EP3236828B1 - Surface cleaning apparatus - Google Patents
Surface cleaning apparatus Download PDFInfo
- Publication number
- EP3236828B1 EP3236828B1 EP15781992.1A EP15781992A EP3236828B1 EP 3236828 B1 EP3236828 B1 EP 3236828B1 EP 15781992 A EP15781992 A EP 15781992A EP 3236828 B1 EP3236828 B1 EP 3236828B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- dirt collection
- collection container
- remainder
- moveable
- surface cleaning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004140 cleaning Methods 0.000 title claims description 23
- 230000015572 biosynthetic process Effects 0.000 claims description 16
- 238000005755 formation reaction Methods 0.000 claims description 16
- 238000000034 method Methods 0.000 description 2
- 238000003032 molecular docking Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L9/00—Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L9/00—Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
- A47L9/009—Carrying-vehicles; Arrangements of trollies or wheels; Means for avoiding mechanical obstacles
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L9/00—Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
- A47L9/10—Filters; Dust separators; Dust removal; Automatic exchange of filters
- A47L9/14—Bags or the like; Rigid filtering receptacles; Attachment of, or closures for, bags or receptacles
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L9/00—Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
- A47L9/10—Filters; Dust separators; Dust removal; Automatic exchange of filters
- A47L9/14—Bags or the like; Rigid filtering receptacles; Attachment of, or closures for, bags or receptacles
- A47L9/1427—Means for mounting or attaching bags or filtering receptacles in suction cleaners; Adapters
- A47L9/1463—Means for mounting or attaching bags or filtering receptacles in suction cleaners; Adapters specially adapted for rigid filtering receptacles
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L9/00—Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
- A47L9/10—Filters; Dust separators; Dust removal; Automatic exchange of filters
- A47L9/16—Arrangement or disposition of cyclones or other devices with centrifugal action
- A47L9/1691—Mounting or coupling means for cyclonic chamber or dust receptacles
Definitions
- This invention relates to a surface cleaning apparatus.
- this invention relates to a surface cleaning apparatus which utilises a source of suction to draw dirt etc. from a surface being cleaned and to store said dirt in a chamber which can be emptied by a user.
- Such surface cleaning apparatus are often referred to a "vacuum cleaners”.
- GB2440715 describes a surface cleaning apparatus.
- a surface cleaning apparatus having a dirt collection container which is removable from a remainder of the apparatus, wherein the dirt collection container is held in a stored position relative the remainder of the apparatus by a holding device, said holding device including:
- the first co-operating member may be held relative to the dirt collection chamber and the second co-operating member may be moveable, preferably rotationally moveable, relative to the remainder of the apparatus.
- the second co-operating member may be moveable between first and second conditions, and the apparatus may include a device for biasing the second cooperating member to its second condition.
- the dirt collection container When the second co-operating member is in its second condition the dirt collection container may be held in its stored position.
- the second co-operating member may be held relative to the remainder of the apparatus and the first co-operating member may be moveable, preferably rotationally moveable, relative to the dirt collection container.
- the first co-operating member may be moveable between first and second conditions, and the apparatus may include a device for biasing the first cooperating member to its second condition.
- the dirt collection container When the first co-operating member is in its second condition the dirt collection container may be held in its stored position.
- the first co-operating member may be moveable, preferably rotationally moveable, relative to the dirt collection chamber and the second co-operating member may be moveable, preferably rotationally moveable, relative to the remainder of the apparatus.
- the first and second co-operating members may be moveable, preferably rotationally moveable, in directions opposite or substantially opposite to each other.
- the first and second co-operating members may be moveable between first and second conditions, and the apparatus may include a device(s) for biasing the first and second co-operating members to their respective second conditions.
- the first and second co-operating members When the dirt collection container is in its stored position, the first and second co-operating members may engage or abut each other so as to prevent, or at least inhibit, removal of the dirt collection container.
- the dirt collection container may be moveable axially relative to the remainder of the apparatus as it is moved towards its stored position.
- the dirt collection container may not rotate relative to the remainder of the apparatus as it is moved between towards its stored position.
- the dirt collection container may be prevented or at least inhibited from rotating relative to the remainder of the apparatus as it is moved towards its stored condition.
- One of the first or second co-operating members may include a projection engageable with a recess in the other of the first or second co-operating members.
- One of the first or second co-operating members may include a plurality of projections each engageable with a respective recess in the other of the first or second co-operating members.
- the holding device may include a plurality of pairs of said projections / recesses, with the first co-operating member having at least one projection and at least one recess (from different pairs) and the second co-operating member having at least one projection and at least one recess (from different pairs).
- the or each projection may project axially.
- the or each projection may project radially outwardly or radially inwardly.
- the or each recess may have an opening which is axially facing.
- the or each recess may have an opening which is radially facing.
- the or each recess may have a circumferentially extending channel or passage which communicates with the opening to receive the projection.
- the first and second cooperating members may act as a cam and cam follower arrangement.
- the apparatus may include a biasing device for biasing the dirt collection container away from its stored position.
- the biasing device may include at least one spring member which acts directly or indirectly on an inwardly facing part or portion of the dirt collection container.
- the surface cleaning apparatus may include a source of suction, e.g. a motor and fan, for drawing dirt-entrained air into the apparatus.
- a source of suction e.g. a motor and fan, for drawing dirt-entrained air into the apparatus.
- the dirt may be separated from the air by one or more cyclonic separators and/or a dirt collection bag or the like.
- the apparatus may include a first wheel being positioned at or near a first end of the body and a second wheel positioned at or near a second end of the body.
- Each wheel may include an annular member which is supported for rotation by an exterior surface of a part of the body.
- the apparatus may be generally cylindrical.
- the apparatus may be generally symmetrical, preferably about a plane which extends midway through an axis extending through the wheels.
- the dirt collection container may be removable from the remainder of the apparatus in a direction which is parallel and/or coaxial with a rotational axis of at least one of the wheels.
- the first and second wheels may be rotatable about axes which are coaxial and the dirt collection container may be removable from the remainder of the apparatus in a direction which is parallel and/or coaxial with the rotational axis of both wheels.
- the dirt collection container may be removable through an opening in one of the wheels.
- the main body may include a recess for receiving the dirt collection container and an entrance to said recess may be at one end of the apparatus.
- the entrance to the recess may be through an opening in one of the wheels.
- the dirt collection container may be only moveable towards the remainder of the apparatus in one, preferably rotational, orientation of the dirt collection container.
- the dirt collection container may include one or more formations or recesses engageable with a corresponding one or more recesses or formations on the remainder of the apparatus, said formations and recesses permitting the dirt collection container only to be inserted into the remainder of the apparatus in one, preferably rotational, orientation of the dirt collection container.
- FIGS. 1 through 13 show a first embodiment of an apparatus 10 according to the present invention.
- the surface cleaning apparatus 10 is of the kind typically known as a vacuum cleaner.
- the apparatus 10 is generally cylindrical and includes first and second wheels 40, 42 each positioned at respective ends of a housing 11 of the apparatus 10.
- Each wheel 40, 42 includes an annular member 43 which is supported for rotation by an exterior surface of a part of a housing 11. In use, the housing 11 is pulled across a floor surface by a user, with the wheels 40, 42 rolling thereover.
- the apparatus 10 is generally symmetrical about a plane X which extends midway through an axis A extending through the wheels 40, 42.
- the apparatus 10 includes a source of suction, in this example a motor 140 and fan 150 for drawing dirt-entrained air into the apparatus 10 through a primary air inlet 120.
- the primary inlet 120 connects to a tube / hose and then to a floor head, which may include a motor driven brush bar, as is known in the art.
- the dirt is separated from the air drawn in to the apparatus 10 by a cyclonic separator indicated generally at 90.
- the cyclonic separator 90 includes an inlet 91 which communicates with the primary air inlet 120, and a dirt outlet 92 which communicates with a dirt collection container 12.
- An end of the dirt collection container 12 which sits within the wheel 40 includes a moveable lid 17 which is pivotally movable about a hinge 17a.
- the dirt collection container 12 includes a locking mechanism 17b which permits a user to open the lid 17 to empty the contents of the container 12.
- the dirt collection container 12 is removable from the remainder of the apparatus 10 in a direction which is parallel/coaxial with the rotational axis A of the wheels 40, 42. It will also be noted that the dirt collection container 12 is removable through an opening of the end of the housing 11 which sits within the space surrounded by the annular member 43. As mentioned previously, the dirt collection container 12 is removable from the remainder of the apparatus 10 so that the contents of dirt therein can be emptied, once the lid 17 is moved to its open condition.
- the apparatus 10 includes a holding device for holding the dirt collection container 12 in a stored position (i.e. within the housing 11) relative to the remainder of the apparatus 10.
- the stored position of the container 12 in the present embodiment is that corresponding to its position shown in figure 1 where it sits within an end of the housing 11.
- a clean air outlet 93 from the separator 90 communicates through a disc shaped filter element 80 and passage 50 to the motor 140 and fan 150.
- different forms of filter may or may not be utilised and the flow of clean air from the separator to the motor 140 and fan 150 need not necessarily be directed through a cable rewind system 160 (as is shown in the present embodiment).
- the holding device includes a number of component parts formed in or connected to the dirt collection container 12 and the remainder of the apparatus 10.
- An advantage of a holding device in accordance with the present invention is that movement of the dirt collection container 12 towards its stored position (e.g. by a user pushing the container 12 into the end of the housing 11) engages co-operating members of the holding device with each other which lock / hold the container 12 in a stored condition. Thus, it is not necessary for the user to place the container in its stored position and then press any kind of additional member or lock to hold the device therein.
- the dirt collection container 12 is only moveable towards the remainder of the apparatus 12, i.e. towards its stored position, in one rotation orientation thereof.
- the dirt collection container 12 can only be inserted into the open end of the housing 11 in one rotational position. This ensures that the dirt collection container 12 is only moveable linearly, in this embodiment axially along the axis A, relative to the remainder of the apparatus 10 as it is moved towards its stored position.
- there is no relative rotation between the dirt collection container 12 and the remainder of the apparatus 10 although embodiments are envisaged where such relative rotation could be provided for.
- the apparatus 10 includes one or more formations or recesses engageable with a corresponding one or more recesses or formations on the remainder of the apparatus 10.
- the formations and recesses permit the dirt collection container 12 only to be inserted in the housing 11 in one orientation of the container 12, but also prevent relative rotation of the container 12 relative to the remainder of the apparatus 10.
- the relevant formations and recesses are shown in figures 22 and 23 .
- the exterior surface of the container 12 is provided with formations 201a, 201b which are different widths, and opposite each other. These formations engage with corresponding recesses 202a, 202b in the interior surface of the housing 11 which is surrounded by the wheel 40. Because the recesses 202a, 202b are sized according to their respective formations 201a, 201b, it is not possible for the user to insert the dirt collection container 12 in an incorrect rotational position. Furthermore, the recesses 202a, 202b include generally parallel walls which extend into the housing 11 and thus guide the dirt collection container 12 in a linear/axial path towards its stored position.
- each recess 202a, 202b includes curved guiding walls 203a, 203b at the entrances thereof which assist in guiding the dirt collection container 12.
- the curved guiding walls 203a, 203b permit there to be minor rotational misalignment of the dirt collection container 12 with the remainder of the apparatus when the user pushes the container 12 to its stored position.
- projections/recesses may be utilised.
- projections could be provided on the interior surface of the housing 11, with recesses provided on the dirt collection container 12.
- the apparatus 10 includes a holding device for holding the dirt collection container 12 in a stored position relative to the remainder of the apparatus 10.
- the holding device includes a plurality (three in this example, although there could be more or fewer) first cooperating members 18 which are provided on an exterior surface of the container 12.
- the first cooperating members 18 are positioned substantially at 120° from each other about the axis A and are wedge-shaped in side view, the purpose of which will become apparent later.
- the members 18 taper in the same rotational direction, that being a clockwise direction when viewing the apparatus 10 from the end with the wheel 40.
- the tapered surface 18a of each member 18 faces axially inwardly towards the motor 140.
- the holding device includes a second co-operating member in the form of an annular part 16 which is supported relative to the remainder of the apparatus.
- the annular part 16 is supported by and is rotatable relative to the housing 11.
- the annular part 16 includes three elongate openings 61 which receive projections 62, the latter of which is connected to the housing 11.
- the projections 62 which are substantially cylindrical, sit within respective elongate openings 61 and permit, but limit, rotational movement of the part 16 about the axis A relative to the housing 11.
- the annular part 16 includes three further openings 63.
- Each opening 63 is positioned adjacent a respective one of the openings 61, and in use received as respective one of the members 18.
- An entrance to the openings 63 includes a sloped circumferentially extending part 63a, which tapers in a circumferential direction opposite to that of the tapering surfaces 18a of the members 18.
- the sloped surfaces 18a, 63a engage each other and effect rotation of the part 16 about the axis A.
- Each opening 63 is substantially L shaped and it includes an entrance 63c which is connected to a circumferentially extending portion 63d.
- the portion 63d of the opening 61 extends in circumferential direction opposite to that of part 63a.
- the apparatus 10 includes a bin ejection button 100 which is movable in directions D and E parallel to the axis A (although it need not necessarily be moveable in that direction).
- the button 100 is biased by a spring (not shown) in the direction E.
- Extending downwardly from the button 100 towards the axis A is a projection 101 an end of which engages in an angular opening 64 in the annular part 16.
- the opening 64 extends at an angle to the axis A such that as the button 100 is moved in the direction D the parts 101 and 64 act as cam and cam follower to effect rotation of the part 16 about the axis A.
- the apparatus includes a biasing device 30 for biasing the dirt collection container 12 away from its stored position.
- Figures 2 , 10 , 12 and 13 show the biasing device of the present embodiment in more detail.
- the biasing device includes an annular member 35 which is positioned within the housing 11.
- the annular member 35 is supported relative to the housing 11 by a plurality of spring-biased supports 32, 33 which permit the annular member 35 to be displaced towards the motor 140, whilst the annular member 35 is biased away therefrom to an extended position (that shown in figure 2 ).
- An opening 34 within the annular member 35 provides space to receive the inwardly facing end of the dirt collection container 12 such that the filter 80 passes through that opening 34 when the container 12 is in its stored condition.
- the annular member 35 when the container 12 is moved to its stored condition, engages an axially facing surface 12a of the container 12.
- the dirt collection container 12 is shown in its stored condition, with the co-operating members 18 each positioned in the part 63d of each respective opening 63. In this position the dirt collection container 12 is held in its stored position relative to the remainder of the apparatus 10.
- the user moves the button 100 in the direction of the arrow D, which in turn effects rotation of the part 16 in the direction of the arrow R 2 (see figure 3 ).
- the button 100 is moved in the direction D the part 16 is rotated to the position shown in figures 4 and 7 .
- the above embodiment is configured such that as the dirt collection container 12 is moved towards its stored position the part 16 is caused to rotate relative to the dirt collection container 12 and, in this particular embodiment, relative to the housing 11.
- the part 16 or equivalent thereof may be provided on the container 12 itself, with parts 18 or equivalents thereof being provided on or connected to the housing 11.
- the holding device of the present invention permits for easy docking and undocking of the container 12 by a user because all that is required is for a user to move the button 100 in the direction of arrow D, and when reconnecting the container 12 simply push the container 12 axially into the end of the housing 11.
- the relative rotation of the parts 16, 18 ensures effective locking of the container 12 in its stored condition.
- first and second co-operating members may each be moveable, preferably rotationally moveable, in directions opposite or substantially opposite to each other, with the members each being biased towards their positional conditions which ensure locking of the container within the apparatus.
- Figures 14 to 21 show a second embodiment of an apparatus in accordance with the present invention.
- the apparatus 10' includes a holding device with an annular member 16' rotationally supported relative to the housing 11' by a plurality of supports 62'.
- a user actual button 100' includes an axially projecting peg 101' which engages in an arcuate channel 64' in the annular part 16'.
- the container 12' is provided with three substantially equally spaced apart wedge shaped portions 18' each with a tapering surface 18a'.
- Figures 14 and 17 show the container 12' in its stored condition with the parts 18' positioned inwardly of the annular member 16'. Their engagement with the inwardly facing surface of the annular member 16' ensures that the dirt collection container 12' is held in its stored condition. Depression of the button 100' by the user rotates the annular member 16' in the direction R 2 ', which aligns openings 63 in the part 16' with the formations 18'. This ensures that the dirt collection container 12' is free to be removed from the apparatus.
- a biasing device 30' acts to eject the dirt collection container 12a from the remainder of the apparatus 10' upon full depression of the button 100'. This can be seen in figures 15 and 18 .
- FIGS 16 and 19 show how the sloping surfaces 18a' and 65' engage with each other. Axial movement of the dirt collection container 12' into the housing 11' effects rotation of the annular member 16' in the direction of Arrow R 1 ' allowing the members 18' to pass through the openings 63 in the annular part 16' until they reach the position as shown in figures 13 and 17 .
- a spring 130' is provided to bias the button 100' to its un-depressed position, which has the effect of providing a biasing force to rotate the annular member 16' in the direction arrow R 2 ', which effects locking of the dirt collection container 12' within the apparatus 10'.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Filters For Electric Vacuum Cleaners (AREA)
- Cleaning In General (AREA)
Description
- This invention relates to a surface cleaning apparatus. In particular, this invention relates to a surface cleaning apparatus which utilises a source of suction to draw dirt etc. from a surface being cleaned and to store said dirt in a chamber which can be emptied by a user. Such surface cleaning apparatus are often referred to a "vacuum cleaners".
-
GB2440715 - According to the invention we provide a surface cleaning apparatus having a dirt collection container which is removable from a remainder of the apparatus, wherein the dirt collection container is held in a stored position relative the remainder of the apparatus by a holding device, said holding device including:
- a first co-operating member provided in, provided on or connected to the dirt collection container; and
- a second co-operating member provided in, provided on or connected to the remainder of the apparatus,
- wherein movement of the dirt collection container towards its stored position engages the first and second co-operating members with each other and effects either:
- rotation of the first co-operating member relative to the dirt collection container: and/or
- rotation of the second co-operating member relative to the remainder of the apparatus,
- characterised in that the dirt collection container (12) is moveable linearly relative to the remainder of the apparatus (10) as it is moved towards its stored position.
- The first co-operating member may be held relative to the dirt collection chamber and the second co-operating member may be moveable, preferably rotationally moveable, relative to the remainder of the apparatus.
- The second co-operating member may be moveable between first and second conditions, and the apparatus may include a device for biasing the second cooperating member to its second condition.
- When the second co-operating member is in its second condition the dirt collection container may be held in its stored position.
- The second co-operating member may be held relative to the remainder of the apparatus and the first co-operating member may be moveable, preferably rotationally moveable, relative to the dirt collection container.
- The first co-operating member may be moveable between first and second conditions, and the apparatus may include a device for biasing the first cooperating member to its second condition.
- When the first co-operating member is in its second condition the dirt collection container may be held in its stored position.
- The first co-operating member may be moveable, preferably rotationally moveable, relative to the dirt collection chamber and the second co-operating member may be moveable, preferably rotationally moveable, relative to the remainder of the apparatus.
- The first and second co-operating members may be moveable, preferably rotationally moveable, in directions opposite or substantially opposite to each other.
- The first and second co-operating members may be moveable between first and second conditions, and the apparatus may include a device(s) for biasing the first and second co-operating members to their respective second conditions.
- When the dirt collection container is in its stored position, the first and second co-operating members may engage or abut each other so as to prevent, or at least inhibit, removal of the dirt collection container.
- The dirt collection container may be moveable axially relative to the remainder of the apparatus as it is moved towards its stored position.
- The dirt collection container may not rotate relative to the remainder of the apparatus as it is moved between towards its stored position.
- The dirt collection container may be prevented or at least inhibited from rotating relative to the remainder of the apparatus as it is moved towards its stored condition.
- One of the first or second co-operating members may include a projection engageable with a recess in the other of the first or second co-operating members.
- One of the first or second co-operating members may include a plurality of projections each engageable with a respective recess in the other of the first or second co-operating members.
- The holding device may include a plurality of pairs of said projections / recesses, with the first co-operating member having at least one projection and at least one recess (from different pairs) and the second co-operating member having at least one projection and at least one recess (from different pairs).
- The or each projection may project axially.
- The or each projection may project radially outwardly or radially inwardly.
- The or each recess may have an opening which is axially facing.
- The or each recess may have an opening which is radially facing.
- The or each recess may have a circumferentially extending channel or passage which communicates with the opening to receive the projection.
- The first and second cooperating members may act as a cam and cam follower arrangement.
- The apparatus may include a biasing device for biasing the dirt collection container away from its stored position.
- The biasing device may include at least one spring member which acts directly or indirectly on an inwardly facing part or portion of the dirt collection container.
- The surface cleaning apparatus may include a source of suction, e.g. a motor and fan, for drawing dirt-entrained air into the apparatus.
- The dirt may be separated from the air by one or more cyclonic separators and/or a dirt collection bag or the like.
- The apparatus may include a first wheel being positioned at or near a first end of the body and a second wheel positioned at or near a second end of the body.
- Each wheel may include an annular member which is supported for rotation by an exterior surface of a part of the body.
- The apparatus may be generally cylindrical.
- The apparatus may be generally symmetrical, preferably about a plane which extends midway through an axis extending through the wheels.
- The dirt collection container may be removable from the remainder of the apparatus in a direction which is parallel and/or coaxial with a rotational axis of at least one of the wheels.
- The first and second wheels may be rotatable about axes which are coaxial and the dirt collection container may be removable from the remainder of the apparatus in a direction which is parallel and/or coaxial with the rotational axis of both wheels.
- The dirt collection container may be removable through an opening in one of the wheels.
- The main body may include a recess for receiving the dirt collection container and an entrance to said recess may be at one end of the apparatus.
- The entrance to the recess may be through an opening in one of the wheels.
- The dirt collection container may be only moveable towards the remainder of the apparatus in one, preferably rotational, orientation of the dirt collection container.
- The dirt collection container may include one or more formations or recesses engageable with a corresponding one or more recesses or formations on the remainder of the apparatus, said formations and recesses permitting the dirt collection container only to be inserted into the remainder of the apparatus in one, preferably rotational, orientation of the dirt collection container.
- Embodiments of the invention will now be described by way of example only with reference to the accompanying figures, of which:
-
Figure 1 is a perspective view of a first embodiment of an apparatus according to the present invention; -
Figure 2 is a further perspective view of the apparatus offigure 1 ; -
Figure 3 is a perspective view of a dirt collection container and holding device of the apparatus offigure 1 ; -
Figure 4 is a further perspective view of the component parts shown infigure 3 ; -
Figure 5 is yet a further perspective view of the components parts shown infigure 3 ; -
Figure 6 is a perspective view of the components parts shown infigure 3 , viewed from an opposite end of the container; -
Figure 7 is a further view of the component parts shown infigure 6 ; -
Figure 8 is a yet further view of the component parts shown infigure 6 ; -
Figures 9 ,10 and11 are side cross-sectional views of the apparatus offigure 1 with the dirt collection container in a stored condition; -
Figures 12 and13 are side cross-sectional views of the apparatus offigure 1 with the dirt collection container in an ejected condition; -
Figures 14 to 16 are perspective views of a dirt collection container and holding device of a second embodiment of an apparatus in accordance with the invention; -
Figures 17 to 19 are side views of the component parts shown infigure 14 . Infigures 17 and18 the container is in a stored condition - infigure 19 the container is in an ejected condition; -
Figure 20 is a side cross-sectional view of the second embodiment of apparatus with the dirt collection container in a stored condition; -
Figure 21 is a side cross-sectional view of the second embodiment of apparatus with the dirt collection container in an ejected condition; -
Figures 22 is a perspective view of component parts of the first embodiment of apparatus, with the dirt collection container in an ejected condition; and -
Figure 23 is an end view of the first embodiment of apparatus. - Referring firstly to
figures 1 through 13 , these show a first embodiment of anapparatus 10 according to the present invention. Thesurface cleaning apparatus 10 is of the kind typically known as a vacuum cleaner. In this embodiment, although it is not essential, theapparatus 10 is generally cylindrical and includes first andsecond wheels housing 11 of theapparatus 10. Eachwheel annular member 43 which is supported for rotation by an exterior surface of a part of ahousing 11. In use, thehousing 11 is pulled across a floor surface by a user, with thewheels - As shown in
figures 9 through 13 , theapparatus 10 is generally symmetrical about a plane X which extends midway through an axis A extending through thewheels - The
apparatus 10 includes a source of suction, in this example amotor 140 andfan 150 for drawing dirt-entrained air into theapparatus 10 through aprimary air inlet 120. Theprimary inlet 120 connects to a tube / hose and then to a floor head, which may include a motor driven brush bar, as is known in the art. - In this example, although it is not essential, the dirt is separated from the air drawn in to the
apparatus 10 by a cyclonic separator indicated generally at 90. In other embodiments second or subsequent stages of singular or multiple cyclonic separators or a dirt collection bag or the like may be used. Thecyclonic separator 90 includes aninlet 91 which communicates with theprimary air inlet 120, and adirt outlet 92 which communicates with adirt collection container 12. An end of thedirt collection container 12 which sits within thewheel 40 includes amoveable lid 17 which is pivotally movable about ahinge 17a. Thedirt collection container 12 includes alocking mechanism 17b which permits a user to open thelid 17 to empty the contents of thecontainer 12. - As can be seen from the figures, the
dirt collection container 12 is removable from the remainder of theapparatus 10 in a direction which is parallel/coaxial with the rotational axis A of thewheels dirt collection container 12 is removable through an opening of the end of thehousing 11 which sits within the space surrounded by theannular member 43. As mentioned previously, thedirt collection container 12 is removable from the remainder of theapparatus 10 so that the contents of dirt therein can be emptied, once thelid 17 is moved to its open condition. - The
apparatus 10 includes a holding device for holding thedirt collection container 12 in a stored position (i.e. within the housing 11) relative to the remainder of theapparatus 10. The stored position of thecontainer 12 in the present embodiment is that corresponding to its position shown infigure 1 where it sits within an end of thehousing 11. In this position aclean air outlet 93 from theseparator 90 communicates through a disc shapedfilter element 80 andpassage 50 to themotor 140 andfan 150. It should be appreciated that in other embodiments different forms of filter may or may not be utilised and the flow of clean air from the separator to themotor 140 andfan 150 need not necessarily be directed through a cable rewind system 160 (as is shown in the present embodiment). - The holding device includes a number of component parts formed in or connected to the
dirt collection container 12 and the remainder of theapparatus 10. An advantage of a holding device in accordance with the present invention is that movement of thedirt collection container 12 towards its stored position (e.g. by a user pushing thecontainer 12 into the end of the housing 11) engages co-operating members of the holding device with each other which lock / hold thecontainer 12 in a stored condition. Thus, it is not necessary for the user to place the container in its stored position and then press any kind of additional member or lock to hold the device therein. - Before discussing the working components of the holding device of the
apparatus 10, it should be noted that in the present embodiment thedirt collection container 12 is only moveable towards the remainder of theapparatus 12, i.e. towards its stored position, in one rotation orientation thereof. In other words, thedirt collection container 12 can only be inserted into the open end of thehousing 11 in one rotational position. This ensures that thedirt collection container 12 is only moveable linearly, in this embodiment axially along the axis A, relative to the remainder of theapparatus 10 as it is moved towards its stored position. Thus, in this embodiment there is no relative rotation between thedirt collection container 12 and the remainder of theapparatus 10, although embodiments are envisaged where such relative rotation could be provided for. - In order to prevent or at least inhibit rotation of the
dirt collection container 12 as it is moved towards its stored condition, theapparatus 10 includes one or more formations or recesses engageable with a corresponding one or more recesses or formations on the remainder of theapparatus 10. The formations and recesses permit thedirt collection container 12 only to be inserted in thehousing 11 in one orientation of thecontainer 12, but also prevent relative rotation of thecontainer 12 relative to the remainder of theapparatus 10. - In this embodiment the relevant formations and recesses are shown in
figures 22 and23 . Here it can be seen that the exterior surface of thecontainer 12 is provided withformations corresponding recesses housing 11 which is surrounded by thewheel 40. Because therecesses respective formations dirt collection container 12 in an incorrect rotational position. Furthermore, therecesses housing 11 and thus guide thedirt collection container 12 in a linear/axial path towards its stored position. Advantageously eachrecess curved guiding walls dirt collection container 12. Thecurved guiding walls dirt collection container 12 with the remainder of the apparatus when the user pushes thecontainer 12 to its stored position. - It should be noted, of course, that other configurations/locations of projections/recesses may be utilised.. Likewise the projections could be provided on the interior surface of the
housing 11, with recesses provided on thedirt collection container 12. - As mentioned above the
apparatus 10 includes a holding device for holding thedirt collection container 12 in a stored position relative to the remainder of theapparatus 10. In this embodiment the holding device includes a plurality (three in this example, although there could be more or fewer) first cooperatingmembers 18 which are provided on an exterior surface of thecontainer 12. The first cooperatingmembers 18 are positioned substantially at 120° from each other about the axis A and are wedge-shaped in side view, the purpose of which will become apparent later. Themembers 18 taper in the same rotational direction, that being a clockwise direction when viewing theapparatus 10 from the end with thewheel 40. Thetapered surface 18a of eachmember 18 faces axially inwardly towards themotor 140. - The holding device includes a second co-operating member in the form of an
annular part 16 which is supported relative to the remainder of the apparatus. Theannular part 16 is supported by and is rotatable relative to thehousing 11. Theannular part 16 includes threeelongate openings 61 which receiveprojections 62, the latter of which is connected to thehousing 11. Theprojections 62, which are substantially cylindrical, sit within respectiveelongate openings 61 and permit, but limit, rotational movement of thepart 16 about the axis A relative to thehousing 11. - As can be seen in
figures 3 ,4 and5 , theannular part 16 includes threefurther openings 63. Eachopening 63 is positioned adjacent a respective one of theopenings 61, and in use received as respective one of themembers 18. An entrance to theopenings 63 includes a sloped circumferentially extendingpart 63a, which tapers in a circumferential direction opposite to that of the tapering surfaces 18a of themembers 18. As will be discussed in detail later, when thecontainer 12 is moved to its stored position, thesloped surfaces part 16 about the axis A. - Each
opening 63 is substantially L shaped and it includes anentrance 63c which is connected to acircumferentially extending portion 63d. Theportion 63d of theopening 61 extends in circumferential direction opposite to that ofpart 63a. - As can be seen from
figures 3 to 6 , theapparatus 10 includes abin ejection button 100 which is movable in directions D and E parallel to the axis A (although it need not necessarily be moveable in that direction). In the present embodiment thebutton 100 is biased by a spring (not shown) in the direction E. Extending downwardly from thebutton 100 towards the axis A is aprojection 101 an end of which engages in anangular opening 64 in theannular part 16. Theopening 64 extends at an angle to the axis A such that as thebutton 100 is moved in the direction D theparts part 16 about the axis A. - In the present embodiment the apparatus includes a
biasing device 30 for biasing thedirt collection container 12 away from its stored position.Figures 2 ,10 ,12 and13 show the biasing device of the present embodiment in more detail. The biasing device includes anannular member 35 which is positioned within thehousing 11. Theannular member 35 is supported relative to thehousing 11 by a plurality of spring-biasedsupports annular member 35 to be displaced towards themotor 140, whilst theannular member 35 is biased away therefrom to an extended position (that shown infigure 2 ). Anopening 34 within theannular member 35 provides space to receive the inwardly facing end of thedirt collection container 12 such that thefilter 80 passes through thatopening 34 when thecontainer 12 is in its stored condition. Theannular member 35, when thecontainer 12 is moved to its stored condition, engages anaxially facing surface 12a of thecontainer 12. - Operation of the holding device will not be described in more detail. In
figures 3 and6 thedirt collection container 12 is shown in its stored condition, with theco-operating members 18 each positioned in thepart 63d of eachrespective opening 63. In this position thedirt collection container 12 is held in its stored position relative to the remainder of theapparatus 10. When a user wishes to remove thecontainer 12 so as to empty the contents thereof, or to obtain access through thefilter 80, the user moves thebutton 100 in the direction of the arrow D, which in turn effects rotation of thepart 16 in the direction of the arrow R2 (seefigure 3 ). As thebutton 100 is moved in the direction D thepart 16 is rotated to the position shown infigures 4 and7 . In this position the rotational movement of thepart 16 has meant that theparts 18 no long sit within theportions 63d of therecesses 63. In other words, there is now no engagement between themembers 18 and theparts 16 which means that thecontainer 12 will be biased outwardly by theannular member 35. This makes it easier for the user to grasp the outwardly projecting end of thecontainer 12 to assist in its full removal from the remainder of theapparatus 10. - In order to re-engage the
container 12 with the remainder of theapparatus 10 and move it back to its stored position (for example after emptying the contents thereof), all the user needs to do is position thecontainer 12 such that theformations formations dirt collection container 12 axially towards the remainder of theapparatus 10 which eventually causes thesloped surfaces container 12 into thehousing 11 causes thepart 16 to rotate, with thesurfaces part 16 is caused to rotate in the direction R2 until thesloped surfaces container 12 into thehousing 11 moves theparts 18a towards the bottom of therecesses 63 and eventually adjacent theportion 63d. As thebutton 100 is biased in the direction of arrow E, this creates a biasing rotational force to thepart 16 causing it to return towards its original position, namely to rotate in the direction R1 (seefigure 5 ). Thus, once theparts 18 reach the bottom of therecesses 63, thepart 16 rotates in the direction of R1 which results in theparts 18 being positioned in theportions 63d of the recesses 63 (as shown infigures 3 and6 ). In this position thecontainer 12 is held in the stored position, with the first and second cooperatingmembers - Thus, the above embodiment is configured such that as the
dirt collection container 12 is moved towards its stored position thepart 16 is caused to rotate relative to thedirt collection container 12 and, in this particular embodiment, relative to thehousing 11. In other embodiments, it is envisaged that thepart 16 or equivalent thereof may be provided on thecontainer 12 itself, withparts 18 or equivalents thereof being provided on or connected to thehousing 11. - The holding device of the present invention permits for easy docking and undocking of the
container 12 by a user because all that is required is for a user to move thebutton 100 in the direction of arrow D, and when reconnecting thecontainer 12 simply push thecontainer 12 axially into the end of thehousing 11. The relative rotation of theparts container 12 in its stored condition. - Whilst is not shown in this particular embodiment, it may be that the first and second co-operating members may each be moveable, preferably rotationally moveable, in directions opposite or substantially opposite to each other, with the members each being biased towards their positional conditions which ensure locking of the container within the apparatus.
-
Figures 14 to 21 show a second embodiment of an apparatus in accordance with the present invention. Features in common or similar to those in the first embodiment have been given the same reference numeral with the addition of a prime symbol (') and will not be discussed in further detail herein. In a similar fashion to the first embodiment, the apparatus 10' includes a holding device with an annular member 16' rotationally supported relative to the housing 11' by a plurality of supports 62'. A user actual button 100' includes an axially projecting peg 101' which engages in an arcuate channel 64' in the annular part 16'. The container 12' is provided with three substantially equally spaced apart wedge shaped portions 18' each with a taperingsurface 18a'. -
Figures 14 and17 show the container 12' in its stored condition with the parts 18' positioned inwardly of the annular member 16'. Their engagement with the inwardly facing surface of the annular member 16' ensures that the dirt collection container 12' is held in its stored condition. Depression of the button 100' by the user rotates the annular member 16' in the direction R2', which alignsopenings 63 in the part 16' with the formations 18'. This ensures that the dirt collection container 12' is free to be removed from the apparatus. In this particular embodiment a biasing device 30' acts to eject thedirt collection container 12a from the remainder of the apparatus 10' upon full depression of the button 100'. This can be seen infigures 15 and18 . - When a user wishes to move the dirt collection container 12' back to its stored condition (e.g. after emptying) the user moves the dirt collection container 12' axially towards the interior of the apparatus 10'.
Figures 16 and19 show how the slopingsurfaces 18a' and 65' engage with each other. Axial movement of the dirt collection container 12' into the housing 11' effects rotation of the annular member 16' in the direction of Arrow R1' allowing the members 18' to pass through theopenings 63 in the annular part 16' until they reach the position as shown infigures 13 and17 . As with the first embodiment, a spring 130' is provided to bias the button 100' to its un-depressed position, which has the effect of providing a biasing force to rotate the annular member 16' in the direction arrow R2', which effects locking of the dirt collection container 12' within the apparatus 10'. - When used in this specification and claims, the terms "comprises" and "comprising" and variations thereof mean that the specified features, steps or integers are included. The terms are not to be interpreted to exclude the presence of other features, steps or components.
- The features disclosed in the foregoing description, or the following claims, or the accompanying drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a method or process for attaining the disclosed result, as appropriate, may, separately, or in any combination of such features, be utilised for realising the invention in diverse forms thereof.
Claims (15)
- A surface cleaning apparatus (10) having a dirt collection container (12) which is removable from a remainder of the apparatus (10), wherein the dirt collection container (12) is held in a stored position relative to the remainder of the apparatus (10) by a holding device, said holding device including:a first co-operating member (18) provided in, provided on or connected to the dirt collection container (12); anda second co-operating member (16) provided in, provided on or connected to the remainder of the apparatus (10),wherein movement of the dirt collection container (12) towards its stored position engages the first and second cooperating members (18, 16) with each other and effects either:rotation of the first co-operating member (18) relative to the dirt collection container (12): and/orrotation of the second co-operating member relative to the remainder of the apparatus (10),characterised in that the dirt collection container (12) is moveable linearly relative to the remainder of the apparatus (10) as it is moved towards its stored position.
- A surface cleaning apparatus (10) according to claim 1 wherein the first co-operating member (18) is held relative to the dirt collection chamber (12) and the second co-operating member (16) is moveable, preferably rotationally moveable, relative to the remainder of the apparatus (10).
- A surface cleaning apparatus (10) according to claim 2 wherein the second co-operating member (16) is moveable between first and second conditions, and the apparatus includes a device for biasing the second cooperating member (16) to its second condition.
- A surface cleaning apparatus (10) according to claim 3 wherein when the second co-operating member (16) is in its second condition the dirt collection container (12) is held in its stored position.
- A surface cleaning apparatus (10) according to claim 1 wherein the second co-operating member (16) is held relative to the remainder of the apparatus (10) and the first co-operating member (18) is moveable, preferably rotationally moveable, relative to the dirt collection container (12).
- A surface cleaning apparatus (10) according to claim 5 wherein the first co-operating member (18) is moveable between first and second conditions, and the apparatus includes a device for biasing the first co-operating member (18) to its second condition.
- A surface cleaning apparatus (10) according to claim 6 wherein when the first co-operating member (18) is in its second condition the dirt collection container (12) is held in its stored position.
- A surface cleaning apparatus (10) according to claim 1 wherein the first co-operating member (18) is moveable, preferably rotationally moveable, relative to the dirt collection chamber (12) and the second co-operating member (16) is moveable, preferably rotationally moveable, relative to the remainder of the apparatus (10).
- A surface cleaning apparatus (10) according to claim 8 wherein the first and second co-operating members (18, 16) are moveable, preferably rotationally moveable, in directions opposite or substantially opposite to each other.
- A surface cleaning apparatus (10) according to claim 9 wherein the first and second co-operating members (18, 16) are moveable between first and second conditions, and the apparatus (10) includes a device(s) for biasing the first and second co-operating members (18, 16) to their respective second conditions.
- A surface cleaning apparatus (10) according to any preceding claim wherein when the dirt collection container (12) is in its stored position, the first and second co-operating members (18, 16) engage or abut each other so as to prevent, or at least inhibit, removal of the dirt collection container (12).
- A surface cleaning apparatus (10) according to any preceding claim wherein the dirt collection container (12) is moveable axially relative to the remainder of the apparatus (10) as it is moved towards its stored position.
- A surface cleaning apparatus (10) according to any preceding claim wherein the dirt collection container (12) is prevented or at least inhibited from rotating relative to the remainder of the apparatus (10) as it is moved towards its stored condition.
- A surface cleaning apparatus (10) according to any preceding claim wherein the apparatus (10) includes a biasing device (30, 30') for biasing the dirt collection container (12) away from its stored position,
optionally wherein the biasing device (30, 30') includes at least one spring member which acts directly or indirectly on an inwardly facing part or portion of the dirt collection container (12). - A surface cleaning apparatus (10) according to any preceding claim wherein the dirt collection container (12) is only moveable towards the remainder of the apparatus (10) in one, preferably rotational, orientation of the dirt collection container,
optionally wherein the dirt collection container (12) includes one or more formations or recesses (201a, 201b) engageable with a corresponding one or more recesses or formations (202a, 202b) on the remainder of the apparatus (10), said formations and recesses permitting the dirt collection container only to be inserted into the remainder of the apparatus (10) in one, preferably rotational, orientation of the dirt collection container (12).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1423137.7A GB2533623A (en) | 2014-12-23 | 2014-12-23 | Surface cleaning apparatus |
PCT/GB2015/052808 WO2016102911A1 (en) | 2014-12-23 | 2015-09-28 | Surface cleaning apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3236828A1 EP3236828A1 (en) | 2017-11-01 |
EP3236828B1 true EP3236828B1 (en) | 2022-04-13 |
Family
ID=54337794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15781992.1A Active EP3236828B1 (en) | 2014-12-23 | 2015-09-28 | Surface cleaning apparatus |
Country Status (5)
Country | Link |
---|---|
US (1) | US20180140150A1 (en) |
EP (1) | EP3236828B1 (en) |
CN (1) | CN107205598B (en) |
GB (1) | GB2533623A (en) |
WO (1) | WO2016102911A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2929824B1 (en) * | 2014-04-11 | 2018-06-06 | Black & Decker Inc. | A vacuum cleaning device |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3228491C2 (en) * | 1982-07-30 | 1985-10-24 | Euras Elektro Forschungs- Und Produktionsgesellschaft Mbh, 8000 Muenchen | Battery operated handheld vacuum cleaner |
CA2346173A1 (en) * | 2001-05-02 | 2002-11-02 | The Bank Of Nova Scotia | Vacuum cleaner |
GB2416483B (en) * | 2004-07-23 | 2007-12-27 | Dyson Ltd | A surface-treating appliance |
GB2440715B (en) * | 2006-08-08 | 2011-02-23 | Dyson Technology Ltd | A Domestic Appliance |
GB0821827D0 (en) * | 2008-11-28 | 2009-01-07 | Dyson Technology Ltd | Separating apparatus for a cleaning aplliance |
US9591953B2 (en) * | 2009-03-13 | 2017-03-14 | Omachron Intellectual Property Inc. | Surface cleaning apparatus |
US8875340B2 (en) * | 2010-03-12 | 2014-11-04 | G.B.D. Corp. | Surface cleaning apparatus with enhanced operability |
US8763202B2 (en) * | 2011-03-03 | 2014-07-01 | G.B.D. Corp. | Cyclone chamber and dirt collection assembly for a surface cleaning apparatus |
GB2489266B8 (en) * | 2011-03-23 | 2015-04-15 | Techtronic Floor Care Tech Ltd | Suction cleaner |
US9456721B2 (en) * | 2013-02-28 | 2016-10-04 | Omachron Intellectual Property Inc. | Surface cleaning apparatus |
-
2014
- 2014-12-23 GB GB1423137.7A patent/GB2533623A/en not_active Withdrawn
-
2015
- 2015-09-28 EP EP15781992.1A patent/EP3236828B1/en active Active
- 2015-09-28 WO PCT/GB2015/052808 patent/WO2016102911A1/en active Application Filing
- 2015-09-28 CN CN201580075576.7A patent/CN107205598B/en not_active Expired - Fee Related
- 2015-09-28 US US15/539,404 patent/US20180140150A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
GB2533623A (en) | 2016-06-29 |
US20180140150A1 (en) | 2018-05-24 |
CN107205598B (en) | 2021-01-15 |
EP3236828A1 (en) | 2017-11-01 |
WO2016102911A1 (en) | 2016-06-30 |
CN107205598A (en) | 2017-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102392099B1 (en) | Cleaning device having vacuum cleaner and docking station | |
CN107663886B (en) | Cable feed control mechanism for drain pipe cleaner | |
US11445873B2 (en) | Hand carryable surface cleaning apparatus | |
US11419468B2 (en) | Dirt separation device | |
CN110475495B (en) | Cyclone preseparator and assembly | |
US11445874B2 (en) | Hand carryable surface cleaning apparatus | |
KR102033936B1 (en) | Robot Cleaner | |
EP3236828B1 (en) | Surface cleaning apparatus | |
US9861241B2 (en) | Vacuum cleaning device | |
US20220175205A1 (en) | Evacuation station for a mobile floor cleaning robot | |
US20160249777A1 (en) | Surface cleaning apparatus | |
US11786918B2 (en) | Surface cleaning apparatus, cyclonic air treatment member and surface cleaning apparatus including the same | |
DE102015111533B4 (en) | Pneumatic tube station for unloading pneumatic tube carriers | |
EP2192851B1 (en) | A wand for an appliance | |
JP5977246B2 (en) | Holder for hose and vacuum apparatus having this type of holder | |
US20240138634A1 (en) | Hand carryable surface cleaning apparatus | |
KR20160065609A (en) | Nozzle for a cleaner and vacuum cleaner | |
DE102014221458B3 (en) | Sweeper with storage tank | |
WO2021138739A1 (en) | Hand carryable surface cleaning apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170630 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210528 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
INTC | Intention to grant announced (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20211112 |
|
GRAF | Information related to payment of grant fee modified |
Free format text: ORIGINAL CODE: EPIDOSCIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015078224 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1482733 Country of ref document: AT Kind code of ref document: T Effective date: 20220515 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220413 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1482733 Country of ref document: AT Kind code of ref document: T Effective date: 20220413 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220413 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220413 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220816 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220713 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220413 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220413 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220714 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220413 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220413 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220713 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220413 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220413 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220413 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220413 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220813 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015078224 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220413 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220413 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220413 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220413 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220413 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220413 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20230116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220413 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220413 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220413 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220928 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220930 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220928 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220930 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20230927 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220413 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220413 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220413 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220413 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220413 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240927 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240925 Year of fee payment: 10 |