EP3261175B1 - Wifi antenna of the clover-leaf or skew-planar wheel type for a drone - Google Patents

Wifi antenna of the clover-leaf or skew-planar wheel type for a drone Download PDF

Info

Publication number
EP3261175B1
EP3261175B1 EP17174470.9A EP17174470A EP3261175B1 EP 3261175 B1 EP3261175 B1 EP 3261175B1 EP 17174470 A EP17174470 A EP 17174470A EP 3261175 B1 EP3261175 B1 EP 3261175B1
Authority
EP
European Patent Office
Prior art keywords
antenna
drone
track
elementary
circuit support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP17174470.9A
Other languages
German (de)
French (fr)
Other versions
EP3261175A1 (en
Inventor
Fabrice MAINGOT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Parrot Drones SAS
Original Assignee
Parrot Drones SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Parrot Drones SAS filed Critical Parrot Drones SAS
Publication of EP3261175A1 publication Critical patent/EP3261175A1/en
Application granted granted Critical
Publication of EP3261175B1 publication Critical patent/EP3261175B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/286Adaptation for use in or on aircraft, missiles, satellites, or balloons substantially flush mounted with the skin of the craft
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2291Supports; Mounting means by structural association with other equipment or articles used in bluetooth or WI-FI devices of Wireless Local Area Networks [WLAN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/286Adaptation for use in or on aircraft, missiles, satellites, or balloons substantially flush mounted with the skin of the craft
    • H01Q1/287Adaptation for use in or on aircraft, missiles, satellites, or balloons substantially flush mounted with the skin of the craft integrated in a wing or a stabiliser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/12Resonant antennas
    • H01Q11/14Resonant antennas with parts bent, folded, shaped or screened or with phasing impedances, to obtain desired phase relation of radiation from selected sections of the antenna or to obtain desired polarisation effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/42Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop

Definitions

  • the invention relates to the remote control of motorized devices, hereinafter generally referred to as "drones", and more precisely the radiocommunication antennas used by these devices for their remote control.
  • This may include flying drones, rotary wing or fixed wing.
  • the invention is however not limited to controlling and exchanging data with flying devices, and it can be applied both to rolling devices operating on the ground under the control of a remote operator, the term "drone" to be heard in its most general sense.
  • Typical examples of flying drones are Parrot Bebop SA, Paris, France, which is a quadricopter-type rotary wing drone, or Disco, also from Parrot SA, which is a fixed-wing flying-wing type drone.
  • Parrot SA which is a fixed-wing flying-wing type drone.
  • Another type of drone to which the invention can be applied is Jumping Sumo, also from Parrot SA, which is a remote control toy and jumper.
  • the requests WO 2010/061099 A2 , EP 2 364 757 A1 , EP 2 450 862 A1 and EP 2 613 213 A1 (Parrot ) describe the principle of piloting a drone via a multimedia touch-screen phone or tablet and integrated accelerometers, for example an iPhone- type smartphone or Apple Inc.'s iPad- type tablet, running application software specific remote control as in the above example the FreeFlight mobile app from Parrot SA.
  • This phone or tablet may be relayed by specific remote control equipment such as the Skycontroller Parrot SA, which is a console interfaced with the phone or tablet, in the form of a box with two handles with handles with brooms and various buttons for ergonomic control by the user in the manner of a dedicated remote control console.
  • the equipment further comprises a transmitter / receiver acting as a relay between the phone, the tablet and the drone, the transmitter having an amplifier for increasing the radiated power on the radio channel used between the remote control and the remote control. drone.
  • a drone remote control equipment incorporates the various control elements necessary for the detection of the control commands and the bidirectional exchange of data via a wireless LAN type wireless LAN (IEEE 802.11) or Bluetooth directly. established with the drone.
  • This bidirectional radio link comprises a downlink (from the drone to the remote control) for transmitting data frames containing a video stream from a camera embedded by the drone and flight data or status indicators of the drone, as well as an uplink (from the remote control to the drone) to transmit control commands.
  • the quality of the radio link between the remote control and the drone is an essential parameter, in particular to ensure a satisfactory range.
  • the volumes of data transmitted are indeed important, in particular because of the very high need for downlink video bit rate, so that any deterioration in the quality of the radio link will have an impact on the quality of the transmission and on the range. radio, with a risk of sporadic loss affecting the data and orders exchanged.
  • the radio link uses one or more antennas incorporated in the drone which, in reception, pick up the signals emitted by the remote control equipment and, in transmission, radiate the power of the downlink-carrying radio transmitter circuit HF, in particular for the transmission of video stream signals and flight data.
  • the invention specifically relates to this type of antenna that is used by the drone.
  • UAVs generally use as antenna WiFi dipole type antennas, in particular formed of two dipoles coupled to two respective antenna terminals of the WiFi radio chip.
  • This dipole-based antenna structure has the drawback of a fairly irregular radiation pattern, in particular having dip-holes in the axis of the dipole.
  • the dipoles produce by nature a linear polarization, which is not optimal in the case where the remote control equipment implements patch type antennas which by nature are circularly polarized.
  • This difference between the polarizations introduced in the connection a loss of gain of a few decibels, loss which further varies according to the relative orientation of the remote control and the drone.
  • clover-leaf skew-planar wheel
  • This antenna is in the form of multiple loops, generally three in number ( clover-leaf ) or four ( skew-planar wheel ) extending in planes inclined with respect to the main axis of the antenna and relative to at a radial plane, and distributed circumferentially and symmetrically around this axis and at a distance therefrom.
  • the ends of each loop are coupled together to a common feed coaxial at a central point located in the lower part of the main axis of the antenna.
  • This very particular type of antenna must be distinguished from those arranged from a network of coplanar loops disposed above a ground plane, such as the antennas disclosed for example by the US 2012/056790 A1 or US 2011/063180 A1 , which describe directional antennas, unsuitable for the establishment of a stable radio link with an evolving drone.
  • the antenna clover-leaf or skew-planar wheel has the very particular characteristic of providing a quasi-spherical radiation pattern, particularly advantageous in the case of the remote control of a flying apparatus, because the orientation of the latter compared to the pilot can vary to a very large extent depending on changes in the aircraft (turns, etc.), even more in case of acrobatic flight (tendrils, barrels, etc.).
  • clover-leaf or skew-planar wheel antennas are generally made from buckled copper wires or tubes looped by hand, at their ends, to a central support for maintaining the orientation of the different loops between they and relative to the main axis of the antenna.
  • a first object of the invention is to overcome the disadvantages of the wired structure which is that antennas of this particular type clover-leaf or skew-planar wheel so far proposed, by proposing such an antenna that is suitable for production industrial in very large series, minimizing the manual operations of manufacturing the antenna itself and mounting it in the drone.
  • Another object of the invention is to design such an antenna structure whose reduced dimensions allow it to easily integrate into the thickness of the wings or arms of a drone, without projecting element that would increase the drag of the drone , and which does not represent a significant mass likely to unnecessarily burden the drone.
  • centimeter frequency bands such as WiFi bands
  • the invention proposes an antenna with a quasi-spherical radiation pattern of the clover-leaf or skew-planar wheel type comprising, in a manner known per se: a plurality of elementary antennas with loops non-coplanar planes extending circumferentially and symmetrically around a main axis of the antenna and at a distance from this axis, in respective planes inclined with respect to the main axis, these inclined planes forming an angle with respect to a plane radial; and a module for coupling and matching the elementary antennas to a coaxial supply of the antenna.
  • each elementary antenna is formed by tracks of a structure printed on a circuit support extending along said respective inclined plane; and each elementary antenna comprises two nested plane loops, tuned to frequencies included in two separate respective WiFi frequency bands.
  • the circuit support is a rigid circuit support made of epoxy material.
  • the circuit support is a flexible circuit support, in particular a premounted support with a plurality of radial separating slots radiating between the elementary antennas from a central region of the antenna.
  • the portions of the flexible circuit support located between the radial separating notches can then each be connected to the central region by a bridge of hinge material.
  • the antenna may further comprise an additional layer of epoxy material deposited on the surface of the flexible circuit support on the track side of the printed structure.
  • the subject of the invention is also a drone, comprising: a drone body from which extend laterally two wings or at least two arms, at least one antenna such as above, and at least one receiving antenna housing; said antenna.
  • the drone advantageously comprises two antennas arranged symmetrically on either side of the body and incorporated in the thickness of the body or wings of the drone.
  • the antenna housing comprises a shaped hollow cavity comprising a plurality of inclined plane faces, homologous to the respective inclined planes of the elementary antennas, and against which support the elementary antennas after deformation of the flexible circuit support.
  • a drone 10 has been illustrated, for example a fixed-wing drone such as the Disco de Parrot SA.
  • This drone 10 comprises a fuselage 12 provided at the rear with a propulsion propeller 14 and laterally with two wings 16, these wings possibly being integral with the fuselage 12 in a "flying wing" type configuration.
  • a front camera 18 makes it possible to obtain an image of the scene towards which the drone is progressing.
  • the drone 10 is controlled by a remote remote control device 20 provided with a touch screen 22 displaying the image captured by the camera 18 as well as various control commands available to the user.
  • the remote control device 20 is provided with means of radio link with the drone, for example of the WiFi local area network type (IEEE 802.11) for the bidirectional exchange of data, from the drone 10 to the device 20, in particular for the transmission of the signal. image captured by the camera 18, and from the camera 20 to the drone 10 for sending pilot commands.
  • IEEE 802.11 WiFi local area network type
  • the drone is provided with an antenna system, typically two antennas 24 arranged symmetrically at the front of the drone on either side of the fuselage 12, and coupled to two respective inputs of the WiFi radio chip.
  • the Figures 2 to 4 illustrate an example of a first embodiment of the antenna of the invention, which is an antenna particularly well suited to centimetric frequency bands such as WiFi bands (2.40 GHz-2.4835 GHz and 5.15 GHz GHz-5.85 GHz).
  • centimetric frequency bands such as WiFi bands (2.40 GHz-2.4835 GHz and 5.15 GHz GHz-5.85 GHz).
  • the antenna 100 of the invention which is an antenna of the type called clover-leaf or skew-planar wheel, which comprises a plurality of elementary antennas 102, generally three in number ( clover-leaf ), or four ( skew-planar wheel ).
  • Each elementary antenna 102 comprises a plane loop extending in a respective plane inclined with respect to the main axis ⁇ of the antenna, the different loops being non-coplanar and distributed circumferentially and symmetrically around this axis ⁇ .
  • the antenna 100 comprises four of these elementary antennas 102, but this number is in no way limiting, an antenna according to the invention may comprise a lower number, or greater, of such elementary antennas.
  • the angle of inclination ⁇ is chosen and optimized (by measurement or simulation) according to the global radiation pattern that we wish to obtain for antenna 100.
  • This angle of inclination ⁇ is typically at least 20 ° and at most 45 °; it is generally between 25 and 30 °, preferably about 27 °.
  • each of the elementary antennas 102 are coupled together to a common coupling module 104 and adaptation to a power coaxial 106 connecting the antenna 100 to the transmitter / receiver circuits of the radio chip of the drone.
  • each elementary antenna 102 is made by etching a conductive surface of a printed circuit board (PCB), this etching forming a particular conducting pattern defining the radiating element of the elementary antenna, in this case two flat loops tuned to frequencies corresponding to the two WiFi frequency bands used.
  • PCB printed circuit board
  • the support 108 of the PCB on which the conductive pattern is etched is, in this first embodiment, a rigid support, for example made of epoxy material, cut in the form of circular sectors with a 90 ° opening, so as to give each elemental antenna a form of a quarter circle.
  • the conductive pattern etched on the PCB comprises a first radial rectilinear track 110 extending along one of the radial edges of the circular sector, a second radial rectilinear track 112 extending along the opposite edge of the circular sector, and a first curvilinear peripheral track extending along the circular edge of the circular sector.
  • the three tracks 110, 112, 114 form a loop, tuned to the lower WiFi band (2.40 GHz-2.4835 GHz), which corresponds to a length of about 35 mm for the radius of the circular sector forming the elemental antenna 102.
  • the four elementary antennas 102 are identically formed so as to form four distinct, non-coplanar loops.
  • the second rectilinear tracks 112 are connected together ( Figure 3 ) in 116 in a central region of the antenna at a first terminal of the coupler 104, corresponding for example to the core of the coaxial feed 106.
  • the first rectilinear tracks 110 are, for their part, connected ( Figure 4 ) at a second terminal of the coupler 104, for example corresponding to the outer conductor of the coaxial 106, via a bushing 118 formed through the PCB support 108.
  • Each elementary antenna 102 further comprises a second curvilinear track 120, circular in shape, extending between the first radial straight track 110 and the second radial straight track 112 in a median region of the support 108.
  • This second curvilinear track 120 forms with the first and second rectilinear tracks 110, 112 a second loop of smaller dimensions than the first resonant loop, this second loop being tuned to the upper WiFi band (5.15 GHz-5.85 GHz).
  • the second curvilinear track may optionally be split, as illustrated at 120, 120 ', to provide a wider bandwidth in the frequency band under consideration.
  • the PCB support 108 may comprise a plurality of recesses 122 in the regions devoid of conducting tracks, that is to say between the curvilinear tracks 114 and 120 and / or between the curvilinear track 120 and the region located in the vicinity of the ⁇ axis.
  • the radiation pattern of an antenna such as the one just described is a quasi-spherical diagram, allowing the drone to communicate with the remote control device regardless of the relative orientation of the remote control and the drone, which is particularly indispensable in acrobatic flight, where at a given moment the drone can take what orientation relative to the ground and therefore compared to the remote control.
  • the Figures 5 to 8 illustrate a second embodiment of the antenna of the invention, also adapted for communication in the two WiFi frequency bands.
  • the inclined structure of the conductive pattern defining the loops is formed on a flexible support 124 of the "flex PCB" type, typically made of polyimide.
  • This flexible support 124 is in approximate circular disk shape in which have been formed radial notches 126 delimiting four circular sectors of 90 ° opening (quarter circle) which define and individualize the four elementary antennas 102.
  • the four circular sectors are attached to the central portion 130 by narrow bridges of material 132 (see in particular Figure 7 ) which acts as hinges due to the flexibility of the material constituting the support 124.
  • This flexibility can be possibly increased by providing near the central portion 130 additional recesses 128 to increase the deformability of each circular sector in this region.
  • the coupling and adaptation module 104 to the coaxial 106 is welded on the lower face ( Figures 6 and 7 ) of the support 124, in the central part thereof and is electrically connected to the conductive tracks forming the two nested resonant loops.
  • a layer of high-permittivity material is bonded to the radiating face of each elemental antenna (upper face with the conventions of the figures) so as to reset the resonant frequencies of the loops on the WiFi frequency bands targeted, which allows reducing the overall dimensions of the antenna relative to a configuration where the radiating elements would be devoid of such a layer of permittivity-shaped material.
  • FR-4 material which is an epoxy resin composite which can be easily laminated on the surface of the flexible PCB support 124, can be used.
  • the Figure 8 illustrates how the antenna of Figures 5 and 6 can be integrated into the drone.
  • the drone comprises for this purpose an antenna housing 26 formed in the fuselage 12 (or in the wings 16, in a region close to the root).
  • This housing 26 has a relief imprint with non-coplanar inclined plane faces 28 homologous to the respective inclination planes in which the loops of the different elementary antennas of the clover-leaf or skew-planar wheel antenna extend .
  • each elementary antenna 102 When the antenna 100 is inserted into its housing 26, the circular sectors of each elementary antenna 102 will deform in the central region due to the flexibility of the material bridges 132 (FIG. Figure 7 ), so that by simple insertion the elementary antennas 102 will each take the desired orientation, characteristic of the clover-leaf or skew-planar wheel antenna , simply because of the support of the flexible circuit 124 against the flat inclined face 28 which corresponds to it, after deformation of the support 124 in the central region of the antenna.
  • the Figure 9 is a diagram showing the variation of the parameter S 11 describing the electrical behavior of the antenna of the Figures 5 to 8 , depending on the transmission / reception frequency.
  • the characteristic A illustrates the resonance of the antenna ( clover-leaf antenna or skew-planar wheel formed of the four elementary antennas 102 in their respective inclined planes), in a configuration comprising only the conductive tracks etched on the flexible PCB support 124.
  • the characteristic B illustrates the resonance of this same antenna, in a configuration comprising a conventional plastic coating, and the characteristic C a configuration with a coating of high permittivity material such as the FR-4.
  • the offset of the resonance frequency provided by the FR-4 layer makes it possible, with a smaller antenna size, to shift the resonant frequency by bringing it back to the target WiFi band, both for the low band (2.40 GHz-2.4835 GHz) than for the high band (5.15 GHz-5.85 GHz).

Description

L'invention concerne le pilotage à distance d'appareils motorisés, ci-après désignés généralement sous la dénomination de "drones", et plus précisément les antennes de radiocommunication utilisées par ces appareils pour leur pilotage à distance.The invention relates to the remote control of motorized devices, hereinafter generally referred to as "drones", and more precisely the radiocommunication antennas used by these devices for their remote control.

Il peut s'agir notamment de drones volants, à voilure tournante ou à voilure fixe. L'invention n'est toutefois pas limitée au pilotage et à l'échange de données avec des appareils volants, et elle peut s'appliquer aussi bien à des appareils roulants évoluant sur le sol sous le contrôle d'un opérateur distant, le terme de "drone" devant être entendu dans son acception la plus générale.This may include flying drones, rotary wing or fixed wing. The invention is however not limited to controlling and exchanging data with flying devices, and it can be applied both to rolling devices operating on the ground under the control of a remote operator, the term "drone" to be heard in its most general sense.

Des exemples typiques de drones volants sont le Bebop de Parrot SA, Paris, France, qui est un drone à voilure tournante de type quadricoptère, ou le Disco, également de Parrot SA, qui est un drone à voilure fixe de type aile volante. Un autre type de drone auquel peut s'appliquer l'invention est le Jumping Sumo, également de Parrot SA, qui est un jouet roulant et sauteur télécommandé.Typical examples of flying drones are Parrot Bebop SA, Paris, France, which is a quadricopter-type rotary wing drone, or Disco, also from Parrot SA, which is a fixed-wing flying-wing type drone. Another type of drone to which the invention can be applied is Jumping Sumo, also from Parrot SA, which is a remote control toy and jumper.

Les demandes WO 2010/061099 A2 , EP 2 364 757 A1 , EP 2 450 862 A1 et EP 2 613 213 A1 (Parrot ) décrivent le principe du pilotage d'un drone par l'intermédiaire d'un téléphone ou tablette multimedia à écran tactile et accéléromètres intégrés, par exemple un smartphone de type iPhone ou une tablette de type iPad de Apple Inc., exécutant un logiciel applicatif spécifique de télécommande tel que dans l'exemple ci-dessus l'application pour mobile FreeFlight de Parrot SA.The requests WO 2010/061099 A2 , EP 2 364 757 A1 , EP 2 450 862 A1 and EP 2 613 213 A1 (Parrot ) describe the principle of piloting a drone via a multimedia touch-screen phone or tablet and integrated accelerometers, for example an iPhone- type smartphone or Apple Inc.'s iPad- type tablet, running application software specific remote control as in the above example the FreeFlight mobile app from Parrot SA.

Ce téléphone ou cette tablette peut être éventuellement relayé par un équipement spécifique de télécommande tel que le Skycontroller de Parrot SA, qui est une console interfacée avec le téléphone ou la tablette, se présentant sous forme d'un boitier muni de deux poignées avec des manches à balai et divers boutons destinés à permettre un pilotage ergonomique par l'utilisateur à la manière d'une console de télécommande dédiée. L'équipement comprend en outre un émetteur/récepteur faisant fonction de relai entre le téléphone, la tablette et le drone, l'émetteur étant doté d'un amplificateur permettant d'augmenter la puissance rayonnée sur le canal radio utilisé entre la télécommande et le drone. Ces aspects de la communication radio entre console et drone sont décrits notamment dans le EP 3 020 460 A1 (Parrot ).This phone or tablet may be relayed by specific remote control equipment such as the Skycontroller Parrot SA, which is a console interfaced with the phone or tablet, in the form of a box with two handles with handles with brooms and various buttons for ergonomic control by the user in the manner of a dedicated remote control console. The equipment further comprises a transmitter / receiver acting as a relay between the phone, the tablet and the drone, the transmitter having an amplifier for increasing the radiated power on the radio channel used between the remote control and the remote control. drone. These aspects of radio communication between console and drone are described in particular in the EP 3 020 460 A1 (Parrot ).

De façon générale, un équipement de télécommande de drone incorpore les divers organes de contrôle nécessaires à la détection des commandes de pilotage et à l'échange bidirectionnel de données via une liaison radio de type réseau local sans fil WiFi (IEEE 802.11) ou Bluetooth directement établie avec le drone. Cette liaison radio bidirectionnelle comprend une liaison descendante (du drone vers la télécommande) pour transmettre des trames de données contenant un flux video issu d'une caméra embarquée par le drone et des données de vol ou indicateurs d'état du drone, ainsi qu'une liaison montante (de la télécommande vers le drone) pour transmettre les commandes de pilotage.In general, a drone remote control equipment incorporates the various control elements necessary for the detection of the control commands and the bidirectional exchange of data via a wireless LAN type wireless LAN (IEEE 802.11) or Bluetooth directly. established with the drone. This bidirectional radio link comprises a downlink (from the drone to the remote control) for transmitting data frames containing a video stream from a camera embedded by the drone and flight data or status indicators of the drone, as well as an uplink (from the remote control to the drone) to transmit control commands.

On comprendra que la qualité de la liaison radio entre la télécommande et le drone est un paramètre essentiel, en particulier pour assurer une portée satisfaisante. Les volumes de données transmis sont en effet importants, notamment du fait du besoin très élevé en débit video de la liaison descendante, de sorte que toute dégradation de la qualité de la liaison radio aura un impact sur la qualité de la transmission et sur la portée radio, avec un risque de perte sporadique affectant les données et les commandes échangées.It will be understood that the quality of the radio link between the remote control and the drone is an essential parameter, in particular to ensure a satisfactory range. The volumes of data transmitted are indeed important, in particular because of the very high need for downlink video bit rate, so that any deterioration in the quality of the radio link will have an impact on the quality of the transmission and on the range. radio, with a risk of sporadic loss affecting the data and orders exchanged.

Au niveau du drone, la liaison radio utilise une ou plusieurs antennes incorporées au drone qui, en réception, captent les signaux émis par l'équipement de télécommande et, en émission, rayonnent la puissance du circuit émetteur HF supportant la liaison descendante, notamment pour la transmission des signaux de flux video et de données de vol.At the level of the drone, the radio link uses one or more antennas incorporated in the drone which, in reception, pick up the signals emitted by the remote control equipment and, in transmission, radiate the power of the downlink-carrying radio transmitter circuit HF, in particular for the transmission of video stream signals and flight data.

L'invention concerne précisément ce type d'antenne qui est utilisée par le drone.The invention specifically relates to this type of antenna that is used by the drone.

Actuellement, les drones utilisent généralement comme antenne WiFi des antennes de type dipôle, notamment formées de deux dipôles couplés à deux bornes d'antenne respectives de la puce radio WiFi.Currently, UAVs generally use as antenna WiFi dipole type antennas, in particular formed of two dipoles coupled to two respective antenna terminals of the WiFi radio chip.

Cette structure d'antenne à base de dipôles a cependant pour inconvénient un diagramme de rayonnement assez irrégulier, présentant notamment des creux de gain dans l'axe du dipôle.This dipole-based antenna structure, however, has the drawback of a fairly irregular radiation pattern, in particular having dip-holes in the axis of the dipole.

De plus, les dipôles produisent par nature une polarisation linéaire, qui n'est pas optimale dans le cas où l'équipement de télécommande met en oeuvre des antennes de type patch qui par nature sont polarisées circulairement. Cette différence entre les polarisations introduit dans la liaison une perte de gain de quelques décibels, perte qui en outre varie selon l'orientation relative de la télécommande et du drone.In addition, the dipoles produce by nature a linear polarization, which is not optimal in the case where the remote control equipment implements patch type antennas which by nature are circularly polarized. This difference between the polarizations introduced in the connection a loss of gain of a few decibels, loss which further varies according to the relative orientation of the remote control and the drone.

On connait un autre type d'antenne, dénommée clover-leaf ou skew-planar wheel, souvent utilisée par les amateurs d'aéromodélisme pour la télécommande d'appareils motorisés volants.We know another type of antenna, called clover-leaf or skew-planar wheel, often used by fans of model aircraft for the remote control of flying motorized devices.

Cette antenne se présente sous la forme de boucles multiples, généralement au nombre de trois (clover-leaf) ou quatre (skew-planar wheel) s'étendant dans des plans inclinés par rapport à l'axe principal de l'antenne et par rapport à un plan radial, et réparties circonférentiellement et symétriquement autour de cet axe et à distance de celui-ci. Les extrémités de chaque boucle sont couplées ensemble à un coaxial d'alimentation commun en un point central situé en partie inférieure de l'axe principal de l'antenne.This antenna is in the form of multiple loops, generally three in number ( clover-leaf ) or four ( skew-planar wheel ) extending in planes inclined with respect to the main axis of the antenna and relative to at a radial plane, and distributed circumferentially and symmetrically around this axis and at a distance therefrom. The ends of each loop are coupled together to a common feed coaxial at a central point located in the lower part of the main axis of the antenna.

Il convient de distinguer ce type très particulier d'antenne de celles agencées à partir d'un réseau de boucles coplanaires disposé au -dessus d'un plan de masse, comme les antennes divulguées par exemple par les US 2012/056790 A1 ou US 2011/063180 A1 , qui décrivent des antennes directives, inadaptées à l'établissement d'une liaison radio stable avec un drone en évolution.This very particular type of antenna must be distinguished from those arranged from a network of coplanar loops disposed above a ground plane, such as the antennas disclosed for example by the US 2012/056790 A1 or US 2011/063180 A1 , which describe directional antennas, unsuitable for the establishment of a stable radio link with an evolving drone.

En effet, l'antenne clover-leaf ou skew-planar wheel présente la caractéristique très particulière de procurer un diagramme de rayonnement quasi-sphérique, particulièrement avantageux dans le cas de la télécommande d'un appareil volant, car l'orientation de ce dernier par rapport au pilote peut varier dans une très large mesure en fonction des évolutions de l'appareil (virages, etc.), encore plus en cas de vol acrobatique (vrilles, tonneaux, etc.).Indeed, the antenna clover-leaf or skew-planar wheel has the very particular characteristic of providing a quasi-spherical radiation pattern, particularly advantageous in the case of the remote control of a flying apparatus, because the orientation of the latter compared to the pilot can vary to a very large extent depending on changes in the aircraft (turns, etc.), even more in case of acrobatic flight (tendrils, barrels, etc.).

Concrètement, es antennes clover-leaf ou skew-planar wheel sont généralement réalisées à partir de fils ou tubes de cuivre cintrés en boucle et soudés à la main, à leurs extrémités, à un support central permettant de maintenir l'orientation des différentes boucles entre elles et par rapport à l'axe principal de l'antenne.Concretely, clover-leaf or skew-planar wheel antennas are generally made from buckled copper wires or tubes looped by hand, at their ends, to a central support for maintaining the orientation of the different loops between they and relative to the main axis of the antenna.

Il s'agit toutefois de structures relativement fragiles et délicates à réaliser (du fait de la géométrie non-coplanaire des boucles), en tout état de cause incompatibles avec une production industrielle en grande série.However, these structures are relatively fragile and difficult to produce (because of the non-coplanar geometry of the loops), which is in any case incompatible with industrial mass production.

Pour cette raison, ce type d'antenne n'est pas utilisé dans les drones produits en série. Actuellement, ceux-ci mettent en oeuvre pour le WiFi des antennes de type dipôle, avec les divers inconvénients exposés plus haut qui font en sorte que ces antennes à base de réseaux de dipôles sont moins performantes que les antennes de type clover-leaf ou skew-planar wheel. For this reason, this type of antenna is not used in drones produced in series. Currently, they implement for WiFi dipole type antennas, with the various disadvantages described above which make these antennas based on dipole networks are less efficient than clover-leaf type antennas or skew -planar wheel.

Un premier but de l'invention est de pallier les inconvénients de la structure filaire qui est celle des antennes de ce type particulier clover-leaf ou skew-planar wheel jusqu'à présent proposées, en proposant une telle antenne qui soit adaptée à une production industrielle en très grande série, minimisant les opérations manuelles de fabrication de l'antenne proprement dite et de montage de celle-ci dans le drone.A first object of the invention is to overcome the disadvantages of the wired structure which is that antennas of this particular type clover-leaf or skew-planar wheel so far proposed, by proposing such an antenna that is suitable for production industrial in very large series, minimizing the manual operations of manufacturing the antenna itself and mounting it in the drone.

Un autre but de l'invention est de concevoir une telle structure d'antenne dont les dimensions réduites lui permettent de s'intégrer facilement dans l'épaisseur des ailes ou des bras d'un drone, sans élément saillant qui augmenterait la trainée du drone, et qui ne représente pas une masse significative susceptible d'alourdir inutilement le drone.Another object of the invention is to design such an antenna structure whose reduced dimensions allow it to easily integrate into the thickness of the wings or arms of a drone, without projecting element that would increase the drag of the drone , and which does not represent a significant mass likely to unnecessarily burden the drone.

Il s'agit en particulier de disposer d'une structure d'antenne typiquement adaptée aux bandes de fréquences centimétriques telles que les bandes WiFi, qui puisse être employée en lieu et place des dipôles utilisés jusqu'à présent, afin de procurer un diagramme de rayonnement à la fois étendu et homogène dans un secteur très large de l'espace.This is in particular to have an antenna structure typically adapted to the centimeter frequency bands such as WiFi bands, which can be used instead of the dipoles used so far, to provide a diagram of radiation both extensive and homogeneous in a very wide area of space.

Pour résoudre les problèmes ci-dessus, l'invention propose une antenne à diagramme de rayonnement quasi-sphérique de type clover-leaf ou skew-planar wheel comprenant, de manière en elle-même connue : une pluralité d'antennes élémentaires avec des boucles planes non coplanaires s'étendant circonférentiellement et symétriquement autour d'un axe principal de l'antenne et à distance de cet axe, dans des plans respectifs inclinés par rapport à l'axe principal, ces plans inclinés formant un angle par rapport à un plan radial ; et un module de couplage et d'adaptation des antennes élémentaires à un coaxial d'alimentation de l'antenne.To solve the above problems, the invention proposes an antenna with a quasi-spherical radiation pattern of the clover-leaf or skew-planar wheel type comprising, in a manner known per se: a plurality of elementary antennas with loops non-coplanar planes extending circumferentially and symmetrically around a main axis of the antenna and at a distance from this axis, in respective planes inclined with respect to the main axis, these inclined planes forming an angle with respect to a plane radial; and a module for coupling and matching the elementary antennas to a coaxial supply of the antenna.

De façon caractéristique de l'invention, chaque antenne élémentaire est formée par des pistes d'une structure imprimée sur un support de circuit s'étendant suivant ledit plan incliné respectif ; et chaque antenne élémentaire comprend deux boucles planes imbriquées, accordées sur des fréquences comprises dans deux bandes de fréquences WiFi respectives distinctes.In a characteristic manner of the invention, each elementary antenna is formed by tracks of a structure printed on a circuit support extending along said respective inclined plane; and each elementary antenna comprises two nested plane loops, tuned to frequencies included in two separate respective WiFi frequency bands.

Selon diverses caractéristiques subsidiaires avantageuses :

  • l'antenne est dépourvue d'élément conducteur s'étendant suivant un plan radial et formant plan de masse ;
  • la structure imprimée de chaque antenne élémentaire comprend : une première piste rectiligne et une seconde piste rectiligne qui s'étendent radialement en faisant un angle entre elles à partir d'une région centrale de l'antenne située au voisinage du module de couplage et d'adaptation ; et une première piste courbe et une seconde piste courbe qui s'étendent chacune circulairement entre la première piste rectiligne et la seconde piste rectiligne ;
  • la première piste courbe est une piste courbe extérieure s'étendant entre des extrémités distales respectives de la première et de la seconde piste rectiligne, et la seconde piste courbe est une piste courbe intérieure s'étendant entre des régions médianes respectives de la première et de la seconde piste rectiligne. La première piste courbe forme alors avec la première et la seconde piste rectiligne une boucle accordée sur une fréquence située dans une première bande WiFi, tandis que la seconde piste courbe forme avec la première et la seconde piste rectiligne une boucle accordée sur une fréquence située dans une seconde bande WiFi différente de la première bande WiFi ;
  • la seconde piste courbe est dédoublée en deux pistes s'étendant parallèlement entre elles et formant deux boucles respectivement accordées sur deux fréquences distinctes de la seconde bande WiFi ;
  • le module de couplage et d'adaptation comprend deux bornes avec une première borne reliant les extrémités proximales des premières pistes rectilignes des antennes élémentaires respectives d'un côté du support, et une seconde borne reliant les extrémités proximales des secondes pistes rectilignes des antennes élémentaires respectives, après traversée du support à proximité desdites extrémités proximales ;
  • l'angle par rapport à un plan radial desdits plans inclinés desdits plans inclinés dans lesquelles s'étendent les boucles non coplanaires est d'au moins 20° et d'au plus 45°, et il est de préférence compris entre 25° et 30° ;
  • le support de circuit est ajouré dans une zone comprise entre la première et la seconde piste courbe et/ou dans une zone comprise entre la seconde piste courbe et la région proximale de l'antenne élémentaire.
According to various advantageous subsidiary features:
  • the antenna is devoid of conducting element extending in a radial plane and forming a ground plane;
  • the printed structure of each elementary antenna comprises: a first rectilinear track and a second rectilinear track which extend radially at an angle to each other from a central region of the antenna located in the vicinity of the coupling module; adaptation; and a first curved track and a second curved track which each extend circularly between the first straight track and the second straight track;
  • the first curved track is an outer curved track extending between respective distal ends of the first and second rectilinear tracks, and the second curved track is an inner curved track extending between respective median regions of the first and second the second rectilinear track. The first curved track then forms with the first and second rectilinear tracks a loop tuned to a frequency located in a first WiFi band, while the second curved track forms with the first and second rectilinear tracks a loop tuned to a frequency located in a second WiFi band different from the first WiFi band;
  • the second curved track is split into two tracks extending parallel to each other and forming two loops respectively tuned to two distinct frequencies of the second WiFi band;
  • the coupling and adaptation module comprises two terminals with a first terminal connecting the proximal ends of the first rectilinear tracks of the respective elementary antennas on one side of the support, and a second terminal connecting the proximal ends of the second rectilinear tracks of the respective elementary antennas after passing through the support proximate said proximal ends;
  • the angle with respect to a radial plane of said inclined planes of said inclined planes in which the non-coplanar loops extend is at least 20 ° and at most 45 °, and is preferably between 25 ° and 30 °;
  • the circuit support is perforated in an area between the first and second curved track and / or in an area between the second curved track and the proximal region of the elemental antenna.

Dans un premier mode de réalisation, le support de circuit est un support de circuit rigide en matériau époxy.In a first embodiment, the circuit support is a rigid circuit support made of epoxy material.

Dans un second mode de réalisation, particulièrement avantageux, le support de circuit est un support de circuit flexible, notamment un support préentaillé avec une pluralité d'encoches séparatrices radiales rayonnant entre les antennes élémentaires à partir d'une région centrale de l'antenne. Les parties du support de circuit flexible situées entre les encoches séparatrices radiales peuvent alors être reliées chacune à la région centrale par un pont de matière formant charnière. L'antenne peut en outre comprendre une couche additionnelle de matériau époxy déposée en surface du support de circuit flexible du côté des pistes de la structure imprimée.In a second and particularly advantageous embodiment, the circuit support is a flexible circuit support, in particular a premounted support with a plurality of radial separating slots radiating between the elementary antennas from a central region of the antenna. The portions of the flexible circuit support located between the radial separating notches can then each be connected to the central region by a bridge of hinge material. The antenna may further comprise an additional layer of epoxy material deposited on the surface of the flexible circuit support on the track side of the printed structure.

L'invention a également pour objet un drone, comprenant : un corps de drone à partir duquel s'étendent latéralement deux ailes ou au moins deux bras, au moins une antenne telle que ci-dessus, et au moins un logement d'antenne recevant ladite antenne.The subject of the invention is also a drone, comprising: a drone body from which extend laterally two wings or at least two arms, at least one antenna such as above, and at least one receiving antenna housing; said antenna.

Le drone comprend avantageusement deux antennes disposées symétriquement de part et d'autre du corps et incorporées dans l'épaisseur du corps ou des ailes du drone.The drone advantageously comprises two antennas arranged symmetrically on either side of the body and incorporated in the thickness of the body or wings of the drone.

Dans un mode de réalisation particulièrement avantageux, lorsque le support de circuit des antennes élémentaires est un support de circuit flexible, le logement d'antenne comprend une empreinte creuse conformée comprenant une pluralité de faces planes inclinées, homologues des plans inclinés respectifs des antennes élémentaires, et contre lesquelles viennent en appui les antennes élémentaires après déformation du support de circuit flexible.In a particularly advantageous embodiment, when the circuit support of the elementary antennas is a flexible circuit support, the antenna housing comprises a shaped hollow cavity comprising a plurality of inclined plane faces, homologous to the respective inclined planes of the elementary antennas, and against which support the elementary antennas after deformation of the flexible circuit support.

On va maintenant décrire un exemple de mise en oeuvre de la présente invention, en référence aux dessins annexés où les mêmes références désignent d'une figure à l'autre des éléments identiques ou fonctionnellement semblables.

  • La Figure 1 est une vue d'ensemble montrant un drone évoluant dans les airs sous le contrôle d'un équipement de télécommande distant.
  • La Figure 2 est une vue perspective d'une antenne selon un premier mode de réalisation de l'invention.
  • Les Figures 3 et 4 illustrent, en perspective, le détail de la partie centrale de l'antenne de la Figure 2, vue respectivement de dessus et de dessous.
  • La Figure 5 est une vue en plan d'une antenne selon un second mode de réalisation de l'invention.
  • La Figure 6 illustre, en perspective vue de dessous, l'antenne de la Figure 5.
  • La Figure 7 illustre, en perspective vue de dessous, le détail de la partie centrale de l'antenne de la Figure 6.
  • La Figure 8 illustre la mise en place de l'antenne des Figures 5 à 7 dans un logement de drone comportant une empreinte creuse permettant de donner aux plans des antennes élémentaires leurs inclinaisons respectives par rapport à l'axe central de l'antenne.
  • La Figure 9 est un diagramme montrant la variation du paramètre S11 décrivant le comportement radioélectrique de l'antenne de l'invention en fonction de la fréquence d'émission/réception.
An embodiment of the present invention will now be described with reference to the appended drawings in which the same references designate identical or functionally similar elements from one figure to another.
  • The Figure 1 is an overview showing a drone flying in the air under the control of remote remote control equipment.
  • The Figure 2 is a perspective view of an antenna according to a first embodiment of the invention.
  • The Figures 3 and 4 illustrate, in perspective, the detail of the central part of the antenna of the Figure 2 , respectively from above and from below.
  • The Figure 5 is a plan view of an antenna according to a second embodiment of the invention.
  • The Figure 6 illustrates, in perspective seen from below, the antenna of Figure 5.
  • The Figure 7 illustrates, in perspective seen from below, the detail of the central part of the antenna of the Figure 6 .
  • The Figure 8 illustrates the setting up of the antenna of Figures 5 to 7 in a drone housing having a hollow cavity for giving the planes of the elementary antennas their respective inclinations relative to the central axis of the antenna.
  • The Figure 9 is a diagram showing the variation of the parameter S 11 describing the radio behavior of the antenna of the invention as a function of the transmission / reception frequency.

On va maintenant décrire un exemple de réalisation de l'antenne de l'invention.An embodiment of the antenna of the invention will now be described.

Sur la Figure 1, on a illustré un drone 10, par exemple un drone à voilure fixe tel que le Disco de Parrot SA.On the Figure 1 a drone 10 has been illustrated, for example a fixed-wing drone such as the Disco de Parrot SA.

Ce drone 10 comprend un fuselage 12 muni en partie arrière d'une hélice de propulsion 14 et latéralement de deux ailes 16, ces ailes pouvant éventuellement faire corps avec le fuselage 12 dans une configuration de type "aile volante". Une caméra frontale 18 permet d'obtenir une image de la scène vers laquelle progresse le drone.This drone 10 comprises a fuselage 12 provided at the rear with a propulsion propeller 14 and laterally with two wings 16, these wings possibly being integral with the fuselage 12 in a "flying wing" type configuration. A front camera 18 makes it possible to obtain an image of the scene towards which the drone is progressing.

Le drone 10 est piloté par un appareil de télécommande distant 20 pourvu d'un écran tactile 22 affichant l'image captée par la caméra 18 ainsi que diverses commandes de pilotage à disposition de l'utilisateur. L'appareil de télécommande 20 est pourvu de moyens de liaison radio avec le drone, par exemple du type réseau local WiFi (IEEE 802.11) pour l'échange bidirectionnel de données, du drone 10 vers l'appareil 20 notamment pour la transmission de l'image captée par la caméra 18, et de l'appareil 20 vers le drone 10 pour l'envoi de commandes de pilotage.The drone 10 is controlled by a remote remote control device 20 provided with a touch screen 22 displaying the image captured by the camera 18 as well as various control commands available to the user. The remote control device 20 is provided with means of radio link with the drone, for example of the WiFi local area network type (IEEE 802.11) for the bidirectional exchange of data, from the drone 10 to the device 20, in particular for the transmission of the signal. image captured by the camera 18, and from the camera 20 to the drone 10 for sending pilot commands.

Pour assurer la communication avec l'appareil de télécommande 20, le drone est muni d'un système d'antennes, typiquement deux antennes 24 disposées symétriquement à l'avant du drone de part et d'autre du fuselage 12, et couplées à deux entrées respectives de la puce radio WiFi.To ensure communication with the remote control apparatus 20, the drone is provided with an antenna system, typically two antennas 24 arranged symmetrically at the front of the drone on either side of the fuselage 12, and coupled to two respective inputs of the WiFi radio chip.

Les Figures 2 à 4 illustrent un exemple d'un premier mode de réalisation de l'antenne de l'invention, qui est une antenne particulièrement bien adaptée aux bandes de fréquences centimétriques telles que les bandes WiFi (2,40 GHz-2,4835 GHz et 5,15 GHz-5,85 GHz).The Figures 2 to 4 illustrate an example of a first embodiment of the antenna of the invention, which is an antenna particularly well suited to centimetric frequency bands such as WiFi bands (2.40 GHz-2.4835 GHz and 5.15 GHz GHz-5.85 GHz).

Cette application, si elle est particulièrement avantageuse car elle répond à des problèmes précis notamment dans le domaine des antennes pour drones, n'est toutefois pas limitative, et la configuration d'antenne de l'invention peut être utilisée dans d'autres domaines, pour d'autres applications et sur d'autres bandes de fréquences.This application, if it is particularly advantageous because it responds to specific problems, in particular in the field of drone antennas, is however not limiting, and the antenna configuration of the invention can be used in other fields, for other applications and other frequency bands.

Sur les Figures 2 à 4, on a illustré l'antenne 100 de l'invention, qui est une antenne du type dénommé clover-leaf ou skew-planar wheel, qui comprend une pluralité d'antennes élémentaires 102, généralement au nombre de trois (clover-leaf) ou quatre (skew-planar wheel). Chaque antenne élémentaire 102 comprend une boucle plane s'étendant dans un plan respectif incliné par rapport à l'axe principal Δ de l'antenne, les différentes boucles étant non coplanaires et réparties circonférentiellement et symétriquement autour de cet axe Δ. Dans l'exemple illustré, l'antenne 100 comprend quatre de ces antennes élémentaires 102, mais ce nombre n'est aucunement limitatif, une antenne selon l'invention pouvant comprendre un nombre inférieur, ou supérieur, de telles antennes élémentaires.On the Figures 2 to 4 the antenna 100 of the invention, which is an antenna of the type called clover-leaf or skew-planar wheel, which comprises a plurality of elementary antennas 102, generally three in number ( clover-leaf ), or four ( skew-planar wheel ). Each elementary antenna 102 comprises a plane loop extending in a respective plane inclined with respect to the main axis Δ of the antenna, the different loops being non-coplanar and distributed circumferentially and symmetrically around this axis Δ. In the example shown, the antenna 100 comprises four of these elementary antennas 102, but this number is in no way limiting, an antenna according to the invention may comprise a lower number, or greater, of such elementary antennas.

L'angle d'inclinaison ϕ est choisi et optimisé (par mesure ou simulation) en fonction du diagramme de rayonnement global que l'on souhaite obtenir pour l'antenne 100. Cet angle d'inclinaison ϕ est typiquement d'au moins 20° et au plus 45° ; il est généralement compris entre 25 et 30°, de préférence environ 27°.The angle of inclination φ is chosen and optimized (by measurement or simulation) according to the global radiation pattern that we wish to obtain for antenna 100. This angle of inclination φ is typically at least 20 ° and at most 45 °; it is generally between 25 and 30 °, preferably about 27 °.

Les boucles de chacune des antennes élémentaires 102 sont couplées ensemble à un module 104 commun de couplage et d'adaptation à un coaxial d'alimentation 106 reliant l'antenne 100 aux circuits émetteurs/récepteurs de la puce radio du drone.The loops of each of the elementary antennas 102 are coupled together to a common coupling module 104 and adaptation to a power coaxial 106 connecting the antenna 100 to the transmitter / receiver circuits of the radio chip of the drone.

De façon caractéristique, chaque antenne élémentaire 102 est réalisée par gravure d'une surface conductrice d'une carte de circuit imprimé (PCB), cette gravure formant un motif conducteur particulier définissant l'élément rayonnant de l'antenne élémentaire, en l'espèce deux boucles planes accordées sur des fréquences correspondant aux deux bandes de fréquences WiFi utilisées. Cette structure, qui peut être aisément produite en grande série de façon industrielle, est répétée quatre fois (pour chacune des quatre antennes élémentaires) avec le même motif, le tout étant monté sur un support commun permettant de donner à chacun des quatre PCBs, c'est-à-dire à chaque antenne élémentaire, un angle précis ϕ permettant d'obtenir les performances souhaitées.Characteristically, each elementary antenna 102 is made by etching a conductive surface of a printed circuit board (PCB), this etching forming a particular conducting pattern defining the radiating element of the elementary antenna, in this case two flat loops tuned to frequencies corresponding to the two WiFi frequency bands used. This structure, which can easily be mass-produced industrially, is repeated four times (for each of the four elementary antennas) with the same pattern, the whole being mounted on a common support for giving each of the four PCBs, that is to say, at each elementary antenna, a precise angle φ making it possible to obtain the desired performances.

Le support 108 du PCB sur lequel est gravé le motif conducteur est, dans ce premier mode de réalisation, un support rigide, par exemple en matériau époxy, découpé en forme de secteurs circulaires de 90° d'ouverture, de manière à donner à chaque antenne élémentaire une forme de quart de cercle.The support 108 of the PCB on which the conductive pattern is etched is, in this first embodiment, a rigid support, for example made of epoxy material, cut in the form of circular sectors with a 90 ° opening, so as to give each elemental antenna a form of a quarter circle.

Le motif conducteur gravé sur le PCB comprend une première piste rectiligne radiale 110 s'étendant le long de l'un des bords radiaux du secteur circulaire, une seconde piste rectiligne radiale 112 s'étendant le long du bord opposé du secteur circulaire, et une première piste curviligne périphérique s'étendant le long du bord circulaire du secteur circulaire.The conductive pattern etched on the PCB comprises a first radial rectilinear track 110 extending along one of the radial edges of the circular sector, a second radial rectilinear track 112 extending along the opposite edge of the circular sector, and a first curvilinear peripheral track extending along the circular edge of the circular sector.

Les trois pistes 110, 112, 114, forment une boucle, accordée sur la bande WiFi inférieure (2,40 GHz-2,4835 GHz), ce qui correspond à une longueur d'environ 35 mm pour le rayon du secteur circulaire constituant l'antenne élémentaire 102.The three tracks 110, 112, 114, form a loop, tuned to the lower WiFi band (2.40 GHz-2.4835 GHz), which corresponds to a length of about 35 mm for the radius of the circular sector forming the elemental antenna 102.

Les quatre antennes élémentaires 102 sont réalisées identiquement de manière à former quatre boucles distinctes non coplanaires. Les secondes pistes rectilignes 112 sont reliées ensemble (Figure 3) en 116 dans une région centrale de l'antenne à une première borne du coupleur 104, correspondant par exemple à l'âme du coaxial 106 d'alimentation. Les premières pistes rectilignes 110 sont, quant à elles, reliées (Figure 4) à une seconde borne du coupleur 104, correspondant par exemple au conducteur extérieur du coaxial 106, via une traversée 118 formée au travers du support de PCB 108.The four elementary antennas 102 are identically formed so as to form four distinct, non-coplanar loops. The second rectilinear tracks 112 are connected together ( Figure 3 ) in 116 in a central region of the antenna at a first terminal of the coupler 104, corresponding for example to the core of the coaxial feed 106. The first rectilinear tracks 110 are, for their part, connected ( Figure 4 ) at a second terminal of the coupler 104, for example corresponding to the outer conductor of the coaxial 106, via a bushing 118 formed through the PCB support 108.

Chaque antenne élémentaire 102 comprend en outre une seconde piste curviligne 120, de forme circulaire, s'étendant entre la première piste rectiligne radiale 110 et la seconde piste rectiligne radiale 112 dans une région médiane du support 108.Each elementary antenna 102 further comprises a second curvilinear track 120, circular in shape, extending between the first radial straight track 110 and the second radial straight track 112 in a median region of the support 108.

Cette seconde piste curviligne 120 forme avec les première et seconde pistes rectilignes 110, 112 une seconde boucle de dimensions inférieures à la première boucle résonante, cette seconde boucle étant accordée sur la bande WiFi supérieure (5,15 GHz-5,85 GHz).La seconde piste curviligne peut être éventuellement dédoublée, comme illustré en 120, 120', afin de procurer une plus large bande passante dans la bande de fréquences considérée.This second curvilinear track 120 forms with the first and second rectilinear tracks 110, 112 a second loop of smaller dimensions than the first resonant loop, this second loop being tuned to the upper WiFi band (5.15 GHz-5.85 GHz). The second curvilinear track may optionally be split, as illustrated at 120, 120 ', to provide a wider bandwidth in the frequency band under consideration.

Pour réduire la masse de l'antenne, le support de PCB 108 peut comporter plusieurs évidements 122 dans les régions dépourvues de pistes conductrices, c'est-à-dire entre les pistes curvilignes 114 et 120 et/ou entre la piste curviligne 120 et la région située au voisinage de l'axe Δ.To reduce the mass of the antenna, the PCB support 108 may comprise a plurality of recesses 122 in the regions devoid of conducting tracks, that is to say between the curvilinear tracks 114 and 120 and / or between the curvilinear track 120 and the region located in the vicinity of the Δ axis.

Du point de vue du comportement radioélectrique, on dispose ainsi d'une antenne clover-leaf ou skew-planar wheel pouvant fonctionner simultanément dans les deux bandes de fréquences WiFi, avec une polarisation circulaire (polarisation circulaire droite RHCP) particulièrement bien adaptée au pilotage depuis un équipement de télécommande mettant en oeuvre des antennes de type patch qui par nature sont polarisées circulairement, en minimisant les pertes de gain par rapport à une antenne dipôle conventionnelle, et avec un gain sensiblement constant quelle que soit l'orientation relative de la télécommande et du drone.From the point of view of the radio behavior, we thus have a clover-leaf or skew-planar wheel antenna that can operate simultaneously in the two WiFi frequency bands, with a circular polarization (right circular polarization RHCP) particularly well adapted to control from remote control equipment implementing patch type antennas which by their nature are circularly polarized, minimizing the loss of gain compared to a conventional dipole antenna, and with a substantially constant gain regardless of the relative orientation of the remote control and of the drone.

Le diagramme de rayonnement d'une antenne telle que celle que l'on vient de décrire est un diagramme quasi-sphérique, permettant au drone de communiquer avec l'appareil de télécommande quelle que soit l'orientation relative de la télécommande et du drone, ce qui est en particulier indispensable en vol acrobatique, où à un instant donné le drone peut prendre quelle orientation par rapport au sol et donc par rapport à la télécommande.The radiation pattern of an antenna such as the one just described is a quasi-spherical diagram, allowing the drone to communicate with the remote control device regardless of the relative orientation of the remote control and the drone, which is particularly indispensable in acrobatic flight, where at a given moment the drone can take what orientation relative to the ground and therefore compared to the remote control.

Les Figures 5 à 8 illustrent un second mode de réalisation de l'antenne de l'invention, également adapté à une communication dans les deux bandes de fréquences WiFi.The Figures 5 to 8 illustrate a second embodiment of the antenna of the invention, also adapted for communication in the two WiFi frequency bands.

Sur ces Figures 5 à 8, les mêmes références numériques que celles apparaissant sur les Figures 2 à 4 sont utilisées pour désigner des éléments fonctionnellement semblables, déjà décrits, et qui ne seront pas repris.On these Figures 5 to 8 , the same numerical references as those appearing on the Figures 2 to 4 are used to designate elements that are functionally similar, already described, and that will not be included.

Dans ce second mode de réalisation, la structure inclinée du motif conducteur définissant les boucles est formée sur un support flexible 124 de type "flex PCB", typiquement en polyimide.In this second embodiment, the inclined structure of the conductive pattern defining the loops is formed on a flexible support 124 of the "flex PCB" type, typically made of polyimide.

Ce support flexible 124 est en forme approximative de disque circulaire dans lequel ont été ménagées des encoches radiales 126 délimitant quatre secteurs circulaires de 90° d'ouverture (quart de cercle) qui définissent et individualisent les quatre antennes élémentaires 102.This flexible support 124 is in approximate circular disk shape in which have been formed radial notches 126 delimiting four circular sectors of 90 ° opening (quarter circle) which define and individualize the four elementary antennas 102.

Au voisinage de la région centrale de l'antenne, les quatre secteurs circulaires sont rattachés à la partie centrale 130 par d'étroits ponts de matière 132 (voir notamment Figure 7) faisant fonction de charnières grâce à la flexibilité du matériau constituant le support 124. Cette flexibilité peut être éventuellement accrue en prévoyant à proximité de la partie centrale 130 des évidements additionnels 128 permettant d'augmenter la déformabilité de chaque secteur circulaire dans cette région.In the vicinity of the central region of the antenna, the four circular sectors are attached to the central portion 130 by narrow bridges of material 132 (see in particular Figure 7 ) which acts as hinges due to the flexibility of the material constituting the support 124. This flexibility can be possibly increased by providing near the central portion 130 additional recesses 128 to increase the deformability of each circular sector in this region.

Le module 104 de couplage et d'adaptation au coaxial 106 est soudé sur la face inférieure (Figures 6 et 7) du support 124, dans la partie centrale de celui-ci et il est électriquement relié aux pistes conductrices formant les deux boucles résonantes imbriquées.The coupling and adaptation module 104 to the coaxial 106 is welded on the lower face ( Figures 6 and 7 ) of the support 124, in the central part thereof and is electrically connected to the conductive tracks forming the two nested resonant loops.

Avantageusement, une couche de matériau à forte permittivité est collée sur la face rayonnante de chaque antenne élémentaire (face supérieure avec les conventions des figures) de manière à recaler les fréquences de résonance des boucles sur les bandes de fréquences WiFi visées, ce qui permet de réduire les dimensions hors-tout de l'antenne par rapport à une configuration où les éléments rayonnants seraient dépourvus d'une telle couche de matériau à forme permittivité.Advantageously, a layer of high-permittivity material is bonded to the radiating face of each elemental antenna (upper face with the conventions of the figures) so as to reset the resonant frequencies of the loops on the WiFi frequency bands targeted, which allows reducing the overall dimensions of the antenna relative to a configuration where the radiating elements would be devoid of such a layer of permittivity-shaped material.

On peut utiliser à cet effet une couche de matériau FR-4, qui est un composite de résine époxy qui peut être aisément stratifié en surface du support PCB flexible 124.For this purpose a layer of FR-4 material, which is an epoxy resin composite which can be easily laminated on the surface of the flexible PCB support 124, can be used.

La Figure 8 illustre la manière dont l'antenne des Figures 5 et 6 peut être intégrée dans le drone.The Figure 8 illustrates how the antenna of Figures 5 and 6 can be integrated into the drone.

Le drone comporte à cet effet un logement d'antenne 26 ménagé dans le fuselage 12 (ou dans les ailes 16, dans une région voisine de l'emplanture). Ce logement 26 comporte une empreinte en relief avec des faces planes inclinées 28 non coplanaires, homologues des plans respectifs d'inclinaison dans lesquels s'étendent les boucles des différentes antennes élémentaires de l'antenne clover-leaf ou skew-planar wheel. The drone comprises for this purpose an antenna housing 26 formed in the fuselage 12 (or in the wings 16, in a region close to the root). This housing 26 has a relief imprint with non-coplanar inclined plane faces 28 homologous to the respective inclination planes in which the loops of the different elementary antennas of the clover-leaf or skew-planar wheel antenna extend .

Lors de l'insertion de l'antenne 100 dans son logement 26, les secteurs circulaires de chaque antenne élémentaire 102 vont se déformer dans la région centrale du fait de la flexibilité des ponts de matière 132 (Figure 7), de sorte que par simple insertion les antennes élémentaires 102 prendront chacune l'orientation voulue, caractéristique de l'antenne clover-leaf ou skew-planar wheel, du simple fait de la venue en appui du circuit flexible 124 contre la face plane inclinée 28 qui lui correspond, après déformation du support 124 dans la région centrale de l'antenne.When the antenna 100 is inserted into its housing 26, the circular sectors of each elementary antenna 102 will deform in the central region due to the flexibility of the material bridges 132 (FIG. Figure 7 ), so that by simple insertion the elementary antennas 102 will each take the desired orientation, characteristic of the clover-leaf or skew-planar wheel antenna , simply because of the support of the flexible circuit 124 against the flat inclined face 28 which corresponds to it, after deformation of the support 124 in the central region of the antenna.

La Figure 9 est un diagramme montrant la variation du paramètre S11 décrivant le comportement électrique de l'antenne des Figures 5 à 8, en fonction de la fréquence d'émission/réception.The Figure 9 is a diagram showing the variation of the parameter S 11 describing the electrical behavior of the antenna of the Figures 5 to 8 , depending on the transmission / reception frequency.

Sur cette figure, la caractéristique A illustre la résonance de l'antenne (antenne clover-leaf ou skew-planar wheel formée des quatre antennes élémentaires 102 dans leur plans inclinés respectifs), dans une configuration ne comportant que les seules pistes conductrices gravées sur le support PCB flexible 124. La caractéristique B illustre la résonance de cette même antenne, dans une configuration comportant un revêtement en matière plastique conventionnelle, et la caractéristique C une configuration avec un revêtement en matériau à forte permittivité tel que le FR-4.In this figure, the characteristic A illustrates the resonance of the antenna ( clover-leaf antenna or skew-planar wheel formed of the four elementary antennas 102 in their respective inclined planes), in a configuration comprising only the conductive tracks etched on the flexible PCB support 124. The characteristic B illustrates the resonance of this same antenna, in a configuration comprising a conventional plastic coating, and the characteristic C a configuration with a coating of high permittivity material such as the FR-4.

Comme on peut le constater, le décalage de la fréquence de résonance procuré par la couche de FR-4 permet, avec une dimension d'antenne plus réduite, de décaler la fréquence de résonance en la ramenant vers la bande WiFi visée, aussi bien pour la bande basse (2,40 GHz-2,4835 GHz) que pour la bande haute (5,15 GHz-5,85 GHz).As can be seen, the offset of the resonance frequency provided by the FR-4 layer makes it possible, with a smaller antenna size, to shift the resonant frequency by bringing it back to the target WiFi band, both for the low band (2.40 GHz-2.4835 GHz) than for the high band (5.15 GHz-5.85 GHz).

Claims (18)

  1. An antenna (100) with an almost-spherical radiation pattern, said antenna being an antenna of the clover-leaf or skew-planar wheel type, comprising:
    - a plurality of elementary antennas (102) with non-coplanar planar loops extending circumferentially and symmetrically about a main axis (Δ) of the antenna and remote from this axis, in respective planes inclined with respect to the main axis, these inclined planes forming an angle with respect to a radial plane; and
    - a module (104) for the coupling and adaptation of the elementary antennas to a coaxial cable (106) for the power supply of the antenna,
    characterized in that:
    - each elementary antenna (102) is formed by tracks (110, 112, 114, 120) of a structure printed on a circuit support (108; 124) extending in said respective inclined plane; and
    - each elementary antenna (102) comprises two imbricated planar loops (110, 112, 114; 110, 112, 120), tuned on frequencies comprised in two respective distinct WiFi frequency bands.
  2. The antenna of claim 1, wherein the antenna has no conductive element extending in a radial plane and forming a mass plane.
  3. The antenna of claim 1, wherein the printed structure of each elementary antenna comprises:
    - a first rectilinear track (110) and a second rectilinear track (112) that extend radially by forming an angle between each other from a central region of the antenna located in the vicinity of the coupling and adaptation module; and
    - a first curved track (114) and a second curved track (120) that each extend circularly between the first rectilinear track and the second rectilinear track.
  4. The antenna of claim 3, wherein:
    - the first curved track (114) is an external curved track extending between respective distal ends of the first and the second rectilinear track (110, 112), and the second curved track (120) is an internal curved track extending between respective median regions of the first and the second rectilinear track; and
    - the first curved track (114) forms with the first and the second rectilinear track (110, 112) a loop tuned on a frequency located in a first WiFi band, whereas the second curved track (120) forms with the first and the second rectilinear track (110, 112) a loop tuned on a frequency located in a second WiFi band, different from the first WiFi band.
  5. The antenna of claim 4, wherein the second curved track (120) is split into two tracks (120, 120') extending parallel to each other and forming two loops respectively tuned on two distinct frequencies of the second WiFi band.
  6. The antenna of claim 3, wherein the coupling and adaptation module (104) comprises two terminals with:
    - a first terminal (116) connecting the proximal ends of the first rectilinear tracks (110) of the respective elementary antennas on one side of the support; and
    - a second terminal (118) connecting the proximal ends of the second rectilinear tracks (112) of the respective elementary antennas, after passing through the support near said proximal ends.
  7. The antenna of claim 1, wherein the angle (ϕ) with respect to a radial plane of said inclined planes in which extend the non-coplanar loops is of at least 20°.
  8. The antenna of claim 1, wherein the angle (ϕ) with respect to a radial plane of said inclined planes in which extend the non-coplanar loops is of at most 45°.
  9. The antenna of claim 1, wherein the angle (ϕ) with respect to a radial plane of said inclined planes in which extend the non-coplanar loops is comprised between 25° and 30°.
  10. The antenna of claim 1, wherein the circuit support (108) is a stiff circuit support made of an epoxy material.
  11. The antenna of claim 1, wherein the circuit support is perforated (122) in a zone comprised between the first and the second curved track and/or in a zone comprised between the second curved track and the proximal region of the elementary antenna.
  12. The antenna of claim 1, wherein the circuit support (124) is a flexible circuit support.
  13. The antenna of claim 12, wherein the flexible circuit support is a pre-notched support with a plurality of radial separating notches (126) radiating between the elementary antennas (102) from a central region (130) of the antenna.
  14. The antenna of claim 13, wherein the parts of the flexible circuit support located between the radial separating notches are each connected to the central region (130) by a bridge of matter (132) forming a hinge.
  15. The antenna of claim 12, comprising an additional layer of epoxy material deposited at the surface of the flexible circuit support on the side of the tracks of the printed structure.
  16. A drone, comprising :
    - a drone body (12) from which extend laterally two wings (16) and at least two arms;
    - at least one antenna (100) according to one of claims 1 to 15; and
    - at least one antenna housing (26), receiving said antenna.
  17. The drone of claim 16, comprising two antennas arranged symmetrically on either side of the body (12) and incorporated in the thickness of the body or of the wings of the drone.
  18. The drone of claim 16, wherein, the circuit support (124) of the elementary antennas being a flexible circuit support, the antenna housing (26) comprises a conformed hollow cavity comprising a plurality of inclined planar faces (28), which are the counterparts of the respective inclined planes of the elementary antennas (102), and against which bear the elementary antennas after deformation of the flexible circuit support (124).
EP17174470.9A 2016-06-23 2017-06-06 Wifi antenna of the clover-leaf or skew-planar wheel type for a drone Not-in-force EP3261175B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1655839A FR3053164A1 (en) 2016-06-23 2016-06-23 CLOVER-LEAF OR SKEW-PLANAR WHEEL TYPE WIFI ANTENNA FOR DRONE

Publications (2)

Publication Number Publication Date
EP3261175A1 EP3261175A1 (en) 2017-12-27
EP3261175B1 true EP3261175B1 (en) 2019-02-27

Family

ID=57190060

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17174470.9A Not-in-force EP3261175B1 (en) 2016-06-23 2017-06-06 Wifi antenna of the clover-leaf or skew-planar wheel type for a drone

Country Status (4)

Country Link
US (1) US20170373382A1 (en)
EP (1) EP3261175B1 (en)
CN (1) CN107546468A (en)
FR (1) FR3053164A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190324447A1 (en) * 2018-04-24 2019-10-24 Kevin Michael Ryan Intuitive Controller Device for UAV
CN114930641A (en) * 2020-12-31 2022-08-19 深圳市大疆创新科技有限公司 Antenna assembly and remote controller
WO2023178562A1 (en) * 2022-03-23 2023-09-28 深圳市大疆创新科技有限公司 Remote controller of unmanned aerial vehicle and unmanned aerial vehicle system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2009735A1 (en) * 2007-06-22 2008-12-31 Philippe Herman Antenna with diversity of polarisation for transmitting and/or receiving audio and/or video signals
CN102025027B (en) * 2009-09-15 2014-12-17 光宝电子(广州)有限公司 Double-circuit antenna and multi-frequency multi-antenna module
CN102386482B (en) * 2010-09-06 2014-06-18 光宝电子(广州)有限公司 Multi-loop antenna system and electronic device with same
CN105161818B (en) * 2015-10-22 2019-05-14 中电科航空电子有限公司 Airport radio antenna
CN205092312U (en) * 2015-10-23 2016-03-16 成都九华圆通科技发展有限公司 Detachable interferometer that goes up to air with T type antenna
CN105490007A (en) * 2016-01-07 2016-04-13 常熟市泓博通讯技术股份有限公司 High-gain multiwire antenna for unmanned aerial vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20170373382A1 (en) 2017-12-28
EP3261175A1 (en) 2017-12-27
FR3053164A1 (en) 2017-12-29
CN107546468A (en) 2018-01-05

Similar Documents

Publication Publication Date Title
EP3261175B1 (en) Wifi antenna of the clover-leaf or skew-planar wheel type for a drone
US9035838B2 (en) Concentric millimeter-waves beam forming antenna system implementation
Dey et al. Microfluidically reconfigured wideband frequency-tunable liquid-metal monopole antenna
EP3258543A1 (en) Compact wifi antenna with a metamaterial reflector
FR2727250A1 (en) MONOPOLY BROADBAND ANTENNA IN UNIPLANAR PRINTED TECHNOLOGY AND TRANSMITTING AND / OR RECEIVING DEVICE INCORPORATING SUCH ANTENNA
EP2139066B1 (en) Reconfigurable electromagnetic antenna
US20080207121A1 (en) Mote networks having directional antennas
EP3613076B1 (en) Radiofrequency transmission/reception device
EP3529859A1 (en) Antenna and method of manufacture thereof
FR2911725A1 (en) ANTENNA OR ANTENNA MEMBER ULTRA-LARGE BAND.
US20150200459A1 (en) Broadband gnss reference antenna
WO2010121851A1 (en) Low-profile broadband multiple antenna
US20050221761A1 (en) Mote networks using directional antenna techniques
EP1798809B1 (en) Device for transmitting and/or receiving electromagnetic waves for aerodynes
WO2016097362A1 (en) Wire-plate antenna having a capacitive roof incorporating a slot between the feed probe and the short-circuit wire
EP2009735A1 (en) Antenna with diversity of polarisation for transmitting and/or receiving audio and/or video signals
EP3097648B1 (en) Communication device on board of an aircraft allowing the reception of data and gps signals
EP1523062A1 (en) Omnidirectional antenna for transmitting and receiving audio/video signals
FR2965980A1 (en) ANTENNA ARRAY FOR MICROWAVE, MILLIMETRIC OR TERAHERTZ TYPE WAVE LENGTH SIGNAL TRANSMISSION / RECEPTION DEVICE
EP2879234B1 (en) Electronic apparatus with radio antenna folded in a housing
JP2016503275A (en) Patch antenna
EP0860895A1 (en) Resonant antenna for emitting or receiving polarized waves
US11442130B2 (en) Rotationally phased directional antenna
EP2950457B1 (en) Data communication system, railway system comprising such a communication system and related communication method
EP3547449B1 (en) Wireless communication device including a plurality of horn antennas on a printed circuit board (pcb), associated manufacturing method and use

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180504

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181009

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1102673

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017002310

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190227

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190528

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1102673

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017002310

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602017002310

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

26N No opposition filed

Effective date: 20191128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200101

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190606

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170606

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227