence du terrain 3 de façon à permettre l'écrasement des dispositifs 8. On a représenté par la référence 8a des dispositifs brisés. Autrement dit, les dispositifs 8 peuvent comprendre, tous ou certains d'entre eux, un état dans lequel ils sont brisés. Ceci permet d'absorber les déplacements du terrain 3 sans endommager le tunnel 1. Les corps solides 9 des dispositifs 8 peuvent se déformer, en se brisant ou en se courbant, grâce notamment à leur espace libre fermé 10, pour permettre la déformation de la deuxième couche 7. Ainsi, on fournit une couche compressible 7 ayant un volume résiduel, constitué par la somme des espaces libres fermés 10 de chacun des dispositifs 8, qui offre une propriété d'amortissement de la convergence du terrain 3. FIGS. 3 and 4 show a preferred embodiment in which the second layer 7 comprises a plurality of devices 8 each having a solid body 9 delimiting at least one closed free space 10, as illustrated in FIGS. 9 to 11 . More particularly, the devices 8 are embedded in the material 1 1 of the second layer 7, in other words the second layer 7 has no gaps between the devices 8. In this case, each closed free space 10 forms a cavity 51 to 55 embedded in the material 1 1. This gives a homogeneous second layer 7 whose compressibility is controlled. Such devices 8 are also illustrated in FIGS. 9 to 11. FIG. 3 shows an initial state in which the ground 3 is in contact with the second layer 7 of the building elements 5 before convergence. In the initial state, the bodies of the devices 8 have an initial shape and the second layer 7 has an initial thickness Gi. When the ground 3 converges, as shown in FIG. 4, the second compressible layer 7 deforms and allows the ground 3 to move towards the center of the tunnel 1. The ground 3 can break or deform the devices 8, until reaching a state of equilibrium in which the ground 3 is at an equilibrium distance Ge of the external surface of the first layer 6, as illustrated in FIG. 4. The equilibrium distance Ge is smaller than the initial distance Gi. The breaking strength of the devices 8 is less than the convergence pressure of the ground 3 so as to allow the crushing of the devices 8. There is shown by reference 8a broken devices. In other words, the devices 8 may comprise, all or some of them, a state in which they are broken. This makes it possible to absorb the displacements of the ground 3 without damaging the tunnel 1. The solid bodies 9 of the devices 8 may deform, breaking or bending, thanks in particular to their closed free space 10, to allow the deformation of the second layer 7. Thus, there is provided a compressible layer 7 having a residual volume , constituted by the sum of the closed free spaces 10 of each of the devices 8, which offers a damping property of the convergence of the ground 3.
Par exemple, les dispositifs 8 peuvent être réalisés en céramique. La céramique offre une bonne résistance tout en étant cassable pour amortir efficacement la convergence du terrain 3. Lorsque les corps 9 des dispositifs 8 se brisent, le terrain 3 peut converger vers l'intérieur du tunnel 1. Les dispositifs 8 peuvent également être réalisés en verre, ou en mortier qui sont, tout comme la céramique, des matériaux pouvant être brisés sous l'effet de la convergence du terrain 3. En variante, les dispositifs 8 peuvent être réalisés en métal, ou en matière plastique. De préférence, les dispositifs 8 sont tous sensiblement identiques afin d'obtenir une deuxième couche 7 homogène. Sur les figures 5 et 6, on a représenté un autre mode de réalisation dans lequel la deuxième couche 7 comprend des pièces 40 ayant un corps solide poreux muni de plusieurs trous débouchants et de plusieurs espaces libres fermés 10. On entend par trous débouchants, des canaux ou orifices ouverts à la surface du corps solide de la pièce 40. Préférentiellement, le diamètre des trous débouchants est inférieur à celui des granulats du matériau 1 1 . On entend également par espaces libres fermés 10, des espaces vides enfermés à l'intérieur de la pièce 40. Ainsi, les pièces 40 peuvent se déformer, en se brisant ou en se courbant. Le corps des pièces 40 peut être en verre, en plastique, ou en céramique. Par exemple, les pièces 40 sont des billes en polystyrène. De préférence les pièces 40 sont noyées dans le matériau 1 1 . C'est-à-dire que la deuxième couche 7 est dépourvue d'interstices entre les pièces 40. On a représenté à la figure 5, un état initial dans lequel le terrain 3 est en contact de la deuxième couche 7 des éléments de construction 5 avant convergence. Dans l'état initial, les pièces 40 ont une forme initiale et la deuxième couche 7 a une épaisseur Gi initiale. Lorsque le terrain 3 converge, tel qu'illustré sur la figure 6, la deuxième couche compressible 7 se déforme et permet un déplacement du terrain 3 vers le centre du tunnel 1 . Le terrain 3 peut briser ou déformer les pièces 40, jusqu'à atteindre un état d'équilibre dans lequel le terrain 3 est à une distance d'équilibre Ge de la surface externe de la première couche 6. La distance d'équilibre Ge est inférieure à la distance initiale Gi. La résistance à la rupture des pièces 40 est inférieure à la pression de convergence du terrain 3 de façon à permettre la déformation des pièces 40. On a représenté par la référence 40a des pièces brisées, et par la référence 40b des pièces déformées. Autrement dit, les pièces 40 peuvent comprendre, tous ou certaines d'entre elles, un état dans lequel elles sont brisées ou déformées. Ceci permet d'absorber les déplacements du terrain 3 sans endommager le tunnel 1 . For example, the devices 8 may be made of ceramic. The ceramic provides good resistance while being breakable to effectively damp the convergence of the ground 3. When the bodies 9 of the devices 8 break, the ground 3 can converge to the interior of the tunnel 1. The devices 8 can also be made in glass, or mortar which are, like the ceramic, materials that can be broken under the effect of the convergence of the ground 3. Alternatively, the devices 8 can be made of metal or plastic. Preferably, the devices 8 are all substantially identical in order to obtain a second homogeneous layer 7. FIGS. 5 and 6 show another embodiment in which the second layer 7 comprises parts 40 having a porous solid body provided with several through-holes and with a number of closed free spaces 10. channels or orifices open on the surface of the solid body of the part 40. Preferably, the diameter of the through holes is smaller than that of the aggregates of the material 1 1. Closed free spaces 10 are also understood to mean empty spaces enclosed within the part 40. Thus, the parts 40 can be deformed, breaking or bending. The body of the parts 40 may be glass, plastic, or ceramic. For example, the pieces 40 are polystyrene balls. Preferably the parts 40 are embedded in the material January 1. That is, the second layer 7 is devoid interstices between the pieces 40. FIG. 5 shows an initial state in which the ground 3 is in contact with the second layer 7 of the building elements 5 before convergence. In the initial state, the pieces 40 have an initial shape and the second layer 7 has an initial thickness Gi. When the ground 3 converges, as illustrated in FIG. 6, the second compressible layer 7 deforms and allows the ground 3 to move towards the center of the tunnel 1. The ground 3 can break or deform the pieces 40, until reaching a state of equilibrium in which the ground 3 is at an equilibrium distance Ge of the external surface of the first layer 6. The equilibrium distance Ge is less than the initial distance Gi. The breaking strength of the parts 40 is less than the convergence pressure of the ground 3 so as to allow the deformation of the parts 40. It is represented by the reference 40a of the broken parts, and by the reference 40b of the deformed parts. In other words, the pieces 40 may comprise, all or some of them, a state in which they are broken or deformed. This makes it possible to absorb the displacements of the ground 3 without damaging the tunnel 1.
Sur les figures 7 et 8, on a représenté un autre mode de réalisation dans lequel les cavités 51 à 55 noyées au sein du matériau 1 1 de la deuxième couche 7 sont obtenues à partir d'une injection d'un gaz au sein du matériau 1 1 . Par exemple, on peut injecter de l'air dans un mortier lorsqu'il est en train de durcir. On peut également créer les cavités 51 à 55 en ajoutant au matériau 1 1 un composé générant un gaz. Lorsque le liant du matériau 1 1 est du ciment, le composé générateur de gaz réagit avec le ciment pour produire un dégagement gazeux qui forme les cavités 51 à 55. Le composé générateur de gaz adapté pour le ciment peut être, par exemple, une poudre d'aluminium ou de zinc, ou du peroxyde d'oxygène, ou du carbure de calcium. Les gaz qui se forment induisent un gonflement du matériau 1 1 pour créer les cavités 51 à 55. Chaque cavité 51 à 55 permet au matériau 1 1 de prendre place dans la cavité 51 à 55 lors de la convergence du terrain 3. On a représenté à la figure 7, un état initial dans lequel le terrain 3 est en contact de la deuxième couche 7 des éléments de construction 5 avant convergence. Dans l'état initial, les cavités 51 à 55 occupent un volume initial au sein du matériau 1 1 , et la deuxième couche 7 a une épaisseur Gi initiale. Lorsque le terrain 3 converge, tel qu'illustré sur la figure 8, la deuxième couche compressible 7 se déforme et permet un déplacement du terrain 3 vers le centre du tunnel 1 . Le matériau 1 1 remplit les cavités 51 à 53, jusqu'à atteindre un état d'équilibre dans lequel le terrain 3 est à une distance d'équilibre Ge de la surface externe de la première couche 6. La distance d'équilibre Ge est inférieure à la distance initiale Gi. La résistance à la compression de la deuxième couche 7 est inférieure à la pression de convergence du terrain de façon à permettre le remplissage des cavités 51 à 55 du matériau. On a représenté par les références 54 et 55 des cavités qui persistent après l'état d'équilibre. Autrement dit, la deuxième couche 7 absorbe les déplacements du terrain 3 sans endommager le tunnel 1 . FIGS. 7 and 8 show another embodiment in which the cavities 51 to 55 embedded in the material 11 of the second layer 7 are obtained from an injection of a gas into the material 1 1. For example, air can be injected into a mortar when it is hardening. Cavities 51 to 55 can also be created by adding to the material 11 a compound generating a gas. When the binder of the material 1 1 is cement, the gas generating compound reacts with the cement to produce a gassing which forms the cavities 51 to 55. The gas generating compound suitable for the cement may be, for example, a powder aluminum or zinc, or oxygen peroxide, or calcium carbide. The gases that form induce swelling of the material 1 1 to create the cavities 51 to 55. Each cavity 51 to 55 allows the material January 1 to take place in the cavity 51 to 55 during the convergence of the ground 3. There is shown in Figure 7, an initial state in which the ground 3 is in contact with the second layer 7 construction elements 5 before convergence. In the initial state, the cavities 51 to 55 occupy an initial volume within the material 11, and the second layer 7 has an initial thickness Gi. When the ground 3 converges, as illustrated in FIG. 8, the second compressible layer 7 is deformed and allows the ground 3 to move towards the center of the tunnel 1. The material 1 1 fills the cavities 51 to 53, until reaching a state of equilibrium in which the ground 3 is at an equilibrium distance Ge of the external surface of the first layer 6. The equilibrium distance Ge is less than the initial distance Gi. The compressive strength of the second layer 7 is less than the land convergence pressure so as to allow the filling of the cavities 51 to 55 of the material. The references 54 and 55 show cavities that persist after the equilibrium state. In other words, the second layer 7 absorbs the movements of the terrain 3 without damaging the tunnel 1.
La deuxième couche 7 peut comprendre différentes combinaisons entre les différents éléments précités noyés dans le matériau 1 1 , à savoir, des cavités 51 à 55 obtenues à partir d'une injection d'un gaz au sein du matériau et/ou des dispositifs 8 ayant un espace libre fermé 10, et/ou des pièces 40 dont le corps est poreux. Les figures 9 à 1 1 illustrent un mode de réalisation des dispositifs 8 dont le corps 9 délimite au moins un espace libre fermé 10. Préférentiellement, les dispositifs 8 ont un corps solide 9 en céramique. La céramique est adaptée pour réaliser ces dispositifs 8, car elle est malléable avant une étape de cuisson de manière à pouvoir former l'espace libre fermé 10 au sein du dispositif 8, et car elle devient solide après la cuisson. Le corps solide 9 du dispositif 8 est en particulier étanche aux liquides, par exemple au mortier pâteux avant durcissement ainsi qu'au mortier durci. Par exemple, le corps 9 du dispositif 8 s'étend selon un axe longitudinal A du dispositif 8 et comporte deux extrémités fermées 13, 14. Les extrémités fermées 13, 14 peuvent avoir, chacune, une forme linéaire. Dans un premier mode de réalisation, tel qu'illustré aux figures 9 et 10, les extrémités 13, 14 sont parallèles entre elles. En variante, les extrémités 13, 14 peuvent être perpendiculaires entre elles. Par exemple, le corps 9 du dispositif 8 a une forme cylindrique. On entend ici par cylindre, un solide limité par une surface cylindrique engendrée par une droite, notée génératrice, parcourant une courbe plane fermée, notée directrice, et deux plans parallèles coupant les génératrices. En particulier, le corps 9 peut avoir une forme d'un tube. Le dispositif 8 peut également comprendre plusieurs cavités, communicant entre elles ou non. Avantageusement, les cavités fermées 10 des dispositifs 8 les empêchent de s'imbriquer les uns dans les autres, quelle que soit leur taille et leur forme. The second layer 7 may comprise different combinations between the aforementioned elements embedded in the material 11, namely cavities 51 to 55 obtained from an injection of a gas into the material and / or devices 8 having a closed free space 10, and / or parts 40 whose body is porous. Figures 9 to 1 1 illustrate an embodiment of the devices 8, the body 9 defines at least one closed free space 10. Preferably, the devices 8 have a solid body 9 ceramic. The ceramic is adapted to produce these devices 8, because it is malleable before a cooking step so as to form the closed free space 10 within the device 8, and because it becomes solid after cooking. The solid body 9 of the device 8 is particularly liquid-tight, for example mortar-proof pasty before curing and hardened mortar. For example, the body 9 of the device 8 extends along a longitudinal axis A of the device 8 and has two closed ends 13, 14. The closed ends 13, 14 may each have a linear shape. In a first embodiment, as shown in Figures 9 and 10, the ends 13, 14 are parallel to each other. Alternatively, the ends 13, 14 may be perpendicular to each other. For example, the body 9 of the device 8 has a cylindrical shape. Here, the term "cylinder" means a solid bounded by a cylindrical surface generated by a straight line, denoted generatrix, traversing a closed planar curve, denoted as a director, and two parallel planes intersecting the generatrices. In particular, the body 9 may have a shape of a tube. The device 8 may also comprise several cavities communicating with each other or not. Advantageously, the closed cavities 10 of the devices 8 prevent them from interlocking into each other, regardless of their size and shape.
Sur les figures 12 à 16, on a représenté les principales étapes d'un mode de mise en œuvre d'un procédé de réalisation d'un élément de construction 5 tel que défini ci-avant. De manière générale, on fabrique l'élément de construction 5 en effectuant les étapes suivantes : In Figures 12 to 16, there is shown the main steps of an embodiment of a method of producing a construction element 5 as defined above. In general, the construction element 5 is manufactured by performing the following steps:
- on réalise la première couche 6 incompressible en béton ; et the first incompressible layer 6 made of concrete is produced; and
- on réalise la deuxième couche 7 compressible à partir d'un matériau 1 1 comprenant des granulats agrégés par un liant, et de cavités 51 à 55 noyées au sein du matériau. Par exemple, pour réaliser la première couche 6 de béton, on utilise un coffrage parallélépipédique 30 ouvert et incurvé, pour réaliser une forme de voussoir, comme illustré sur la figure 12. En variante, le coffrage 30 est ouvert et non incurvé pour réaliser des sections de tunnel de forme variée, par exemple en U ou ovoïde. Puis on verse du béton liquide 31 dans le coffrage 30, comme illustré à la figure 13. On peut également ajouter des barres métalliques dans le béton liquide 31 pour obtenir une première couche incompressible en béton armé. Puis on utilise un premier gabarit 32 qu'on dispose en surface du béton 31 et qu'on déplace le long de la surface afin de former une surface externe incurvée. On laisse prendre le béton 31 , soit complètement et dans ce cas le béton a durci entièrement, soit partiellement et dans ce cas le béton n'a pas complètement durci mais a suffisamment durci en surface pour conserver la courbure donnée par le premier gabarit 32. Puis on retire le premier gabarit 32, et on obtient ainsi une première couche 6 dont la base et la surface externe sont incurvées, comme illustré sur la figure 14. En outre, on fixe des éléments de coffrage 33 sur les bords du coffrage 30 pour rehausser le coffrage 30 et pour pouvoir former la deuxième couche 7, comme illustré sur la figure 15. Ensuite, on verse dans le coffrage 30, et plus particulièrement sur la surface externe de la première couche 6, le matériau 1 1 . Selon un mode de réalisation, lorsqu'on verse le matériau 1 1 , le béton de la première couche 6 n'a pas complètement durci. Dans ce mode de réalisation, on favorise l'adhérence du matériau sur la surface externe de la première couche 6 qui n'a pas encore complètement durci. En variante, on peut attendre que le béton ait durci entièrement puis on verse le matériau 1 1. En particulier, on verse le matériau 1 1 à l'état pâteux avant qu'il durcisse. De préférence, le liant du matériau 1 1 est du ciment pour obtenir un mortier comme matériau 1 1 . On peut, par la suite, mélanger au matériau 1 1 à l'état pâteux, des dispositifs 8 ayant chacun un corps solide 9 délimitant au moins une cavité fermée 1 1 . On peut également mélanger au matériau 1 1 à l'état pâteux, des pièces 40 ayant un corps solide poreux. On peut encore mélanger au matériau 1 1 à l'état pâteux, un composé générateur de gaz. On peut également injecter un gaz, à l'aide d'un injecteur de gaz, au sein du matériau 1 1 à l'état pâteux. Ainsi, on obtient un matériau au sein duquel des cavités 51 à 55 sont noyées. the second compressible layer 7 is produced from a material 11 comprising granulates aggregated by a binder, and cavities 51 to 55 embedded in the material. For example, to produce the first layer 6 of concrete, an open and curved parallelepiped formwork 30 is used to form a voussoir shape, as illustrated in FIG. 12. In a variant, the formwork 30 is open and not curved to produce tunnel sections of various shapes, for example U or ovoid. Then liquid concrete 31 is poured into the formwork 30, as illustrated in FIG. 13. It is also possible to add metal bars in the liquid concrete 31 to obtain a first incompressible layer of reinforced concrete. Then a first template 32 is used which is placed on the surface of concrete 31 and is moved along the surface to form a curved outer surface. Concrete 31 is allowed to set, either completely and in this case the concrete has cured entirely, or partially, and in this case the concrete has not completely hardened but has sufficiently hardened at the surface to maintain the curvature given by the first template 32. Then the first template 32 is removed, thereby obtaining a first layer 6 whose base and outer surface are curved, as illustrated in FIG. 14. In addition, formwork elements 33 are fixed to the edges of the formwork 30 for raising the formwork 30 and to be able to form the second layer 7, as illustrated in Figure 15. Then is poured into the formwork 30, and more particularly on the outer surface of the first layer 6, the material January 1. According to one embodiment, when pouring the material 1 1, the concrete of the first layer 6 has not completely cured. In this embodiment, the adhesion of the material to the outer surface of the first layer 6 which has not yet fully cured is promoted. Alternatively, it can be expected that the concrete has fully cured and then poured the material 1 1. In particular, the material 1 1 is poured in the pasty state before it hardens. Preferably, the binder of the material 1 1 is cement to obtain a mortar as material 1 1. It is then possible to mix material 1 1 in the pasty state with devices 8 each having a solid body 9 delimiting at least one closed cavity 11. Material 40 having a porous solid body may also be mixed with the material 1 1 in the pasty state. Can be mixed with the material 1 1 in the pasty state, a gas generating compound. It is also possible to inject a gas, using a gas injector, into the material 11 in the pasty state. Thus, a material is obtained in which cavities 51 to 55 are embedded.
Puis on laisse le matériau 1 1 durcir pour solidariser la deuxième couche 7 compressible à la première couche 6. Ensuite, on utilise un deuxième gabarit 35 qu'on dispose et qu'on déplace en surface du matériau 1 1 afin de former une surface externe incurvée sur la deuxième couche 7, comme illustré sur la figure 15. Puis on laisse le matériau 1 1 durcir pour rendre la deuxième couche 7 solidaire de la première couche 6. Puis on retire le deuxième gabarit 35 et on obtient un élément monobloc préfabriqué 5 entouré du coffrage 30, illustré à la figure 16. Ensuite, on retire le coffrage 30 et les éléments de coffrage 33 pour obtenir l'élément de construction 5 préfabriqué monobloc, comme illustré à la figure 2. Then the material 1 1 is allowed to harden to secure the second compressible layer 7 to the first layer 6. Next, a second template 35 is used which is moved on the surface of the material 11 to form an outer surface curved on the second layer 7, as shown in Figure 15. Then the material 1 1 is allowed to harden to make the second layer 7 integral with the first layer 6. Then the second template 35 is removed and an element is obtained. prefabricated monobloc 5 surrounded by the formwork 30, illustrated in Figure 16. Then, the formwork 30 and the shuttering elements 33 are removed to obtain the prefabricated one-piece construction element 5, as illustrated in FIG.
Sur la figure 17 on a représenté un mode de mise en œuvre d'une réalisation du tunnel 1 décrit ci-avant à la figure 1 . Selon ce mode de mise en œuvre, un tunnelier 15 creuse la cavité 2 dans le terrain 3 selon la direction F1 . L'avant du tunnelier 20 est équipé de moyens 21 assurant l'abattage de la roche du terrain 3 et comporte des moyens d'extraction de la roche, non représentés à des fins de simplification. Une partie du tunnelier 15 assure la mise en place des éléments de construction 5 au fur et à mesure de l'avancement du tunnelier 15 selon la direction F1 . En outre, le tunnelier 15 comporte des moyens d'injection 22 pour injecter un produit de remplissage 23, par exemple du mortier ou du gravier, pour combler l'espace libre F délimité entre les éléments de construction 5 et la paroi interne de la cavité 2 formée par l'avancement du tunnelier 15. La flèche, indiquée par la référence F2, illustre le chemin emprunté par le produit de remplissage 23 lors de son injection. L'injection du produit de remplissage 23 permet de former une couche de remplissage pour occuper l'espace libre F entre les éléments de construction 5 et le terrain 3. FIG. 17 shows a mode of implementation of an embodiment of the tunnel 1 described above in FIG. According to this embodiment, a TBM 15 digs the cavity 2 in the ground 3 along the F1 direction. The front of the tunnel boring machine 20 is equipped with means 21 ensuring the felling of the rock of the ground 3 and includes means for extracting the rock, not shown for purposes of simplification. Part of the tunneling machine 15 ensures the implementation of the construction elements 5 as the tunneling machine 15 progresses along the F1 direction. In addition, the TBM 15 comprises injection means 22 for injecting a filler 23, for example mortar or gravel, to fill the free space F delimited between the building elements 5 and the inner wall of the cavity 2, formed by the progress of the TBM 15. The arrow, indicated by the reference F2, illustrates the path taken by the filling product 23 during its injection. The injection of the filling product 23 makes it possible to form a filling layer to occupy the free space F between the building elements 5 and the ground 3.
De manière générale, le procédé de réalisation du tunnel comprend les étapes suivantes : In general, the tunnel production method comprises the following steps:
- former la cavité 2 dans le terrain 3 à l'aide du tunnelier 15 ;  - Form the cavity 2 in the ground 3 with the TBM 15;
- former des sections 4 du tunnel 1 situées à l'intérieur de la cavité 2, au moins une section 4 étant réalisée à partir d'au moins un élément de construction 5, tel que défini ci-avant, au fur et à mesure de l'avancement du tunnelier 15. forming sections 4 of the tunnel 1 situated inside the cavity 2, at least one section 4 being made from at least one element of construction 5, as defined above, as and when the tunneling machine 15 progresses.
Plus particulièrement, lors de la réalisation d'une section 4 du tunnel 1 , on conserve un espace libre F délimité entre la paroi externe du tunnel 1 et la paroi interne de la cavité 2, pour placer les éléments de construction 5 afin de former la section 4 du tunnel 1 . Puis on comble l'espace libre F avec le produit de remplissage 23. More particularly, during the production of a section 4 of the tunnel 1, a free space F delimited between the outer wall of the tunnel 1 and the inner wall of the cavity 2 is kept, to place the building elements 5 in order to form the section 4 of tunnel 1. Then fill the free space F with the filling product 23.
L'élément de construction qui vient d'être décrit permet de faciliter la construction d'un tunnel tout en garantissant un amortissement de la convergence du terrain dans lequel est situé le tunnel. En outre, il offre une meilleure maîtrise du procédé de réalisation du tunnel. Un tel élément de construction permet de diminuer l'épaisseur d'un voussoir classique, ce qui diminue grandement la quantité de béton nécessaire pour réaliser le tunnel. Un tel élément de construction est simple à réaliser, facilement transportable, et qui garantit la conservation d'une couche compressible solidaire de la couche incompressible pour son transport et son intégration au sein d'un tunnel. The construction element which has just been described makes it possible to facilitate the construction of a tunnel while ensuring damping of the convergence of the terrain in which the tunnel is located. In addition, it offers a better control of the tunnel construction process. Such a construction element reduces the thickness of a classic voussoir, which greatly reduces the amount of concrete needed to build the tunnel. Such a construction element is simple to produce, easily transportable, and which guarantees the conservation of a compressible layer integral with the incompressible layer for its transport and its integration within a tunnel.

Claims

Revendications claims
1. Elément de construction pour la réalisation d'un tunnel, comprenant une première couche (6) incompressible en béton et une deuxième couche (7) compressible solidaire de la première couche (6) pour former un élément de construction préfabriqué monobloc configuré pour être intégré dans une section du tunnel, caractérisé en ce que la deuxième couche (7) comporte un matériau (1 1 ) comprenant des granulats agrégés par un liant, et des cavités (51 à 55) noyées au sein du matériau. 1. Construction element for the production of a tunnel, comprising a first layer (6) incompressible concrete and a second layer (7) compressible integral with the first layer (6) to form a prefabricated building element monobloc configured to be embedded in a section of the tunnel, characterized in that the second layer (7) comprises a material (1 1) comprising granulates aggregated by a binder, and cavities (51 to 55) embedded in the material.
2. Elément de construction selon la revendication 1 , dans lequel le liant comporte un ciment. 2. Construction element according to claim 1, wherein the binder comprises a cement.
3. Elément de construction selon la revendication 1 ou 2, dans lequel la deuxième couche (7) comporte une pluralité de dispositifs (8) noyés au sein du matériau (1 1 ), chaque dispositif (8) ayant un corps solide (9) délimitant au moins un espace libre fermé (10). 3. Construction element according to claim 1 or 2, wherein the second layer (7) comprises a plurality of devices (8) embedded in the material (1 1), each device (8) having a solid body (9). delimiting at least one closed free space (10).
4. Elément de construction selon la revendication 3, dans lequel le corps solide (9) des dispositifs (8) est réalisé en céramique. 4. Construction element according to claim 3, wherein the solid body (9) of the devices (8) is made of ceramic.
5. Elément de construction selon la revendication 3, dans lequel le corps solide (9) des dispositifs (8) est réalisé en matière plastique. 5. Construction element according to claim 3, wherein the solid body (9) of the devices (8) is made of plastic.
6. Elément de construction selon l'une des revendications 1 à 5, dans lequel la deuxième couche (7) comporte une pluralité de pièces (40) noyées au sein du matériau (1 1 ), chaque pièce (40) ayant un corps solide poreux muni de plusieurs trous débouchants et de plusieurs espaces libres fermés (10). 6. Construction element according to one of claims 1 to 5, wherein the second layer (7) comprises a plurality of parts (40) embedded in the material (1 1), each piece (40) having a solid body. porous having several through holes and several closed free spaces (10).
7. Elément de construction selon l'une des revendications 1 à 5, dans lequel la deuxième couche (7) comporte un composé générant un gaz au sein du matériau (1 1 ) formant les cavités (51 à 55). 7. Construction element according to one of claims 1 to 5, wherein the second layer (7) comprises a compound generating a gas within the material (1 1) forming the cavities (51 to 55).
8. Tunnel situé à l'intérieur d'une cavité (2) creusée dans un terrain (3), au moins une section du tunnel étant réalisée à partir d'au moins un élément de construction à deux couches (6, 7) selon l'une des revendications 1 à 7. 8. Tunnel located inside a cavity (2) hollowed out in a ground (3), at least one section of the tunnel being made from at least one two-layer construction element (6, 7) according to one of claims 1 to 7.
9. Procédé de réalisation d'un élément de construction pour la réalisation d'un tunnel, comprenant les étapes suivantes : 9. A method of producing a construction element for the realization of a tunnel, comprising the following steps:
- réaliser une première couche (6) incompressible en béton ; et  - Making a first layer (6) incompressible concrete; and
- réaliser une deuxième couche (7) compressible solidaire de la première couche (6) pour former un élément de construction préfabriqué monobloc configuré pour être intégré dans une section du tunnel ;  - Making a second compressible layer (7) integral with the first layer (6) to form a monobloc prefabricated construction element configured to be integrated in a section of the tunnel;
caractérisé en ce qu'on réalise la deuxième couche (7) à partir d'un matériau (1 1 ) comprenant des granulats agrégés par un liant, et de cavités (51 à 55) noyées au sein du matériau (1 1 ). characterized in that the second layer (7) is made from a material (1 1) comprising granulates aggregated by a binder, and cavities (51 to 55) embedded in the material (1 1).
10. Procédé selon la revendication 9, dans lequel on noie, au sein du matériau (1 1 ), des dispositifs (8) ayant chacun un corps solide (9) délimitant au moins un espace libre fermé (10). 10. The method of claim 9, which is embedded within the material (1 1) devices (8) each having a solid body (9) defining at least one closed free space (10).
11. Procédé selon la revendication 9, dans lequel on réalise les cavités (51 à 55) à partir d'une injection d'un gaz au sein du matériau (1 1 ). 11. The method of claim 9, wherein the recesses (51 to 55) are made from an injection of a gas within the material (1 1).
12. Procédé de réalisation d'un tunnel comprenant les étapes suivantes :12. A method of producing a tunnel comprising the following steps:
- former une cavité (2) dans un terrain (3) à l'aide d'un tunnelier ; et - forming a cavity (2) in a field (3) using a tunnel boring machine; and
- former des sections du tunnel situées à l'intérieur de la cavité (2), au moins une section étant réalisée à partir d'au moins un élément de construction à deux couches (6, 7) selon l'une des revendications 1 à 7 au fur et à mesure de l'avancement du tunnelier.  forming sections of the tunnel located inside the cavity (2), at least one section being made from at least one two-layer construction element (6, 7) according to one of claims 1 to 7 as the tunnel boring machine progresses.
EP16721868.4A 2015-04-03 2016-04-04 Building element for creating a tunnel, tunnel comprising such an element and methods of manufacturing such an element and such a tunnel Active EP3277925B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1552934A FR3034451B1 (en) 2015-04-03 2015-04-03 CONSTRUCTION ELEMENT FOR THE PRODUCTION OF A TUNNEL, TUNNEL COMPRISING SUCH A ELEMENT AND METHODS OF MANUFACTURING SUCH A ELEMENT AND SUCH A TUNNEL
PCT/FR2016/050764 WO2016156763A1 (en) 2015-04-03 2016-04-04 Building element for creating a tunnel, tunnel comprising such an element and methods of manufacturing such an element and such a tunnel

Publications (2)

Publication Number Publication Date
EP3277925A1 true EP3277925A1 (en) 2018-02-07
EP3277925B1 EP3277925B1 (en) 2019-06-05

Family

ID=53366114

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16721868.4A Active EP3277925B1 (en) 2015-04-03 2016-04-04 Building element for creating a tunnel, tunnel comprising such an element and methods of manufacturing such an element and such a tunnel

Country Status (7)

Country Link
US (1) US10519772B2 (en)
EP (1) EP3277925B1 (en)
CN (1) CN108076650B (en)
AU (1) AU2016239986B2 (en)
CA (1) CA2981557C (en)
FR (1) FR3034451B1 (en)
WO (1) WO2016156763A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3091892B1 (en) 2019-01-18 2021-01-22 Agence Nat Pour La Gestion Des Dechets Radioactifs CONSTRUCTION KIT FOR THE REALIZATION OF A PREFABRICATED TWO-LAYER CHASSIS SUITABLE TO BE ASSEMBLED ON SITE AND PROCESS FOR MAKING SUCH A CHASSIS
FR3101650B1 (en) 2019-10-07 2021-10-01 Agence Nat Pour La Gestion Des Dechets Radioactifs Andra Prefabricated vacuum compressible building block, which can be integrated into tunnel linings by traditional methods or by tunnel boring method

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1200989A (en) 1958-07-29 1959-12-28 Floor covering process and products used for this covering
BE712437A (en) * 1967-03-22 1968-07-31
DE2527743C3 (en) * 1975-06-21 1980-04-10 Wayss & Freytag Ag, 6000 Frankfurt Tunnel construction made of reinforced concrete segments
GB2013757B (en) 1978-02-07 1982-06-16 Mowlem & Co Ltd J Tunnelling
EP0017313B1 (en) * 1979-02-21 1983-02-09 John Mowlem and Company Limited Method of constructing a lined tunnel, and lining segment therefor
SE458443B (en) * 1985-07-03 1989-04-03 Torbjoern Hahn SYSTEM FOR STORAGE OF LIQUID OR GAS IN A SPACE IN MOUNTAIN
DE3738818A1 (en) * 1987-11-16 1989-05-24 Ketterer Klaus Method of producing a yielding body of construction material
US5439319A (en) * 1993-08-12 1995-08-08 Carlisle Coatings & Water Proofing, Incorporated Tunnel barrier system and method of installing the same
DE19718655C2 (en) * 1997-05-02 1999-06-10 Braun Karl Otto Kg Tubular lining material, pipe lining made therefrom and method for making the same
US6302621B1 (en) * 1997-08-13 2001-10-16 Obayashi Corporation Segment for intake tunnels
GB9815685D0 (en) * 1998-07-20 1998-09-16 Mbt Holding Ag Waterproofer
AU2003900156A0 (en) * 2003-01-15 2003-01-30 Commonwealth Scientific And Industrial Research Organisation Cementitious products
DE112005003067A5 (en) * 2004-09-29 2007-09-13 Klöckner, Reinhard Compressible concrete and process for its production
DE102006055416A1 (en) * 2006-11-22 2008-05-29 Ed. Züblin Ag Sicherheitstübbing
FR2937971B1 (en) * 2008-10-30 2011-08-26 Saint Gobain Ct Recherches BODY ASSEMBLED WITH MACROPOROUS CURED CEMENT
CN102383502A (en) * 2011-10-19 2012-03-21 谢文靖 Composite light fireproof insulation board and production method thereof
WO2013150191A2 (en) * 2012-04-03 2013-10-10 Assistance Et Conseil Industriel System and method for attenuating the convergence of terrain, and method for manufacturing such a system
FR2988770B1 (en) * 2012-04-03 2014-04-25 Assistance Et Conseil Ind SYSTEM AND METHOD FOR AMORTIZATION OF CONVERGENCE OF A FIELD
DE102012008770A1 (en) * 2012-05-07 2013-11-07 Tim Brandenburger CLOTHING HOSE FOR RESTORING DEFECTIVE WASTEWATER CHANNELS WITH AN INTEGRAL LENGTH BENCH REINFORCEMENT LAYER
FR3021346B1 (en) * 2014-05-21 2016-07-29 Constructions Mec Consultants CONSTRUCTION ELEMENT FOR THE PRODUCTION OF A TUNNEL, TUNNEL COMPRISING SUCH A ELEMENT AND METHODS OF MANUFACTURING SUCH A ELEMENT AND SUCH A TUNNEL

Also Published As

Publication number Publication date
AU2016239986B2 (en) 2021-04-01
FR3034451B1 (en) 2017-05-05
US20180163540A1 (en) 2018-06-14
AU2016239986A1 (en) 2017-10-26
FR3034451A1 (en) 2016-10-07
US10519772B2 (en) 2019-12-31
CN108076650A (en) 2018-05-25
CN108076650B (en) 2021-06-01
EP3277925B1 (en) 2019-06-05
CA2981557C (en) 2023-08-22
CA2981557A1 (en) 2016-10-06
WO2016156763A1 (en) 2016-10-06

Similar Documents

Publication Publication Date Title
EP3146155B1 (en) Construction element for creating a tunnel, tunnel comprising such an element and methods for constructing such an element and such a tunnel
EP2390420A1 (en) Diaphragm wall with prefabricated hollow element and method of making such wall
EP3277925B1 (en) Building element for creating a tunnel, tunnel comprising such an element and methods of manufacturing such an element and such a tunnel
FR3002956A1 (en) PRECONTRATED MOLDED WALL AND METHOD OF MAKING SUCH A WALL
WO2016142540A1 (en) Method for moulding tubular elements in a material comprising cement, and pile thus produced
FR3012513A1 (en) DEVICE AND SYSTEM FOR DAMPING THE CONVERGENCE OF A FIELD, METHODS OF MANUFACTURING SUCH DEVICE AND SYSTEM
FR2889574A1 (en) TUBULAR STRUCTURE DEPLIABLE
EP3201399B1 (en) Method of manufacturing an underground storage tank and corresponding tank
FR2892440A1 (en) Construction element e.g. brick masonry structure, reinforcing method, involves inserting grout with base of hydraulic cement and basalt after drilling inside element, where basalt is powdery or fibrous mixed with hydraulic cement
FR3091892A1 (en) CONSTRUCTION SET FOR THE REALIZATION OF A PREFABRICATED TWO-LAYER CHASSIS SUITABLE TO BE ASSEMBLED ON SITE AND PROCESS FOR MAKING SUCH A CHASSIS
FR3103503A1 (en) Prefabricated building element and method of manufacturing said prefabricated building element
FR3101650A1 (en) Prefabricated vacuum compressible building block, which can be integrated into tunnel linings by traditional methods or by tunnel boring method
BE895192A (en) Assembly of load bearing element - has prestress applied indirectly to non machined block contact faces using axial prestressing rod
FR3010108A1 (en) "MODULAR ELEMENT FOR THE CASTING OF CONCRETE STRUCTURES"
CH229375A (en) Process for showing stresses in civil engineering works.
CH229376A (en) Device for showing forces, in particular in civil engineering works.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171020

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1140162

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016014828

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190605

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190905

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ACTOSPHERE SARL Y-PARC SWISS TECHNOPOLE, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190905

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191005

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016014828

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

26N No opposition filed

Effective date: 20200306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200404

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200404

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190605

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230310

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230426

Year of fee payment: 8

Ref country code: DE

Payment date: 20230427

Year of fee payment: 8

Ref country code: CH

Payment date: 20230502

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230427

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230427

Year of fee payment: 8