EP3239594B1 - Auxiliary lens for a light source for producing a branched illuminating surface - Google Patents

Auxiliary lens for a light source for producing a branched illuminating surface Download PDF

Info

Publication number
EP3239594B1
EP3239594B1 EP17166533.4A EP17166533A EP3239594B1 EP 3239594 B1 EP3239594 B1 EP 3239594B1 EP 17166533 A EP17166533 A EP 17166533A EP 3239594 B1 EP3239594 B1 EP 3239594B1
Authority
EP
European Patent Office
Prior art keywords
light
optical elements
optical
light exit
another
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17166533.4A
Other languages
German (de)
French (fr)
Other versions
EP3239594A1 (en
Inventor
Martin Moser
Markus Ecker-Endl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZKW Group GmbH
Original Assignee
ZKW Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZKW Group GmbH filed Critical ZKW Group GmbH
Publication of EP3239594A1 publication Critical patent/EP3239594A1/en
Application granted granted Critical
Publication of EP3239594B1 publication Critical patent/EP3239594B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0091Reflectors for light sources using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/24Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/322Optical layout thereof the reflector using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/235Light guides
    • F21S43/236Light guides characterised by the shape of the light guide
    • F21S43/241Light guides characterised by the shape of the light guide of complex shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/30Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by reflectors
    • F21S43/31Optical layout thereof
    • F21S43/315Optical layout thereof using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/14Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/15Strips of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/30Elongate light sources, e.g. fluorescent tubes curved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to an optical attachment for a light source for generating a branched luminous surface.
  • the invention relates to a light module for a motor vehicle headlight, which light module comprises at least one light source and an attachment lens of the attachment lens of the initially mentioned type assigned to at least one light source.
  • the invention relates to a motor vehicle headlight with such a light module or with a lens attachment mentioned at the beginning.
  • the invention also relates to a motor vehicle with at least one motor vehicle headlight of this type.
  • the use of light guides to produce linearly extended, branched luminous surfaces has proven particularly useful in practice. It is known that the light guides can be bent or curved to a certain extent, without the emergence of light at the bending point or in the curved sections. In addition, it is possible to let the light exit from a light guide in a targeted manner at one or more specified point (s). If the light occurs, for example, at several points on a curved light guide, it occurs for an observer the impression of a homogeneously glowing, curved, uninterrupted line. A disadvantage of using the light guides is that they are made in one piece.
  • a light guide or a light guide arrangement is developed and manufactured for each signal light module, which can only be used to a very limited extent, if at all, for other signal light modules.
  • Another known disadvantage of light guides is that they can only be bent or curved to a certain extent. Above a certain angle or radius of curvature, large light losses can occur at the bending point or in the curved section as a result of light escaping from the light guide. This often has the consequence that the desired luminous impression, for example a homogeneously luminous, curved thin strip, is no longer achieved.
  • One possible measure to counter the problem is not to bend the light guide.
  • the object of the present invention is therefore to create an attachment lens that eliminates the above-mentioned disadvantages of the prior art and provides an attachment lens, for example for a motor vehicle headlight module, which can be constructed in a modular manner, can be bent at will and essentially without loss of light and makes a homogeneous light impression on the observer when light passes through the ancillary optics.
  • the optical attachment comprises at least a plurality of light-guiding optical elements, each light-guiding optical element having a light entry area, a light exit area and a lateral surface, the lateral surface connecting the light entry area and the light exit area, the light exit area connecting the light entry area opposite and is assigned to a light exit surface, which light exit surface is delimited by a circumferential delimitation line, the delimitation line adjoining the light exit area, and the optical elements are strung together in such a way that the light exit surfaces of all optical elements lie in a common, essentially flat surface, with each optical element having a number (one, two or more) of nearest neighbors (nearest neighbor elements), its boundary line being a Number (one, two or more) of sections which are each assigned to a section of the boundary line of a nearest neighbor, sections assigned to one another lying against one another and having curves corresponding to one another.
  • a “substantially planar surface” is understood to mean a surface that can also be curved / arched, the variable characterizing this curvature / arching (eg a radius of curvature) being large or small compared to a characteristic variable, for example the diameter of the Light exit surface of the optical element, for example the radius of curvature / the curvature is large / small compared to the diameter of the light exit surface of the optical element.
  • An optical attachment can be designed, for example, as an optical element system which comprises a plurality of optical elements of the type mentioned above and can be placed in front of one or more light sources or light-sensitive elements.
  • the term light entry area is understood to mean an area which is available for the light generated by one or more light sources and directed onto the ancillary optics to penetrate the respective light-guiding optical element. In this case, the light that does not strike the light entry areas essentially does not penetrate the ancillary optics.
  • the term light exit area is understood to mean an area from which the light that has penetrated through the corresponding light entry area and propagates essentially without losses in the light-guiding optical element exits. Only a small amount of light can emerge through the jacket surface connecting the light entry area and the light exit area.
  • the term is understood to mean a small amount of light, an amount of light that essentially does not influence the light image produced using the ancillary optics.
  • the light exit area is assigned to a light exit area.
  • the light exit surface is an imaginary surface which is oriented essentially perpendicular to the optical axis of the optical element and which is delimited and along a circumferential boundary line this boundary line is adjacent to the light exit area.
  • the light exit surface can be planar or arched / curved, the radius of curvature of the light exit surface being large compared to the characteristic size of the optical element.
  • the light exit area is assigned to the light exit area in such a way that all of the light exiting through the exit area passes through the light exit area.
  • the characteristic size of an optical element is understood to mean a diameter of its light exit surface.
  • the definition of a diameter is to be understood in a generalized sense, ie in the sense of a diameter of a set in a metric space.
  • the optical elements are arranged in a row in such a way that the distance between nearest neighbors is small compared to the characteristic size of the neighbors, preferably negligibly small.
  • neighbor is always understood to mean the closest neighbor (s), unless expressly stated otherwise.
  • the common surface of the light exit surfaces of the individual optical elements can, for example, be planar or curved / arched (convex / concave as intended) and has a small curvature compared to a characteristic size of the optical elements.
  • the ancillary optics having a plurality of optical elements has the technical effect that the ancillary optics have a modular structure and can thus be tailored to the technical and / or design requirements of the tree.
  • the modularity of the optical attachment means that its shape can be varied very quickly by exchanging / replacing / adding individual optical elements and / or entire optical element modules.
  • the inventive way of lining up the individual optical elements ensures that when the light shines through the entire ancillary optics, a homogeneous luminous impression is created and the ancillary optics looks as a whole without the individual optic elements and / or light sources being perceptible.
  • the front optics can be used to achieve a particularly homogeneous light impression, which results, for example, by reducing the constrictions of the overall light exit surface.
  • the outer surface has a number of areas which are each assigned to an area of the outer surface of a nearest neighbor, with areas assigned to one another lying on top of one another and corresponding surface profiles exhibit.
  • the constrictions of a, for example, branched overall light exit surface resulting from the juxtaposition of the optical elements can be reduced and a better light impression can be obtained.
  • the outer surface has a number of areas which are each assigned to an area of the outer surface of a closest neighbor, with mutually adjacent areas being designed to be congruent to one another.
  • At least one section is arcuate.
  • the at least one arcuate section is curved inward of the light exit surface, ie in the direction of the interior of the light exit surface.
  • the optical element can bear against its closest neighbor, for example in a pivotable / rotatable manner about an axis.
  • the curved section of the optical element that is curved in the direction of the inside of the light exit surface can be assigned a curved section of the nearest neighbor which is on the outside in the direction of the light exit surface and corresponds to this. It is particularly advantageous if the arcuate section is, for example, an arc of a circle is trained.
  • the radius of the circle can be selected in such a way that the optical element and the corresponding closest neighbor can be pivoted and / or rotated relative to one another about an axis running through the center of the circle perpendicular to the circular surface.
  • the axis runs essentially parallel to the optical axes of both optical elements.
  • At least one section is designed as a straight line.
  • the lining up of the sections designed as a straight line has the advantage, for example, that the constrictions of a, for example, rectilinearly aligned total light exit surface are reduced and a more homogeneous luminous impression (of, for example, rectilinearly aligned stripes) is achieved as a result.
  • all optical elements are designed essentially the same. In this way, all optical elements can be produced, for example, by an injection molding process using a single tool.
  • each optical element lined up in a row form a chain, with each optical element being at predetermined angles with respect to its neighboring optical elements. It is conceivable that each optical element is at a different angle to each of its neighboring optical elements.
  • the chain is branched.
  • the chain has at least one loop.
  • a motor vehicle headlight module In order to be able to surround, for example, a motor vehicle headlight module with the front optics, it can be opportune if the chain is closed in a ring shape, in particular in an O shape.
  • the optical elements can be designed as TIR lenses (abbreviation for Total Internal Reflection), preferably as TIR lenses that are rotationally symmetrical (about the optical axis of the lens).
  • TIR lenses With TIR lenses, a light beam directed essentially parallel to the optical axis of the lens can be generated and the homogeneity of the emitted light can be increased even further.
  • the lateral surfaces have a plurality of upholstery optics. It can be advantageous here if at least some of the upholstery optics are arranged on each side of the lateral surfaces facing a closest neighbor.
  • the term upholstery optics is understood to mean an optical element, for example a lens, which has a significantly smaller characteristic size than the characteristic size of the optical element and which can be set up, for example, by penetration and / or scattering the lateral surface and / or a transmission generated by the lateral surface, that is, to direct the light that does not propagate parallel to the optical axis of the optical element, essentially parallel to the optical axis.
  • Such upholstery optics can, for example, be designed as small elevations on the lateral surface and from the same material, which is preferably optically denser than air, as the corresponding optical element.
  • an air gap can be created between the adjacent optic elements of the ancillary optics, which is small compared to the size of the optic element.
  • the at least one part of the upholstery optics touches the outer surface of the closest neighbor.
  • the optical elements lined up in a row are spaced apart from one another.
  • a small (compared to the characteristic size of the optical element) spacing of the optical elements, ie that the optical elements do not touch, of the ancillary optics has the advantage that when the ancillary optics are used in a mechanically movable environment, such as in a motor vehicle headlight there is no wear and no impairment of the optical properties of the individual optical elements, for example due to friction and / or mutual impact.
  • an adhesive layer is provided between the aligned optical elements, which adhesive layer connects each optical element to its nearest neighbors.
  • a light module for a motor vehicle headlight in that essentially all of the light generated by the at least one light source enters the ancillary optics through the light entry areas and, preferably essentially without losses, exits the light exit areas of the ancillary optics .
  • the term light source should not be interpreted too narrowly.
  • the term light source is understood to mean one or more devices or devices that can / can provide light that can strike the optical attachment according to the invention.
  • Such a light source can include, for example: both primarily luminous elements, such as
  • Light bulbs, LEDs, OLEDs, laser light sources as well as secondary luminous elements such as light conversion means, light deflection elements such as e.g. B. mirrors, (controllable) micromirror arrays, prisms, light beam-shaping elements such as glass fibers, diaphragms, and light imaging elements such as a lens device.
  • light deflection elements such as e.g. B. mirrors, (controllable) micromirror arrays, prisms, light beam-shaping elements such as glass fibers, diaphragms, and light imaging elements such as a lens device.
  • Such a "light source” is seen as a light source on the part of the ancillary optics: it provides the ancillary optics with light which the ancillary optics images.
  • the light emerging from the ancillary optics is designed as a light bundle comprising essentially parallel light beams, i.e. having a small etendue.
  • the at least one light source is designed as an LED.
  • the light module comprises a plurality of light sources, a number of light sources being greater than a number of optical elements or equal to a number of optical elements and at least two, preferably three, in particular more than three, light sources being assigned to each optical element or precisely one light source being assigned .
  • the light sources for example LEDs
  • the light sources can be arranged very close to the light entry surfaces of the optical elements, for example TIR lenses. Essentially all of the light from each individual light source can be fed into the associated optical element. In this way, for example, the light losses (light transmission losses) can be reduced or kept small.
  • the number of light sources is, for example, an integral multiple of the number of optical elements, with each optical element being assigned the same number of light sources, for example, the light sources assigned to an optical element can be activated separately and emit light in different colors. In this way, different light functions such as direction indicators and daytime running lights can be implemented in one (and the same) light module.
  • the light module is designed as a signal light module.
  • Fig. 1 shows an attachment lens 1, which can correspond to an attachment lens according to the invention.
  • the ancillary optics 1 is designed as TIR optics (TIR lenses) 2 which are joined to one another in chains (lined up without gaps) and which can correspond to light-guiding optical elements.
  • TIR lenses 2 are designed to be congruent to one another, have a characteristic size of 10 to 20 mm and can be used, for example, in an injection molding process with a single tool getting produced. TIR lenses, which differ in size and shape, can also be used.
  • other light-conducting optical elements such as, for example, light guide fibers, tubes, rods or the like, is conceivable.
  • Each TIR lens 2 has a light entry area 3, a light exit area 4 opposite the light entry area and a lateral surface 5 connecting the light entry area 3 to the light exit area 4.
  • the light exit area 4 is assigned to a light exit area 6.
  • the in Fig. 1 TIR lenses 2 shown match their light exit areas and light exit areas.
  • the light exit surfaces of all TIR lenses form a total light exit surface 60, which lies in a surface F and is designed as a linearly extended, elongated constrictions 61 having (see also Fig. 2 ).
  • the light exit surfaces 6 and the surface F can be planar or slightly curved. Under slightly curved is to be understood that the surface F has a slight curvature compared to the characteristic size of the TIR lenses.
  • the shape of the light exit area can be adapted, for example, to the shape of the light entry area (see e.g. Jin-Jia Chen, Chin-Tang Lin “Freeform surface design for a lightemitting diode-based collimating lens", Optical Engineering 49 (9), 093001 (September 2010 ) and Donglin Ma, Zexin Feng, and Rongguang Liang "Freeform illumination lens design using composite ray mapping", Applied Optics Vol. 54, no. 3, 20 January 2015 ).
  • the light exit surface 6 is delimited by a circumferential, for example sickle-shaped (as shown), delimitation line 7 and adjoins this delimitation line 7 the light exit region 4.
  • the lateral surfaces 5 of the TIR lenses 2 are parabolic. Outer surfaces of the TIR lenses designed differently are quite conceivable.
  • the lateral surfaces can have facets, wherein each facet can have a parabolic course.
  • one or more recesses 8 can be provided for each lateral surface 5, which preferably corresponds / correspond to the, for example, parabolic, surface course of the lateral surface 5.
  • This recess (s) 8 corresponds / correspond to the areas which are each assigned to an area of the lateral surface of a nearest neighbor 5a, areas assigned to one another being adjacent to one another and being able to have corresponding surface courses.
  • each TIR lens 2 in the chain arrangement shown has two nearest neighbors. Accordingly, each boundary line 7 has two sections 7a, 7b, each of which is assigned to a section of the boundary line 7 of a nearest neighbor. The sections 7a, 7b assigned to one another lie against one another and have curves that correspond to one another.
  • each TIR lens and also each optical element can have any number (0, 1, 2, 3, 4, 5, 6, etc.) of nearest neighbors, each nearest neighbor being a section assigned to the boundary line 7.
  • each nearest neighbor being a section assigned to the boundary line 7.
  • the in Fig. 2 The closest neighbors 2a, 2b shown, the section 7b of the boundary line of the light exit surface of the TIR lens 2a is assigned to the section 7a. It can be provided that the sections 7a, 7b are designed to be congruent to one another, so that they can be placed congruently against one another.
  • the sections 7a, 7b are designed in such a way that the closest neighbors are arranged so as to be pivotable, in particular rotatable, about an axis running essentially perpendicular to the surface F.
  • Fig. 2 shows circular arc-shaped sections 7a, 7b, these having the same radius of curvature, which is essentially the same as the radius R of the light exit region of a TIR lens (without a recess in the lateral surface).
  • the TIR lens 2b is arranged so as to be rotatable about its optical axis OA with respect to the adjacent TIR lens 2a ( Fig. 2 ).
  • Such a rotation can, if desired, for example change the course of the chain between two predetermined points.
  • the TIR lens 2d the optical axis of which runs through the point P2
  • the TIR lens 2e can be rotated counterclockwise about its optical axis by a further angle ⁇ 1.
  • chains can be formed in almost any direction.
  • This allows a Ancillary optics are created that can have almost any shape and, for example, can be adapted to almost any shape of a motor vehicle headlight housing.
  • the distance between the closest neighbors does not exceed the value of two characteristic values of the light exit surface of the optical element.
  • the distance D is in a range between a radius and a diameter of the light exit surface of the TIR lens (if the TIR lens has no recess).
  • Fig. 3 (a) and (b) show two of many TIR lenses according to the prior art, which have different light entry 3 and light exit areas 4. It can be seen from the prior art that the shape of the light entry area is related to the shape of the light exit area. So shows for example Fig. 3 (b) a conventional TIR lens 2 'in which the shape of the light exit area 4' based on the round shape of the light entry area 3 'and the condition that light rays emerging from the TIR lens 2' run parallel to the optical axis of the TIR lens 2 ', is determined.
  • the TIR lens 2 ' represents the Fig. 3 (b) represents an example of a TIR lens in which the light exit surface 6 'and the light exit area 4' do not coincide.
  • Fig. 4 shows an optical attachment 1 'with a branched total light exit surface 60'.
  • the ancillary optics 1 ' has a plurality of TIR lenses 2, with a TIR lens 2 "having three closest neighbors and serving to implement a junction. It should be noted that all TIR lenses of the ancillary optics 1' are of the same design. This is also the case with the auxiliary optics 1 FIGS. 1 and 2 the case.
  • an attachment lens according to the present invention has several branches. Using the TIR lenses 2, it is possible to create ancillary optics of different shapes (for example, self-contained, one or more loops, etc.).
  • Fig. 5 schematically shows an example of a motor vehicle headlight 100 which has at least one light module 101.
  • the light module has a plurality of for example, LEDs 103 arranged on a circuit board 102, which can correspond to the at least one light source.
  • the LEDs can be replaced with other light sources. It is entirely conceivable that instead of LEDs, OLEDs or light conversion means illuminated with laser light are used.
  • the light generated by LEDs is coupled into an optical attachment 1 ′′.
  • the optical attachment 1 ′′ can be used as one of the aforementioned optical attachment 1, 1 ′ Fig. 1 or the Fig. 4 be formed or correspond to another optical adapter corresponding to the optical adapter according to the invention.
  • an S-shaped luminous surface is generated which corresponds to the shape of the overall light exit surface 60 ′′, the overall light exit surface 60 ′′ being formed from the light exit surfaces 6 of the individual optical elements designed as TIR lenses 2. It should be noted that if the LEDs are not switched on at the same time, various lighting scenarios can be implemented that are used, for example, in signal light modules.
  • Fig. 6 (a) to 6 (d) show TIR lenses, the lateral surfaces of which each have two essentially planar regions 10a, 10b that run essentially parallel to the optical axis of the TIR lens OA. Accordingly, the boundary lines 7 of the light exit surfaces of these TIR lenses also have two straight sections 7c, 7d. As already explained above, it is advantageous if the number of sections corresponds to the number of the closest neighbors and if these sections are designed in such a way that they can be assigned to the corresponding sections of the closest neighbors. The sections 7c, 7d can run parallel to one another. In this case, it is possible very quickly to form an attachment lens designed as a straight chain, with which an impression of a luminous strip can be created particularly favorably.
  • the straight sections 7c, 7d can run obliquely to one another and be parts of the corresponding legs of an angle ⁇ 1 , ⁇ 2 ( Fig. 6 (c) and Fig. 6 (d) ).
  • Fig. 7 shows an embodiment of an ancillary optics 1 ', which have a plurality of TIR lenses 2' with the boundary lines, each having two straight sections 7c, 7d, which sections 7c, 7d at an angle ⁇ 1 , ⁇ 2 to each other (as parts of the corresponding Legs of the angle) are arranged.
  • the Fig. 7 shows an embodiment of an ancillary optics 1 ', which have a plurality of TIR lenses 2' with the boundary lines, each having two straight sections 7c, 7d, which sections 7c, 7d at an angle ⁇ 1 , ⁇ 2 to each other (as parts of the corresponding Legs of the angle) are arranged.
  • TIR lenses 2a 'of the same design the outer surfaces of which have flat areas, and whose boundary lines each have two rectilinear, non-parallel sections 7c, 7d, which are at the same angle, for example at the angle ⁇ 1 , stand to each other, an annular, O-shaped, ancillary optics are particularly favorable can be.
  • TIR lenses 2a ', 2b' can be used to form an optical attachment. This means that it is entirely conceivable that straight, oblique sections of each TIR lens in the ancillary optics are at a predetermined angle ⁇ 1 , ⁇ 2 to one another and this angle varies from TIR lens to TIR lens.
  • Fig. 8 shows two adjacent TIR lenses 2c, 2d, wherein a TIR lens 2c comprises a plurality of upholstery optics 11 having recess 8 on the lateral surface.
  • the TIR lens 2c is assigned an LED 103 'which can correspond to the at least one light source.
  • the upholstery optics 11 can be set up, for example, to direct the light emerging from the ancillary optics in parallel and to avoid scattered light / false light 12. It is particularly advantageous if the upholstery optics 11 are arranged in a region of the recess 8 which, viewed in a direction parallel to the optical axis of the TIR lens, is not covered by the lateral surface of the adjacent TIR lens.
  • the light beams 13 directed parallel to the optical axis by the upholstery optics 11 can exit the ancillary optics without experiencing refraction and / or reflection on a further surface.
  • the TIR lenses 2c and 2d are spaced apart from one another, as a result of which the wear on the TIR lenses is reduced.
  • the optical elements for example TIR lenses
  • the distance is kept small in comparison to the characteristic variable, for example to the diameter of the light exit surface, of the optical elements.
  • the individual optical elements of the optical attachment are not recognized as such, the optical attachment is perceived as a whole and a homogeneous light impression is created, for example a branched luminous surface.

Description

Die Erfindung betrifft eine Vorsatzoptik für eine Lichtquelle zum Erzeugen einer verzweigten Leuchtfläche.The invention relates to an optical attachment for a light source for generating a branched luminous surface.

Darüber hinaus betrifft die Erfindung ein Lichtmodul für einen Kraftfahrzeugscheinwerfer, welches Lichtmodul zumindest eine Lichtquelle und eine Vorsatzoptik der zumindest einer Lichtquelle zugeordnete Vorsatzoptik der eingangs genannten Art umfasst.In addition, the invention relates to a light module for a motor vehicle headlight, which light module comprises at least one light source and an attachment lens of the attachment lens of the initially mentioned type assigned to at least one light source.

Außerdem betrifft die Erfindung einen Kraftfahrzeugscheinwerfer mit einem solchen Lichtmodul oder mit einer eingangs genannten Vorsatzoptik.In addition, the invention relates to a motor vehicle headlight with such a light module or with a lens attachment mentioned at the beginning.

Des Weiteren betrifft die Erfindung ein Kraftfahrzeug mit zumindest einem Kraftfahrzeugscheinwerfer dieser Art.The invention also relates to a motor vehicle with at least one motor vehicle headlight of this type.

Gestalterische Aspekte im modernen KFZ-Bau gewinnen immer mehr an Bedeutung. Dabei dürfen bei der Entwicklung neuer Designs von zum Beispiel Kraftfahrzeugscheinwerfern und/oder ihrer Komponenten (beispielsweise Lichtmodule oder andere Bauteile) funktionelle Aspekte nicht vernachlässigt werden. Besonders bei sekundären Lichtfunktionen, wie beispielsweise Signallichtfunktionen (Tagfahrlicht, Positionslicht und Fahrtrichtungsanzeiger), ist es aufgrund der wenigen gesetzlich vorgeschriebenen Normen für das von einem entsprechenden Lichtmodul (z.B. Signallichtmodul) erzeugte Lichtbild möglich, die Lichtmodule technisch auf verschiedenste Art und Weise umzusetzen. Durch Form und Aussehen solcher Lichtmodule wird einem Kraftfahrzeug oft ein Aussehen verliehen, das auf den Hersteller dieses Kraftfahrzeug eindeutig schließen lässt.Design aspects in modern vehicle construction are becoming more and more important. When developing new designs of, for example, motor vehicle headlights and / or their components (for example light modules or other components), functional aspects must not be neglected. Particularly in the case of secondary light functions, such as signal light functions (daytime running lights, position lights and direction indicators), it is possible to implement the light modules in a wide variety of technical ways due to the few legally prescribed standards for the light image generated by a corresponding light module (e.g. signal light module). The shape and appearance of such light modules often give a motor vehicle an appearance which clearly indicates the manufacturer of this motor vehicle.

Verwendung von Lichtleitern zum Erzeugen linear ausgedehnter, verzweigter Leuchtflächen hat sich in der Praxis besonders bewährt. Bekannterweise lassen sich die Lichtleiter in gewissen Rahmen biegen beziehungsweise gekrümmt ausführen, ohne dass es zu einem Lichtaustritt an der Biegungsstelle beziehungsweise in den gekrümmten Abschnitten kommt. Außerdem ist es möglich das Licht aus einem Lichtleiter gezielt, an einer oder mehreren vorgegebenen Stelle(n) austreten zu lassen. Tritt das Licht beispielsweise an mehreren Stellen eines kurvenförmig gebogenen Lichtleiters, entsteht bei einem Betrachter der Eindruck einer homogen leuchtenden geschwungenen ununterbrochenen Linie. Ein Nachteil bei der Verwendung von den Lichtleitern besteht darin, dass sie einstückig ausgebildet sind. Aus diesem Grund wird beispielsweise für jedes Signallichtmodul ein Lichtleiter beziehungsweise eine Lichtleiteranordnung entwickelt und hergestellt, die sich nur sehr bedingt bis gar nicht für andere Signallichtmodule verwendet werden kann. Ein weiterer bekannter Nachteil der Lichtleiter, dass sie sich nur bis zu einem gewissen Grad biegen beziehungsweise gekrümmt ausführen lassen. Ab einem bestimmten Winkel beziehungsweise Krümmungsradius können an der Biegungsstelle beziehungsweise im gekrümmten Abschnitt große Lichtverluste durch Austreten von Licht aus dem Lichtleiter auftreten. Dies hat oftmals zur Folge, dass der erwünschte Leuchteindruck, beispielsweise eines homogen leuchtenden geschwungenen dünnen Bandes, nicht mehr erzielt wird. Eine mögliche Maßnahme, um dem Problem zu begegnen, ist den Lichtleiter nicht zu biegen. Allerdings führt das sehr oft dazu, dass das Lichtmodul, in dem der Lichtleiter verwendet wird, einen größeren Bauraum benötigt und deshalb den bauraumtechnischen Anforderungen nicht Rechnung tragen kann Die GB 2 365 962 A , DE 10 2015 106422 A1 und DE 20 2014 000665 U1 offenbaren Vorsatzoptiken des Stands der Technik.The use of light guides to produce linearly extended, branched luminous surfaces has proven particularly useful in practice. It is known that the light guides can be bent or curved to a certain extent, without the emergence of light at the bending point or in the curved sections. In addition, it is possible to let the light exit from a light guide in a targeted manner at one or more specified point (s). If the light occurs, for example, at several points on a curved light guide, it occurs for an observer the impression of a homogeneously glowing, curved, uninterrupted line. A disadvantage of using the light guides is that they are made in one piece. For this reason, for example, a light guide or a light guide arrangement is developed and manufactured for each signal light module, which can only be used to a very limited extent, if at all, for other signal light modules. Another known disadvantage of light guides is that they can only be bent or curved to a certain extent. Above a certain angle or radius of curvature, large light losses can occur at the bending point or in the curved section as a result of light escaping from the light guide. This often has the consequence that the desired luminous impression, for example a homogeneously luminous, curved thin strip, is no longer achieved. One possible measure to counter the problem is not to bend the light guide. However, this very often means that the light module in which the light guide is used requires a larger installation space and therefore cannot take into account the installation space requirements GB 2 365 962 A , DE 10 2015 106422 A1 and DE 20 2014 000665 U1 disclose prior art attachment optics.

Die Aufgabe der vorliegenden Erfindung ist daher eine Vorsatzoptik zu schaffen, welche die oben genannten Nachteile des Standes der Technik beseitigt und eine Vorsatzoptik, beispielsweise für ein Kraftfahrzeugscheinwerferlichtmodul, zur Verfügung stellt, die modular aufgebaut werden kann, sich beliebig und im Wesentlichen ohne Lichtverluste biegen lässt und beim Betrachter einen homogenen Leuchteindruck macht, wenn Licht durch die Vorsatzoptik durchtritt.The object of the present invention is therefore to create an attachment lens that eliminates the above-mentioned disadvantages of the prior art and provides an attachment lens, for example for a motor vehicle headlight module, which can be constructed in a modular manner, can be bent at will and essentially without loss of light and makes a homogeneous light impression on the observer when light passes through the ancillary optics.

Die Aufgabe wird mit einer eingangs genannten Vorsatzoptik erfindungsgemäß dadurch gelöst, dass die Vorsatzoptik zumindest eine Mehrzahl lichtleitender Optikelemente umfasst, wobei jedes lichtleitende Optikelement ein Lichteintrittsbereich, ein Lichtaustrittsbereich und eine Mantelfläche aufweist, wobei die Mantelfläche den Lichteintrittsbereich und den Lichtaustrittsbereich verbindet, der Lichtaustrittsbereich dem Lichteintrittsbereich gegenüberliegt und einer Lichtaustrittsfläche zugeordnet ist, welche Lichtaustrittsfläche durch eine umlaufende Begrenzungslinie begrenzt ist, wobei die Begrenzungslinie an den Lichtaustrittsbereich angrenzt, und die Optikelemente derart aneinandergereiht sind, dass die Lichtaustrittsflächen aller Optikelemente in einer gemeinsamen im Wesentlichen planen Fläche liegen, wobei jedes Optikelement eine Anzahl (ein, zwei oder mehr) von nächsten Nachbarn (nächsten Nachbar-Elementen) aufweist, wobei dessen Begrenzungslinie eine Anzahl (ein, zwei oder mehr) von Abschnitten aufweist, die jeweils einem Abschnitt der Begrenzungslinie eines nächsten Nachbarn zugeordnet sind, wobei einander zugeordnete Abschnitte aneinanderliegen und einander entsprechende Kurvenverläufe aufweisen.The object is achieved according to the invention with an optical attachment mentioned at the beginning in that the optical attachment comprises at least a plurality of light-guiding optical elements, each light-guiding optical element having a light entry area, a light exit area and a lateral surface, the lateral surface connecting the light entry area and the light exit area, the light exit area connecting the light entry area opposite and is assigned to a light exit surface, which light exit surface is delimited by a circumferential delimitation line, the delimitation line adjoining the light exit area, and the optical elements are strung together in such a way that the light exit surfaces of all optical elements lie in a common, essentially flat surface, with each optical element having a number (one, two or more) of nearest neighbors (nearest neighbor elements), its boundary line being a Number (one, two or more) of sections which are each assigned to a section of the boundary line of a nearest neighbor, sections assigned to one another lying against one another and having curves corresponding to one another.

Unter einer "im Wesentlichen planen Fläche" wird eine Fläche verstanden, die auch gekrümmt/ gewölbt sein kann, wobei die diese Krümmung/Wölbung charakterisierende Größe (z.B. ein Krümmungsradius) groß bzw. gering im Vergleich zu einer charakteristischen Größe, beispielsweise zu dem Durchmesser der Lichtaustrittsfläche, des Optikelements, z.B. der Krümmungsradius/die Krümmung ist groß/gering im Vergleich zum Durchmesser der Lichtaustrittsfläche des Optikelements.A "substantially planar surface" is understood to mean a surface that can also be curved / arched, the variable characterizing this curvature / arching (eg a radius of curvature) being large or small compared to a characteristic variable, for example the diameter of the Light exit surface of the optical element, for example the radius of curvature / the curvature is large / small compared to the diameter of the light exit surface of the optical element.

Der Begriff "Vorsatzoptik" soll im Rahmen dieser Erfindung nicht einschränkend ausgelegt sein. Eine Vorsatzoptik kann beispielsweise als ein Optikelement-System ausgebildet sein, welches mehrere Optikelemente der oben genannten Art umfasst und einer oder mehreren Lichtquellen oder lichtempfindlichen Elementen vorgesetzt sein kann.The term “ancillary optics” is not intended to be interpreted restrictively in the context of this invention. An optical attachment can be designed, for example, as an optical element system which comprises a plurality of optical elements of the type mentioned above and can be placed in front of one or more light sources or light-sensitive elements.

Im Zusammenhang mit der vorliegenden Erfindung wird unter dem Begriff Lichteintrittsbereich ein Bereich verstanden, der dem von einer oder mehreren Lichtquellen erzeugten und auf die Vorsatzoptik gerichteten Licht zum Eindringen in das jeweilige lichtleitende Optikelement zur Verfügung steht. Dabei dringt das Licht, welches nicht auf die Lichteintrittsbereiche einfällt, in die Vorsatzoptik im Wesentlichen nicht ein.In connection with the present invention, the term light entry area is understood to mean an area which is available for the light generated by one or more light sources and directed onto the ancillary optics to penetrate the respective light-guiding optical element. In this case, the light that does not strike the light entry areas essentially does not penetrate the ancillary optics.

Darüber hinaus wird im Zusammenhang mit der vorliegenden Erfindung unter dem Begriff Lichtaustrittsbereich ein Bereich verstanden, aus dem das durch den entsprechenden Lichteintrittsbereich eingedrungene und sich im Wesentlichen ohne Verluste im lichtleitenden Optikelement fortpflanzende Licht austritt. Durch die den Lichteintrittsbereich und den Lichtaustrittsbereich verbindende Mantelfläche kann nur eine geringe Lichtmenge austreten. Dabei wird unter dem Begriff eine geringe Lichtmenge, eine Menge Licht verstanden, die das unter Verwendung von der Vorsatzoptik entstehende Lichtbild im Wesentlichen nicht beeinflusst.Furthermore, in connection with the present invention, the term light exit area is understood to mean an area from which the light that has penetrated through the corresponding light entry area and propagates essentially without losses in the light-guiding optical element exits. Only a small amount of light can emerge through the jacket surface connecting the light entry area and the light exit area. In this context, the term is understood to mean a small amount of light, an amount of light that essentially does not influence the light image produced using the ancillary optics.

Der Lichtaustrittsbereich ist einer Lichtaustrittsfläche zugeordnet. Die Lichtaustrittsfläche ist eine gedachte im Wesentlichen senkrecht zu der optischen Achse des Optikelements ausgerichtete Fläche, die von einer umlaufenden Begrenzungslinie begrenzt ist und entlang dieser Begrenzungslinie an den Lichtaustrittsbereich angrenzt. Dabei kann die Lichtaustrittsfläche plan oder gewölbt/gekrümmt sein, wobei der Krümmungsradius der Lichtaustrittsfläche groß im Vergleich zu der charakteristischen Größe des Optikelements ist. Des Weiteren ist der Lichtaustrittsbereich der Lichtaustrittsfläche derart zugeordnet, dass das gesamte durch den Austrittsbereich austretende Licht durch die Lichtaustrittsfläche durchtritt. Im Zusammenhang mit der vorliegenden Erfindung wird unter der charakteristischen Größe eines Optikelements ein Durchmesser seiner Lichtaustrittsfläche verstanden. Da die Lichtaustrittsfläche kein Kreis sein muss, ist die Definition eines Durchmessers im verallgemeinerten Sinne, i.e. im Sinne eines Durchmessers einer Menge in einem metrischen Raum, zu verstehen. Das Aneinanderreihen der Optikelemente ist dergestalt ausgeführt, dass der Abstand zwischen nächsten Nachbarn klein im Vergleich zu der charakteristischen Größe der Nachbarn, vorzugsweise verschwindend gering, ist.The light exit area is assigned to a light exit area. The light exit surface is an imaginary surface which is oriented essentially perpendicular to the optical axis of the optical element and which is delimited and along a circumferential boundary line this boundary line is adjacent to the light exit area. The light exit surface can be planar or arched / curved, the radius of curvature of the light exit surface being large compared to the characteristic size of the optical element. Furthermore, the light exit area is assigned to the light exit area in such a way that all of the light exiting through the exit area passes through the light exit area. In connection with the present invention, the characteristic size of an optical element is understood to mean a diameter of its light exit surface. Since the light exit surface does not have to be a circle, the definition of a diameter is to be understood in a generalized sense, ie in the sense of a diameter of a set in a metric space. The optical elements are arranged in a row in such a way that the distance between nearest neighbors is small compared to the characteristic size of the neighbors, preferably negligibly small.

Im Zusammenhang mit der vorliegenden Erfindung wird unter dem Begriff Nachbar(n) stets der(die) nächste(n) Nachbar(n) verstanden, wenn nicht ausdrücklich anders angegeben.In connection with the present invention, the term neighbor (s) is always understood to mean the closest neighbor (s), unless expressly stated otherwise.

Die gemeinsame Fläche der Lichtaustrittsflächen der einzelnen Optikelemente kann beispielsweise plan oder gekrümmt/ gewölbt (bestimmungsgemäß konvex / konkav) ausgebildet sein und weist eine im Vergleich zu einer charakteristischen Größe der Optikelemente kleine Krümmung auf.The common surface of the light exit surfaces of the individual optical elements can, for example, be planar or curved / arched (convex / concave as intended) and has a small curvature compared to a characteristic size of the optical elements.

Die eine Mehrzahl von Optikelementen aufweisende Vorsatzoptik hat den technischen Effekt, dass die Vorsatzoptik modular aufgebaut werden und dadurch auf die baumraumtechnischen und/oder gestalterischen Anforderungen abstellen kann. Die Modularität der Vorsatzoptik hat zur Folge, dass ihre Form durch Austauschen/Ersetzen/Hinzufügen von einzelnen Optikelementen und/oder von ganzen Optikelement-Modulen sehr schnell variiert werden kann. Die erfindungsgemäße Art des Aneinanderreihens der einzelnen Optikelemente sorgt dafür, dass beim durchstrahlen des Lichts durch die gesamte Vorsatzoptik ein homogener Leuchteindruck entsteht und die Vorsatzoptik als ein ganzes aussieht, ohne dass die einzeln Optikelemente und/oder Lichtquellen wahrnehmbar sind.The ancillary optics having a plurality of optical elements has the technical effect that the ancillary optics have a modular structure and can thus be tailored to the technical and / or design requirements of the tree. The modularity of the optical attachment means that its shape can be varied very quickly by exchanging / replacing / adding individual optical elements and / or entire optical element modules. The inventive way of lining up the individual optical elements ensures that when the light shines through the entire ancillary optics, a homogeneous luminous impression is created and the ancillary optics looks as a whole without the individual optic elements and / or light sources being perceptible.

Hinsichtlich eines lückenlosen Aneinanderreihens der Lichtaustrittsflächen und/oder Lichtaustrittsbereichen der Optikelemente kann es zweckmäßig sein, wenn die einander zugeordneten, aneinanderliegenden Abschnitte kongruent zueinander ausgebildet sind. Dabei können sich die einzelnen Lichtaustrittsflächen komplementieren und eine lückenlose Gesamtlichtaustrittsfläche, die ein Teil der gemeinsamen Fläche ist, bilden. Auf die möglichen bevorzugten Formen der Gesamtlichtaustrittsfläche (Ringe, verzweigte Ketten mit oder ohne Schleifen usw.) wird in der Beschreibung weiter unten noch näher eingegangen. Bei den lückenlos aneinandergefügten/aneinandergereihten Lichtaustrittsflächen und/oder Lichtaustrittsbereichen der Optikelemente kann mithilfe von der Vorsatzoptik ein besonders homogener Leuchteindruck erzielt werden, der sich beispielsweise durch Verringern von Einschnürungen der Gesamtlichtaustrittsfläche ergibt.With regard to a gapless stringing together of the light exit areas and / or light exit areas of the optical elements, it can be useful if the light exit areas associated, abutting sections are formed congruent to one another. The individual light exit areas can complement each other and form a complete light exit area that is part of the common area. The possible preferred shapes of the overall light exit surface (rings, branched chains with or without loops, etc.) will be discussed in greater detail below in the description. With the seamlessly joined / lined up light exit surfaces and / or light exit areas of the optical elements, the front optics can be used to achieve a particularly homogeneous light impression, which results, for example, by reducing the constrictions of the overall light exit surface.

Um einen Leuchteindruck eines länglich ausgedehnten Streifens einer im Wesentlichen konstanten Dicke zu erreichen, kann es zweckdienlich sein, wenn die Mantelfläche eine Anzahl von Bereichen aufweist, die jeweils einem Bereich der Mantelfläche eines nächsten Nachbarn zugeordnet sind, wobei einander zugeordnete Bereiche aneinanderliegen und einander entsprechende Flächenverläufe aufweisen. Dadurch können die durch das Aneinanderreihen der Optikelemente entstehenden Einschnürungen einer beispielsweise verzweigten Gesamtlichtaustrittsfläche verringert und ein besserer Leuchteindruck gewonnen werden.In order to achieve a luminous impression of an elongated strip of essentially constant thickness, it can be useful if the outer surface has a number of areas which are each assigned to an area of the outer surface of a nearest neighbor, with areas assigned to one another lying on top of one another and corresponding surface profiles exhibit. As a result, the constrictions of a, for example, branched overall light exit surface resulting from the juxtaposition of the optical elements can be reduced and a better light impression can be obtained.

In Bezug auf ein lückenloses aneinanderreihen der Optikelemente kann es zweckdienlich sein, wenn die Mantelfläche eine Anzahl von Bereichen aufweist, die jeweils einem Bereich der Mantelfläche eines nächsten Nachbarn zugeordnet sind, wobei einander zugeordnete, aneinanderliegende Bereiche kongruent zueinander ausgebildet sind.With regard to a gapless stringing together of the optical elements, it can be useful if the outer surface has a number of areas which are each assigned to an area of the outer surface of a closest neighbor, with mutually adjacent areas being designed to be congruent to one another.

Erfindungsgemäß ist vorgesehen, dass zumindest ein Abschnitt bogenförmig ausgebildet ist. Dabei ist wenn der zumindest eine bogenförmige Abschnitt nach Innen der Lichtaustrittsfläche, d.h. in Richtung Lichtaustrittsflächeninnere, gewölbt. Bei einem bogenförmigen Abschnitt der Begrenzungslinie der Lichtaustrittsfläche kann das Optikelement an seinem nächsten Nachbar beispielsweise um eine Achse verschwenkbar/rotierbar anliegen. Dabei kann dem in Richtung Lichtaustrittsflächeninnere gewölbten bogenförmigen Abschnitt des Optikelements ein in Richtung Lichtaustrittsflächenäußere gewölbter bogenförmiger Abschnitt des nächsten Nachbarn zugeordnet sein und diesem entsprechen. Besonders vorteilhaft dabei ist, wenn der bogenförmige Abschnitt zum Beispiel als ein Kreisbogen ausgebildet ist. In diesem Fall kann der Radius des Kreises derart ausgewählt werden, dass das Optikelement und der entsprechende nächste Nachbar um eine durch die Mitte des Kreises senkrecht zur Kreisfläche verlaufende Achse zueinander verschwenkbar und/oder rotierbar angeordnet sind. Dabei verläuft die Achse zu den optischen Achsen beider Optikelemente im Wesentlichen parallel. Dies hat beispielsweise zum Vorteil, dass bei einer Kette von aneinandergereihten/aneinandergefügten Optikelementen der Verlauf dieser Kette beinah beliebig verändert werden kann. Mutatis mutandis würde dies bei einem herkömmlichen Lichtleiter einer Biegung des Lichtleiters entsprechen und führt oftmals zu unerwünschten Effekten wie Lichtverluste und/oder -streuung. Diese Effekte treten hier nicht auf, da eine Rotation der Optikelemente zueinander die Lichtausbreitungsrichtung nicht beeinflusst: das Licht breitet sich, wie oben bereits erwähnt, im Wesentlichen senkrecht zu der gemeinsamen Fläche der Lichtaustrittsflächen aus, in welcher eine Formänderung (beispielsweise Biegung) einer Anordnung (beispielsweise Kette) der aneinandergereihten Optikelemente durch beispielsweise eben beschriebene Rotation erfolgen kann, und ist deshalb von der Formänderung entkoppelt.According to the invention it is provided that at least one section is arcuate. In this case, if the at least one arcuate section is curved inward of the light exit surface, ie in the direction of the interior of the light exit surface. In the case of an arcuate section of the delimitation line of the light exit surface, the optical element can bear against its closest neighbor, for example in a pivotable / rotatable manner about an axis. In this case, the curved section of the optical element that is curved in the direction of the inside of the light exit surface can be assigned a curved section of the nearest neighbor which is on the outside in the direction of the light exit surface and corresponds to this. It is particularly advantageous if the arcuate section is, for example, an arc of a circle is trained. In this case, the radius of the circle can be selected in such a way that the optical element and the corresponding closest neighbor can be pivoted and / or rotated relative to one another about an axis running through the center of the circle perpendicular to the circular surface. The axis runs essentially parallel to the optical axes of both optical elements. This has the advantage, for example, that in the case of a chain of optical elements that are lined up / joined to one another, the course of this chain can be changed almost at will. Mutatis mutandis, in a conventional light guide, this would correspond to a bend in the light guide and often leads to undesirable effects such as light loss and / or light scattering. These effects do not occur here, since a rotation of the optical elements relative to one another does not influence the direction of light propagation: the light propagates, as already mentioned above, essentially perpendicular to the common surface of the light exit surfaces, in which a change in shape (e.g. bending) of an arrangement ( for example chain) of the juxtaposed optical elements can take place by, for example, rotation just described, and is therefore decoupled from the change in shape.

In einem nicht beanspruchten Ausführungsbeispiel ist zumindest ein Abschnitt als eine Gerade ausgebildet.In an exemplary embodiment that is not claimed, at least one section is designed as a straight line.

Das Aneinanderreihen der als eine Gerade ausgebildeten Abschnitte erbringt zum Beispiel den Vorteil, dass die Einschnürungen einer beispielsweise geradlinig ausgerichteten Gesamtlichtaustrittsfläche verringert werden und dadurch ein homogenerer Leuchteindruck (eines beispielsweise geradlinig ausgerichteten Streifens) erzielt werden.The lining up of the sections designed as a straight line has the advantage, for example, that the constrictions of a, for example, rectilinearly aligned total light exit surface are reduced and a more homogeneous luminous impression (of, for example, rectilinearly aligned stripes) is achieved as a result.

Erfindungsgemäß sind alle Optikelemente im Wesentlichen gleich ausgebildet. Auf diese Weise können alle Optikelemente beispielsweise durch ein Spritzgussverfahren unter Verwendung eines einzigen Werkzeugs hergestellt werden.According to the invention, all optical elements are designed essentially the same. In this way, all optical elements can be produced, for example, by an injection molding process using a single tool.

In Hinblick auf den baumraumtechnischen Aspekt kann es zweckdienlich sein, wenn die aneinandergereihten Optikelemente eine Kette bilden, wobei jedes Optikelement hinsichtlich seiner benachbarten Optikelemente unter vorgegebenen Winkeln steht. Denkbar ist es, dass jedes Optikelement zu jedem seiner Nachbar-Optikelemente unter einem anderen Winkel steht.With regard to the technical aspect of the tree space, it can be expedient if the optical elements lined up in a row form a chain, with each optical element being at predetermined angles with respect to its neighboring optical elements. It is conceivable that each optical element is at a different angle to each of its neighboring optical elements.

Hinsichtlich der Größe der Vorsatzoptik-Lichtaustrittsfläche, d.h. der gemeinsamen Lichtaustrittsfläche aller Optikelemente, kann es vorteilhaft sein, wenn die Kette verzweigt ist.With regard to the size of the ancillary optics light exit surface, i.e. the common light exit surface of all optical elements, it can be advantageous if the chain is branched.

Dabei kann es zweckmäßig sein, wenn die Kette zumindest eine Schleife aufweist.It can be useful if the chain has at least one loop.

Um mit der Vorsatzoptik beispielsweise ein Kraftfahrzeugscheinwerferlichtmodul umranden zu können, kann es opportun sein, wenn die Kette ringförmig, insbesondere O-förmig, geschlossen ist.In order to be able to surround, for example, a motor vehicle headlight module with the front optics, it can be opportune if the chain is closed in a ring shape, in particular in an O shape.

Bei einer in der Praxis bewährten Ausführungsform kann es vorteilhaft sein, dass die Optikelemente als TIR-Linsen (Abkürzung für engl. Total Internal Reflection), vorzugsweise als (um die optische Achse der Linse) rotationssymmetrische TIR-Linsen, ausgebildet sind.In an embodiment that has proven itself in practice, it can be advantageous for the optical elements to be designed as TIR lenses (abbreviation for Total Internal Reflection), preferably as TIR lenses that are rotationally symmetrical (about the optical axis of the lens).

Mit TIR-Linsen lässt sich ein im Wesentlichen parallel zu der optischen Achse der Linse gerichteter Lichtstrahl erzeugen und die Homogenität des abgestrahlten Lichts noch weiter erhöhen.With TIR lenses, a light beam directed essentially parallel to the optical axis of the lens can be generated and the homogeneity of the emitted light can be increased even further.

Darüber hinaus kann mit Vorteil vorgesehen sein, dass die Mantelflächen eine Mehrzahl von Polsteroptiken aufweisen. Dabei kann es vorteilhaft sein, wenn zumindest ein Teil der Polsteroptiken an jeweils einer einem nächsten Nachbarn zugewandten Seite der Mantelflächen angeordnet ist.In addition, it can advantageously be provided that the lateral surfaces have a plurality of upholstery optics. It can be advantageous here if at least some of the upholstery optics are arranged on each side of the lateral surfaces facing a closest neighbor.

Im Zusammenhang mit der vorliegenden Erfindung wird unter dem Begriff Polsteroptik ein optisches Element, beispielsweise eine Linse, verstanden, die wesentlich kleinere charakteristische Größe als die charakteristische Größe des Optikelements aufweist und dazu eingerichtet sein kann, das beispielsweise durch einen Durchstritt und/oder eine Streuung an der Mantelfläche und/oder eine Transmission durch die Mantelfläche erzeugte Fehllicht, d.h. das sich nicht parallel zu der optischen Achse des Optikelements ausbreitende Licht, im Wesentlichen parallel zu der optischen Achse zu lenken. Solche Polsteroptiken können beispielsweise als kleine Erhebungen an der Mantelfläche und aus demselben Material, das vorzugsweise optisch dichter als Luft ist, wie das entsprechende optische Element ausgebildet sein.In connection with the present invention, the term upholstery optics is understood to mean an optical element, for example a lens, which has a significantly smaller characteristic size than the characteristic size of the optical element and which can be set up, for example, by penetration and / or scattering the lateral surface and / or a transmission generated by the lateral surface, that is, to direct the light that does not propagate parallel to the optical axis of the optical element, essentially parallel to the optical axis. Such upholstery optics can, for example, be designed as small elevations on the lateral surface and from the same material, which is preferably optically denser than air, as the corresponding optical element.

Durch das Anbringen der Polsteroptiken kann zwischen den aneinanderliegenden Optikelementen der Vorsatzoptik ein im Vergleich mit der Größe des Optikelements kleiner Luftspalt entstehen. Hinsichtlich der Verkleinerung dieses Luftspalts kann es zweckdienlich sein, wenn der zumindest eine Teil der Polsteroptiken die Mantelfläche des nächsten Nachbarn berührt.By attaching the upholstery optics, an air gap can be created between the adjacent optic elements of the ancillary optics, which is small compared to the size of the optic element. With regard to the reduction of this air gap, it can be expedient if the at least one part of the upholstery optics touches the outer surface of the closest neighbor.

Um die Größe der Vorsatzoptik zu verringern, kann es opportun sein, wenn die Optikelemente einander berührend aneinandergereiht sind.In order to reduce the size of the ancillary optics, it can be opportune if the optical elements are lined up touching one another.

Bei einer nicht beanspruchten Ausführungsform kann es vorgesehen sein, dass die aneinandergereihten Optikelemente voneinander beabstandet sind.In an embodiment not claimed, it can be provided that the optical elements lined up in a row are spaced apart from one another.

Eine kleine (im Vergleich zu der charakteristischen Größe des Optikelements) Beabstandung der Optikelemente, d.h. dass sich die Optikelemente nicht berühren, der Vorsatzoptik bringt den Vorteil, dass es beim Einsetzten der Vorsatzoptik in einer mechanisch beweglichen Umgebung, wie zum Beispiel in einem Kraftfahrzeugscheinwerfer, zu keinem Verschleiß und zu keiner Beeinträchtigung der optischen Eigenschaften der einzelnen Optikelementen beispielsweise durch Reibung und/oder gegenseitiges Stoßen kommt.A small (compared to the characteristic size of the optical element) spacing of the optical elements, ie that the optical elements do not touch, of the ancillary optics has the advantage that when the ancillary optics are used in a mechanically movable environment, such as in a motor vehicle headlight there is no wear and no impairment of the optical properties of the individual optical elements, for example due to friction and / or mutual impact.

Hinsichtlich der Stabilität der Vorsatzoptik, kann es zweckmäßig sein, wenn zwischen den aneinandergereihten Optikelementen eine Kleberschicht vorgesehen ist, welche Kleberschicht jedes Optikelement mit seinen nächsten Nachbarn verbindet.With regard to the stability of the ancillary optics, it can be useful if an adhesive layer is provided between the aligned optical elements, which adhesive layer connects each optical element to its nearest neighbors.

Die oben genannte Aufgabe wird außerdem mit einem Lichtmodul für einen Kraftfahrzeugscheinwerfer erfindungsgemäß dadurch gelöst, dass im Wesentlichen das gesamte von der zumindest einen Lichtquelle erzeugte Licht durch die Lichteintrittsbereiche in die Vorsatzoptik eintritt und, vorzugsweise im Wesentlichen ohne Verluste, aus den Lichtaustrittsbereichen aus der Vorsatzoptik austritt.The above-mentioned object is also achieved according to the invention with a light module for a motor vehicle headlight in that essentially all of the light generated by the at least one light source enters the ancillary optics through the light entry areas and, preferably essentially without losses, exits the light exit areas of the ancillary optics .

Dabei ist der Begriff Lichtquelle nicht zu eng auszulegen. Im Zusammenhang mit der vorliegenden Erfindung wird unter dem Begriff Lichtquelle eine oder mehrere Einrichtungen oder Vorrichtungen verstanden, die Licht zur Verfügung stellen kann/können, welches auf die erfindungsgemäße Vorsatzoptik eintreffen kann. Eine solche Lichtquelle kann beispielsweise umfassen: sowohl primär leuchtende Elemente, wie z.B.The term light source should not be interpreted too narrowly. In connection with the present invention, the term light source is understood to mean one or more devices or devices that can / can provide light that can strike the optical attachment according to the invention. Such a light source can include, for example: both primarily luminous elements, such as

Glühbirnen, LEDs, OLEDs, Laserlichtquellen als auch sekundär leuchtende Elemente, wie z.B. Lichtkonversionsmittel, Lichtumlenkelemente, wie z. B. Spiegel, (steuerbare) Mikrospiegelarrays, Prismen, lichtstrahlformende Elemente, wie z.B. Glasfaser, Blenden, und Lichtabbildungselemente, wie z.B. eine Linsen-Einrichtung. Eine solche "Lichtquelle" wird als eine Lichtquelle seitens der Vorsatzoptik gesehen: sie stellt der Vorsatzoptik Licht zur Verfügung, welches die Vorsatzoptik abbildet.Light bulbs, LEDs, OLEDs, laser light sources as well as secondary luminous elements such as light conversion means, light deflection elements such as e.g. B. mirrors, (controllable) micromirror arrays, prisms, light beam-shaping elements such as glass fibers, diaphragms, and light imaging elements such as a lens device. Such a "light source" is seen as a light source on the part of the ancillary optics: it provides the ancillary optics with light which the ancillary optics images.

Darüber hinaus kann in Bezug auf die Homogenität des vom Lichtmodul abgestrahlten Lichts vorteilhaft sein, wenn das aus der Vorsatzoptik austretendes Licht als ein im Wesentlichen parallel zueinander gerichtete Lichtstrahlen umfassendes, d.h. eine kleine Etendue aufweisendes, Lichtbündel ausgebildet ist.Furthermore, with regard to the homogeneity of the light emitted by the light module, it can be advantageous if the light emerging from the ancillary optics is designed as a light bundle comprising essentially parallel light beams, i.e. having a small etendue.

Bei einer in der Praxis bewährten Ausführungsform kann vorgesehen sein, dass die zumindest eine Lichtquelle als eine LED ausgebildet ist.In an embodiment that has proven itself in practice, it can be provided that the at least one light source is designed as an LED.

Dabei ist es besonders vorteilhaft, wenn das Lichtmodul eine Mehrzahl von Lichtquellen umfasst, wobei eine Lichtquellenanzahl größer als eine Optikelementenanzahl oder gleich einer Optikelementenanzahl ist und jedem Optikelement zumindest zwei, vorzugsweise drei, insbesondere mehr als drei, Lichtquellen zugeordnet sind oder genau eine Lichtquelle zugeordnet ist. Bei dieser Ausführungsform können die Lichtquellen, beispielsweise LEDs, sehr nah an den Lichteintrittsflächen der Optikelemente, beispielsweise TIR-Linsen, angeordnet sein. Dabei kann im Wesentlichen ganzes Licht jeder einzelnen Lichtquelle in das dazugehörige Optikelement eingespeist werden. Dadurch können zum Beispiel die Lichtverluste (Lichtübertragungsverluste) reduziert bzw. klein gehalten werden. Bei einer Ausführungsform, bei der die Lichtquellenanzahl beispielsweise ein ganzzahliges Vielfaches der Optikelementenanzahl ist, wobei jedem Optikelement beispielsweise die gleiche Anzahl der Lichtquellen zugeordnet ist, können die einem Optikelement zugeordneten Lichtquellen getrennt ansteuerbar sein und Licht in verschiedenen Farben abstrahlen. Auf diese Art können unterschiedliche Lichtfunktionen wie Fahrtrichtungsanzeiger und Tagfahrlicht in einem (und demselben) Lichtmodul realisiert werden.It is particularly advantageous if the light module comprises a plurality of light sources, a number of light sources being greater than a number of optical elements or equal to a number of optical elements and at least two, preferably three, in particular more than three, light sources being assigned to each optical element or precisely one light source being assigned . In this embodiment, the light sources, for example LEDs, can be arranged very close to the light entry surfaces of the optical elements, for example TIR lenses. Essentially all of the light from each individual light source can be fed into the associated optical element. In this way, for example, the light losses (light transmission losses) can be reduced or kept small. In an embodiment in which the number of light sources is, for example, an integral multiple of the number of optical elements, with each optical element being assigned the same number of light sources, for example, the light sources assigned to an optical element can be activated separately and emit light in different colors. In this way, different light functions such as direction indicators and daytime running lights can be implemented in one (and the same) light module.

Besonders in Hinblick auf die Kraftfahrzeugbeleuchtung kann es zweckmäßig sein, wenn das Lichtmodul als ein Signallichtmodul ausgebildet ist.Particularly with regard to motor vehicle lighting, it can be useful if the light module is designed as a signal light module.

Außerdem wird die oben genannte Aufgabe mit einem Kraftfahrzeugscheinwerfer mit einer erfindungsgemäßen Vorsatzoptik und/oder mir einem erfindungsgemäßen Lichtmodul gelöst.In addition, the above-mentioned object is achieved with a motor vehicle headlight with an optical attachment according to the invention and / or with a light module according to the invention.

Die oben genannten vorteilhaften Ausführungsformen können selbstverständlich getrennt oder in einer Kombination auftreten. Kombinationen von den oben genannten Ausführungsformen gehören zur Routine eines Fachmanns, können ohne sein erfinderisches Zutun realisiert werden und gehören deshalb zu der Offenbarung dieses Schriftstücks.The above-mentioned advantageous embodiments can of course occur separately or in a combination. Combinations of the above-mentioned embodiments belong to the routine of a person skilled in the art, can be realized without his inventive step and therefore belong to the disclosure of this document.

Die Erfindung ist nachfolgend anhand beispielhafter Ausführungsformen, die nicht einschränkend auszulegen sind, näher erläutert, die in einer Zeichnung veranschaulicht sind. In dieser zeigt:

  • Fig. 1 eine Vorsatzoptik in perspektivischer Ansicht,
  • Fig. 2 eine Vorderansicht der Vorsatzoptik aus Fig. 1,
  • Fig. 3(a) und (b) TIR-Linsen mit unterschiedlichen Lichteintritt und -austrittsbereichen,
  • Fig. 4 eine Vorsatzoptik mit einer verzweigten Leuchtfläche,
  • Fig. 5 einen Kraftfahrzeugscheinwerfer,
  • Fig. 6(a) - (d) TIR-Linsen mit planen Mantelflächenbereichen,
  • Fig. 7 eine aus TIR-Linsen der Figuren 4(a) bis Fig. 4(d) gebildete Vorsatzoptik, und
  • Fig. 8 zwei benachbarte TIR-Linsen mit Polsteroptiken.
The invention is explained in more detail below with reference to exemplary embodiments, which are not to be interpreted restrictively, which are illustrated in a drawing. In this shows:
  • Fig. 1 a front lens in a perspective view,
  • Fig. 2 a front view of the ancillary optics Fig. 1 ,
  • Fig. 3 (a) and (b) TIR lenses with different light entry and exit areas,
  • Fig. 4 an attachment lens with a branched light surface,
  • Fig. 5 a motor vehicle headlight,
  • Fig. 6 (a) - (d) TIR lenses with flat lateral surface areas,
  • Fig. 7 one made from TIR lenses Figures 4 (a) to 4 (d) formed ancillary optics, and
  • Fig. 8 two adjacent TIR lenses with upholstered optics.

Zunächst wird auf Fig. 1 Bezug genommen. Fig. 1 zeigt eine Vorsatzoptik 1, die einer erfindungsgemäßen Vorsatzoptik entsprechen kann. Die Vorsatzoptik 1 ist als kettenweise aneinandergefügte (lückenlos aneinandergereihte) TIR-Optiken (TIR-Linsen) 2, welche lichtleitenden Optikelementen entsprechen können, ausgebildet. Die TIR-Linsen 2 sind kongruent zueinander ausgebildet, weisen eine charakteristische Größe von 10 bis 20 mm auf und können beispielsweise in einem Spritzgussverfahren mit einem einzigen Werkzeug hergestellt werden. Dabei können auch TIR-Linsen verwendet werden, die sich in Größe und Form unterscheiden. Darüber hinaus ist eine Verwendung anderer lichtleitender Optikelemente, wie zum Beispiel Lichtleiterfasern, -röhre, -stäbe oder ähnliche, denkbar. Jeder TIR-Linse 2 weist einen Lichteintrittsbereich 3, einen dem Lichteintrittsbereich gegenüberliegenden Lichtaustrittsbereich 4 und eine den Lichteintrittsbereich 3 mit dem Lichtaustrittsbereich 4 verbindende Mantelfläche 5. Der Lichtaustrittsbereich 4 ist jeweils einer Lichtaustrittsfläche 6 zugeordnet. Bei den in Fig. 1 gezeigten TIR-Linsen 2 stimmen ihre Lichtaustrittsbereiche und Lichtaustrittsflächen überein. Die Lichtaustrittsflächen aller TIR-Linsen bilden eine Gesamtlichtaustrittsfläche 60, welche in einer Fläche F liegt und als ein linear ausgedehntes, längliches Einschnürungen 61 aufweisendes Band ausgebildet ist (siehe auch Fig. 2). Dabei können die Lichtaustrittsflächen 6 und die Fläche F plan oder leicht gekrümmt ausgebildet sein. Unter leicht gekrümmt ist zu verstehen, dass die Fläche F eine im Vergleicht zu der charakteristischen Größe der TIR-Linsen geringe Krümmung aufweist. Bei anderen TIR-Linsentypen findet eine solche Übereinstimmung nicht statt (vgl. Fig. 3(a) und Fig. 3(b)), da, wie es aus dem Stand der Technik bekannt ist, die Form des Lichtaustrittsbereichs beispielsweise an die Form des Lichteintrittsbereichs angepasst werden kann (siehe z.B. Jin-Jia Chen, Chin-Tang Lin "Freeform surface design for a lightemitting diode-based collimating lens", Optical Engineering 49 (9), 093001 (September 2010 ) und Donglin Ma, Zexin Feng, and Rongguang Liang "Freeform illumination lens design using composite ray mapping", Applied Optics Vol. 54, No. 3, 20 January 2015 ). Die Lichtaustrittsfläche 6 ist durch eine umlaufende, beispielsweise sichelförmige (wie gezeigt), Begrenzungslinie 7 begrenzt und grenzt an diese Begrenzungslinie 7 den Lichtaustrittsbereich 4 an.First will be on Fig. 1 Referenced. Fig. 1 shows an attachment lens 1, which can correspond to an attachment lens according to the invention. The ancillary optics 1 is designed as TIR optics (TIR lenses) 2 which are joined to one another in chains (lined up without gaps) and which can correspond to light-guiding optical elements. The TIR lenses 2 are designed to be congruent to one another, have a characteristic size of 10 to 20 mm and can be used, for example, in an injection molding process with a single tool getting produced. TIR lenses, which differ in size and shape, can also be used. In addition, the use of other light-conducting optical elements, such as, for example, light guide fibers, tubes, rods or the like, is conceivable. Each TIR lens 2 has a light entry area 3, a light exit area 4 opposite the light entry area and a lateral surface 5 connecting the light entry area 3 to the light exit area 4. The light exit area 4 is assigned to a light exit area 6. The in Fig. 1 TIR lenses 2 shown match their light exit areas and light exit areas. The light exit surfaces of all TIR lenses form a total light exit surface 60, which lies in a surface F and is designed as a linearly extended, elongated constrictions 61 having (see also Fig. 2 ). The light exit surfaces 6 and the surface F can be planar or slightly curved. Under slightly curved is to be understood that the surface F has a slight curvature compared to the characteristic size of the TIR lenses. Such a match does not take place with other TIR lens types (cf. Fig. 3 (a) and Fig. 3 (b) ), since, as is known from the prior art, the shape of the light exit area can be adapted, for example, to the shape of the light entry area (see e.g. Jin-Jia Chen, Chin-Tang Lin "Freeform surface design for a lightemitting diode-based collimating lens", Optical Engineering 49 (9), 093001 (September 2010 ) and Donglin Ma, Zexin Feng, and Rongguang Liang "Freeform illumination lens design using composite ray mapping", Applied Optics Vol. 54, no. 3, 20 January 2015 ). The light exit surface 6 is delimited by a circumferential, for example sickle-shaped (as shown), delimitation line 7 and adjoins this delimitation line 7 the light exit region 4.

Die Mantelflächen 5 der TIR-Linsen 2 sind paraboloidförmig ausgebildet. Andersartig ausgebildete Mantelflächen der TIR-Linsen sind durchaus vorstellbar. Zum Beispiel können die Mantelflächen Facetten aufweisen, wobei jede Facette einen paraboloiden Verlauf aufweisen kann. Dabei kann bei jeder Mantelfläche 5 eine oder mehr Ausnehmungen 8 vorgesehen sein, welche vorzugsweise dem, beispielsweise paraboloiden, Flächenverlauf der Mantelfläche 5 entspricht/entsprechen. Diese Ausnehmung(en) 8 entspricht/entsprechen den Bereichen, die jeweils einem Bereich der Mantelfläche eines nächsten Nachbarn 5a zugeordnet sind, wobei einander zugeordnete Bereiche aneinanderliegen und einander entsprechende Flächenverläufe aufweisen können. Auf diese Weise können die TIR-Linsen derart aneinandergereiht werden, dass die Ausnehmungen 8 die entsprechenden Mantelflächenbereiche 5a berühren und an diesen vorzugsweise im Wesentlichen lückenlos/ dicht anliegen. Die Ausnehmung 8 erstreckt sich von der Mantelfläche 5 bis zu dem Lichtaustrittsbereich 4, wobei sie einen gemeinsamen Begrenzungslinienabschnitt 7b mit der Begrenzungslinie 7 der Lichtaustrittsfläche 6 aufweist. Wie Fig. 1 und Fig. 2 zeigen, weist jede TIR-Linse 2 in der dargestellten Kettenanordnung zwei nächste Nachbarn auf. Dementsprechend weist jede Begrenzungslinie 7 zwei Abschnitte 7a, 7b auf, die jeweils einem Abschnitt der Begrenzungslinie 7 eines nächsten Nachbarn zugeordnet ist. Dabei liegen die einander zugeordneten Abschnitte 7a, 7b aneinander und weisen einander entsprechende Kurvenverläufe auf. An dieser Stelle muss angemerkt sein, dass jede TIR-Linse und auch jedes Optikelement eine beliebige Anzahl (0, 1, 2, 3, 4, 5, 6, usw.) an nächsten Nachbarn aufweisen kann, dabei ist jedem nächsten Nachbar ein Abschnitt der Begrenzungslinie 7 zugeordnet. Dadurch lassen sich beinah beliebig verzweigte Ketten (Ketten mit Schleifen, Ringe, Ellipsen usw.) realisieren. Bei den in Fig. 2 gezeigten nächsten Nachbarn 2a, 2b ist der Abschnitt 7b von der Begrenzungslinie der Lichtaustrittsfläche der TIR-Linse 2a dem Abschnitt 7a zugeordnet. Dabei kann es vorgesehen sein, dass die Abschnitte 7a, 7b kongruent zueinander ausgebildet sind, sodass sie deckungsgleich aneinandergelegt werden können. Besonders vorteilhaft ist es, wenn die Abschnitte 7a, 7b derart ausgebildet sind, dass die nächsten Nachbarn um eine zu der Fläche F im Wesentlichen senkrecht verlaufende Achse verschwenkbar, insbesondere rotierbar, angeordnet sind. Fig. 2 zeigt kreisbogenförmige Abschnitte 7a, 7b, wobei diese den gleichen Krümmungsradius aufweisen, der dem Radius R des Lichtaustrittsbereichs einer TIR-Linse (ohne Ausnehmung in der Mantelfläche) im Wesentlichen gleich ist. In diesem Fall ist die TIR-Linse 2b bezüglich der benachbarten TIR-Linse 2a um ihre optische Achse OA rotierbar angeordnet (Fig. 2). Dies hat zum Vorteil, dass der Verlauf der Kette verändert werden kann, ohne eine andere Form der TIR-Linse zu benötigen, was zu einer hohen Flexibilität und einer hohen Anpassungsfähigkeit der Vorsatzoptik führt. Durch eine solche Rotation kann, wenn erwünscht, zum Beispiel der Verlauf der Kette zwischen zwei vorgegebenen Punkten geändert werden. Um beispielsweise den Verlauf der in Fig. 2 gezeigten Kette zwischen den Punkten P1 und P4 zu ändern, um diesen zum Beispiel als einen geraden Abschnitt auszuführen, kann zunächst die TIR-Linse 2d, deren optische Achse durch den Punkt P2 verläuft, im Gegenuhrzeigersinn um ihre optische Achse um einen Winkel α2 rotiert und anschließend die TIR-Linse 2e im Gegenuhrzeigersinn um ihre optische Achse um einen weiteren Winkel α 1 rotiert werden. Durch Rotation um verschiedene Winkel α 1,...,αn können beinah beliebig verlaufende Ketten gebildet werden. Dadurch kann eine Vorsatzoptik geschaffen werden, die eine beinah beliebige Formgebung haben kann und beispielsweise an beinah jede Form eines Kraftfahrzeugscheinwerfergehäuses angepasst werden kann. Um bei der Vorsatzoptik einen Eindruck von einer fortlaufenden Kette und nicht von einzelnen aneinander gereihten Optikelementen zu schaffen, kann es zweckmäßig sein, wenn der Abstand zwischen den nächsten Nachbarn den Wert von zwei charakteristischen Größen der Lichtaustrittsfläche des Optikelements nicht übersteigt. Bei der in Fig. 2 gezeigten Ausführungsform liegt der Abstand D in einem Bereich zwischen einem Radius und einem Durchmesser der Lichtaustrittsfläche der TIR-Linse (wenn die TIR-Linse keine Ausnehmung aufweist).The lateral surfaces 5 of the TIR lenses 2 are parabolic. Outer surfaces of the TIR lenses designed differently are quite conceivable. For example, the lateral surfaces can have facets, wherein each facet can have a parabolic course. In this case, one or more recesses 8 can be provided for each lateral surface 5, which preferably corresponds / correspond to the, for example, parabolic, surface course of the lateral surface 5. This recess (s) 8 corresponds / correspond to the areas which are each assigned to an area of the lateral surface of a nearest neighbor 5a, areas assigned to one another being adjacent to one another and being able to have corresponding surface courses. In this way, the TIR lenses can be strung together in such a way that the recesses 8 correspond to the corresponding Touch lateral surface areas 5a and preferably abut them substantially without gaps / tightly. The recess 8 extends from the jacket surface 5 to the light exit area 4, wherein it has a common boundary line section 7b with the boundary line 7 of the light exit surface 6. How FIGS. 1 and 2 show, each TIR lens 2 in the chain arrangement shown has two nearest neighbors. Accordingly, each boundary line 7 has two sections 7a, 7b, each of which is assigned to a section of the boundary line 7 of a nearest neighbor. The sections 7a, 7b assigned to one another lie against one another and have curves that correspond to one another. At this point it should be noted that each TIR lens and also each optical element can have any number (0, 1, 2, 3, 4, 5, 6, etc.) of nearest neighbors, each nearest neighbor being a section assigned to the boundary line 7. This means that almost any branched chain (chains with loops, rings, ellipses, etc.) can be created. The in Fig. 2 The closest neighbors 2a, 2b shown, the section 7b of the boundary line of the light exit surface of the TIR lens 2a is assigned to the section 7a. It can be provided that the sections 7a, 7b are designed to be congruent to one another, so that they can be placed congruently against one another. It is particularly advantageous if the sections 7a, 7b are designed in such a way that the closest neighbors are arranged so as to be pivotable, in particular rotatable, about an axis running essentially perpendicular to the surface F. Fig. 2 shows circular arc-shaped sections 7a, 7b, these having the same radius of curvature, which is essentially the same as the radius R of the light exit region of a TIR lens (without a recess in the lateral surface). In this case, the TIR lens 2b is arranged so as to be rotatable about its optical axis OA with respect to the adjacent TIR lens 2a ( Fig. 2 ). This has the advantage that the course of the chain can be changed without requiring a different shape of the TIR lens, which leads to a high degree of flexibility and a high adaptability of the ancillary optics. Such a rotation can, if desired, for example change the course of the chain between two predetermined points. For example, to check the course of the in Fig. 2 To change the chain shown between the points P1 and P4, for example, as a straight section, the TIR lens 2d, the optical axis of which runs through the point P2, can first rotate counterclockwise about its optical axis by an angle α 2 and then the TIR lens 2e can be rotated counterclockwise about its optical axis by a further angle α 1. By rotating through different angles α 1 , ..., α n , chains can be formed in almost any direction. This allows a Ancillary optics are created that can have almost any shape and, for example, can be adapted to almost any shape of a motor vehicle headlight housing. In order to create an impression of a continuous chain in the ancillary optics and not of individual optical elements arranged in a row, it can be useful if the distance between the closest neighbors does not exceed the value of two characteristic values of the light exit surface of the optical element. At the in Fig. 2 the embodiment shown, the distance D is in a range between a radius and a diameter of the light exit surface of the TIR lens (if the TIR lens has no recess).

Fig. 3(a) und (b) zeigen zwei von vielen TIR-Linsen nach dem Stand der Technik, die unterschiedliche Lichteintritts- 3 und Lichtaustrittsbereiche 4 aufweisen. Dem Stand der Technik ist zu entnehmen, dass die Form des Lichteintritts- mit der Form des Lichtaustrittsbereichs zusammenhängt. So zeigt zum Beispiel Fig. 3 (b) eine herkömmliche TIR-Linse 2' bei der die Form des Lichtaustrittsbereichs 4' anhand der runden Form des Lichteintrittsbereichs 3' und der Bedingung, dass aus der TIR-Linse 2' austretende Lichtstrahlen parallel zu der optischen Achse der TIR-Linse 2' verlaufen, bestimmt wird. Darüber hinaus stellt die TIR-Linse 2' der Fig. 3 (b) ein Beispiel einer TIR-Linse dar, bei der die Lichtaustrittsfläche 6' und der Lichtaustrittsbereich 4' nicht zusammenfallen. Fig. 3 (a) and (b) show two of many TIR lenses according to the prior art, which have different light entry 3 and light exit areas 4. It can be seen from the prior art that the shape of the light entry area is related to the shape of the light exit area. So shows for example Fig. 3 (b) a conventional TIR lens 2 'in which the shape of the light exit area 4' based on the round shape of the light entry area 3 'and the condition that light rays emerging from the TIR lens 2' run parallel to the optical axis of the TIR lens 2 ', is determined. In addition, the TIR lens 2 'represents the Fig. 3 (b) represents an example of a TIR lens in which the light exit surface 6 'and the light exit area 4' do not coincide.

Fig. 4 zeigt eine Vorsatzoptik 1' mit einer verzweigten Gesamtlichtaustrittsfläche 60'. Die Vorsatzoptik 1' weist eine Mehrzahl an TIR-Linsen 2 auf, wobei eine TIR-Linse 2" drei nächste Nachbarn aufweist und zur Realisierung einer Abzweigung dient. Dabei sei es angemerkt, dass alle TIR-Linsen der Vorsatzoptik 1' gleich ausgebildet sind. Dies ist auch bei der Vorsatzoptik 1 der Fig. 1 und Fig. 2 der Fall. Darüber hinaus kann es vorgesehen sein, dass eine Vorsatzoptik gemäß der vorliegenden Erfindung mehrere Zweige aufweist. Unter Verwendung von den TIR-Linsen 2 lassen sich verschiedenförmige Vorsatzoptiken (z.B. in sich geschlossene, eine oder mehr Schleifen aufweisende usw.) kreieren. Durch die verzweigte Gesamtlichtaustrittsfläche 60' wird bei einem Einsatz der Vorsatzoptik 1' beispielsweise in einem Kraftfahrzeugscheinwerferlichtmodul eine ebenfalls verzweigte Leuchtfläche erreicht. Fig. 4 shows an optical attachment 1 'with a branched total light exit surface 60'. The ancillary optics 1 'has a plurality of TIR lenses 2, with a TIR lens 2 "having three closest neighbors and serving to implement a junction. It should be noted that all TIR lenses of the ancillary optics 1' are of the same design. This is also the case with the auxiliary optics 1 FIGS. 1 and 2 the case. In addition, it can be provided that an attachment lens according to the present invention has several branches. Using the TIR lenses 2, it is possible to create ancillary optics of different shapes (for example, self-contained, one or more loops, etc.). The branched total light exit area 60 'results in a likewise branched luminous area when the front optics 1' is used, for example in a motor vehicle headlight module.

Fig. 5 zeigt schematisch ein Beispiel eines Kraftfahrzeugscheinwerfers 100, welches zumindest ein Lichtmodul 101 aufweist. Das Lichtmodul weist eine Mehrzahl von beispielsweise an einer Leiterplatte 102 angeordneten LEDs 103, welche der zumindest einen Lichtquelle entsprechen können. Dabei können die LEDs mit anderen Lichtquellen ersetzt werden. Es ist durchaus denkbar, dass statt LEDs OLEDs oder mit Laserlicht beleuchtete Lichtkonversionsmittel verwendet werden. Das von LEDs erzeugte Licht wird in eine Vorsatzoptik 1" eingekoppelt. Dabei kann die Vorsatzoptik 1" als eine der oben genannten Vorsatzoptiken 1, 1' der Fig. 1 bzw. der Fig. 4 ausgebildet sein oder einer anderen der erfindungsgemäßen Vorsatzoptik entsprechenden Vorsatzoptik entsprechen. Bei einem gleichzeitigen Einschalten der LEDs 103 wird eine S-förmig verlaufende Leuchtfläche erzeugt, die der Form der Gesamtlichtaustrittsfläche 60" entspricht, wobei die Gesamtlichtaustrittsfläche 60" aus den Lichtaustrittsflächen 6 der einzelnen als TIR-Linsen 2 ausgebildeten Optikelemente gebildet ist. Es ist anzumerken, dass bei einem nichtgleichzeitigen Einschalten der LEDs verschiedene Leuchtszenarien verwirklicht werden können, die beispielsweise bei Signallichtmodulen ihre Anwendung finden. Fig. 5 schematically shows an example of a motor vehicle headlight 100 which has at least one light module 101. The light module has a plurality of for example, LEDs 103 arranged on a circuit board 102, which can correspond to the at least one light source. The LEDs can be replaced with other light sources. It is entirely conceivable that instead of LEDs, OLEDs or light conversion means illuminated with laser light are used. The light generated by LEDs is coupled into an optical attachment 1 ″. The optical attachment 1 ″ can be used as one of the aforementioned optical attachment 1, 1 ′ Fig. 1 or the Fig. 4 be formed or correspond to another optical adapter corresponding to the optical adapter according to the invention. When the LEDs 103 are switched on at the same time, an S-shaped luminous surface is generated which corresponds to the shape of the overall light exit surface 60 ″, the overall light exit surface 60 ″ being formed from the light exit surfaces 6 of the individual optical elements designed as TIR lenses 2. It should be noted that if the LEDs are not switched on at the same time, various lighting scenarios can be implemented that are used, for example, in signal light modules.

Fig. 6(a) bis Fig. 6(d) zeigen TIR-Linsen, deren Mantelflächen je zwei im Wesentlichen planen zu der optischen Achse der TIR-Linse OA im Wesentlichen parallel verlaufenden Bereiche 10a, 10b aufweisen. Dementsprechend weisen die Begrenzungslinien 7 der Lichtaustrittsflächen dieser TIR-Linsen ebenfalls zwei geradlinigen Abschnitte 7c, 7d auf. Wie bereits oben dargelegt, ist es vorteilhaft, wenn die Anzahl der Abschnitte der Anzahl der nächsten Nachbarn entspricht und diese Abschnitte derart ausgebildet sind, dass sie den entsprechenden Abschnitten der nächsten Nachbarn zugeordnet werden können. Die Abschnitte 7c, 7d können zueinander parallel verlaufen. In diesem Fall lässt sich sehr schnell eine als eine geradlinig verlaufende Kette ausgebildete Vorsatzoptik bilden, mit welcher einen Eindruck eines leuchtenden Streifens besonders günstig geschaffen werden kann. Alternativ können die geradlinigen Abschnitte 7c, 7d schräg zueinander verlaufen und Teile der entsprechenden Schenkel eines Winkels β 1 , β 2 sein (Fig. 6(c) und Fig. 6(d)). Fig. 7 zeigt eine Ausführungsform einer Vorsatzoptik 1', welche eine Mehrzahl von TIR-Linsen 2' mit den Begrenzungslinien, die jeweils zwei geradlinige Abschnitte 7c, 7d aufweisen, welche Abschnitte 7c, 7d unter einem Winkel β 1 , β 2 zueinander (als Teile der entsprechenden Schenkel des Winkels) angeordnet sind. Der Fig. 7 kann des Weiteren entnommen werden, dass aus gleich ausgebildeten TIR-Linsen 2a', deren Mantelflächen plane Bereiche aufweisen, und deren Begrenzungslinien jeweils zwei geradlinige zueinander nicht parallel verlaufende Abschnitte 7c, 7d aufweisen, welche unter dem gleichen Winkel, z.B. unter dem Winkel β 1, zueinander stehen, besonders günstig eine ringförmige, O-förmige, Vorsatzoptik gebildet werden kann. Es versteht sich, dass zum Bilden einer Vorsatzoptik unterschiedlich ausgebildete TIR-Linsen 2a', 2b' verwendet werden können. Das heißt, es ist durchaus denkbar, dass geradlinige, schräg zueinander verlaufende Abschnitte einer jeden TIR-Linse in der Vorsatzoptik unter einem vorgegebenen Winkel β 1 , β 2 zueinander stehen und dieser Winkel von TIR-Linse zu TIR-Linse variiert. Auf diese Weise können beinah beliebig verlaufende Ketten gebildet werden, wenn mehrere TIR-Linsen mit unterschiedlichen Winkeln β 1, ..., βn verwendet werden. Dadurch kann eine Vorsatzoptik geschaffen werden, die eine beinah beliebige Formgebung haben kann und beispielsweise an beinah jede Form eines Kraftfahrzeugscheinwerfergehäuses angepasst werden kann. Fig. 6 (a) to 6 (d) show TIR lenses, the lateral surfaces of which each have two essentially planar regions 10a, 10b that run essentially parallel to the optical axis of the TIR lens OA. Accordingly, the boundary lines 7 of the light exit surfaces of these TIR lenses also have two straight sections 7c, 7d. As already explained above, it is advantageous if the number of sections corresponds to the number of the closest neighbors and if these sections are designed in such a way that they can be assigned to the corresponding sections of the closest neighbors. The sections 7c, 7d can run parallel to one another. In this case, it is possible very quickly to form an attachment lens designed as a straight chain, with which an impression of a luminous strip can be created particularly favorably. Alternatively, the straight sections 7c, 7d can run obliquely to one another and be parts of the corresponding legs of an angle β 1 , β 2 ( Fig. 6 (c) and Fig. 6 (d) ). Fig. 7 shows an embodiment of an ancillary optics 1 ', which have a plurality of TIR lenses 2' with the boundary lines, each having two straight sections 7c, 7d, which sections 7c, 7d at an angle β 1 , β 2 to each other (as parts of the corresponding Legs of the angle) are arranged. The Fig. 7 It can also be seen that TIR lenses 2a 'of the same design, the outer surfaces of which have flat areas, and whose boundary lines each have two rectilinear, non-parallel sections 7c, 7d, which are at the same angle, for example at the angle β 1 , stand to each other, an annular, O-shaped, ancillary optics are particularly favorable can be. It goes without saying that differently designed TIR lenses 2a ', 2b' can be used to form an optical attachment. This means that it is entirely conceivable that straight, oblique sections of each TIR lens in the ancillary optics are at a predetermined angle β 1 , β 2 to one another and this angle varies from TIR lens to TIR lens. In this way, chains running in almost any direction can be formed if several TIR lenses with different angles β 1 ,..., Β n are used. In this way, an ancillary optics can be created which can have almost any shape and, for example, can be adapted to almost any shape of a motor vehicle headlight housing.

Fig. 8 zeigt zwei benachbarten TIR-Linsen 2c, 2d, wobei eine TIR-Linse 2c eine Mehrzahl von Polsteroptiken 11 aufweisende Ausnehmung 8 an der Mantelfläche umfasst. Der TIR-Linse 2c ist eine LED 103' zugeordnet, die der zumindest einen Lichtquelle entsprechen kann. Die Polsteroptiken 11 können zum Beispiel dazu eingerichtet sein, das aus der Vorsatzoptik austretende Licht parallel zu richten und um Streulicht/Fehllicht 12 zu vermeiden. Dabei ist es von besonderem Vorteil, wenn die Polsteroptiken 11 in einem Bereich der Ausnehmung 8 angeordnet sind, der in eine der optischen Achse der TIR-Linse parallele Richtung gesehen nicht von der Mantelfläche der benachbarten TIR-Linse bedeckt ist. In diesem Fall können die mithilfe von den Polsteroptiken 11 parallel zu der optischen Achse gerichteten Lichtstrahlen 13 aus der Vorsatzoptik austreten, ohne eine Brechung und/oder Reflexion an einer weiteren Fläche zu erfahren. Dabei sind liegen die TIR-Linsen 2c und 2d beabstandet aneinander, wodurch der Verschleiß der TIR-Linsen reduziert wird. Fig. 8 shows two adjacent TIR lenses 2c, 2d, wherein a TIR lens 2c comprises a plurality of upholstery optics 11 having recess 8 on the lateral surface. The TIR lens 2c is assigned an LED 103 'which can correspond to the at least one light source. The upholstery optics 11 can be set up, for example, to direct the light emerging from the ancillary optics in parallel and to avoid scattered light / false light 12. It is particularly advantageous if the upholstery optics 11 are arranged in a region of the recess 8 which, viewed in a direction parallel to the optical axis of the TIR lens, is not covered by the lateral surface of the adjacent TIR lens. In this case, the light beams 13 directed parallel to the optical axis by the upholstery optics 11 can exit the ancillary optics without experiencing refraction and / or reflection on a further surface. The TIR lenses 2c and 2d are spaced apart from one another, as a result of which the wear on the TIR lenses is reduced.

Im Allgemeinen kann es bei einem Aneinanderreihen der Optikelemente (beispielsweise TIR-Linsen) vorgesehen sein, dass die Optikelemente beabstandet aneinandergereiht oder einander berührend aneinandergereiht sind. Bei den beabstandeten Optikelementen ist es vorteilhaft, dass der Abstand im Vergleich zu der charakteristischen Größe, zum Beispiel zu dem Durchmesser der Lichtaustrittsfläche, der Optikelemente klein gehalten wird. Dabei werden die einzelnen Optikelemente der Vorsatzoptik nicht als solche erkannt, die Vorsatzoptik wird als Ganzes wahrgenommen und es entsteht ein homogener Leuchteindruck einer beispielsweise verzweigten Leuchtfläche.In general, when the optical elements (for example TIR lenses) are lined up, provision can be made for the optical elements to be lined up spaced apart or lined up touching one another. In the case of the spaced-apart optical elements, it is advantageous that the distance is kept small in comparison to the characteristic variable, for example to the diameter of the light exit surface, of the optical elements. In this case, the individual optical elements of the optical attachment are not recognized as such, the optical attachment is perceived as a whole and a homogeneous light impression is created, for example a branched luminous surface.

Claims (12)

  1. Attachment optics (1) for a light source for generating a branched luminous surface, which attachment optics (1) comprise at least one plurality of light-conducting optical elements (2), wherein each light-conducting optical element (2) comprises
    *a light inlet area (3),
    *a light exit area (4) and
    *a jacket surface (5), wherein
    the jacket surface (5) connects the light entry region (3) and the light exit region (4), and
    connects the light exit region (4) is opposite the light entry region (3) and is associated with a light exit surface (6), which light exit surface (6) is bounded by a circumferential boundary line (7), the boundary line (7) being adjacent to the light exit region (4), and
    the optical elements (2) are lined up in such a way that the light exit surfaces (6) of all optical elements (2) lie in a common substantially planar area (F), each optical element (2) having a number of nearest neighbors and its boundary line (7) having a number of portions (7a, 7b) which are each associated with a portion of the boundary line of a nearest neighbor, wherein mutually associated portions (7a, 7b) are adjacent to one another and have mutually corresponding curves, wherein the optical elements arranged in a row form a chain, wherein each optical element (2d, 2a') with respect to its adjacent optical elements (2c, 2e; 2a', 2b') is at predetermined angles (a1, a2 ; β1, β2),
    characterized in that
    the jacket surface (5) has a number of regions (8) which are each assigned to a region of the jacket surface (5a) of a nearest neighbor, regions assigned to one another being adjacent to one another and having mutually corresponding surface profiles, it being provided that
    - at each jacket surface (5) one or more recesses (8) are provided, and at least one portion (7a, 7b) is arcuate and thereby curved inwardly towards the light emitting surface, wherein all optical elements are formed substantially identically, wherein preferably an adhesive layer is provided between the optical elements (2) arranged in a row, which adhesive layer connects each optical element to its nearest neighbors.
  2. Attachment optics according to claim 1, characterized in that the mutually associated, adjacent sections (7a, 7b) are formed congruently with one another.
  3. Attachment optics according to claim 1 or 2, characterized in that the mutually associated sections are formed congruently with one another.
  4. Attachment optics according to one of the claims 1 to 3, characterized in that all the optical optical elements are designed to be congruent with one another.
  5. Attachment optics according to one of claims 1 to 4, characterized in that the chain is branched and/or has at least one loop or is closed in a ring shape, in particular in a 0-shape.
  6. Attachment optics according to one of claims 1 to 5, characterized in that the optical elements are designed as TIR lenses, preferably as rotationally symmetrical TIR lenses.
  7. Attachment optics according to one of claims 1 to 6, characterized in that the jacket surfaces have a plurality of cushion optics (11), preferably at least some of the cushion optics (11) being arranged in each case on a side of the jacket surfaces (8) facing a nearest neighbor and, for example, touching the jacket surface of the nearest neighbor.
  8. Attachment optics according to any one of claims 1 to 7, characterized in that the optical elements (2) are lined up in contact with one another.
  9. Light module for a motor vehicle headlamp comprising at least one light source, for example LED light source, and an optical attachment associated with the at least one light source according to one of claims 1 to 8.
  10. Light module according to claim 9, characterized in that substantially all of the light generated by the at least one light source enters the attachment optics through the light entry regions and exits the attachment optics, preferably substantially without losses, from the light exit regions, wherein light exiting the attachment optics is preferably formed as a light beam comprising light rays directed substantially parallel to one another.
  11. Light module according to claim 9 or 10, characterized in that the light module comprises a plurality of light sources, for example LED light sources, a number of light sources being greater than a number of optical elements or equal to a number of optical elements and at least two, preferably three, in particular more than three, light sources being assigned to each optical element or exactly one light source being assigned, and the light module preferably being designed as a signal light module.
  12. Motor vehicle headlamp having at least one attachment optical system according to one of claims 1 to 8 and/or having at least one light module according to one of claims 9 to 11.
EP17166533.4A 2016-04-18 2017-04-13 Auxiliary lens for a light source for producing a branched illuminating surface Active EP3239594B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA50345/2016A AT518558B1 (en) 2016-04-18 2016-04-18 Attachment optics for a light source for generating a branched luminous surface and light module for a motor vehicle headlight

Publications (2)

Publication Number Publication Date
EP3239594A1 EP3239594A1 (en) 2017-11-01
EP3239594B1 true EP3239594B1 (en) 2021-06-02

Family

ID=58547422

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17166533.4A Active EP3239594B1 (en) 2016-04-18 2017-04-13 Auxiliary lens for a light source for producing a branched illuminating surface

Country Status (3)

Country Link
EP (1) EP3239594B1 (en)
CN (1) CN107906467B (en)
AT (1) AT518558B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234146A1 (en) * 2022-06-03 2023-12-07 株式会社小糸製作所 Lens

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6527411B1 (en) * 2000-08-01 2003-03-04 Visteon Corporation Collimating lamp
DE102004026530B3 (en) * 2004-05-29 2006-02-02 Fer Fahrzeugelektrik Gmbh optical body
US10132463B2 (en) * 2008-08-18 2018-11-20 The Hong Kong Polytechnic University LED automotive tail lamp set
FR2995977B1 (en) * 2012-09-26 2019-06-28 Valeo Vision LIGHT GUIDE FOR A DEVICE FOR LIGHTING AND / OR SIGNALING A MOTOR VEHICLE
CN103672664B (en) * 2012-09-26 2017-03-01 中强光电股份有限公司 Lighting device for vehicle
DE102013200442B3 (en) * 2013-01-15 2014-02-13 Automotive Lighting Reutlingen Gmbh Light module for a motor vehicle headlight, which is set up to generate strip-shaped light distributions
DE202014000665U1 (en) * 2014-01-23 2014-02-10 Jokon Gmbh LED luminaire with total reflection optics and nested light deflection surfaces for the production of any desired light exit surfaces
JP6340719B2 (en) * 2014-05-09 2018-06-13 パナソニックIpマネジメント株式会社 LIGHTING DEVICE AND AUTOMOBILE WITH LIGHTING DEVICE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN107906467B (en) 2021-03-16
CN107906467A (en) 2018-04-13
AT518558B1 (en) 2018-03-15
EP3239594A1 (en) 2017-11-01
AT518558A1 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
DE102016100207B4 (en) Signal light
DE102008005488B4 (en) Headlights for vehicles
AT511476B1 (en) LIGHTING DEVICE
AT518118B1 (en) Lighting unit for a motor vehicle
DE112017004923B4 (en) Light guide element, light guide unit and lighting device
DE102012202508B4 (en) Optical fiber device for a motor vehicle light
DE102011119859A1 (en) vehicle light
DE102011055429B4 (en) Lighting device for vehicles
DE102005011715B4 (en) Interior light of a vehicle
DE102009012224A1 (en) Light-guiding device for use in e.g. headlamp of motor vehicle, has light decoupling elements including solid bodies provided with light discharging surfaces, where light beam runs from inner side of optical fiber to outer side of device
EP2688769A1 (en) Vehicle lamp for lighting the interior of the vehicle
DE102004047653B4 (en) Light ring arrangement
DE202012000567U1 (en) Lighting device for a motor vehicle
DE102014004472B4 (en) Luminous module having an optical element
DE102018129596A1 (en) Lighting device for vehicles
DE102011051045B4 (en) Light guide module and light for vehicles
DE102018104055A1 (en) Lighting device for motor vehicles with an elongated light guide
EP2927572A1 (en) Light for motor vehicle comprising a wipe effect
DE202021103908U1 (en) Light for a vehicle
EP1408362A1 (en) Lamp, in particular vehicle lamp
DE102013007856A1 (en) Light guide and lighting device with the light guide
EP3239594B1 (en) Auxiliary lens for a light source for producing a branched illuminating surface
EP2543540A1 (en) Optical fibre, illuminant and motor vehicle light
EP3212997B1 (en) Optical element and a light-emitting arrangement which comprises an optical element
DE102017122502A1 (en) Light guide arrangement of a motor vehicle lamp and motor vehicle lamp with such a light guide assembly

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180427

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502017010514

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21S0008100000

Ipc: F21S0041240000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F21Y 103/30 20160101ALN20201118BHEP

Ipc: F21S 41/32 20180101ALI20201118BHEP

Ipc: F21S 43/31 20180101ALI20201118BHEP

Ipc: F21S 41/151 20180101ALN20201118BHEP

Ipc: F21S 41/24 20180101AFI20201118BHEP

Ipc: F21Y 115/10 20160101ALN20201118BHEP

Ipc: F21S 43/241 20180101ALI20201118BHEP

Ipc: F21V 7/00 20060101ALI20201118BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 41/24 20180101AFI20201124BHEP

Ipc: F21S 41/151 20180101ALN20201124BHEP

Ipc: F21Y 115/10 20160101ALN20201124BHEP

Ipc: F21S 41/32 20180101ALI20201124BHEP

Ipc: F21V 7/00 20060101ALI20201124BHEP

Ipc: F21S 43/241 20180101ALI20201124BHEP

Ipc: F21S 43/31 20180101ALI20201124BHEP

Ipc: F21Y 103/30 20160101ALN20201124BHEP

INTG Intention to grant announced

Effective date: 20201207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1398773

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017010514

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210902

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210903

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210902

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211004

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017010514

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

26N No opposition filed

Effective date: 20220303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220413

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220413

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220413

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220413

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1398773

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220413

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220413

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230424

Year of fee payment: 7

Ref country code: DE

Payment date: 20230420

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170413