EP3265318B1 - Primer compositions - Google Patents
Primer compositions Download PDFInfo
- Publication number
- EP3265318B1 EP3265318B1 EP15903176.4A EP15903176A EP3265318B1 EP 3265318 B1 EP3265318 B1 EP 3265318B1 EP 15903176 A EP15903176 A EP 15903176A EP 3265318 B1 EP3265318 B1 EP 3265318B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- primer composition
- primer
- polyvinyl alcohol
- starch nanoparticles
- dry
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000203 mixture Substances 0.000 title claims description 124
- 239000000758 substrate Substances 0.000 claims description 73
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 67
- 239000004816 latex Substances 0.000 claims description 54
- 229920000126 latex Polymers 0.000 claims description 54
- 235000019422 polyvinyl alcohol Nutrition 0.000 claims description 52
- 229920002472 Starch Polymers 0.000 claims description 51
- 235000019698 starch Nutrition 0.000 claims description 51
- 239000008107 starch Substances 0.000 claims description 49
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 47
- 239000002105 nanoparticle Substances 0.000 claims description 44
- 229920000642 polymer Polymers 0.000 claims description 42
- 238000000576 coating method Methods 0.000 claims description 38
- 125000002091 cationic group Chemical group 0.000 claims description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 32
- 239000011230 binding agent Substances 0.000 claims description 31
- 239000011248 coating agent Substances 0.000 claims description 27
- 239000006185 dispersion Substances 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 22
- 239000001023 inorganic pigment Substances 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 150000001768 cations Chemical class 0.000 claims description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052788 barium Inorganic materials 0.000 claims description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 239000011734 sodium Substances 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 229920002689 polyvinyl acetate Polymers 0.000 claims 1
- 239000011118 polyvinyl acetate Substances 0.000 claims 1
- 239000000976 ink Substances 0.000 description 39
- 239000010410 layer Substances 0.000 description 29
- 238000007639 printing Methods 0.000 description 29
- 239000001993 wax Substances 0.000 description 28
- 239000002245 particle Substances 0.000 description 23
- -1 polypropylene Polymers 0.000 description 16
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 14
- 239000004615 ingredient Substances 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 13
- 230000007062 hydrolysis Effects 0.000 description 13
- 238000006460 hydrolysis reaction Methods 0.000 description 13
- 239000000654 additive Substances 0.000 description 8
- 229920001577 copolymer Polymers 0.000 description 8
- 238000007641 inkjet printing Methods 0.000 description 8
- 239000003086 colorant Substances 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 6
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 6
- 239000000975 dye Substances 0.000 description 6
- 239000000049 pigment Substances 0.000 description 6
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 6
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 6
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 6
- 229920003048 styrene butadiene rubber Polymers 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 6
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 5
- 239000001110 calcium chloride Substances 0.000 description 5
- 229910001628 calcium chloride Inorganic materials 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229920000573 polyethylene Polymers 0.000 description 5
- 239000002174 Styrene-butadiene Substances 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- 239000004927 clay Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 229920000058 polyacrylate Polymers 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 3
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- 239000003139 biocide Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical compound [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229920006243 acrylic copolymer Polymers 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000008199 coating composition Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000007646 gravure printing Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 2
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000007645 offset printing Methods 0.000 description 2
- 229920002587 poly(1,3-butadiene) polymer Polymers 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000011115 styrene butadiene Substances 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- XYHKNCXZYYTLRG-UHFFFAOYSA-N 1h-imidazole-2-carbaldehyde Chemical compound O=CC1=NC=CN1 XYHKNCXZYYTLRG-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-M 3-Methylbutanoic acid Natural products CC(C)CC([O-])=O GWYFCOCPABKNJV-UHFFFAOYSA-M 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 240000000254 Agrostemma githago Species 0.000 description 1
- 235000009899 Agrostemma githago Nutrition 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N Caprylic acid Natural products CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RUPBZQFQVRMKDG-UHFFFAOYSA-M Didecyldimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCC[N+](C)(C)CCCCCCCCCC RUPBZQFQVRMKDG-UHFFFAOYSA-M 0.000 description 1
- 240000002989 Euphorbia neriifolia Species 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229920001774 Perfluoroether Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000007754 air knife coating Methods 0.000 description 1
- RREGISFBPQOLTM-UHFFFAOYSA-N alumane;trihydrate Chemical compound O.O.O.[AlH3] RREGISFBPQOLTM-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- DMSMPAJRVJJAGA-UHFFFAOYSA-N benzo[d]isothiazol-3-one Chemical compound C1=CC=C2C(=O)NSC2=C1 DMSMPAJRVJJAGA-UHFFFAOYSA-N 0.000 description 1
- GONOPSZTUGRENK-UHFFFAOYSA-N benzyl(trichloro)silane Chemical compound Cl[Si](Cl)(Cl)CC1=CC=CC=C1 GONOPSZTUGRENK-UHFFFAOYSA-N 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N beta-methyl-butyric acid Natural products CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000004204 candelilla wax Substances 0.000 description 1
- 235000013868 candelilla wax Nutrition 0.000 description 1
- 229940073532 candelilla wax Drugs 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- PSWOBQSIXLVPDV-CXUHLZMHSA-N chembl2105120 Chemical compound C1=C(O)C(OC)=CC(\C=N\NC(=O)C=2C=CN=CC=2)=C1 PSWOBQSIXLVPDV-CXUHLZMHSA-N 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 239000013020 final formulation Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 150000004676 glycans Polymers 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- IUJAMGNYPWYUPM-UHFFFAOYSA-N hentriacontane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IUJAMGNYPWYUPM-UHFFFAOYSA-N 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000001455 metallic ions Chemical class 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 239000012170 montan wax Substances 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N n-hexanoic acid Natural products CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 239000012168 ouricury wax Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000010702 perfluoropolyether Substances 0.000 description 1
- IUGYQRQAERSCNH-UHFFFAOYSA-N pivalic acid Chemical compound CC(C)(C)C(O)=O IUGYQRQAERSCNH-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 1
- 229920000141 poly(maleic anhydride) Polymers 0.000 description 1
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 150000004804 polysaccharides Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229940088417 precipitated calcium carbonate Drugs 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000006254 rheological additive Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000003352 sequestering agent Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 229940005605 valeric acid Drugs 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H19/00—Coated paper; Coating material
- D21H19/10—Coatings without pigments
- D21H19/14—Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
- D21H19/20—Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H19/00—Coated paper; Coating material
- D21H19/10—Coatings without pigments
- D21H19/14—Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
- D21H19/18—Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising waxes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H19/00—Coated paper; Coating material
- D21H19/10—Coatings without pigments
- D21H19/14—Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
- D21H19/20—Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D21H19/22—Polyalkenes, e.g. polystyrene
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H19/00—Coated paper; Coating material
- D21H19/36—Coatings with pigments
- D21H19/44—Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
- D21H19/54—Starch
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/50—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by form
- D21H21/52—Additives of definite length or shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/5218—Macromolecular coatings characterised by inorganic additives, e.g. pigments, clays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/5227—Macromolecular coatings characterised by organic non-macromolecular additives, e.g. UV-absorbers, plasticisers, surfactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/5236—Macromolecular coatings characterised by the use of natural gums, of proteins, e.g. gelatins, or of macromolecular carbohydrates, e.g. cellulose
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
- B41M5/5254—Macromolecular coatings characterised by the use of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
Definitions
- inkjet printing has become a popular way of recording images on various media surfaces, particularly paper. Some of these reasons include low printer noise, variable content recording, capability of high speed recording, and multi-color recording. Additionally, these advantages can be obtained at a relatively low price to consumers. Though there has been great improvement in inkjet printing, accompanying this improvement are increased demands by consumers in this area, e.g., higher speeds, higher resolution, full color image formation, increased stability, etc. Additionally, inkjet printing is becoming more prevalent in high speed commercial printing markets, competing with more laborious offset and gravure printing technologies.
- Coated media typically used for these more conventional types of printing can perform somewhat acceptably on high speed inkjet printing devices, but these types of media are not always acceptable for inkjet technology as it relates to image quality, gloss, abrasion resistance, and other similar properties.
- the primer compositions can be ink-receiving primer compositions, in that the primer compositions can be used to form coatings for receiving inks such as inkjet inks.
- the primer compositions can be applied to a substrate to form an ink-receiving layer on the substrate before printing inkjet ink over or onto the primer layer.
- a primer composition can be applied to offset coated paper.
- offset coated papers are significantly different from paper specifically designed for inkjet printing. Commercial offset paper often includes a smooth, nonporous surface coating that is difficult to penetrate by aqueous liquids.
- offset coatings include inorganic pigments such as calcium carbonate and clay, as well as hydrophobic polymers that interact poorly with water-based inks.
- Polymers used in offset media can also sometimes include latex binders, polystyrenes, polyolefins (polypropylene, polyethylene, polybutadiene), polyesters (PET), polyacrylates, polymethacrylates, poly (maleic anhydride), and/or others.
- latex binders polystyrenes, polyolefins (polypropylene, polyethylene, polybutadiene), polyesters (PET), polyacrylates, polymethacrylates, poly (maleic anhydride), and/or others.
- water-based inks printed on offset media often have poor image quality, dry very slowly (sometimes taking more than 24 hours), and have poor durability after drying.
- the primer compositions described herein can be applied to a media substrate, such as an offset media substrate as described above, to improve the ability of the substrate to receive water-based inks.
- a primer composition can be coated on a media substrate to improve the durability of images printed with water-based inks.
- a media substrate that is normally less suitable for printing with water-based inks, such as offset media can be coated with the primer composition prior to printing. This coated media substrate can interact with water-based inks and provide a printed image with good durability after the ink dries on the coated media substrate.
- the primer composition can include a water soluble polymeric binder, e.g., partially water soluble (at least 5%), mostly water soluble (at least 50%), or fully water soluble (at least 99%) in the primer composition.
- Water soluble polymers can interact better with water-based inks compared to the hydrophobic coatings of offset media.
- many types of water-soluble polymeric binder exhibit poor dry smearfastness immediately after printing due to poor wet film strength.
- starches, cellulose, polyethylene oxide, and polyvinylpyrrolidone (PVP) are examples of water-soluble polymers that can have poor dry smearfastness when used in primers on offset media.
- the primer composition can include polyvinyl alcohol as the water soluble polymeric binder.
- the primer composition can include a cationic salt.
- the hydroxyl groups of the polyvinyl alcohol can interact with the cationic salt to form a complex-like structure. This structure can result in enhanced wet film strength of the primer layer and the ink printed on top of the primer layer.
- inkjet ink is printed on top of the primer, the ink can have improved instant dry smearfastness.
- primer compositions including polyvinyl alcohols can provide desirable dry smearfastness, it is difficult to achieve both dry smearfastness and wet smearfastness at the same time. Poor wet smearfastness can cause poor mechability because the printed substrate can often be rewound before the primer layer and image are completely dry.
- Mixtures of different water soluble polymeric binders can be used to adjust the dry smearfastness and wet smearfastness of the primer composition.
- many mixtures of water soluble polymeric binders are unable to provide both good dry smearfastness and good wet smearfastness.
- mixtures of polyvinyl alcohol with common starch, polyvinyl pyrrolidone, or polyethylene oxide can in some cases provide good dry smearfastness or good wet smearfastness, but not both at the same time.
- certain primer compositions including a mixture of polyvinyl alcohol, starch nanoparticles, and a polymer latex dispersion have been found to provide better dry smearfastness and wet smearfastness at the same time.
- the primer composition can be used on offset paper in a continuous printing system such as the HP high speed Web Press@ mentioned above.
- a more immediate or instant dry and wet smearfastness of the printed image can be such that no smearing occurs when the printed paper is rewound into a roll after printing. Because the printed image does not need extra time to dry before rewinding the paper, the press can run at a high speed in some examples.
- the present technology provides primer compositions.
- the primer composition comprises:
- the polyvinyl alcohol, starch nanoparticles, and polymer latex dispersion can act as a binder in the primer composition.
- the amount of these ingredients can be sufficient to act as a binder to bind the remaining ingredients of the primer composition to the substrate.
- the binder content of the primer composition can be within a range such that there is sufficient binder to bind the other ingredients of the primer to the substrate, but not so much that the ink-receiving properties of the primer are compromised.
- too much binder can, in some cases, make the primer layer less porous and negatively impact the solution stability of the primer. This can interfere with the interaction between the primer layer and water-based inks.
- the total amount of binder present in the primer composition is from 5 wt% to 70 wt%. In other examples, the total amount of binder can be from 5 wt% to 50 wt%, 10 wt% to 30 wt%, or 10 wt% to 20 wt%.
- the primer composition includes polyvinyl alcohol in an amount from 1 wt% to 40 wt%, 2 wt% to 30 wt%, or 5 wt% to 20 wt%, based on the weight of all dry components of the primer composition.
- the type of polyvinyl alcohol is not particularly limited with respect to the molecular weight and degree of hydrolysis of the polyvinyl alcohol.
- the polyvinyl alcohol can have a weight-average molecular weight from 1,000 M w to 300,000 M w .
- the polyvinyl alcohol can have an average molecular weight from about 20,000 M w to about 250,000 M w .
- the polyvinyl alcohol can have an average molecular weight from about 27,000 M w to about 205,000 M w .
- the degree of hydrolysis of the polyvinyl alcohol can be from about 75 mol% to about 100 mol%. In certain examples, the degree of hydrolysis can be from about 86 mol% to about 100 mol%.
- Non-limiting examples of polyvinyl alcohols that can be used in the primer composition include Poval® 3-88 (Kuraray America, Inc.) (14,000 M w , 86.7-88.7 mol% hydrolysis); Poval® 4-88 (Kuraray America, Inc.) (31,000 M w , 86.7-88.7 mol% hydrolysis); Poval® 4-98 (Kuraray America, Inc.) (27,000 M w , 98-98.8 mol% hydrolysis); Poval® 5-88 (Kuraray America, Inc.) (37,000 M w , 86.7-88.7 mol% hydrolysis); Poval® 8-88 (Kuraray America, Inc.) (67,000 M w , 86.7-88.7 mol% hydrolysis); Poval® 13-88 (Kuraray America, Inc.) (67,000 M w , 86.7-88.7 mol% hydrolysis); Poval® 13-88 (Kuraray America, Inc.) (67,000 M w , 86.7-88.7 mol% hydrolysis);
- the polyvinyl alcohol can in some cases be a mixture of two or more types of polyvinyl alcohol.
- the total amount of the polyvinyl alcohols can be from 1 wt% to 40 wt%, 2 wt% to 30 wt%, 5 wt% to 20 wt%, based on the weight of all dry components of the primer composition. Whatever range is considered, it is understood that the range relates to total concentrations of polyvinyl alcohol, whether there be one, two, three, etc., specific polyvinyl alcohol species present.
- the primer composition can include a mixture of two types of polyvinyl alcohol having different molecular weights.
- the binder can include starch nanoparticles.
- Starch is a carbohydrate consisting of linear or branched polysaccharide chains. Starch is often available in granular form, with granules having an average diameter of 10 ⁇ m to 100 ⁇ m or larger. Starch nanoparticles are different from this common form of starch in that the starch nanoparticles have a smaller, nano-sized average diameter. Starch nanoparticles have an average diameter from 1 nm to 1 ⁇ m.
- the starch nanoparticles used in the binder for the present primer compositions have an average diameter within this range of 1 nm to 1 ⁇ m. In some examples, the starch nanoparticles can have an average diameter from 10 nm to 500 nm, 20 nm to 200 nm, or 50 nm to 150 nm.
- Non-limiting examples of suitable starch nanoparticles for use in the present primer compositions include Ecosphere® 2202D, 2260, 2330 and 2326 (EcoSynthetix Inc.). These starch nanoparticles are cross-linked starch with a nanoparticle structure, and can yield better durability than traditional starches that are non-crosslinked polymers.
- the primer composition can include starch nanoparticles in an amount from 1 wt% to 20 wt%, 1 wt% to 10 wt%, or 2 wt% to 5 wt% based on the weight of all dry components of the primer composition.
- the primer composition further includes a polymer latex dispersion.
- the polymer latex dispersion can include latex particles suspended in water or an aqueous system.
- the latex particles is present in an amount from about 10 wt% to about 70 wt% based on the weight of all dry components of the primer composition.
- the latex particles can be present in an amount from 20 wt% to 60 wt% based on the weight of all dry components of the primer composition.
- the primer composition can be predominantly (greater than 50 wt% by dry weight) made up of the latex particles, the polyvinyl alcohol, the starch nanoparticles, wax, and the cationic salt.
- the polyvinyl alcohol, starch nanoparticles, polymer latex dispersion, wax, and cationic salt can make up at least 80 wt% of all dry ingredients in the primer composition.
- the latex particles can be used to improve the film strength of the primer layer.
- the glass transition temperature (Tg) of the latex can be from 0°C to 100°C.
- the latex polymer can be anionic, nonionic, or cationic. In some examples, the latex particles can be cationic latex particles.
- the latex particles can be made of polymers and copolymers including acrylic polymers or copolymers, vinyl acetate polymers or copolymers, polyester polymers or copolymers, vinylidene chloride polymers or copolymers, butadiene polymers or copolymers, styrene-butadiene polymers or copolymers, acrylonitrile-butadiene polymers or copolymers.
- the latex particles can include a vinyl acetate-based polymer, an acrylic polymer, a styrene polymer, a styrene-butadiene (SBR)-based polymer, a polyester-based polymer, a vinyl chloride-based polymer, an acid-based polymer, or the like.
- the latex particles can be a polymer or a copolymer including acrylic polymers, vinyl-acrylic copolymers and acrylic-polyurethane copolymers.
- the latex particles can be cationic acrylate latex.
- the latex can be a vinyl acetate polymer.
- the latex can be a SBR polymer.
- the latex particles can have a weight average molecular weight (M w ) of 5,000 M w to 500,000 M w . In one example, the latex particles can range from 150,000 M w to 300,000 M w . In some examples, the average particle diameter of the latex particles can be from 10 nm to 1 ⁇ m and, as other examples, from 10 nm to 500 nm, and in yet other examples, from 50 nm to 250 nm.
- the particle size distribution of the latex is not particularly limited, and either latex having a broad particle size distribution or latex having a mono-dispersed particle size distribution may be used. It is also possible to use two or more kinds of polymer fine particles each having a mono-dispersed particle size distribution in combination
- the primer composition can include additional binders.
- additional binders include cellulose, polyethylene oxide, polyvinyl pyrrolidone, and others.
- the additional binders can also be mixtures of two or more water soluble polymeric binders.
- the additional binders can be present in a smaller amount than the combined polyvinyl alcohol, starch nanoparticles, and polymer latex dispersion.
- the combined polyvinyl alcohol, starch nanoparticles, and polymer latex dispersion can make up at least 10 wt% by dry weight of all binders present in the primer composition.
- the combined polyvinyl alcohol, starch nanoparticles, and polymer latex dispersion can make up at least 80 wt% by dry weight of all binders present in the primer composition.
- the primer composition can be substantially free of any binder other than the polyvinyl alcohol, starch nanoparticles, and polymer latex dispersion.
- the primer composition also includes a wax.
- the wax can act as a slip aid to contribute to abrasion resistance and coefficient of friction (COF) reduction.
- Suitable waxes can include particles of a synthetic wax, natural wax, combinations of a synthetic wax and a natural wax, combinations of two or more different synthetic waxes, or combinations of two or more different natural waxes, for example.
- the synthetic wax can include polyethylene, polypropylene, polybutadiene, polytetrafluoroethylene, polyvinylfluoride, polyvinyldiene fluoride, polychlorotrifluoroethylene, perfluoroalkoxy polymer, perfluoropolyether, polyurethane, polyethylenechlorotrifluoroethylene, polyethylene-vinyl acetate, epoxy resin, silicone resin, polyamide resin, polyamide, or polyester resin.
- the natural wax can include carnauba wax, paraffin wax, montan wax, candelilla wax, ouricury wax, sufarcane wax, retamo wax, or beeswax.
- the wax can be a polyethylene wax, such as a high density polyethylene wax.
- slip aids that can be used include Michemshield® 29235 (Michelman, Inc.), Ultralube® E846 (Keim-Additec Surface GmbH), and Ultralube® D-806 (Keim-Additec Surface GmbH), for example.
- a wax is present in the primer composition at an amount of 1 wt% to 20 wt% of all dry ingredients in the primer composition. In other examples, the wax can be present in an amount of 5 wt% to 15 wt% of all dry ingredients in the primer composition
- the primer composition also includes a cationic salt.
- the cationic salt can be present in an amount sufficient to immobilize pigment colorants in the ink to be printed over the primer and to yield good image quality.
- the primer composition can include the cationic salt in an amount from 10 wt% to 50 wt%, 10 wt% to 40 wt%, 15 wt% to 30 wt%, or 20 wt% to 30 wt% based on the weight of all dry components of the primer composition.
- the cationic salt can include a metal cation.
- the metal cation can be sodium, calcium, copper, nickel, magnesium, zinc, barium, iron, aluminum, chromium, or other metal.
- the cationic salt can also include an anion.
- the anion can be fluoride, chloride, iodide, bromide, nitrate, chlorate, acetate, or RCOO - where R is hydrogen or any low molecular weight hydrocarbon chain, e.g., C1 to C12.
- the anion can be a carboxylate derived from a saturated aliphatic monocarboxylic acid having 1 to 6 carbon atoms or a carbocyclic monocarboxylic acid having 7 to 11 carbon atoms.
- saturated aliphatic monocarboxylic acid having 1 to 6 carbon atoms may include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, pivalic acid, and/or hexanoic acid.
- the cationic salt can be a polyvalent metal salt made up of a divalent or higher polyvalent metallic ion and an anion.
- the cationic salt can include calcium chloride, calcium nitrate, magnesium nitrate, magnesium acetate, and/or zinc acetate.
- the cationic salt can include calcium chloride or calcium nitrate (CaCl 2 or Ca(NO 3 ) 2 ).
- the cationic salt can include calcium chloride (CaCl 2 ).
- the cationic salt can also be a mixture of two or more different cationic salts.
- the total amount of the mixture of cationic salts can be 10 wt% to 50 wt%, 10 wt% to 40 wt%, 15 wt% to 30 wt%, or 20 wt% to 30 wt% based on the weight of all dry components of the primer composition. Whatever range is considered, it is understood that the range relates to total concentrations of salts, whether there be one, two, three, etc., specific salt species present.
- compositions for inkjet printing include inorganic pigments to improve the absorption properties of the coating.
- inorganic pigments can include, for example, clays such as kaolin clay or calcined clay, ground calcium carbonate, precipitated calcium carbonate, barium sulfate, titanium dioxide, silica, aluminum trihydrate, aluminum oxide, boehmite, or combinations thereof.
- the present primer composition can be substantially devoid of inorganic pigments.
- the primer composition can include an inorganic pigment.
- the primer composition can include an inorganic pigment in an amount of about 5 wt% or less of all dry components of the primer composition.
- the primer composition can include a relatively small amount of inorganic pigment, such as less than 5 wt%.
- the primer composition can be acidic and can include an inorganic pigment that is compatible with acid, such as a clay.
- the primer composition can also include other coating additives such as surfactants, rheology modifiers, defoamers, optical brighteners, biocides, pH controlling agents, dyes, and other additives for further enhancing the properties of the primer composition.
- coating additives such as surfactants, rheology modifiers, defoamers, optical brighteners, biocides, pH controlling agents, dyes, and other additives for further enhancing the properties of the primer composition.
- the total amount of such optional coating additives can be present, individually, in the range of 0.01 wt% to 5 wt% of all dry ingredients of the primer composition.
- FIG. 1 provides an exemplary method of coating a media substrate 100.
- the method includes applying 110 a primer composition to a media substrate, wherein the primer composition includes from 5 wt% to 70 wt% binder including polyvinyl alcohol, starch nanoparticles, and a polymer latex dispersion.
- the primer composition further includes a wax, a cationic salt and water.
- the primer composition used in the method can have any of the ingredients in the amounts described above with respect to the primer composition.
- the method can include applying a primer composition that includes the polyvinyl alcohol in an amount from 1 wt% to 40 wt% of all dry ingredients in the primer composition, starch nanoparticles in an amount from 1 wt% to 20 wt%, and a polymer latex dispersion in an amount from 20 wt% to 70 wt% of all dry ingredients in the primer composition.
- the method can include applying a primer composition in which polyvinyl alcohol, starch nanoparticles, polymer latex dispersion, wax and cationic salt make up at least 80 wt% of all dry ingredients in the primer composition.
- the method can include applying a primer composition that is substantially devoid of inorganic pigments. In another example, the method can include applying a primer composition that includes an inorganic pigment in an amount of about 5 wt% or less of all dry components of the primer composition.
- the composition can be applied to the substrate by any of a number of coating methods.
- the substrate can be coated by spray coating, dip coating, cascade coating, roll coating, gravure coating, curtain coating, air knife coating, cast coating, Meyer rod coating, blade coating, film coating, metered size press coating, puddle size press coating, calender stack, and/or by using other known coating techniques.
- the thickness selected for the coating layer can vary.
- the primer composition can be applied at a dry coat weight from 0.1 gsm to 20 gsm. In another example, the primer composition can be applied to the substrate at a dry coat weight from 0.3 gsm to 10 gsm.
- the primer composition can be applied to the substrate at a dry coat weight from 0.3 gsm to 5 gsm. In another example, the primer composition can be applied to the substrate at a dry coat weight from 0.3 gsm to 1 gsm.
- the method of coating the media substrate can further include allowing a sufficient time for the primer layer to dry before printing ink on the primer layer.
- the primer layer can be dried with infrared lamp, hot air and combination thereof.
- the primer layer can retain from about 0.01 wt% to about 10 wt% water, based on the total weight of the coating, when the coating is dry enough to print on.
- the coating can have from about 1 wt% to about 6 wt% water remaining when an image is printed on the coated substrate.
- dry coat weight described herein refers to dry components, even if some water remains behind in the final formulation coating.
- Ink can be printed on the primer layer. Printing can occur when the primer layer is partially dry or fully dry (i.e. dry to the touch but still may include some residual water).
- the ink can be a water-based ink such as a water-based inkjet ink.
- Inkjet inks generally include a colorant dispersed or dissolved in an ink vehicle.
- liquid vehicle or “ink vehicle” refers to the liquid fluid in which a colorant is placed to form an ink. Ink vehicles are well known in the art, and a wide variety of ink vehicles may be used with the systems and methods of the present disclosure.
- Such ink vehicles may include a mixture of a variety of different agents, including, surfactants, solvents, co-solvents, anti-kogation agents, buffers, biocides, sequestering agents, viscosity modifiers, surface-active agents, water, etc.
- the liquid vehicle can carry solid additives such as polymers, latexes, UV curable materials, plasticizers, etc.
- the colorant discussed herein can include a pigment and/or dye.
- dye refers to compounds or molecules that impart color to an ink vehicle.
- dye includes molecules and compounds that absorb electromagnetic radiation or certain wavelengths thereof.
- dyes include those that fluoresce and those that absorb certain wavelengths of visible light. In most instances, dyes are water soluble.
- pigment generally includes pigment colorants, magnetic particles, aluminas, silicas, and/or other ceramics, organo-metallics or other opaque particles.
- the colorant can be a pigment.
- additives may be employed to enhance the properties of the ink composition for specific applications.
- these additives are those added to inhibit the growth of harmful microorganisms.
- These additives may be biocides, fungicides, and other microbial agents, which are routinely used in ink formulations.
- suitable microbial agents include, but are not limited to, NUOSEPT® (Nudex, Inc.), UCARCIDETM (Union carbide Corp.), VANCIDE® (R.T. Vanderbilt Co.), PROXEL® (ICI America), ACTICIDE® (Thor Specialties Inc.) and combinations thereof.
- the present technology also extends to coated media substrates.
- the media substrate can include a variety of types of base substrate, including paper media, nonporous media, swellable media, microporous media, photobase media, offset media, coated media, uncoated media, and other types of media including plastics, vinyl media, fabrics, woven substrate, etc.
- the substrate can be a swellable media, a microporous media, or an offset media.
- the primer composition according to the present technology can be especially useful for coating offset media, which typically has a very small pore diameter (often referred to a nonporous) and hydrophobic surface that does not interact well with water based inks.
- a coated media substrate according to the present technology can include a media substrate and a primer layer coated on a surface of the media substrate.
- the primer layer can include a binder having polyvinyl alcohol, starch nanoparticles, and a polymer latex dispersion.
- the primer layer can also include a wax and a cationic salt.
- FIG. 2 shows an example of a coated media substrate 200.
- a base substrate 210 is coated with a primer layer 220.
- ink jet ink 230 can be printed to form a printed image.
- the image can have improved instant dry smearfastness after printing.
- FIG. 3 shows another example of a coated media substrate 300.
- the base substrate 310 has a primer layer 320 coated on both sides of the base substrate.
- Ink jet ink 330 is used to print images one or on both sides of the coated substrate.
- the coated media substrate can be used for double sided printing.
- the base substrate can also include its own coating, such as the hydrophobic coating on offset paper. Certain coatings (or pre-coatings) described herein can often already be present as part of a substrate, and these coatings are not the same as the primer layer primarily discussed in the context of the present disclosure.
- Offset media or photobase for example, already include coatings on one or both side of a substrate material (and thus are considered to be part of the base substrate).
- the primer compositions of the present disclosure are those which are overcoated with respect to the pre-applied coatings, or alternatively, to substrates that are not already pre-coated.
- Such coatings i.e. the pre-coating and/or the primer compositions of the present disclosure, can be present on either one side of a media substrate or both.
- the primer layer on the coated substrate can be formed by applying the primer compositions disclosed herein using any of the methods disclosed herein.
- the primer layer can include any of the additional ingredients in any of the amounts disclosed for the primer compositions described herein.
- the primer layer can include the polymer latex dispersion in an amount from 10 wt% to 70 wt% of all dry components of the primer layer.
- the polyvinyl alcohol, starch nanoparticles, polymer latex dispersion, wax, and cationic salt can make up at least 80 wt% of all dry components of the primer layer.
- a printing system can include an inkjet ink and a coated media substrate as described above.
- the coated media substrate can include a media substrate and a primer layer coated on a surface of the media substrate.
- the primer layer can include a polyvinyl alcohol, starch nanoparticles, a polymer latex dispersion, a wax and a cationic salt.
- Substrate or “media substrate” includes any base material that can be coated in accordance with examples of the present disclosure, such as film base substrates, polymer substrates, conventional paper substrates, photobase substrates, offset media substrates, and the like. Further, pre-coated and film coated substrates can be considered a “substrate” that can be further coated in accordance with examples of the present disclosure.
- Slip aid refers to materials that can be added to coating compositions herein to provide abrasion resistance to coatings of the present disclosure.
- “Instant dry smearfastness” refers to the ability of a printed image to resist smearing when rubbed with a dry instrument such as a finger or a Rubber Eraser Tool, immediately after printing or within a short time of being printed.
- the short time can be, for example, from 1 second to 30 seconds, from 1 second to 20 seconds, or from 5 seconds to 10 seconds.
- the short time can be the time required for a printed image to travel from the inkjet printer to a rewinding roll.
- a printed image on an HP T230 Web Press@ takes from 5 seconds to 10 seconds to reach the rewinder after being printed.
- “Instant wet smearfastness” refers to the ability of a printed image to resist smearing when rubbed with a wet instrument such as a wet finger immediately after printing or within a short time of being printed.
- the short time can be, for example, from 1 second to 30 seconds, from 1 second to 20 seconds, or from 5 seconds to 10 seconds.
- the short time can be the time required for a printed image to travel from the inkjet printer to a rewinding roll.
- a printed image on an HP T230 Web Press@ takes from 5 seconds to 10 seconds to reach the rewinder after being printed.
- “Instant mechability” refers to the instant dry and wet smearfastness and the scratch resistance of a sample after printing, drying, and reaching the rewinding station.
- presses such as the HP T230 Web Press@ or the HP T350 Web Press@ exhibit printing speeds that are commensurate of what is considered to be “high speed.”
- the HP T350 Web Press@ can print text and/or other images on media at a rate of 400 feet per minute. This capability would be considered high speed. In another example, and more generally, printing at 100 feet per minute would also be considered high speed.
- the term "about” is used to provide flexibility to a numerical range endpoint by providing that a given value may be “a little above” or “a little below” the endpoint.
- the degree of flexibility of this term can be dictated by the particular variable and can be determined based on experience and the associated description herein.
- a weight ratio range of about 1 wt% to about 20 wt% should be interpreted to include not only the explicitly recited limits of 1 wt% and about 20 wt%, but also to include individual weights such as 2 wt%, 11 wt%, 14 wt%, and sub-ranges such as 10 wt% to 20 wt%, 5 wt% to 15 wt%, etc.
- Formulation Examples 1-9 were prepared according to Tables 1A and 1B. Examples 7-9 are examples prepared according to the present technology and Examples 1-6 are comparative examples. Table 1A Example No. Ingredient Dry Wt% 1 2 3 4 5 Poval® 4-88 (polyvinyl alcohol) 2 - 2 2 2 Poval® 18-88 (polyvinyl alcohol) 9 18 9 9 9 Penford® Gum 280 (starch) - - 4 - - Ecosphere® 2202D (starch nanoparticles) - - - - - - Polyvinyl pyrrolidone (30,000 M w ) - - - 4 - PolyoxTM N750 (polyethylene oxide) - - - - 4 Litex® 9710 (carboxylated styrene-butadiene copolymer latex) 50 45 48 48 48 48 Ultralube® D-806 (polyethylene wax) 11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Calcium Ch
- Example formulations 1-9 were coated onto Sterling® Ultra Gloss (Verso Corporation), 60# paper with 2 g/m 2 (gsm) of dry coating weight.
- Samples were printed with an HP CM8060 MFP Edgeline printer, from Hewlett-Packard Co., Palo Alto, CA, USA (HP), using HP A50 pigment inks (i.e. aqueous inkjet ink for digital inkjet printing).
- HP A50 pigment inks i.e. aqueous inkjet ink for digital inkjet printing.
- the printing process used involved 2 passes and six dry spin conditions to mimic high-speed, digital, web press inkjet printing.
- Dry and wet smearfastness refer to the ability of the printed image to resist appearance degradation upon rubbing or smearing the image by dry or wet finger.
- a dry or wet finger was placed against a printed area, pushed with force of about 50 g/in 2 , and drawn toward the tester. The finger was then released to
- Examples 1-5 did not include starch nanoparticles. These examples did not provide sufficient wet finger smearfastness.
- Example 6 included starch nanoparticles, but no polyvinyl alcohol. This example showed very poor dry finger smearfastness and wet finger smearfastness.
- Examples 7-9 included both starch nanoparticles and polyvinyl alcohol (as well as latex particles).
- Example 7 provided excellent wet finger smearfastness but marginal dry finger smearfastness.
- Examples 8 and 9 both provided good dry finger smearfastness and wet finger smearfastness.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Paints Or Removers (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Ink Jet (AREA)
Description
- There are several reasons that inkjet printing has become a popular way of recording images on various media surfaces, particularly paper. Some of these reasons include low printer noise, variable content recording, capability of high speed recording, and multi-color recording. Additionally, these advantages can be obtained at a relatively low price to consumers. Though there has been great improvement in inkjet printing, accompanying this improvement are increased demands by consumers in this area, e.g., higher speeds, higher resolution, full color image formation, increased stability, etc. Additionally, inkjet printing is becoming more prevalent in high speed commercial printing markets, competing with more laborious offset and gravure printing technologies. Coated media typically used for these more conventional types of printing, e.g., offset or gravure printing, can perform somewhat acceptably on high speed inkjet printing devices, but these types of media are not always acceptable for inkjet technology as it relates to image quality, gloss, abrasion resistance, and other similar properties.
- Additional features and advantages of the disclosure will be apparent from the detailed description which follows, taken in conjunction with the accompanying drawings, which together illustrate, by way of example, features of the present technology.
-
FIG. 1 illustrates a method of coating a media substrate in accordance with an example of the present technology; -
FIG. 2 shows a cross-sectional view of a coated media substrate in accordance with an example of the present technology; and -
FIG. 3 shows a cross-sectional view of a coated media substrate in accordance with an example of the present technology. - Reference will now be made to several examples that are illustrated herein, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the disclosure is thereby intended.
- The present disclosure is drawn to primer compositions. In some examples, the primer compositions can be ink-receiving primer compositions, in that the primer compositions can be used to form coatings for receiving inks such as inkjet inks. The primer compositions can be applied to a substrate to form an ink-receiving layer on the substrate before printing inkjet ink over or onto the primer layer. In one example, a primer composition can be applied to offset coated paper. Typically, offset coated papers are significantly different from paper specifically designed for inkjet printing. Commercial offset paper often includes a smooth, nonporous surface coating that is difficult to penetrate by aqueous liquids. In many cases, offset coatings include inorganic pigments such as calcium carbonate and clay, as well as hydrophobic polymers that interact poorly with water-based inks. Polymers used in offset media can also sometimes include latex binders, polystyrenes, polyolefins (polypropylene, polyethylene, polybutadiene), polyesters (PET), polyacrylates, polymethacrylates, poly (maleic anhydride), and/or others. As a result of the hydrophobic and nonporous properties of offset media, water-based inks printed on offset media often have poor image quality, dry very slowly (sometimes taking more than 24 hours), and have poor durability after drying.
- The primer compositions described herein can be applied to a media substrate, such as an offset media substrate as described above, to improve the ability of the substrate to receive water-based inks. For example, a primer composition can be coated on a media substrate to improve the durability of images printed with water-based inks. In one example, a media substrate that is normally less suitable for printing with water-based inks, such as offset media, can be coated with the primer composition prior to printing. This coated media substrate can interact with water-based inks and provide a printed image with good durability after the ink dries on the coated media substrate.
- In further detail, the primer composition can include a water soluble polymeric binder, e.g., partially water soluble (at least 5%), mostly water soluble (at least 50%), or fully water soluble (at least 99%) in the primer composition. Water soluble polymers can interact better with water-based inks compared to the hydrophobic coatings of offset media. However, many types of water-soluble polymeric binder exhibit poor dry smearfastness immediately after printing due to poor wet film strength. For example, starches, cellulose, polyethylene oxide, and polyvinylpyrrolidone (PVP) are examples of water-soluble polymers that can have poor dry smearfastness when used in primers on offset media.
- Poor dry smearfastness immediately after printing can be problematic because the printed image can be easily smeared if the image is rubbed or otherwise disturbed soon after printing. For example, when using an HP high speed Web Press@, the printing is a continuous process and the paper is rewound as a roll after printing. The image or text printed on the paper can be smeared when the paper is rewound if the dry durability is poor. Prior solutions to this problem have included reducing the printing speed, increasing drying temperature, or increasing the drying zone. Several disadvantages are associated with these solutions, however. For example, increasing the drying time requires reducing the production rate, which increases the cost or time cost of printing. Harsh drying conditions can cause increased paper cockle. Increasing the size of the drying zone makes the printing system occupy a larger space, which increases the total cost or space cost of printing.
- Surprisingly, certain primer compositions including polyvinyl alcohols and other components have been found to provide much better dry smearfastness immediately after printing. Thus, the primer composition can include polyvinyl alcohol as the water soluble polymeric binder. In addition to the polyvinyl alcohol, the primer composition can include a cationic salt. Thus, the hydroxyl groups of the polyvinyl alcohol can interact with the cationic salt to form a complex-like structure. This structure can result in enhanced wet film strength of the primer layer and the ink printed on top of the primer layer. When inkjet ink is printed on top of the primer, the ink can have improved instant dry smearfastness.
- Although primer compositions including polyvinyl alcohols can provide desirable dry smearfastness, it is difficult to achieve both dry smearfastness and wet smearfastness at the same time. Poor wet smearfastness can cause poor mechability because the printed substrate can often be rewound before the primer layer and image are completely dry. Mixtures of different water soluble polymeric binders can be used to adjust the dry smearfastness and wet smearfastness of the primer composition. However, many mixtures of water soluble polymeric binders are unable to provide both good dry smearfastness and good wet smearfastness. For example, mixtures of polyvinyl alcohol with common starch, polyvinyl pyrrolidone, or polyethylene oxide can in some cases provide good dry smearfastness or good wet smearfastness, but not both at the same time. However, certain primer compositions including a mixture of polyvinyl alcohol, starch nanoparticles, and a polymer latex dispersion have been found to provide better dry smearfastness and wet smearfastness at the same time.
- The primer composition can be used on offset paper in a continuous printing system such as the HP high speed Web Press@ mentioned above. In some cases, a more immediate or instant dry and wet smearfastness of the printed image can be such that no smearing occurs when the printed paper is rewound into a roll after printing. Because the printed image does not need extra time to dry before rewinding the paper, the press can run at a high speed in some examples. These advantages can be obtained without compromising print quality.
- With this description in mind, in some examples, the present technology provides primer compositions.
- The primer composition comprises:
- a) 5 wt% to 70 wt% of a binder that includes1 wt% to 40 wt% polyvinyl alcohol, 1 wt% to 20 wt% starch nanoparticles having an average diameter from 1 nm to 1 µm and 10 wt% to 70 wt% polymer latex dispersion;
- b) 1 wt% to 20 wt% of a wax;
- c) 10 wt% to 50 wt% of a cationic salt; and
- d) water,
- The polyvinyl alcohol, starch nanoparticles, and polymer latex dispersion can act as a binder in the primer composition. Generally, the amount of these ingredients can be sufficient to act as a binder to bind the remaining ingredients of the primer composition to the substrate. In some examples, the binder content of the primer composition can be within a range such that there is sufficient binder to bind the other ingredients of the primer to the substrate, but not so much that the ink-receiving properties of the primer are compromised. As an example, too much binder can, in some cases, make the primer layer less porous and negatively impact the solution stability of the primer. This can interfere with the interaction between the primer layer and water-based inks. The total amount of binder present in the primer composition is from 5 wt% to 70 wt%. In other examples, the total amount of binder can be from 5 wt% to 50 wt%, 10 wt% to 30 wt%, or 10 wt% to 20 wt%.
- In further detail, the primer composition includes polyvinyl alcohol in an amount from 1 wt% to 40 wt%, 2 wt% to 30 wt%, or 5 wt% to 20 wt%, based on the weight of all dry components of the primer composition.
- The type of polyvinyl alcohol is not particularly limited with respect to the molecular weight and degree of hydrolysis of the polyvinyl alcohol. However, in some examples, the polyvinyl alcohol can have a weight-average molecular weight from 1,000 Mw to 300,000 Mw. In further examples, the polyvinyl alcohol can have an average molecular weight from about 20,000 Mw to about 250,000 Mw. In more specific examples, the polyvinyl alcohol can have an average molecular weight from about 27,000 Mw to about 205,000 Mw. The degree of hydrolysis of the polyvinyl alcohol can be from about 75 mol% to about 100 mol%. In certain examples, the degree of hydrolysis can be from about 86 mol% to about 100 mol%. It is believed that the hydroxyl groups on the polyvinyl alcohol can interact with the cationic salt in the primer composition to form a complex-like structure, which improves the instant smearfastness of printed images on a primer coated substrate. Non-limiting examples of polyvinyl alcohols that can be used in the primer composition include Poval® 3-88 (Kuraray America, Inc.) (14,000 Mw, 86.7-88.7 mol% hydrolysis); Poval® 4-88 (Kuraray America, Inc.) (31,000 Mw, 86.7-88.7 mol% hydrolysis); Poval® 4-98 (Kuraray America, Inc.) (27,000 Mw, 98-98.8 mol% hydrolysis); Poval® 5-88 (Kuraray America, Inc.) (37,000 Mw, 86.7-88.7 mol% hydrolysis); Poval® 8-88 (Kuraray America, Inc.) (67,000 Mw, 86.7-88.7 mol% hydrolysis); Poval® 13-88 (Kuraray America, Inc.) (86.7-88.7 mol% hydrolysis); Poval® 18-88 (Kuraray America, Inc.) (130,000 Mw, 86.7-88.7 mol% hydrolysis); Poval® 23-88 (Kuraray America, Inc.) (150,000 Mw, 86.7-88.7 mol% hydrolysis); Poval® 26-88 (Kuraray America, Inc.) (160,000 Mw, 86.7-88.7 mol% hydrolysis); and Poval® 40-88 (Kuraray America, Inc.) (205,000 Mw, 86.7-88.7 mol% hydrolysis).
- The polyvinyl alcohol can in some cases be a mixture of two or more types of polyvinyl alcohol. In such examples, the total amount of the polyvinyl alcohols can be from 1 wt% to 40 wt%, 2 wt% to 30 wt%, 5 wt% to 20 wt%, based on the weight of all dry components of the primer composition. Whatever range is considered, it is understood that the range relates to total concentrations of polyvinyl alcohol, whether there be one, two, three, etc., specific polyvinyl alcohol species present. In one example, the primer composition can include a mixture of two types of polyvinyl alcohol having different molecular weights.
- In addition to the polyvinyl alcohol, the binder can include starch nanoparticles. Starch is a carbohydrate consisting of linear or branched polysaccharide chains. Starch is often available in granular form, with granules having an average diameter of 10 µm to 100 µm or larger. Starch nanoparticles are different from this common form of starch in that the starch nanoparticles have a smaller, nano-sized average diameter. Starch nanoparticles have an average diameter from 1 nm to 1 µm. The starch nanoparticles used in the binder for the present primer compositions have an average diameter within this range of 1 nm to 1 µm. In some examples, the starch nanoparticles can have an average diameter from 10 nm to 500 nm, 20 nm to 200 nm, or 50 nm to 150 nm.
- Non-limiting examples of suitable starch nanoparticles for use in the present primer compositions include Ecosphere® 2202D, 2260, 2330 and 2326 (EcoSynthetix Inc.). These starch nanoparticles are cross-linked starch with a nanoparticle structure, and can yield better durability than traditional starches that are non-crosslinked polymers. In some examples, the primer composition can include starch nanoparticles in an amount from 1 wt% to 20 wt%, 1 wt% to 10 wt%, or 2 wt% to 5 wt% based on the weight of all dry components of the primer composition.
- The primer composition further includes a polymer latex dispersion. The polymer latex dispersion can include latex particles suspended in water or an aqueous system. In some examples, the latex particles is present in an amount from about 10 wt% to about 70 wt% based on the weight of all dry components of the primer composition. In further examples, the latex particles can be present in an amount from 20 wt% to 60 wt% based on the weight of all dry components of the primer composition. Additionally, the primer composition can be predominantly (greater than 50 wt% by dry weight) made up of the latex particles, the polyvinyl alcohol, the starch nanoparticles, wax, and the cationic salt. In one example, the polyvinyl alcohol, starch nanoparticles, polymer latex dispersion, wax, and cationic salt, can make up at least 80 wt% of all dry ingredients in the primer composition.
- The latex particles can be used to improve the film strength of the primer layer. In one example, the glass transition temperature (Tg) of the latex can be from 0°C to 100°C. The latex polymer can be anionic, nonionic, or cationic. In some examples, the latex particles can be cationic latex particles.
- In other examples, the latex particles can be made of polymers and copolymers including acrylic polymers or copolymers, vinyl acetate polymers or copolymers, polyester polymers or copolymers, vinylidene chloride polymers or copolymers, butadiene polymers or copolymers, styrene-butadiene polymers or copolymers, acrylonitrile-butadiene polymers or copolymers. In another example, the latex particles can include a vinyl acetate-based polymer, an acrylic polymer, a styrene polymer, a styrene-butadiene (SBR)-based polymer, a polyester-based polymer, a vinyl chloride-based polymer, an acid-based polymer, or the like. In one aspect, the latex particles can be a polymer or a copolymer including acrylic polymers, vinyl-acrylic copolymers and acrylic-polyurethane copolymers. In another aspect, the latex particles can be cationic acrylate latex. In one specific aspect, the latex can be a vinyl acetate polymer. In another specific aspect, the latex can be a SBR polymer.
- Generally, the latex particles can have a weight average molecular weight (Mw) of 5,000 Mw to 500,000 Mw. In one example, the latex particles can range from 150,000 Mw to 300,000 Mw. In some examples, the average particle diameter of the latex particles can be from 10 nm to 1 µm and, as other examples, from 10 nm to 500 nm, and in yet other examples, from 50 nm to 250 nm. The particle size distribution of the latex is not particularly limited, and either latex having a broad particle size distribution or latex having a mono-dispersed particle size distribution may be used. It is also possible to use two or more kinds of polymer fine particles each having a mono-dispersed particle size distribution in combination
- In some cases, the primer composition can include additional binders. Non-limiting examples of such binders include cellulose, polyethylene oxide, polyvinyl pyrrolidone, and others. The additional binders can also be mixtures of two or more water soluble polymeric binders. In some examples, if additional binders are present then the additional binders can be present in a smaller amount than the combined polyvinyl alcohol, starch nanoparticles, and polymer latex dispersion. In further examples, the combined polyvinyl alcohol, starch nanoparticles, and polymer latex dispersion can make up at least 10 wt% by dry weight of all binders present in the primer composition. In still further examples, the combined polyvinyl alcohol, starch nanoparticles, and polymer latex dispersion can make up at least 80 wt% by dry weight of all binders present in the primer composition. In a specific example, the primer composition can be substantially free of any binder other than the polyvinyl alcohol, starch nanoparticles, and polymer latex dispersion.
- The primer composition also includes a wax. In some examples, the wax can act as a slip aid to contribute to abrasion resistance and coefficient of friction (COF) reduction. Suitable waxes can include particles of a synthetic wax, natural wax, combinations of a synthetic wax and a natural wax, combinations of two or more different synthetic waxes, or combinations of two or more different natural waxes, for example. In some examples, the synthetic wax can include polyethylene, polypropylene, polybutadiene, polytetrafluoroethylene, polyvinylfluoride, polyvinyldiene fluoride, polychlorotrifluoroethylene, perfluoroalkoxy polymer, perfluoropolyether, polyurethane, polyethylenechlorotrifluoroethylene, polyethylene-vinyl acetate, epoxy resin, silicone resin, polyamide resin, polyamide, or polyester resin. In some examples, the natural wax can include carnauba wax, paraffin wax, montan wax, candelilla wax, ouricury wax, sufarcane wax, retamo wax, or beeswax. In one example, the wax can be a polyethylene wax, such as a high density polyethylene wax. Commercially available slip aids that can be used include Michemshield® 29235 (Michelman, Inc.), Ultralube® E846 (Keim-Additec Surface GmbH), and Ultralube® D-806 (Keim-Additec Surface GmbH), for example. In some examples, a wax is present in the primer composition at an amount of 1 wt% to 20 wt% of all dry ingredients in the primer composition. In other examples, the wax can be present in an amount of 5 wt% to 15 wt% of all dry ingredients in the primer composition
- The primer composition also includes a cationic salt. The cationic salt can be present in an amount sufficient to immobilize pigment colorants in the ink to be printed over the primer and to yield good image quality. In some examples, the primer composition can include the cationic salt in an amount from 10 wt% to 50 wt%, 10 wt% to 40 wt%, 15 wt% to 30 wt%, or 20 wt% to 30 wt% based on the weight of all dry components of the primer composition.
- The cationic salt can include a metal cation. In some examples, the metal cation can be sodium, calcium, copper, nickel, magnesium, zinc, barium, iron, aluminum, chromium, or other metal. The cationic salt can also include an anion. In some examples, the anion can be fluoride, chloride, iodide, bromide, nitrate, chlorate, acetate, or RCOO- where R is hydrogen or any low molecular weight hydrocarbon chain, e.g., C1 to C12. In a more specific example, the anion can be a carboxylate derived from a saturated aliphatic monocarboxylic acid having 1 to 6 carbon atoms or a carbocyclic monocarboxylic acid having 7 to 11 carbon atoms. Examples of saturated aliphatic monocarboxylic acid having 1 to 6 carbon atoms may include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, pivalic acid, and/or hexanoic acid. In some cases, the cationic salt can be a polyvalent metal salt made up of a divalent or higher polyvalent metallic ion and an anion. In certain examples, the cationic salt can include calcium chloride, calcium nitrate, magnesium nitrate, magnesium acetate, and/or zinc acetate. In one aspect, the cationic salt can include calcium chloride or calcium nitrate (CaCl2 or Ca(NO3)2). In one additional specific aspect, the cationic salt can include calcium chloride (CaCl2). The cationic salt can also be a mixture of two or more different cationic salts. In such examples, the total amount of the mixture of cationic salts can be 10 wt% to 50 wt%, 10 wt% to 40 wt%, 15 wt% to 30 wt%, or 20 wt% to 30 wt% based on the weight of all dry components of the primer composition. Whatever range is considered, it is understood that the range relates to total concentrations of salts, whether there be one, two, three, etc., specific salt species present.
- Many coating compositions for inkjet printing include inorganic pigments to improve the absorption properties of the coating. Such inorganic pigments can include, for example, clays such as kaolin clay or calcined clay, ground calcium carbonate, precipitated calcium carbonate, barium sulfate, titanium dioxide, silica, aluminum trihydrate, aluminum oxide, boehmite, or combinations thereof. However, in some examples, the present primer composition can be substantially devoid of inorganic pigments. In other examples, the primer composition can include an inorganic pigment. In some examples, the primer composition can include an inorganic pigment in an amount of about 5 wt% or less of all dry components of the primer composition. Thus, the primer composition can include a relatively small amount of inorganic pigment, such as less than 5 wt%. In certain examples, the primer composition can be acidic and can include an inorganic pigment that is compatible with acid, such as a clay.
- The primer composition can also include other coating additives such as surfactants, rheology modifiers, defoamers, optical brighteners, biocides, pH controlling agents, dyes, and other additives for further enhancing the properties of the primer composition. The total amount of such optional coating additives can be present, individually, in the range of 0.01 wt% to 5 wt% of all dry ingredients of the primer composition.
- The present technology also extends to methods of coating a media substrate.
FIG. 1 provides an exemplary method of coating amedia substrate 100. The method includes applying 110 a primer composition to a media substrate, wherein the primer composition includes from 5 wt% to 70 wt% binder including polyvinyl alcohol, starch nanoparticles, and a polymer latex dispersion. The primer composition further includes a wax, a cationic salt and water. - The primer composition used in the method can have any of the ingredients in the amounts described above with respect to the primer composition. In a particular example, the method can include applying a primer composition that includes the polyvinyl alcohol in an amount from 1 wt% to 40 wt% of all dry ingredients in the primer composition, starch nanoparticles in an amount from 1 wt% to 20 wt%, and a polymer latex dispersion in an amount from 20 wt% to 70 wt% of all dry ingredients in the primer composition. In a further example, the method can include applying a primer composition in which polyvinyl alcohol, starch nanoparticles, polymer latex dispersion, wax and cationic salt make up at least 80 wt% of all dry ingredients in the primer composition. In yet another example, the method can include applying a primer composition that is substantially devoid of inorganic pigments. In another example, the method can include applying a primer composition that includes an inorganic pigment in an amount of about 5 wt% or less of all dry components of the primer composition.
- The composition can be applied to the substrate by any of a number of coating methods. In accordance with examples of the present disclosure, the substrate can be coated by spray coating, dip coating, cascade coating, roll coating, gravure coating, curtain coating, air knife coating, cast coating, Meyer rod coating, blade coating, film coating, metered size press coating, puddle size press coating, calender stack, and/or by using other known coating techniques. The thickness selected for the coating layer can vary. In one example, the primer composition can be applied at a dry coat weight from 0.1 gsm to 20 gsm. In another example, the primer composition can be applied to the substrate at a dry coat weight from 0.3 gsm to 10 gsm. In another example, the primer composition can be applied to the substrate at a dry coat weight from 0.3 gsm to 5 gsm. In another example, the primer composition can be applied to the substrate at a dry coat weight from 0.3 gsm to 1 gsm.
- The method of coating the media substrate can further include allowing a sufficient time for the primer layer to dry before printing ink on the primer layer. The primer layer can be dried with infrared lamp, hot air and combination thereof. The primer layer can retain from about 0.01 wt% to about 10 wt% water, based on the total weight of the coating, when the coating is dry enough to print on. In some examples, the coating can have from about 1 wt% to about 6 wt% water remaining when an image is printed on the coated substrate. Thus, it is understood that the "dry coat weight" described herein refers to dry components, even if some water remains behind in the final formulation coating.
- Ink can be printed on the primer layer. Printing can occur when the primer layer is partially dry or fully dry (i.e. dry to the touch but still may include some residual water). In some cases, the ink can be a water-based ink such as a water-based inkjet ink. Inkjet inks generally include a colorant dispersed or dissolved in an ink vehicle. As used herein, "liquid vehicle" or "ink vehicle" refers to the liquid fluid in which a colorant is placed to form an ink. Ink vehicles are well known in the art, and a wide variety of ink vehicles may be used with the systems and methods of the present disclosure. Such ink vehicles may include a mixture of a variety of different agents, including, surfactants, solvents, co-solvents, anti-kogation agents, buffers, biocides, sequestering agents, viscosity modifiers, surface-active agents, water, etc. Though not part of the liquid vehicle per se, in addition to the colorants, the liquid vehicle can carry solid additives such as polymers, latexes, UV curable materials, plasticizers, etc.
- Generally the colorant discussed herein can include a pigment and/or dye. As used herein, "dye" refers to compounds or molecules that impart color to an ink vehicle. As such, dye includes molecules and compounds that absorb electromagnetic radiation or certain wavelengths thereof. For example, dyes include those that fluoresce and those that absorb certain wavelengths of visible light. In most instances, dyes are water soluble. Furthermore, as used herein, "pigment" generally includes pigment colorants, magnetic particles, aluminas, silicas, and/or other ceramics, organo-metallics or other opaque particles. In one example, the colorant can be a pigment.
- Consistent with the formulation of this disclosure, various other additives may be employed to enhance the properties of the ink composition for specific applications. Examples of these additives are those added to inhibit the growth of harmful microorganisms. These additives may be biocides, fungicides, and other microbial agents, which are routinely used in ink formulations. Examples of suitable microbial agents include, but are not limited to, NUOSEPT® (Nudex, Inc.), UCARCIDE™ (Union carbide Corp.), VANCIDE® (R.T. Vanderbilt Co.), PROXEL® (ICI America), ACTICIDE® (Thor Specialties Inc.) and combinations thereof.
- The present technology also extends to coated media substrates. The media substrate can include a variety of types of base substrate, including paper media, nonporous media, swellable media, microporous media, photobase media, offset media, coated media, uncoated media, and other types of media including plastics, vinyl media, fabrics, woven substrate, etc. In certain examples, the substrate can be a swellable media, a microporous media, or an offset media. The primer composition according to the present technology can be especially useful for coating offset media, which typically has a very small pore diameter (often referred to a nonporous) and hydrophobic surface that does not interact well with water based inks.
- In one example, a coated media substrate according to the present technology can include a media substrate and a primer layer coated on a surface of the media substrate. The primer layer can include a binder having polyvinyl alcohol, starch nanoparticles, and a polymer latex dispersion. The primer layer can also include a wax and a cationic salt.
-
FIG. 2 shows an example of acoated media substrate 200. Abase substrate 210 is coated with aprimer layer 220. On top of the primer layer,ink jet ink 230 can be printed to form a printed image. The image can have improved instant dry smearfastness after printing. -
FIG. 3 shows another example of acoated media substrate 300. In this example, thebase substrate 310 has aprimer layer 320 coated on both sides of the base substrate.Ink jet ink 330 is used to print images one or on both sides of the coated substrate. Thus, the coated media substrate can be used for double sided printing. Although not shown in the figures, the base substrate can also include its own coating, such as the hydrophobic coating on offset paper. Certain coatings (or pre-coatings) described herein can often already be present as part of a substrate, and these coatings are not the same as the primer layer primarily discussed in the context of the present disclosure. Offset media or photobase, for example, already include coatings on one or both side of a substrate material (and thus are considered to be part of the base substrate). The primer compositions of the present disclosure, conversely, are those which are overcoated with respect to the pre-applied coatings, or alternatively, to substrates that are not already pre-coated. Such coatings, i.e. the pre-coating and/or the primer compositions of the present disclosure, can be present on either one side of a media substrate or both. - The primer layer on the coated substrate can be formed by applying the primer compositions disclosed herein using any of the methods disclosed herein. As such, the primer layer can include any of the additional ingredients in any of the amounts disclosed for the primer compositions described herein. In a specific example, the primer layer can include the polymer latex dispersion in an amount from 10 wt% to 70 wt% of all dry components of the primer layer. Additionally, the polyvinyl alcohol, starch nanoparticles, polymer latex dispersion, wax, and cationic salt can make up at least 80 wt% of all dry components of the primer layer.
- In yet another example of the present technology, a printing system can include an inkjet ink and a coated media substrate as described above. The coated media substrate can include a media substrate and a primer layer coated on a surface of the media substrate. The primer layer can include a polyvinyl alcohol, starch nanoparticles, a polymer latex dispersion, a wax and a cationic salt.
- It is noted that, as used in this specification and the appended claims, the singular forms "a," "an," and "the" include plural referents unless the content clearly dictates otherwise.
- "Substrate" or "media substrate" includes any base material that can be coated in accordance with examples of the present disclosure, such as film base substrates, polymer substrates, conventional paper substrates, photobase substrates, offset media substrates, and the like. Further, pre-coated and film coated substrates can be considered a "substrate" that can be further coated in accordance with examples of the present disclosure.
- "Slip aid" refers to materials that can be added to coating compositions herein to provide abrasion resistance to coatings of the present disclosure.
- "Instant dry smearfastness" refers to the ability of a printed image to resist smearing when rubbed with a dry instrument such as a finger or a Rubber Eraser Tool, immediately after printing or within a short time of being printed. The short time can be, for example, from 1 second to 30 seconds, from 1 second to 20 seconds, or from 5 seconds to 10 seconds. In some cases, the short time can be the time required for a printed image to travel from the inkjet printer to a rewinding roll. In one example, a printed image on an HP T230 Web Press@ takes from 5 seconds to 10 seconds to reach the rewinder after being printed.
- "Instant wet smearfastness" refers to the ability of a printed image to resist smearing when rubbed with a wet instrument such as a wet finger immediately after printing or within a short time of being printed. The short time can be, for example, from 1 second to 30 seconds, from 1 second to 20 seconds, or from 5 seconds to 10 seconds. In some cases, the short time can be the time required for a printed image to travel from the inkjet printer to a rewinding roll. In one example, a printed image on an HP T230 Web Press@ takes from 5 seconds to 10 seconds to reach the rewinder after being printed.
- "Instant mechability" refers to the instant dry and wet smearfastness and the scratch resistance of a sample after printing, drying, and reaching the rewinding station.
- When referring to "high speed" as it related to a digital printing press, presses such as the HP T230 Web Press@ or the HP T350 Web Press@ exhibit printing speeds that are commensurate of what is considered to be "high speed." For example, the HP T350 Web Press@ can print text and/or other images on media at a rate of 400 feet per minute. This capability would be considered high speed. In another example, and more generally, printing at 100 feet per minute would also be considered high speed.
- As used herein, the term "about" is used to provide flexibility to a numerical range endpoint by providing that a given value may be "a little above" or "a little below" the endpoint. The degree of flexibility of this term can be dictated by the particular variable and can be determined based on experience and the associated description herein.
- As used herein, a plurality of items, structural elements, compositional elements, and/or materials may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary.
- Concentrations, dimensions, amounts, and other numerical data may be presented herein in a range format. It is to be understood that such range format is used merely for convenience and brevity and should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. For example, a weight ratio range of about 1 wt% to about 20 wt% should be interpreted to include not only the explicitly recited limits of 1 wt% and about 20 wt%, but also to include individual weights such as 2 wt%, 11 wt%, 14 wt%, and sub-ranges such as 10 wt% to 20 wt%, 5 wt% to 15 wt%, etc.
- As a further note, in the present disclosure, it is noted that when discussing the coated media substrate, the method of coating a substrate, or the primer compositions herein, each of these discussions can be considered applicable to each of these examples, whether or not they are explicitly discussed in the context of that example. Thus, for example, in discussing details about the coated media substrate per se, such discussion also refers to the methods and primer compositions described herein, and vice versa.
- The following examples illustrate some of the primer compositions, coated media substrates, systems, and methods that are presently known. However, it is to be understood that the following are only exemplary or illustrative of the application of the principles of the present compositions, systems, and methods. Numerous modifications and alternative compositions, systems, and methods may be devised without departing from the spirit and scope of the present disclosure. The appended claims are intended to cover such modifications and arrangements. Thus, while the examples have been described above with particularity, the following provide further detail in connection with what are presently deemed to be the acceptable examples.
- Formulation Examples 1-9 were prepared according to Tables 1A and 1B. Examples 7-9 are examples prepared according to the present technology and Examples 1-6 are comparative examples.
Table 1A Example No. Ingredient Dry Wt% 1 2 3 4 5 Poval® 4-88 (polyvinyl alcohol) 2 - 2 2 2 Poval® 18-88 (polyvinyl alcohol) 9 18 9 9 9 Penford® Gum 280 (starch) - - 4 - - Ecosphere® 2202D (starch nanoparticles) - - - - - Polyvinyl pyrrolidone (30,000 Mw) - - - 4 - Polyox™ N750 (polyethylene oxide) - - - - 4 Litex® 9710 (carboxylated styrene-butadiene copolymer latex) 50 45 48 48 48 Ultralube® D-806 (polyethylene wax) 11 10 10 10 10 Calcium Chloride (cationic salt) 27 26 26 26 26 TEGO® Wet 510 (surfactant) 1 1 1 1 1 Table 1B Example No. Ingredient Dry Wt% 6 7 8 9 Poval® 4-88 (polyvinyl alcohol) - - 2 - Poval® 18-88 (polyvinyl alcohol) - 4 9 9 Penford® Gum 280 (starch) - - - - Ecosphere® 2202D (starch nanoparticles) 11 9 4 4 Polyvinyl pyrrolidone (30,000 Mw) - - - - Polyox™ N750 (polyethylene oxide) - - - - Litex® 9710 (carboxylated styrene-butadiene copolymer latex) 50 50 48 50 Ultralube® D-806 (polyethylene wax) 11 10 10 10 Calcium Chloride (cationic salt) 27 26 26 26 TEGO® Wet 510 (surfactant) 1 1 1 1 Poval® (from Kuraray America, Inc.)
Ultralube® (from Keim-Additec Surface GmbH)
TEGO® (from Evonik Resource Efficiency GmbH)
Ecosphere® (from EcoSynthetix Inc.)
Litex® (from Synthomer LLC)
Polyox™ (from Dow Chemical Company)
Penford® Gum (from Penford Products Co.) - The Example formulations 1-9 were coated onto Sterling® Ultra Gloss (Verso Corporation), 60# paper with 2 g/m2 (gsm) of dry coating weight. Samples were printed with an HP CM8060 MFP Edgeline printer, from Hewlett-Packard Co., Palo Alto, CA, USA (HP), using HP A50 pigment inks (i.e. aqueous inkjet ink for digital inkjet printing). The printing process used involved 2 passes and six dry spin conditions to mimic high-speed, digital, web press inkjet printing. Dry and wet smearfastness refer to the ability of the printed image to resist appearance degradation upon rubbing or smearing the image by dry or wet finger. For the dry and wet finger smearfastness tests, a dry or wet finger was placed against a printed area, pushed with force of about 50 g/in2, and drawn toward the tester. The finger was then released to check the tested area.
- The results of the dry finger smearfastness test and wet finger smearfastness test are shown in Table 2. For the dry and wet finger smearfastness tests, the visual ranking is based on a 1 to 5 scale, with 1 being the worst and 5 being the best. A ranking equal to or greater than 3 is considered good and acceptable. A ranking below 3 is considered poor and not acceptable.
Table 2: Visual Ranking of Performance Example No. Dry Finger Smearfastness Wet Finger Smearfastness 1 3.5 2.5 2 3.5 2.5 3 3 2.5 4 3.25 2.5 5 3.25 2.5 6 1.5 1.5 7 2.5 4 8 3.5 3 9 3.25 3 - Examples 1-5 did not include starch nanoparticles. These examples did not provide sufficient wet finger smearfastness. Example 6 included starch nanoparticles, but no polyvinyl alcohol. This example showed very poor dry finger smearfastness and wet finger smearfastness. Examples 7-9 included both starch nanoparticles and polyvinyl alcohol (as well as latex particles). Example 7 provided excellent wet finger smearfastness but marginal dry finger smearfastness. Examples 8 and 9 both provided good dry finger smearfastness and wet finger smearfastness. Therefore, these examples show that, although neither starch nanoparticles nor polyvinyl alcohol can provide sufficient wet and dry smearfastness when used alone, the combination of these two binders, along with latex particles) unexpectedly provides good wet and dry smearfastness.
In some examples, the primer composition can also include other additives such as surfactants. It is notable that when the water and other volatiles evaporate off, the weight percentage of the various solids in the composition increase, i.e. in the ink-receiving primer layer discussed hereinafter.
Claims (13)
- A primer composition, comprising:a) 5 wt% to 70 wt% of a binder including:i) 1 wt% to 40 wt% polyvinyl alcoholii) 1 wt% to 20 wt% starch nanoparticles having an average diameter from 1 nm to 1 µm; andiii) 10 wt% to 70 wt% polymer latex dispersion,b) 1 wt% to 20 wt% of a wax;c) 10 wt% to 50 wt% of a cationic salt; andd) water,wherein components (a) to (c) are present in an amount of all dry components of the primer composition.
- The primer composition of claim 1, wherein the polymer latex dispersion is selected from an SBR-based latex dispersion, a cationic acrylate latex dispersion, a polyvinyl acetate latex dispersion, and combinations thereof.
- The primer composition of claim 2, wherein the starch nanoparticles are crosslinked starch nanoparticles.
- The primer composition of claim 1, wherein the cationic salt comprises a cation of a metal selected from the group consisting of sodium, calcium, copper, nickel, magnesium, zinc, barium, iron, aluminum and chromium.
- The primer composition of claim 1, wherein the polyvinyl alcohol, starch nanoparticles, polymer latex dispersion, wax, and cationic salt make up at least 80 wt% of all dry components of the primer composition.
- The primer composition of claim 1, wherein the polyvinyl alcohol is a mixture of two different polyvinyl alcohols with different weight-average molecular weights.
- The primer composition of claim 1, wherein the primer composition further comprises an inorganic pigment in an amount of 5 wt% or less of all dry components of the primer composition.
- A method of coating a media substrate, comprising applying a primer composition to a media substrate, wherein the primer composition comprises:a) 5 wt% to 70 wt% of a binder including:i) 1 wt% to 40 wt% polyvinyl alcoholii) 1 wt% to 20 wt% starch nanoparticles having an average diameter from 1 nm to 1 µm; andiii) 10 wt% to 70 wt% polymer latex dispersion,b) 1 wt% to 20 wt% of a wax;c) 10 wt% to 50 wt% of a cationic salt; andd) water,wherein components (a) to (c) are present in an amount of all dry components of the primer composition.
- The method of claim 8, wherein the polyvinyl alcohol, starch nanoparticles, polymer latex dispersion, wax, and cationic salt make up at least 80 wt% of all dry components of the primer composition.
- The method of claim 8, wherein the starch nanoparticles are crosslinked starch nanoparticles.
- A coated media substrate, comprising:a media substrate; andan ink-receiving primer layer coated on a surface of the media substrate, the primer layer comprising:wherein components (a) to (c) are present in an amount of all dry components of the primer composition.a) 5 wt% to 70 wt% of a binder including:i) 1 wt% to 40 wt% polyvinyl alcoholii) 1 wt% to 20 wt% starch nanoparticles having an average diameter from 1 nm to 1 µm; andiii) 10 wt% to 70 wt% polymer latex dispersion,b) 1 wt% to 20 wt% of a wax;c) 10 wt% to 50 wt% of a cationic salt; andd) water,
- The coated media substrate of claim 11, wherein the media substrate is a smooth, nonporous offset media substrate.
- The coated media substrate of claim 11, wherein the starch nanoparticles are crosslinked starch nanoparticles, and wherein the polyvinyl alcohol, starch nanoparticles, polymer latex dispersion, wax, and cationic salt make up at least 80 wt% of all dry components of the primer layer.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2015/047447 WO2017039585A1 (en) | 2015-08-28 | 2015-08-28 | Primer compositions |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3265318A4 EP3265318A4 (en) | 2018-01-10 |
EP3265318A1 EP3265318A1 (en) | 2018-01-10 |
EP3265318B1 true EP3265318B1 (en) | 2019-10-02 |
Family
ID=58188215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15903176.4A Active EP3265318B1 (en) | 2015-08-28 | 2015-08-28 | Primer compositions |
Country Status (4)
Country | Link |
---|---|
US (1) | US20180087222A1 (en) |
EP (1) | EP3265318B1 (en) |
CN (1) | CN107690499B (en) |
WO (1) | WO2017039585A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180086935A1 (en) * | 2015-08-28 | 2018-03-29 | Hewlett-Packard Development Company, L.P. | Primer compositions |
CN110424182A (en) * | 2019-07-08 | 2019-11-08 | 浙江金龙纸业有限公司 | Environmentally friendly compounding Cypres of one kind and preparation method thereof |
US11767445B2 (en) * | 2019-09-12 | 2023-09-26 | Hewlett-Packard Development Company, L.P. | Pre-treatments for packaging print media |
EP3967802B1 (en) * | 2020-09-11 | 2023-03-29 | Basf Se | Consolidated nonwoven |
DE102021106141A1 (en) | 2021-03-12 | 2022-09-15 | Adesiv GmbH | Water-based dispersion paint system and use of the dispersion paint system and substrate |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5084492A (en) * | 1989-09-28 | 1992-01-28 | Standard Register Company | High solids cf printing ink |
US5102856A (en) * | 1990-11-07 | 1992-04-07 | The Standard Register Company | High solids self-contained printing ink |
EP1176255A1 (en) * | 2000-07-24 | 2002-01-30 | The Dow Chemical Company | Use of starch dispersions as binder in coating compositions and process for preparing the starch dispersions |
US6951671B2 (en) * | 2001-04-20 | 2005-10-04 | P. H. Glatfelter Company | Ink jet printable heat transfer paper |
EP1396576A1 (en) * | 2002-09-04 | 2004-03-10 | Raisio Chemicals Oy | Coating composition |
RU2007100155A (en) * | 2004-06-08 | 2008-07-20 | Эвери Деннисон Копэрейшн (Us) | METHOD FOR MANUFACTURING AN INDIVIDUALIZED PRODUCT, METHOD AND SYSTEM FOR PRODUCING STICKERS FOR STICKING ON THE PRODUCT, PRODUCT WITH A STICKER AND STICKER FOR IT ON THE SURFACE |
US9132686B2 (en) * | 2008-05-27 | 2015-09-15 | Hewlett-Packard Development Company, L.P. | Media for use in inkjet printing |
WO2011014199A1 (en) * | 2009-07-31 | 2011-02-03 | Hewlett Packard Development Company, L.P. | Coating compositions |
US8449665B2 (en) * | 2010-01-08 | 2013-05-28 | Hewlett-Packard Development Company, L.P. | Coating compositions including starch nanoparticles |
US8821998B2 (en) * | 2012-04-13 | 2014-09-02 | Newpage Corporation | Recording medium for inkjet printing |
US9286530B2 (en) * | 2012-07-17 | 2016-03-15 | Cognex Corporation | Handheld apparatus for quantifying component features |
CN104955656B (en) * | 2013-01-31 | 2017-04-05 | 惠普发展公司,有限责任合伙企业 | Pretreatment coating, printable media and the method for providing long-lived coating to printed medium |
US20140212591A1 (en) * | 2013-01-31 | 2014-07-31 | Hewlett-Packard Development Company, L.P. | Pre-treatment coating |
US9505938B2 (en) * | 2013-01-31 | 2016-11-29 | Hewlett-Packard Development Company, L.P. | Swellable pre-treatment coating |
CN105873770B (en) * | 2014-01-30 | 2019-03-15 | 惠普发展公司,有限责任合伙企业 | Printed medium for ink jet printing |
-
2015
- 2015-08-28 WO PCT/US2015/047447 patent/WO2017039585A1/en active Application Filing
- 2015-08-28 EP EP15903176.4A patent/EP3265318B1/en active Active
- 2015-08-28 CN CN201580080539.5A patent/CN107690499B/en not_active Expired - Fee Related
- 2015-08-28 US US15/569,511 patent/US20180087222A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
WO2017039585A1 (en) | 2017-03-09 |
EP3265318A4 (en) | 2018-01-10 |
EP3265318A1 (en) | 2018-01-10 |
CN107690499B (en) | 2021-04-27 |
US20180087222A1 (en) | 2018-03-29 |
CN107690499A (en) | 2018-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11365325B2 (en) | Primer compositions | |
EP3265318B1 (en) | Primer compositions | |
EP2951026B1 (en) | Pre-treatment coating | |
EP2762534B1 (en) | Pre-treatment coating | |
EP2701922B1 (en) | Recording media | |
EP2762533B1 (en) | Pre-Treatment Coating | |
JP2005022415A (en) | Inkjet recording material containing siloxane copolymer surfactant | |
EP2951253B1 (en) | Swellable pre-treatment coating | |
US10414937B2 (en) | Pre-treatment coating compositions | |
EP3265319B1 (en) | Primer compositions | |
US20180086935A1 (en) | Primer compositions | |
EP3341207B1 (en) | Coated print media | |
EP3237220B1 (en) | Coated print medium | |
WO2021050103A1 (en) | Pre-treatments for publishing print media | |
WO2017217997A1 (en) | Pre-treatment coating compositions | |
CN107921806B (en) | Sizing composition | |
JP2004050554A (en) | Inkjet recording sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20171005 |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20171128 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20181022 |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P. |
|
INTG | Intention to grant announced |
Effective date: 20190513 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1185752 Country of ref document: AT Kind code of ref document: T Effective date: 20191015 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015039312 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20191002 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1185752 Country of ref document: AT Kind code of ref document: T Effective date: 20191002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200102 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200103 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200102 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200203 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015039312 Country of ref document: DE |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200202 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
26N | No opposition filed |
Effective date: 20200703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200828 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200828 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20220721 Year of fee payment: 8 Ref country code: DE Payment date: 20220616 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20220721 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602015039312 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230828 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230831 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240301 |