EP3250778B1 - Hochenergetisches trennwerkzeug mit druckausgeglichenen sprengstoffen - Google Patents

Hochenergetisches trennwerkzeug mit druckausgeglichenen sprengstoffen Download PDF

Info

Publication number
EP3250778B1
EP3250778B1 EP15880607.5A EP15880607A EP3250778B1 EP 3250778 B1 EP3250778 B1 EP 3250778B1 EP 15880607 A EP15880607 A EP 15880607A EP 3250778 B1 EP3250778 B1 EP 3250778B1
Authority
EP
European Patent Office
Prior art keywords
booster
directional
directional booster
explosive
tubular housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15880607.5A
Other languages
English (en)
French (fr)
Other versions
EP3250778A4 (de
EP3250778A1 (de
Inventor
William T. Bell
James Rairigh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wt Bell International Inc
Original Assignee
WT Bell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/605,829 external-priority patent/US9657544B2/en
Application filed by WT Bell International Inc filed Critical WT Bell International Inc
Priority claimed from US14/858,816 external-priority patent/US9435170B2/en
Publication of EP3250778A1 publication Critical patent/EP3250778A1/de
Publication of EP3250778A4 publication Critical patent/EP3250778A4/de
Application granted granted Critical
Publication of EP3250778B1 publication Critical patent/EP3250778B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B29/00Cutting or destroying pipes, packers, plugs or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windows; Deforming of pipes in boreholes or wells; Reconditioning of well casings while in the ground
    • E21B29/02Cutting or destroying pipes, packers, plugs or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windows; Deforming of pipes in boreholes or wells; Reconditioning of well casings while in the ground by explosives or by thermal or chemical means

Definitions

  • the present invention relates to the earthboring arts. More particularly, the present invention relates, generally, to methods and devices for severing drill pipe, casing and other massive tubular structures by the remote detonation of an explosive cutting charge.
  • Tubular drill strings may be suspended into a borehole that penetrates the earth's crust by a number of kilometers (several miles, where 1 mile is about 1.61 km) beneath the drilling platform at the earth's surface. To further complicate matters, the borehole may be turned to a more horizontal course to follow a stratification plane.
  • the drill string weight which is bearing on the drill bit and necessary for advancement into the earth strata, is provided by a plurality of specialty pipe joints having atypically thick annular walls. In the industry vernacular, these specialty pipe joints are characterized as "drill collars.”
  • a drill control objective is to support the drill string above the drill collars in tension. Theoretically, only the weight of the drill collars bears compressively on the drill bit.
  • the drill motor, bent sub and drill bit are positioned below the drill collars. This drill string configuration does not rotate in the borehole above the drill bit. Consequently, the drill collar section of the drill string is particularly susceptible to borehole seizures and because of the drill collar wall thickness, is also difficult to cut.
  • the driller may use wireline suspended instrumentation that is lowered within the central, drill pipe flow bore to locate and measure the depth position of the obstruction. This information may be used to thereafter position an explosive severing tool within the drill pipe flow bore.
  • an explosive drill pipe severing tool comprises a significant quantity, 800 to 1,500 grams (12,345 grains to 23,149 grains) for example, of high order explosive, such as RDX, HMX or HNS.
  • the explosive powder is compacted into high density "pellets" of about 22.7 grams to about 38 grams (350 grains to 586 grains) each.
  • the pellet density is compacted to about 1.6 gm./cm 3 to about 1.65 gm./cm 3 (404.6 grains/inch 3 to 417.3 grains/ inch3) to achieve a shock wave velocity greater than about 9144 meters/second (30,000 ft/sec), for example.
  • a shock wave of such magnitude provides a pulse of pressure in the order of 2.8 X 10 4 MPa (4 X 10 6 psi). It is the pressure pulse that severs the pipe.
  • the pellets are compacted, at a production facility, into a cylindrical shape for serial, juxtaposed loading at the jobsite as a column in a cylindrical barrel of a tool cartridge. Due to weight variations within an acceptable range of tolerance between individual pellets, the axial length of explosive pellets fluctuates within a known tolerance range.
  • Such precise timing is typically provided by means of mild detonating fuse and special boosters.
  • fuse length is not accurately cut or problems exist in the booster/detonator connections, the collision may not be realized at all and the device will operate as a "non-colliding" tool with substantially reduced severing pressures.
  • US2014/338910 describes a pipe severing tool arranged to align a plurality of high explosive pellets along a unitizing central tube that is selectively separable from a tubular external housing.
  • the pellets are loaded serially in a column in full view along the entire column as a final charging task.
  • Detonation boosters are pre-positioned and connected to a detonation cord for simultaneous detonation at opposite ends of the explosive column.
  • the present invention provides an apparatus for severing a length of pipe as defined by claim 1.
  • the present invention provides a method of severing a pipe as defined by claim 11.
  • the present invention provides an apparatus for severing a length of pipe as defined by claim 15.
  • the apparatuses of the first and third aspects of the present invention are pipe severing tools. These may comprise an outer housing of such outside diameter that is compatible with the drill pipe flow bore diameter intended for use. Distinctively, the housing wall may be extremely thin (e.g. 0.71 mm [0.028 in.]) and vented to the surrounding exterior environment for interior/exterior pressure equalization. Accordingly, the only material limitation on the housing may be sufficient wall strength to withstand the rigors of well descent.
  • Vented housing exposure of the main load explosive to downhole fluids can be enabled by the use of fluid impermeable binders, such as Teflon or any other suitably hydrophobic polymer, which can be combined with formulations of HMX and other military grade explosives. Explosives of such formulations have been discovered to absorb well fluids at very low rates of deterioration. Little or no explosive energy is lost to well fluid exposures that occur in the order of an hour, which is usually more than an adequate time to accurately position a cutting tool for detonation.
  • fluid impermeable binders such as Teflon or any other suitably hydrophobic polymer
  • the lower end of the present invention's housing tube can be closed by a sliding, overlap assembly with a nose plug.
  • the nose plug can be secured by screw threads to a tubular load rod.
  • the housing tube upper end can be closed by a sliding, overlap assembly with a top carrier plug.
  • the tubular load rod is threaded into the inside face of the top carrier plug and extends along the housing tube axis for substantially the full length of the housing tube.
  • the first bi-directional booster can be secured within the bore of the load rod tube at the top carrier plug.
  • the first mild detonation cord can be housed along the length of the load rod tube bore, from the first booster to the second bi-directional booster at the nose plug end of the load rod tube.
  • the third bi-directional booster can be secured in the top carrier plug for initiating a second mild detonation cord.
  • the length of the second mild detonation cord can be laid in the trough of a helical flute that can be formed on the surface of a timing spool. Opposite ends of the second detonation cord can be disposed within detonation proximity of third and fourth bi-directional boosters.
  • the first and second detonation cords are of identical length.
  • the first, second, or both detonation cords may be pre-shrunk.
  • a pellet of initiating explosive i.e., booster explosive
  • booster explosive can be positioned within a socket in the top carrier plug, between the first and third bi-directional boosters.
  • a thin, fluid impermeable bulkhead can be used to separate the initiating explosive from the first and third bi-directional boosters, to isolate the booster pellet from the downhole well fluid environment of the main lower explosive housing.
  • the timing spool can be a substantially cylindrical body element, which can have an axial bore and a helical surface flute about the cylindrical axis.
  • the timing spool can be secured to the load rod by rod penetration through the axial bore of the spool.
  • An upper axial sleeve extension from the spool body can abut the top carrier plug inside face to secure a spacial separation of the spool from the booster carrier.
  • a lower axial sleeve extension from the spool body can support the fourth bi-directional booster and can serve as a limit stop for a stack of washer-shaped primary explosive pellets, which can be aligned along the length of the load rod.
  • a coil spring can be compressed between an inside face of the nose plug and a terminal pellet in the column of the main load explosive to bias the column tightly against the lower sleeve extension.
  • the assembly and loading sequence can include a separation of the housing tube and nose plug, as a unit, from the booster carrier and load rod.
  • Measured quantities of military grade explosive material such as HMX, RDX and HNS that can be blended with a fluid impervious binder of polymer material that inhibits fluid penetration of, or absorption by, the explosive material, can be pressed into annular disc shaped pellets that can have a central aperture with an inside diameter that can be slightly greater than the load rod diameter.
  • the outside diameter of the pellets can correspond to the inside diameter of the housing tube.
  • a multiplicity of such pellets can be aligned in a column along the length of the load rod, with the first pellet engaging the distal end of the lower axial sleeve of the timing spool and in detonation proximity with the fourth bi-directional booster.
  • the housing tube and nose plug can be repositioned over the column of the main load pellets. Threading the nose plug onto the load rod can compress a coil spring against the lower-most main load pellet.
  • the thin wall housing tube can remain free of axial compression.
  • the first aspect of the present invention provides an apparatus for severing a length of pipe.
  • the apparatus comprises a tubular housing having an internal bore and a plurality of bi-directional boosters, and one or more vents in the housing to substantially equalize fluid pressure within the bore with fluid pressure outside of the tubular housing.
  • the apparatus includes a first detonation cord that has a first length between a first bi-directional booster and a second bi-directional booster of said plurality of bi-directional boosters.
  • the apparatus comprises a second detonation cord that has a first length between a third bi-directional booster and a fourth bi-directional booster of said plurality of bi-directional boosters.
  • the apparatus also includes a main load explosive material, positioned in the tubular housing and located between the second bi-directional booster and the fourth bi-directional booster of the plurality of bi-directional boosters; a fluid impermeable material mixed with the main load explosive material; and an initiating booster explosive for simultaneously initiating the first and the third bi-directional boosters of the plurality of bi-directional boosters.
  • the main load explosive material can be pressed into a plurality of annular pellets, and the plurality of annular pellets can be compressed to a pressure corresponding to an expected detonation environment pressure.
  • the expected detonation environment pressure may entail either matching or exceeding the expected detonation environment pressure or, alternatively, if the expected detonation environment pressure is in excess of the pressure required to compress the explosive material to its maximum possible density, simply applying sufficient pressure to achieve said maximum possible density.
  • the tubular housing can further comprise a tubular loading rod that can be used for penetrating a central aperture of the plurality of annular pellets.
  • the annular pellets can be aligned along the tubular loading rod, between the second and the fourth of the plurality of bi-directional boosters.
  • the fourth of the plurality of bi-directional boosters can be disposed within detonation proximity of the main load explosive material.
  • the tubular loading rod can comprise a central bore, and the first bi-directional booster and the second bi-directional booster of the plurality of bi-directional boosters can be disposed within the central bore, at respectively opposite ends of the first detonation cord.
  • a first resilient bias can be positioned within said tubular loading rod, between a second end plug and the second of the plurality of bi-directional boosters, and the first resilient bias can bias the first bi-directional booster and the second bi-directional booster and the first detonation cord toward the pellet of initiating booster explosive.
  • the third bi-directional booster and the fourth bi-directional booster of the plurality of bi-directional boosters can be disposed at respectively opposite ends of the second detonation cord.
  • An intermediate portion of the second detonation cord can be located between the third and the fourth of the plurality of bi-directional boosters, wherein the intermediate portion is wound about a timing spool.
  • the timing spool can comprise a cylindrical body and a helical flute formed on the surface of the body, about an axis thereof.
  • the apparatus can further comprise a first end plug and a second end plug for enclosing an internal bore between opposite ends of the tubular housing.
  • the first end plug can comprise an initiating booster cavity, wherein the initiating booster cavity can hold the initiating booster explosive.
  • the apparatus can further comprise a firing head that can be secured to the first end plug, and the firing head can comprise a detonator that can be disposed within detonation proximity of the initiating booster explosive.
  • a second resilient bias can be positioned between the second end plug and the plurality of annular pellets.
  • the tubular loading rod can comprise a structural wall surrounding or about the central bore, wherein the structural wall can be penetrated by an aperture, for example, between the second bi-directional booster and a portion of the plurality of annular pellets.
  • the second aspect of the present invention provides a method of severing a pipe.
  • the method comprises the steps of: enclosing opposite ends of a tubular housing, venting the tubular housing to substantially equalize fluid pressure within the tubular housing to the fluid pressure outside of the tubular housing, and placing a first bi-directional booster, a second bi-directional booster, a third bi-directional booster, and a fourth bi-directional booster within the tubular housing.
  • the method also includes connecting a first detonation cord with a first length between the first bi-directional booster and the second bi-directional booster.
  • the method also includes connecting a second detonation cord with a first length between the third bi-directional booster and the fourth bi-directional booster.
  • the steps of the method further include combining a main load explosive material and a fluid impermeable material into a mixture, and loading the mixture into the tubular housing between the second and fourth bi-directional boosters.
  • the method also includes positioning the tubular housing and the mixture in a pipe, and simultaneously initiating the ignition of the second and the fourth bi-directional boosters.
  • the method can include the step of pressing the mixture into a plurality of annular pellets, wherein the step of pressing the mixture further comprises compressing the plurality of annular pellets to a pressure corresponding to an expected detonation environment.
  • the step of loading the mixture into the tubular housing can further comprise aligning the plurality of annular pellets in a column between the second bi-directional booster and the fourth bi-directional booster of the plurality of bi-directional boosters.
  • the method can further include the step of penetrating a central aperture of the plurality of annular pellets with a tubular loading rod, wherein the step of placing the first bi-directional booster, the second bi-directional booster, the third bi-directional booster, and the fourth bi-directional booster, of the plurality of bi-directional boosters, can further include placing the first bi-directional booster of the plurality of bi-directional boosters within one end of a central bore of the tubular loading rod and placing the second bi-directional booster of the plurality of bi-directional boosters within the central bore at an opposite end of the tubular loading rod.
  • the method steps of placing the first, the second, the third, and the fourth of the plurality of bi-directional boosters can further include placing the first bi-directional booster of the plurality of bi-directional boosters within detonation proximity of an initiating booster explosive, and in the same or another embodiment, placing the third bi-directional booster of the plurality of bi-directional boosters within detonation proximity of said initiating booster explosive.
  • the step of connecting a second detonation cord can include wrapping the second detonation cord about a timing spool, and positioning opposite ends of the second detonation cord in detonation proximity of the third bi-directional booster and the fourth bi-directional booster, of the plurality of bi-directional boosters.
  • the third aspect of the present invention provides an apparatus for severing a length of pipe.
  • the apparatus comprises a tubular housing that includes an internal bore and at least one vent, wherein the at least one vent equalizes fluid pressure within the internal bore with fluid pressure outside of the tubular housing.
  • the apparatus also includes a first end cap, positioned on a first distal end of the tubular housing to close a first distal end of the internal bore.
  • the apparatus further comprises a second end cap positioned on a second distal end of the tubular housing to close a second distal end of the internal bore.
  • the apparatus includes a timing spool located within said tubular housing; and a loading tube positioned within the tubular housing and connecting the first end cap with the second end cap through the timing spool, wherein the loading tube comprises a central bore therethrough.
  • the apparatus also includes an initiating explosive booster located in the first end cap.
  • the apparatus also comprises a first bi-directional booster, positioned within the central bore of the loading tube, proximate to the first end cap and optionally in detonation proximity to the initiating booster explosive.
  • the apparatus also includes a second bi-directional booster positioned within the central bore of the loading tube and proximate to the second end cap, and a third bi-directional booster located within the internal bore and proximate to the timing spool.
  • the apparatus also includes a first detonation cord that has a first length between the first bi-directional booster and the second bi-directional booster.
  • the first detonation cord can be positioned within the loading tube, between the first and the second bi-directional boosters.
  • the apparatus also includes a second detonation cord that has a first length between the third bi-directional booster and the initiating explosive booster, and a main load explosive material that is positioned within the tubular housing, between the second end cap and the third bi-directional booster.
  • the main load explosive material may be for ignition and use in severing the length of a pipe or other tubular.
  • the main load explosive can be pressed into a plurality of annular pellets, and the loading tube can extend through the plurality of annular pellets.
  • the annular pellets can be aligned along the loading tube, between the second bi-directional booster and the third bi-directional booster.
  • the second detonation cord is helically wound about a body of the timing spool.
  • the second detonation cord can extend from the third bi-directional booster, through the timing spool, to connect to the initiating explosive booster through an aperture in the first end cap.
  • timing spool and a second detonation cord Described but not claimed is an alternative example which eliminates the use of the timing spool and a second detonation cord. Progression of a detonation front along the column of the main load explosive pellets may be retarded by a select number of timing discs that can be fabricated from a low impedance material, such as Teflon or other suitable polymer, that can be positioned along the load rod, between the adjacent main load explosive pellets. Similar results can be obtained by blending the formulation of the main load explosive with micro bubbles, which can reduce the detonation front velocity.
  • a low impedance material such as Teflon or other suitable polymer
  • This alternate unclaimed example can include an apparatus for severing a length of pipe that includes a tubular housing that includes an internal bore and at least one vent, wherein the at least one vent can be usable for equalizing fluid pressure within the internal bore to fluid pressure outside of the tubular housing; and a first end cap, positioned on a first distal end of the tubular housing, that is usable to close a first distal end of the internal bore, with an initiating booster explosive located in the first end cap.
  • the apparatus can further comprise a second end cap positioned on a second distal end of the tubular housing and usable to close a second distal end of the internal bore.
  • the apparatus can include a loading tube positioned within the tubular housing, between the first end cap and the second end cap.
  • the loading tube can include a first bi-directional booster positioned within the loading tube and in detonation proximity to the initiating booster explosive, a second bi-directional booster positioned within the loading tube and proximate to the second end cap, and a detonation cord positioned within the loading tube and between the first bi-directional booster and the second bi-directional booster.
  • the detonation cord can provide a detonation ignition time interval between ignition of the first bi-directional booster and ignition of the second bi-directional booster.
  • a third bi-directional booster can be located within the first end cap and in detonation proximity to the initiating booster explosive.
  • a blend of explosive material and fluid impermeable material can be compressed into a plurality of annular explosive pellets, and a first column of the plurality of annular explosive pellets can comprise a first quantity of explosive material aligned along the loading tube, from the second bi-directional booster toward a detonation wave collision point.
  • a second column of the plurality of annular explosive pellets can comprise the first quantity of explosive material aligned along the loading tube, from a third bi-directional booster toward the detonation wave collision point, and a detonation wave retarding material that can be usable for retarding the progress of a detonation wave along the second column by a time interval corresponding to a detonation wave time interval along the first column.
  • the apparatus can include a fluid barrier positioned in the first end cap, between the tubular housing and the initiating booster explosive, to isolate the initiating booster explosive from fluid within the housing.
  • the detonation wave retarding material can comprise one or more annular discs of polymer material that can be distributed among the plurality of annular explosive pellets, wherein the polymer material can be Teflon.
  • the detonation wave retarding material can comprise glass micro-balloons that can be blended with the explosive material and the fluid impermeable material.
  • the present invention relates, generally, to methods and devices for severing drill pipe, casing and other massive tubular structures by the remote detonation of an explosive cutting charge.
  • FIG. 1 a cross-sectional view of an embodiment of apparatus of the present invention is shown that includes a tubular outer housing 10, which is secured at an upper distal end to a top carrier plug 12.
  • the outer housing 10 has an internal bore 11 that is closed at its lower end by a nose plug 14 (also shown in Fig. 2 ).
  • the housing 10 interior is vented to the exterior by the use of tubular wall apertures 16.
  • a firing assembly which can comprise a top carrier plug 12 and a firing head 26, as shown.
  • An internal cavity 20 in the top carrier plug 12 is formed to receive a pellet of initiating booster explosive 22.
  • fluid pressure bulkheads 24 are shown, for example as fluid barriers, that can be positioned across the initiating booster cavity bottom to isolate the initiating booster explosive 22 from the well fluid and pressure environment that can occupy the interior bore of the housing 10 due to the apertures 16 (i.e., vents).
  • the upper end of the top carrier plug 12 can include an internally threaded socket 18, as shown in Fig. 1 .
  • the socket 18 can receive the firing head 26 that positions a detonator 28 in detonation proximity of the initiating booster explosive 22.
  • Detonation proximity is that distance between a particular detonator and a particular receptor explosive within which ignition of the detonator will initiate a detonation of the receptor explosive.
  • the loading rod 30 can be secured to the top carrier plug 12 by threads, and the loading rod 30 can project from the inside face 32 of the plug 12, along the housing 10 axis.
  • the opposite distal end of the loading rod 30 can be threaded into a socket 15 in the nose plug 14.
  • the upper end of the loading rod 30 can penetrate an axial bore through and along the length of a generally cylindrical timing spool body 34.
  • the cylindrical surface of the timing spool body 34 can be formed with a helically wound flute 36.
  • Opposite ends of the timing spool body 34 can be formed as reduced outside diameter sleeves 38 and 39.
  • the upper sleeve 38 can be usable for spacing the spool body 34 from the top carrier plug 12.
  • the lower sleeve 39 can be usable for spacing the spool body 34 from the uppermost main load explosive pellet 40 and can provide structural support for a bi-directional booster 48.
  • Bi-directional boosters 42, 44, 46, 48 may additionally be self-supporting through compression prior to loading within housing 10 or loading rod 30.
  • the length of a first detonation cord 43 is housed within the central bore of the loading rod 30 and links the first bi-directional booster 42 with the second bi-directional booster 44.
  • the first bi-directional booster 42 is housed within the upper end of the bore of the loading rod 30 and within detonation proximity of the initiating booster explosive 22.
  • the second bi-directional booster 44 is housed near the lower distal end of the bore of the loading rod 30 and against the resilient bias of a coil spring 50, also positioned within the bore of the loading rod 30.
  • the coil spring 50 maintains a compressive contact between the first and second bi-directional boosters and the first detonation cord 43.
  • a slit is cut into the structural wall of the loading rod 30, adjacent the second bi-directional booster 44, to provide an ignition initiation window 52 between the second bi-directional booster 44 and the adjacent main load explosive pellets 40.
  • a larger coil spring 54 surrounds the lower end of the load rod 30 to apply a resilient bias between the nose plug 14 and the end-most main load explosive pellet 40.
  • the third bi-directional booster 46 can be secured within an aperture 13 (shown in Fig. 3 ) that penetrates the transverse wall 32 (i.e., inside face wall) of the top carrier plug 12 to position the third bi-directional booster 46 in detonation proximity of the initiating explosive 22.
  • the fourth bi-directional booster 48 can be secured to the lower timing spool sleeve 39.
  • the third and fourth bi-directional boosters 46 and 48 are linked by a second mild detonation cord 45, which has substantially the same length as the first mild detonating cord 43. However, the intermediate length of the second detonation cord 45 is wound about the flutes 36 on the timing spool 34 surface.
  • the distal end of the nose plug 14 can be tapered back from a central boss 56 to provide flexure clearance for the two or more centralizers 58, as shown by Fig. 2 , which are used for centralizing the high energy severing tool within a tubular and/or the wellbore.
  • Each centralizer 58 can be secured by a pair of fasteners, such as machine screws 60, to provide resistance against rotation of the centralizers about the tool axis.
  • the tool assembly may be safely transported by traditional media with the bi-directional boosters 42, 44, 46, and 48 in place and the detonation cords 43 and 45 positioned between the respective bi-directional boosters.
  • no main load explosive material 40 and/or initiating booster pellets 22 are present within the housing 10 assembly.
  • Annular pellets of main load explosive material 40 can be formed from explosive material, such as RDX, HNX or HNS, which is mixed with a fluid impermeable material, such as Teflon or other polymer as a binder. Approximately 22.7 gms. to 38 gms. (350 grains to 586 grains) of such explosive material is pressed into an annular disc of an outside diameter that is less than the inside diameter of the housing 10 and a central aperture diameter that is greater than the outside diameter of the loading rod 30. Preferably, the annulus shaped pellets are compacted to a pressure corresponding to an expected detonation environment pressure.
  • the apparatus may be safely transported to the well site of use with the bi-directional boosters and the detonation cord in place.
  • the main load pellets 40 and initiation booster explosive pellet 22 are transported separately.
  • the required number or plurality of main load pellets 40 can be aligned in a column with the pellet central aperture around the loading rod 30, and the first pellet abutting the lower spool sleeve 39. Then, the threaded socket 15 of the nose plug 14 can be screwed onto the lower distal end of the loading rod 30, thereby compressing the load rod spring 50 against the second bi-directional booster 44 and the outer larger spring 54 against the main load explosive pellet 40 assembly.
  • the housing 10 With the main load explosive pellets aligned in a column over the loading rod 30, the housing 10 can be secured to the top carrier plug 12. Next, the pellet of initiating booster explosive 22 can be inserted into the internal cavity 20, and the firing head 26 can be screwed into the socket 18 of the top carrier plug 12 to position the detonator 28 within detonation proximity of the pellet of initiating booster explosive 22.
  • the tool can be secured to the end of a suspension string and lowered into the well bore, along the well pipe flow bore.
  • the initiating booster explosive 22 is detonated to start a pair of parallel ignition sequences that meet at the central collision point.
  • the second embodiment of apparatus of the invention differs from Fig. 1 mainly by the omission of the third bi-directional booster 46.
  • the first detonation cord 43 is positioned between the first bi-directional booster 42 and the second bi-directional booster 44, and the second detonation cord 45 connects the fourth bi-directional booster 48 to the initiating booster explosive 22.
  • the upper distal end of the second detonation cord 45 is secured within an aperture 13, thereby positioning the end of the second detonation cord 45 within detonation proximity of the pellet of initiating booster explosive 22.
  • the intermediate length of the second detonation cord 45, between the aperture 13 and the bi-directional booster 48, is wrapped about the flutes 36 of the timing spool body 34.
  • FIG. 4 An unclaimed example of apparatus is shown by Fig. 4 , which omits the use of a timing spool body 34, a second detonation cord 45, and a fourth bi-directional booster 48 by inserting timing washers 70 between explosive pellets 40 in the upper portion of the main load explosive column.
  • this unclaimed example includes a detonation cord 43 positioned between the first bi-directional booster 42 and the second bi-directional booster 44, with the third bi-directional booster positioned proximate to the initiating booster explosive 22.
  • a first column of main load explosive pellets 40 is aligned along the loading rod 30, between the second bi-directional booster 44 and a detonation wave collision point.
  • a second column of main load explosive pellets 40 also collectively comprising the predetermined quantity of explosive material, is aligned along said loading rod 30, from detonation proximity with the third bi-directional booster 46 to said detonation wave collision point.
  • Also progressing along the second column from the third bi-directional booster 46 toward said detonation wave collision point is a number of pellet shaped timing washers 70 that are distributed among the main load explosive pellets 40.
  • Each timing washer 70 retards the progress of the explosive shock front as it advances along the second explosive column from the third bi-directional booster 46 toward the detonation wave collision point.
  • Suitable fabrication materials for such timing washers include numerous polymers, such as Teflon.
  • the total elapsed time between detonation of the first bi-directional booster 48 and the second bi-directional booster 44 corresponds to the total retardation time that must be incurred by the timing washers 70.
  • timing washers 70 are provided in the second main load explosive column as is necessary to substantially match the time interval for a detonation wave to travel along the first detonation cord 43, from the first bi-directional booster 42 to the second bi-directional booster 44, so the two primary explosive shock waves, arising from the same quantity of explosive material in both columns, will collide at the detonation wave collision point.
  • the unclaimed example of apparatus shown in Fig. 5 provides glass micro-bubbles that can be blended with the explosive material of the second column along with the fluid impermeable material. Such micro-bubbles are known to retard the shock wave advance through explosive material.
  • the microbubble blended pellets 41 comprise the second column of main load explosive. However, the same quantity of explosive material is provided for both columns.
  • Figs. 4-5 may be constructed without an outer housing.
  • Fig. 6 depicts an unclaimed example of apparatus which is a variant of Fig. 5 , with the housing and corresponding housing apertures removed from the apparatus such that the compressed pellets are directly exposed to the well environment. It can be appreciated by those of ordinary skill in the art that the unclaimed example in Fig. 4 may be similarly constructed without a housing.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Claims (17)

  1. Vorrichtung zum Trennen einer Rohrlänge, Folgendes umfassend:
    ein rohrförmiges Gehäuse (10), das eine innere Bohrung (11) und mehrere bidirektionale Booster (42, 44, 46, 48) aufweist;
    eine erste Zündschnur (43), die eine erste Länge zwischen einem ersten bidirektionalen Booster (42) und einem zweiten bidirektionalen Booster (44) der mehreren bidirektionalen Booster (42, 44, 46, 48) aufweist;
    eine zweite Zündschnur (45), die eine erste Länge zwischen einem dritten bidirektionalen Booster (46) und einem vierten bidirektionalen Booster (48) der mehreren bidirektionalen Booster (42, 44, 46, 48) aufweist;
    ein Hauptladungssprengmaterial (40) im rohrförmigen Gehäuse (10), das sich zwischen dem zweiten bidirektionalen Booster (44) und dem vierten bidirektionalen Booster (48) der mehreren bidirektionalen Booster (42, 44, 46, 48) befindet;
    ein fluidundurchlässiges Material, das mit dem Hauptladungssprengmaterial (40) vermischt ist; und
    einen Boosterauslösesprengstoff (22), um gleichzeitig den ersten bidirektionalen Booster (40) und den dritten bidirektionalen Booster (46) der mehreren bidirektionalen Booster (42, 44, 46, 48) auszulösen;
    wobei die Vorrichtung einen oder mehrere Lüftungsschlitze (16) im rohrförmigen Gehäuse (10) umfasst, um den Fluiddruck innerhalb der inneren Bohrung (11) mit dem Fluiddruck außerhalb des rohrförmigen Gehäuses im Wesentlichen auszugleichen.
  2. Vorrichtung nach Anspruch 1, wobei das Hauptladungssprengmaterial (40) in mehrere ringförmige Pellets gepresst ist, wobei die mehreren ringförmigen Pellets auf einen Druck zusammengepresst sind, der einem voraussichtlichen Zündungsumgebungsdruck entspricht.
  3. Vorrichtung nach Anspruch 2, wobei das rohrförmige Gehäuse (10) ferner einen rohrförmigen Ladestab (30) umfasst, um eine mittlere Öffnung der mehreren ringförmigen Pellets zu durchdringen.
  4. Vorrichtung nach Anspruch 3, wobei die mehreren ringförmigen Pellets entlang des rohrförmigen Ladestabs (30) zwischen dem zweiten bidirektionalen Booster (44) und dem vierten bidirektionalen Booster (48) der mehreren bidirektionalen Booster (42, 44, 46, 48) ausgerichtet sind.
  5. Vorrichtung nach Anspruch 3, wobei der rohrförmige Ladestab (30) eine mittige Bohrung und eine tragende Wand um die mittige Bohrung umfasst, wobei der erste bidirektionale Booster (42) und der zweite bidirektionale Booster (44) der mehreren bidirektionalen Booster (42, 44, 46, 48) an jeweils entgegengesetzten Enden der ersten Zündschnur (43) innerhalb der mittigen Bohrung angeordnet sind, wobei der dritte bidirektionale Booster (46) und der vierte bidirektionale Booster (48) der mehreren bidirektionalen Booster (42, 44, 46, 48) an jeweils entgegengesetzten Enden der zweiten Zündschnur (45) angeordnet sind, und wobei die tragende Wand zwischen dem zweiten bidirektionalen Booster (44) und einem Teil der mehreren ringförmigen Pellets von einer Öffnung (52) durchdrungen wird.
  6. Vorrichtung nach Anspruch 1, wobei sich ein Zwischenabschnitt der zweiten Zündschnur (45) zwischen dem dritten bidirektionalen Booster (46) und dem vierten bidirektionalen Booster (48) der mehreren bidirektionalen Booster (42, 44, 46, 48) befindet, und wobei der Zwischenabschnitt um eine Zeitsteuerungsspule (34) gewickelt ist, die einen zylindrischen Körper und eine schraubenförmige Nut (36), die auf der Oberfläche des Körpers um eine seiner Achsen ausgebildet ist, umfasst.
  7. Vorrichtung nach Anspruch 3, ferner einen ersten Endstopfen (12) und einen zweiten Endstopfen (14) umfassend, um die innere Bohrung (11) zwischen entgegengesetzten Enden des rohrförmigen Gehäuses (10) zu umschließen.
  8. Vorrichtung nach Anspruch 7, wobei der erste Endstopfen (12) ferner einen Boosterauslösehohlraum (20) umfasst, wobei der Boosterauslösehohlraum (20) den Boosterauslösesprengstoff (22) enthält.
  9. Vorrichtung nach Anspruch 8, ferner ein erstes elastisches Vorspannungselement, das innerhalb des rohrförmigen Ladestabs (30) zwischen dem zweiten Endstopfen (14) und dem zweiten bidirektionalen Booster (44) der mehreren bidirektionalen Booster (42, 44, 46, 48) positioniert ist, und ein zweites elastisches Vorspannungselement, das zwischen dem zweiten Endstopfen (14) und den mehreren ringförmigen Pellets positioniert ist, umfassend.
  10. Vorrichtung nach Anspruch 7, ferner einen Zündkopf (26) umfassend, der am ersten Endstopfen (12) befestigt ist, wobei der Zündkopf (26) einen Detonator (28) umfasst, der in Detonationsnähe des Boosterauslösesprengstoffs (22) angeordnet ist.
  11. Verfahren zum Trennen eines Rohrs, die folgenden Schritte umfassend:
    Umschließen entgegengesetzter Enden eines rohrförmigen Gehäuses (10);
    Entlüften des rohrförmigen Gehäuses (10), um den Fluiddruck innerhalb des rohrförmigen Gehäuses (10) mit dem Fluiddruck außerhalb des rohrförmigen Gehäuses im Wesentlichen auszugleichen;
    Platzieren eines ersten bidirektionalen Boosters (42), eines zweiten bidirektionalen Boosters (44), eines dritten bidirektionalen Boosters (46) und eines vierten bidirektionalen Boosters (48) innerhalb des rohrförmigen Gehäuses (10);
    Verbinden einer ersten Zündschnur (43) mit einer ersten Länge zwischen dem ersten bidirektionalen Booster (42) und dem zweiten bidirektionalen Booster (44);
    Verbinden einer zweiten Zündschnur (45) mit einer ersten Länge zwischen dem dritten bidirektionalen Booster (46) und dem vierten bidirektionalen Booster (48);
    Kombinieren eines Hauptladungssprengmaterials (40) und eines fluidundurchlässigen Materials in ein Gemisch;
    Laden des Gemischs in das rohrförmige Gehäuse (10) zwischen den zweiten bidirektionalen Booster (44) und den vierten bidirektionalen Booster (48);
    Positionieren des rohrförmigen Gehäuses (10) und des Gemischs in einem Rohr; und
    gleichzeitiges Auslösen der Zündung des zweiten bidirektionalen Boosters (44) und des vierten bidirektionalen Boosters (48).
  12. Verfahren nach Anspruch 11, ferner den Schritt des Pressens des Gemischs in mehrere ringförmige Pellets, das Komprimieren der mehreren ringförmigen Pellets auf einen Druck, der einer voraussichtlichen Zündungsumgebung entspricht, und Durchdringen einer mittigen Öffnung der mehreren ringförmigen Pellets mit einem rohrförmigen Ladestab (30) umfassend.
  13. Verfahren nach Anspruch 12, wobei der Schritt des Platzierens des ersten bidirektionalen Boosters (42), des zweiten bidirektionalen Boosters (44), des dritten bidirektionalen Boosters (46) und des vierten bidirektionalen Boosters (48) ferner das Platzieren des ersten bidirektionalen Boosters (42) innerhalb eines Endes einer mittigen Bohrung des rohrförmigen Ladestabs (30) in Detonationsnähe eines Boosterauslösesprengstoffs, das Platzieren des zweiten bidirektionalen Boosters (44) innerhalb der mittigen Bohrung an einem entgegengesetzten Enden des rohrförmigen Ladestabs (30) und das Platzieren des dritten bidirektionalen Boosters (46) in Detonationsnähe des Boosterauslösesprengstoffs (22) umfasst.
  14. Verfahren nach Anspruch 13, wobei der Schritt des Verbindens der zweiten Zündschnur (45) ferner das Wickeln der zweiten Zündschnur (45) um eine Zeitsteuerungsspule (34) und das Positionieren entgegengesetzter Enden der zweiten Zündschnur (45) in Detonationsnähe des dritten bidirektionalen Boosters (46) und des vierten bidirektionalen Boosters (48) umfasst.
  15. Vorrichtung zum Trennen einer Rohrlänge, Folgendes umfassend:
    ein rohrförmiges Gehäuse (10), das eine innere Bohrung (11) aufweist;
    eine erste Endkappe (12) an einem ersten distalen Ende des rohrförmigen Gehäuses (10), um ein erstes distales Ende der inneren Bohrung (11) zu verschließen, und eine zweite Endkappe (14) an einem zweiten distalen Ende des rohrförmigen Gehäuses (10), um ein zweites distales Ende der inneren Bohrung (11) zu verschließen;
    eine Zeitsteuerungsspule (34), die sich innerhalb des rohrförmigen Gehäuses (10) befindet;
    ein Laderohr (30) innerhalb des rohrförmigen Gehäuses (10), das die erste Endkappe (12) und die zweite Endkappe (14) durch die Zeitsteuerungsspule (34) verbindet, wobei das Laderohr eine mittige Bohrung dort hindurch umfasst;
    einen Boosterauslösesprengstoff (22), der sich innerhalb der ersten Endkappe (12) befindet;
    einen ersten bidirektionalen Booster (42), der sich innerhalb der mittigen Bohrung an die erste Endkappe angrenzend befindet;
    einen zweiten bidirektionalen Booster (44), der sich innerhalb der mittigen Bohrung an die zweite Endkappe (14) angrenzend befindet;
    einen dritten bidirektionalen Booster (48), der sich innerhalb der inneren Bohrung und in der Nähe der Zeitsteuerungsspule (34) befindet;
    eine erste Zündschnur (43), die eine erste Länge zwischen dem ersten bidirektionalen Booster (42) und dem zweiten bidirektionalen Booster (44) aufweist;
    eine zweite Zündschnur (45), die eine erste Länge zwischen dem dritten bidirektionalen Booster (48) und dem Boosterauslösesprengstoff (22) aufweist; und
    ein Hauptladungssprengmaterial (40) im rohrförmigen Gehäuse (10), das sich zwischen der zweiten Endkappe (14) und dem dritten bidirektionalen Booster (48) befindet;
    wobei das rohrförmige Gehäuse (10) mindestens einen Lüftungsschlitz (16) umfasst, wobei der mindestens eine Lüftungsschlitz (16) den Fluiddruck innerhalb der inneren Bohrung (11) mit dem Fluiddruck außerhalb des rohrförmigen Gehäuses (10) ausgleicht.
  16. Vorrichtung nach Anspruch 15, wobei die zweite Zündschnur (45) schraubenförmig um die Zeitsteuerungsspule (34) gewickelt ist und durch eine Öffnung in der ersten Endkappe mit dem Boosterauslösesprengstoff (22) verbunden ist.
  17. Vorrichtung nach Anspruch 15, wobei das Hauptladungssprengmaterial (40) in mehrere ringförmige Pellets gepresst ist, wobei sich das Laderohr (30) durch
    die mehreren ringförmigen Pellets erstreckt und wobei die
    mehreren ringförmigen Pellets zwischen dem zweiten bidirektionalen Booster (44) und dem dritten bidirektionalen Booster (48) entlang des Laderohrs (30) ausgerichtet sind.
EP15880607.5A 2015-01-26 2015-09-18 Hochenergetisches trennwerkzeug mit druckausgeglichenen sprengstoffen Active EP3250778B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/605,829 US9657544B2 (en) 2013-05-20 2015-01-26 Drill collar severing tool
US14/858,816 US9435170B2 (en) 2013-05-20 2015-09-18 High energy severing tool with pressure balanced explosives
PCT/US2015/051017 WO2016122720A1 (en) 2015-01-26 2015-09-18 High energy severing tool with pressure balanced explosives

Publications (3)

Publication Number Publication Date
EP3250778A1 EP3250778A1 (de) 2017-12-06
EP3250778A4 EP3250778A4 (de) 2019-02-27
EP3250778B1 true EP3250778B1 (de) 2020-05-06

Family

ID=56544121

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15880607.5A Active EP3250778B1 (de) 2015-01-26 2015-09-18 Hochenergetisches trennwerkzeug mit druckausgeglichenen sprengstoffen

Country Status (3)

Country Link
EP (1) EP3250778B1 (de)
CA (1) CA2975143C (de)
WO (1) WO2016122720A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111750753A (zh) * 2020-06-01 2020-10-09 武汉大学 一种用于改善水下掏槽爆破破碎效果的爆炸排水方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110359873B (zh) * 2019-07-05 2021-11-02 中国石油天然气集团有限公司 一种井下短电缆切割器及其使用方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7104326B2 (en) * 2003-12-15 2006-09-12 Halliburton Energy Services, Inc. Apparatus and method for severing pipe utilizing a multi-point initiation explosive device
US7861785B2 (en) * 2006-09-25 2011-01-04 W. Lynn Frazier Downhole perforation tool and method of subsurface fracturing
US8596378B2 (en) * 2010-12-01 2013-12-03 Halliburton Energy Services, Inc. Perforating safety system and assembly
WO2013165434A1 (en) * 2012-05-03 2013-11-07 Halliburton Energy Services, Inc. Explosive device booster assembly and method of use
US8910556B2 (en) * 2012-11-19 2014-12-16 Don Umphries Bottom hole firing head and method
US8939210B2 (en) 2013-05-20 2015-01-27 William T. Bell Drill collar severing tool

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111750753A (zh) * 2020-06-01 2020-10-09 武汉大学 一种用于改善水下掏槽爆破破碎效果的爆炸排水方法

Also Published As

Publication number Publication date
WO2016122720A1 (en) 2016-08-04
EP3250778A4 (de) 2019-02-27
CA2975143C (en) 2022-11-15
CA2975143A1 (en) 2016-08-04
EP3250778A1 (de) 2017-12-06

Similar Documents

Publication Publication Date Title
US9879494B2 (en) High energy severing tool with pressure balanced explosives
US9657544B2 (en) Drill collar severing tool
CA3109407C (en) Duel end firing explosive column tools and methods for selectively expanding a wall of a tubular
US20100163305A1 (en) Apparatus and Methods for Sidewall Percussion Coring Using a Voltage Activated Igniter
US11781393B2 (en) Explosive downhole tools having improved wellbore conveyance and debris properties, methods of using the explosive downhole tools in a wellbore, and explosive units for explosive column tools
EP3837064A1 (de) Hohlladungsanordnung, sprengstoffeinheiten und verfahren zum selektiven aufweiten der wand eines rohres
EP3250778B1 (de) Hochenergetisches trennwerkzeug mit druckausgeglichenen sprengstoffen
US11781394B2 (en) Shaped charge assembly, explosive units, and methods for selectively expanding wall of a tubular
US20230113807A1 (en) Methods of pre-testing expansion charge for selectively expanding a wall of a tubular, and methods of selectively expanding walls of nested tubulars
EP3350406B1 (de) Schussketten-abschraubwerkzeug mit druckausgeglichenen sprengstoffen
CA2998837C (en) Mini-severing and back-off tool with pressure balanced explosives
US20240209706A1 (en) Explosive downhole tools having improved wellbore conveyance and debris properties, methods of using the explosive downhole tools in a wellbore, and explosive units for explosive column tools

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170823

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602015052562

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: E21B0029000000

Ipc: E21B0029020000

A4 Supplementary search report drawn up and despatched

Effective date: 20190124

RIC1 Information provided on ipc code assigned before grant

Ipc: E21B 29/02 20060101AFI20190118BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: W.T. BELL INTERNATIONAL, INC.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RAIRIGH, JAMES

Inventor name: BELL, WILLIAM T.

INTG Intention to grant announced

Effective date: 20191205

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RAIRIGH, JAMES

Inventor name: BELL, WILLIAM T.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1266996

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015052562

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20200506

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200906

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200907

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1266996

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015052562

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210209

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230520

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230906

Year of fee payment: 9

Ref country code: NL

Payment date: 20230915

Year of fee payment: 9

Ref country code: GB

Payment date: 20230926

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230915

Year of fee payment: 9

Ref country code: DE

Payment date: 20230907

Year of fee payment: 9