EP3250387A1 - Fluid ejection device - Google Patents

Fluid ejection device

Info

Publication number
EP3250387A1
EP3250387A1 EP15880425.2A EP15880425A EP3250387A1 EP 3250387 A1 EP3250387 A1 EP 3250387A1 EP 15880425 A EP15880425 A EP 15880425A EP 3250387 A1 EP3250387 A1 EP 3250387A1
Authority
EP
European Patent Office
Prior art keywords
fluid
circulation channel
tolerant architecture
width
particle tolerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15880425.2A
Other languages
German (de)
French (fr)
Other versions
EP3250387B1 (en
EP3250387A4 (en
Inventor
Nick MCGUINNESS
Lawrence H. White
Paul A. Richards
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Hewlett Packard Development Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co LP filed Critical Hewlett Packard Development Co LP
Publication of EP3250387A1 publication Critical patent/EP3250387A1/en
Publication of EP3250387A4 publication Critical patent/EP3250387A4/en
Application granted granted Critical
Publication of EP3250387B1 publication Critical patent/EP3250387B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/19Ink jet characterised by ink handling for removing air bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • B41J2/14032Structure of the pressure chamber
    • B41J2/1404Geometrical characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/18Ink recirculation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/1433Structure of nozzle plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14467Multiple feed channels per ink chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/11Embodiments of or processes related to ink-jet heads characterised by specific geometrical characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/12Embodiments of or processes related to ink-jet heads with ink circulating through the whole print head

Definitions

  • Fluid ejection devices such as printheads in inkjet printing systems, may use thermal resistors or piezoelectric material membranes as actuators within fluidic chambers to eject fluid drops (e.g., ink) from nozzles, such that properly sequenced ejection of ink drops from the nozzles causes characters or other images to be printed on a print medium as the printhead and the print medium move relative to each other.
  • fluid drops e.g., ink
  • Air bubbles or other particles can negatively impact operation of a fluid ejection device.
  • air bubbles or other particles in an ejection chamber of a printhead may disrupt the ejection of drops from the ejection chamber, thereby resulting in misdirection of drops from the printhead or missing drops. Such disruption of drops may result in print defects and degrade print quality.
  • FIG. 1 is a block diagram illustrating one example of an inkjet printing system including an example of a fluid ejection device.
  • FIG. 2 is a schematic plan view illustrating one example of a portion of a fluid ejection device including one example of a particle tolerant architecture.
  • FIG. 3 is an enlarged view of the area within the broken line circle of FIG.
  • FIG. 4 is an enlarged view illustrating another example of a portion of a fluid ejection device including another example of a particle tolerant architecture.
  • FIG. 5 is an enlarged view illustrating another example of a portion of a fluid ejection device including another example of a particle tolerant architecture.
  • FIG. 6 is a flow diagram illustrating one example of a method of forming a fluid ejection device.
  • FIG. 1 illustrates one example of an inkjet printing system as an example of a fluid ejection device with fluid circulation, as disclosed herein.
  • Inkjet printing system 100 includes a printhead assembly 102, an ink supply assembly 104, a mounting assembly 106, a media transport assembly 108, an electronic controller 1 10, and at least one power supply 1 12 that provides power to the various electrical components of inkjet printing system 100.
  • Printhead assembly 102 includes at least one fluid ejection assembly 1 14 (printhead 1 14) that ejects drops of ink through a plurality of orifices or nozzles 1 16 toward a print medium 1 18 so as to print on print media 1 18.
  • Print media 1 18 can be any type of suitable sheet or roll material, such as paper, card stock, transparencies, Mylar, and the like.
  • Nozzles 1 16 are typically arranged in one or more columns or arrays such that properly sequenced ejection of ink from nozzles 1 16 causes characters, symbols, and/or other graphics or images to be printed on print media 1 18 as printhead assembly 102 and print media 1 18 are moved relative to each other.
  • Ink supply assembly 104 supplies fluid ink to printhead assembly 102 and, in one example, includes a reservoir 120 for storing ink such that ink flows from reservoir 120 to printhead assembly 102.
  • Ink supply assembly 104 and printhead assembly 102 can form a one-way ink delivery system or a
  • recirculating ink delivery system In a one-way ink delivery system, substantially all of the ink supplied to printhead assembly 102 is consumed during printing. In a recirculating ink delivery system, only a portion of the ink supplied to printhead assembly 102 is consumed during printing. Ink not consumed during printing is returned to ink supply assembly 104.
  • printhead assembly 102 and ink supply assembly 104 are housed together in an inkjet cartridge or pen.
  • ink supply assembly 104 is separate from printhead assembly 102 and supplies ink to printhead assembly 102 through an interface connection, such as a supply tube.
  • reservoir 120 of ink supply assembly 104 may be removed, replaced, and/or refilled.
  • reservoir 120 includes a local reservoir located within the cartridge as well as a larger reservoir located separately from the cartridge. The separate, larger reservoir serves to refill the local reservoir. Accordingly, the separate, larger reservoir and/or the local reservoir may be removed, replaced, and/or refilled.
  • Mounting assembly 106 positions printhead assembly 102 relative to media transport assembly 108, and media transport assembly 108 positions print media 1 18 relative to printhead assembly 102.
  • a print zone 122 is defined adjacent to nozzles 1 16 in an area between printhead assembly 102 and print media 1 18.
  • printhead assembly 102 is a scanning type printhead assembly.
  • mounting assembly 106 includes a carriage for moving printhead assembly 102 relative to media transport assembly 108 to scan print media 1 18.
  • printhead assembly 102 is a non- scanning type printhead assembly.
  • mounting assembly 106 fixes printhead assembly 102 at a prescribed position relative to media transport assembly 108.
  • media transport assembly 108 positions print media 1 18 relative to printhead assembly 102.
  • Electronic controller 1 10 typically includes a processor, firmware, software, one or more memory components including volatile and non-volatile memory components, and other printer electronics for communicating with and controlling printhead assembly 102, mounting assembly 106, and media transport assembly 108.
  • Electronic controller 1 10 receives data 124 from a host system, such as a computer, and temporarily stores data 124 in a memory.
  • data 124 is sent to inkjet printing system 100 along an electronic, infrared, optical, or other information transfer path.
  • Data 124 represents, for example, a document and/or file to be printed. As such, data 124 forms a print job for inkjet printing system 100 and includes one or more print job commands and/or command parameters.
  • electronic controller 1 10 controls printhead assembly
  • electronic controller 1 10 defines a pattern of ejected ink drops which form characters, symbols, and/or other graphics or images on print media 1 18.
  • the pattern of ejected ink drops is determined by the print job commands and/or command parameters.
  • Printhead assembly 102 includes one or more printheads 1 14.
  • printhead assembly 102 is a wide-array or multi-head printhead assembly.
  • printhead assembly 102 includes a carrier that carries a plurality of printheads 1 14, provides electrical communication between printheads 1 14 and electronic controller 1 10, and provides fluidic communication between printheads 1 14 and ink supply assembly 104.
  • inkjet printing system 100 is a drop-on-demand thermal inkjet printing system wherein printhead 1 14 is a thermal inkjet (TIJ) printhead.
  • the thermal inkjet printhead implements a thermal resistor ejection element in an ink chamber to vaporize ink and create bubbles that force ink or other fluid drops out of nozzles 1 16.
  • inkjet printing system 100 is a drop-on-demand piezoelectric inkjet printing system wherein printhead 1 14 is a piezoelectric inkjet (PI J) printhead that implements a piezoelectric material actuator as an ejection element to generate pressure pulses that force ink drops out of nozzles 1 16.
  • PI J piezoelectric inkjet
  • electronic controller 1 10 includes a flow circulation module 126 stored in a memory of controller 1 10.
  • Flow circulation module 126 executes on electronic controller 1 10 (i.e., a processor of controller 1 10) to control the operation of one or more fluid actuators integrated as pump elements within printhead assembly 102 to control circulation of fluid within printhead assembly 102.
  • FIG. 2 is a schematic plan view illustrating one example of a portion of a fluid ejection device 200.
  • Fluid ejection device 200 includes a fluid ejection chamber 202 and a corresponding drop ejecting element 204 formed in, provided within, or communicated with fluid ejection chamber 202.
  • Fluid ejection chamber 202 and drop ejecting element 204 are formed on a substrate 206 which has a fluid (or ink) feed slot 208 formed therein such that fluid feed slot 208 provides a supply of fluid (or ink) to fluid ejection chamber 202 and drop ejecting element 204.
  • Substrate 206 may be formed, for example, of silicon, glass, or a stable polymer.
  • fluid ejection chamber 202 is formed in or defined by a barrier layer (not shown) provided on substrate 206, such that fluid ejection chamber 202 provides a "well" in the barrier layer.
  • the barrier layer may be formed, for example, of a photoimageable epoxy resin, such as SU8.
  • a nozzle or orifice layer (not shown) is formed or extended over the barrier layer such that a nozzle opening or orifice 212 formed in the orifice layer communicates with a respective fluid ejection chamber 202.
  • Nozzle opening or orifice 212 may be of a circular, non-circular, or other shape.
  • Drop ejecting element 204 can be any device capable of ejecting fluid drops through corresponding nozzle opening or orifice 212.
  • Examples of drop ejecting element 204 include a thermal resistor or a piezoelectric actuator.
  • a thermal resistor as an example of a drop ejecting element, is typically formed on a surface of a substrate (substrate 206), and includes a thin-film stack including an oxide layer, a metal layer, and a passivation layer such that, when activated, heat from the thermal resistor vaporizes fluid in fluid ejection chamber 202, thereby causing a bubble that ejects a drop of fluid through nozzle opening or orifice 212.
  • a piezoelectric actuator as an example of a drop ejecting element, generally includes a piezoelectric material provided on a moveable membrane communicated with fluid ejection chamber 202 such that, when activated, the piezoelectric material causes deflection of the membrane relative to fluid ejection chamber 202, thereby generating a pressure pulse that ejects a drop of fluid through nozzle opening or orifice 212.
  • fluid ejection device 200 includes a fluid circulation channel 220 and a fluid circulating element 222 formed in, provided within, or communicated with fluid circulation channel 220.
  • Fluid circulation channel 220 is open to and communicates at one end 224 with fluid feed slot 208 and is open to and communicates at another end 226 with fluid ejection chamber 202.
  • end 226 of fluid circulation channel 220 communicates with fluid ejection chamber 202 at an end 202a of fluid ejection chamber 202.
  • Fluid circulating element 222 forms or represents an actuator to pump or circulate (or recirculate) fluid through fluid circulation channel 220.
  • fluid from fluid feed slot 208 circulates (or recirculates) through fluid circulation channel 220 and fluid ejection chamber 202 based on flow induced by fluid circulating element 222.
  • Circulating (or recirculating) fluid through fluid ejection chamber 202 helps to reduce ink blockage and/or clogging in fluid ejection device 200.
  • fluid circulation channel 220 communicates with one (i.e., a single) fluid ejection chamber 202, as
  • fluid ejection device 200 has a 1 :1 nozzle-to-pump ratio, where fluid circulating element 222 is referred to as a "pump" which induces fluid flow through fluid circulation channel 220 and fluid ejection chamber 202. With a 1 :1 ratio, circulation is individually provided for each fluid ejection chamber 202.
  • Other nozzle-to-pump ratios e.g., 2:1 , 3:1 , 4:1 , etc.
  • one fluid circulating element induces fluid flow through a fluid circulation channel communicated with multiple fluid ejection chambers and, therefore, multiple nozzle openings or orifices.
  • drop ejecting element 204 and fluid circulating element 222 are both thermal resistors.
  • Each of the thermal resistors may include, for example, a single resistor, a split resistor, a comb resistor, or multiple resistors.
  • a variety of other devices, however, can also be used to implement drop ejecting element 204 and fluid circulating element 222
  • a piezoelectric actuator including, for example, a piezoelectric actuator, an electrostatic (MEMS) membrane, a mechanical/impact driven membrane, a voice coil, a magneto- strictive drive, and so on.
  • MEMS electrostatic
  • fluid ejection device 200 includes a particle tolerant architecture 240.
  • particle tolerant architecture 240 particle tolerant
  • Particle tolerant architecture 240 is formed within fluid circulation channel 220 toward or at end 226 of fluid circulation channel 220.
  • Particle tolerant architecture 240 includes, for example, a pillar, a column, a post or other structure (or structures) formed in or provided within fluid circulation channel 220.
  • particle tolerant architecture 240 forms an "island" in fluid circulation channel 220 which allows fluid to flow therearound and into fluid ejection chamber 202 while preventing particles, such as air bubbles or other particles (e.g., dust, fibers), from flowing into fluid ejection chamber 202 through fluid circulation channel 220. Such particles, if allowed to enter fluid ejection chamber 202, may affect a performance of fluid ejection device 200.
  • particle tolerant architecture 240 also prevents particles from flowing into fluid circulation channel 220 and, therefore, to fluid circulating element 222 from fluid ejection chamber 202.
  • fluid circulation channel 220 is a U-shaped channel and includes a channel portion 230 communicated with fluid feed slot 208, a channel portion 232 communicated with fluid ejection chamber 202, and a channel loop portion 234 provided between channel portion 230 and channel portion 232.
  • fluid in fluid circulation channel 220 circulates (or recirculates) between fluid feed slot 208 and fluid ejection chamber 202 through channel portion 230, channel loop portion 234, and channel portion 232.
  • fluid circulating element 222 is formed in, provided within, or communicated with channel portion 230, and particle tolerant architecture 240 is formed in or provided within channel portion 232.
  • fluid circulating element 222 is provided within fluid circulation channel 220 between fluid feed slot 208 and channel loop portion 234, and particle tolerant architecture 240 is provided within fluid circulation channel 220 between channel loop portion 234 and fluid ejection chamber 202.
  • a width of fluid circulation channel 220 is increased at particle tolerant architecture 240.
  • FIG. 3 is an enlarged view of the area within the broken line circle of FIG. 2.
  • fluid ejection chamber 202 has a chamber width (CHW)
  • fluid circulation channel 220 has a circulation channel width (CCW).
  • particle tolerant architecture 240 has a width (PTAW) and a length (PTAL).
  • a width of fluid circulation channel 220 is increased at particle tolerant architecture 240. More specifically, in one example, at a position of particle tolerant architecture 240, fluid circulation channel 220 has an increased circulation channel width (CCWW). As such, fluid circulation channel 220 has a circulation channel width (CCW) at fluid circulating element 222 (FIG.
  • CCW circulation channel width
  • circulation channel width extends from channel portion 230, including end 224 as open to and communicated with fluid feed slot 208, and through channel loop portion 234 to channel portion 232, and increased circulation channel width (CCWW) extends from channel portion 232 to fluid ejection chamber 202.
  • fluid circulation channel 220 includes a transition portion 236 between circulation channel width (CCW) and increased circulation channel width (CCWW) such that, in one example, transition portion 236 diverges from circulation channel width (CCW) to increased circulation channel width
  • fluid circulation channel 220 increases from circulation channel width (CCW) to increased circulation channel width (CCWW).
  • a minimum distance (D1 ) between particle tolerant architecture 240 and a sidewall 237 of transition portion 236 of fluid circulation channel 220, and a minimum distance (D2) between particle tolerant architecture 240 and a sidewall 239 of transition portion 236 of fluid circulation channel 220 are each less than circulation channel width (CCW) (i.e., D1 ⁇ CCW, D2 ⁇ CCW).
  • circulation channel width is maintained (or generally maintained) around and/or along particle tolerant architecture 240.
  • a sum of a minimum distance between particle tolerant architecture 240 and a sidewall 227 of fluid circulation channel 220 at a first side of particle tolerant architecture 240, and a minimum distance between particle tolerant architecture 240 and a sidewall 229 of fluid circulation channel 220 at a second side of particle tolerant architecture 240 is substantially equal to circulation channel width (CCW).
  • CCW circulation channel width
  • a sum of width (W1 ) at a first side of particle tolerant architecture 240 and width (W2) at a second side of particle tolerant architecture 240 is less than circulation channel width (CCW) (i.e., W1 +W2 ⁇ CCW) and, in another example, with width (W1 ) at a first side of particle tolerant architecture 240 and width (W2) at a second side of particle tolerant architecture 240 each being less than circulation channel width (CCW), a sum of width (W1 ) and width (W2) is greater than circulation channel width (CCW) (i.e., W1 ⁇ CCW,
  • increased circulation channel width (CCWW) is less than chamber width (CHW) (i.e., CCWW ⁇ CHW).
  • particle tolerant architecture 240 is of a closed curve shape. For example, as illustrated in FIGS. 2 and 3, particle tolerant
  • Particle tolerant architecture 240 has an elliptical shape.
  • Particle tolerant architecture 240 may be other closed curve shapes such as, for example, a circle or an oval.
  • width (W1 ) is defined at a maximum width of particle tolerant architecture 240 between a perimeter of particle tolerant architecture 240 at one side of particle tolerant architecture 240 and sidewall 227 of fluid circulation channel 220
  • width (W2) is defined at the maximum width of particle tolerant architecture 240 between a perimeter of particle tolerant architecture 240 at an opposite side of particle tolerant architecture 240 and sidewall 229 of fluid circulation channel 220
  • distance (D1 ) is defined between a perimeter of particle tolerant architecture 240 and sidewall 237 of fluid circulation channel 220
  • distance (D2) is defined between a perimeter of particle tolerant architecture 240 and sidewall 239 of fluid circulation channel 220.
  • FIG. 4 is an enlarged view illustrating another example of a portion of fluid ejection device 200 including another example of a particle tolerant architecture 440.
  • particle tolerant architecture 440 has a rectangular shape, as an example of a polygonal shape.
  • particle tolerant architecture 440 may be, for example, a rectangle or a square.
  • Particle tolerant architecture 440 may also be other polygonal shapes.
  • width (W1 ) is defined between one side of particle tolerant architecture 440 and sidewall 227 of fluid circulation channel 220
  • width (W2) is defined between an opposite side of particle tolerant architecture 440 and sidewall 229 of fluid circulation channel 220.
  • distance (D1 ) is defined between one corner of particle tolerant architecture 440 and sidewall 237 of fluid circulation channel 220
  • distance (D2) is defined between an adjacent corner of particle tolerant architecture 440 and sidewall 239 of fluid circulation channel 220.
  • FIG. 5 is an enlarged view illustrating another example of a portion of fluid ejection device 200 including another example of a particle tolerant architecture 540.
  • particle tolerant architecture 540 has a triangular shape, as an example of a polygonal shape.
  • width (W1 ) is defined at a base of particle tolerant architecture 540 between one vertex of particle tolerant architecture 540 and sidewall 227 of fluid circulation channel 220
  • width (W2) is defined at the base of particle tolerant architecture 540 between an adjacent vertex of particle tolerant architecture 540 and sidewall 229 of fluid circulation channel 220.
  • distance (D1 ) is defined between a vertex of particle tolerant architecture 540 (opposite the base of particle tolerant architecture 540) and sidewall 237 of fluid circulation channel 220)
  • distance (D2) is defined between the vertex of particle tolerant architecture 540 (opposite the base of particle tolerant architecture 540) and sidewall 239 of fluid circulation channel 220.
  • FIG. 6 is a flow diagram illustrating one example of a method 600 of forming a fluid ejection device, such as fluid ejection device 200 as illustrated in the examples of FIGS. 2 and 3, 4, and 5.
  • method 600 includes communicating a fluid ejection chamber, such as fluid ejection chamber 202, with a fluid slot, such as fluid feed slot 208.
  • method 600 includes providing a drop ejecting element, such as drop ejecting element 204, in the fluid ejection chamber, such as fluid ejection chamber 202.
  • method 600 includes communicating a fluid circulation channel, such as fluid circulation channel 220, with the fluid slot and the fluid ejection chamber, such as fluid feed slot 208 and fluid ejection chamber 202.
  • 606 of method 600 includes forming the fluid circulation channel, such as fluid circulation channel 220, with a channel loop, such as channel loop portion 234.
  • method 600 includes providing a fluid circulating element, such as fluid circulating element 222, in the fluid circulation channel, such as fluid circulation channel 220, between the fluid slot and the channel loop, such as fluid feed slot 208 and channel loop portion 234.
  • a fluid circulating element such as fluid circulating element 222
  • method 600 includes providing a particle tolerant architecture, such as particle tolerant architecture 240, 440, 540, in the fluid circulation channel, such as fluid circulation channel 220, between the channel loop and the fluid ejection chamber, such as channel loop portion 234 and fluid ejection chamber 202.
  • a particle tolerant architecture such as particle tolerant architecture 240, 440, 540
  • the method of forming the fluid ejection device may include a different order or sequence of steps, and may combine one or more steps or perform one or more steps concurrently, partially or wholly.
  • ink blockage and/or clogging is reduced.
  • decap time i.e., an amount of time inkjet nozzles can remain uncapped and exposed to ambient conditions
  • nozzle health are improved.
  • pigment-ink vehicle separation and viscous ink plug formation within the fluid ejection device are reduced or eliminated.
  • ink efficiency is improved by lowering ink consumption during servicing (e.g., minimizing spitting of ink to keep nozzles healthy).
  • particle tolerant architecture in the fluid circulation channel as described herein, helps to prevent air bubbles and/or other particles from entering the fluid ejection chamber from the fluid circulation channel during circulation (or recirculation) of fluid through the fluid circulation channel and the fluid ejection chamber. As such, disruption of the ejection of drops from the fluid ejection chamber is reduced or eliminated.
  • the particle tolerant architecture also helps to prevent air bubbles and/or other particles from entering the fluid circulation channel from the fluid ejection chamber.
  • a width of the fluid circulation channel around and/or along the particle tolerant architecture e.g., width (W1 ) and width (W2) and distance (D1 ) and distance (D2) between the particle tolerant architecture and sidewalls of the fluid circulation channel
  • restriction of fluid flow through the fluid circulation channel at the particle tolerant architecture is minimized or avoided, and volumetric fluid flow through the fluid circulation channel is (substantially) maintained.
  • the particle tolerant architecture helps to increase back pressure and, therefore, increase firing momentum of the ejection of drops from the fluid ejection chamber by helping to contain the drive energy of the drop ejection in the fluid ejection chamber.

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Ink Jet (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

A fluid ejection device includes a fluid slot, a fluid ejection chamber communicated with the fluid slot, a drop ejecting element within the fluid ejection chamber, a fluid circulation channel communicated at a first end with the fluid slot and communicated at a second end with the fluid ejection chamber, a fluid circulating element within the fluid circulation channel, and a particle tolerant architecture within the fluid circulation channel at the second end.

Description

FLUID EJECTION DEVICE
Background
Fluid ejection devices, such as printheads in inkjet printing systems, may use thermal resistors or piezoelectric material membranes as actuators within fluidic chambers to eject fluid drops (e.g., ink) from nozzles, such that properly sequenced ejection of ink drops from the nozzles causes characters or other images to be printed on a print medium as the printhead and the print medium move relative to each other.
Air bubbles or other particles can negatively impact operation of a fluid ejection device. For example, air bubbles or other particles in an ejection chamber of a printhead may disrupt the ejection of drops from the ejection chamber, thereby resulting in misdirection of drops from the printhead or missing drops. Such disruption of drops may result in print defects and degrade print quality.
Brief Description of the Drawings
FIG. 1 is a block diagram illustrating one example of an inkjet printing system including an example of a fluid ejection device.
FIG. 2 is a schematic plan view illustrating one example of a portion of a fluid ejection device including one example of a particle tolerant architecture.
FIG. 3 is an enlarged view of the area within the broken line circle of FIG. FIG. 4 is an enlarged view illustrating another example of a portion of a fluid ejection device including another example of a particle tolerant architecture.
FIG. 5 is an enlarged view illustrating another example of a portion of a fluid ejection device including another example of a particle tolerant architecture.
FIG. 6 is a flow diagram illustrating one example of a method of forming a fluid ejection device.
Detailed Description In the following detailed description, reference is made to the
accompanying drawings which form a part hereof, and in which is shown by way of illustration specific examples in which the disclosure may be practiced. It is to be understood that other examples may be utilized and structural or logical changes may be made without departing from the scope of the present disclosure.
FIG. 1 illustrates one example of an inkjet printing system as an example of a fluid ejection device with fluid circulation, as disclosed herein. Inkjet printing system 100 includes a printhead assembly 102, an ink supply assembly 104, a mounting assembly 106, a media transport assembly 108, an electronic controller 1 10, and at least one power supply 1 12 that provides power to the various electrical components of inkjet printing system 100. Printhead assembly 102 includes at least one fluid ejection assembly 1 14 (printhead 1 14) that ejects drops of ink through a plurality of orifices or nozzles 1 16 toward a print medium 1 18 so as to print on print media 1 18.
Print media 1 18 can be any type of suitable sheet or roll material, such as paper, card stock, transparencies, Mylar, and the like. Nozzles 1 16 are typically arranged in one or more columns or arrays such that properly sequenced ejection of ink from nozzles 1 16 causes characters, symbols, and/or other graphics or images to be printed on print media 1 18 as printhead assembly 102 and print media 1 18 are moved relative to each other.
Ink supply assembly 104 supplies fluid ink to printhead assembly 102 and, in one example, includes a reservoir 120 for storing ink such that ink flows from reservoir 120 to printhead assembly 102. Ink supply assembly 104 and printhead assembly 102 can form a one-way ink delivery system or a
recirculating ink delivery system. In a one-way ink delivery system, substantially all of the ink supplied to printhead assembly 102 is consumed during printing. In a recirculating ink delivery system, only a portion of the ink supplied to printhead assembly 102 is consumed during printing. Ink not consumed during printing is returned to ink supply assembly 104.
In one example, printhead assembly 102 and ink supply assembly 104 are housed together in an inkjet cartridge or pen. In another example, ink supply assembly 104 is separate from printhead assembly 102 and supplies ink to printhead assembly 102 through an interface connection, such as a supply tube. In either example, reservoir 120 of ink supply assembly 104 may be removed, replaced, and/or refilled. Where printhead assembly 102 and ink supply assembly 104 are housed together in an inkjet cartridge, reservoir 120 includes a local reservoir located within the cartridge as well as a larger reservoir located separately from the cartridge. The separate, larger reservoir serves to refill the local reservoir. Accordingly, the separate, larger reservoir and/or the local reservoir may be removed, replaced, and/or refilled.
Mounting assembly 106 positions printhead assembly 102 relative to media transport assembly 108, and media transport assembly 108 positions print media 1 18 relative to printhead assembly 102. Thus, a print zone 122 is defined adjacent to nozzles 1 16 in an area between printhead assembly 102 and print media 1 18. In one example, printhead assembly 102 is a scanning type printhead assembly. As such, mounting assembly 106 includes a carriage for moving printhead assembly 102 relative to media transport assembly 108 to scan print media 1 18. In another example, printhead assembly 102 is a non- scanning type printhead assembly. As such, mounting assembly 106 fixes printhead assembly 102 at a prescribed position relative to media transport assembly 108. Thus, media transport assembly 108 positions print media 1 18 relative to printhead assembly 102.
Electronic controller 1 10 typically includes a processor, firmware, software, one or more memory components including volatile and non-volatile memory components, and other printer electronics for communicating with and controlling printhead assembly 102, mounting assembly 106, and media transport assembly 108. Electronic controller 1 10 receives data 124 from a host system, such as a computer, and temporarily stores data 124 in a memory. Typically, data 124 is sent to inkjet printing system 100 along an electronic, infrared, optical, or other information transfer path. Data 124 represents, for example, a document and/or file to be printed. As such, data 124 forms a print job for inkjet printing system 100 and includes one or more print job commands and/or command parameters.
In one example, electronic controller 1 10 controls printhead assembly
102 for ejection of ink drops from nozzles 1 16. Thus, electronic controller 1 10 defines a pattern of ejected ink drops which form characters, symbols, and/or other graphics or images on print media 1 18. The pattern of ejected ink drops is determined by the print job commands and/or command parameters.
Printhead assembly 102 includes one or more printheads 1 14. In one example, printhead assembly 102 is a wide-array or multi-head printhead assembly. In one implementation of a wide-array assembly, printhead assembly 102 includes a carrier that carries a plurality of printheads 1 14, provides electrical communication between printheads 1 14 and electronic controller 1 10, and provides fluidic communication between printheads 1 14 and ink supply assembly 104.
In one example, inkjet printing system 100 is a drop-on-demand thermal inkjet printing system wherein printhead 1 14 is a thermal inkjet (TIJ) printhead. The thermal inkjet printhead implements a thermal resistor ejection element in an ink chamber to vaporize ink and create bubbles that force ink or other fluid drops out of nozzles 1 16. In another example, inkjet printing system 100 is a drop-on-demand piezoelectric inkjet printing system wherein printhead 1 14 is a piezoelectric inkjet (PI J) printhead that implements a piezoelectric material actuator as an ejection element to generate pressure pulses that force ink drops out of nozzles 1 16.
In one example, electronic controller 1 10 includes a flow circulation module 126 stored in a memory of controller 1 10. Flow circulation module 126 executes on electronic controller 1 10 (i.e., a processor of controller 1 10) to control the operation of one or more fluid actuators integrated as pump elements within printhead assembly 102 to control circulation of fluid within printhead assembly 102.
FIG. 2 is a schematic plan view illustrating one example of a portion of a fluid ejection device 200. Fluid ejection device 200 includes a fluid ejection chamber 202 and a corresponding drop ejecting element 204 formed in, provided within, or communicated with fluid ejection chamber 202. Fluid ejection chamber 202 and drop ejecting element 204 are formed on a substrate 206 which has a fluid (or ink) feed slot 208 formed therein such that fluid feed slot 208 provides a supply of fluid (or ink) to fluid ejection chamber 202 and drop ejecting element 204. Substrate 206 may be formed, for example, of silicon, glass, or a stable polymer.
In one example, fluid ejection chamber 202 is formed in or defined by a barrier layer (not shown) provided on substrate 206, such that fluid ejection chamber 202 provides a "well" in the barrier layer. The barrier layer may be formed, for example, of a photoimageable epoxy resin, such as SU8.
In one example, a nozzle or orifice layer (not shown) is formed or extended over the barrier layer such that a nozzle opening or orifice 212 formed in the orifice layer communicates with a respective fluid ejection chamber 202. Nozzle opening or orifice 212 may be of a circular, non-circular, or other shape.
Drop ejecting element 204 can be any device capable of ejecting fluid drops through corresponding nozzle opening or orifice 212. Examples of drop ejecting element 204 include a thermal resistor or a piezoelectric actuator. A thermal resistor, as an example of a drop ejecting element, is typically formed on a surface of a substrate (substrate 206), and includes a thin-film stack including an oxide layer, a metal layer, and a passivation layer such that, when activated, heat from the thermal resistor vaporizes fluid in fluid ejection chamber 202, thereby causing a bubble that ejects a drop of fluid through nozzle opening or orifice 212. A piezoelectric actuator, as an example of a drop ejecting element, generally includes a piezoelectric material provided on a moveable membrane communicated with fluid ejection chamber 202 such that, when activated, the piezoelectric material causes deflection of the membrane relative to fluid ejection chamber 202, thereby generating a pressure pulse that ejects a drop of fluid through nozzle opening or orifice 212.
As illustrated in the example of FIG. 2, fluid ejection device 200 includes a fluid circulation channel 220 and a fluid circulating element 222 formed in, provided within, or communicated with fluid circulation channel 220. Fluid circulation channel 220 is open to and communicates at one end 224 with fluid feed slot 208 and is open to and communicates at another end 226 with fluid ejection chamber 202. In one example, end 226 of fluid circulation channel 220 communicates with fluid ejection chamber 202 at an end 202a of fluid ejection chamber 202.
Fluid circulating element 222 forms or represents an actuator to pump or circulate (or recirculate) fluid through fluid circulation channel 220. As such, fluid from fluid feed slot 208 circulates (or recirculates) through fluid circulation channel 220 and fluid ejection chamber 202 based on flow induced by fluid circulating element 222. Circulating (or recirculating) fluid through fluid ejection chamber 202 helps to reduce ink blockage and/or clogging in fluid ejection device 200.
As illustrated in the example of FIG. 2, fluid circulation channel 220 communicates with one (i.e., a single) fluid ejection chamber 202, as
communicated with one (i.e., a single) nozzle opening or orifice 212. As such, fluid ejection device 200 has a 1 :1 nozzle-to-pump ratio, where fluid circulating element 222 is referred to as a "pump" which induces fluid flow through fluid circulation channel 220 and fluid ejection chamber 202. With a 1 :1 ratio, circulation is individually provided for each fluid ejection chamber 202. Other nozzle-to-pump ratios (e.g., 2:1 , 3:1 , 4:1 , etc.) are also possible, where one fluid circulating element induces fluid flow through a fluid circulation channel communicated with multiple fluid ejection chambers and, therefore, multiple nozzle openings or orifices.
In the example illustrated in FIG. 2, drop ejecting element 204 and fluid circulating element 222 are both thermal resistors. Each of the thermal resistors may include, for example, a single resistor, a split resistor, a comb resistor, or multiple resistors. A variety of other devices, however, can also be used to implement drop ejecting element 204 and fluid circulating element 222
including, for example, a piezoelectric actuator, an electrostatic (MEMS) membrane, a mechanical/impact driven membrane, a voice coil, a magneto- strictive drive, and so on.
As illustrated in the example of FIG. 2, fluid ejection device 200 includes a particle tolerant architecture 240. In one example, particle tolerant
architecture 240 is formed within fluid circulation channel 220 toward or at end 226 of fluid circulation channel 220. Particle tolerant architecture 240 includes, for example, a pillar, a column, a post or other structure (or structures) formed in or provided within fluid circulation channel 220.
In one example, particle tolerant architecture 240 forms an "island" in fluid circulation channel 220 which allows fluid to flow therearound and into fluid ejection chamber 202 while preventing particles, such as air bubbles or other particles (e.g., dust, fibers), from flowing into fluid ejection chamber 202 through fluid circulation channel 220. Such particles, if allowed to enter fluid ejection chamber 202, may affect a performance of fluid ejection device 200. In addition, particle tolerant architecture 240 also prevents particles from flowing into fluid circulation channel 220 and, therefore, to fluid circulating element 222 from fluid ejection chamber 202.
In one example, fluid circulation channel 220 is a U-shaped channel and includes a channel portion 230 communicated with fluid feed slot 208, a channel portion 232 communicated with fluid ejection chamber 202, and a channel loop portion 234 provided between channel portion 230 and channel portion 232. As such, in one example, fluid in fluid circulation channel 220 circulates (or recirculates) between fluid feed slot 208 and fluid ejection chamber 202 through channel portion 230, channel loop portion 234, and channel portion 232.
In the example illustrated in FIG. 2, fluid circulating element 222 is formed in, provided within, or communicated with channel portion 230, and particle tolerant architecture 240 is formed in or provided within channel portion 232. As such, in one example, fluid circulating element 222 is provided within fluid circulation channel 220 between fluid feed slot 208 and channel loop portion 234, and particle tolerant architecture 240 is provided within fluid circulation channel 220 between channel loop portion 234 and fluid ejection chamber 202. In one example, as described below, to accommodate particle tolerant architecture 240 within fluid circulation channel 220 and minimize or avoid restriction of fluid flow through fluid circulation channel 220 at particle tolerant architecture 240, a width of fluid circulation channel 220 is increased at particle tolerant architecture 240.
FIG. 3 is an enlarged view of the area within the broken line circle of FIG. 2. As illustrated in the example of FIG. 3, fluid ejection chamber 202 has a chamber width (CHW), and fluid circulation channel 220 has a circulation channel width (CCW). In addition, particle tolerant architecture 240 has a width (PTAW) and a length (PTAL). In one example, to accommodate particle tolerant architecture 240, a width of fluid circulation channel 220 is increased at particle tolerant architecture 240. More specifically, in one example, at a position of particle tolerant architecture 240, fluid circulation channel 220 has an increased circulation channel width (CCWW). As such, fluid circulation channel 220 has a circulation channel width (CCW) at fluid circulating element 222 (FIG. 2), and an increased circulation channel width (CCWW) at particle tolerant architecture 240. Thus, in one example, circulation channel width (CCW) extends from channel portion 230, including end 224 as open to and communicated with fluid feed slot 208, and through channel loop portion 234 to channel portion 232, and increased circulation channel width (CCWW) extends from channel portion 232 to fluid ejection chamber 202.
In one example, fluid circulation channel 220 includes a transition portion 236 between circulation channel width (CCW) and increased circulation channel width (CCWW) such that, in one example, transition portion 236 diverges from circulation channel width (CCW) to increased circulation channel width
(CCWW). As such, between channel loop portion 234 and fluid ejection chamber 202, fluid circulation channel 220 increases from circulation channel width (CCW) to increased circulation channel width (CCWW).
In one example, to prevent particles from flowing into fluid ejection chamber 202 from fluid circulation channel 220, a minimum distance (D1 ) between particle tolerant architecture 240 and a sidewall 237 of transition portion 236 of fluid circulation channel 220, and a minimum distance (D2) between particle tolerant architecture 240 and a sidewall 239 of transition portion 236 of fluid circulation channel 220 are each less than circulation channel width (CCW) (i.e., D1 <CCW, D2<CCW).
In one example, to maintain volumetric fluid flow through fluid circulation channel 220 and minimize or avoid restriction of fluid flow through fluid circulation channel 220 at particle tolerant architecture 240, circulation channel width (CCW) is maintained (or generally maintained) around and/or along particle tolerant architecture 240. As such, in one example, a sum of a minimum distance between particle tolerant architecture 240 and a sidewall 227 of fluid circulation channel 220 at a first side of particle tolerant architecture 240, and a minimum distance between particle tolerant architecture 240 and a sidewall 229 of fluid circulation channel 220 at a second side of particle tolerant architecture 240 is substantially equal to circulation channel width (CCW). More specifically, in one example, a sum of a width (W1 ) at a first side of particle tolerant architecture 240 and a width (W2) at a second side of particle tolerant architecture 240 is substantially equal to circulation channel width (CCW) (i.e., W1 +W2=CCW). In addition, in one example, a sum of distance (D1 ) between particle tolerant architecture 240 and sidewall 237 of transition portion 236 of fluid circulation channel 220, and distance (D2) between particle tolerant architecture 240 and sidewall 239 of transition portion 236 of fluid circulation channel 220 is substantially equal to circulation channel width (CCW) (i.e., D1 +D2=CCW).
In another example, a sum of width (W1 ) at a first side of particle tolerant architecture 240 and width (W2) at a second side of particle tolerant architecture 240 is less than circulation channel width (CCW) (i.e., W1 +W2<CCW) and, in another example, with width (W1 ) at a first side of particle tolerant architecture 240 and width (W2) at a second side of particle tolerant architecture 240 each being less than circulation channel width (CCW), a sum of width (W1 ) and width (W2) is greater than circulation channel width (CCW) (i.e., W1 <CCW,
W2<CCW, W1 +W2>CCW). In one example, increased circulation channel width (CCWW) includes width (PTAW) of particle tolerant architecture 240, width (W1 ) between particle tolerant architecture 240 and sidewall 227 of fluid circulation channel 220 at a first side of particle tolerant architecture 240, and width (W2) between particle tolerant architecture 240 and sidewall 229 of fluid circulation channel 220 at a second side of particle tolerant architecture 240 (i.e., CCWW=PTAW+W1 +W2). In addition, in one example, increased circulation channel width (CCWW) is substantially equal to chamber width (CHW) (i.e., CCWW=CHW). In another example, increased circulation channel width (CCWW) is less than chamber width (CHW) (i.e., CCWW<CHW).
In one example, particle tolerant architecture 240 is of a closed curve shape. For example, as illustrated in FIGS. 2 and 3, particle tolerant
architecture 240 has an elliptical shape. Particle tolerant architecture 240, however, may be other closed curve shapes such as, for example, a circle or an oval.
With a closed curve shape of particle tolerant architecture 240, width (W1 ) is defined at a maximum width of particle tolerant architecture 240 between a perimeter of particle tolerant architecture 240 at one side of particle tolerant architecture 240 and sidewall 227 of fluid circulation channel 220, and width (W2) is defined at the maximum width of particle tolerant architecture 240 between a perimeter of particle tolerant architecture 240 at an opposite side of particle tolerant architecture 240 and sidewall 229 of fluid circulation channel 220. In addition, distance (D1 ) is defined between a perimeter of particle tolerant architecture 240 and sidewall 237 of fluid circulation channel 220, and distance (D2) is defined between a perimeter of particle tolerant architecture 240 and sidewall 239 of fluid circulation channel 220.
FIG. 4 is an enlarged view illustrating another example of a portion of fluid ejection device 200 including another example of a particle tolerant architecture 440. In the example illustrated in FIG. 4, particle tolerant architecture 440 has a rectangular shape, as an example of a polygonal shape. As a rectangular shape, particle tolerant architecture 440 may be, for example, a rectangle or a square. Particle tolerant architecture 440, however, may also be other polygonal shapes.
With a rectangular shape of particle tolerant architecture 440, width (W1 ) is defined between one side of particle tolerant architecture 440 and sidewall 227 of fluid circulation channel 220, and width (W2) is defined between an opposite side of particle tolerant architecture 440 and sidewall 229 of fluid circulation channel 220. In addition, distance (D1 ) is defined between one corner of particle tolerant architecture 440 and sidewall 237 of fluid circulation channel 220, and distance (D2) is defined between an adjacent corner of particle tolerant architecture 440 and sidewall 239 of fluid circulation channel 220.
FIG. 5 is an enlarged view illustrating another example of a portion of fluid ejection device 200 including another example of a particle tolerant architecture 540. In the example illustrated in FIG. 5, particle tolerant architecture 540 has a triangular shape, as an example of a polygonal shape.
With a triangular shape of particle tolerant architecture 540, width (W1 ) is defined at a base of particle tolerant architecture 540 between one vertex of particle tolerant architecture 540 and sidewall 227 of fluid circulation channel 220, and width (W2) is defined at the base of particle tolerant architecture 540 between an adjacent vertex of particle tolerant architecture 540 and sidewall 229 of fluid circulation channel 220. In addition, distance (D1 ) is defined between a vertex of particle tolerant architecture 540 (opposite the base of particle tolerant architecture 540) and sidewall 237 of fluid circulation channel 220), and distance (D2) is defined between the vertex of particle tolerant architecture 540 (opposite the base of particle tolerant architecture 540) and sidewall 239 of fluid circulation channel 220.
FIG. 6 is a flow diagram illustrating one example of a method 600 of forming a fluid ejection device, such as fluid ejection device 200 as illustrated in the examples of FIGS. 2 and 3, 4, and 5.
At 602, method 600 includes communicating a fluid ejection chamber, such as fluid ejection chamber 202, with a fluid slot, such as fluid feed slot 208. At 604, method 600 includes providing a drop ejecting element, such as drop ejecting element 204, in the fluid ejection chamber, such as fluid ejection chamber 202.
At 606, method 600 includes communicating a fluid circulation channel, such as fluid circulation channel 220, with the fluid slot and the fluid ejection chamber, such as fluid feed slot 208 and fluid ejection chamber 202. In this regard, 606 of method 600 includes forming the fluid circulation channel, such as fluid circulation channel 220, with a channel loop, such as channel loop portion 234.
At 608, method 600 includes providing a fluid circulating element, such as fluid circulating element 222, in the fluid circulation channel, such as fluid circulation channel 220, between the fluid slot and the channel loop, such as fluid feed slot 208 and channel loop portion 234.
At 610, method 600 includes providing a particle tolerant architecture, such as particle tolerant architecture 240, 440, 540, in the fluid circulation channel, such as fluid circulation channel 220, between the channel loop and the fluid ejection chamber, such as channel loop portion 234 and fluid ejection chamber 202.
Although illustrated and described as separate and/or sequential steps, the method of forming the fluid ejection device may include a different order or sequence of steps, and may combine one or more steps or perform one or more steps concurrently, partially or wholly.
With a fluid ejection device including circulation (or recirculation) of fluid as described herein, ink blockage and/or clogging is reduced. As such, decap time (i.e., an amount of time inkjet nozzles can remain uncapped and exposed to ambient conditions) and, therefore, nozzle health are improved. In addition, pigment-ink vehicle separation and viscous ink plug formation within the fluid ejection device are reduced or eliminated. Furthermore, ink efficiency is improved by lowering ink consumption during servicing (e.g., minimizing spitting of ink to keep nozzles healthy).
More importantly, including particle tolerant architecture in the fluid circulation channel as described herein, helps to prevent air bubbles and/or other particles from entering the fluid ejection chamber from the fluid circulation channel during circulation (or recirculation) of fluid through the fluid circulation channel and the fluid ejection chamber. As such, disruption of the ejection of drops from the fluid ejection chamber is reduced or eliminated. In addition, the particle tolerant architecture also helps to prevent air bubbles and/or other particles from entering the fluid circulation channel from the fluid ejection chamber.
In one example, by maintaining a width of the fluid circulation channel around and/or along the particle tolerant architecture (e.g., width (W1 ) and width (W2) and distance (D1 ) and distance (D2) between the particle tolerant architecture and sidewalls of the fluid circulation channel), restriction of fluid flow through the fluid circulation channel at the particle tolerant architecture is minimized or avoided, and volumetric fluid flow through the fluid circulation channel is (substantially) maintained.
Furthermore, by providing particle tolerant architecture toward or at an end of the fluid circulation channel communicated with the fluid ejection chamber, the particle tolerant architecture helps to increase back pressure and, therefore, increase firing momentum of the ejection of drops from the fluid ejection chamber by helping to contain the drive energy of the drop ejection in the fluid ejection chamber.
Although specific examples have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a variety of alternate and/or equivalent implementations may be substituted for the specific examples shown and described without departing from the scope of the present disclosure. This application is intended to cover any adaptations or variations of the specific examples discussed herein.

Claims

1 . A fluid ejection device, comprising:
a fluid slot;
a fluid ejection chamber communicated with the fluid slot;
a drop ejecting element within the fluid ejection chamber;
a fluid circulation channel communicated at a first end with the fluid slot and communicated at a second end with the fluid ejection chamber;
a fluid circulating element within the fluid circulation channel; and a particle tolerant architecture within the fluid circulation channel at the second end.
2. The fluid ejection device of claim 1 , wherein the fluid circulation channel includes a first portion having the fluid circulating element therein and a second portion having the particle tolerant architecture therein, the first portion having a first width at the fluid circulating element and the second portion having a second width greater than the first width at the particle tolerant architecture.
3. The fluid ejection device of claim 2, wherein a minimum distance between the particle tolerant architecture and a first sidewall of the second portion of the fluid circulation channel and a minimum distance between the particle tolerant architecture and a second sidewall of the second portion of the fluid circulation channel are each less than the first width of the first portion of the fluid circulation channel.
4. The fluid ejection device of claim 2, wherein the fluid circulation channel includes a third portion between the first portion and the second portion, the third portion diverging from the first width of the first portion to the second width of the second portion.
5. The fluid ejection device of claim 4, wherein a minimum distance between the particle tolerant architecture and a first sidewall of the third portion of the fluid circulation channel and a minimum distance between the particle tolerant architecture and a second sidewall of the third portion of the fluid circulation channel are each less than the first width of the first portion of the fluid circulation channel.
6. The fluid ejection device of claim 1 , wherein the particle tolerant architecture comprises a closed curve shape.
7. The fluid ejection device of claim 1 , wherein the particle tolerant architecture comprises a polygonal shape.
8. A fluid ejection device, comprising:
a fluid slot;
a fluid ejection chamber communicated with the fluid slot;
a drop ejecting element within the fluid ejection chamber;
a fluid circulation channel including a channel loop, and communicated with the fluid slot and the fluid ejection chamber;
a fluid circulating element within the fluid circulation channel between the fluid slot and the channel loop; and
a particle tolerant architecture within the fluid circulation channel between the channel loop and the fluid ejection chamber.
9. The fluid ejection device of claim 8, wherein a width of the fluid circulation channel is increased at the particle tolerant architecture.
10. The fluid ejection device of claim 9, wherein the increased width of the fluid circulation channel at the particle tolerant architecture is substantially equal to or less than a width of the fluid ejection chamber.
1 1 . The fluid ejection device of claim 8, wherein a minimum distance between the particle tolerant architecture and a first sidewall of the fluid circulation channel and a minimum distance between the particle tolerant architecture and a second sidewall of the fluid circulation channel are each less than a width of the fluid circulation channel at the fluid circulating element.
12. A method of forming a fluid ejection device, comprising:
communicating a fluid ejection chamber with a fluid slot;
providing a drop ejecting element in the fluid ejection chamber;
communicating a fluid circulation channel with the fluid slot and the fluid ejection chamber, including forming the fluid circulation channel with a channel loop;
providing a fluid circulating element in the fluid circulation channel between the fluid slot and the channel loop; and
providing a particle tolerant architecture in the fluid circulation channel between the channel loop and the fluid ejection chamber.
13. The method of claim 12, further comprising:
defining the fluid circulation channel with a first width open to the fluid slot, and providing the fluid circulating element within the first width; and
defining the fluid circulation channel with a second width greater than the first width at the fluid ejection chamber, and providing the particle tolerant architecture within the second width.
14. The method of claim 13, wherein providing the particle tolerant architecture within the second width includes defining a minimum distance between the particle tolerant architecture and the fluid circulation channel as less than the first width.
15. The method of claim 12, wherein providing the particle tolerant architecture in the fluid circulation channel includes defining the particle tolerant architecture as one of a closed curve shape and a polygonal shape.
EP15880425.2A 2015-01-29 2015-01-29 Fluid ejection device and method of manufacturing a fluid ejection device Active EP3250387B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2015/013520 WO2016122528A1 (en) 2015-01-29 2015-01-29 Fluid ejection device

Publications (3)

Publication Number Publication Date
EP3250387A1 true EP3250387A1 (en) 2017-12-06
EP3250387A4 EP3250387A4 (en) 2018-09-05
EP3250387B1 EP3250387B1 (en) 2020-08-05

Family

ID=56543952

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15880425.2A Active EP3250387B1 (en) 2015-01-29 2015-01-29 Fluid ejection device and method of manufacturing a fluid ejection device

Country Status (7)

Country Link
US (3) US10112407B2 (en)
EP (1) EP3250387B1 (en)
JP (1) JP6538861B2 (en)
CN (1) CN107000443B (en)
BR (1) BR112017008528A2 (en)
TW (1) TWI579149B (en)
WO (1) WO2016122528A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3250387B1 (en) * 2015-01-29 2020-08-05 Hewlett-Packard Development Company, L.P. Fluid ejection device and method of manufacturing a fluid ejection device
WO2018071039A1 (en) 2016-10-14 2018-04-19 Hewlett-Packard Development Company, L.P. Fluid ejection device
EP3568305B1 (en) * 2017-04-14 2022-08-03 Hewlett-Packard Development Company, L.P. Fluid actuator registers
WO2019078868A1 (en) 2017-10-19 2019-04-25 Hewlett-Packard Development Company, L.P. Fluidic dies
JP7182984B2 (en) * 2018-10-05 2022-12-05 キヤノン株式会社 Liquid ejection head and liquid ejection device
JP7453769B2 (en) * 2019-10-16 2024-03-21 キヤノン株式会社 liquid discharge head
WO2021076138A1 (en) * 2019-10-17 2021-04-22 Hewlett-Packard Development Company, L.P. Control of pump generators and drop generators

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5956062A (en) 1995-01-11 1999-09-21 Canon Kabushiki Kaisha Liquid jet recording apparatus and recovery method therefor
TW365578B (en) 1995-04-14 1999-08-01 Canon Kk Liquid ejecting head, liquid ejecting device and liquid ejecting method
US6286941B1 (en) * 1998-10-26 2001-09-11 Hewlett-Packard Company Particle tolerant printhead
US6270201B1 (en) * 1999-04-30 2001-08-07 Hewlett-Packard Company Ink jet drop generator and ink composition printing system for producing low ink drop weight with high frequency operation
US6244694B1 (en) * 1999-08-03 2001-06-12 Hewlett-Packard Company Method and apparatus for dampening vibration in the ink in computer controlled printers
US6364466B1 (en) * 2000-11-30 2002-04-02 Hewlett-Packard Company Particle tolerant ink-feed channel structure for fully integrated inkjet printhead
US6364467B1 (en) 2001-05-04 2002-04-02 Hewlett-Packard Company Barrier island stagger compensation
US6752493B2 (en) 2002-04-30 2004-06-22 Hewlett-Packard Development Company, L.P. Fluid delivery techniques with improved reliability
JP2005153435A (en) 2003-11-28 2005-06-16 Ricoh Co Ltd Droplet discharging head, liquid cartridge and image forming apparatus
JP4708762B2 (en) 2004-10-26 2011-06-22 キヤノン株式会社 Inkjet recording device
US7517056B2 (en) * 2005-05-31 2009-04-14 Hewlett-Packard Development Company, L.P. Fluid ejection device
KR100754392B1 (en) 2005-12-27 2007-08-31 삼성전자주식회사 Ink path structure and inkjet printhead having the same
JP5369176B2 (en) * 2008-05-23 2013-12-18 富士フイルム株式会社 Fluid circulation for ejecting fluid droplets
JP2011119906A (en) 2009-12-02 2011-06-16 Sony Corp Image processor and image processing method
KR20110086946A (en) 2010-01-25 2011-08-02 삼성전기주식회사 Inkjet print head
US8540355B2 (en) * 2010-07-11 2013-09-24 Hewlett-Packard Development Company, L.P. Fluid ejection device with circulation pump
WO2011146069A1 (en) * 2010-05-21 2011-11-24 Hewlett-Packard Development Company, L.P. Fluid ejection device including recirculation system
US8721061B2 (en) 2010-05-21 2014-05-13 Hewlett-Packard Development Company, L.P. Fluid ejection device with circulation pump
US8939531B2 (en) * 2010-10-28 2015-01-27 Hewlett-Packard Development Company, L.P. Fluid ejection assembly with circulation pump
US8517522B2 (en) * 2011-02-07 2013-08-27 Fujifilm Dimatix, Inc. Fluid circulation
JP5826376B2 (en) 2011-04-29 2015-12-02 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. System and method for venting a fluid
BR112013029295B1 (en) 2011-06-27 2020-10-06 Hewlett-Packard Development Company, L.P INK LEVEL SENSOR
JP6066623B2 (en) * 2011-09-22 2017-01-25 キヤノン株式会社 Liquid discharge head
US9403372B2 (en) 2012-02-28 2016-08-02 Hewlett-Packard Development Company, L.P. Fluid ejection device with ACEO pump
WO2013162606A1 (en) * 2012-04-27 2013-10-31 Hewlett-Packard Development Company, L.P. Fluid ejection device with two-layer tophat
EP2828088B1 (en) * 2012-07-03 2020-05-27 Hewlett-Packard Development Company, L.P. Fluid ejection apparatus
RU2635080C2 (en) 2012-11-30 2017-11-08 Хьюлетт-Паккард Дивелопмент Компани, Л.П. Device for emission of fluid environment with built-in ink level sensor
JP6189614B2 (en) 2013-03-26 2017-08-30 キヤノンファインテックニスカ株式会社 Liquid discharge head and liquid discharge apparatus
EP3250387B1 (en) * 2015-01-29 2020-08-05 Hewlett-Packard Development Company, L.P. Fluid ejection device and method of manufacturing a fluid ejection device
BR112017015939A2 (en) * 2015-04-30 2018-07-10 Hewlett Packard Development Co fluid ejection device
WO2018136097A1 (en) * 2017-01-23 2018-07-26 Hewlett-Packard Development Company, L.P. Fluid ejection device

Also Published As

Publication number Publication date
TWI579149B (en) 2017-04-21
CN107000443A (en) 2017-08-01
EP3250387B1 (en) 2020-08-05
CN107000443B (en) 2018-07-10
JP2017534497A (en) 2017-11-24
EP3250387A4 (en) 2018-09-05
JP6538861B2 (en) 2019-07-03
US20180015731A1 (en) 2018-01-18
US11440331B2 (en) 2022-09-13
US20210023853A1 (en) 2021-01-28
US20190023022A1 (en) 2019-01-24
US10112407B2 (en) 2018-10-30
TW201637886A (en) 2016-11-01
WO2016122528A1 (en) 2016-08-04
US10828908B2 (en) 2020-11-10
BR112017008528A2 (en) 2017-12-19

Similar Documents

Publication Publication Date Title
US11230097B2 (en) Fluid ejection device
US11440331B2 (en) Fluid ejection device
US10766272B2 (en) Fluid ejection device
US10717274B2 (en) Fluid ejection device
US10207516B2 (en) Fluid ejection device
US20190030890A1 (en) Fluid ejection device
US10336070B2 (en) Fluid ejection device with a fluid recirculation channel
US20180215148A1 (en) Fluid ejection device
US11059290B2 (en) Fluid ejection device
US20200031135A1 (en) Fluid ejection device
US10780705B2 (en) Fluid ejection device

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170419

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20180803

RIC1 Information provided on ipc code assigned before grant

Ipc: B41J 2/18 20060101AFI20180730BHEP

Ipc: B41J 2/19 20060101ALI20180730BHEP

Ipc: B41J 2/135 20060101ALI20180730BHEP

Ipc: B41J 2/175 20060101ALI20180730BHEP

Ipc: B41J 2/14 20060101ALI20180730BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200310

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200414

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1298179

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015057184

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200805

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1298179

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201105

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201106

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201207

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201105

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201205

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015057184

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

26N No opposition filed

Effective date: 20210507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210129

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210129

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211216

Year of fee payment: 8

Ref country code: FR

Payment date: 20211215

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150129

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231219

Year of fee payment: 10