EP3227562A1 - Fan assembly - Google Patents
Fan assemblyInfo
- Publication number
- EP3227562A1 EP3227562A1 EP16712027.8A EP16712027A EP3227562A1 EP 3227562 A1 EP3227562 A1 EP 3227562A1 EP 16712027 A EP16712027 A EP 16712027A EP 3227562 A1 EP3227562 A1 EP 3227562A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- impeller
- air
- fan
- inlet
- fan assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001419 dependent effect Effects 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000011076 safety test Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/281—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
- F04D29/282—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/4206—Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
- F04D29/4226—Fan casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/08—Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/281—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
- F04D29/282—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
- F04D29/283—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis rotors of the squirrel-cage type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/4206—Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
- F04D29/4213—Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/70—Suction grids; Strainers; Dust separation; Cleaning
- F04D29/701—Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
- F04D29/703—Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps specially for fans, e.g. fan guards
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
Definitions
- the present disclosure is directed generally to a fan assembly that improves efficiency and lowers power consumption.
- Fresh, clean air is one of the most basic needs for human beings.
- air can contain many different kinds of impurities, including particulates, viruses, bacteria, and fungi, all of which can cause or aggravate health issues, illness, and other negative outcomes.
- an air filter In order to improve air quality, there are many different technologies that clean air, the most common of which is an air filter.
- filters clean air by means of a fan that pushes and/or pulls the air through the filter unit.
- Axial fans generate high fiowrates, but result in relatively low maximum pressures.
- radial fans generate relatively high maximum pressures but have relatively low maximum fiowrates.
- a commonly utilized type of fan is the forward curved radial fan. Compared to a backward curved radial fan, the forward curved fan is intended for higher maximum flow rates and lower maximum pressures. Additionally, a forward curved radial fan has the advantage of high performance with minimal sound, which is an important feature for air purifiers. In contrast, however, there is high consumer demand for high flow rates and a small fan/appliance volume. Essentially, consumers want smaller fans with higher output and lower energy consumption. These two needs, however, are in direct conflict.
- a fan assembly comprises a housing with an air inlet, a fan inlet, and an air outlet; and an impeller comprising a plurality of circumferentially positioned spaced blades, and a motor configured to drive the impeller.
- the fan assembly has an air-permeable guard which is positioned between the air inlet and the fan inlet to prevent users from touching the impeller.
- the air-permeable guard is spaced a first distance from the fan inlet, and a second distance from the air inlet so that a filter may be provided between the air inlet and the air-permeable guard.
- the fan assembly reduces the drop in pressure experienced by air as it enters the impeller region as a result of the larger cross-sectional area that the air-permeable guard may have if it is not confined to the area available for the relatively small fan inlet because it is placed at the first distance from the fan inlet.
- the fan assembly preferably also allows air to have a rotational component as it enters the air inlet and impeller region.
- Applicant has further recognized that the prior art inlet configuration limits the rotational component of the air before it encounters the region of the fan blades, thereby limiting the performance of the fan in terms of maximum pressure as well as maximum flow.
- the air-permeable guard By positioning the air-permeable guard at a predetermined distance from the fan inlet, in an embodiment, the incoming air is allowed to at least partially rotate prior to entering the fan inlet. This results in a significant improvement in fan performance.
- the plurality of circumferentially positioned spaced blades is positioned circumferentially around a domed center of the impeller, the domed center facing the fan inlet, and wherein the domed center co-rotates with the spaced blades.
- This will reduce resistance for the airflow, as the air can rotate with the rotating center of the dome, which results in an increased efficiency.
- each of the plurality of circumferentially positioned spaced blades is curved. This results in a higher performance.
- the domed center of the impeller has a plurality of spokes. This results in less noise.
- the maximum height of the domed center is approximately 1 to 75% of the maximum height of the impeller. According to another embodiment the maximum height of the domed center is approximately 1 to 60% of the maximum height of the impeller, and according to yet another embodiment the maximum height of the domed center is approximately 1 to 50% of the maximum height of the impeller. If the dome is higher, air will bump on the dome thereby increasing resistance and reducing performance. The dome is present to provide room for the motor.
- the maximum width of the domed center is approximately 20 to 95% of the maximum width of the impeller.
- the housing includes two or more air inlets. This allows for an increased filter surface, and a higher inflow.
- the air-permeable guard comprises a grid.
- the diameter of the fan inlet is approximately 50 to 100% of the diameter of the impeller. A larger diameter disturbs the air flow and will result in increased noise, while a smaller diameter impedes the air flow.
- the predetermined distance between the air-permeable guard and the fan inlet is approximately 2 to 80 mm, and can be 2 to 30 mm.
- the air-permeable guard is spaced a predetermined distance from the air inlet. This provides room for the filter.
- the motor is positioned on a side of the impeller facing away from the fan inlet.
- FIG. 1 is a cross-sectional view of a fan assembly in accordance with an embodiment.
- FIG. 2 is a grid formation for an air-permeable guard in accordance with an embodiment.
- FIG. 3 is a cross-sectional view of an impeller in accordance with an embodiment.
- FIG. 4 is a top view of an impeller in accordance with an embodiment.
- FIG. 5 is an exploded view of a fan assembly in accordance with an embodiment.
- FIG. 6 shows an advantageous shape of a volute in the impeller housing to optimally guide the air flow.
- FIG. 7 shows an embodiment in which the plates in the air outlet are aligned with the air flow.
- the present disclosure describes various embodiments of apparatus, systems, devices, and methods for improving the function of a fan assembly. More generally, applicant has recognized and appreciated that it would be beneficial to improve efficiency and reduce power consumption of a fan during operation. A particular goal of utilization of embodiments of the present disclosure is to be able to increase the output of a fan assembly without increasing power consumption.
- various embodiments and implementations are directed to a fan assembly with an air-permeable guard positioned between the air inlet and the fan inlet, and spaced a predetermined distance from the fan inlet to allow the incoming air to at least partially rotate prior to entering the fan inlet.
- the fan assembly also has a radial impeller with a plurality of spaced blades positioned circumferentially around a domed center that faces the fan inlet.
- a fan assembly 10 is provided that includes a housing 20, an impeller 30, and a motor 40.
- the housing 20 can be a variety of shapes, sizes, and materials.
- housing 20 can be made of plastic, metal, or a combination thereof, among other materials.
- Housing 20 can be small to enclose a smaller impeller design, or can be larger to accommodate an industrial-sized impeller.
- the fan assembly 10 may be in a horizontal position facing upward, or the fan assembly can face downward.
- the fan assembly can alternatively be positioned in a vertical position, a tilted position, and a wide variety of other positions.
- Housing 20 also includes a fan inlet 60, an air inlet 70 and an air outlet 80.
- the fan and air inlets are sized and/or shaped to allow air to enter from the environment and engage with the impeller 30. Accordingly, the fan and air inlets can be round, square, or any of a wide variety of shapes. Further, housing 20 can include two or more air inlets 70, and/or two or more fan inlets 60. Air inlet 70 can be open or can include a grid, mesh, netting, or other covering such as a visually- appealing covering. According to an embodiment, fan inlet is open to allow maximal air flow into the impeller region.
- air inlet and/or fan inlet are circular, with a diameter in the range of approximately 50-100% of the diameter of impeller 30, and preferably in the range of approximately 65-90% of the impeller diameter.
- the distance from the fan inlet 60 to the impeller can be, for example, smaller than 0.03 x D, preferably 0.02 x D, where "D" is the diameter of the impeller, although a variety of distances are possible.
- fan assembly 10 also includes an air-permeable guard 50 positioned between air inlet 70 and fan inlet 60.
- air-permeable guard 50 is a grid, mesh, net, or similar design that maximizes air flow while simultaneously preventing fingers or other body parts from entering the fan inlet and encountering the impeller and/or motor.
- the air-permeable guard 50 includes sufficient number and/or size of openings to allow for maximum air flow. As shown in FIG. 2, for example, an embodiment of the air-permeable guard 50 is viewed from above and has a height "z" and a width "y" such that the total area of the guard is "z" x "y", although other configurations are possible.
- each of the openings can include a height "1" and a width "m,” where "1" and “m” are dimensioned to prevent a finger or other body part from passing through the opening.
- “1" and “m” can be in the range of approximately 4-18 mm and more preferably they are in the range of approximately 6-15 mm.
- Air flow through the air- permeable guard 50 can be defined as the ratio of the area allowing air flow ("1" x “m” x the number of openings) over the total area of the guard ("z" x "y")- According to an embodiment, the ratio is approximately 30-90%, and preferably in the range of approximately 50-75%.
- the air- permeable guard 50 is shown as square in FIG. 2, the guard can be any of a variety of shapes including rectangular, circular, and many others. As an example, the guard components can be rounded on the leading edge and pointed on the trailing edge to maximize air flow, among many other configurations.
- the openings in FIG. 2 are all preferably substantially similar (i.e.
- the openings can be constructed to have two or more different sizes and/or shapes in the same guard.
- Bars of the guard 50 should be rounded at front side, with a rounding radius of bars > 0.5mm. Bars at back side (fan side) may be sharp, but are preferably rounded.
- the guard should have a permeability of > 65-70% (based on surface area of 292x372mm) with the holes uniformly distributed. The hole sizing should pass the finger safety test.
- the air-permeable guard 50 is separate from and spaced a predetermined distance 54 from fan inlet 60, as shown in FIG. 1.
- this predetermined spacing allows the air that has passed through the air-permeable guard 50 to at least partially rotate before entering the fan inlet encountering the impeller, which results in a significant increase in fan efficiency.
- the air-permeable guard 50 is separate from, and spaced a predetermined distance 52 from a filter 90.
- Predetermined distance 52 and predetermined distance 54 can be identical or can be different, with either distance 52 or distance 54 being greater. Further, one or more of predetermined distance 52 and predetermined distance 54 can be adjustable.
- predetermined distance 52 is approximately 0 to 80 mm, and preferably is approximately 2 to 10 mm. However, a wide variety of distances is possible and can be dependent on a number of factors including the size of the housing, the desired air flow, and many others.
- predetermined distance 54 is approximately 2 to 80 mm, and preferably is approximately 2 to 30 mm. However, a wide variety of distances is possible and can be dependent on a number of factors including the size of the housing, the desired air flow, and many others.
- distance 54 is approximately 15 to 25 mm, preferably at least 18 mm to allow the air to rotate and thus reduce resistance and increase performance. A distance exceeding 25 mm appears to unnecessarily increase the size of the fan assembly.
- the filter 90 is designed to remove and/or neutralize particulates in the air, including but not limited to viruses, bacteria, and/or fungi.
- the two or more filters can provide different functioning and/or can be designed to filter different particulates from the air.
- the filter can also be designed to remove and/or neutralize odors or gasses.
- filter 90 is placed at some point between the air inlet 70 and air-permeable guard 50. In one vacuum cleaner application, the filter 90 would be directly adjacent to the air-permeable guard 50, and an air inlet formed by an inlet grille would be put at the other side of the filter 90.
- Impeller 30 can be any type of impeller, including but not limited to a radial impeller and an axial impeller. If the impeller is a radial impeller, for example, it could be a forward curved or backward curved impeller. The impeller can be a wide variety of sizes depending in part on the size of the housing and/or the intended use or location of the fan assembly. According to an embodiment, shown in FIG. 3, impeller 30 is a radial impeller with a plurality of spaced blades 34 positioned circumferentially around a center point which is attached to motor 40. In the embodiment in FIG. 3, each of the spaced blades is attached to the body of the impeller at the bottom of the blade to form a basket-like impeller design.
- the impeller can be any of a variety of other shapes, with the blades 34 only attached at the top or bottom, or an alternating design.
- the blades 34 can be curved forward or curved backward, or can be a mixture of directions. In an axial design, for example, the blades will extend outward from a center 32 of the impeller, and can be curved in a number of directions.
- Impeller 30 can include a center 32 that is domed, with the apex of center 32 of the dome facing the direction of the incoming air.
- the center can have a solid construction, or can include spokes 31 such as those depicted in FIG. 4 in order to reduce the sound radiated from the back of the fan.
- the center 32 such as the spokes in FIG. 4, are of matching design each with a smooth curve.
- the impeller has a maximum height 36 that is defined by the blades 34.
- the domed center in turn, has a maximum height 38 that can be equal to or less than maximum height 36 of the impeller.
- the height 38 of domed center 32 of the impeller is between approximately 1 -100% of height 36 of the impeller, and is preferably in the range of approximately 1 to 75% of impeller height 36.
- maximum height 38 of domed center 32 is approximately 1 to 60% of maximum height 36 of the impeller, and preferably the maximum height of the domed center is approximately 1 to 50% of the maximum height of the impeller.
- the impeller has a maximum width 35 that is defined by the outermost reach of the most distantly spaced blades 34.
- the impeller center 32 also has a maximum width 37 that is less than maximum width 35.
- the width of center 32 is between approximately 1 -99% of maximum width 37, and is preferably in the range of approximately 20-95% of maximum width 37.
- Both the height and width of impeller 30 and center 32 can be designed or predetermined to maximize rotational speed and/or air flow, as well as to minimize noise, among many other design goals.
- the center 32 of impeller 30 co-rotates with the blades of the impeller.
- Motor 40 is any motor or drive sufficient to cause a desired rotation of the impeller 30.
- motor 40 includes a drive shaft that attaches to the impeller at a point near the axis of rotation of the impeller.
- the motor can also be connected to the impeller indirectly, such as through a coupling element.
- Motor 40 can operate at a single rotational speed, or can operate at a variety of different speeds.
- Motor 40 may also include operation profiles that slowly increase or decrease rotation speed, that provide predetermined variable speeds, or other variations. As shown in FIG. 1 , for example, motor 40 can be positioned entirely on the side of the impeller facing away from the fan inlet 60, which prevents the motor from interfering with air flow within the fan.
- other configurations of the impeller and the motor are possible.
- FIG. 5 is an exploded view of an embodiment of fan assembly 10.
- the fan assembly includes housing 20 which defines an air outlet 80.
- the air outlet can be positioned, for example, in the direction of the air flow within the housing.
- the housing can be, for example, in one or more components, such as the impeller housing 22 shown in FIG. 5.
- the fan assembly also includes impeller 30 and motor 40 to drive the impeller. Behind the motor 40, the housing is closed.
- the fan assembly includes air inlet 70 having a width of at least 2 cm between a front plate and the housing, filter 90, air-permeable guard 50, and fan inlet 60. As shown by the configuration of air inlet 70 in FIG. 5, air can enter from multiple sides or directions in order to maximize air flow into the system.
- the intake at air inlet 70 has no sharp comers and no (sharp) bends.
- the fan inlet 60 is rounded over its thickness completely, at least at the side facing the air inlet, so as to reduce resistance.
- the impeller housing 22 is preferably dimensioned such that the distance fan inlet - fan ⁇ 5.0 mm, and more preferably ⁇ 3.0 mm.
- the minimum distance fan blades - volute is preferably about 16 mm.
- the impeller housing 22 has a volute V surrounding the impeller 30, and shaped such that the air flow is optimally guided so as to again reduce unnecessary resistance.
- part VI of volute V is tangential to the fan blades of impeller 30, and a second part V2 of the volute V is aligned with the air flow.
- the impeller bottom is closed, the impeller preferably has spokes as shown in FIGS. 3 and 4.
- plate-shaped bars 82 in the air outlet 80 should angle with the air flow F so as to again reduce unnecessary resistance.
- the bars in outlet are preferably rounded at least at the side inside the appliance with a rounding radius of at least 0.5 mm.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15161627 | 2015-03-30 | ||
PCT/EP2016/056480 WO2016156174A1 (en) | 2015-03-30 | 2016-03-24 | Fan assembly |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3227562A1 true EP3227562A1 (en) | 2017-10-11 |
EP3227562B1 EP3227562B1 (en) | 2019-01-09 |
Family
ID=52774152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16712027.8A Active EP3227562B1 (en) | 2015-03-30 | 2016-03-24 | Fan assembly |
Country Status (7)
Country | Link |
---|---|
US (1) | US20180023588A1 (en) |
EP (1) | EP3227562B1 (en) |
JP (1) | JP2018503771A (en) |
CN (1) | CN107110175B (en) |
RU (1) | RU2642942C1 (en) |
TR (1) | TR201904156T4 (en) |
WO (1) | WO2016156174A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10047756B2 (en) * | 2010-03-17 | 2018-08-14 | Panasonic Ecology Systems Guangdong Co., Ltd. | Ventilating fan |
SE543870C2 (en) * | 2018-01-24 | 2021-08-17 | Husqvarna Ab | Leaf blower |
US11913460B2 (en) * | 2020-03-20 | 2024-02-27 | Greenheck Fan Corporation | Exhaust fan |
CN112644244B (en) * | 2020-12-15 | 2022-06-17 | 上海爱斯达克汽车空调系统有限公司 | Pressure recovery device suitable for backward curve impeller and automobile air conditioner |
US11639810B2 (en) * | 2021-09-29 | 2023-05-02 | Mitsubishi Electric Us, Inc. | Air handling system and method with angled air diffuser |
FR3130525B1 (en) * | 2021-12-20 | 2024-10-04 | Seb Sa | HAIRDRESSING APPLIANCE COMPRISING AN IMPROVED BLOWER MODULE WITH CONTRA-ROTATING PROPELLERS AND INTERPOSED POROUS MEDIA |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU499416A1 (en) * | 1972-11-28 | 1976-01-15 | Донецкий государственный проектно-конструкторский и экспериментальный институт комплексной механизации шахт | Impeller of centrifugal fan |
SU1262129A1 (en) * | 1985-02-06 | 1986-10-07 | Всесоюзный Научно-Исследовательский И Проектно-Конструкторский Институт Атомного Энергетического Машиностроения | Centrifugal fan impeller |
JPS63200700U (en) * | 1987-06-17 | 1988-12-23 | ||
DE10038057B4 (en) * | 1999-08-04 | 2004-11-18 | Pfannenberg Gmbh | filter Fans |
DE20308482U1 (en) * | 2003-05-28 | 2003-09-04 | Pfannenberg GmbH, 21035 Hamburg | Air passage device for e.g. electrical cabinet, especially filter fan or outlet filter with/without fan, has electromagnetic compatibility screen plate with metal frame, screen grid, contact tongues |
EP1370125B1 (en) * | 2002-06-03 | 2007-03-21 | Pfannenberg GmbH | Device for the passage of air |
JP2004353496A (en) * | 2003-05-28 | 2004-12-16 | Sony Corp | Thin-shaped fan motor |
JP4276907B2 (en) * | 2003-08-27 | 2009-06-10 | 株式会社日立製作所 | Air cleaner |
KR100637337B1 (en) * | 2005-01-25 | 2006-10-20 | 선문대학교 산학협력단 | scroll casing for centrifugal blower |
KR101229339B1 (en) * | 2005-06-23 | 2013-02-05 | 삼성전자주식회사 | Air Cleaner |
US8784168B2 (en) * | 2010-06-18 | 2014-07-22 | Imperial Sheet Metal Ltd. | Louvered vent cover |
US9121414B2 (en) * | 2010-11-05 | 2015-09-01 | Gentherm Incorporated | Low-profile blowers and methods |
CN204213046U (en) * | 2014-10-22 | 2015-03-18 | 杭州老板电器股份有限公司 | A kind of subsection blade and embedded air-ducting ring blower fan |
-
2016
- 2016-03-24 WO PCT/EP2016/056480 patent/WO2016156174A1/en active Application Filing
- 2016-03-24 RU RU2017128808A patent/RU2642942C1/en not_active IP Right Cessation
- 2016-03-24 TR TR2019/04156T patent/TR201904156T4/en unknown
- 2016-03-24 JP JP2017538641A patent/JP2018503771A/en active Pending
- 2016-03-24 US US15/539,352 patent/US20180023588A1/en not_active Abandoned
- 2016-03-24 EP EP16712027.8A patent/EP3227562B1/en active Active
- 2016-03-24 CN CN201680005183.3A patent/CN107110175B/en active Active
Also Published As
Publication number | Publication date |
---|---|
RU2642942C1 (en) | 2018-01-29 |
JP2018503771A (en) | 2018-02-08 |
CN107110175B (en) | 2019-03-08 |
TR201904156T4 (en) | 2019-04-22 |
CN107110175A (en) | 2017-08-29 |
EP3227562B1 (en) | 2019-01-09 |
US20180023588A1 (en) | 2018-01-25 |
WO2016156174A1 (en) | 2016-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3227562B1 (en) | Fan assembly | |
US6478838B2 (en) | Airflow system | |
US5837020A (en) | Room air cleaner | |
EP3385625B1 (en) | Air purifier | |
US11585548B2 (en) | Air purifier with air outlet guider | |
US6616722B1 (en) | Room air cleaner | |
US20110010958A1 (en) | Quiet hair dryer | |
CN106414129B (en) | Diffuser ring | |
US20060291999A1 (en) | Air purifier | |
US11415331B2 (en) | Cookware and exhaust device | |
EP2878892B1 (en) | Indoor unit for air conditioner, and air conditioner with indoor unit | |
US20220088519A1 (en) | Air purifier | |
CN107061320B (en) | Electric fan and dust catcher with it | |
CN105091127B (en) | A kind of intelligence double-suction type air purifier | |
CN109973438A (en) | A kind of centrifugal blower volute | |
CN106524263B (en) | A kind of range hood | |
JP2015117605A (en) | Centrifugal blower | |
JP2010181058A (en) | Air conditioner | |
EP4348057A1 (en) | Improved fan | |
CN210292012U (en) | Dynamic filter screen, fan subassembly, lampblack absorber | |
JP3984598B2 (en) | Fan device | |
JP2007332818A (en) | Ventilation device having guide plate on intake side | |
CN217233827U (en) | Fan assembly of integrated stove | |
KR101660741B1 (en) | Blower and air conditioner with the blower | |
EP4095391A1 (en) | Improved fan |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170707 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180628 |
|
INTG | Intention to grant announced |
Effective date: 20180705 |
|
INTC | Intention to grant announced (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20180718 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1087657 Country of ref document: AT Kind code of ref document: T Effective date: 20190115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016009240 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190109 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1087657 Country of ref document: AT Kind code of ref document: T Effective date: 20190109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190509 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190409 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190409 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190509 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016009240 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190324 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190331 |
|
26N | No opposition filed |
Effective date: 20191010 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190324 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190324 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20200316 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20160324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602016009240 Country of ref document: DE Owner name: VERSUNI HOLDING B.V., NL Free format text: FORMER OWNER: KONINKLIJKE PHILIPS N.V., EINDHOVEN, NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20231214 AND 20231220 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240328 Year of fee payment: 9 Ref country code: GB Payment date: 20240319 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240326 Year of fee payment: 9 |