EP3259099B1 - Honing method for form honing and machining equipment - Google Patents

Honing method for form honing and machining equipment Download PDF

Info

Publication number
EP3259099B1
EP3259099B1 EP16704610.1A EP16704610A EP3259099B1 EP 3259099 B1 EP3259099 B1 EP 3259099B1 EP 16704610 A EP16704610 A EP 16704610A EP 3259099 B1 EP3259099 B1 EP 3259099B1
Authority
EP
European Patent Office
Prior art keywords
bore
diameter
honing
measuring
values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16704610.1A
Other languages
German (de)
French (fr)
Other versions
EP3259099A1 (en
Inventor
Fabio Antonio XAVIER
Joachim Weiblen
Florian KRANICHSFELD
Oliver Bachmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elgan Diamantwerkzeuge GmbH and Co KG
Original Assignee
Elgan Diamantwerkzeuge GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elgan Diamantwerkzeuge GmbH and Co KG filed Critical Elgan Diamantwerkzeuge GmbH and Co KG
Publication of EP3259099A1 publication Critical patent/EP3259099A1/en
Application granted granted Critical
Publication of EP3259099B1 publication Critical patent/EP3259099B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B33/00Honing machines or devices; Accessories therefor
    • B24B33/02Honing machines or devices; Accessories therefor designed for working internal surfaces of revolution, e.g. of cylindrical or conical shapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/08Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving liquid or pneumatic means

Definitions

  • the invention relates to a honing method for machining the inner surface of a bore in a workpiece using at least one honing operation according to the preamble of claim 1 and a machining system configured to carry out the honing method according to claim 9.
  • a preferred area of application is the honing of cylinder running surfaces in the manufacture of cylinder blocks or Cylinder liners for reciprocating engines.
  • cylinder running surfaces in cylinder blocks (cylinder crankcases) or cylinder liners of internal combustion engines or other reciprocating machines are exposed to strong tribological stress during operation. Therefore, when manufacturing cylinder blocks or cylinder liners, it is important to machine these cylinder running surfaces in such a way that later, under all operating conditions, adequate lubrication is ensured by a film of lubricant and the frictional resistance between parts that move relative to one another is kept as low as possible.
  • Honing is a machining process with geometrically undefined cutting edges.
  • an expandable honing tool is moved back and forth within the bore to be machined to generate a stroke movement in the axial direction of the bore at a stroke frequency and at the same time rotated at a predeterminable speed to generate a rotary movement superimposed on the stroke movement.
  • the cutting material bodies attached to the honing tool are fed via a feed system with a feed force and/or feed speed acting radially to the tool axis and pressed against the inner surface to be machined.
  • honing marks a cross-hatch pattern typical of honing occurs on the inner surface with crossing traces of processing, which are also referred to as "honing marks".
  • the friction component of the piston group can be as high as 35%, so a reduction in friction in this area is desirable.
  • a technology that is becoming increasingly important for reducing friction and wear is the avoidance or reduction of cylinder distortions or deformations of the engine block (cylinder crankcase) during assembly and/or during operation.
  • a cylinder bore should typically have a bore shape that deviates as little as possible, e.g. a maximum of a few micrometers, from an ideal circular cylinder shape.
  • significant form defects disortions
  • the causes of delays or deformations are different. These can be static or quasi-static thermal and/or mechanical loads or dynamic loads.
  • the construction and design of cylinder blocks also have an impact on the tendency to deform.
  • the sealing function of the piston ring pack is typically impaired by such hard-to-control deformations, which can increase blow-by, oil consumption and friction.
  • the so-called form honing is a technology which is intended to ensure or approximate the creation of an ideal form after assembly or in the operating state of the engine by inverting the cylinder distortions (creating a negative form of the error) during processing.
  • Honing is used to create a bore shape that deviates from the circular-cylindrical shape on the unclamped workpiece. Borehole shapes of this type are generally asymmetrical in the axial direction and/or in the circumferential direction, because the deformations of the cylinder block are also generally not symmetrical. In the operating state, the ideal circular cylinder shape should result so that the piston ring pack can seal well over the entire circumference of the bore.
  • the bore shape is measured during and/or after a shape-generating honing operation to determine actual shape values. A difference between the actual shape and the target shape is processed to correct the infeed control.
  • WO 2014/146919 A1 which discloses the preamble of claim 1, describes a honing method for form honing in which a bore that is rotationally symmetrical with respect to the bore axis is produced, which has a narrower cylindrical bore section near the bore entry and then, i.e. further away from the bore entry, a has widening bore section with axially variable diameter.
  • honing tools which have at least one ring-shaped cutting group with cutting material bodies which are designed as honing segments which are wide in the circumferential direction and narrow in the axial direction. When using such honing tools, bore shapes with axial contours can be machined particularly precisely and economically.
  • a bore that is rotationally symmetrical with respect to a bore axis is produced by means of honing, the shape of which deviates from a circular cylinder.
  • the bore has a circular-cylindrical first bore section and, adjoining it, a non-circular-cylindrical second bore section, the diameter of which changes in the axial direction.
  • the circular-cylindrical first bore section is usually located directly on the entry side of the bore, while the second bore section is further away from the bore entry and has a larger diameter than the first bore section, so that the bore extends at least over a section in the direction of the end of the bore that is remote from the entry expanded. Additional bore sections may be present.
  • the diameter of the (circular-cylindrical) first bore section is measured in at least one first measurement plane in the region of the first bore section in order to determine a first diameter value.
  • the diameter of the second bore section is measured in at least one second measurement plane in the area of the second bore section in order to determine a second diameter value.
  • the order of these measurement steps is basically any, but it is often useful to measure first in the first bore section and then in the second bore section.
  • the second diameter value is then evaluated using the first diameter value to determine actual shape values representing an actual shape of the bore.
  • the second diameter value is evaluated in relation to the first diameter value determined in the circular-cylindrical first bore section.
  • the first diameter value is used in the evaluation step as a workpiece-internal reference value for determining the dimensions.
  • the actual shape values determined in this way are then compared with target shape values in order to determine shape deviation values.
  • a subsequent honing operation is then controlled depending on the shape deviation values.
  • this re-measuring strategy uses the first diameter value determined in the circular-cylindrical first bore section as a reference value for the evaluation of those diameter values which are determined by measurement in the (usually more difficult to assess) non-circular-cylindrical second bore section.
  • the first bore section or the first diameter value determined therein thus serves as a workpiece-internal reference for the entire measurement.
  • a significant improvement in precision is achieved in embodiments in which, when measuring the diameter of the first bore section, a first diameter is measured in two or more first measuring planes axially offset from one another and a mean value of the first diameters is formed to determine the first diameter value.
  • the referencing to the diameter values of the first bore section is thus less susceptible to accidental incorrect measurements or accidental local shape deviations within the first bore section.
  • the arithmetic mean of several measurements is usually determined. Although measurements in two first measurement planes that are axially offset from one another can be sufficient, measurements are preferably made in three or more first measurement planes. In particular, measurements can be taken at exactly three first measurement planes. In this way, a good compromise can be achieved between the measurement accuracy that can be achieved and the total measurement time required for the measurement.
  • a second diameter is measured in an end section of the second bore section remote from the first bore section and a prewidth value is determined from the second diameter in the end section and the first diameter value.
  • the "oversize" is defined in this application as the difference between the bore diameter at the bore end remote from the inlet and the bore diameter in the cylindrical bore section.
  • the prewidth value can be determined, for example, from the difference between the second diameter determined in the end area and the first diameter value.
  • the end section provided for the measurement is preferably located in the third or in the fourth of the axial length of the second bore section, far from the entry, ie at a relatively large axial distance from the first bore section.
  • an axial measurement interval between adjacent second measurement planes is preferably selected such that this axial measurement interval is smaller than an axial measurement interval between adjacent first measurement planes. It is therefore measured in the non-circular-cylindrical bore section with a higher axial resolution (or with a smaller distance between adjacent measurement planes), while a coarser grid of measurement planes can be provided in the circular-cylindrical first bore section. As a result, the total measurement time required for the measurement can be optimized without any substantial loss of measurement accuracy.
  • An axial measurement interval between immediately adjacent measurement planes can be, for example, 50% or less and/or 40% or less and/or 30% or less than an axial measurement interval in the first bore section in the second bore section. It is also possible to select an inverse ratio of the axial measuring intervals (coarser raster in the second hole section) or to work with the same axial measuring interval over the entire length of the hole.
  • First diameter values and second diameter values of a bore are preferably stored in a memory of a control device in the form of a data record representing the actual shape of the bore. This makes the values available for later processing.
  • the associated diameter values are measured in two measuring directions running perpendicular to one another in one measuring plane.
  • the measured values obtained in this way can be averaged.
  • This type of measurement also allows indications of possible critical shape deviations, i.e. deviations from the desired rotationally symmetrical bore shape. It can also be sufficient to measure only in a single diametrical measuring direction.
  • the measurements are preferably carried out with a pneumatic measuring system.
  • Non-contact pneumatic measuring systems with sufficient measuring accuracy are available and sufficiently robust to be used permanently in production-related areas.
  • the honing process can be carried out with differently designed honing tools.
  • An expandable honing tool is preferably used during machining, which has an expandable, ring-shaped cutting group with a plurality of cutting material bodies distributed around the circumference of the tool body in an end region of a tool body remote from the spindle, with an axial length of the cutting material body being smaller than the effective outer diameter of the ring-shaped cutting group when completely withdrawn cutting material bodies.
  • suitable honing tools with one or two ring-shaped cutting groups and with a single widening or double widening are in WO 2014/146919 A1 specified. The revelation of the WO 2014/146919 A1 is made to this extent by reference to the content of this description.
  • piezoelectrically controlled honing tools can also be used.
  • the invention also relates to a machining installation configured to carry out the honing process.
  • This can be a honing system with a specialized honing machine or a machining system with another machine tool that offers the functionalities required here.
  • the processing system preferably has a re-measuring station separate from a honing unit, to which the workpiece is transferred for the measurement after the end of processing.
  • a re-measuring station separates from a honing unit, to which the workpiece is transferred for the measurement after the end of processing.
  • measurements can possibly overlap with a honing process.
  • the diameter measurements can also be carried out using a measuring system integrated into a honing tool.
  • FIG. 1 shows a schematic longitudinal section through an embodiment of such a bore 110 in a workpiece 100 in the form of an engine block (cylinder crankcase) for an internal combustion engine.
  • the target shape of the bore is rotationally symmetrical with respect to its bore axis 112 and extends over a bore length L from a bore inlet 114 facing the cylinder head in the installed state to the bore outlet 116 at the opposite end.
  • the bore can be divided into several adjacent sections different functions, which merge smoothly, ie without the formation of steps or edges.
  • a first bore section 120 at the inlet end has a first target diameter DS1 and a first length L1.
  • the first target diameter is present over the entire first length L1, so that the first bore section has a circular-cylindrical shape.
  • the first bore section transitions steplessly into an axially narrow transition section with a transition radius R1 into a second bore section 130, which extends from the transition section to the outlet-side end of the bore.
  • the second bore portion 130 is generally conical or frusto-conical in shape and extends a second length L2.
  • the second bore section consistently has an inside diameter (second target diameter) DS2 that is larger than the first target diameter DS1, with the second target diameter increasing continuously linearly in the axial direction, starting from the transition section toward the end of the bore.
  • the cone angle ⁇ (angle between the axis of the bore and a surface line of the second bore section running in an axial plane) can be, for example, in the range of less than 1°, possibly also less than 0.2°.
  • the difference between the target diameter DS1 in the cylindrical bore section and the target diameter at the bore exit 116 is referred to here as the target value for the "pre-width".
  • the first length L1 can be between 10% and 60% of the bore length L, for example.
  • the second length L2 is typically greater than the first length and is often between 30% and 80% of the bore length L.
  • the transition section is very short compared to the adjacent bore sections. Deviations from these geometric conditions are also possible.
  • the difference in diameter between the first target diameter DS1 and the second target diameter DS2 in parts further away from the inlet is well outside the tolerances typical for honing, which for a cylindrical shape are in the order of magnitude of a maximum of 10 ⁇ m (based on the diameter).
  • the maximum diameter difference i.e. the front width
  • the front width can be between 20 ⁇ m and 500 ⁇ m, for example.
  • the lengths of the outer bore sections and the radius of the transition section can be optimized in such a way that low blow-by, low oil consumption and low wear of the piston rings result in typical engine operating conditions.
  • the shape of the bore means that the bore is comparatively narrow in the area near the inlet, so that the piston rings of the piston running in the bore are pressed against the inner surface 118 of the bore under high ring stress.
  • the piston which is accelerated by the combustion, then moves in the direction of the bore outlet, with the piston rings first passing through the transition section and then through the conical second bore section with the continuously expanding inner diameter. From the transition section, the piston rings can gradually relax, with the seal remaining adequate because the pressure difference across the piston rings decreases.
  • the ring pack reaches its lowest stress.
  • a continuous (over the entire bore length L) circular-cylindrical bore with a slight undersize relative to the target diameter SD1 is produced in the first bore section.
  • a long-stroke honing tool with relatively long honing stones can be used for this purpose, for example.
  • This honing operation can be performed as an intermediate honing operation after a previous pre-honing operation.
  • the honing tool 200 has a single ring-shaped cutting group 220 with cutting material bodies distributed around the circumference of the tool body, which can be advanced or retracted in the radial direction to the tool axis 212 by means of a cutting material body infeed system (not shown in detail) (see double arrows).
  • the cutting material bodies are designed as honing segments, the width of which in the circumferential direction is significantly greater than their length in the axial direction.
  • the bodies of cutting material responsible for removing material from the workpiece are concentrated in an axially relatively narrow zone, ie a ring of the cutting group, and take up a relatively large proportion of the circumference of the honing tool.
  • bore shapes can be produced with a relatively high material removal rate, in which bore sections of different diameters in the axial direction border each other.
  • the honing tool is coupled in an articulated manner to the honing spindle of a honing machine in order to permit limited mobility of the honing tool in relation to the honing spindle.
  • a multi-axis joint 210 is formed on the spindle-side end of the honing tool, for example a cardan joint or a ball joint.
  • honing tools suitable for this process can be used, in particular honing tools such as those in WO 2014/146919 A1 are disclosed to the applicant.
  • honing tools such as those in WO 2014/146919 A1 are disclosed to the applicant.
  • the relevant disclosure content of this application is incorporated into the content of the present description by reference.
  • the expansion of the honing tool can be controlled, for example, depending on the stroke, in such a way that the control of the infeed system for the radial infeed of the cutting material body can be combined with the control for the stroke position (in Axial direction) is coupled.
  • This can be done, for example, in such a way that the infeed force and/or the infeed speed of cutting material bodies of the honing tool are controlled as a function of the stroke position of the honing tool.
  • the infeed force would then increase when the honing tool moves downwards (in the direction of bore outlet 116) and decrease when it moves upwards (in the direction of the first bore section).
  • Other procedures are also possible, in particular those as in the WO 2014/146919 A1 are described.
  • a re-measuring operation is carried out on the finished workpiece at a separate measuring station from the honing unit. If the measurement shows that the values utilize the permitted tolerance range of the measured actual shape of the bore by more than 30%, 40%, 50% or 60% (e.g. with 40% utilization, there is a tolerance reserve of 30% for the upper and lower tolerance limit), corresponding compensation signals can be generated in order to work with changed honing parameters during the subsequent honing of a next bore and thereby achieve the desired target shape with better precision.
  • the diameter of the nominally circular-cylindrical first bore section 120 is measured in three measuring planes M1-1, M1-2 and M1-3 that are axially offset relative to one another. These are at equal axial distances, each offset axially from one another by a first measurement interval MI-1.
  • the corresponding diameter values are denoted as D1, D2 and D3.
  • the effective diameter is saved as the first diameter value to describe the actual shape.
  • the individual measured values D1, D2 and D3 are also saved together with the associated axial positions of the measuring planes.
  • the first diameter value D eff determined in this way serves as a reference for the diameter values in the conical second bore section.
  • diameter measurements are carried out in three second measuring planes M2-1, M2-2 and M2-3, which are axially offset from one another, in order to determine the associated second diameter values D4, D5 and D6.
  • the second measurement planes are at equal axial distances from each other, offset axially by a second measurement interval MI-2.
  • the second diameter values (D4, D5 and D6) obtained in this way are then automatically evaluated in a comparison operation using the first diameter value (D eff ) in order to determine actual shape values which represent the present cylindrical-conical actual shape of the bore.
  • Shape deviation values are determined from a comparison of the actual shape values with the target shape values specified by the specification. Subsequent honing operations are then controlled depending on the form error values. This makes it possible, among other things, to carry out diameter compensation in the event of diameter deviations of the conical bore section in relation to the cylindrical part of the cylinder bore (first bore section).
  • the effective diameter D eff which was determined for the cylindrical first bore section 120, can be compared with that diameter value D6 which was determined in the second measurement plane M2-3 furthest away from the entrance to the borehole in an end section EA of the second borehole section remote from the borehole. If the axial position of the measuring plane M2-3 is known, the difference between the effective diameter D eff in the first bore section and the diameter D6 in the lowest measuring plane M2-3 can be used to calculate the actual pre-width of the bore shape, i.e. the actual pre-width. If necessary, the difference between the actual pre-width and the target pre-width is compensated for in the next processing cycle. The same applies to diameter deviations in the cylindrical area.
  • a possible correction scenario or compensation scenario is explained below using Table 1.
  • the starting point here is a honing process in which a circular-cylindrical bore shape is first produced in an intermediate honing operation ZH by means of honing and then the desired bore shape with a cylindrical first bore section and conical second bore section is produced in a form honing operation FH by axially different amounts of material removal in the second bore section is produced.
  • the circular-cylindrical first bore section or the cylindrical area is abbreviated to "ZB" and the conical second bore section or the conical area to "KB".
  • the abbreviation KOMP-ZH stands for a compensation in the Intermediate honing stage
  • the abbreviation KOMP-FH stands for compensation in the form honing stage.
  • the term compensation here means that the honing parameters are changed in relation to the honing parameters of the previous machining in order to avoid or reduce a determined deviation from the desired shape as far as possible during the next honing machining.
  • the abbreviation VW stands for the determined actual value of the front width.
  • the second line shows, for example, which measures are initiated by the control if the measurement shows that the diameter (symbol " ⁇ ") in the cylindrical area ZB is in order ("OK") or within the tolerances, however, the front width VW is too small.
  • the other rows of the table are to be interpreted accordingly.
  • a machining system For permanent recording of the bore geometry during form honing during series operation, a machining system is provided with a measuring station downstream of the honing machine, in which the finished honed components can be measured using a pneumatic measuring mandrel (i.e. by air measurement). The measurement results are fed back into the control of the honing machine in order to be able to react immediately to any deviations in shape when machining the next workpiece.
  • the measuring station is configured in such a way that the axial contour can also be recorded and selected.
  • a measuring system for example, with a pneumatic measuring mandrel 400 according to 4
  • the system can also be used to record the axial contour in the cylinder bore by changing the control software, ie by changing the test plan.
  • two measuring channels are available, each with two measuring nozzles 410-A1, 410-A2 (measuring direction A) and 410-B1 arranged diametrically opposite one another in order to be able to measure the diameter in two measuring directions A and B perpendicular to one another.
  • Pneumatic plug gauges work according to the nozzle flapper principle. For the measurement, compressed air is blown out of the measuring nozzles in the direction of the bore wall. The resulting dynamic pressure in the area of the measuring nozzles can serve as a measure for the distance between the measuring nozzle and the wall of the bore.
  • a transducer connected to the measuring nozzle via a pressure line converts the (pneumatic) pressure signal into a voltage signal that can be further processed electrically. Instead of the pressure, the volume flow of the compressed air can also be used for evaluation.
  • the bore diameter in the measuring plane can be determined at a given diametrical distance between the measuring nozzles.
  • Pneumatic plug gauges enable non-contact measurement regardless of the material of the measurement object and, within the scope of their measurement range, high measurement accuracies, which in the case of final measurement units are usually well below a micrometer, for example in the range of 0.2 ⁇ m to 0.3 ⁇ m with repeated measurements .
  • the measurement is controlled in such a way that the axial measurement intervals MI-2 between immediately consecutive measurement planes in the second bore section 130, in which the diameter changes continuously, for example, are smaller than the measurement intervals MI-1 in the circular-cylindrical first bore section 120, in which the diameter is nominally the same in all axial positions.
  • the conical shape of the bore which deviates from the circular-cylindrical shape, can be recorded very precisely by a measuring interval of, for example, 3 mm in the second bore section 130 .
  • a larger measurement interval eg 10 mm
  • Permissible minimum and maximum values are specified for each measuring point or each measuring plane. In the event of deviations, compensation takes place on the respective honing spindle, for example in the manner explained in connection with Table 1. In addition, the values of a hole can be further processed, displayed in a diagram and permanently stored in a database.
  • a dwell time in the respective measurement level of the order of 0.5 s can be sufficient to obtain sufficiently accurate measurement values. This makes it possible to reliably measure the diameter in a standard cycle time of 25 to 30 s, for example.
  • the direction of measurement can also be freely selected, so that measurements can be taken both from the entry-side end to the end far from the entry and from the (wider) end far from the entry to the (narrower) bore entry.
  • the desired axial contour in the second bore section is the contour of a simple cone with a continuous (linear) increase in diameter from the end of the first bore section in the direction of the end of the bore.
  • Other bore shapes are also possible, e.g. a trumpet shape or a bell shape or bottle shape of a bore.
  • a conical second bore section could be adjoined in the direction of the bore end remote from the inlet, which third bore section is circular-cylindrical or can have a different cone angle than the second bore section.

Description

Die Erfindung betrifft ein Honverfahren zur Bearbeitung der Innenfläche einer Bohrung in einem Werkstück mithilfe mindestens einer Honoperation gemäß dem Oberbegriff von Anspruch 1 sowie eine zur Durchführung des Honverfahrens konfigurierte Bearbeitungsanlage gemäß Anspruch 9. Ein bevorzugtes Anwendungsgebiet ist das Honen von Zylinderlaufflächen bei der Herstellung von Zylinderblöcken oder Zylinderlaufbuchsen für Hubkolbenmaschinen.The invention relates to a honing method for machining the inner surface of a bore in a workpiece using at least one honing operation according to the preamble of claim 1 and a machining system configured to carry out the honing method according to claim 9. A preferred area of application is the honing of cylinder running surfaces in the manufacture of cylinder blocks or Cylinder liners for reciprocating engines.

Die Zylinderlaufflächen in Zylinderblöcken (Zylinderkurbelgehäusen) oder Zylinderlaufbuchsen von Brennkraftmaschinen oder anderen Hubkolbenmaschinen sind im Betrieb einer starken tribologischen Beanspruchung ausgesetzt. Daher kommt es bei der Herstellung von Zylinderblöcken oder Zylinderlaufbuchsen darauf an, diese Zylinderlaufflächen so zu bearbeiten, dass später bei allen Betriebsbedingungen eine ausreichende Schmierung durch einen Schmiermittelfilm gewährleistet ist und der Reibwiderstand zwischen sich relativ zueinander bewegenden Teilen möglichst gering gehalten wird.The cylinder running surfaces in cylinder blocks (cylinder crankcases) or cylinder liners of internal combustion engines or other reciprocating machines are exposed to strong tribological stress during operation. Therefore, when manufacturing cylinder blocks or cylinder liners, it is important to machine these cylinder running surfaces in such a way that later, under all operating conditions, adequate lubrication is ensured by a film of lubricant and the frictional resistance between parts that move relative to one another is kept as low as possible.

Die qualitätsbestimmende Endbearbeitung solcher tribologisch beanspruchbaren Innenflächen erfolgt in der Regel mit geeigneten Honverfahren, die typischer Weise mehrere aufeinanderfolgende Honoperationen umfassen. Das Honen ist ein Zerspanungsverfahren mit geometrisch unbestimmten Schneiden. Bei einer Honoperation wird ein aufweitbares Honwerkzeug innerhalb der zu bearbeitenden Bohrung zur Erzeugung einer Hubbewegung in Axialrichtung der Bohrung mit einer Hubfrequenz hin- und her bewegt und gleichzeitig zur Erzeugung einer der Hubbewegung überlagerten Drehbewegung mit einer vorgebbaren Drehzahl gedreht. Zur Aufweitung des Honwerkzeugs werden die am Honwerkzeug angebrachten Schneidstoffkörper über ein Zustellsystem mit einer radial zur Werkzeugachse wirkenden Zustellkraft und/oder Zustellgeschwindigkeit zugestellt und an die zu bearbeitende Innenfläche angedrückt. Beim Honen entsteht in der Regel an der Innenfläche ein für die Honbearbeitung typisches Kreuzschliffmuster mit sich überkreuzenden Bearbeitungsspuren, die auch als "Honriefen" bezeichnet werden. Mit steigenden Anforderungen an die Sparsamkeit und Umweltfreundlichkeit von Motoren ist die Optimierung des tribologischen Systems Kolben/Kolbenringe/Zylinderlauffläche von besonderer Bedeutung, um geringe Reibung, geringen Verschleiß und geringen Ölverbrauch zu erreichen. Der Reibungsanteil der Kolbengruppe kann bis zu 35% betragen, so dass eine Reibungsreduzierung in diesem Bereich wünschenswert ist.The quality-determining finishing of such tribologically stressable inner surfaces is usually carried out with suitable honing processes, which typically include several consecutive honing operations. Honing is a machining process with geometrically undefined cutting edges. In a honing operation, an expandable honing tool is moved back and forth within the bore to be machined to generate a stroke movement in the axial direction of the bore at a stroke frequency and at the same time rotated at a predeterminable speed to generate a rotary movement superimposed on the stroke movement. To widen the honing tool, the cutting material bodies attached to the honing tool are fed via a feed system with a feed force and/or feed speed acting radially to the tool axis and pressed against the inner surface to be machined. During honing, a cross-hatch pattern typical of honing occurs on the inner surface with crossing traces of processing, which are also referred to as "honing marks". With increasing demands on the economy and environmental friendliness of engines, the optimization of the tribological system of pistons/piston rings/cylinder running surface is of particular importance in order to achieve low friction, low wear and low oil consumption. The friction component of the piston group can be as high as 35%, so a reduction in friction in this area is desirable.

Eine Technologie, die für die Reduzierung der Reibung und des Verschleißes immer mehr an Bedeutung gewinnt, ist die Vermeidung bzw. Reduzierung von Zylinderverzügen bzw. Deformationen des Motorblocks (Zylinderkurbelgehäuses) bei der Montage und/oder im Betrieb. Nach einer konventionellen Honbearbeitung soll eine Zylinderbohrung typischerweise eine Bohrungsform haben, die möglichst wenig, z.B. maximal wenige Mikrometer, von einer idealen Kreiszylinderform abweicht. Während der Montage und/oder des Betriebs des Motors kann es jedoch zu deutlichen Formfehlern (Verzügen) kommen, die bis zu mehreren Hundertsteln Millimeter betragen und die Performance des Motors verringern können. Die Ursachen von Verzügen bzw. Deformationen sind unterschiedlich. Es kann sich um statische oder quasi statische thermische und/oder mechanische Belastungen handeln oder um dynamische Belastungen. Auch die Konstruktion und das Design von Zylinderblöcken haben Einfluss auf die Neigung zu Deformationen. Die Dichtfunktion des Kolbenringpakets wird durch solche schwer kontrollierbaren Deformationen typischerweise verschlechtert, wodurch sich der Blow-by, der Ölverbrauch und auch die Reibung erhöhen können.A technology that is becoming increasingly important for reducing friction and wear is the avoidance or reduction of cylinder distortions or deformations of the engine block (cylinder crankcase) during assembly and/or during operation. After conventional honing, a cylinder bore should typically have a bore shape that deviates as little as possible, e.g. a maximum of a few micrometers, from an ideal circular cylinder shape. However, during the assembly and/or operation of the motor, significant form defects (distortions) can occur, which can amount to several hundredths of a millimeter and reduce the performance of the motor. The causes of delays or deformations are different. These can be static or quasi-static thermal and/or mechanical loads or dynamic loads. The construction and design of cylinder blocks also have an impact on the tendency to deform. The sealing function of the piston ring pack is typically impaired by such hard-to-control deformations, which can increase blow-by, oil consumption and friction.

Das sogenannte Formhonen ist eine Technologie, welche durch eine Invertierung der Zylinderverzüge (Erzeugung einer Negativform des Fehlers) bei der Bearbeitung die Entstehung einer Idealform nach der Montage oder im Betriebszustand des Motors gewährleisten oder annähern soll. Dabei wird am unverspannten Werkstück mittels Honen eine von der Kreiszylinderform definiert abweichende Bohrungsform erzeugt. Solche Bohrungsformen sind in der Regel in Axialrichtung und/oder in Umfangsrichtung unsymmetrisch, weil auch die Deformationen des Zylinderblocks in der Regel nicht symmetrisch sind. Im Betriebszustand soll sich eine möglichst ideale Kreiszylinderform ergeben, so dass das Kolbenringpaket über den gesamten Bohrungsumfang gut abdichten kann.The so-called form honing is a technology which is intended to ensure or approximate the creation of an ideal form after assembly or in the operating state of the engine by inverting the cylinder distortions (creating a negative form of the error) during processing. Honing is used to create a bore shape that deviates from the circular-cylindrical shape on the unclamped workpiece. Borehole shapes of this type are generally asymmetrical in the axial direction and/or in the circumferential direction, because the deformations of the cylinder block are also generally not symmetrical. In the operating state, the ideal circular cylinder shape should result so that the piston ring pack can seal well over the entire circumference of the bore.

Verschiedene Varianten des Formhonens, die es erlauben, nicht-rotationssymmetrische Bohrungsformen mit einer systematischen Abweichung von einer 2-zähligen Rotationssymmetrie zu erzeugen, werden in der EP 1 790 435 B1 beschrieben. Bei einer Variante wird während und/oder nach einer formerzeugenden Honoperation eine Vermessung der Bohrungsform zur Ermittlung von Form-Istwerten durchgeführt. Eine Differenz zwischen den Form-Istwerten und der Sollform wird zur Korrektur der Steuerung der Zustellung verarbeitet.Various variants of form honing, which make it possible to produce non-rotationally symmetrical bore shapes with a systematic deviation from a 2-fold rotational symmetry, are described in the EP 1 790 435 B1 described. In one variant, the bore shape is measured during and/or after a shape-generating honing operation to determine actual shape values. A difference between the actual shape and the target shape is processed to correct the infeed control.

In der WO 2014/146919 A1 , die den Oberbegriff des Anspruchs 1 offenbart, wird ein Honverfahren zum Formhonen beschrieben, bei dem eine in Bezug auf die Bohrungsachse rotationssymmetrische Bohrung erzeugt wird, die in der Nähe des Bohrungseintritts einen engeren zylindrischen Bohrungsabschnitt und daran anschließend, also weiter entfernt vom Bohrungseintritt, einen sich erweiternden Bohrungsabschnitt mit axial veränderlichem Durchmesser aufweist. In der Anmeldung werden auch Honwerkzeuge beschrieben, die mindestens eine ringförmige Schneidgruppe mit Schneidstoffkörpern aufweisen, die als in Umfangsrichtung breite und in Axialrichtung schmale Honsegmente gestaltet sind. Bei Verwendung derartiger Honwerkzeuge lassen sich Bohrungsformen mit axialem Konturverlauf besonders präzise und wirtschaftlich bearbeiten.In the WO 2014/146919 A1 , which discloses the preamble of claim 1, describes a honing method for form honing in which a bore that is rotationally symmetrical with respect to the bore axis is produced, which has a narrower cylindrical bore section near the bore entry and then, i.e. further away from the bore entry, a has widening bore section with axially variable diameter. The application also describes honing tools, which have at least one ring-shaped cutting group with cutting material bodies which are designed as honing segments which are wide in the circumferential direction and narrow in the axial direction. When using such honing tools, bore shapes with axial contours can be machined particularly precisely and economically.

AUFGABE UND LÖSUNGTASK AND SOLUTION

Es ist eine Aufgabe der Erfindung, ein Honverfahren der eingangs erwähnten Art bereitzustellen, das es erlaubt, an Bohrungen, die im fertig bearbeiten Zustand einen axialen Konturverlauf haben sollen, den gewünschten Konturverlauf über die gesamte relevante Bohrungslänge mit ausreichender Präzision zu erzeugen. Weiterhin soll eine zur Durchführung des Honverfahrens geeignete Bearbeitungsanlage bereitgestellt werden.It is an object of the invention to provide a honing method of the type mentioned at the outset that allows bores that are to have an axial contour in the finished state to produce the desired contour over the entire relevant bore length with sufficient precision. Furthermore, a processing system suitable for carrying out the honing process is to be provided.

Diese Aufgabe wird gelöst durch ein Honverfahren mit den Merkmalen von Anspruch 1 sowie durch eine Bearbeitungsanlage mit den Merkmalen von Anspruch 9. Vorteilhafte Weiterbildungen sind in den abhängigen Ansprüchen angegeben. Der Wortlaut sämtlicher Ansprüche wird durch Bezugnahme zum Inhalt der Beschreibung gemacht.This object is achieved by a honing method having the features of claim 1 and by a machining system having the features of claim 9. Advantageous developments are specified in the dependent claims. The wording of all claims is incorporated into the description by reference.

Bei dem Honverfahren wird mittels Honen eine in Bezug auf eine Bohrungsachse rotationssymmetrische Bohrung erzeugt, deren Form von einer Kreiszylinderform abweicht. Die Bohrung hat einen kreiszylindrischen ersten Bohrungsabschnitt sowie daran anschließend einen nicht-kreiszylindrischen zweiten Bohrungsabschnitt, dessen Durchmesser sich in Axialrichtung ändert. Der kreiszylindrische erste Bohrungsabschnitt befindet sich in der Regel unmittelbar an der Eintrittsseite der Bohrung, während der zweite Bohrungsabschnitt weiter entfernt vom Bohrungseintritt liegt und im Vergleich zum ersten Bohrungsabschnitt einen größeren Durchmesser hat, so dass sich die Bohrung in Richtung des eintrittsfernen Bohrungsendes mindestens über einen Abschnitt erweitert. Weitere Bohrungsabschnitte können vorhanden sein.In the honing process, a bore that is rotationally symmetrical with respect to a bore axis is produced by means of honing, the shape of which deviates from a circular cylinder. The bore has a circular-cylindrical first bore section and, adjoining it, a non-circular-cylindrical second bore section, the diameter of which changes in the axial direction. The circular-cylindrical first bore section is usually located directly on the entry side of the bore, while the second bore section is further away from the bore entry and has a larger diameter than the first bore section, so that the bore extends at least over a section in the direction of the end of the bore that is remote from the entry expanded. Additional bore sections may be present.

Untersuchungen der Erfinder haben gezeigt, dass die nach Abschluss der Honbearbeitung gewünschte Soll-Form der Bohrung mit besonders hoher Präzision erreicht werden kann, wenn eine besondere Nachmessstrategie angewendet wird und deren Messergebnisse bei der Bearbeitung weiterer Werkstücke berücksichtigt werden. Dabei wird eine Messung des Durchmessers des (kreiszylindrischen) ersten Bohrungsabschnitts in mindestens einer ersten Messebene im Bereich des ersten Bohrungsabschnitts durchgeführt, um einen ersten Durchmesserwert zu ermitteln. Weiterhin wird eine Messung des Durchmessers des zweiten Bohrungsabschnitts in mindestens einer zweiten Messebene im Bereich des zweiten Bohrungsabschnitts durchgeführt, um einen zweiten Durchmesserwert zu ermitteln. Die Reihenfolge dieser Messschritte ist grundsätzlich beliebig, häufig ist es jedoch zweckmäßig, zuerst im ersten Bohrungsabschnitt und danach im zweiten Bohrungsabschnitt zu messen. Der zweite Durchmesserwert wird dann unter Verwendung des ersten Durchmesserwerts bewertet, um Ist-Formwerte zu ermitteln, die eine Ist-Form der Bohrung repräsentieren. Bei diesem Bewertungsschritt wird somit der zweite Durchmesserwert mit Bezug zu dem im kreiszylindrischen ersten Bohrungsabschnitt ermittelten ersten Durchmesserwert bewertet. Erfindungsgemäß wird der erste Durchmesserwert bei dem Bewertungsschritt somit als werkstückinterner Bezugswert für die Dimensionsbestimmung dienen. Die auf diese Weise ermittelten Ist-Formwerte werden dann mit Soll-Formwerten verglichen, um Formabweichungswerte zu ermitteln. Eine nachfolgende Honoperation wird dann in Abhängigkeit von den Formabweichungswerten gesteuert.Investigations by the inventors have shown that the target shape of the bore desired after completion of the honing process can be achieved with particularly high precision if a special re-measuring strategy is used and the measurement results are taken into account when processing other workpieces. The diameter of the (circular-cylindrical) first bore section is measured in at least one first measurement plane in the region of the first bore section in order to determine a first diameter value. Furthermore, the diameter of the second bore section is measured in at least one second measurement plane in the area of the second bore section in order to determine a second diameter value. The order of these measurement steps is basically any, but it is often useful to measure first in the first bore section and then in the second bore section. The second diameter value is then evaluated using the first diameter value to determine actual shape values representing an actual shape of the bore. In this evaluation step, the second diameter value is evaluated in relation to the first diameter value determined in the circular-cylindrical first bore section. According to the invention, the first diameter value is used in the evaluation step as a workpiece-internal reference value for determining the dimensions. The actual shape values determined in this way are then compared with target shape values in order to determine shape deviation values. A subsequent honing operation is then controlled depending on the shape deviation values.

Eine Besonderheit dieser Vorgehensweise liegt darin, dass durch diese Nachmessstrategie der im kreiszylindrischen ersten Bohrungsabschnitt ermittelte erste Durchmesserwert als Bezugswert für die Bewertung derjenigen Durchmesserwerte genutzt wird, welche in dem (in der Regel schwieriger zu beurteilenden) nicht-kreiszylindrischen zweiten Bohrungsabschnitt durch Messung ermittelt werden. Der erste Bohrungsabschnitt bzw. der darin ermittelte erste Durchmesserwert dient somit als werkstückinterne Referenz für die gesamte Messung.A special feature of this procedure is that this re-measuring strategy uses the first diameter value determined in the circular-cylindrical first bore section as a reference value for the evaluation of those diameter values which are determined by measurement in the (usually more difficult to assess) non-circular-cylindrical second bore section. The first bore section or the first diameter value determined therein thus serves as a workpiece-internal reference for the entire measurement.

Es kann ausreichen, den Durchmesser des ersten Bohrungsabschnitts nur in einer einzigen Messebene zu messen, beispielsweise im mittleren Bereich des ersten Bohrungsabschnitts. Eine wesentliche Verbesserung der Präzision wird bei Ausführungsformen erreicht, bei welchen beim Messen des Durchmessers des ersten Bohrungsabschnitts in zwei oder mehr axial zueinander versetzten ersten Messebenen jeweils ein erster Durchmesser gemessen wird und zur Ermittlung des ersten Durchmesserwerts ein Mittelwert der ersten Durchmesser gebildet wird. Die Referenzierung an den Durchmesserwerten des ersten Bohrungsabschnitts wird hierdurch weniger anfällig für zufällige Fehlmessungen oder zufällige lokale Formabweichungen innerhalb des ersten Bohrungsabschnitts. Üblicherweise wird der arithmetische Mittelwert mehrerer Messungen ermittelt. Obwohl Messungen in zwei zueinander axial versetzten ersten Messebenen ausreichen können, wird vorzugsweise an drei oder mehr ersten Messebenen gemessen. Insbesondere kann an genau drei ersten Messebenen gemessen werden. Hierdurch kann ein guter Kompromiss zwischen der erzielbaren Messgenauigkeit und der für die Messung insgesamt erforderlichen Messzeit erzielt werden.It can be sufficient to measure the diameter of the first bore section only in a single measurement plane, for example in the middle area of the first bore section. A significant improvement in precision is achieved in embodiments in which, when measuring the diameter of the first bore section, a first diameter is measured in two or more first measuring planes axially offset from one another and a mean value of the first diameters is formed to determine the first diameter value. The referencing to the diameter values of the first bore section is thus less susceptible to accidental incorrect measurements or accidental local shape deviations within the first bore section. The arithmetic mean of several measurements is usually determined. Although measurements in two first measurement planes that are axially offset from one another can be sufficient, measurements are preferably made in three or more first measurement planes. In particular, measurements can be taken at exactly three first measurement planes. In this way, a good compromise can be achieved between the measurement accuracy that can be achieved and the total measurement time required for the measurement.

Auch bei der Messung des zweiten Durchmessers kann es ausreichen, lediglich in einer einzigen zweiten Messebene an einer vorab definierten Axialposition zu messen. Zur Verringerung der Messunsicherheit bzw. zur Verbesserung der Präzision ist jedoch vorzugsweise vorgesehen, dass beim Messen des Durchmessers des zweiten Bohrungsabschnitts in zwei oder mehr axial zueinander versetzten zweiten Messebenen jeweils ein zweiter Durchmesser gemessen wird und ein axialer Konturverlauf des zweiten Bohrungsabschnitts unter Verwendung dieser Mehrzahl von zweiten Durchmessern ermittelt wird. Auch hier können Messungen an zwei axial zueinander versetzten Messebenen ausreichen, wobei jedoch drei oder mehr Messungen an drei oder mehr axial versetzten zweiten Messebenen präzisere Messergebnisse liefern können. Beispielsweise können auf diese Weise präzise Aussagen zur Gleichmäßigkeit einer Konusform, einer Trompetenform oder einer Glockenform des zweiten Bohrungsabschnitts getroffen werden.Even when measuring the second diameter, it can be sufficient to measure only in a single second measurement plane at a previously defined axial position. To reduce the measurement uncertainty or to improve the precision, however, it is preferably provided that when measuring the diameter of the second bore section in two or more a second diameter is measured at each of the second measuring planes, which are axially offset from one another, and an axial contour profile of the second bore section is determined using this plurality of second diameters. Here, too, measurements on two measurement planes that are axially offset from one another can be sufficient, although three or more measurements on three or more second measurement planes that are axially offset can deliver more precise measurement results. In this way, for example, precise statements can be made about the uniformity of a cone shape, a trumpet shape or a bell shape of the second bore section.

Bei einer Verfahrensvariante wird beim Messen des Durchmessers des zweiten Bohrungsabschnitts ein zweiter Durchmesser in einem vom ersten Bohrungsabschnitt entfernten Endabschnitt des zweiten Bohrungsabschnitts gemessen und aus dem zweiten Durchmesser im Endabschnitt und dem ersten Durchmesserwert ein Vorweitewert ermittelt. Die "Vorweite" ist in dieser Anmeldung als Differenz zwischen dem Bohrungsdurchmesser am eintrittsfernen Bohrungsende und dem Bohrungsdurchmesser im zylindrischen Bohrungsabschnitt definiert. Der Vorweitewert kann beispielsweise aus der Differenz zwischen dem im Endbereich ermittelten zweiten Durchmesser und dem ersten Durchmesserwert ermittelt werden. Der für die Messung vorgesehene Endabschnitt befindet sich vorzugsweise im eintrittsfernen Drittel oder im eintrittsfernen Viertel der axialen Länge des zweiten Bohrungsabschnitts, also in relativ großer axialer Entfernung zum ersten Bohrungsabschnitt.In a variant of the method, when measuring the diameter of the second bore section, a second diameter is measured in an end section of the second bore section remote from the first bore section and a prewidth value is determined from the second diameter in the end section and the first diameter value. The "oversize" is defined in this application as the difference between the bore diameter at the bore end remote from the inlet and the bore diameter in the cylindrical bore section. The prewidth value can be determined, for example, from the difference between the second diameter determined in the end area and the first diameter value. The end section provided for the measurement is preferably located in the third or in the fourth of the axial length of the second bore section, far from the entry, ie at a relatively large axial distance from the first bore section.

Bei einer Verfahrensvariante, bei welcher Messungen in mehreren Messebenen des ersten und des zweiten Bohrungsabschnitts durchgeführt werden, wird vorzugsweise ein axiales Messintervall zwischen benachbarten zweiten Messebenen so gewählt, dass dieses axiale Messintervall kleiner ist als ein axiales Messintervall zwischen benachbarten ersten Messebenen. Es wird also im nicht-kreiszylindrischen Bohrungsabschnitt mit einer höheren axialen Auflösung (bzw. mit geringerem Abstand zwischen benachbarten Messebenen) gemessen, während im kreiszylindrischen ersten Bohrungsabschnitt ein gröberes Raster an Messebenen vorgesehen sein kann. Hierdurch kann die für die Messung insgesamt benötigte Messzeit ohne substanziellen Verlust der Messgenauigkeit optimiert werden. Ein axiales Messintervall zwischen unmittelbar benachbarten Messebenen kann z.B. im zweiten Bohrungsabschnitt 50% oder weniger und/oder 40% oder weniger und/oder 30% oder weniger als ein axiales Messintervall im ersten Bohrungsabschnitt betragen. Es ist auch möglich, ein umgekehrtes Verhältnis der axialen Messintervalle (gröbere Rasterung im zweiten Bohrungsabschnitt) zu wählen oder über die gesamte Bohrungslänge mit dem gleichen axialen Messintervall zu arbeiten.In a variant of the method, in which measurements are carried out in several measurement planes of the first and second bore section, an axial measurement interval between adjacent second measurement planes is preferably selected such that this axial measurement interval is smaller than an axial measurement interval between adjacent first measurement planes. It is therefore measured in the non-circular-cylindrical bore section with a higher axial resolution (or with a smaller distance between adjacent measurement planes), while a coarser grid of measurement planes can be provided in the circular-cylindrical first bore section. As a result, the total measurement time required for the measurement can be optimized without any substantial loss of measurement accuracy. An axial measurement interval between immediately adjacent measurement planes can be, for example, 50% or less and/or 40% or less and/or 30% or less than an axial measurement interval in the first bore section in the second bore section. It is also possible to select an inverse ratio of the axial measuring intervals (coarser raster in the second hole section) or to work with the same axial measuring interval over the entire length of the hole.

Vorzugsweise werden erste Durchmesserwerte und zweite Durchmesserwerte einer Bohrung in Form eines die Ist-Form der Bohrung repräsentierenden Datensatzes in einem Speicher einer Steuereinrichtung gespeichert. Die Werte werden dadurch für eine spätere Weiterverarbeitung verfügbar.First diameter values and second diameter values of a bore are preferably stored in a memory of a control device in the form of a data record representing the actual shape of the bore. This makes the values available for later processing.

Bei bevorzugten Varianten werden in einer Messebene die zugehörigen Durchmesserwerte in zwei senkrecht zueinander verlaufenden Messrichtungen gemessen. Die so erhaltenen Messwerte können gemittelt werden. Diese Art der Messung erlaubt auch Hinweise auf mögliche kritische Formabweichungen, also Abweichungen von der gewünschten rotationssymmetrischen Bohrungsform. Es kann auch ausreichen, jeweils nur in einer einzigen diametralen Messrichtung zu messen.In preferred variants, the associated diameter values are measured in two measuring directions running perpendicular to one another in one measuring plane. The measured values obtained in this way can be averaged. This type of measurement also allows indications of possible critical shape deviations, i.e. deviations from the desired rotationally symmetrical bore shape. It can also be sufficient to measure only in a single diametrical measuring direction.

Für die Messungen können unterschiedliche Messtechniken genutzt werden. Beispielsweise wären taktile Messungen, kapazitive oder induktive Messungen oder andere elektromagnetische Messungen möglich. Vorzugsweise werden jedoch die Messungen mit einem pneumatischen Messsystem durchgeführt. Berührungslos arbeitende pneumatische Messsysteme mit ausreichender Messgenauigkeit sind verfügbar und ausreichend robust, um auch im fertigungsnahen Bereich dauerhaft eingesetzt werden zu können.Different measuring techniques can be used for the measurements. For example, tactile measurements, capacitive or inductive measurements or other electromagnetic measurements would be possible. However, the measurements are preferably carried out with a pneumatic measuring system. Non-contact pneumatic measuring systems with sufficient measuring accuracy are available and sufficiently robust to be used permanently in production-related areas.

Das Honverfahren kann mit unterschiedlich gestalteten Honwerkzeugen durchgeführt werden. Vorzugsweise wird bei der Bearbeitung ein aufweitbares Honwerkzeug verwendet, welches in einem spindelfernen Endbereich eines Werkzeugkörpers eine aufweitbare, ringförmige Schneidgruppe mit mehreren um den Umfang des Werkzeugkörpers verteilten Schneidstoffkörpern aufweist, wobei eine axiale Länge der Schneidstoffkörper kleiner ist als der wirksame Außendurchmesser der ringförmigen Schneidgruppe bei vollständig zurückgezogenen Schneidstoffkörpern. Beispiele geeigneter Honwerkzeuge mit einer oder zwei ringförmigen Schneidgruppen sowie mit einfacher Aufweitung oder Doppel-Aufweitung sind in der WO 2014/146919 A1 angegeben. Der Offenbarungsgehalt der WO 2014/146919 A1 wird insoweit durch Bezugnahme zum Inhalt dieser Beschreibung gemacht. Alternativ sind z.B. auch piezoelektrisch gesteuerte Honwerkzeuge verwendbar.The honing process can be carried out with differently designed honing tools. An expandable honing tool is preferably used during machining, which has an expandable, ring-shaped cutting group with a plurality of cutting material bodies distributed around the circumference of the tool body in an end region of a tool body remote from the spindle, with an axial length of the cutting material body being smaller than the effective outer diameter of the ring-shaped cutting group when completely withdrawn cutting material bodies. Examples of suitable honing tools with one or two ring-shaped cutting groups and with a single widening or double widening are in WO 2014/146919 A1 specified. The revelation of the WO 2014/146919 A1 is made to this extent by reference to the content of this description. Alternatively, for example, piezoelectrically controlled honing tools can also be used.

Die Erfindung betrifft auch eine zur Durchführung des Honverfahrens konfigurierte Bearbeitungsanlage. Es kann sich dabei um eine Honanlage mit einer spezialisierten Honmaschine oder um eine Bearbeitungsanlage mit einer anderen Werkzeugmaschine handeln, die die hier benötigten Funktionalitäten bietet.The invention also relates to a machining installation configured to carry out the honing process. This can be a honing system with a specialized honing machine or a machining system with another machine tool that offers the functionalities required here.

Vorzugsweise hat die Bearbeitungsanlage eine von einer Honeinheit gesonderte Nachmessstation, zu der das Werkstück nach Ende der Bearbeitung für die Messung transferiert wird. An der Nachmessstation sind Messungen ggf. zeitlich überlapppend mit einer Honbearbeitung möglich Die Durchmessermessungen können bei anderen Varianten auch mittels eines in ein Honwerkzeug integrierten Messsystems durchgeführt werden.The processing system preferably has a re-measuring station separate from a honing unit, to which the workpiece is transferred for the measurement after the end of processing. At the re-measuring station, measurements can possibly overlap with a honing process. With other variants, the diameter measurements can also be carried out using a measuring system integrated into a honing tool.

KURZBESCHREIBUNG DER ZEICHNUNGENBRIEF DESCRIPTION OF THE DRAWINGS

Weitere Vorteile und Aspekte der Erfindung ergeben sich aus den Ansprüchen und aus der nachfolgenden Beschreibung von bevorzugten Ausführungsbeispielen der Erfindung, die nachfolgend anhand der Figuren erläutert sind.

  • Fig. 1 zeigt einen schematischen Längsschnitt durch ein Ausführungsbeispiel einer zylindrisch-konischen Bohrung mit einen eintrittsseitigen kreiszylindrischen ersten Bohrungsabschnitt und einen eintrittsfernen konischen zweiten Bohrungsabschnitt;
  • Fig. 2 zeigt ein Ausführungsbeispiel eines Honwerkzeugs bei der Bearbeitung einer zylindrisch-konischen Bohrung;
  • Fig. 3 zeigt schematisch ein Beispiel für eine Nachmessstrategie; und
  • Fig. 4 zeigt einen pneumatischen Messdorn bei der Durchführung einer Messung in der Bohrung.
Further advantages and aspects of the invention result from the claims and from the following description of preferred exemplary embodiments of the invention, which are explained below with reference to the figures.
  • 1 shows a schematic longitudinal section through an embodiment of a cylindrical-conical bore with a circular-cylindrical first bore section on the inlet side and a conical second bore section remote from the inlet;
  • 2 shows an embodiment of a honing tool when machining a cylindrical-conical bore;
  • 3 schematically shows an example of a post-measurement strategy; and
  • 4 shows a pneumatic plug gauge performing a measurement in the bore.

DETAILLIERTE BESCHREIBUNG DER AUSFÜHRUNGSBEISPIELEDETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

Im Folgenden werden Ausführungsbeispiele von Honverfahren beschrieben, die im Rahmen von Ausführungsformen der Erfindung genutzt werden können, um rotationssymmetrische Bohrungen mit axialem Konturverlauf mit hoher Präzision zu erzeugen.Exemplary embodiments of honing methods are described below, which can be used within the scope of embodiments of the invention in order to produce rotationally symmetrical bores with an axial contour profile with high precision.

Fig. 1 zeigt einen schematischen Längsschnitt durch ein Ausführungsbeispiel einer solchen Bohrung 110 in einem Werkstück 100 in Form eines Motorblocks (Zylinderkurbelgehäuses) für eine Brennkraftmaschine. Die Soll-Form der Bohrung ist in Bezug auf ihre Bohrungsachse 112 rotationssymmetrisch und erstreckt sich über eine Bohrungslänge L von einem im Einbauzustand dem Zylinderkopf zugewandten Bohrungseintritt 114 bis zum Bohrungsaustritt 116 an gegenüberliegenden Ende. Die Bohrung kann in mehrere aneinander angrenzende Abschnitte unterschiedlicher Funktion unterteilt werden, die gleitend, d.h. ohne Bildung von Stufen oder Kanten, ineinander übergehen. 1 shows a schematic longitudinal section through an embodiment of such a bore 110 in a workpiece 100 in the form of an engine block (cylinder crankcase) for an internal combustion engine. The target shape of the bore is rotationally symmetrical with respect to its bore axis 112 and extends over a bore length L from a bore inlet 114 facing the cylinder head in the installed state to the bore outlet 116 at the opposite end. The bore can be divided into several adjacent sections different functions, which merge smoothly, ie without the formation of steps or edges.

Ein erster Bohrungsabschnitt 120 am eintrittsseitigen Ende hat einen ersten Soll-Durchmesser DS1 und eine erste Länge L1. Der erste Soll-Durchmesser liegt über die gesamte erste Länge L1 vor, so dass der erste Bohrungsabschnitt eine kreiszylindrische Gestalt hat. Der erste Bohrungsabschnitt geht in einen axial schmalen Übergangsabschnitt mit Übergangsradius R1 stufenlos in einen zweiten Bohrungsabschnitt 130 über, der sich vom Übergangsabschnitt bis zum austrittsseitigen Ende der Bohrung erstreckt. Der zweite Bohrungsabschnitt 130 hat im Wesentlichen eine konische bzw. kegelstumpfförmige Gestalt und erstreckt sich über eine zweite Länge L2. Der zweite Bohrungsabschnitt hat durchgängig einen Innendurchmesser (zweiter Soll-Durchmesser) DS2, der größer als der erste Soll-Durchmesser DS1 ist, wobei der zweite Soll-Durchmesser ausgehend vom Übergangsabschnitt zum Bohrungsende hin in Axialrichtung kontinuierlich linear zunimmt. Der Konuswinkel α (Winkel zwischen der Bohrungsachse und einer in einer Axialebene verlaufenden Mantellinie des zweiten Bohrungsabschnitts) kann z.B. im Bereich von weniger als 1° liegen, ggf. auch bei weniger als 0.2°. Die Differenz zwischen dem Soll-Durchmesser DS1 in zylindrischen Bohrungsabschnitt und dem Soll-Durchmesser am Bohrungsaustritt 116 wird hier als Sollwert für die "Vorweite" bezeichnet.A first bore section 120 at the inlet end has a first target diameter DS1 and a first length L1. The first target diameter is present over the entire first length L1, so that the first bore section has a circular-cylindrical shape. The first bore section transitions steplessly into an axially narrow transition section with a transition radius R1 into a second bore section 130, which extends from the transition section to the outlet-side end of the bore. The second bore portion 130 is generally conical or frusto-conical in shape and extends a second length L2. The second bore section consistently has an inside diameter (second target diameter) DS2 that is larger than the first target diameter DS1, with the second target diameter increasing continuously linearly in the axial direction, starting from the transition section toward the end of the bore. The cone angle α (angle between the axis of the bore and a surface line of the second bore section running in an axial plane) can be, for example, in the range of less than 1°, possibly also less than 0.2°. The difference between the target diameter DS1 in the cylindrical bore section and the target diameter at the bore exit 116 is referred to here as the target value for the "pre-width".

Die erste Länge L1 kann beispielsweise zwischen 10% und 60% der Bohrungslänge L betragen. Die zweite Länge L2 ist typischerweise größer als die erste Länge und liegt häufig zwischen 30% und 80% der Bohrungslänge L. Der Übergangsabschnitt ist gegenüber den daran angrenzenden Bohrungsabschnitten sehr kurz. Auch Abweichungen von diesen geometrischen Verhältnissen sind möglich.The first length L1 can be between 10% and 60% of the bore length L, for example. The second length L2 is typically greater than the first length and is often between 30% and 80% of the bore length L. The transition section is very short compared to the adjacent bore sections. Deviations from these geometric conditions are also possible.

Der Durchmesserunterschied zwischen dem ersten Soll-Durchmesser DS1 und dem zweiten Soll-Durchmesser DS2 in eintrittsferneren Teilen liegt deutlich außerhalb der für die Honbearbeitung typischen Toleranzen, die für eine Zylinderform in der Größenordnung von maximal 10 µm (bezogen auf den Durchmesser) liegen. Bei einem Absolutwert des Innendurchmessers in der Größenordnung zwischen 50 mm und 500 mm (letzteres z.B. bei Schiffsmotoren) kann der maximale Durchmesserunterschied (also die Vorweite) beispielsweise zwischen 20 µm und 500 µm liegen.The difference in diameter between the first target diameter DS1 and the second target diameter DS2 in parts further away from the inlet is well outside the tolerances typical for honing, which for a cylindrical shape are in the order of magnitude of a maximum of 10 μm (based on the diameter). With an absolute value of the inner diameter in the order of magnitude between 50 mm and 500 mm (the latter e.g. in ship engines), the maximum diameter difference (i.e. the front width) can be between 20 µm and 500 µm, for example.

Die Längen der äußeren Bohrungsabschnitte und der Radius des Übergangsabschnitts können so optimiert sein, dass sich in typischen Betriebszuständen des Motors geringer Blow-by, geringer Ölverbrauch und geringer Verschleiß der Kolbenringe ergeben.The lengths of the outer bore sections and the radius of the transition section can be optimized in such a way that low blow-by, low oil consumption and low wear of the piston rings result in typical engine operating conditions.

Die Form der Bohrung führt dazu, dass die Bohrung im eintrittsnahen Bereich vergleichsweise eng ist, so dass die Kolbenringe des in der Bohrung laufenden Kolbens unter hoher Ringspannung an die Bohrungsinnenfläche 118 gedrückt werden. Dadurch wird dort, wo die Verbrennung hauptsächlich erfolgt und hohe Drücke auftreten, eine zuverlässige Abdichtung erreicht und der Ölfilm wird im Abwärtshub abgestreift. Der durch die Verbrennung beschleunigte Kolben bewegt sich dann Richtung Bohrungsaustritt, wobei die Kolbenringe zunächst den Übergangsabschnitt und dann den konischen zweiten Bohrungsabschnitt mit dem sich kontinuierlich erweiterten Innendurchmesser durchlaufen. Ab dem Übergangsabschnitt können sich die Kolbenringe allmählich entspannen, wobei die Abdichtung ausreichend bleibt, weil die Druckdifferenz an den Kolbenringen sinkt. Am eintrittsfernen Ende des zweiten Bohrungsabschnitts erreicht das Ringpaket seine niedrigste Spannung. Beim Aufwärtshub nimmt die Ringspannung dann allmählich wieder zu, bis die Kolbenringe den Übergangsabschnitt erreichen und diesen in Richtung des ersten Bohrungsabschnitts durchlaufen. Weiterhin wird berücksichtigt, dass eine durch Wärmeeinflüsse verursachte Aufweitung der Zylinderlaufbahn im oberen, zylindrischen Teil der Bohrung stärker ist als im konischen Bereich. Dadurch ergibt sich im befeuerten Zustand insgesamt eine weitgehend zylindrische bzw. deutlich weniger konische Bohrungsform als im kalten Zustand.The shape of the bore means that the bore is comparatively narrow in the area near the inlet, so that the piston rings of the piston running in the bore are pressed against the inner surface 118 of the bore under high ring stress. As a result, a reliable seal is achieved where combustion mainly occurs and high pressures occur, and the oil film is scraped off on the downstroke. The piston, which is accelerated by the combustion, then moves in the direction of the bore outlet, with the piston rings first passing through the transition section and then through the conical second bore section with the continuously expanding inner diameter. From the transition section, the piston rings can gradually relax, with the seal remaining adequate because the pressure difference across the piston rings decreases. At the end of the second bore section remote from the entry, the ring pack reaches its lowest stress. Then, on the upstroke, the ring tension gradually increases again until the piston rings reach the transition section and traverse it towards the first bore section. Furthermore, it is taken into account that an expansion of the cylinder liner caused by thermal influences is greater in the upper, cylindrical part of the bore than in the conical area. In the fired state, this results in a largely cylindrical or significantly less conical bore shape than in the cold state.

Bei einem Honverfahren zur Erzeugung dieser zylindrisch-konischen Bohrungsformen wird bei einem Ausführungsbeispiel zunächst eine durchgehend (über die gesamte Bohrungslänge L) kreiszylindrische Bohrung mit einem geringen Untermaß bezogen auf den Soll-Durchmesser SD1 im ersten Bohrungsabschnitt erzeugt. Hierzu kann beispielsweise ein Langhub-Honwerkzeug mit relativ langen Honleisten verwendet werden. Diese Honoperation kann als Zwischenhonoperation nach einer vorhergehenden Vorhonoperation durchgeführt werden.In a honing process for producing these cylindrical-conical bore shapes, in one exemplary embodiment, a continuous (over the entire bore length L) circular-cylindrical bore with a slight undersize relative to the target diameter SD1 is produced in the first bore section. A long-stroke honing tool with relatively long honing stones can be used for this purpose, for example. This honing operation can be performed as an intermediate honing operation after a previous pre-honing operation.

Bei einer anschließenden Honoperation, mit welcher u.a. die zum Bohrungsende sich erweiternde konische Form im zweiten Bohrungsabschnitt erzeugt wird, wird dann ein Honwerkzeug der in Fig. 2 gezeigten Art verwendet. Das Honwerkzeug 200 weist eine einzige ringförmige Schneidgruppe 220 mit um den Umfang des Werkzeugkörpers verteilten Schneidstoffkörpern auf, die mittels eines nicht näher dargestellten Schneidstoffkörper-Zustellsystems in Radialrichtung zur Werkzeugachse 212 zugestellt bzw. zurückgezogen werden können (siehe Doppelpfeile). Die Schneidstoffkörper sind als Honsegmente gestaltet, deren Breite in Umfangsrichtung deutlich größer ist als ihre Länge in Axialrichtung. Dadurch sind die für den Materialabtrag am Werkstück zuständigen Schneidstoffkörper in einer axial relativ schmalen Zone, d.h. einem Ring der Schneidgruppe, konzentriert und nehmen einen relativ großen Anteil des Umfangs des Honwerkzeugs ein. Dadurch können mit relativ hoher Materialabtragsleistung Bohrungsformen erzeugt werden, bei denen in Axialrichtung Bohrungsabschnitte unterschiedlicher Durchmesser aneinander angrenzen. Das Honwerkzeug wird im Beispielsfall gelenkig an die Honspindel einer Honmaschine angekoppelt, um eine begrenzte Beweglichkeit des Honwerkzeugs gegenüber der Honspindel zuzulassen. Hierzu ist am spindelseitigen Ende des Honwerkzeugs ein mehrachsiges Gelenk 210 ausgebildet, zum Beispiel ein kardanisches Gelenk oder ein Kugelgelenk.In a subsequent honing operation, with which, among other things, the conical shape that widens towards the end of the bore is produced in the second bore section, a honing tool of the type shown in 2 shown. The honing tool 200 has a single ring-shaped cutting group 220 with cutting material bodies distributed around the circumference of the tool body, which can be advanced or retracted in the radial direction to the tool axis 212 by means of a cutting material body infeed system (not shown in detail) (see double arrows). The cutting material bodies are designed as honing segments, the width of which in the circumferential direction is significantly greater than their length in the axial direction. As a result, the bodies of cutting material responsible for removing material from the workpiece are concentrated in an axially relatively narrow zone, ie a ring of the cutting group, and take up a relatively large proportion of the circumference of the honing tool. As a result, bore shapes can be produced with a relatively high material removal rate, in which bore sections of different diameters in the axial direction border each other. In the example, the honing tool is coupled in an articulated manner to the honing spindle of a honing machine in order to permit limited mobility of the honing tool in relation to the honing spindle. For this purpose, a multi-axis joint 210 is formed on the spindle-side end of the honing tool, for example a cardan joint or a ball joint.

Bei anderen Varianten ist eine starre Werkzeugausführung (ohne Gelenk) in Verbindung mit einer starren Antriebsstange, einer Biegestange oder einer Schwimmkopfstange vorgesehen.Other variants provide a rigid (non-joint) tool design in conjunction with a rigid drive rod, flex rod, or floating head rod.

Es können im Prinzip alle für diesen Prozess geeigneten Typen von Honwerkzeugen verwendet werden, insbesondere solche Honwerkzeuge, wie sie in der WO 2014/146919 A1 der Anmelderin offenbart sind. Der diesbezügliche Offenbarungsgehalt dieser Anmeldung wird durch Bezugnahme zum Inhalt der vorliegenden Beschreibung gemacht.In principle, all types of honing tools suitable for this process can be used, in particular honing tools such as those in WO 2014/146919 A1 are disclosed to the applicant. The relevant disclosure content of this application is incorporated into the content of the present description by reference.

Um ausgehend von einer durchgehend kreiszylindrischen Bohrungsform die gewünschte zylindrisch-konische Bohrungsform zu erzielen, kann beispielsweise eine hubabhängige Steuerung der Aufweitung des Honwerkzeugs in der Weise durchgeführt werden, dass eine Steuerung des Zustellsystems für die radiale Zustellung der Schneidstoffkörper mit der Steuerung für die Hubposition (in Axialrichtung) gekoppelt wird. Dies kann beispielsweise so erfolgen, dass die Zustellkraft und/oder die Zustellgeschwindigkeit von Schneidstoffkörpern des Honwerkzeugs in Abhängigkeit von der Hubposition des Honwerkzeugs gesteuert werden. Im konischen Teil (zweiter Bohrungsabschnitt) würde dann die Zustellkraft bei Abwärtsbewegung des Honwerkzeugs (in Richtung Bohrungsaustritt 116) zunehmen und bei Aufwärtsbewegung (in Richtung des ersten Bohrungsabschnitts) abnehmen. Andere Verfahrensführungen sind ebenfalls möglich, insbesondere solche, wie sie in der WO 2014/146919 A1 beschrieben sind.In order to achieve the desired cylindrical-conical bore shape based on a continuously circular-cylindrical bore shape, the expansion of the honing tool can be controlled, for example, depending on the stroke, in such a way that the control of the infeed system for the radial infeed of the cutting material body can be combined with the control for the stroke position (in Axial direction) is coupled. This can be done, for example, in such a way that the infeed force and/or the infeed speed of cutting material bodies of the honing tool are controlled as a function of the stroke position of the honing tool. In the conical part (second bore section), the infeed force would then increase when the honing tool moves downwards (in the direction of bore outlet 116) and decrease when it moves upwards (in the direction of the first bore section). Other procedures are also possible, in particular those as in the WO 2014/146919 A1 are described.

Nach Abschluss der Honoperation, durch welche die gewünschte Bohrungsform erzeugt wird, wird bei bevorzugten Varianten an einer von der Honeinheit gesonderten Nachmessstation eine Nachmessoperation am fertig bearbeiteten Werkstück durchgeführt. Sofern die Messung ergibt, dass die Werte um mehr als 30%, 40%, 50% oder 60% das erlaubte Toleranzfeld der gemessenen Ist-Form der Bohrung ausnutzen (z.B. bei 40% Ausnutzung ergibt sich eine Toleranzreserve von jeweils 30% zur oberen und unteren Toleranzgrenze), können entsprechende Kompensationssignale erzeugt werden, um bei der darauffolgenden Honbearbeitung einer nächsten Bohrung mit geänderten Honparametern zu arbeiten und dadurch die gewünschte Soll-Form mit besserer Präzision zu erreichen.After completion of the honing operation, through which the desired bore shape is produced, in preferred variants, a re-measuring operation is carried out on the finished workpiece at a separate measuring station from the honing unit. If the measurement shows that the values utilize the permitted tolerance range of the measured actual shape of the bore by more than 30%, 40%, 50% or 60% (e.g. with 40% utilization, there is a tolerance reserve of 30% for the upper and lower tolerance limit), corresponding compensation signals can be generated in order to work with changed honing parameters during the subsequent honing of a next bore and thereby achieve the desired target shape with better precision.

Bei einem im Zusammenhang mit den Fig. 3 und 4 näher erläuterten Honverfahren werden Maßnahmen getroffen, um sicherzustellen, dass im Rahmen der Toleranzen immer das gleiche Verhältnis zwischen den Durchmesserdimensionen des kreiszylindrischen ersten Bohrungsabschnitts 120 und den Dimensionen des konischen zweiten Bohrungsabschnitts 130 herrscht. Weiterhin soll sichergestellt werden, dass die Absolutwerte der Durchmesser im kreiszylindrischen Bohrungsabschnitt und im konischen Bohrungsabschnitt zuverlässig erfasst werden können. Bei außerhalb des erlaubten Bereichs (Kriterium der Kompensation) liegenden Abweichungen zwischen der gemessenen Ist-Form und der angestrebten Soll-Form ist eine automatische Korrektur des Honprozesses für die Bearbeitung nachfolgender Bohrungen vorgesehen.At one related to the Figures 3 and 4 In the honing process explained in more detail, measures are taken to ensure that the same ratio between the diameter dimensions of the circular-cylindrical first bore section 120 and the dimensions of the conical second bore section 130 always prevails within the scope of the tolerances. Furthermore, it should be ensured that the absolute values of the diameters in the circular-cylindrical bore section and in the conical bore section can be reliably recorded. In the event of deviations between the measured actual shape and the desired target shape that are outside the permitted range (compensation criterion), an automatic correction of the honing process is provided for the machining of subsequent bores.

Bei dem Beispiel aus Fig. 3 wird der Durchmesser des nominell kreiszylindrischen ersten Bohrungsabschnitts 120 in drei axial gegeneinander versetzten Messebenen M1-1, M1-2 und M1-3 gemessen. Diese liegen in gleichmäßigen axialen Abständen jeweils um ein erstes Messintervall MI-1 axial versetzt zueinander. Die entsprechenden Durchmesserwerte werden als D1, D2 und D3 bezeichnet. Der Durchschnittswert dieser drei Messungen ergibt den effektiven ersten Durchmesser Deff gemäß der Vorschrift Deff = (D1+D2+D3)/3. Der effektive Durchmesser wird als erster Durchmesserwert zur Beschreibung der Ist-Form gespeichert. Auch die einzelnen Messwerte D1, D2 und D3 werden gemeinsam mit den zugehörigen Axialpositionen der Messebenen gespeichert. Der so ermittelte erste Durchmesserwert Deff dient als Bezug für die Durchmesserwerte im konischen zweiten Bohrungsabschnitt.In the example off 3 the diameter of the nominally circular-cylindrical first bore section 120 is measured in three measuring planes M1-1, M1-2 and M1-3 that are axially offset relative to one another. These are at equal axial distances, each offset axially from one another by a first measurement interval MI-1. The corresponding diameter values are denoted as D1, D2 and D3. The average of these three measurements gives the effective first diameter D eff according to the rule D eff = (D1+D2+D3)/3. The effective diameter is saved as the first diameter value to describe the actual shape. The individual measured values D1, D2 and D3 are also saved together with the associated axial positions of the measuring planes. The first diameter value D eff determined in this way serves as a reference for the diameter values in the conical second bore section.

Zur Messung des konischen zweiten Bohrungsabschnitts 130 werden Durchmessermessungen in drei axial zueinander versetzten zweiten Messebenen M2-1, M2-2 und M2-3 durchgeführt, um die zugehörigen zweiten Durchmesserwerte D4, D5 und D6 zu bestimmen. Die zweiten Messebenen liegen in gleichmäßigen axialen Abständen jeweils um ein zweites Messintervall MI-2 axial versetzt zueinander. Die so erhaltenen zweiten Durchmesserwerte (D4, D5 und D6) werden dann in einer Vergleichsoperation automatisch unter Verwendung des ersten Durchmesserwerts (Deff) bewertet, um daraus Ist-Formwerte zu ermitteln, die die vorliegende zylindrisch-konische Ist-Form der Bohrung repräsentieren. Aus einem Vergleich der Ist-Formwerte mit durch die Spezifikation vorgegebenen Soll-Formwerten werden Formabweichungswerte ermittelt. Nachfolgende Honoperationen werden dann in Abhängigkeit von den Formabweichungswerten gesteuert. Dadurch ist es unter anderem möglich, bei Durchmesserabweichungen des konischen Bohrungsabschnitts im Verhältnis zum zylindrischen Teil der Zylinderbohrung (erster Bohrungsabschnitt) eine Durchmesserkompensation durchzuführen.To measure the conical second bore section 130, diameter measurements are carried out in three second measuring planes M2-1, M2-2 and M2-3, which are axially offset from one another, in order to determine the associated second diameter values D4, D5 and D6. The second measurement planes are at equal axial distances from each other, offset axially by a second measurement interval MI-2. The second diameter values (D4, D5 and D6) obtained in this way are then automatically evaluated in a comparison operation using the first diameter value (D eff ) in order to determine actual shape values which represent the present cylindrical-conical actual shape of the bore. Shape deviation values are determined from a comparison of the actual shape values with the target shape values specified by the specification. Subsequent honing operations are then controlled depending on the form error values. This makes it possible, among other things, to carry out diameter compensation in the event of diameter deviations of the conical bore section in relation to the cylindrical part of the cylinder bore (first bore section).

Alternativ oder zusätzlich kann der effektive Durchmesser Deff, welcher für den zylindrischen ersten Bohrungsabschnitt 120 ermittelt wurde, mit demjenigen Durchmesserwert D6 verglichen werden, der in der am weitesten vom Bohrungseintritt entfernten zweiten Messebene M2-3 in einem bohrungsfernen Endabschnitt EA des zweiten Bohrungsabschnitts ermittelt wurde. Bei bekannten Axialposition der Messebene M2-3 kann die Differenz des effektiven Durchmessers Deff im ersten Bohrungsabschnitt zum Durchmesser D6 in der untersten Messebene M2-3 zur Berechnung der tatsächlichen Vorweite der Bohrungsform, also die Ist-Vorweite, genutzt werden. Die Differenz der Ist-Vorweite zur Soll-Vorweite wird beim nächsten Bearbeitungstakt im Bedarfsfall kompensiert. Das gleiche gilt für Abweichungen des Durchmessers im zylindrischen Bereich.Alternatively or additionally, the effective diameter D eff , which was determined for the cylindrical first bore section 120, can be compared with that diameter value D6 which was determined in the second measurement plane M2-3 furthest away from the entrance to the borehole in an end section EA of the second borehole section remote from the borehole. If the axial position of the measuring plane M2-3 is known, the difference between the effective diameter D eff in the first bore section and the diameter D6 in the lowest measuring plane M2-3 can be used to calculate the actual pre-width of the bore shape, i.e. the actual pre-width. If necessary, the difference between the actual pre-width and the target pre-width is compensated for in the next processing cycle. The same applies to diameter deviations in the cylindrical area.

Ein mögliches Korrekturszenario bzw. Kompensationsszenario wird nachfolgend anhand von Tabelle 1 erläutert. Hierbei wird von einem Honprozess ausgegangen, bei welchem zunächst in einer Zwischenhon-Operation ZH mittels Honen eine kreiszylindrische Bohrungsform erzeugt wird und danach in einer Formhon-Operation FH die gewünschte Bohrungsform mit zylindrischem ersten Bohrungsabschnitt und konischem zweiten Bohrungsabschnitt durch axial unterschiedlich starken Materialabtrag im zweiten Bohrungsabschnitt erzeugt wird. Tabelle 1 ZB KB KOMP-ZH KOMP-FH Ø i.O. VW zu groß 0 - Ø i.O. VW zu klein 0 + Ø zu groß VW zu groß - - / - Ø zu groß VW zu klein - + Ø zu klein VW zu groß + - Ø zu klein VW zu klein + + / + Ø zu groß VW i.O. - - Ø zu klein VW i.O. + + A possible correction scenario or compensation scenario is explained below using Table 1. The starting point here is a honing process in which a circular-cylindrical bore shape is first produced in an intermediate honing operation ZH by means of honing and then the desired bore shape with a cylindrical first bore section and conical second bore section is produced in a form honing operation FH by axially different amounts of material removal in the second bore section is produced. Table 1 Eg KB COMP ZH COMP FH Ø OK Volkswagen too big 0 - Ø OK Volkswagen too small 0 + Ø too big Volkswagen too big - - / - Ø too big Volkswagen too small - + Ø too small Volkswagen too big + - Ø too small Volkswagen too small + + / + Ø too big VW ok - - Ø too small VW ok + +

In der Tabelle wird in den Spaltenüberschriften der kreiszylindrische erste Bohrungsabschnitt bzw. der zylindrische Bereich mit "ZB" und der konische zweite Bohrungsabschnitt bzw. der konische Bereich mit "KB" abgekürzt. Das Kürzel KOMP-ZH steht für eine Kompensation in der Zwischenhon-Stufe, während das Kürzel KOMP-FH für eine Kompensation in der Formhon-Stufe steht. Der Begriff Kompensation bedeutet hierbei, dass die Honparameter im Verhältnis zu den Honparametern der vorhergehenden Bearbeitung verändert werden, um eine festgestellte Abweichung von der Soll-Form bei der nächsten Honbearbeitung möglichst zu vermeiden oder zu verkleinern. Das Kürzel VW steht für den ermittelten Ist-Wert der Vorweite. In den rechten Spalten bedeutet "0", dass keine Verstellung bzw. Kompensation erfolgt, während "+" für eine Vorstellung der Kompensation und "-" für eine Zurückstellung der Kompensation steht. Dort, wo in der rechten Spalte zwei "+"-Zeichen oder zwei "-" Zeichen stehen, wird ein doppelter Korrekturschritt durchgeführt, um die Verstellung in der Zwischenhon-Stufe ZH zu kompensieren, wenn sowohl im zylindrischen Bereich als auch im konischen Bereich kompensiert werden muss.In the column headings in the table, the circular-cylindrical first bore section or the cylindrical area is abbreviated to "ZB" and the conical second bore section or the conical area to "KB". The abbreviation KOMP-ZH stands for a compensation in the Intermediate honing stage, while the abbreviation KOMP-FH stands for compensation in the form honing stage. The term compensation here means that the honing parameters are changed in relation to the honing parameters of the previous machining in order to avoid or reduce a determined deviation from the desired shape as far as possible during the next honing machining. The abbreviation VW stands for the determined actual value of the front width. In the columns on the right, "0" means that there is no adjustment or compensation, while "+" means that the compensation is advanced and "-" means that the compensation is deferred. Where there are two "+" signs or two "-" signs in the right column, a double correction step is performed to compensate for the shift in the intermediate honing stage ZH when compensating both in the cylindrical area and in the conical area must become.

Aus der zweiten Zeile ergibt sich beispielsweise, welche Maßnahmen durch die Steuerung eingeleitet werden, wenn die Messung ergibt, dass der Durchmesser (Symbol "Ø") im zylindrischen Bereich ZB zwar in Ordnung ("i.O") bzw. im Rahmen der Toleranzen ist, die Vorweite VW jedoch zu klein ist. In diesem Fall bleibt die Zwischenhon-Operation ZH bei der Bearbeitung des nachfolgenden Werkstücks unverändert (Kompensation = "0"), während die Honparameter für das Formhonen FH im Sinne einer Vorstellung der Kompensation so verändert werden, dass sich eine stärkere Aufweitung in Richtung des eintrittsfernen Bohrungsendes ergibt. Die anderen Zeilen der Tabelle sind entsprechend zu interpretieren.The second line shows, for example, which measures are initiated by the control if the measurement shows that the diameter (symbol "Ø") in the cylindrical area ZB is in order ("OK") or within the tolerances, however, the front width VW is too small. In this case, the intermediate honing operation ZH remains unchanged when machining the subsequent workpiece (compensation = "0"), while the honing parameters for form honing FH are changed in the sense of an idea of the compensation so that there is a greater widening in the direction of the far entry Bore end results. The other rows of the table are to be interpreted accordingly.

Für eine dauerhafte Erfassung des Bohrungsgeometrie beim Formhonen während des Serienbetriebs ist bei einer Bearbeitungsanlage vorgesehen, der Honmaschine eine Nachmessstation nachzuschalten, in welcher die fertig gehonten Bauteile mithilfe eines pneumatischen Messdorns (d.h. durch Luftmessen) vermessen werden können. Es ist eine Rückführung der Messergebnisse in die Steuerung der Honmaschine vorgesehen, um auf eventuelle Formabweichungen unmittelbar bei der Bearbeitung des nächsten Werkstücks reagieren zu können. Die Nachmessstation ist so konfiguriert, dass auch der axiale Konturverlauf erfasst und ausgewählt werden kann.For permanent recording of the bore geometry during form honing during series operation, a machining system is provided with a measuring station downstream of the honing machine, in which the finished honed components can be measured using a pneumatic measuring mandrel (i.e. by air measurement). The measurement results are fed back into the control of the honing machine in order to be able to react immediately to any deviations in shape when machining the next workpiece. The measuring station is configured in such a way that the axial contour can also be recorded and selected.

Sofern ein Messsystem beispielsweise mit einem pneumatischen Messdorn 400 gemäß Fig. 4 verfügbar ist, kann das System durch Änderungen in der Steuerungssoftware, d.h. durch Änderung des Prüfplans, auch zur Erfassung der axialen Kontur in der Zylinderbohrung verwendet werden. Beim Ausführungsbeispiel von Fig. 4 stehen zwei Messkanäle mit je zwei zueinander diametral angeordneten Messdüsen 410-A1, 410-A2 (Messrichtung A) und 410-B1 zur Verfügung, um den Durchmesser in zwei zueinander senkrechten Messrichtungen A und B messen zu können.If a measuring system, for example, with a pneumatic measuring mandrel 400 according to 4 is available, the system can also be used to record the axial contour in the cylinder bore by changing the control software, ie by changing the test plan. In the embodiment of 4 two measuring channels are available, each with two measuring nozzles 410-A1, 410-A2 (measuring direction A) and 410-B1 arranged diametrically opposite one another in order to be able to measure the diameter in two measuring directions A and B perpendicular to one another.

Pneumatische Messdorne arbeiten nach dem Düse-Prallplatte-Prinzip. Für die Messung wird Druckluft aus den Messdüsen in Richtung Bohrungswandung geblasen. Der sich ergebende Staudruck im Bereich der Messdüsen kann als Maß für den Abstand der Messdüse zu Bohrungswandung dienen. Ein mit der Messdüse über eine Druckleitung verbundener Messwandler sorgt für eine Umwandlung des (pneumatischen) Drucksignals in ein elektrisch weiterverarbeitbares Spannungssignal. Anstelle des Drucks kann auch der Volumenstrom der Druckluft zur Auswertung genutzt werden. Mittels zweier diametral gegenüberliegender Messdüsen kann bei einem gegebenen diametralen Abstand zwischen den Messdüsen der Bohrungsdurchmesser in der Messebene ermittelt werden. Pneumatische Messdorne ermöglichen ein berührungsloses, vom Werkstoff des Messobjekts unabhängiges Messen und im Rahmen ihres Messbereichs hohe Messgenauigkeiten, die im Falle von Nachmesseinheiten in der Regel deutlich unterhalb eines Mikrometers liegen, beispielsweise im Bereich von 0,2 µm bis 0,3 µm bei wiederholter Messung.Pneumatic plug gauges work according to the nozzle flapper principle. For the measurement, compressed air is blown out of the measuring nozzles in the direction of the bore wall. The resulting dynamic pressure in the area of the measuring nozzles can serve as a measure for the distance between the measuring nozzle and the wall of the bore. A transducer connected to the measuring nozzle via a pressure line converts the (pneumatic) pressure signal into a voltage signal that can be further processed electrically. Instead of the pressure, the volume flow of the compressed air can also be used for evaluation. By means of two diametrically opposed measuring nozzles, the bore diameter in the measuring plane can be determined at a given diametrical distance between the measuring nozzles. Pneumatic plug gauges enable non-contact measurement regardless of the material of the measurement object and, within the scope of their measurement range, high measurement accuracies, which in the case of final measurement units are usually well below a micrometer, for example in the range of 0.2 µm to 0.3 µm with repeated measurements .

Abweichend von der schematischen Darstellung in Fig. 3 wird bei einem bevorzugten Verfahren die Messung so gesteuert, dass die axialen Messintervalle MI-2 zwischen unmittelbar aufeinanderfolgenden Messebenen in dem zweiten Bohrungsabschnitt 130, in welchem sich der Durchmesser beispielsweise kontinuierlich ändert, kleiner sind die Messintervalle MI-1 im kreiszylindrischen ersten Bohrungsabschnitt 120, in welchem der Durchmesser in allen Axialpositionen nominell gleich ist. Beispielsweise kann durch ein Messintervall von z.B. 3 mm im zweiten Bohrungsabschnitt 130 die von der Kreiszylinderform abweichende konische Bohrungsform sehr genau erfasst werden. In Kombination mit einem größeren Messintervall (z.B. von 10 mm) im kreiszylindrischen ersten Bohrungsabschnitt 120 ist eine Erfassung und Auswertung auch über die gesamte Bohrungslänge L möglich. Für jeden Messpunkt bzw. jede Messebene sind zulässige Minimalwerte und Maximalwerte vorgegeben. Bei Abweichungen erfolgt eine Kompensation an der jeweiligen Honspindel beispielsweise in derjenigen Weise, die im Zusammenhang mit Tabelle 1 erläutert wurde. Zusätzlich können die Werte einer Bohrung weiterverarbeitet, in einem Diagramm dargestellt und in einer Datenbank dauerhaft abgelegt werden.Deviating from the schematic representation in 3 In a preferred method, the measurement is controlled in such a way that the axial measurement intervals MI-2 between immediately consecutive measurement planes in the second bore section 130, in which the diameter changes continuously, for example, are smaller than the measurement intervals MI-1 in the circular-cylindrical first bore section 120, in which the diameter is nominally the same in all axial positions. For example, the conical shape of the bore, which deviates from the circular-cylindrical shape, can be recorded very precisely by a measuring interval of, for example, 3 mm in the second bore section 130 . In combination with a larger measurement interval (eg 10 mm) in the circular-cylindrical first bore section 120, detection and evaluation over the entire bore length L is also possible. Permissible minimum and maximum values are specified for each measuring point or each measuring plane. In the event of deviations, compensation takes place on the respective honing spindle, for example in the manner explained in connection with Table 1. In addition, the values of a hole can be further processed, displayed in a diagram and permanently stored in a database.

Bei derzeit verfügbaren Luftmesssystemen kann eine Verweilzeit in der jeweiligen Messebene in der Größenordnung von 0,5 s ausreichen, um ausreichend genaue Messwerte zu erhalten. Dadurch ist eine sichere Erfassung der Durchmesser in einer serienüblichen Taktzeit von beispielsweise 25 bis 30 s gut möglich. Die Messrichtung ist dabei im Übrigen frei wählbar, so dass sowohl vom eintrittsseitigen Ende zum eintrittsfernen Ende als auch vom (breiteren) eintrittsfernen Ende hin zum (engeren) Bohrungseintritt gemessen werden kann.With currently available air measurement systems, a dwell time in the respective measurement level of the order of 0.5 s can be sufficient to obtain sufficiently accurate measurement values. This makes it possible to reliably measure the diameter in a standard cycle time of 25 to 30 s, for example. The direction of measurement can also be freely selected, so that measurements can be taken both from the entry-side end to the end far from the entry and from the (wider) end far from the entry to the (narrower) bore entry.

Bei der beispielhaft dargestellten Ausführungsform ist die erwünschte axiale Kontur im zweiten Bohrungsabschnitt die Kontur eines einfachen Konus mit kontinuierlicher (linearer) Durchmesservergrößerung von Ende des ersten Bohrungsabschnitts in Richtung Bohrungsende. Es sind auch andere Bohrungsformen möglich, z.B. eine Trompetenform oder eine Glockenform bzw. Flaschenform einer Bohrung. Bei einer Flaschenform könnte sich z.B. an einen konischen zweiten Bohrungsabschnitt in Richtung des eintrittsfernen Bohrungsendes ein dritter Bohrungsabschnitt anschließen, der kreiszylindrisch ist oder einen anderen Konuswinkel als der zweite Bohrungsabschnitt aufweisen kann.In the embodiment illustrated by way of example, the desired axial contour in the second bore section is the contour of a simple cone with a continuous (linear) increase in diameter from the end of the first bore section in the direction of the end of the bore. Other bore shapes are also possible, e.g. a trumpet shape or a bell shape or bottle shape of a bore. In the case of a bottle shape, for example, a conical second bore section could be adjoined in the direction of the bore end remote from the inlet, which third bore section is circular-cylindrical or can have a different cone angle than the second bore section.

Claims (10)

  1. Honing method for machining the inner surface of a bore (110) in a workpiece (100) with the aid of at least one honing operation, in particular for honing cylinder walls in the production of cylinder blocks or cylinder sleeves for reciprocating piston engines, wherein
    during a honing operation an expandable honing tool (200) which is coupled to a spindle is moved in a reciprocating manner within the bore so as to generate a stroke movement in the axial direction of the bore and, so as to generate a rotating movement that superimposes the stroke movement, is simultaneously rotated about a tool axis, and
    a bore which is rotationally symmetrical in relation to a bore axis (112) and deviates from the circular-cylindrical shape, has a circular-cylindrical first bore portion (120) and adjoining thereto a second bore portion (130) which is not circular-cylindrical and has an axially variable diameter is generated, characterized by the following steps:
    measuring the diameter of the first bore portion (120) in at least one first measuring plane (M1-1, M1-2, M1-3) so as to determine a first diameter value;
    measuring the diameter of the second bore portion (130) in at least one second measuring plane (M2-1, M2-2, M2-3) so as to determine a second diameter value;
    evaluating the second diameter value while using the first diameter value in order to determine actual shape values which represent an actual shape of the bore,
    wherein the first diameter value determined in the circular-cylindrical first bore portion is utilized as the reference value for evaluating those diameter values that by measuring are determined in the second bore portion which is not circular-cylindrical in such a manner that the first diameter value serves as the workpiece-internal reference for the entire measurement;
    comparing the actual shape values with nominal shape values in order to determine shape deviation values;
    controlling a subsequent honing operation as a function of the shape deviation values.
  2. Honing method according to Claim 1, wherein when measuring the diameter of the first bore portion in two or more first measuring planes (M1-1 to M1-3) that are axially mutually offset, a first diameter is in each case measured, and a mean value of the first diameters is formed for determining the first diameter value, wherein the first diameter is preferably measured in exactly three measuring planes that are axially mutually offset.
  3. Honing method according to Claim 1 or 2, wherein when measuring the diameter of the second bore portion (130) in two or more second measuring planes (M2-1, M2-2, M2-3) that are axially mutually offset, a second diameter is in each case measured, and an axial contour profile of the second bore portion is determined while using the second diameter.
  4. Honing method according to one of the preceding claims, wherein when measuring the diameter of the second bore portion (130), a second diameter (D6) is measured in an end portion (EA) of the second bore portion that is distal from the first bore portion (120), and a preliminary width value is determined from the second diameter in the end portion and the first diameter value, wherein the preliminary width value is defined as the difference between the bore diameter at the entry-distal bore end and the bore diameter in the cylindrical bore portion.
  5. Honing method according to one of the preceding claims, wherein first diameter values and second diameter values of a bore in the form of a dataset representing the actual shape of the bore are stored in a memory of a control installation.
  6. Honing method according to one of the preceding claims, wherein associated diameter values in one measuring plane are measured in two measuring directions running so as to be mutually perpendicular.
  7. Honing method according to one of the preceding claims, wherein in measurements in a plurality of measuring planes of the first bore portion (120) and of the second bore portion (130), an axial measuring interval (MI-2) between adjacent second measuring planes is smaller, in particular smaller by half, than an axial measuring interval (MI-1) between adjacent first measuring planes.
  8. Honing method according to one of the preceding claims, wherein the measurements are carried out using a pneumatic measuring system.
  9. Machining system for precision machining of an inner surface of a bore (110) in a workpiece (100) with the aid of at least one honing operation, in particular for honing cylinder walls in the production of cylinder blocks or cylinder sleeves for reciprocating piston engines, having at least one spindle for moving within the bore an expandable honing tool (200) coupled to the spindle in such a manner that machining of the inner surface takes place by at least one cutting stone attached to the honing tool, characterized in that the machining system has a controller and a measuring system for measuring the diameter of the bore and is configured for carrying out on the workpiece a honing method according to one of Claims 1 to 8.
  10. Machining system according to Claim 9, characterized by a post-measurement station which is separate from a honing unit and to which the workpiece is able to be transferred upon completion of the machining for the measurement.
EP16704610.1A 2015-02-20 2016-02-15 Honing method for form honing and machining equipment Active EP3259099B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015203052.0A DE102015203052B4 (en) 2015-02-20 2015-02-20 Honing process for form honing
PCT/EP2016/053087 WO2016131736A1 (en) 2015-02-20 2016-02-15 Honing method for form honing

Publications (2)

Publication Number Publication Date
EP3259099A1 EP3259099A1 (en) 2017-12-27
EP3259099B1 true EP3259099B1 (en) 2022-05-18

Family

ID=55359512

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16704610.1A Active EP3259099B1 (en) 2015-02-20 2016-02-15 Honing method for form honing and machining equipment

Country Status (4)

Country Link
EP (1) EP3259099B1 (en)
DE (1) DE102015203052B4 (en)
HU (1) HUE059795T2 (en)
WO (1) WO2016131736A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017210187A1 (en) * 2017-06-19 2018-12-20 Elgan-Diamantwerkzeuge Gmbh & Co. Kg Honing process and processing machine for contour honing
TWI675726B (en) * 2018-09-28 2019-11-01 宏崴實業有限公司 Narrow-mouth reassembly tool structure
CN111594336A (en) * 2020-05-27 2020-08-28 河南中原吉凯恩气缸套有限公司 Special-shaped inner hole honing cylinder sleeve and preparation method thereof
CN115042083B (en) * 2022-06-06 2023-06-20 华南理工大学 Intelligent honing control implementation method for conical cylinder hole

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110223833A1 (en) * 2010-03-09 2011-09-15 Nagel Maschinen-Und Werkzeugfabrik Gmbh Method and apparatus for the measurement-aided fine machining of workpiece surfaces, and measuring system
DE102013203340A1 (en) * 2013-02-28 2014-08-28 Nagel Maschinen- Und Werkzeugfabrik Gmbh Method and device for fluidic geometry measurement

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3703429A1 (en) * 1987-02-05 1988-08-18 Diskus Werke Frankfurt Main Ag Computer for automatic control of grinding machine - defines signal window with help of memory to isolate disturbances due to interference
JP4193086B2 (en) * 1999-04-08 2008-12-10 日産自動車株式会社 Cylinder bore machining method and machine
EP2277661B1 (en) 2005-11-25 2012-12-26 Nagel Maschinen- und Werkzeugfabrik GmbH Method for honing bores and honing tool therefor
EP1815944B1 (en) * 2006-02-02 2010-07-14 NAGEL Maschinen- und Werkzeugfabrik GmbH Method and apparatus for honing bore holes.
DE102006062665A1 (en) 2006-12-29 2008-07-03 Gehring Gmbh & Co. Kg Bore e.g. cylinder bore, processing method for reciprocating piston engine, involves determining deviations of initial shape of bore from target shape, determining correct data based on deviation, and determining parameters based on data
DE102013204714A1 (en) 2013-03-18 2014-10-02 Elgan-Diamantwerkzeuge Gmbh & Co. Kg Honing process and honing tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110223833A1 (en) * 2010-03-09 2011-09-15 Nagel Maschinen-Und Werkzeugfabrik Gmbh Method and apparatus for the measurement-aided fine machining of workpiece surfaces, and measuring system
DE102013203340A1 (en) * 2013-02-28 2014-08-28 Nagel Maschinen- Und Werkzeugfabrik Gmbh Method and device for fluidic geometry measurement

Also Published As

Publication number Publication date
EP3259099A1 (en) 2017-12-27
HUE059795T2 (en) 2022-12-28
DE102015203052B4 (en) 2024-04-04
DE102015203052A1 (en) 2016-08-25
WO2016131736A1 (en) 2016-08-25

Similar Documents

Publication Publication Date Title
EP2976184B1 (en) Honing method and honing tool
EP1275864B1 (en) Workpiece with a tribologically stressed surface and method of manufacture such a surface
EP3259099B1 (en) Honing method for form honing and machining equipment
EP3164244B1 (en) Honing tool and honing method
EP2277662B1 (en) Method for honing bores and honing tool therefor
EP0565742B1 (en) Procedure of fine machining workpiece surfaces
EP1815944B1 (en) Method and apparatus for honing bore holes.
EP3641985B1 (en) Honing method and machine tool for contour honing
DE102016120495A1 (en) MILLING TOOL WITH USE COMPENSATION
DE102016120497A1 (en) MOTOR DRILLING milling process
EP3259098B1 (en) Honing method and processing machine for form honing
DE102014220990A1 (en) Repair procedure for cylindrical surfaces
EP3436215B1 (en) Method for producing rotationally symmetrical, non-cylindrical bores with a honing tool
DE102016120492A1 (en) milling inserts
EP1815943A1 (en) Method and apparatus for honing bore holes.
DE19743627C2 (en) Method for producing a constriction of the cylinder bore of a cylinder liner
EP3820646A1 (en) Honing method and machine tool for contour honing
DE102014225164B4 (en) Finishing method for producing a rotationally symmetrical bore with an axial contour
DE102015009481B4 (en) Method and device for fine machining of pre-machined bearing seats of the main bearings and crank bearings of crankshafts
DE102012221537B3 (en) Method and device for producing a sliding bearing or a part thereof and sliding bearing or part thereof
CH714075A1 (en) Method for producing a ball-and-socket joint and ball and socket joint.
DE102016002568A1 (en) Method for producing a component for a motor vehicle

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170824

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: XAVIER, FABIO ANTONIO

Inventor name: KRANICHSFELD, FLORIAN

Inventor name: WEIBLEN, JOACHIM

Inventor name: BACHMANN, OLIVER

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ELGAN-DIAMANTWERKZEUGE GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200123

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211213

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016014894

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1492874

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220615

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220919

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220818

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220819

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220918

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E059795

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016014894

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

26N No opposition filed

Effective date: 20230221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230215

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20230210

Year of fee payment: 8

Ref country code: DE

Payment date: 20230223

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230215

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230215

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230215

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240216

Year of fee payment: 9