EP3225037B1 - Procédé et appareil de génération d'un signal sonore directionnel à partir de premier et deuxième signaux sonores - Google Patents

Procédé et appareil de génération d'un signal sonore directionnel à partir de premier et deuxième signaux sonores Download PDF

Info

Publication number
EP3225037B1
EP3225037B1 EP14771598.1A EP14771598A EP3225037B1 EP 3225037 B1 EP3225037 B1 EP 3225037B1 EP 14771598 A EP14771598 A EP 14771598A EP 3225037 B1 EP3225037 B1 EP 3225037B1
Authority
EP
European Patent Office
Prior art keywords
frequency
signal
directional
deq
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14771598.1A
Other languages
German (de)
English (en)
Other versions
EP3225037A1 (fr
Inventor
Hauke Krüger
Bernd Geiser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Binauric Se
Original Assignee
Binauric Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Binauric Se filed Critical Binauric Se
Publication of EP3225037A1 publication Critical patent/EP3225037A1/fr
Application granted granted Critical
Publication of EP3225037B1 publication Critical patent/EP3225037B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic
    • H04R2430/25Array processing for suppression of unwanted side-lobes in directivity characteristics, e.g. a blocking matrix

Definitions

  • the present invention generally relates to the field of sound acquisition. More particularly, the present invention relates to a method and an apparatus for generating a directional sound signal from first and second sound signals, which are generated by a first and a second microphone, which are separated by a distance.
  • microphone arrays proved to be useful. They are designed to attenuate possible noise and interference components while retaining the desired source signal by exploiting different spatial (or directional) characteristics of the different signal sources (see, e.g., J. Benesty, J. Chen, and Y. Huang, "Microphone Array Signal Processing,” Heidelberg: Springer, 2008 for an overview).
  • a simple, yet efficient approach is the first-order differential microphone array described in G. Elko and A.-T. N. Pong, "A simple adaptive first-order differential microphone,” in IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pages 169 to 172, October 1995 .
  • This microphone array which is schematically and exemplarily shown in Fig. 1 allows to place two symmetrical notches (directions of maximum attenuation) at angles of ⁇ and 360° - ⁇ .
  • three independent enhancements to the original method are proposed and a practical implementation for handsfree communication is described.
  • a possible target device is a wireless loudspeaker with two integrated miniature digital micro-electromechanical system (MEMS) microphone capsules which facilitate handsfree audio coomunication.
  • MEMS micro-electromechanical system
  • Fig. 1 shows schematically and exemplarily a differential microphone array according to G. Elko and A.-T. N. Pong.
  • Two closely spaced omnidirectional microphones M1 and M2 are used to capture the acoustic environment.
  • the corresponding digital signals x 1 ( k ) and x 2 ( k ) are sampled with a rate of f s .
  • Due to the small distance D between M1 and M2, a coherent mutual subtraction - for convenience, acausal filters are assumed herein; in practice, appropriate signal alignment is required as marked by 'o' in Figs.
  • the signals x f ( k ) and x b ( k ) can be interpreted as "forward and backward facing cardioid" signals as the respective directional responses of Eqs. (1) and (2) form cardioid shapes (see Fig.
  • a common problem with differential microphone arrays are the tolerances of the employed microphones, leading to a “microphone mismatch” and therefore noise amplification (see M. Buck and M. R michler, "First Order Differential Microphone Arrays for Automotive Applications,” in Proceedings of International Workshop on Acoustic Echo and Noise Control (IWAENC), September 2001 ).
  • the digital MEMS microphones in the possible target device usually exhibit relatively constant frequency responses; therefore, individual microphone equalization is preferably not necessary for the envisaged application.
  • their power levels may still vary to a certain extent due to mounting and assembly tolerances, which is disadvantageous since it is preferred to have fully matched input levels in order to utilize the full potential of the method.
  • a method for generating a directional sound signal from first and second sound signals, which are generated by a first and a second microphone, which are separated by a distance comprises:
  • the present invention is based on the idea that by employing these steps, a (substantially) frequency invariant notch characteristic can be obtained even for larger microphone distances.
  • a larger distance also helps to confine the noise gain of the array. Therefore, the array becomes practically usable even for higher sampling rates (e.g., 16kHz).
  • difference signal also includes the case where one or both of the first and the second sound signals is/are further temporally delayed, for example, by means of a fractional delay filter h T ( k ), as described in section 2 above.
  • the frequency-selective processing comprises weighting the difference signal with an approximated steering factor that is independent of frequency to generate a weighted difference signal and correcting for the approximation by adding a correction signal that is generated from the difference signal in dependence of frequency and the steering angle.
  • the generation of the correction signal comprises applying two separate operations, one being dependent on frequency and independent of the steering angle and one being dependent on the steering angle but independent of frequency.
  • the generation of the correction signal comprises filtering the difference signal with a filter that is dependent on frequency and independent of the steering angle to generate a filtered difference signal.
  • the generation of the correction signal further comprises weighting the filtered difference signal with a factor that is dependent on the steering angle and independent of frequency.
  • the factor is determined by using a polynomial approximation that is evaluated with the steering angle.
  • the method further comprises filtering the directional sound signal with a low-pass filter to generate a filtered directional sound signal.
  • the approximated steering factor for a time instance is adapted for the following time instance by adding an adaptation value that is scaled by a stepsize parameter, wherein the stepsize parameter is adapted in dependence of estimated energies of coherent and incoherent sound components.
  • the energy of the incoherent sound components is approximated by the estimated short-term energy of the directional sound signal and the energy of the coherent sound components is approximated by a fraction of the estimated short-term energy of the difference signal.
  • the method further comprises estimating a relative gain of the first and the second microphone and equalizing power levels of the first and the second microphone based on the relative gain.
  • the relative gain is determined based on recursively estimated variances of the first and second sound signals.
  • the first and the second microphone are omnidirectional microphones.
  • an apparatus for generating a directional sound signal from first and second sound signals, which are generated by a first and a second microphone, which are separated by a distance comprising:
  • a system comprising:
  • this transfer function should become zero for a specific angle, i.e., the so-called steering angle ⁇ .
  • ⁇ a ( ⁇ , ⁇ ) is separable with good accuracy: ⁇ ⁇ a ⁇ ⁇ ⁇ ⁇ ⁇ a ⁇ ⁇ ⁇ ⁇ a ⁇ ⁇ ⁇ ⁇ a ⁇
  • the factors ⁇ a ( ⁇ ) and ⁇ a ( ⁇ ) can be computed by marginalization of the 2-dimensional function ⁇ a ( ⁇ , ⁇ ) and appropriate normalization.
  • the factor ⁇ a ( ⁇ ) can now be regarded as the frequency response of a fixed filter. It can be transformed to the time domain via periodic extension, inverse DFT, cyclic shifting (to enforce causality) and an appropriate shortening to a desired length.
  • the resulting FIR filter coefficients h DEQ ( k ), e.g., of order 16, are independent of the steering angle ⁇ .
  • the angular dependency is then reintroduced with a polynomial approximation (e.g., order 4) of the second factor ⁇ a ( ⁇ ) after a variable transformation from ⁇ to a lin ( ⁇ ), i.e., P ⁇ a ( a lin ( ⁇ )) ⁇ ⁇ a ( ⁇ ( a lin )).
  • the effect of directional equalizing can be observed in Fig. 3 (b) , which displays an almost frequency-invari
  • the practical operation of the modified version of the microphone array does not significantly differ from the conventional version ( Fig. 1 ):
  • the desired notch angle ⁇ is still easily controlled by adapting the scalar factor a lin .
  • the polynomial P ⁇ a ( a lin ) must be evaluated.
  • the distorted notch curve of the standard differential array ( Fig. 3 (a) ) not only limits the ability to suppress interfering sound sources, but it can even compromise the accurate NLMS adaptation of the steering angle ⁇ (see section 6).
  • the goal of a notch adaptation algorithm is to automatically align the notch angle ⁇ of the differential array with the incidence angle ⁇ of the (main) interferer.
  • the standard approach to adapt the factor a (or a lin if directional equalization is used) and therefore the notch angle ⁇ is the ( normalized ) least mean square (NLMS) algorithm.
  • the goal here is to minimize the power of the output signal y ( k ), i.e.
  • This equation represents the error signal of a single-tap adaptive filter with a noisy input.
  • the noise signal n(k) is due to the incoherent (ambient) noise that cannot be suppressed.
  • the coherent contribution to y ( k ) should ideally be zero.
  • an error signal e ( k ) appears at the output.
  • E ⁇ n 2 ( k ) ⁇ is the level ⁇ ⁇ y 2 of the microphone array's output y ( k ) while for E ⁇ e 2 ( k ) ⁇ , the assumption of a fixed attenuation factor for the backward cardioid signal is made, i.e. E e 2 k ⁇ ⁇ ⁇ ⁇ ⁇ x b 2 .
  • the adaptation can be deliberately slowed down by the factor 0 ⁇ ⁇ ⁇ 1 to avoid artifacts that stem from the single-tap prediction which does not apply any smoothing.
  • the combination of the proposed NLMS notch adaptation with the directional equalizer of section 5 is straight forward.
  • the equalizer can indirectly influence and enhance the notch adaptation via the array output signal y ( k ).
  • the performance of the proposed fast notch adaptation algorithm is contrasted with the conventional NLMS using a fixed stepsize in Fig. 5 .
  • the graph illustrates the adaptation process for a synthetic sound field with a single sound source that arrives from changing angles ⁇ .
  • the adaptation should not drift towards the 90° boundary but rather maintain the previously identified steering factor a .
  • the underlying assumption is that an interferer does not move while being inactive.
  • the fast version of the constant stepsize NLMS (Eq.
  • the described differential microphone array (including the proposed enhancements) has been implemented on a signal processor of a wireless loudspeaker ( Binauric Boom Boom ) which is, at the same time, a handsfree communication device.
  • a wireless loudspeaker Binauric Boom Boom
  • the microphones offer SNRs of more than 60 dB which open up the possibility of a differential microphone array with a sufficiently low noise level.
  • An example application scenario is a handsfree call in an office where another colleague is working on the opposite side of the desk. The colleague's noise (typing, voice, etc.) can then be canceled out when placing a call with Boom Boom.
  • the signal processing software has been developed with the help of the RTProc rapid real-time prototyping framework (see H. Krüger and P. Vary) - the developer interface for algorithm parameterization is shown in Fig. 6 .
  • a Matlab prototype based on framewise processing
  • several other versions have been subsequently developed: A parameterizable C version, a C version with generated parameter tables, a C version based on fixed point arithmetic with an emulated instruction set and generated parameter tables, and finally optimized assembler code for the signal processor with generated parameter tables. All versions can be verified against each other and there is the possibility to step back to Matlab and add or modify features.
  • a single unit or device may fulfill the functions of several items recited in the claims.
  • the mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)

Claims (15)

  1. Procédé de génération d'un signal sonore directionnel (y(k)) à partir de premier et de deuxième signaux sonores (x 1(k), x 2(k)) qui sont générés par des premier et deuxième microphones (M1, M2) qui sont séparés par une distance (D), dans lequel le procédé comprend:
    - générer des premier et deuxième signaux sonores différentiels (x f(k), x b,DEQ(k)) sur la base des premier et deuxième signaux sonores (x 1(k), x 2(k)), et
    - générer le signal sonore directionnel (y(k)) selon un motif de réponse directionnelle dépendant de la fréquence, sur la base des premier et deuxième signaux sonores différentiels (x f(k), x b,DEQ(k)),
    dans lequel la génération du deuxième signal sonore différentiel (x b,DEQ(k)) comprend une génération d'un signal de différence (x b(k)) des premier et deuxième signaux sonores (x 1(k), x 2(k)) et un traitement sélectif en fréquence qui dépend d'un angle de pilotage (α) qui indique une direction désirée d'atténuation maximale du motif de réponse directionnelle dépendant de la fréquence, dans lequel le traitement sélectif en fréquence adapte la direction réelle d'atténuation maximale du motif de réponse directionnelle dépendant de la fréquence de manière à ce qu'elle corresponde à l'angle de pilotage (α) pour l'essentiel indépendant de la fréquence (ω) sur la plage de fréquences du signal sonore directionnel (y(k)).
  2. Procédé selon la revendication 1, dans lequel le traitement sélectif en fréquence comprend une pondération du signal de différence (x b(k)) avec un facteur de pilotage approximé (a lin(α)) qui est indépendant de la fréquence (ω) pour générer un signal pondéré de différence (a lin(αx b(k)), et une correction de l'approximation en ajoutant un signal de correction (P Δa (a lin(α))·h DEQ(k) ∗ xb (k)) qui est généré à partir du signal de différence (x b(k)) en fonction de la fréquence (ω) et de l'angle de pilotage (α).
  3. Procédé selon la revendication 2, dans lequel la génération du signal de correction (P Δa (a lin(α))·h DEQ(k) ∗ xb (k)) comprend l'application de deux opérations distinctes, une étant dépendante de la fréquence (ω) et indépendante de l'angle de pilotage (α) et une étant dépendante de l'angle de pilotage (α) mais indépendante de la fréquence (ω).
  4. Procédé selon la revendication 2 ou 3, dans lequel la génération du signal de correction (P Δa(a lin(α))·h DEQ(k) ∗ xb (k)) comprend un filtrage du signal de différence (x b(k)) avec un filtre (h DEQ(k)) qui est dépendant de la fréquence (ω) et indépendant de l'angle de pilotage (α) pour générer un signal de différence filtré (h DEQ(k) * xb (k)).
  5. Procédé selon la revendication 4, dans lequel la génération du signal de correction (P Δa (a lin(α))·h DEQ(k) ∗ xb (k)) comprend en outre une pondération du signal de différence filtré (h DEQ(k) ∗ xb (k)) avec un facteur (P Δa(a lin(α)) qui est dépendant de l'angle de pilotage (α) et indépendant de la fréquence (ω).
  6. Procédé selon la revendication 5, dans lequel le facteur (P Δa (a lin(α)) est déterminé en utilisant une approximation polynomiale qui est évaluée avec l'angle de pilotage (α) ou le facteur de pilotage approximé (a lin(α)).
  7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel le procédé comprend en outre un filtrage du signal sonore directionnel (y(k)) avec un filtre passe-bas (h EQ(k)) pour générer un signal sonore directionnel filtré (y EQ(k)).
  8. Procédé selon l'une quelconque des revendications 2 à 7, dans lequel le facteur de pilotage approximé (a lin(α)) pour un instant (k - 1) est adapté pour l'instant suivant (k) en ajoutant une valeur d'adaptation qui mis à l'échelle par un paramètre de pas (µ opt), dans lequel ledit paramètre de pas (µ opt) est adapté en fonction d'énergies estimées de composantes sonores cohérentes et incohérentes.
  9. Procédé selon la revendication 8, dans lequel l'énergie des composantes sonores incohérentes est approximée par l'énergie estimée à court terme σ ^ y 2
    Figure imgb0035
    du signal sonore directionnel (y(k)), et l'énergie des composantes sonores cohérentes est approximée par une fraction k σ ^ x b 2
    Figure imgb0036
    de l'énergie estimée à court terme σ ^ x b 2
    Figure imgb0037
    du signal de différence (x b(k)).
  10. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel le procédé comprend en outre une estimation d'un gain relatif (g c) des premier et deuxième microphones (M1, M2) et une égalisation de niveaux de puissance des premier et deuxième microphones (M1, M2) sur la base du gain relatif (g c).
  11. Procédé selon la revendication 10, dans lequel le gain relatif (g c) est déterminé sur la base de variances σ ^ x 1 2 , σ ^ x 2 2
    Figure imgb0038
    estimées de manière récursive des premier et deuxième signaux sonores (x 1(k), x 2(k)).
  12. Procédé selon l'une quelconque des revendications 1 à 11, dans lequel les premier et deuxième microphones (M1, M2) sont des microphones omnidirectionnels.
  13. Dispositif (2) de génération d'un signal sonore directionnel (y(k)) à partir de premier et de deuxième signaux sonores (x 1(k), x 2(k)) qui sont générés par des premier et deuxième microphones (M1, M2) qui sont séparés par une distance (D), dans lequel le dispositif (2) comprend:
    - de premiers moyens de génération destinés à générer des premier et deuxième signaux sonores différentiels (x f(k), x b,DEQ(k)) sur la base des premier et deuxième signaux sonores (x 1(k), x 2(k)), et
    - de deuxièmes moyens de génération destinés à générer le signal sonore directionnel (y(k)) selon un motif de réponse directionnelle sur la base des premier et deuxième signaux sonores différentiels (x f(k), x b,DEQ(k)),
    dans lequel la génération du deuxième signal sonore différentiel (x b,DEQ(k)) comprend une génération d'un signal de différence (x b(k)) des premier et deuxième signaux sonores (x 1(k), x 2(k)) et un traitement sélectif en fréquence qui dépend d'un angle de pilotage (α) qui indique une direction désirée d'atténuation maximale du motif de réponse directionnelle dépendant de la fréquence, dans lequel le traitement sélectif en fréquence adapte la direction réelle d'atténuation maximale du motif de réponse directionnelle dépendant de la fréquence de manière à ce qu'elle corresponde à l'angle de pilotage (α) pour l'essentiel indépendant de la fréquence (ω) sur la plage de fréquences du signal sonore directionnel (y(k)).
  14. Système (1), dans lequel le système (1) comprend:
    - un premier et un deuxième microphones (M1, M2) qui sont séparés par une distance (D) et génèrent des premier et deuxième signaux sonores (x 1(k), x 2(k)), et
    - un dispositif (2) tel que défini dans la revendication 13.
  15. Programme d'ordinateur comprenant des moyens de code de programme, qui, lorsqu'il est exécuté sur un ordinateur commandant le dispositif (2) selon la revendication 13, met en oeuvre les étapes du procédé selon l'une quelconque des revendications 1 à 12.
EP14771598.1A 2014-09-23 2014-09-23 Procédé et appareil de génération d'un signal sonore directionnel à partir de premier et deuxième signaux sonores Active EP3225037B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2014/070243 WO2016045706A1 (fr) 2014-09-23 2014-09-23 Procédé et appareil de génération d'un signal sonore directionnel à partir de premier et deuxième signaux sonores

Publications (2)

Publication Number Publication Date
EP3225037A1 EP3225037A1 (fr) 2017-10-04
EP3225037B1 true EP3225037B1 (fr) 2019-05-08

Family

ID=51585120

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14771598.1A Active EP3225037B1 (fr) 2014-09-23 2014-09-23 Procédé et appareil de génération d'un signal sonore directionnel à partir de premier et deuxième signaux sonores

Country Status (2)

Country Link
EP (1) EP3225037B1 (fr)
WO (1) WO2016045706A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220109511A1 (en) * 2020-10-05 2022-04-07 CUE Audio, LLC Method and system for digital communication over an acoustic channel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7139628B2 (ja) * 2018-03-09 2022-09-21 ヤマハ株式会社 音処理方法および音処理装置
GB2575491A (en) * 2018-07-12 2020-01-15 Centricam Tech Limited A microphone system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014062152A1 (fr) * 2012-10-15 2014-04-24 Mh Acoustics, Llc Réseau de microphones directionnels à réduction de bruit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220109511A1 (en) * 2020-10-05 2022-04-07 CUE Audio, LLC Method and system for digital communication over an acoustic channel
US11728905B2 (en) * 2020-10-05 2023-08-15 CUE Audio, LLC Method and system for digital communication over an acoustic channel

Also Published As

Publication number Publication date
EP3225037A1 (fr) 2017-10-04
WO2016045706A1 (fr) 2016-03-31

Similar Documents

Publication Publication Date Title
US9723422B2 (en) Multi-microphone method for estimation of target and noise spectral variances for speech degraded by reverberation and optionally additive noise
JP5805365B2 (ja) ノイズ推定装置及び方法とそれを利用したノイズ減少装置
US8194880B2 (en) System and method for utilizing omni-directional microphones for speech enhancement
EP2207168B1 (fr) Système robuste de suppression de bruit à deux microphones
US9060052B2 (en) Single channel, binaural and multi-channel dereverberation
JP5444472B2 (ja) 音源分離装置、音源分離方法、及び、プログラム
EP2308044B1 (fr) Traitement audio
EP2245861B1 (fr) Algorithme amélioré de séparation aveugle de sources pour des mélanges hautement corrélés
CN111128210B (zh) 具有声学回声消除的音频信号处理的方法和系统
US8958572B1 (en) Adaptive noise cancellation for multi-microphone systems
EP3462452A1 (fr) Estimation de bruit destinée à être utilisée avec réduction de bruit et annulation d'écho dans une communication personnelle
Dietzen et al. Integrated sidelobe cancellation and linear prediction Kalman filter for joint multi-microphone speech dereverberation, interfering speech cancellation, and noise reduction
EP3692529B1 (fr) Appareil et procédé d'amélioration de signaux
EP3225037B1 (fr) Procédé et appareil de génération d'un signal sonore directionnel à partir de premier et deuxième signaux sonores
TWI465121B (zh) 利用全方向麥克風改善通話的系統及方法
US11373668B2 (en) Enhancement of audio from remote audio sources
US11019433B2 (en) Beam former, beam forming method and hearing aid system
Modhave et al. Design of multichannel wiener filter for speech enhancement in hearing aids and noise reduction technique
Stenzel et al. A multichannel Wiener filter with partial equalization for distributed microphones
Barfuss et al. Informed spatial filtering based on constrained independent component analysis
Dietzen et al. Speech dereverberation by data-dependent beamforming with signal pre-whitening
Geiser et al. A differential microphone array with input level alignment, directional equalization and fast notch adaptation for handsfree communication
Masuyama et al. Causal distortionless response beamforming by alternating direction method of multipliers
Lombard et al. Combination of adaptive feedback cancellation and binaural adaptive filtering in hearing aids
Yong et al. Effective binaural multi-channel processing algorithm for improved environmental presence

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170810

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181121

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1132097

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014046410

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190508

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190808

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190809

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190808

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1132097

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014046410

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

26N No opposition filed

Effective date: 20200211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190923

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190923

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602014046410

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240226

Year of fee payment: 10

Ref country code: GB

Payment date: 20240227

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240227

Year of fee payment: 10