EP3246764B1 - Shock-absorber device for a clock movement - Google Patents

Shock-absorber device for a clock movement Download PDF

Info

Publication number
EP3246764B1
EP3246764B1 EP17167110.0A EP17167110A EP3246764B1 EP 3246764 B1 EP3246764 B1 EP 3246764B1 EP 17167110 A EP17167110 A EP 17167110A EP 3246764 B1 EP3246764 B1 EP 3246764B1
Authority
EP
European Patent Office
Prior art keywords
pivot
magnet
shock
magnets
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17167110.0A
Other languages
German (de)
French (fr)
Other versions
EP3246764A1 (en
Inventor
Deirdré LENOIR
Davide Sarchi
Benoît LÈGERET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Montres Breguet SA
Original Assignee
Montres Breguet SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Montres Breguet SA filed Critical Montres Breguet SA
Publication of EP3246764A1 publication Critical patent/EP3246764A1/en
Application granted granted Critical
Publication of EP3246764B1 publication Critical patent/EP3246764B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B31/00Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
    • G04B31/02Shock-damping bearings
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B29/00Frameworks
    • G04B29/02Plates; Bridges; Cocks
    • G04B29/022Bridges
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B31/00Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
    • G04B31/02Shock-damping bearings
    • G04B31/04Shock-damping bearings with jewel hole and cap jewel

Definitions

  • the present invention relates to horological shockproof devices.
  • shockproof devices are generally associated with bearings that guide rotating rotated elements of the watch movement, in particular rockers.
  • shock absorbers, bumpers or shock absorbers we also speak of shock absorbers, bumpers or shock absorbers.
  • the invention relates more particularly to the damping of axial shocks undergone by pivoting elements and the mechanical stresses experienced by the pivots during such axial shocks.
  • a conventional horological shock-absorbing device comprises an elastic member which carries or exerts pressure against at least one counter-pivoting stone of the bearing equipped with this shock-proof device, this counter-pivot stone forming a stop for the pivot inserted in this bearing in the direction of the axis of rotation of the pivoting element considered.
  • This shockproof device is arranged so as to generate, via the counter-pivot stone, a restoring force on the pivot in question when the pivot presses in case of impact against the stone against pivot.
  • pivoting stone is meant any structure, in any suitable material, which defines an axial bearing surface for the pivot.
  • Such anti-shock devices generally comprise mechanical springs which are dimensioned empirically, following practical rules such as that of the best compromise between mechanical stability during operation and elastic resistance to deformation.
  • mechanical Indeed, it is desirable to have a relatively rigid damper which does not generate axial movements of the pivoting element at each small impact, while ensuring the function of shock absorber for violent shocks generating large axial accelerations (positive or negative) for this pivoting element that could damage its pivots.
  • the conventional shock devices of the sprung balance, the parachutes (also called scrapers) and the lyres are sized not to be activated until relatively large shock accelerations (between 200g and 500g, g being the same). acceleration), thanks to a preload of the spring forming these parachutes and lyres which defines a threshold value. Beyond this threshold value, it is expected that the spring deforms and absorbs some of the energy of the shock. However, because of the low mechanical damping of the metal blades used, most of the energy is returned to the pendulum. The local deformation of the pendulum pivot is therefore very likely, already for relatively small shocks.
  • the document JP-2011-185673 describes a bearing for a watch mobile that is associated with a shockproof device.
  • This shockproof device conventionally comprises a kitten in which are arranged a pierced stone and a counter-pivot stone.
  • the kitten is located in a housing of a base which has at the bottom of its side wall magnets arranged to exert axially, continuously, a magnetic attraction force on the kitten which is provided for this purpose in magnetic material .
  • This magnetic system is intended to participate in the shockproof function.
  • rigid or elastic axial stops are arranged in the base above the kitten.
  • the present invention aims to provide a watch movement equipped with at least one effective shockproof device that provides a solution to the problem of deterioration of the pivots of a pivoting element in case of shocks, even in case of strong shocks.
  • the present invention relates to a watch movement as defined in claim 1.
  • the shockproof device has a lower resistance for relatively strong shocks while ensuring good stability for less shock.
  • the rigidity of the anti-shock device according to the invention no longer behaves like a mechanical spring which generates a restoring force substantially proportional to the axial displacement of the stone against pivot. On the contrary, it exerts a relatively large force when the displacement is zero, which then decreases at least on an initial portion of the shock-absorbing path that can cross the stone against pivot.
  • the first and second magnets and the high magnetic permeability element are aligned in a direction substantially parallel to the axis of rotation of the pivoting element, the first and second magnets having opposite polarities according to this direction.
  • the high magnetic permeability element is attached to the first magnet.
  • the anti-shock device 30 comprises an elastic member 32 which exerts a force on a counter-pivoting stone 36, which forms a stop for the pivot 26 in the direction of the axis of rotation of the pivoting element.
  • This shockproof device is arranged in such a way as to be able to generate, by means of the counter-pivot stone, a restoring force on the pivot 26 when this pivot presses, in the event of an impact, against this stone. against pivot.
  • the anti-shock device further comprises a magnetic system 40 formed of two magnets 42, 44 and a high magnetic permeability element 46 arranged between these two magnets and integral with one of them.
  • the magnet 44 integral with the elastic member, is arranged to undergo, in the event of relatively strong axial shocks for the pivoting element, a back and forth movement symbolized by the Figure 2 by a two-way arrow.
  • the elastic member In the absence of shock, the elastic member is in a specific rest position and the magnet that it also carries. Note that in this rest position, the elastic member may have an initial elastic deformation. In the latter case, it is said that the elastic member is prestressed.
  • the two magnets 42 and 44 are arranged to generate between them, in association with the high magnetic permeability element 46, a global magnetic attraction force on a first section of the aforementioned relative distance and a global magnetic force of repulsion on a second section of this relative distance, this second section corresponding to distances (referenced E to the Figure 3 ) between the first and second magnets which are greater than the distances corresponding to the first section.
  • the magnetic system 40 and the elastic member 32 are arranged so that the total force exerted in case of shock by the shockproof device on the pivot 26 remains a restoring force for the integer of the relative distance.
  • both magnets are cylindrical and the wafer is in the form of a disk made of, for example, a ferromagnetic material.
  • the magnetic system 40 and its operation will be described below.
  • the magnetic system 52 comprises a first magnet 4, a high magnetic permeability element 6 which is integral with the first magnet, and a second magnet 8 which is movable along a displacement axis , relative to the assembly formed by the first magnet 4 and the element 6.
  • the element 6 is arranged between the first magnet and the second magnet, in contact or close to the first magnet.
  • the element 6 is glued to the first magnet as shown in FIG. Figure 3 .
  • the first magnet can be driven into the high magnetic permeability element which then has for example the shape of a cylindrical box open at one end to receive the first magnet.
  • the distance between the element 6 and the magnet 4 integral with this element is less than or substantially equal to one-tenth of the length of the magnet along its axis of magnetization.
  • the first magnet 4 and the element 6 form a first part of the magnetic system and the second magnet 8 forms a second part of this system.
  • Element 6 is made up of, for example, carbon steel, tungsten carbide, nickel, FeSi or FeNi, or other alloys with cobalt such as Vacozet® (CoFeNi) or Vacoflux® (CoFe).
  • this element with high magnetic permeability consists of a metal glass based on iron or cobalt.
  • Element 6 is characterized by a saturation field Bs and a permeability ⁇ .
  • the magnets 4 and 8 are for example ferrite, FeCo or PtCo, rare earths such as NdFeB or SmCo. These magnets are characterized by their remanent field Br1 and Br2.
  • the element with high magnetic permeability 6 has a central axis 10 which is substantially coincident with the magnetization axis of the first magnet 4 and also with the magnetization axis of the second magnet 8.
  • the respective magnetization directions of the magnets 4 and 8 are opposed.
  • These first and second magnets therefore have opposite polarities and they are likely to undergo a relative movement between them over a certain relative distance D.
  • the magnet 4 is fixed and the magnet 8 is movable so that the relative movement between them has a direction substantially along the central axis 10 which then defines the axis of displacement.
  • the axis 10 is linear, but this is a non-limiting variant.
  • the axis of displacement is substantially circular arc, the central axis of the element 46 being substantially tangential to this axis of displacement curve.
  • the behavior of the magnetic system 40 is similar to that of the magnetic system 52. This is all the more true that the radius of curvature is large relative to the maximum possible distance between the element 46 and the magnet 44, as is the case in the first embodiment of the invention.
  • the element 6 has dimensions in a plane orthogonal to the central axis 10 which are greater than those of the first magnet 4 and those of the second magnet 8 in projection in this orthogonal plane. It will be noted that, in the case where the second magnet abuts against the element 6 at the end of the magnetic attraction stroke, this second magnet advantageously has a hardened surface or a thin layer of hard material on its surface.
  • the two magnets 4 and 8 are arranged in magnetic repulsion so that, in the absence of the element with high magnetic permeability 6, a repulsive force tends to move these two magnets away from each other. Surprisingly, however, the arrangement between these two magnets of the element 6 reverses the direction of the magnetic force between the first and second parts of the magnetic system when they are at a short distance from each other. so that a global force of magnetic attraction is then generated between these two parts.
  • the Figure 4 is a graph whose curve 54 represents the magnetic interaction force between the first and second parts of the magnetic system 52 as a function of the distance E between the two magnets, respectively of the relative distance D between the moving magnet 8 and the element with high magnetic permeability 6.
  • the magnet 8 undergoes, on a first section D1 of the relative distance, generally a magnetic attraction force which tends to hold the magnet 8 against the element 6 or to the bring back to it in case of removal. Then, the element 6 and the two magnets are arranged so that the second magnet 8 undergoes, on a second section D2 of the aforementioned relative distance, globally a magnetic repulsion force.
  • This second section corresponds to distances between the first and second parts, and therefore at distances D between the element 6 and the magnet 8, which are greater than the distances corresponding to the first section of the relative distance.
  • the second section is limited by a maximum distance D max which is generally defined by a stop limiting the distance of the moving magnet.
  • the overall magnetic force is a continuous function of the distance between the components and it has a zero value at the distance D inv .
  • this magnet is subjected to a global magnetic repulsion force which tends to move it away from the element 6.
  • the magnet 8 is subjected to a global magnetic attraction force which tends to approach the element 6 and, if nothing do not oppose it, put it in contact with that element, and then keep it in that position.
  • the inversion distance D inv is determined by the geometry of the three magnetic parts forming the magnetic system and their magnetic properties.
  • the elastic member 32 is formed by a flat spring having a first end 56 and a second end 58, the first end being fixed to the support 48 by means of a screw 60 and the second end bearing the second magnet 44.
  • the counter-pivoting stone 36 is located, in projection in a general plane of the flat spring, between the first and second ends.
  • the bearing 28 comprises a base 62 fixedly arranged in an opening of the support 48. In a conventional manner, this base has at its center a hole through which the pivot 26 passes.
  • the pivoting element 24, here the shaft of a balance (not shown) has a bearing 70 which classically limits the movement of this element along the axis 50, this bearing abutting against a surface defined by the base to the device of the hole.
  • the bearing 28 further comprises a kitten 64 in which is inserted the counter pivot stone 36. In the variant shown, it is a magnetic bearing. Thus, the kitten still supports a magnet 66 and a closing stone 68. This kitten also participates in the anti-shock device.
  • He is arranged in a housing formed by the base 62 and a closure plate 72 fixed to the support 48, so as to be able to undergo an axial movement at least a distance corresponding to the maximum displacement that can undergo in case of impact the pivot 26 when the range 70 comes into abutment against the base.
  • a short tube 74 is fixed to the flat spring 32 at its end end 58 so as to bear against the kitten or the closure stone.
  • the anti-shock device acts on the integral assembly of the counter-pivot stone via this tube.
  • the invention is not limited to a magnetic bearing.
  • there is a conventional bearing with a kitten incorporating a pierced stone and a counter-pivot stone the latter may have a flat surface opposite the pivot.
  • the magnetic system and the elastic member are arranged so that, in a rest position of the shockproof device, the pivoting stone or a kitten to which it is fixed is held in abutment against the support of the bearing or against a base of this bearing as the force exerted by the pivot considered against the pivot-stone is less than a limit value, the latter being preferably provided greater than the gravitational force acting on the pivoting element, including the sprung balance.
  • the elastic element is prestressed in the rest position of the shock-proof device, so that the counter-pivot stone remains immobile over a larger range of values of the force exerted by the mobile element undergoing axial acceleration. in case of shock.
  • the graph of the total force exerted by the anti-shock device on the assembly carrying the counter-pivot stone, and through it on the pivot 26 bearing against this stone, according to its displacement DP is given by the curve 78 which corresponds to the sum of the elastic force and the overall magnetic force generated by the magnetic system 40. It is observed that this total force (restoring force) is greater than the elastic force on a first section DP1 between a distance DP R , corresponding to the rest position of the anti-shock device, and a distance DP inv corresponding to a position of the counter-pivot stone for which the overall magnetic force exerted on the magnet 44 is zero.
  • the total force is less than the elastic force because the overall magnetic force then opposes the elastic force, which decreases the total force exerted on the pivot of the rotating element.
  • the anti-shock device according to the invention has a remarkable behavior as shown by the curve 78.
  • the force exerted on the pivot bearing against the counter-pivot stone, at least for a displacement distance of this stone less than DP inv is maximum for the idle distance DP R of the anti-shock device.
  • the counter-pivot stone moves away from its rest position and then the total force against the pivot 26 decreases relatively quickly, which directly ensures a relatively large movement of the stone against pivot and a good shock damping to the stop position.
  • the flat spring has a rigidity close to a standard stiffness but its preload is reduced, compared to a standard prestressing, by a factor of about 30% to 40%, while having a usual stability for the anti-shock device in his rest position.
  • the shock device can return to its initial position, because it is expected that the total force remains positive (restoring force) and exceeds the friction forces.
  • the inversion of the magnetic force which takes place when the moving magnet is sufficiently close to the ferromagnetic element, simultaneously ensures the absolute absence of mechanical hysteresis and the re-centering of the bearing after an impact.
  • a watch movement 82 incorporating a second embodiment of an anti-shock device according to the invention.
  • the bearing and the anti-shock device 86 associated with it are arranged in an opening of a plate 84.
  • the elastic member 88 is a lyre spring having two branches 89 and 90 arranged to exert pressure on the counter-pivoting stone 36A .
  • the two branches press on a kitten which is fixed against the pivot stone.
  • the anti-shock device comprises a first magnetic system 40A and a second magnetic system 40B each similar to the magnetic system 40 described in the first embodiment.
  • the two magnetic systems are respectively associated with two structures 92 and 94 which are respectively fixed to the two branches 89 and 90 substantially in their central zone. These two structures respectively carry two magnets 44A and 44B each forming the moving magnet of the respective magnetic system.
  • the two branches are respectively associated with the first and second magnetic systems and carry, through the structures 92 and 94, each a movable magnet 44A, respectively 44B which cooperates with a fixed magnet 42A, respectively 42B.
  • Each magnetic system further comprises a high magnetic permeability element 46A, respectively 46B, which is integral with the fixed magnet of the respective magnetic system.
  • each of the branches 89, 90 of the lyre spring in conventional manner, is held axially at its two ends by angularly projecting portions of an upper ring of the base 62A of the bearing.
  • the lyre spring undergoes in the event of stress a maximum elastic deformation.
  • each branch substantially presses in the middle on the counter-pivot stone.
  • the two structures 92 and 94 are integral with the lyre spring and have a greater rigidity than that of the respective branches, in particular by a greater thickness as shown in the figures.
  • the structures have the same thickness as the branches of the lyre spring to facilitate manufacture, but have larger sections.
  • the rigidity of the supporting structures of the moving magnets is not greater than those of the branches, the mobile magnets performing in case of large shocks longer courses than the counter-pivot stone.
  • the arrangement of two magnetic systems symmetrically associated respectively with the two elastic branches of the lyre spring is advantageous because it results from such an arrangement the same pressure of each branch on the counter-pivot stone, or more generally on the mobile assembly 96 of the bearing, for the same elastic deformation of the two branches. This maintains a uniform behavior of the anti-shock device and in particular the counter-pivot stone 36A in a general plane perpendicular to the axis of rotation of the balance in the event of axial shocks.
  • the Figure 8 shows the curve 76A of the elastic force applied by the spring-lyre to the stone against pivot, and thus on the pivot 26 bearing against it, depending on the axial displacement of the stone against pivot, as well as the curve 100 of the total force exerted by the anti-shock device 86 on the pivot as a function of said axial displacement.
  • the variant shown is particular in that no mechanical prestressing of the anti-shock device is provided in the rest position, only the magnetic attraction force ensuring the immobility of the anti-shock device in its static operating range ( idle position here corresponding to a displacement DP equal to zero) up to a certain maximum static force of this shockproof device.
  • the preponderance of the magnetic force in the rest position makes it possible to reduce the total restoring force well below the maximum force of the static situation as soon as the shockproof device enters its dynamic operating range and is therefore armed. .
  • the balance moves with less resistance until it meets the stop formed by the base of the bearing. Note that this stop, by acting on an annular bearing shaft 24 of the balance, protects the pendulum pivot in case of violent shocks.
  • the stiffness of the lyre spring and the sizing of the two magnetic systems are provided so that the total resulting force applied by the shockproof remains a greater restoring force to the friction forces to ensure, after an impact generating a force greater than the maximum force intervening for the static situation on the mobile assembly 96 of the bearing, the return of the shockproof device in its initial position and a good refocusing of this mobile assembly (crucial property to ensure good chronometry of the watch movement).
  • the two bearings of a balance spring are equipped with a shock-absorbing device of the type described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Vibration Prevention Devices (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

Domaine de l'inventionField of the invention

La présente invention concerne les dispositifs antichoc horlogers. De tels dispositifs antichoc sont généralement associés à des paliers qui guident en rotation des éléments pivotés du mouvement horloger, en particulier des balanciers. On parle aussi de dispositifs amortisseurs de chocs, de parechocs ou d'antichocs. L'invention concerne plus particulièrement l'amortissement de chocs axiaux subis par des éléments pivotants et les contraintes mécaniques subies par les pivots lors de tels chocs axiaux.The present invention relates to horological shockproof devices. Such shockproof devices are generally associated with bearings that guide rotating rotated elements of the watch movement, in particular rockers. We also speak of shock absorbers, bumpers or shock absorbers. The invention relates more particularly to the damping of axial shocks undergone by pivoting elements and the mechanical stresses experienced by the pivots during such axial shocks.

Arrière-plan de l'inventionBackground of the invention

Un dispositif antichoc horloger usuel comprend un organe élastique qui porte ou qui exerce une pression contre au moins une pierre contre-pivot du palier équipé de ce dispositif antichoc, cette pierre contre-pivot formant une butée pour le pivot inséré dans ce palier selon la direction de l'axe de rotation de l'élément pivotant considéré. Ce dispositif antichoc est agencé de manière à pouvoir engendrer, par l'intermédiaire de la pierre contre-pivot, une force de rappel sur le pivot en question lorsque ce pivot presse en cas d'un choc contre la pierre contre-pivot. On comprend par 'pierre contre-pivot' toute structure, en n'importe quel matériau approprié, qui définit une surface d'appui axial pour le pivot.A conventional horological shock-absorbing device comprises an elastic member which carries or exerts pressure against at least one counter-pivoting stone of the bearing equipped with this shock-proof device, this counter-pivot stone forming a stop for the pivot inserted in this bearing in the direction of the axis of rotation of the pivoting element considered. This shockproof device is arranged so as to generate, via the counter-pivot stone, a restoring force on the pivot in question when the pivot presses in case of impact against the stone against pivot. By "pivoting stone" is meant any structure, in any suitable material, which defines an axial bearing surface for the pivot.

De tels dispositifs antichoc comprennent généralement des ressorts mécaniques qui sont dimensionnés de manière empirique, en suivant des règles pratiques comme celle du meilleur compromis entre stabilité mécanique lors du fonctionnement et résistance élastique aux déformations mécaniques. En effet, il est souhaitable d'avoir un amortisseur relativement rigide qui n'engendre pas des mouvements axiaux de l'élément pivotant à chaque petit choc, tout en assurant la fonction d'amortisseur de choc pour des chocs violents engendrant de grandes accélérations axiales (positives ou négatives) pour cet élément pivotant qui pourraient endommager ses pivots.Such anti-shock devices generally comprise mechanical springs which are dimensioned empirically, following practical rules such as that of the best compromise between mechanical stability during operation and elastic resistance to deformation. mechanical. Indeed, it is desirable to have a relatively rigid damper which does not generate axial movements of the pivoting element at each small impact, while ensuring the function of shock absorber for violent shocks generating large axial accelerations (positive or negative) for this pivoting element that could damage its pivots.

En particulier, les dispositifs antichoc classiques du balancier-spiral, les parachutes (nommés aussi pare-chutes) et les lyres, sont dimensionnés pour ne pas être activés jusqu'à des accélérations de choc relativement importantes (entre 200g et 500g, g étant l'accélération terrestre), grâce à une précontrainte du ressort formant ces parachutes et lyres qui définit une valeur de seuil. Au-delà de cette valeur de seuil, il est prévu que le ressort se déforme et absorbe une partie de l'énergie du choc. Toutefois, à cause du faible amortissement mécanique des lames métalliques utilisées, la plupart de l'énergie est restituée au balancier. La déformation locale du pivot du balancier est donc très probable, déjà pour des chocs relativement faibles. Une telle déformation, qui a un impact considérable sur la précision chronométrique de la montre, est généralement négligée parce que la norme en matière de chronomètre certifié est peu sévère pour la stabilité chronométrique d'une montre à la suite d'un choc d'un mètre (60 s/jour d'écart).In particular, the conventional shock devices of the sprung balance, the parachutes (also called scrapers) and the lyres, are sized not to be activated until relatively large shock accelerations (between 200g and 500g, g being the same). acceleration), thanks to a preload of the spring forming these parachutes and lyres which defines a threshold value. Beyond this threshold value, it is expected that the spring deforms and absorbs some of the energy of the shock. However, because of the low mechanical damping of the metal blades used, most of the energy is returned to the pendulum. The local deformation of the pendulum pivot is therefore very likely, already for relatively small shocks. Such deformation, which has a considerable impact on the chronometric accuracy of the watch, is generally neglected because the certified chronometer standard is not very severe for the chronometric stability of a watch as a result of a shock of a watch. meter (60 s / day difference).

Le document JP-2011-185673 décrit un palier pour un mobile horloger qui est associé à un dispositif antichoc. Ce dispositif antichoc comprend classiquement un chaton dans lequel sont agencées une pierre percée et une pierre contre-pivot. Le chaton est situé dans un logement d'une base qui présente au bas de sa paroi latérale des aimants agencés pour exercer axialement, de manière continue, une force d'attraction magnétique sur le chaton qui est prévu, à cet effet, en matériau magnétique. Ce système magnétique est prévu pour participer à la fonction antichoc. Pour éviter que le chaton ne sorte du logement, étant donné que la force magnétique agissant sur lui diminue lorsqu'il s'élève dans la base sous l'effet d'un choc subi par le mobile horloger, des butées axiales rigides ou élastiques sont agencées dans la base au-dessus du chaton.The document JP-2011-185673 describes a bearing for a watch mobile that is associated with a shockproof device. This shockproof device conventionally comprises a kitten in which are arranged a pierced stone and a counter-pivot stone. The kitten is located in a housing of a base which has at the bottom of its side wall magnets arranged to exert axially, continuously, a magnetic attraction force on the kitten which is provided for this purpose in magnetic material . This magnetic system is intended to participate in the shockproof function. To prevent the kitten from leaving the housing, since the magnetic force acting on it decreases when it rises in the base under the effect of an impact suffered by the watch mobile, rigid or elastic axial stops are arranged in the base above the kitten.

Résumé de l'inventionSummary of the invention

La présente invention a pour but de fournir un mouvement horloger équipé d'au moins un dispositif antichoc efficace qui apporte une solution au problème de détérioration des pivots d'un élément pivotant en cas de chocs, même en cas de forts chocs.The present invention aims to provide a watch movement equipped with at least one effective shockproof device that provides a solution to the problem of deterioration of the pivots of a pivoting element in case of shocks, even in case of strong shocks.

A cet effet, la présente invention concerne un mouvement horloger tel que défini à la revendication 1.For this purpose, the present invention relates to a watch movement as defined in claim 1.

Grâce aux caractéristiques de l'invention, qui seront décrites en détails par la suite, le dispositif antichoc présente une moindre résistance pour des chocs relativement forts tout en assurant une bonne stabilité pour de moindres chocs. En effet, la rigidité du dispositif antichoc selon l'invention ne se comporte plus comme un ressort mécanique qui engendre une force de rappel sensiblement proportionnelle au déplacement axial de la pierre contre-pivot. Au contraire, il exerce une force relativement importante lorsque le déplacement est nul, laquelle diminue ensuite au moins sur une partie initiale du trajet d'amortissement des chocs que peut parcourir la pierre contre-pivot.Thanks to the characteristics of the invention, which will be described in detail later, the shockproof device has a lower resistance for relatively strong shocks while ensuring good stability for less shock. Indeed, the rigidity of the anti-shock device according to the invention no longer behaves like a mechanical spring which generates a restoring force substantially proportional to the axial displacement of the stone against pivot. On the contrary, it exerts a relatively large force when the displacement is zero, which then decreases at least on an initial portion of the shock-absorbing path that can cross the stone against pivot.

Dans un mode de réalisation principal, les premier et deuxième aimants et l'élément à haute perméabilité magnétique sont alignés selon une direction sensiblement parallèle à l'axe de rotation de l'élément pivotant, les premier et deuxième aimants présentant des polarités opposées selon cette direction.In a main embodiment, the first and second magnets and the high magnetic permeability element are aligned in a direction substantially parallel to the axis of rotation of the pivoting element, the first and second magnets having opposite polarities according to this direction.

Dans une variante préférée, l'élément à haute perméabilité magnétique est fixé au premier aimant.In a preferred variant, the high magnetic permeability element is attached to the first magnet.

Brève description des dessinsBrief description of the drawings

L'invention sera décrite ci-après à l'aide de dessins annexés, donnés à titre d'exemples nullement limitatifs, dans lesquels :

  • La Figure 1 est une vue en perspective de dessous d'un dispositif antichoc selon un premier mode de réalisation de l'invention;
  • La Figure 2 est une vue en coupe partielle d'un mouvement horloger incorporant le dispositif antichoc de la Figure 1, effectuée au travers de ce dispositif antichoc;
  • La Figure 3 est une vue latérale, partiellement en coupe, d'un système magnétique similaire à celui incorporé dans le dispositif antichoc de l'invention;
  • La Figure 4 montre le graphe de la force magnétique globale exercée sur un aimant mobile en fonction de son éloignement d'un disque ferromagnétique pour le système magnétique de la Figure 3;
  • La Figure 5 montre le graphe de la force élastique exercée par le ressort plat du dispositif antichoc de la Figure 1 sur le pivot d'un élément pivotant et le graphe de la force totale exercée par le dispositif antichoc en fonction du déplacement de ce pivot, en appui contre une pierre contre-pivot, le long de son axe de rotation;
  • La Figure 6 est une vue de dessus d'un dispositif antichoc selon un deuxième mode de réalisation de l'invention;
  • La Figure 7 est une vue en coupe partielle d'un mouvement horloger incorporant le dispositif antichoc de la Figure 6, effectuée au travers de ce dispositif antichoc;
  • La Figure 8 montre le graphe de la force élastique exercée par le ressort-lyre du dispositif antichoc des Figures 6 et 7 sur le pivot d'un élément pivotant et le graphe de la force totale exercée par le dispositif antichoc en fonction du déplacement de ce pivot, en appui contre une pierre contre-pivot, le long de son axe de rotation.
The invention will be described hereinafter with the aid of annexed drawings, given by way of non-limiting examples, in which:
  • The Figure 1 is a perspective view from below of an anti-shock device according to a first embodiment of the invention;
  • The Figure 2 is a partial sectional view of a watch movement incorporating the anti-shock device of the Figure 1 , carried out through this shockproof device;
  • The Figure 3 is a side view, partially in section, of a magnetic system similar to that incorporated in the anti-shock device of the invention;
  • The Figure 4 shows the graph of the global magnetic force exerted on a moving magnet as a function of its distance from a ferromagnetic disk for the magnetic system of the Figure 3 ;
  • The Figure 5 shows the graph of the elastic force exerted by the flat spring of the anti-shock device of the Figure 1 on the pivot of a pivoting element and the graph of the total force exerted by the anti-shock device as a function of the displacement of this pivot, bearing against a counter-pivot stone, along its axis of rotation;
  • The Figure 6 is a top view of an anti-shock device according to a second embodiment of the invention;
  • The Figure 7 is a partial sectional view of a watch movement incorporating the anti-shock device of the Figure 6 , carried out through this shockproof device;
  • The Figure 8 shows the graph of the elastic force exerted by the spring-lyre of the anti-shock device of Figures 6 and 7 on the pivot of a pivoting element and the graph of the total force exerted by the anti-shock device as a function of the displacement of this pivot, bearing against a counter-pivot stone, along its axis of rotation.

Description détaillée de l'inventionDetailed description of the invention

A l'aide des Figures 1 à 5, on décrira ci-après un premier mode de réalisation d'un mouvement horloger 22 incorporant un élément pivotant 24, un palier 28 dans lequel est agencé un pivot 26 de cet élément pivotant et un dispositif antichoc 30 associé à ce palier.With the help of Figures 1 to 5 , a first embodiment of a watch movement 22 incorporating a pivoting element 24, a bearing 28 in which is arranged a pivot 26 of the pivoting element and an anti-shock device 30 associated with this bearing will be described hereinafter.

De manière générale, le dispositif antichoc 30 comprend un organe élastique 32 qui exerce une force sur une pierre contre-pivot 36, laquelle forme une butée pour le pivot 26 selon la direction de l'axe de rotation de l'élément pivotant. Ce dispositif antichoc est agencé de manière à pouvoir engendrer, par l'intermédiaire de la pierre contre-pivot, une force de rappel sur le pivot 26 lorsque ce pivot presse, en cas d'un choc, contre cette pierre contre-pivot. Selon l'invention, le dispositif antichoc comprend en outre un système magnétique 40 formé de deux aimants 42, 44 et d'un élément à haute perméabilité magnétique 46 agencé entre ces deux aimants et solidaire de l'un d'eux. Ces deux aimants sont fixés respectivement à un support 48 du dispositif antichoc et à l'organe élastique 32, de manière à pouvoir présenter entre eux un mouvement relatif sur une certaine distance relative D (référencée à la Figure 3) lorsque l'organe élastique subit, notamment en cas d'un certain choc, momentanément une déformation élastique sous une certaine pression exercée par le pivot contre la pierre contre-pivot. Plus particulièrement, l'aimant 44, solidaire de l'organe élastique, est agencé de manière à subir, en cas de chocs axiaux relativement forts pour l'élément pivotant, un mouvement de va-et-vient symbolisé à la Figure 2 par une flèche à double-sens. En l'absence de choc, l'organe élastique est dans une position de repos déterminée et l'aimant qu'il porte également. On notera que dans cette position de repos, l'organe élastique peut présenter une déformation élastique initiale. Dans ce dernier cas, on dit que l'organe élastique est précontraint.In general, the anti-shock device 30 comprises an elastic member 32 which exerts a force on a counter-pivoting stone 36, which forms a stop for the pivot 26 in the direction of the axis of rotation of the pivoting element. This shockproof device is arranged in such a way as to be able to generate, by means of the counter-pivot stone, a restoring force on the pivot 26 when this pivot presses, in the event of an impact, against this stone. against pivot. According to the invention, the anti-shock device further comprises a magnetic system 40 formed of two magnets 42, 44 and a high magnetic permeability element 46 arranged between these two magnets and integral with one of them. These two magnets are respectively fixed to a support 48 of the shockproof device and to the elastic member 32, so as to be able to present a relative movement relative to each other over a certain relative distance D (referenced to FIG. Figure 3 ) when the elastic member undergoes, especially in the case of a certain shock, momentarily elastic deformation under a certain pressure exerted by the pivot against the stone against pivot. More particularly, the magnet 44, integral with the elastic member, is arranged to undergo, in the event of relatively strong axial shocks for the pivoting element, a back and forth movement symbolized by the Figure 2 by a two-way arrow. In the absence of shock, the elastic member is in a specific rest position and the magnet that it also carries. Note that in this rest position, the elastic member may have an initial elastic deformation. In the latter case, it is said that the elastic member is prestressed.

De manière remarquable et très avantageuse, comme ceci sera expliqué ci-après en référence aux Figures 3 et 4, les deux aimants 42 et 44 sont agencés de manière à engendrer entre eux, en association avec l'élément à haute perméabilité magnétique 46, une force magnétique globale d'attraction sur un premier tronçon de la distance relative susmentionnée et une force magnétique globale de répulsion sur un deuxième tronçon de cette distance relative, ce deuxième tronçon correspondant à des éloignements (référencé E à la Figure 3) entre les premier et deuxième aimants qui sont supérieurs aux éloignements correspondant au premier tronçon. De plus, le système magnétique 40 et l'organe élastique 32 sont agencés de manière que la force totale exercée en cas de choc par le dispositif antichoc sur le pivot 26 demeure une force de rappel pour l'entier de la distance relative.Remarkably and very advantageously, as will be explained hereinafter with reference to Figures 3 and 4 the two magnets 42 and 44 are arranged to generate between them, in association with the high magnetic permeability element 46, a global magnetic attraction force on a first section of the aforementioned relative distance and a global magnetic force of repulsion on a second section of this relative distance, this second section corresponding to distances (referenced E to the Figure 3 ) between the first and second magnets which are greater than the distances corresponding to the first section. In addition, the magnetic system 40 and the elastic member 32 are arranged so that the total force exerted in case of shock by the shockproof device on the pivot 26 remains a restoring force for the integer of the relative distance.

Des variantes particulières du premier mode de réalisation, toutes représentées à la Figure 2, sont les suivantes :

  • L'élément à haute perméabilité magnétique 46 est fixé à l'aimant 42 solidaire du support 48;
  • L'élément à haute perméabilité magnétique est formé par une plaquette ayant un axe central qui est sensiblement confondu avec l'axe d'aimantation de l'aimant 42;
  • Lorsque l'organe élastique est dans sa position de repos, les deux aimants 42, 44 et l'élément à haute perméabilité magnétique 46 sont alignés selon une direction sensiblement parallèle à l'axe de rotation 50 de l'élément pivotant 24;
  • Les aimants 42 et 44 présentent des polarités opposées selon la direction de leur alignement;
Particular variants of the first embodiment, all shown in FIG. Figure 2 , are the following :
  • The element with high magnetic permeability 46 is fixed to the magnet 42 integral with the support 48;
  • The element with high magnetic permeability is formed by a wafer having a central axis which is substantially coincident with the magnetization axis of the magnet 42;
  • When the elastic member is in its rest position, the two magnets 42, 44 and the high magnetic permeability element 46 are aligned in a direction substantially parallel to the axis of rotation 50 of the pivoting element 24;
  • The magnets 42 and 44 have polarities opposite in the direction of their alignment;

En particulier, selon la variante représentée aux Figures 1 et 2, les deux aimants sont cylindriques et la plaquette a la forme d'un disque constitué par exemple d'un matériau ferromagnétique.In particular, according to the variant shown in Figures 1 and 2 both magnets are cylindrical and the wafer is in the form of a disk made of, for example, a ferromagnetic material.

En référence aux Figures 3 et 4, on décrira ci-après le système magnétique 40 et son fonctionnement. A cet effet, on a représenté à la Figure 3 un système magnétique 52 semblable au système magnétique 40. Ainsi, le système magnétique 52 comprend un premier aimant 4, un élément à haute perméabilité magnétique 6 qui est solidaire du premier aimant, et un deuxième aimant 8 qui est mobile, selon un axe de déplacement, relativement à l'ensemble formé par le premier aimant 4 et l'élément 6. Comme indiqué ci-avant, l'élément 6 est agencé entre le premier aimant et le deuxième aimant, en contact ou proche du premier aimant. En particulier, l'élément 6 est collé au premier aimant comme montré à la Figure 3. Dans une autre variante, le premier aimant peut être chassé dans l'élément à haute perméabilité magnétique qui présente alors par exemple la forme d'une boite cylindrique ouverte à une extrémité pour recevoir le premier aimant. Dans une variante préférée, la distance entre l'élément 6 et l'aimant 4 solidaire de cet élément est inférieure ou sensiblement égale à un dixième de la longueur de cet aimant selon son axe d'aimantation. Le premier aimant 4 et l'élément 6 forment une première partie du système magnétique et le deuxième aimant 8 forme une deuxième partie de ce système. L'élément 6 est constitué par exemples d'un acier au carbone, de carbure tungstène, de nickel, de FeSi ou FeNi, ou d'autres alliages avec du cobalt comme le Vacozet ® (CoFeNi) ou le Vacoflux ® (CoFe). Dans une variante avantageuse, cet élément à haute perméabilité magnétique est constitué d'un verre métallique à base de fer ou cobalt. L'élément 6 est caractérisé par un champ de saturation Bs et une perméabilité µ. Les aimants 4 et 8 sont par exemples en ferrite, en FeCo ou PtCo, en terres rares comme NdFeB ou SmCo. Ces aimants sont caractérisés par leur champ rémanent Br1 et Br2.With reference to Figures 3 and 4 The magnetic system 40 and its operation will be described below. For this purpose, it has been shown Figure 3 a magnetic system 52 similar to the magnetic system 40. Thus, the magnetic system 52 comprises a first magnet 4, a high magnetic permeability element 6 which is integral with the first magnet, and a second magnet 8 which is movable along a displacement axis , relative to the assembly formed by the first magnet 4 and the element 6. As indicated above, the element 6 is arranged between the first magnet and the second magnet, in contact or close to the first magnet. In particular, the element 6 is glued to the first magnet as shown in FIG. Figure 3 . In another variant, the first magnet can be driven into the high magnetic permeability element which then has for example the shape of a cylindrical box open at one end to receive the first magnet. In a variant preferred, the distance between the element 6 and the magnet 4 integral with this element is less than or substantially equal to one-tenth of the length of the magnet along its axis of magnetization. The first magnet 4 and the element 6 form a first part of the magnetic system and the second magnet 8 forms a second part of this system. Element 6 is made up of, for example, carbon steel, tungsten carbide, nickel, FeSi or FeNi, or other alloys with cobalt such as Vacozet® (CoFeNi) or Vacoflux® (CoFe). In an advantageous variant, this element with high magnetic permeability consists of a metal glass based on iron or cobalt. Element 6 is characterized by a saturation field Bs and a permeability μ. The magnets 4 and 8 are for example ferrite, FeCo or PtCo, rare earths such as NdFeB or SmCo. These magnets are characterized by their remanent field Br1 and Br2.

L'élément à haute perméabilité magnétique 6 présente un axe central 10 qui est sensiblement confondu avec l'axe d'aimantation du premier aimant 4 et également avec l'axe d'aimantation du deuxième aimant 8. Les sens d'aimantation respectifs des aimants 4 et 8 sont opposés. Ces premier et deuxième aimants ont donc des polarités opposées et ils sont susceptibles de subir entre eux un mouvement relatif sur une certaine distance relative D. Dans l'exemple représenté à la Figure 3, l'aimant 4 est fixe et l'aimant 8 est mobile de manière que le mouvement relatif entre eux présente une direction sensiblement le long de l'axe central 10 qui définit alors l'axe de déplacement. On notera que l'axe 10 est linéaire, mais ceci est une variante non limitative. Dans le cadre du premier mode de réalisation de l'invention, l'axe de déplacement est sensiblement en arc de cercle, l'axe central de l'élément 46 étant sensiblement tangent à cet axe de déplacement courbe. Dans un tel cas, en première approximation, le comportement du système magnétique 40 est semblable à celui du système magnétique 52. Ceci est d'autant plus vrai que le rayon de courbure est grand relativement à la distance maximale possible entre l'élément 46 et l'aimant 44, comme c'est le cas dans le premier mode de réalisation de l'invention. Dans une variante préférée, comme représentée à la Figure 3, l'élément 6 présente des dimensions dans un plan orthogonal à l'axe central 10 qui sont supérieures à celles du premier aimant 4 et à celles du deuxième aimant 8 en projection dans ce plan orthogonal. On notera que, dans le cas où le deuxième aimant vient buter contre l'élément 6 en fin de course d'attraction magnétique, ce deuxième aimant a avantageusement une surface durcie ou une fine couche en matériau dur à sa surface.The element with high magnetic permeability 6 has a central axis 10 which is substantially coincident with the magnetization axis of the first magnet 4 and also with the magnetization axis of the second magnet 8. The respective magnetization directions of the magnets 4 and 8 are opposed. These first and second magnets therefore have opposite polarities and they are likely to undergo a relative movement between them over a certain relative distance D. In the example shown in FIG. Figure 3 the magnet 4 is fixed and the magnet 8 is movable so that the relative movement between them has a direction substantially along the central axis 10 which then defines the axis of displacement. It will be noted that the axis 10 is linear, but this is a non-limiting variant. In the context of the first embodiment of the invention, the axis of displacement is substantially circular arc, the central axis of the element 46 being substantially tangential to this axis of displacement curve. In such a case, as a first approximation, the behavior of the magnetic system 40 is similar to that of the magnetic system 52. This is all the more true that the radius of curvature is large relative to the maximum possible distance between the element 46 and the magnet 44, as is the case in the first embodiment of the invention. In a preferred variant, as represented at Figure 3 , the element 6 has dimensions in a plane orthogonal to the central axis 10 which are greater than those of the first magnet 4 and those of the second magnet 8 in projection in this orthogonal plane. It will be noted that, in the case where the second magnet abuts against the element 6 at the end of the magnetic attraction stroke, this second magnet advantageously has a hardened surface or a thin layer of hard material on its surface.

Les deux aimants 4 et 8 sont agencés en répulsion magnétique de sorte que, en l'absence de l'élément à haute perméabilité magnétique 6, une force de répulsion tend à éloigner ces deux aimants l'un de l'autre. Cependant, de manière surprenante, l'agencement entre ces deux aimants de l'élément 6 inverse le sens de la force magnétique entre les première et deuxième parties du système magnétique lorsqu'elles sont à faible distance l'une de l'autre, de sorte qu'une force globale d'attraction magnétique est alors engendrée entre ces deux parties. La Figure 4 est un graphe dont la courbe 54 représente la force d'interaction magnétique entre les première et deuxième parties du système magnétique 52 en fonction de l'éloignement E entre les deux aimants, respectivement de la distance relative D entre l'aimant mobile 8 et l'élément à haute perméabilité magnétique 6. On observe que l'aimant 8 subit, sur un premier tronçon D1 de la distance relative, globalement une force d'attraction magnétique qui tend à maintenir l'aimant 8 contre l'élément 6 ou à le ramener vers celui-ci en cas d'éloignement. Ensuite, l'élément 6 et les deux aimants sont agencés de manière que le deuxième aimant 8 subit, sur un deuxième tronçon D2 de la distance relative susmentionnée, globalement une force de répulsion magnétique. Ce deuxième tronçon correspond à des éloignements entre les première et deuxième parties, et donc à des distances D entre l'élément 6 et l'aimant 8, qui sont supérieurs aux éloignements correspondant au premier tronçon de la distance relative. Le deuxième tronçon est limité par une distance maximale Dmax qui est définie généralement par une butée limitant l'éloignement de l'aimant mobile.The two magnets 4 and 8 are arranged in magnetic repulsion so that, in the absence of the element with high magnetic permeability 6, a repulsive force tends to move these two magnets away from each other. Surprisingly, however, the arrangement between these two magnets of the element 6 reverses the direction of the magnetic force between the first and second parts of the magnetic system when they are at a short distance from each other. so that a global force of magnetic attraction is then generated between these two parts. The Figure 4 is a graph whose curve 54 represents the magnetic interaction force between the first and second parts of the magnetic system 52 as a function of the distance E between the two magnets, respectively of the relative distance D between the moving magnet 8 and the element with high magnetic permeability 6. It is observed that the magnet 8 undergoes, on a first section D1 of the relative distance, generally a magnetic attraction force which tends to hold the magnet 8 against the element 6 or to the bring back to it in case of removal. Then, the element 6 and the two magnets are arranged so that the second magnet 8 undergoes, on a second section D2 of the aforementioned relative distance, globally a magnetic repulsion force. This second section corresponds to distances between the first and second parts, and therefore at distances D between the element 6 and the magnet 8, which are greater than the distances corresponding to the first section of the relative distance. The second section is limited by a maximum distance D max which is generally defined by a stop limiting the distance of the moving magnet.

La force magnétique globale est une fonction continue de la distance entre les composants et elle a une valeur nulle à la distance Dinv. Ainsi, lorsque la distance entre l'aimant 8 et l'élément 6 est supérieure à une distance Dinv, cet aimant est soumis à une force globale de répulsion magnétique qui tend à l'éloigner de l'élément 6. Par contre, lorsque la distance entre l'élément 6 et l'aimant mobile 8 est inférieure à la distance Dinv, l'aimant 8 est soumis à une force globale d'attraction magnétique qui tend à l'approcher de l'élément 6 et, si rien ne s'y oppose, à le mettre en contact contre cet élément, puis à les maintenir dans cette position. Ceci est un fonctionnement remarquable du système magnétique 52 qui est mis à profit dans le dispositif antichoc selon l'invention. La distance d'inversion Dinv est déterminée par la géométrie des trois pièces magnétiques formant le système magnétique et leurs propriétés magnétiques.The overall magnetic force is a continuous function of the distance between the components and it has a zero value at the distance D inv . Thus, when the distance between the magnet 8 and the element 6 is greater than a distance D inv , this magnet is subjected to a global magnetic repulsion force which tends to move it away from the element 6. On the other hand, when the distance between the element 6 and the movable magnet 8 is less than the distance D inv , the magnet 8 is subjected to a global magnetic attraction force which tends to approach the element 6 and, if nothing do not oppose it, put it in contact with that element, and then keep it in that position. This is a remarkable operation of the magnetic system 52 which is used in the anti-shock device according to the invention. The inversion distance D inv is determined by the geometry of the three magnetic parts forming the magnetic system and their magnetic properties.

On décrira ci-après plus en détail le dispositif antichoc 30 selon le premier mode de réalisation et son comportement découlant de l'incorporation, selon l'invention, du système magnétique 40. L'organe élastique 32 est formé par un ressort plat ayant une première extrémité 56 et une deuxième extrémité 58, la première extrémité étant fixée au support 48 au moyen d'une vis 60 et la deuxième extrémité portant le deuxième aimant 44. Selon une variante avantageuse, la pierre contre-pivot 36 est située, en projection dans un plan général du ressort plat, entre les première et deuxième extrémités. Le palier 28 comprend une base 62 agencée fixement dans une ouverture du support 48. De manière classique, cette base présente en son centre un trou dans lequel passe le pivot 26. L'élément pivotant 24, ici l'arbre d'un balancier (non représenté), présente une portée 70 qui limite classiquement le déplacement de cet élément le long de l'axe 50, cette portée venant en butée contre une surface définie par la base à la périphérique du trou. Le palier 28 comprend encore un chaton 64 dans lequel est inséré la pierre contre-pivot 36. Dans la variante représentée, il s'agit d'un palier magnétique. Ainsi, le chaton supporte encore un aimant 66 et une pierre de fermeture 68. Ce chaton participe aussi au dispositif antichoc. Il est agencé dans un logement formé par la base 62 et une plaque de fermeture 72 fixée au support 48, de manière à pouvoir subir un mouvement axial au moins sur une distance correspondante au déplacement maximal que peut subir en cas de choc le pivot 26 lorsque la portée 70 vient en butée contre la base. Un court tube 74 est fixé au ressort plat 32 du côté de son extrémité 58 de manière à être en appui contre le chaton ou la pierre de fermeture. Le dispositif antichoc agit sur l'ensemble solidaire de la pierre contre-pivot par l'intermédiaire de ce tube. On notera que l'invention ne se limite pas à un palier magnétique. Ainsi, dans une autre variante, on a un palier classique avec un chaton incorporant une pierre percée et une pierre contre-pivot, cette dernière pouvant présenter une surface plane en regard du pivot.Next will be described in more detail the shockproof device 30 according to the first embodiment and its behavior resulting from the incorporation, according to the invention, of the magnetic system 40. The elastic member 32 is formed by a flat spring having a first end 56 and a second end 58, the first end being fixed to the support 48 by means of a screw 60 and the second end bearing the second magnet 44. According to an advantageous variant, the counter-pivoting stone 36 is located, in projection in a general plane of the flat spring, between the first and second ends. The bearing 28 comprises a base 62 fixedly arranged in an opening of the support 48. In a conventional manner, this base has at its center a hole through which the pivot 26 passes. The pivoting element 24, here the shaft of a balance ( not shown) has a bearing 70 which classically limits the movement of this element along the axis 50, this bearing abutting against a surface defined by the base to the device of the hole. The bearing 28 further comprises a kitten 64 in which is inserted the counter pivot stone 36. In the variant shown, it is a magnetic bearing. Thus, the kitten still supports a magnet 66 and a closing stone 68. This kitten also participates in the anti-shock device. He is arranged in a housing formed by the base 62 and a closure plate 72 fixed to the support 48, so as to be able to undergo an axial movement at least a distance corresponding to the maximum displacement that can undergo in case of impact the pivot 26 when the range 70 comes into abutment against the base. A short tube 74 is fixed to the flat spring 32 at its end end 58 so as to bear against the kitten or the closure stone. The anti-shock device acts on the integral assembly of the counter-pivot stone via this tube. It should be noted that the invention is not limited to a magnetic bearing. Thus, in another variant, there is a conventional bearing with a kitten incorporating a pierced stone and a counter-pivot stone, the latter may have a flat surface opposite the pivot.

Le système magnétique et l'organe élastique sont agencés de manière que, dans une position de repos du dispositif antichoc, la pierre contre-pivot ou un chaton auquel elle est fixée est maintenu(e) en appui contre le support du palier ou contre une base de ce palier tant que la force exercée par le pivot considéré contre la pierre contre-pivot est inférieure à une valeur limite, cette dernière étant de préférence prévue supérieure à la force gravitationnelle agissant sur l'élément pivotant, notamment le balancier-spiral. Dans une variante particulière, l'élément élastique est précontraint dans la position de repos du dispositif antichoc, de sorte que la pierre contre-pivot reste immobile sur une plus grande plage de valeurs de la force exercée par l'élément mobile subissant une accélération axiale en cas de choc.The magnetic system and the elastic member are arranged so that, in a rest position of the shockproof device, the pivoting stone or a kitten to which it is fixed is held in abutment against the support of the bearing or against a base of this bearing as the force exerted by the pivot considered against the pivot-stone is less than a limit value, the latter being preferably provided greater than the gravitational force acting on the pivoting element, including the sprung balance. In a particular variant, the elastic element is prestressed in the rest position of the shock-proof device, so that the counter-pivot stone remains immobile over a larger range of values of the force exerted by the mobile element undergoing axial acceleration. in case of shock.

A la Figure 5 sont représentés le graphe de la force élastique exercée par le ressort plat 32 et le graphe de la force totale exercée par le dispositif antichoc 30 en fonction du déplacement DP de la pierre contre-pivot et donc du pivot 26, en appui contre cette pierre contre-pivot, le long de son axe de rotation 50. On remarquera qu'il y a une relation linéaire (en première approximation) entre le déplacement DP et la distance D du système magnétique 40 décrit précédemment. De manière connue, la force élastique varie proportionnellement au déplacement DP. Son graphe est une droite affine 76 en traits interrompus. Le graphe de la force totale exercée par le dispositif antichoc sur l'ensemble portant la pierre contre-pivot, et par son intermédiaire sur le pivot 26 en appui contre cette pierre, en fonction de son déplacement DP est donné par la courbe 78 qui correspond à la somme de la force élastique et de la force magnétique globale engendrée par le système magnétique 40. On observe que cette force totale (force de rappel) est supérieure à la force élastique sur un premier tronçon DP1 entre une distance DPR, correspondant à la position de repos du dispositif antichoc, et une distance DPinv correspondant à une position de la pierre contre-pivot pour laquelle la force magnétique globale exercée sur l'aimant 44 est nulle. Ensuite, entre la distance DPinv et une distance DPmax, pour laquelle l'arbre 24 du balancier est en butée contre la surface périphérique du trou dans la base du palier, la force totale est inférieure à la force élastique car la force magnétique globale s'oppose alors à la force élastique, ce qui diminue la force totale exercée sur le pivot de l'élément tournant.To the Figure 5 are represented the graph of the elastic force exerted by the flat spring 32 and the graph of the total force exerted by the shockproof device 30 as a function of the displacement DP of the counter-pivot stone and thus of the pivot 26, bearing against this stone against -pivot, along its axis of rotation 50. It will be noted that there is a linear relationship (in first approximation) between the displacement DP and the distance D of the magnetic system 40 described above. In known manner, the elastic force varies proportionally to the displacement DP. His graph is a straight line affine 76 in broken lines. The graph of the total force exerted by the anti-shock device on the assembly carrying the counter-pivot stone, and through it on the pivot 26 bearing against this stone, according to its displacement DP is given by the curve 78 which corresponds to the sum of the elastic force and the overall magnetic force generated by the magnetic system 40. It is observed that this total force (restoring force) is greater than the elastic force on a first section DP1 between a distance DP R , corresponding to the rest position of the anti-shock device, and a distance DP inv corresponding to a position of the counter-pivot stone for which the overall magnetic force exerted on the magnet 44 is zero. Then, between the distance DP inv and a distance DP max , for which the shaft 24 of the balance is in abutment against the peripheral surface of the hole in the base of the bearing, the total force is less than the elastic force because the overall magnetic force then opposes the elastic force, which decreases the total force exerted on the pivot of the rotating element.

Le dispositif antichoc selon l'invention présente un comportement remarquable comme le montre la courbe 78. La force exercée sur le pivot en appui contre la pierre contre-pivot, au moins pour une distance de déplacement de cette pierre inférieure à DPinv, est maximale pour la distance au repos DPR du dispositif antichoc. Dès que la force appliquée par le pivot à la pierre contre-pivot s'élève au-dessus de la valeur maximale intervenant pour la position de repos du dispositif antichoc, la pierre contre-pivot s'éloigne de sa position de repos et alors la force totale qui s'exerce contre le pivot 26 diminue relativement rapidement, ce qui assure directement un mouvement relativement important de cette pierre contre-pivot et un bon amortissement du choc jusqu'à la position de butée. Dans l'exemple donné à la Figure 5, le ressort plat a une rigidité proche d'une rigidité standard mais sa précontrainte est réduite, par rapport à une précontrainte standard, d'un facteur d'environ 30% à 40%, tout en ayant une stabilité usuelle pour le dispositif antichoc dans sa position de repos.The anti-shock device according to the invention has a remarkable behavior as shown by the curve 78. The force exerted on the pivot bearing against the counter-pivot stone, at least for a displacement distance of this stone less than DP inv , is maximum for the idle distance DP R of the anti-shock device. As soon as the force applied by the pivot to the counter-pivot stone rises above the maximum value occurring for the rest position of the anti-shock device, the counter-pivot stone moves away from its rest position and then the total force against the pivot 26 decreases relatively quickly, which directly ensures a relatively large movement of the stone against pivot and a good shock damping to the stop position. In the example given to the Figure 5 , the flat spring has a rigidity close to a standard stiffness but its preload is reduced, compared to a standard prestressing, by a factor of about 30% to 40%, while having a usual stability for the anti-shock device in his rest position.

La dépendance de la force totale sur le pivot en fonction du déplacement axial du balancier et du déplacement correspondant du dispositif antichoc permet le fonctionnement suivant (pour une variante avec un balancier ayant un poids d'environ 40 mg et un élément en matériau ferromagnétique entre les deux aimants du système magnétique) :

  1. 1) Pour un choc d'accélération inférieure à 400 g, le dispositif antichoc reste immobile grâce à la force d'attraction magnétique et à la précontrainte du ressort qui se somment.
  2. 2) Pour un choc qui dépasse 400 g, en particulier de 1'000 g, l'aimant mobile porté par le ressort se détache de l'élément ferromagnétique et la force magnétique diminue rapidement puis s'inverse, s'opposant alors à la force élastique appliquée par le ressort. Une fois la force de seuil d'activation d'un mouvement axial du dispositif antichoc dépassée, la force totale résultante diminue au moins sur une majeure partie du déplacement possible pour le pivot, la déformation de l'antichoc devenant immédiatement très importante et permettant au balancier d'arriver rapidement en butée mécanique. Ceci permet d'absorber l'énergie cinétique du balancier en limitant la force appliquée sur le pivot sur l'entier du trajet d'amortissement du choc.
The dependence of the total force on the pivot as a function of the axial displacement of the balance and the corresponding displacement of the shockproof device allows the following operation (for a variant with a balance having a weight of about 40 mg and a ferromagnetic material element between the two magnets of the magnetic system):
  1. 1) For an acceleration shock of less than 400 g, the shockproof device remains motionless thanks to the magnetic attraction force and the preloading of the spring that sits.
  2. 2) For a shock that exceeds 400 g, in particular 1000 g, the movable magnet carried by the spring is detached from the ferromagnetic element and the magnetic force decreases rapidly and then reverses, thus opposing the elastic force applied by the spring. Once the activation threshold force of an axial movement of the shock device has been exceeded, the resulting total force decreases at least over a major part of the possible displacement for the pivot, the deformation of the shock becoming immediately very important and allowing the pendulum to arrive quickly in mechanical stop. This makes it possible to absorb the kinetic energy of the balance by limiting the force applied on the pivot over the entire shock absorption path.

Une fois le choc terminé, le dispositif antichoc peut revenir à sa position initiale, car il est prévu que la force totale reste positive (force de rappel) et dépasse les forces de frottement. L'inversion de la force magnétique, qui a lieu quand l'aimant mobile se rapproche suffisamment de l'élément ferromagnétique, assure simultanément l'absence absolue d'hystérèse mécanique et le recentrage du palier après un choc.Once the shock is complete, the shock device can return to its initial position, because it is expected that the total force remains positive (restoring force) and exceeds the friction forces. The inversion of the magnetic force, which takes place when the moving magnet is sufficiently close to the ferromagnetic element, simultaneously ensures the absolute absence of mechanical hysteresis and the re-centering of the bearing after an impact.

Les avantages suivants découlent des caractéristiques du dispositif antichoc selon l'invention :

  • Le dispositif antichoc fonctionne comme un vrai amortisseur (contrairement aux antichocs traditionnels) ;
  • Possibilité de dimensionner le dispositif antichoc en optimisant la précontrainte (en donc le fonctionnement pour les petits chocs où une stabilité du palier est souhaitée) et la réponse d'amortisseur pour les grands chocs ;
  • Après un grand choc, repositionnement du dispositif antichoc dans sa position de repos donnée et recentrage du chaton (définissant l'axe de rotation du balancier) assurés par la force d'attraction magnétique ;
  • La force subie par le pivot de balancier lors du grand choc est réduite, la force maximale étant de préférence la force totale du dispositif antichoc intervenant dans sa position de repos.
The following advantages derive from the characteristics of the anti-shock device according to the invention:
  • The anti-shock device works like a real shock absorber (unlike traditional shockproof);
  • Ability to dimension the shockproof device by optimizing the prestressing (thus the operation for small impacts where stability of the bearing is desired) and the shock absorber response for large shocks;
  • After a great shock, repositioning of the shockproof device in its given rest position and refocusing of the kitten (defining the axis of rotation of the balance) ensured by the magnetic attraction force;
  • The force experienced by the pendulum pivot during the great impact is reduced, the maximum force being preferably the total force of the shock-absorbing device intervening in its rest position.

En référence aux Figures 6 à 8, on décrira ci-après un mouvement horloger 82 incorporant un deuxième mode de réalisation d'un dispositif antichoc selon l'invention. Le palier et le dispositif antichoc 86 qui lui est associé sont agencés dans une ouverture d'une platine 84. L'organe élastique 88 est un ressort-lyre présentant deux branches 89 et 90 agencées pour exercer une pression sur la pierre contre-pivot 36A. Dans une variante (non représentée), les deux branches pressent sur un chaton auquel est fixé cette pierre contre-pivot. Le dispositif antichoc comprend un premier système magnétique 40A et un deuxième système magnétique 40B chacun semblable au système magnétique 40 décrit dans le cadre du premier mode de réalisation. Ainsi, le fonctionnement remarquable de ces deux systèmes magnétiques ne sera pas à nouveau décrit ici.With reference to Figures 6 to 8 , hereinafter will be described a watch movement 82 incorporating a second embodiment of an anti-shock device according to the invention. The bearing and the anti-shock device 86 associated with it are arranged in an opening of a plate 84. The elastic member 88 is a lyre spring having two branches 89 and 90 arranged to exert pressure on the counter-pivoting stone 36A . In a variant (not shown), the two branches press on a kitten which is fixed against the pivot stone. The anti-shock device comprises a first magnetic system 40A and a second magnetic system 40B each similar to the magnetic system 40 described in the first embodiment. Thus, the remarkable operation of these two magnetic systems will not be described again here.

Les deux systèmes magnétiques sont respectivement associés à deux structures 92 et 94 qui sont respectivement fixées aux deux branches 89 et 90 sensiblement dans leur zone médiane. Ces deux structures portent respectivement deux aimants 44A et 44B formant chacun l'aimant mobile du système magnétique respectif. Ainsi, les deux branches sont associées respectivement aux premier et deuxième systèmes magnétiques et portent, par l'intermédiaire des structures 92 et 94, chacune un aimant mobile 44A, respectivement 44B qui coopère avec un aimant fixe 42A, respectivement 42B. Chaque système magnétique comprend encore un élément à haute perméabilité magnétique 46A, respectivement 46B, qui est solidaire de l'aimant fixe du système magnétique respectif.The two magnetic systems are respectively associated with two structures 92 and 94 which are respectively fixed to the two branches 89 and 90 substantially in their central zone. These two structures respectively carry two magnets 44A and 44B each forming the moving magnet of the respective magnetic system. Thus, the two branches are respectively associated with the first and second magnetic systems and carry, through the structures 92 and 94, each a movable magnet 44A, respectively 44B which cooperates with a fixed magnet 42A, respectively 42B. Each magnetic system further comprises a high magnetic permeability element 46A, respectively 46B, which is integral with the fixed magnet of the respective magnetic system.

On remarquera que chacune des branches 89, 90 du ressort-lyre, de manière classique, est retenue axialement à ses deux extrémités par des parties angulairement saillantes d'un anneau supérieur de la base 62A du palier. Ainsi, c'est dans la zone médiane de ces branches que le ressort-lyre subit en cas de sollicitation une déformation élastique maximale. On notera par ailleurs que chaque branche presse sensiblement en son milieu sur la pierre contre-pivot. De préférence, mais de manière non-limitative, les deux structures 92 et 94 sont venues de matière avec le ressort-lyre et présentent une plus grande rigidité que celle des branches respectives, en particulier par une épaisseur supérieure comme représenté sur les figures. Cependant, dans une autre variante, les structures ont une même épaisseur que les branches du ressort-lyre pour en faciliter la fabrication, mais présentent de plus grandes sections. Toutefois, dans une autre variante, la rigidité des structures porteuses des aimants mobiles n'est pas supérieure à celles des branches, les aimants mobiles effectuant en cas de grands chocs des parcours plus longs que la pierre contre-pivot.It will be noted that each of the branches 89, 90 of the lyre spring, in conventional manner, is held axially at its two ends by angularly projecting portions of an upper ring of the base 62A of the bearing. Thus, it is in the median zone of these branches that the lyre spring undergoes in the event of stress a maximum elastic deformation. It should also be noted that each branch substantially presses in the middle on the counter-pivot stone. Preferably, but in a nonlimiting manner, the two structures 92 and 94 are integral with the lyre spring and have a greater rigidity than that of the respective branches, in particular by a greater thickness as shown in the figures. However, in another variant, the structures have the same thickness as the branches of the lyre spring to facilitate manufacture, but have larger sections. However, in another variant, the rigidity of the supporting structures of the moving magnets is not greater than those of the branches, the mobile magnets performing in case of large shocks longer courses than the counter-pivot stone.

L'agencement de deux systèmes magnétiques associés de manière symétrique respectivement aux deux branches élastiques du ressort-lyre est avantageux, car il résulte d'un tel agencement une même pression de chaque branche sur la pierre contre-pivot, ou plus généralement sur l'ensemble mobile 96 du palier, pour une même déformation élastique des deux branches. On conserve ainsi un comportement uniforme du dispositif antichoc et en particulier la pierre contre-pivot 36A dans un plan général perpendiculaire à l'axe de rotation du balancier en cas de chocs axiaux.The arrangement of two magnetic systems symmetrically associated respectively with the two elastic branches of the lyre spring is advantageous because it results from such an arrangement the same pressure of each branch on the counter-pivot stone, or more generally on the mobile assembly 96 of the bearing, for the same elastic deformation of the two branches. This maintains a uniform behavior of the anti-shock device and in particular the counter-pivot stone 36A in a general plane perpendicular to the axis of rotation of the balance in the event of axial shocks.

La Figure 8 montre la courbe 76A de la force élastique appliquée par le ressort-lyre à la pierre contre-pivot, et donc sur le pivot 26 en appui contre celle-ci, en fonction du déplacement axial de la pierre contre-pivot, ainsi que la courbe 100 de la force totale exercée par le dispositif antichoc 86 sur le pivot en fonction dudit déplacement axial. On remarquera que la variante représentée est particulière par le fait qu'aucune précontrainte mécanique du dispositif antichoc n'est prévue dans la position de repos, seule la force d'attraction magnétique assurant l'immobilité du dispositif antichoc dans sa plage de fonctionnement statique (position de repos correspondant ici à un déplacement DP égal à zéro) jusqu'à une certaine force maximale statique de ce dispositif antichoc. La prépondérance de la force magnétique dans la position de repos permet de faire chuter la force de rappel totale bien en dessous de la force maximale de la situation statique dès que le dispositif antichoc entre dans sa plage dynamique de fonctionnement et qu'il est donc armé. Ceci permet d'assurer que la force maximale appliquée au pivot, en appui contre la pierre contre-pivot est celle du dispositif antichoc en condition non-armé. Ainsi, lors d'un mouvement brusque du pivot dû à un grand choc axial, le balancier se déplace en subissant une moindre résistance jusqu'à rencontrer la butée formée par la base du palier. On notera que cette butée, en agissant sur une portée annulaire de l'arbre 24 du balancier, permet de protéger le pivot de balancier en cas de chocs violents.The Figure 8 shows the curve 76A of the elastic force applied by the spring-lyre to the stone against pivot, and thus on the pivot 26 bearing against it, depending on the axial displacement of the stone against pivot, as well as the curve 100 of the total force exerted by the anti-shock device 86 on the pivot as a function of said axial displacement. It will be noted that the variant shown is particular in that no mechanical prestressing of the anti-shock device is provided in the rest position, only the magnetic attraction force ensuring the immobility of the anti-shock device in its static operating range ( idle position here corresponding to a displacement DP equal to zero) up to a certain maximum static force of this shockproof device. The preponderance of the magnetic force in the rest position makes it possible to reduce the total restoring force well below the maximum force of the static situation as soon as the shockproof device enters its dynamic operating range and is therefore armed. . This ensures that the maximum force applied to the pivot, in abutment against the counter-pivot stone is that of the shock device in non-armed condition. Thus, during a sudden movement of the pivot due to a large axial shock, the balance moves with less resistance until it meets the stop formed by the base of the bearing. Note that this stop, by acting on an annular bearing shaft 24 of the balance, protects the pendulum pivot in case of violent shocks.

Finalement, la rigidité du ressort-lyre et le dimensionnement des deux systèmes magnétiques sont prévus de manière que la force résultante totale appliquée par l'antichoc demeure une force de rappel supérieure aux forces de frottement pour assurer, après un choc engendrant une force supérieure à la force maximale intervenant pour la situation statique sur l'ensemble mobile 96 du palier, le retour du dispositif antichoc dans sa position initiale et un bon recentrage de cet ensemble mobile (propriété cruciale pour assurer une bonne chronométrie du mouvement horloger).Finally, the stiffness of the lyre spring and the sizing of the two magnetic systems are provided so that the total resulting force applied by the shockproof remains a greater restoring force to the friction forces to ensure, after an impact generating a force greater than the maximum force intervening for the static situation on the mobile assembly 96 of the bearing, the return of the shockproof device in its initial position and a good refocusing of this mobile assembly (crucial property to ensure good chronometry of the watch movement).

On notera que, de manière avantageuse dans le cadre du deuxième mode de réalisation, les deux paliers d'un balancier-spiral sont équipés d'un dispositif amortisseur de chocs du type décrit ci-avant.It will be noted that, advantageously in the context of the second embodiment, the two bearings of a balance spring are equipped with a shock-absorbing device of the type described above.

Claims (11)

  1. Timepiece movement (22; 82) comprising a pivoting element (24), a bearing (28) in which is arranged a pivot (26) of this pivoting element and an anti-shock device (30; 86) associated with the bearing, the anti-shock device comprising a resilient member (32; 88) arranged to be able to exert a pressure on at least one endstone (36; 36A) forming a stop for said pivot in the direction of the axis of rotation (50) of the pivoting element, this anti-shock device being arranged to be able to generate, through the endstone, a restoring force on said pivot when the pivot presses, in the event of a shock, against the endstone, the anti-shock device further including a magnetic system (40; 40A, 40B) comprising two magnets (42, 44), the first and second magnets being respectively secured to a support (48) of the anti-shock device and to the resilient member, in order to present between them a relative movement over a certain relative distance when the resilient member is subjected, in the event of a shock, to an elastic deformation under a pressure exerted by said pivot against said endstone; said magnetic system and said resilient member are arranged such that the total force exerted by the anti-shock device on said pivot in the event of a shock remains a restoring force for the whole of said relative distance; the first and second magnets being arranged to generate between them an overall force of magnetic attraction in a first section of said relative distance; characterized in that the magnetic system further comprises a highly magnetically permeable element (46) arranged between these two magnets and integral with one of the magnets; and in that the first and second magnets are arranged to generate between them, in association with said highly magnetically permeable element, an overall force of magnetic repulsion on a second section of said relative distance, this second section corresponding to distances of separation between the first and second magnets which are greater than the distances of separation corresponding to the first section.
  2. Timepiece movement according to claim 1, characterized in that the first and second magnets and said highly magnetically permeable element are aligned in a direction substantially parallel to the axis of rotation (50) of said pivoting element, the first and second magnets having opposite polarities in this direction.
  3. Timepiece movement according to claim 2, characterized in that said highly magnetically permeable element consists of a plate having a central axis that is substantially coincident with the axis of magnetization of the first magnet.
  4. Timepiece movement according to claim 2 or 3, characterized in that the distance between the highly magnetically permeable element and the magnet integral with this element is less than or substantially equal to one tenth of the length of this magnet along its axis of magnetisation.
  5. Timepiece movement according to any of the preceding claims, characterized in that said highly magnetically permeable element is fixed to the first magnet.
  6. Timepiece movement according to claim 5, characterized in that the magnetic system and the resilient member are arranged such that, in a rest position of the anti-shock device, the resilient member holds the endstone, or a setting to which the endstone is fixed, resting against said support or against a base integral with the support while the force exerted by said pivot against the endstone is less than a limit value, this limit value preferably being higher than the gravitational force acting on said pivoting element.
  7. Timepiece movement according to claim 6, characterized in that said resilient element (32) is prestressed in said rest position of said anti-shock device.
  8. Timepiece movement according to any of the preceding claims, characterized in that the highly magnetically permeable element is formed of an iron or cobalt based metallic glass.
  9. Timepiece movement according to any of the preceding claims, characterized in that said resilient member is a flat spring (32) having a first end and a second end, the first end being fixed to said support and the second end (58) carrying the second magnet, said endstone being situated, in projection in a general plane of the flat spring, between the first and second ends.
  10. Timepiece movement according to any of claims 1 to 8, characterized in that said resilient member is a lyre-spring (88) having two branches (89, 90) arranged to exert a pressure on the endstone or on a setting to which said endstone is fixed; in that said magnetic system defines a first magnetic system and the anti-shock device further includes a second magnetic system as defined in any of claims 1 to 8, said two branches being respectively associated with the first and second magnetic systems and each carrying a magnet, corresponding to said second magnet, which cooperates with a respective magnet, corresponding to said first magnet, fixed to said anti-shock device support.
  11. Timepiece movement according to any of the preceding claims, characterized in that said pivoting element is a balance.
EP17167110.0A 2016-05-18 2017-04-19 Shock-absorber device for a clock movement Active EP3246764B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16170213 2016-05-18

Publications (2)

Publication Number Publication Date
EP3246764A1 EP3246764A1 (en) 2017-11-22
EP3246764B1 true EP3246764B1 (en) 2019-01-23

Family

ID=56014926

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17167110.0A Active EP3246764B1 (en) 2016-05-18 2017-04-19 Shock-absorber device for a clock movement

Country Status (6)

Country Link
US (1) US10222754B2 (en)
EP (1) EP3246764B1 (en)
JP (1) JP6340114B2 (en)
CN (1) CN107402511B (en)
CH (1) CH712502A2 (en)
HK (1) HK1245425A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3502803B1 (en) * 2017-12-19 2020-08-05 Omega SA Adjustable timepiece assembly
EP3671369B1 (en) * 2018-12-18 2022-08-17 ETA SA Manufacture Horlogère Suisse Device for geometric control for timepiece wheels
JP7171988B2 (en) 2019-11-05 2022-11-16 ゲイツ・ユニッタ・アジア株式会社 Cable end processing device and cable end processing method
EP3929667A1 (en) * 2020-06-26 2021-12-29 ETA SA Manufacture Horlogère Suisse Rotating mobile system of a clock movement

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2541124A1 (en) * 1975-09-16 1977-03-24 Rheinfelder Uhrteile Fab Timepiece balance shaft shock absorbing bearing - has apertured inner jewel and flat outer jewel fitting into slip ring
US4308605A (en) * 1980-02-12 1981-12-29 Ayer Henry E Balance wheel assembly
US4409576A (en) * 1982-02-03 1983-10-11 Polaroid Corporation Method and apparatus which change magnetic forces of a linear motor
DE05405263T1 (en) * 2005-03-23 2007-05-03 Rolex Sa Shock-absorbing storage for watches
JP2011185673A (en) * 2010-03-05 2011-09-22 Seiko Instruments Inc Bearing for timepiece, movement, and portable timepiece
EP2450758B1 (en) * 2010-11-09 2017-01-04 Montres Breguet SA Magnetic pivot and electrostatic pivot
CH704062A2 (en) * 2010-11-09 2012-05-15 Montres Breguet Sa Anti-shock device for protecting balance spring of magnetic pivot of watch movement, has guiding or attraction units guiding or attracting ends, where units are movable along linear direction between abutments
EP2469357B2 (en) * 2010-12-21 2016-06-29 The Swatch Group Research and Development Ltd. Shock-absorbing bearing for a rotating mobile of a clock movement
JP2015152402A (en) * 2014-02-13 2015-08-24 セイコーインスツル株式会社 Magnet bearing structure, movement, and watch
EP3081997A1 (en) * 2015-04-16 2016-10-19 Montres Breguet S.A. Magnetic shock-absorber for timepiece arbour
CH711219A2 (en) * 2015-06-16 2016-12-30 Montres Breguet Sa A magnetic device for pivoting a shaft in a watch movement.
EP3106933B1 (en) * 2015-06-16 2018-08-22 Montres Breguet S.A. Magnetic pivoting device for an arbour in a clock movement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP6340114B2 (en) 2018-06-06
CN107402511A (en) 2017-11-28
HK1245425A1 (en) 2018-08-24
US10222754B2 (en) 2019-03-05
JP2017207485A (en) 2017-11-24
CN107402511B (en) 2019-08-09
EP3246764A1 (en) 2017-11-22
US20170336761A1 (en) 2017-11-23
CH712502A2 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
EP3246764B1 (en) Shock-absorber device for a clock movement
EP2450759B1 (en) Magnetic shock absorber
WO2016166006A1 (en) Magnetic antishock system for a timepiece arbor
WO2014016094A1 (en) Horology hairspring
EP3185083B1 (en) Mechanical timepiece mechanism with anchor escapement
EP3109712B1 (en) Magnetic device for pivoting an arbor in a clock movement
CH707809A2 (en) Pivot for clockwork.
EP2771743B1 (en) Oscillator for clockwork movement
CH705075B1 (en) Shock protection and adjustable clock adjustment method.
EP3489768B1 (en) Magnetic device for centring an arbour in a clock movement
CH710769A2 (en) Magnetic maintaining a trim component or clockwork.
EP3291027B1 (en) Membrane shock absorber
CH711965A2 (en) Mechanical watch movement with an anchor escapement.
EP3185082B1 (en) Clock movement comprising an element for positioning a movable portion of said clock movement
EP3373080A1 (en) Clock movement provided with a device for positioning a mobile member in a plurality of discrete positions
CH702250B1 (en) Device Anti-Shock watch.
CH711889A2 (en) Clock mechanism comprising a device exerting a switchable magnetic force on a moving part.
EP3373081A1 (en) Clock movement provided with a device for positioning a mobile member in a plurality of discrete positions
CH713544A2 (en) Watch movement provided with a device for positioning a mobile element in a plurality of discrete positions.
CH710978A2 (en) Watch sub-assembly comprising a magnetic shock absorber for a watch shaft.
CH713543A2 (en) Watch movement provided with a device for positioning a mobile element in a plurality of discrete positions.
CH712864A2 (en) Shock absorber with membrane.
CH706763A2 (en) Clockmaker assembly for clockwork of timepiece, has stud and/or shell comprising brake unit that is attached with coil of turns when accelerating contraction or extension of spring is higher than set value so as to change spring stiffness

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180522

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180815

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1091939

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017001862

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190523

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190423

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1091939

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190423

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190523

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017001862

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190419

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

26N No opposition filed

Effective date: 20191024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230321

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230611

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230321

Year of fee payment: 7

Ref country code: CH

Payment date: 20230502

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240320

Year of fee payment: 8