EP3252795A1 - Voltage tap system for a fuse-holder base, fuse-holder base and measurement module incorporating said system - Google Patents
Voltage tap system for a fuse-holder base, fuse-holder base and measurement module incorporating said system Download PDFInfo
- Publication number
- EP3252795A1 EP3252795A1 EP16382242.2A EP16382242A EP3252795A1 EP 3252795 A1 EP3252795 A1 EP 3252795A1 EP 16382242 A EP16382242 A EP 16382242A EP 3252795 A1 EP3252795 A1 EP 3252795A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuse
- holder base
- voltage tap
- voltage
- tap system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005259 measurement Methods 0.000 title claims description 19
- 238000010079 rubber tapping Methods 0.000 claims abstract description 24
- 239000004020 conductor Substances 0.000 claims description 28
- 230000007935 neutral effect Effects 0.000 claims description 7
- 230000009975 flexible effect Effects 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 230000002093 peripheral effect Effects 0.000 abstract description 5
- 238000009434 installation Methods 0.000 description 9
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013481 data capture Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/02—Details
- H01H85/0241—Structural association of a fuse and another component or apparatus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/02—Details
- H01H85/0241—Structural association of a fuse and another component or apparatus
- H01H2085/0266—Structural association with a measurement device, e.g. a shunt
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/02—Details
- H01H85/22—Intermediate or auxiliary parts for carrying, holding, or retaining fuse, co-operating with base or fixed holder, and removable therefrom for renewing the fuse
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/02—Details
- H01H85/25—Safety arrangements preventing or inhibiting contact with live parts, including operation of isolation on removal of cover
Definitions
- the present invention is comprised in the field of fuse holders or protection devices for NH-type electrical fuses.
- the object of the present invention is a voltage tap system for fuse-holder bases, a fuse-holder base, as well as a measurement module incorporating said voltage tap system, whereby effectively protecting the connection circuit, without having to include or add external peripheral elements, therefore reducing additional installation space.
- a fuse-holder base generally consists of a rail or socket that supports the connection contacts or clamps and is connected to the respective bus bars. These fuse-holder bases can house one or more fuses, and in some cases can be load break blocks. In that sense, fuse-holder bases including three pairs of contacts are known, each pair of contacts being electrically connected to a conductive strip of the low-voltage switchboard of the corresponding electric installation. There is generally one pair of contacts for each electric phase, such that a fuse is coupled between each pair of contacts.
- fuse-holder bases are classified according to the number of poles (or phases) they protect. They can be single-pole (when they protect one phase), two-pole (when they protect two phases), or, in the most common cases, three-pole (where the three phases of the distribution system are protected). Nevertheless, distribution systems can also be four- or five-pole systems, i.e., the three phases plus the neutral conductor, or the three phases plus the neutral conductor and the ground conductor. Power monitoring systems, which require the signal from the voltage tap, normally use signals from the three phases, but in some cases, depending on the application, a neutral conductor voltage tap is required.
- NH fuses In relation to the fuses, they can be fuses with high breaking capacity against short-circuit currents, better known as "NH fuses". These fuses basically consist of an input contact and an output contact, both in the form of a blade, which are electrically connected to the connection contacts. Furthermore, these fuses have a pair of generally T-shaped tabs, one of them being placed close to the input contact and the other one close to the output contact. These tabs serve as a grip or fixing element for handling the fuse, but they can also be isolated with respect to the blade of the fuse. When these tabs or posts are not electrically connected with the input and output contact of the fuse, it is the case of the so-called isolated post fuses.
- the basic circuit of a fuse-holder base can be divided into three well distinguished zones: 1) the input circuit, comprising the elements upstream of the fuse; 2) the fuse element itself; and 3) the output circuit, comprising the elements downstream of the fuse.
- voltage taps can be implemented either upstream or downstream of the main fuse in order to measure working voltages and/or to monitory the state of the fuse. Therefore, voltage tap systems which are connected directly in the input contacts, others which are connected in the fuses, and others which are connected in the connection spades, or even touching the general contact bar, are known. However, they are all electrically connected points that are upstream of the fuse. The same thing occurs with the output contacts, the output terminals, the connection cable, or the input and output contacts of the fuses. They, too, are all electrically connected points. They are all points at which voltage tap systems are known to be connected. The voltage can also be tapped from the lugs of the fuse.
- measurement modules for the output terminals of a fuse-holder base including voltage and current taps are also known in the state of the art.
- the biggest problem with these current measurement modules is that their voltage taps are completely unprotected, without any isolation or protection element whatsoever.
- auxiliary measurement systems based on the incorporation of an auxiliary support or peripheral outside the fuse-holder base, with the additional wiring and installation issues this entails, because low-voltage switchboards generally have a very small and limited space.
- the voltage tap itself and the subsequent lead cable transmitting the signal become a possible focus of origin of short-circuits.
- the devices arranged for measuring or treating the acquired data become user handling points and added risks for the installation.
- maintenance work or any other task that requires handling the monitoring devices that can be connected to the voltage taps is common. In those cases, it may be necessary for safety's sake to disconnect them from the main circuit, i.e., to disconnect the contact point from the fuse-holder base.
- the voltage tap system comprises a conductive element connected on one hand to a contact point for tapping the voltage of the fuse-holder base and on the other hand to an electrical conductor or voltage tap output terminal.
- the voltage tap system additionally comprises a support in which the conductive element is mounted. More preferably, the voltage tap system further comprises an auxiliary protection element communicating the contact point for tapping the voltage with the electrical conductor or voltage tap output terminal.
- auxiliary protection element being able to be an auxiliary cylindrical-type fuse, a thermal magnetic circuit breaker, or any other electronic device having similar functions capable of offering protection against overloads and short-circuits is therefore contemplated.
- the auxiliary protection element has been envisaged to be fixed on an auxiliary fuse-holder base.
- a preferably three-pole fuse-holder base comprising a socket or rail supporting at least one pair of clamps for fixing at least one fuse, input and output connections, and at least one input and/or output contact point for tapping the voltage.
- Said fuse-holder base further comprises a voltage tap system such as the one described in preceding paragraphs, suitable for being connected to an output connection of the fuse-holder base.
- a measurement module comprising at least one voltage tap system such as the one described in preceding paragraphs, preferably comprising at least one conductor that can be connected to the output connections of the fuse-holder base; voltage tapping connectors; and an additional electrical conductor for tapping the voltage in the neutral conductor.
- the fuse itself becomes the contact point, and the conductive element for tapping the voltage is a flexible element that may be in contact with the fuse or that may stop being in contact with the fuse simply by inserting or removing said fuse. Therefore, if it were necessary to cut off the power supply to the auxiliary circuit, the fuse would simply have to be taken out and the electronic devices connected to the voltage taps would be electrically isolated from the main circuit, thereby allowing the safe handling thereof.
- FIG. 1 shows a three-pole fuse-holder base (1), with its corresponding distribution cables (5) connected to the output connections (8), pairs of clamps (6) for fixing fuses (2) through their blades (2.1), as well as the corresponding input and output connections (7, 8) thereof. Furthermore, this fuse-holder base (1) shown in Figure 1 incorporates three voltage tap systems (10) object of invention, where according to a first preferred embodiment said voltage tap system (10) comprises:
- the electrical conductor (4) has a first end intended for being housed inside the support (20) and connected to the conductive element (30), whereas a second end of the electrical conductor (4) is intended for being located outside the support (20), as shown in Figures 1 , 3 and 4 .
- the auxiliary protection element (40) which is an auxiliary fuse in this embodiment, communicates the conductive element (30) making contact in the output connection (8) of the fuse-holder base (1) with the electrical output conductor (4).
- the auxiliary protection element (40) in the present embodiment is an auxiliary fuse, particularly of the cylindrical type, said auxiliary protection element (40) can be any other switch device, such as a thermal magnetic circuit breaker, for example.
- the auxiliary fuse-holder base (50) has opening and closing means, in this example a groove (51), to allow access to the auxiliary protection element (40), making it detachable. Nevertheless, it has been envisaged that said auxiliary protection element (40) can be fixed, thereby simplifying the installation and mounting of the assembly. Furthermore, said opening and closing means can be installed in the support (20) itself or in any other type of enclosure.
- the conductive element (30) in this first embodiment comprises a metallic element with flexible properties, such as an L-shaped band in this case, communicating the output connection (8) of the fuse-holder base (1) with the auxiliary protection element (40) by direct contact.
- a metallic element with flexible properties such as an L-shaped band in this case, communicating the output connection (8) of the fuse-holder base (1) with the auxiliary protection element (40) by direct contact.
- any flexible strip, screw or terminal that allows performing the same connection functions can be included instead of a metallic band.
- both the first chamber (21) and the second chamber (22) of the support (20) have an arcuate, inverted U-shaped bottom surface, and where the second chamber (22) has a smaller section with respect to the first chamber (21).
- This particular configuration of the chambers (21, 22) allows optimal adaptation of the support (20) to the output connection (8) and distribution cable (5), as shown in Figures 1 and 2 .
- FIG. 6 shows a vertical and aligned arrangement of said auxiliary fuse-holder bases (50) in the front panel of the measurement module (100), which favors rapid identification by and simple handling for the user.
- the measurement module (100) comprises at least one conductor (110) that can be connected to the output connections (8) of the fuse-holder base (1). Therefore, these conductors (110) of the measurement module (100) are electrically connected to the output connections (8) of the fuse-holder base (1), becoming an extension thereof and, electrically speaking, being the same point, and accordingly, said conductor (110) can be considered a contact point (3) for tapping the voltage of the fuse-holder base (1).
- said output connections (8) are screw type, having a through hole in which a screw can be inserted, which screw is not depicted, such that a firm attachment is achieved when said screw is tightened, assuring electrical continuity.
- the measurement module (100) can additionally incorporate voltage tapping connectors (120), as well as an additional electrical conductor (4) for tapping the voltage in the terminal of the neutral conductor (N), as depicted in Figures 9A and 9B .
- Figures 7 and 8 show a third preferred embodiment, where an "upstream" installation of the auxiliary fuse-holder bases (50) and the voltage tapping connectors (120) can be seen. More specifically, the communication between the input connections (7) of the three-pole fuse-holder base (1) and the auxiliary protection elements (40) through respective electrical conductors (4) can be seen in the side view of Figure 8 .
- Figures 10A-10D depict a fourth preferred embodiment, where the conductive element (30) is flexible and/or elastic, such that said conductive element (30) is movable and/or deformable between an initial standby position and a working position in which the conductive element (30) is in direct contact with the blades (2.1) of the fuse (2).
- each of the conductive elements (30) is installed such that it takes up part of the path of the fuses (2), particularly their blades (2.1), such that when the fuse (2) is inserted in its corresponding location of the fuse-holder base (1), the blades (2.1) of each fuse (2) run into the conductive element (30), moving said element (30) and being in direct contact with the blades (2.1) of the fuse (2), as shown in Figure 10B or in the upper part of Figure 10C , this being seen in more detail in Figure 10D .
- the conductive element (30) can be a rigid element mounted on a flexible support (20), where for all intents and purposes it is essential for the conductive element (30) to be in two working positions.
- the two possible positions of the conductive element (30) can be seen in Figure 10C . Therefore, the conductive element (30) depicted in the lower position is in standby, without any deformation whatsoever and without contact with any live point of the fuse-holder base (1); whereas the conductive element (30) shown in the upper position is in the working position, i.e., moved to its second position by the action of the fuse (2), particularly by its blades (2.1) and shown to be slightly inclined towards the inner part of the casing, as seen in Figure 10D .
- the electrical contact between the blade (2.1) and conductive element (30) is thereby assured due to the elastic properties of the conductive element (30), and where said conductive element (30) is subjected to the pressure of the fuse (2) in the working position.
- This pressure applied by the fuse (2) on the conductive element (30) keeps the conductive element (30) subjected to temporary and reversible deformation, until the fuse (2) is removed, at which point the conductive element (30) returns to its initial standby position.
- the contact point (3) for tapping the voltage would be the blades (2.1) of the fuses (2), whereas in the support (20) it would be the casing or enclosure itself of the fuse-holder base (1). Furthermore, similarly to the preceding embodiments, and though not shown in the drawings, each of the conductive elements (30) are connected to their respective electrical conductor (4).
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Fuses (AREA)
- Emergency Protection Circuit Devices (AREA)
- Details Of Connecting Devices For Male And Female Coupling (AREA)
Abstract
Description
- The present invention is comprised in the field of fuse holders or protection devices for NH-type electrical fuses.
- The object of the present invention is a voltage tap system for fuse-holder bases, a fuse-holder base, as well as a measurement module incorporating said voltage tap system, whereby effectively protecting the connection circuit, without having to include or add external peripheral elements, therefore reducing additional installation space.
- Electric switches with fuses, based on housing a fuse for protecting distribution lines in low-voltage systems, also known as fuse-holder bases, are well known today.
- A fuse-holder base generally consists of a rail or socket that supports the connection contacts or clamps and is connected to the respective bus bars. These fuse-holder bases can house one or more fuses, and in some cases can be load break blocks. In that sense, fuse-holder bases including three pairs of contacts are known, each pair of contacts being electrically connected to a conductive strip of the low-voltage switchboard of the corresponding electric installation. There is generally one pair of contacts for each electric phase, such that a fuse is coupled between each pair of contacts.
- Generally, fuse-holder bases are classified according to the number of poles (or phases) they protect. They can be single-pole (when they protect one phase), two-pole (when they protect two phases), or, in the most common cases, three-pole (where the three phases of the distribution system are protected). Nevertheless, distribution systems can also be four- or five-pole systems, i.e., the three phases plus the neutral conductor, or the three phases plus the neutral conductor and the ground conductor. Power monitoring systems, which require the signal from the voltage tap, normally use signals from the three phases, but in some cases, depending on the application, a neutral conductor voltage tap is required.
- In relation to the fuses, they can be fuses with high breaking capacity against short-circuit currents, better known as "NH fuses". These fuses basically consist of an input contact and an output contact, both in the form of a blade, which are electrically connected to the connection contacts. Furthermore, these fuses have a pair of generally T-shaped tabs, one of them being placed close to the input contact and the other one close to the output contact. These tabs serve as a grip or fixing element for handling the fuse, but they can also be isolated with respect to the blade of the fuse. When these tabs or posts are not electrically connected with the input and output contact of the fuse, it is the case of the so-called isolated post fuses.
- Today, in order to know the potential of a specific point in an electric circuit, it is known to be common to establish contact at that point or at any other point that is electrically connected with it and there cannot be a high resistance or any other distorting element between them. More particularly, it is known that the basic circuit of a fuse-holder base can be divided into three well distinguished zones: 1) the input circuit, comprising the elements upstream of the fuse; 2) the fuse element itself; and 3) the output circuit, comprising the elements downstream of the fuse.
- Today there is an ever growing trend to control user power consumption for the purpose of saving energy and accordingly saving costs, while at the same time benefitting the environment. To that end, the consumed voltage and current values need to be known, so measurement devices must be arranged in the low-voltage switchboards of the corresponding electric installation. In the specific case of fuse-holder bases for low-voltage switchboards, bases provided with systems that allow monitoring and measuring their electric working parameters are already known. Voltage and/or current values are detected by means of these systems either directly or through transducers associated with the fuse-holder base.
- In a fuse-holder base, voltage taps can be implemented either upstream or downstream of the main fuse in order to measure working voltages and/or to monitory the state of the fuse. Therefore, voltage tap systems which are connected directly in the input contacts, others which are connected in the fuses, and others which are connected in the connection spades, or even touching the general contact bar, are known. However, they are all electrically connected points that are upstream of the fuse. The same thing occurs with the output contacts, the output terminals, the connection cable, or the input and output contacts of the fuses. They, too, are all electrically connected points. They are all points at which voltage tap systems are known to be connected. The voltage can also be tapped from the lugs of the fuse. The need to tap the voltage from one point or another will be determined by the accessibility to it and by the space available in the final application. To that end, it is necessary to find solutions for different positions of the voltage tap and for different particular embodiments, offering a solution to the different drawbacks existing.
- In addition, measurement modules for the output terminals of a fuse-holder base including voltage and current taps are also known in the state of the art. The biggest problem with these current measurement modules is that their voltage taps are completely unprotected, without any isolation or protection element whatsoever. In other cases, there are auxiliary measurement systems based on the incorporation of an auxiliary support or peripheral outside the fuse-holder base, with the additional wiring and installation issues this entails, because low-voltage switchboards generally have a very small and limited space.
- Another drawback is that in the event of a short-circuit in said current auxiliary measurement systems, the main fuses also blow, cutting off the power supply to the fuse-holder base, with the subsequent drawbacks this entails. Furthermore, the features required in the main fuses are different from those of the auxiliary protection system, because in the second case, they must be faster in order to protect the corresponding technical personnel at all times against the high voltage levels running through fuse-holder bases of this type with NH fuses for industrial, not household, applications.
- Furthermore, the voltage tap itself and the subsequent lead cable transmitting the signal become a possible focus of origin of short-circuits. At the same time, the devices arranged for measuring or treating the acquired data become user handling points and added risks for the installation. In addition, maintenance work or any other task that requires handling the monitoring devices that can be connected to the voltage taps is common. In those cases, it may be necessary for safety's sake to disconnect them from the main circuit, i.e., to disconnect the contact point from the fuse-holder base.
- The drawbacks mentioned above are solved by means of the present invention by providing a safe and effective voltage tap system for fuse-holder bases, as well as a fuse-holder base and a measurement module incorporating said voltage tap system, whereby maximum protection of the connection circuit against possible accidents or hazards due to discharges or overvoltages both for qualified technical personnel and for the electronic devices that can be connected to them, without having to include or add external peripheral elements, or therefore requiring any additional installation space. More particularly, auxiliary electrical protection having a specific application specific for voltage taps of fuse-holder bases with NH-type fuses is described herein.
- The voltage tap system comprises a conductive element connected on one hand to a contact point for tapping the voltage of the fuse-holder base and on the other hand to an electrical conductor or voltage tap output terminal.
- At this point it is important to point out that when "contact point for tapping the voltage" is mentioned in the present specification, it herein refers to any point of a fuse-holder base where it is possible to tap the voltage, whether it is at the usual output connection of each of the phases of the fuse-holder base, the fixing clamps for fixing the fuses, or the actual tabs or posts of the fuses, which are also active zones of the base and are, therefore, live.
- So by means of this particular arrangement of the voltage tap system attached and/or connected directly on the contact point for tapping the voltage, whatever the latter may be, the physical distance existing between both elements is reduced to a minimum, assuring maximum protection of the electric installation and thereby protecting auxiliary voltage taps, secondary devices for data capture or acquisition of data and the technical personnel authorized to access low-voltage electric switchboards.
- According to a preferred embodiment of the invention, the voltage tap system additionally comprises a support in which the conductive element is mounted. More preferably, the voltage tap system further comprises an auxiliary protection element communicating the contact point for tapping the voltage with the electrical conductor or voltage tap output terminal. The possibility of said auxiliary protection element being able to be an auxiliary cylindrical-type fuse, a thermal magnetic circuit breaker, or any other electronic device having similar functions capable of offering protection against overloads and short-circuits is therefore contemplated. Furthermore, the auxiliary protection element has been envisaged to be fixed on an auxiliary fuse-holder base.
- According to a second object of the invention, a preferably three-pole fuse-holder base is described, comprising a socket or rail supporting at least one pair of clamps for fixing at least one fuse, input and output connections, and at least one input and/or output contact point for tapping the voltage. Said fuse-holder base further comprises a voltage tap system such as the one described in preceding paragraphs, suitable for being connected to an output connection of the fuse-holder base.
- In addition, according to a third object of the invention, a measurement module is described, comprising at least one voltage tap system such as the one described in preceding paragraphs, preferably comprising at least one conductor that can be connected to the output connections of the fuse-holder base; voltage tapping connectors; and an additional electrical conductor for tapping the voltage in the neutral conductor.
- Also, by means of a particular arrangement of the voltage tap system explained below, the fuse itself becomes the contact point, and the conductive element for tapping the voltage is a flexible element that may be in contact with the fuse or that may stop being in contact with the fuse simply by inserting or removing said fuse. Therefore, if it were necessary to cut off the power supply to the auxiliary circuit, the fuse would simply have to be taken out and the electronic devices connected to the voltage taps would be electrically isolated from the main circuit, thereby allowing the safe handling thereof.
- To complement the description that is being made and for the purpose of aiding to better understand the features of the invention according to a preferred practical embodiment thereof, a set of drawings is attached as an integral part of said description in which the following is depicted with an illustrative and non-limiting character:
-
Figure 1 shows a side view of a three-pole fuse-holder base in which the voltage tap system object of invention has been incorporated at its output, according to a first preferred embodiment. -
Figure 2 shows a perspective view of the output ofFigure 1 , where three voltage tap systems arranged in the form of a triangle can be seen associated with each of the three voltage taps with the corresponding fuses. -
Figure 3 shows a side view of one of the voltage tap systems shown inFigure 2 , in this case without support to clearly depict the interconnection between the output of the fuse-holder base with the distribution cable and the conductive element, respectively. -
Figure 4 shows a top perspective view of the support, an auxiliary fuse-holder base for fixing the corresponding auxiliary fuse, according to the first preferred embodiment, being seen in this case. -
Figure 5 shows a bottom perspective view of the support shown inFigure 4 . -
Figure 6 shows a perspective view of a three-pole fuse-holder base in which the support and a measurement module incorporating three voltage tap systems have been installed "downstream", according to a second preferred embodiment, an aligned arrangement of the auxiliary fuse-holder bases being seen. -
Figure 7 shows a perspective view of another three-pole fuse-holder base in which the auxiliary fuse-holder bases as well as voltage tapping connectors have been installed "upstream", according to a third preferred embodiment. -
Figure 8 shows a side view of the fuse-holder base ofFigure 7 , being seen electrical conductors for the communication between the input connections of the fuse-holder base and the auxiliary protection elements. -
Figures 9A and 9B show respective side views of the fuse-holder bases of the second and third embodiments, respectively, where an additional electrical conductor for tapping the voltage in the neutral conductor is furthermore shown. -
Figures 10A-10D show respective perspective views of a fuse-holder base provided with the voltage tap system of the invention, according to a fourth preferred embodiment. - Several preferred embodiments are described below in reference to the figures described above, without this limiting or reducing the scope of protection of the present invention.
-
Figure 1 shows a three-pole fuse-holder base (1), with its corresponding distribution cables (5) connected to the output connections (8), pairs of clamps (6) for fixing fuses (2) through their blades (2.1), as well as the corresponding input and output connections (7, 8) thereof. Furthermore, this fuse-holder base (1) shown inFigure 1 incorporates three voltage tap systems (10) object of invention, where according to a first preferred embodiment said voltage tap system (10) comprises: - a support (20), shown in
Figures 1 ,2 ,4 and 5 , provided in this embodiment with a first chamber (21) for protecting, at least in part, the output connection (8) of the fuse-holder base (1), and a second chamber (22) for housing an auxiliary protection element (40) consisting in this embodiment of an auxiliary fuse fixed on an auxiliary fuse-holder base (50), - a conductive element (30), depicted in
Figures 3 and5 , which is mounted in the support (20) and is connected on one hand to a contact point (3) for tapping the voltage of the fuse-holder base (1) and on the other hand to an electrical conductor (4) or voltage tap output terminal; - where a first end of said conductive element (30) is located inside the first chamber (21), whereas a second end is located inside the second chamber (22), both chambers (21, 22) communicating with one another, as shown in
Figure 5 . - Furthermore, in the embodiment of
Figures 1 to 4 it is seen that the electrical conductor (4) has a first end intended for being housed inside the support (20) and connected to the conductive element (30), whereas a second end of the electrical conductor (4) is intended for being located outside the support (20), as shown inFigures 1 ,3 and4 . - As can be seen in
Figure 3 , the auxiliary protection element (40), which is an auxiliary fuse in this embodiment, communicates the conductive element (30) making contact in the output connection (8) of the fuse-holder base (1) with the electrical output conductor (4). At this point, it should be pointed out that although the auxiliary protection element (40) in the present embodiment is an auxiliary fuse, particularly of the cylindrical type, said auxiliary protection element (40) can be any other switch device, such as a thermal magnetic circuit breaker, for example. Therefore, the fact that the voltage tap systems (10) described herein can be "physically" connected in a direct and simple manner at the output connections (8) of the fuse-holder base (1) allows dispensing with complex and troublesome external protection peripherals today, which furthermore take up additional space in the corresponding voltage switchboard. - As seen in
Figures 2 and4 , the auxiliary fuse-holder base (50) has opening and closing means, in this example a groove (51), to allow access to the auxiliary protection element (40), making it detachable. Nevertheless, it has been envisaged that said auxiliary protection element (40) can be fixed, thereby simplifying the installation and mounting of the assembly. Furthermore, said opening and closing means can be installed in the support (20) itself or in any other type of enclosure. - In turn, it can be seen in
Figures 3 and5 that the conductive element (30) in this first embodiment comprises a metallic element with flexible properties, such as an L-shaped band in this case, communicating the output connection (8) of the fuse-holder base (1) with the auxiliary protection element (40) by direct contact. Nevertheless, any flexible strip, screw or terminal that allows performing the same connection functions can be included instead of a metallic band. - In relation to the support (20), it should be indicated that it allows protecting against accidental contact of the terminals, thereby assuring maximum safety. Therefore, it can be seen in
Figures 4 and 5 that both the first chamber (21) and the second chamber (22) of the support (20) have an arcuate, inverted U-shaped bottom surface, and where the second chamber (22) has a smaller section with respect to the first chamber (21). This particular configuration of the chambers (21, 22) allows optimal adaptation of the support (20) to the output connection (8) and distribution cable (5), as shown inFigures 1 and2 . However, in the event of them being other contact points for tapping the voltage, such as fixing clamps (6) for fixing the fuses (2) or the tabs themselves of the fuses (2), it is understood that the configuration of said support (20) would change, the final objective being to attach or couple said protection directly in the actual voltage taps. - According to a second preferred embodiment, shown in
Figures 6 and9A , a three-pole fuse-holder base (1) is seen in which the support (20) and a measurement module (100) incorporating three voltage tap systems (10) have been installed "downstream", the corresponding three auxiliary fuse-holder bases (50) being seen only in the view ofFigure 6 . Therefore,Figure 6 shows a vertical and aligned arrangement of said auxiliary fuse-holder bases (50) in the front panel of the measurement module (100), which favors rapid identification by and simple handling for the user. - It can be seen in
Figures 6 and9A that the measurement module (100) comprises at least one conductor (110) that can be connected to the output connections (8) of the fuse-holder base (1). Therefore, these conductors (110) of the measurement module (100) are electrically connected to the output connections (8) of the fuse-holder base (1), becoming an extension thereof and, electrically speaking, being the same point, and accordingly, said conductor (110) can be considered a contact point (3) for tapping the voltage of the fuse-holder base (1). With respect to the output connections (8), it should be indicated that in the embodiments ofFigures 6 and7 , said output connections (8) are screw type, having a through hole in which a screw can be inserted, which screw is not depicted, such that a firm attachment is achieved when said screw is tightened, assuring electrical continuity. - In addition, it has been envisaged that the measurement module (100) can additionally incorporate voltage tapping connectors (120), as well as an additional electrical conductor (4) for tapping the voltage in the terminal of the neutral conductor (N), as depicted in
Figures 9A and 9B . - In turn,
Figures 7 and 8 show a third preferred embodiment, where an "upstream" installation of the auxiliary fuse-holder bases (50) and the voltage tapping connectors (120) can be seen. More specifically, the communication between the input connections (7) of the three-pole fuse-holder base (1) and the auxiliary protection elements (40) through respective electrical conductors (4) can be seen in the side view ofFigure 8 . - Finally,
Figures 10A-10D depict a fourth preferred embodiment, where the conductive element (30) is flexible and/or elastic, such that said conductive element (30) is movable and/or deformable between an initial standby position and a working position in which the conductive element (30) is in direct contact with the blades (2.1) of the fuse (2). Therefore, as shown inFigure 10A , each of the conductive elements (30) is installed such that it takes up part of the path of the fuses (2), particularly their blades (2.1), such that when the fuse (2) is inserted in its corresponding location of the fuse-holder base (1), the blades (2.1) of each fuse (2) run into the conductive element (30), moving said element (30) and being in direct contact with the blades (2.1) of the fuse (2), as shown inFigure 10B or in the upper part ofFigure 10C , this being seen in more detail inFigure 10D . Nevertheless, according to another non-depicted embodiment, it has been envisaged that the conductive element (30) can be a rigid element mounted on a flexible support (20), where for all intents and purposes it is essential for the conductive element (30) to be in two working positions. - More specifically, the two possible positions of the conductive element (30) can be seen in
Figure 10C . Therefore, the conductive element (30) depicted in the lower position is in standby, without any deformation whatsoever and without contact with any live point of the fuse-holder base (1); whereas the conductive element (30) shown in the upper position is in the working position, i.e., moved to its second position by the action of the fuse (2), particularly by its blades (2.1) and shown to be slightly inclined towards the inner part of the casing, as seen inFigure 10D . The electrical contact between the blade (2.1) and conductive element (30) is thereby assured due to the elastic properties of the conductive element (30), and where said conductive element (30) is subjected to the pressure of the fuse (2) in the working position. This pressure applied by the fuse (2) on the conductive element (30) keeps the conductive element (30) subjected to temporary and reversible deformation, until the fuse (2) is removed, at which point the conductive element (30) returns to its initial standby position. - Therefore, in this fourth embodiment the contact point (3) for tapping the voltage would be the blades (2.1) of the fuses (2), whereas in the support (20) it would be the casing or enclosure itself of the fuse-holder base (1). Furthermore, similarly to the preceding embodiments, and though not shown in the drawings, each of the conductive elements (30) are connected to their respective electrical conductor (4).
Claims (23)
- Voltage tap system (10) for a fuse-holder base (1), where the voltage tap system (10) is characterized in that it comprises a conductive element (30) connected on one hand to a contact point (3) for tapping the voltage of the fuse-holder base (1), and on the other hand to an electrical conductor (4) or voltage tap output terminal.
- Voltage tap system (10) according to claim 1, characterized in that it additionally comprises a support (20) in which the conductive element (30) is mounted.
- Voltage tap system (10) according to any one of the preceding claims, characterized in that it additionally comprises an auxiliary protection element (40) communicating the contact point (3) for tapping the voltage with the electrical conductor (4) or voltage tap output terminal.
- Voltage tap system (10) according to claim 3, characterized in that the auxiliary protection element (40) is an auxiliary fuse.
- Voltage tap system (10) according to claim 3, characterized in that the auxiliary protection element (40) is a thermal magnetic circuit breaker.
- Voltage tap system (10) according to claim 4, characterized in that the auxiliary protection element (40) is fixed on an auxiliary fuse-holder base (50).
- Voltage tap system (10) according to claim 3, characterized in that it additionally comprises opening and closing means to access the auxiliary protection element (40), making said auxiliary protection element (40) detachable.
- Voltage tap system (10) according to claim 7, characterized in that the opening and closing means are installed in the auxiliary fuse-holder base (50) and comprise a groove (51).
- Voltage tap system (10) according to claim 3, characterized in that the conductive element (30) is a metallic element provided with flexible properties which communicates an output connection (8) of the fuse-holder base (1) with the auxiliary protection element (40).
- Voltage tap system (10) according to claim 2, characterized in that the support (20) comprises at least one first chamber (21) for protecting, at least in part, an output connection (8) of the fuse-holder base (1).
- Voltage tap system (10) according to claims 2, 3 and 10, characterized in that the support (20) additionally comprises a second chamber (22) for housing the auxiliary protection element (40).
- Voltage tap system (10) according to claim 1, characterized in that the conductive element (30) is provided with elastic properties, such that said conductive element (30) is movable and/or deformable between an initial standby position and a working position in which the conductive element (30) is in direct contact with the blades (2.1) of the fuse (2).
- Voltage tap system (10) according to claim 12, characterized in that the conductive element (30) can shift from the standby position to the working position due to the very action of the fuse (2).
- Voltage tap system (10) according to claim 12, characterized in that the conductive element (30), in the standby position, is not in contact with any live point of the fuse-holder base (1).
- Fuse-holder base (1) comprising a socket supporting at least one pair of clamps (6) for fixing at least one fuse (2), input and output connections (7, 8), and at least one input and/or output contact point (3) for tapping the voltage, characterized in that it additionally comprises a voltage tap system (10) described in any one of the preceding claims 1-14 suitable for being coupled to a contact point (3) for tapping the voltage of the fuse-holder base (1).
- Fuse-holder base (1) according to claim 15, characterized in that the voltage tap system (10) is connected in the contact point (3) of the fuse-holder base (1).
- Fuse-holder base (1) according to claim 15, characterized in that the voltage tap system (10) is connected in the fixing clamps (6) for fixing the fuses (2).
- Fuse-holder base (1) according to claim 15, characterized in that the voltage tap system (10) can be connected in the fuses (2).
- Fuse-holder base (1) according to claim 15, characterized in that it is a three-pole fuse-holder base, with three pairs of clamps (6) for fixing three fuses (2).
- Measurement module (100) comprising at least one voltage tap system (10) described in any one of claims 1-14.
- Measurement module (100) according to claim 20, characterized in that it comprises at least one conductor (110) that can be connected to the output connections (8) of the fuse-holder base (1).
- Measurement module (100) according to any one of claims 20 or 21, characterized in that it additionally comprises voltage tapping connectors (120).
- Measurement module (100) according to any one of claims 20-22, characterized in that it comprises an additional electrical conductor (4) for tapping the voltage in the neutral conductor (N).
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL16382242.2T PL3252795T3 (en) | 2016-05-31 | 2016-05-31 | Voltage tap system for a fuse-holder base, fuse-holder base and measurement module incorporating said system |
EP16382242.2A EP3252795B1 (en) | 2016-05-31 | 2016-05-31 | Voltage tap system for a fuse-holder base, fuse-holder base and measurement module incorporating said system |
ES16382242T ES2933908T3 (en) | 2016-05-31 | 2016-05-31 | Voltage tapping system for a fuse holder base, fuse holder base and measurement module that incorporates said system |
PT163822422T PT3252795T (en) | 2016-05-31 | 2016-05-31 | Voltage tap system for a fuse-holder base, fuse-holder base and measurement module incorporating said system |
CN201780047268.2A CN109564841B (en) | 2016-05-31 | 2017-05-29 | Voltage tap system for fuse box substrate, fuse box substrate and measurement module incorporating the system |
SG11201811810XA SG11201811810XA (en) | 2016-05-31 | 2017-05-29 | Voltage tap system for a fuse block base, fuse block base and measurement module incorporated in said system |
AU2017272900A AU2017272900A1 (en) | 2016-05-31 | 2017-05-29 | Voltage tap system for a fuse block base, fuse block base and measurement module incorporated in said system |
PCT/ES2017/070362 WO2017207843A1 (en) | 2016-05-31 | 2017-05-29 | Voltage tap system for a fuse block base, fuse block base and measurement module incorporated in said system |
IL263397A IL263397A (en) | 2016-05-31 | 2018-11-29 | Voltage tap system for a fuse block base, fuse block base and measurement module incorporated in said system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16382242.2A EP3252795B1 (en) | 2016-05-31 | 2016-05-31 | Voltage tap system for a fuse-holder base, fuse-holder base and measurement module incorporating said system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3252795A1 true EP3252795A1 (en) | 2017-12-06 |
EP3252795B1 EP3252795B1 (en) | 2022-09-21 |
Family
ID=56550820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16382242.2A Active EP3252795B1 (en) | 2016-05-31 | 2016-05-31 | Voltage tap system for a fuse-holder base, fuse-holder base and measurement module incorporating said system |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP3252795B1 (en) |
CN (1) | CN109564841B (en) |
AU (1) | AU2017272900A1 (en) |
ES (1) | ES2933908T3 (en) |
IL (1) | IL263397A (en) |
PL (1) | PL3252795T3 (en) |
PT (1) | PT3252795T (en) |
SG (1) | SG11201811810XA (en) |
WO (1) | WO2017207843A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3671792A1 (en) | 2018-12-19 | 2020-06-24 | Jean Müller GmbH Elektrotechnische Fabrik | Electrical tap with an overcurrent protection device and assembly of a power distribution component and an electrical tap |
EP4394396A1 (en) | 2022-12-28 | 2024-07-03 | Gorlan Team, S.L.U. | Device and method for measuring electric parameters in fuse-holder base installations |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110571698B (en) * | 2019-10-15 | 2024-03-19 | 国网安徽省电力有限公司阜阳供电公司 | Ring main unit based on high-voltage measurement |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1953786A2 (en) * | 2007-02-05 | 2008-08-06 | Morsettitalia S.p.A. | Method for producing removable contact parts with flat pins and contact parts made using this method |
EP2779200A1 (en) * | 2013-03-14 | 2014-09-17 | Pronutec, S.A.U. | Measurement module for a fuse block base |
EP2985779A1 (en) * | 2014-08-13 | 2016-02-17 | Pronutec, S.A.U. | Fuseholder base |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE29705224U1 (en) * | 1997-03-22 | 1997-06-26 | Jean Müller GmbH Elektrotechnische Fabrik, 65343 Eltville | Installation with an NH fuse or NH load-switching strip and a converter |
GB2467680B (en) * | 2008-03-13 | 2012-10-17 | Schneider Electric Ltd | Cover |
DE102009026742A1 (en) * | 2009-06-04 | 2010-12-09 | Efen Gmbh | Current transformer unit |
ES2400995B1 (en) * | 2010-11-12 | 2013-11-26 | Pronutec, S.A. | TRIPOLAR PORTABLE FUSE BASED MEASUREMENT MODULE. |
CN201985061U (en) * | 2011-03-16 | 2011-09-21 | 奇瑞汽车股份有限公司 | Main fuse box for automobile |
JP6195462B2 (en) * | 2013-04-01 | 2017-09-13 | 矢崎総業株式会社 | Fuse unit |
CN204732369U (en) * | 2015-05-22 | 2015-10-28 | 浙江众志汽车电器有限公司 | A kind of multichannel automobile power fuse box assembly |
-
2016
- 2016-05-31 PL PL16382242.2T patent/PL3252795T3/en unknown
- 2016-05-31 ES ES16382242T patent/ES2933908T3/en active Active
- 2016-05-31 PT PT163822422T patent/PT3252795T/en unknown
- 2016-05-31 EP EP16382242.2A patent/EP3252795B1/en active Active
-
2017
- 2017-05-29 SG SG11201811810XA patent/SG11201811810XA/en unknown
- 2017-05-29 WO PCT/ES2017/070362 patent/WO2017207843A1/en active Application Filing
- 2017-05-29 CN CN201780047268.2A patent/CN109564841B/en not_active Expired - Fee Related
- 2017-05-29 AU AU2017272900A patent/AU2017272900A1/en not_active Abandoned
-
2018
- 2018-11-29 IL IL263397A patent/IL263397A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1953786A2 (en) * | 2007-02-05 | 2008-08-06 | Morsettitalia S.p.A. | Method for producing removable contact parts with flat pins and contact parts made using this method |
EP2779200A1 (en) * | 2013-03-14 | 2014-09-17 | Pronutec, S.A.U. | Measurement module for a fuse block base |
EP2985779A1 (en) * | 2014-08-13 | 2016-02-17 | Pronutec, S.A.U. | Fuseholder base |
Non-Patent Citations (5)
Title |
---|
PFISTERER: "PLCON Rapid Connection of Smart Metering Data Concentrators", 31 December 2010 (2010-12-31), XP055307379, Retrieved from the Internet <URL:https://www.shmmetershop.co.uk/shop/files/attachments/228/PLCON%20Datasheet.pdf> [retrieved on 20161004] * |
SHM: "SHM Communications Ltd Valley House 6 Winnall Valley Road SHM 'Vampire' Voltage Tap. Fused for Live Connections and Non-Fused for Neutral Connections. VT6WF and VT6WUF Data Sheet", 30 September 2013 (2013-09-30), XP055307101, Retrieved from the Internet <URL:https://www.shmmetershop.co.uk/shop/files/attachments/236/17809_SHM_VT6W_datasheet.pdf> [retrieved on 20160930] * |
SHM: "SHM Communications Ltd Valley House 6 Winnall Valley Road SHM Voltage Tap Clamp for Busbar VTBB15X4FPT, NPT and SET Data sheet (Fused for live connections and non-fused for neutral connections)", 30 November 2013 (2013-11-30), XP055307100, Retrieved from the Internet <URL:https://www.shmmetershop.co.uk/shop/files/attachments/233/17537_Br_SHM_VTBB15X4_Datasheet.pdf> [retrieved on 20160930] * |
SHM: "SHM 'Vampire' Voltage Taps for Live and Neutral Connections. VT6WUF, VT16WUF, VT6WF and VT16WF Installation and Operating Intructions Introduction", 30 April 2012 (2012-04-30), XP055308257, Retrieved from the Internet <URL:https://www.shmmetershop.co.uk/shop/files/attachments/235/Man_SHM_VTW_guide.pdf> [retrieved on 20161006] * |
WAGO: "855 Series Voltage Taps 855-8002 Conductor Sizes Feedthrough for Measurement Fuse Color Dimensions (W x H x D) Weight Item No", 18 May 2015 (2015-05-18), XP055307099, Retrieved from the Internet <URL:http://www.wago.com/wagoweb/documentation/855/eng_dat/d0855800x_00000000_0en.pdf> [retrieved on 20160930] * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3671792A1 (en) | 2018-12-19 | 2020-06-24 | Jean Müller GmbH Elektrotechnische Fabrik | Electrical tap with an overcurrent protection device and assembly of a power distribution component and an electrical tap |
EP4394396A1 (en) | 2022-12-28 | 2024-07-03 | Gorlan Team, S.L.U. | Device and method for measuring electric parameters in fuse-holder base installations |
WO2024141571A1 (en) | 2022-12-28 | 2024-07-04 | Gorlan Team, S.L.U. | Device and method for measuring electric parameters in fuse-holder base installations |
Also Published As
Publication number | Publication date |
---|---|
IL263397A (en) | 2018-12-31 |
WO2017207843A1 (en) | 2017-12-07 |
SG11201811810XA (en) | 2019-01-30 |
PT3252795T (en) | 2022-12-26 |
CN109564841A (en) | 2019-04-02 |
CN109564841B (en) | 2020-05-05 |
AU2017272900A1 (en) | 2019-01-24 |
PL3252795T3 (en) | 2023-03-13 |
EP3252795B1 (en) | 2022-09-21 |
ES2933908T3 (en) | 2023-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3252795B1 (en) | Voltage tap system for a fuse-holder base, fuse-holder base and measurement module incorporating said system | |
US5206777A (en) | Three-phase panelboard using standard rated three-pole circuit protective devices in a grounded delta system | |
EP3195338B1 (en) | Current management device | |
US5204800A (en) | Voltage surge suppression device | |
US11615933B2 (en) | Safety apparatus having terminal shield with indication circuit, and circuit interruption apparatus | |
EP2985779A1 (en) | Fuseholder base | |
GB2466941A (en) | Consumer unit for housing residual current devices and miniature circuit breakers | |
CN219247153U (en) | Industrial three-phase distribution box | |
CN113924702A (en) | Bus bar adapter with automatic switch | |
EP4071947A1 (en) | Surge arrester for power-grid protection in a multi-pole design to protect the power grid | |
KR840001584B1 (en) | Wireless emergency power interrupting system for multibranch circuits | |
CN104810788B (en) | External control for an electromagnetic trigger | |
US4127888A (en) | Surge protector and test network for AC equipment | |
US7616424B2 (en) | Surge suppression module with disconnect | |
EP2782115B1 (en) | Fuse block base | |
US6778368B2 (en) | Electrical service distribution board | |
JP7470932B2 (en) | Distribution board, surge protection part of distribution board, base part of distribution board, and surge protection device | |
EP3756206B1 (en) | Circuit breaker housing | |
AU2012396428A1 (en) | Current transformer and load interrupter having such a current transformer | |
US4172271A (en) | Fusible circuit interrupter with ground fault circuit protection | |
EP3751590B1 (en) | Electronic trip device for molded case circuit breaker | |
JP2008017674A (en) | Test plug | |
US9496690B2 (en) | Circuit interrupters and electrical enclosures with rejection features | |
CN111834177A (en) | Plug-in circuit breaker | |
CN116435149A (en) | Low voltage protection switching device and method of assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180606 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
R17P | Request for examination filed (corrected) |
Effective date: 20180606 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200423 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01H 85/25 20060101ALI20220427BHEP Ipc: H01H 85/22 20060101ALI20220427BHEP Ipc: H01H 85/02 20060101AFI20220427BHEP |
|
INTG | Intention to grant announced |
Effective date: 20220517 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016075130 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1520379 Country of ref document: AT Kind code of ref document: T Effective date: 20221015 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 3252795 Country of ref document: PT Date of ref document: 20221226 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20221220 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220921 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220921 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221221 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220921 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220921 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220921 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2933908 Country of ref document: ES Kind code of ref document: T3 Effective date: 20230214 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1520379 Country of ref document: AT Kind code of ref document: T Effective date: 20220921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220921 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220921 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220921 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220921 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220921 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230121 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220921 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016075130 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220921 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220921 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230602 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220921 |
|
26N | No opposition filed |
Effective date: 20230622 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220921 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220921 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220921 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220921 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230531 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20240507 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240521 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240603 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240529 Year of fee payment: 9 Ref country code: PT Payment date: 20240507 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240524 Year of fee payment: 9 Ref country code: BE Payment date: 20240506 Year of fee payment: 9 |