EP3224889A1 - Système à pile à combustible - Google Patents

Système à pile à combustible

Info

Publication number
EP3224889A1
EP3224889A1 EP15800858.1A EP15800858A EP3224889A1 EP 3224889 A1 EP3224889 A1 EP 3224889A1 EP 15800858 A EP15800858 A EP 15800858A EP 3224889 A1 EP3224889 A1 EP 3224889A1
Authority
EP
European Patent Office
Prior art keywords
fuel cell
access point
supply circuit
switching element
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15800858.1A
Other languages
German (de)
English (en)
Other versions
EP3224889B1 (fr
Inventor
Gino Paganelli
Vincent BRAILLARD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Generale des Etablissements Michelin SCA
Original Assignee
Compagnie Generale des Etablissements Michelin SCA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale des Etablissements Michelin SCA filed Critical Compagnie Generale des Etablissements Michelin SCA
Publication of EP3224889A1 publication Critical patent/EP3224889A1/fr
Application granted granted Critical
Publication of EP3224889B1 publication Critical patent/EP3224889B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • H01M8/04835Humidity; Water content of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04111Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants using a compressor turbine assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04141Humidifying by water containing exhaust gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/0441Pressure; Ambient pressure; Flow of cathode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to fuel cells, in particular but not exclusively to electrolyte type fuel cells in the form of a polymer membrane (ie of the PEFC type for Polymer Electrolyte Fuel Cell).
  • a fuel cell includes a stack of base cells, each comprising an anode, a cathode, and an ion exchange membrane, serving as an electrolyte.
  • base cells each comprising an anode, a cathode, and an ion exchange membrane, serving as an electrolyte.
  • two simultaneous electrochemical reactions occur: oxidation of fuel at the anode, and reduction of oxidant at the cathode. These two reactions produce positive and negative ions, which combine at the membrane level and produce electricity in the form of a potential difference.
  • an oxygen-hydrogen fuel cell it is the H + and O- ions that combine.
  • Membrane-electrode assemblies are stacked in series and separated by a bipolar plate which conducts the electrons of the anode of a cell to the cathode of the neighboring cell.
  • a channel is provided on the entire face of the bipolar plates in contact with the membrane.
  • Each channel has an inlet through which the fuel or the oxidant penetrates, and an outlet through which are evacuated the neutral gases, the water generated by the electrochemical reaction, and the residual moisture of the hydrogen on its side. Thereafter, will be designated by "cathode channel” a channel in contact with the cathode of a cell.
  • the supply of oxidizing gas is performed by means of a compressor located in a gas circuit upstream of the fuel cell. It has been found that, due to the compression, the gases leaving the compressor are hot and dry, and therefore tend to dry out the polymer membrane, which causes a decrease in the performance of the cell, and degrades said membrane. Indeed, the conductivity proton membrane increases with moisture, so it is useful to maintain a certain level of moisture to achieve increased performance.
  • the object of the present invention is therefore to provide a solution for humidifying the gases flowing in the cathode channel of a fuel cell while overcoming the drawbacks of the prior art.
  • the invention thus proposes a fuel cell system comprising a stack of electrochemical cells forming an ion exchange polymer membrane fuel cell, a fuel gas supply circuit and a circuit supplying oxidizing gas, said combustion gas supply circuit comprising a compressor for compressing the ambient air before entering the fuel cell, and an exhaust outlet for exhausting the gases exiting the fuel cell ,
  • said supply circuit being connected to the fuel cell at first and second access points
  • the system further comprising a switch element having two positions: a first position in which the output of the compressor is connected to the first access point, and the second access point is connected to the output exhaust, and a second position in which the compressor output is connected to the second access point, and the first access point is connected to the exhaust outlet, and the system is characterized in that it comprises a humidity reservoir positioned in the combustion gas supply circuit, upstream of the first access point ( 7).
  • the direction of flow of the gas varies according to the position of the switching element, which leads to a change in humidity, especially in the case where the system according to the invention.
  • the invention is controlled according to a periodic cycle between the first position and the second position of the switching element.
  • the moisture reservoir is composed of a highly hygroscopic material, for example fiber paper and cotton honeycomb structured. In another example, the use of cordierite-based materials may be considered.
  • the volume of the humidity reservoir is preferably adapted according to the power of the heat pump. For example, for a 10kW fuel cell, the moisture reservoir is made of paper fiber and has a volume of about 250 cm 3 .
  • the electrochemical cells are separated by bipolar plates, a channel being formed in each face of a bipolar plate for the circulation of the fuel and oxidant gases, characterized in that the first and second access points form a input and output of a channel.
  • the switching element when the switching element is located in the first position, the gas flows in the channel from the first point to the second point, and vice versa when the switching element is located in the second position.
  • the switching element is a four-way valve. This valve can be a monostable or bistable valve.
  • the valve is equipped with an angular motor permanent magnet, the operation of which will be further detailed with the aid of figures.
  • This motor allows faster switching, and is used to minimize the interruption time of the supply of oxidant gas input battery.
  • the motor is installed so that the axis of the motor is directly connected to the axis of the four-way valve.
  • the system further comprises two pressure sensors installed in the combustion gas supply circuit, between the switching element and the first and second access points, respectively. These pressure sensors make it possible to continuously check the correct operation of the valve, by comparing the pressures present at the inlet and the outlet of the fuel cell. Alternatively it is also possible to check the regular reversal of the direction of flow of the air by correlation with a measurement of the air temperature at one of the two access to the fuel cell. Indeed, the air passing through the cell being heated by the latter, the reversal of the direction of flow leads to an inversion of the trend of evolution of the air temperature measured at an access of the battery.
  • the switching element is installed in an end plate of the fuel cell also comprising one or more management systems and / or control of the fuel cell, or at least a component of such a system.
  • a plate will be called “plate system” in the following description.
  • Such positioning makes it possible to increase the compactness of the entire fuel cell system, and also makes it easier to integrate the various components.
  • the positioning of the switching element at the system plate less exposed to external climatic conditions, ensures a functioning of the switching element regardless of the outside temperature to which is subject the pile. Indeed, it has been found that when starting the cell at negative temperatures, switching of the switching element was sometimes made impossible by moisture residues transformed into ice.
  • the positioning of the switching element at the level of the system plate makes it possible, due to the immediate proximity, to minimize the volume of the pipes between the switching element and the air supply channels of the the fuel cell.
  • the volume of depleted air coming out of the fuel cell being reintroduced with each reversal of the direction of flow of the air is reduced and therefore allows to minimize the power failure mentioned above.
  • the invention also relates to a control method of a fuel cell system according to the invention, the method comprising the step of controlling the switching element so as to make it pass from the first to the second. second position according to a regular cycle.
  • This cycle is, in a preferred embodiment, of a duration of between a few seconds and a few minutes, for example between 15 and 30 seconds.
  • control method is such that this regular cycle is asymmetrical, that is to say that the duration during which the switching element remains in the first position is different from the duration during which remains in the second position.
  • This asymmetry makes it possible to take into account the non-symmetrical nature of the internal behavior of the cell since the direction of circulation of the hydrogen gas is not reversed. It is understood that in "counter-flow" position, the incoming air circulates in the same direction as the outgoing hydrogen gas, and thus comes to take moisture through the membrane. This situation is favorable for humidification of the membrane on the air side and for the loading of the humidity reservoir, this phase should normally last longer than the "co-flow" phase, but can not last too long because it would lead to drying on the anode side.
  • the method comprises a temperature measurement step within the fuel cell, and in this case the steering of the switching element is performed only when the temperature becomes greater than a predetermined threshold.
  • a control method according to the invention also allows, in a preferred embodiment, to cause a lack of regular air at the entrance of the fuel cell.
  • a shortage allows a maintenance of the performance of the battery over a longer period.
  • the cathode of a cell is loaded with catalyst, namely a compound capable of increasing the reaction rate of which the cathode is the seat.
  • catalyst namely a compound capable of increasing the reaction rate of which the cathode is the seat.
  • the progressive oxidation of platinum used in the catalyst of the cathode leads to a decrease of performance resulting in a drop in voltage.
  • the steady lack of air allows the platinum reaction to reverse and become a reduction reaction, thereby preserving catalyst performance.
  • Figure 1 shows the cathode circuit of a fuel cell system of the state of the art
  • Figure 2 shows the cathode circuit of a fuel cell system according to the present invention.
  • FIGS. 3a and 3b already described, show the flow of gases in the electrode membrane assembly of a fuel cell, in a "co-flow” situation and a "counter-flow” situation.
  • Figures 4a and 4b show the operation of a four-way valve coupled to an angular motor according to the invention.
  • Figure 5 shows the angular position of the valve drum when switching between two positions of the valve
  • FIG. 6 shows a sectional view of the motor / valve assembly implemented in a system according to the invention.
  • FIG 1 there is shown a system comprising a fuel cell 6 of the electrolyte type in the form of a polymer membrane (ie PEFC type for Polymer Electrolyte Fuel Cell or PEM for Proton Exchange Membrane ).
  • the fuel cell 6 is supplied by two gases, namely the fuel (the hydrogen stored or manufactured on board the vehicle) and the oxidizer (air or pure oxygen) which feed the electrodes of the electrochemical cells.
  • the system comprises two gas circuits: a fuel gas supply circuit, also called anode circuit, and a combustion gas supply circuit, also called cathode circuit.
  • Figure 1 does not represents the elements of the cathode circuit useful for understanding the invention.
  • the present invention is not limited to these elements, and may include all devices known to those skilled in the art and usable in the case of such a fuel cell system.
  • the installation comprises an air supply circuit on the cathode side.
  • This circuit comprises an air intake filter 1, a flow meter 2 for measuring the flow rate of the incoming air, an air compressor 3, and a non-return valve 4, to prevent the outgoing gas the fuel cell does not return toward the compressor 3.
  • the air is hot and dry, and therefore, if it was introduced for too long in the battery to fuel, degrade the polymer membrane. Therefore, in a conventional battery, a humidifier 5, for example of the type of those of the brand Permapure®, is placed upstream of the inlet 7 which allows the entry of combustion gas into the fuel cell.
  • This gas leaving the outlet 8 of the battery is introduced into the humidifier 5, together with the dry gas leaving the compressor 3.
  • the humidifier 5 comprises a polymer membrane, for example of the Nafion® type. Through this membrane, a part of the moisture present in the gases leaving the fuel cell is transferred to the dry gases before entering the fuel cell, which ensures a sufficient level of humidity not to The gases leaving the stack are then directed, after passing through the humidifier 5, to an outlet exhaust 10, via a pressure regulating valve 9.
  • FIG. 2 An exemplary implementation is shown in FIG. 2.
  • This installation comprises a valve 11, connected on one side to the non-return valve 4 and to the pressure control valve 9, and the other side to the fuel cell, at the inlet and outlet 7 and 8.
  • the valve 11 is a four-way valve, which can be monostable or bistable.
  • the gas from the compressor 3 enters the cell through the inlet 7, it travels the channel located on the bipolar plate, the course during which the electrochemical reaction occurs.
  • the gases resulting from this reaction emerge from the stack via the outlet 8 and are then directed towards the outlet control valve 9.
  • the gas coming from the air compressor 3 is directed towards the outlet 8, it travels the channel located on the bipolar plate to the inlet 7, and the outgoing gases are then directed via the valve 11 to the outlet control valve 9.
  • the gas flows alternately in one direction and the other in the channel.
  • the gas is charged with water by the electrochemical reaction that occurs.
  • the part of the channel which is at the end of the journey has a very high humidity.
  • the dry gas coming from the compressor 3 is thus allowed to enter the cell through a channel portion having a high humidity, and thus to be charged with water so as not to degrade the polymer membrane. .
  • Figures 4a and 4b respectively show a first and second position of the four-way valve, activated by a permanent magnet angular motor, operating as an electromagnet.
  • Figure 4a corresponds to a "co-flow” situation
  • Figure 4b corresponds to a "counter-flow” situation.
  • control of this valve is asymmetrical.
  • the "co-flow" situation tends to dry up the membrane faster than the "counter-flow” situation, and it is therefore advantageous to have a cycle in which the co-flow situation lasts between 5 and 15 seconds, and the situation of "counter-flux" between 10 and 25 seconds.
  • Figure 5 shows, on the curve G1 the angular position of the drum of the valve when switching between two positions of the valve. It is thus found that the travel time Td drum is less than 40 milliseconds, which makes it possible not to observe power failure at the output of the fuel cell, since the capacitive effect of the battery is sufficient to maintain power during the short switching.
  • the axis of the motor 100 and coupled with the axis of the four-way valve are advantageously installed to absorb the energy stored by the drum 101 during its movement, and to limit the rebound phenomenon, which appears in the frame C1 in FIG.
  • the present invention makes it possible to provide a fuel cell system such that the humidification of the gases is preserved, without increasing the cost and the size of the system disproportionately.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne un système à pile à combustible comprenant un empilement de cellules électrochimiques formant pile à combustible (6) à membrane polymère échangeuse d'ions, un circuit d'alimentation en gaz carburant et un circuit d'alimentation en gaz comburant. Ledit circuit d'alimentation en gaz comburant comprend un compresseur (3) destiné à compressé l'air ambiant avant son entrée dans la pile à combustible (6), et un échappement de sortie (10) destiné à évacuer les gaz sortant de la pile à combustible. Ledit circuit d'alimentation est relié à la pile à combustible en un premier (7) et un second points (8) d'accès. Le système comprend en outre un élément d'aiguillage (11) possédant deux positions : une première position dans laquelle la sortie du compresseur (3) est reliée au premier point d'accès (7), et le second point d'accès (8) est relié à l'échappement de sortie (10), et une seconde position dans laquelle la sortie du compresseur (3) est reliée au second point d'accès (8), et le premier point d'accès (7) est relié à l'échappement de sortie (10). Le système est caractérisé en ce qu'il contient un réservoir d'humidité positionné dans le circuit d'alimentation en gaz comburant, en amont du premier point d'accès (7).

Description

Système à pile à combustible
DOMAINE DE L'INVENTION [001] La présente invention se rapporte aux piles à combustibles, en particulier mais non exclusivement aux piles à combustible du type à électrolyte sous la forme d'une membrane polymère (c'est à dire de type PEFC pour Polymer Electrolyte Fuel Cell).
ETAT DE LA TECHNIQUE
[002] On sait que les piles à combustibles permettent la production directe d'énergie électrique par une réaction électrochimique d'oxydoréduction à partir d'un gaz carburant et d'un gaz comburant, sans passer par une conversion en énergie mécanique. Cette technologie semble prometteuse notamment pour des applications automobiles. Une pile à combustible comporte un empilement de cellules de base, chacune comprenant une anode, une cathode et une membrane échangeuse d'ions, faisant office d'électrolyte. Lors du fonctionnement d'une pile à combustible, deux réactions électrochimiques simultanées se produisent : une oxydation du carburant à l'anode, et une réduction de comburant à la cathode. Ces deux réactions produisent des ions, positifs et négatifs, qui se combinent au niveau de la membrane et produisent de l'électricité sous la forme d'une différence de potentiels. Dans le cas d'une pile à combustible oxygène-hydrogène, ce sont les ions H+ et O- qui se combinent.
[003] Les assemblages membrane-électrodes, ou cellules, sont empilés en séries et séparés par une plaque bipolaire qui conduit les électrons de l'anode d'une cellule à la cathode de la cellule voisine. A cet effet, un canal est prévu sur toute la face des plaques bipolaires en contact avec la membrane. Chaque canal possède une entrée par laquelle pénètre le carburant ou le comburant, et une sortie par laquelle sont évacués les gaz neutres, l'eau générée par la réaction électrochimique, et l'humidité résiduelle de l'hydrogène de son côté. Par la suite, on désignera par « canal cathodique » un canal en contact avec la cathode d'une cellule.
[004] L'alimentation en gaz comburant, notamment dans le cas où on utilise de l'air, est effectuée par le biais d'un compresseur, situé dans un circuit de gaz en amont de la pile à combustible. On a constaté que, du fait de la compression, les gaz sortant du compresseur sont chauds et secs, et ont donc tendance à assécher la membrane polymère, ce qui provoque une baisse des performances de la pile, et dégrade ladite membrane. En effet, la conductivité protonique de la membrane augmente avec l'humidité, et il est donc utile de maintenir un certain niveau d'humidité pour obtenir des performances accrues.
[005] Il est donc utile d'humidifier les gaz avant qu'ils n'atteignent la membrane. A cet effet, on connaît des humidificateurs dans lesquels l'humidité contenue dans les gaz sortants de la pile est transférée, par perméation, vers les gaz secs entrants dans la pile. Ces humidificateurs se présentent sous la forme de boîtiers de taille relativement importante. Par ailleurs, afin de permettre la perméation, une membrane, par exemple en Nafîon®, est utilisée. De telles membranes s'avèrent relativement coûteuses. En outre, on a constaté qu'avec un tel moyen d'humifîcation, l'humidité n'était pas homogène dans le canal d'acheminement des gaz situés sur la plaque bipolaire de la pile à combustible. En effet, le gaz pré-humidifié entrant dans le canal a tendance à se charger encore en humidité tout au long du canal, avec pour conséquence une humidité beaucoup plus importante en sortie qu'en entrée de canal.
[006] L'objectif de la présente invention est donc de proposer une solution pour humidifier les gaz circulant dans le canal cathodique d'une pile à combustible tout en remédiant aux inconvénients de l'art antérieur.
BREVE DESCRIPTION DE L'INVENTION [007] L'invention propose ainsi un système à pile à combustible comprenant un empilement de cellules électrochimiques formant une pile à combustible à membrane polymère échangeuse d'ions, un circuit d'alimentation en gaz carburant et un circuit d'alimentation en gaz comburant, ledit circuit d'alimentation en gaz comburant comprenant un compresseur destiné à compresser l'air ambiant avant son entrée dans la pile à combustible, et un échappement de sortie destiné à évacuer les gaz sortant de la pile à combustible,
ledit circuit d'alimentation étant relié à la pile à combustible en un premier et un second points d'accès,
le système comprenant en outre un élément d'aiguillage possédant deux positions : une première position dans laquelle la sortie du compresseur est reliée au premier point d'accès, et le second point d'accès est relié à l'échappement de sortie, et une seconde position dans laquelle la sortie du compresseur est reliée au second point d'accès, et le premier point d'accès est relié à l'échappement de sortie, et le système étant caractérisé en ce qu'il comprend un réservoir d'humidité positionné dans le circuit d'alimentation en gaz comburant, en amont du premier point d'accès (7).
[008] Un tel système permet, ainsi qu'expliqué par la suite à l'aide des figures, de conserver une bonne humidification de la membrane, tout en s'abstenant d'utiliser un humidificateur encombrant et coûteux tel que celui utilisé dans l'état de la technique.
[009] On sait que l'eau générée par la réaction électrochimique dans une pile à combustible est généralement produite de façon homogène sur toute la surface de la membrane d'une cellule. En revanche, à cette eau produite par le fonctionnement de la pile s'ajoute l'eau transportée par les gaz circulant dans les canaux. Par conséquent, on a constaté que la quantité d'eau totale, et donc l'humidité, n'était pas homogène sur la surface active, et augmentait dans le sens d'écoulement du gaz.
[0010] Or, dans un système selon la présente invention, le sens d'écoulement des gaz varie selon la position de l'élément d'aiguillage, ce qui conduit à une variation d'humidité, surtout dans le cas où le système selon l'invention est piloté selon un cycle périodique entre la première position et la seconde position de l'élément d'aiguillage.
[0011] En effet, lorsque l'élément d'aiguillage est dans la première position, le flux de gaz comburant est dans le même sens que le flux de gaz carburant, nous appellerons cette situation « co-flux ». Un exemple de cette situation est montré en figure 3a où l'on constate que les sens de circulation de l'air et de l'hydrogène sont les mêmes.
[0012] A l'inverse, lorsque l'élément d'aiguillage est dans la seconde position, le flux de gaz comburant est dans le sens opposé au flux de gaz carburant, nous appellerons cette situation « contre-flux ». Un exemple de cette situation est montré en figure 3b où l'on constate que les sens de circulation de l'air et de l'hydrogène sont opposés. [0013] Puisque l'humidité augmente dans le sens d'écoulement du gaz, en situation de « contre-flux », on retrouve une humidité relativement homogène sur l'ensemble de la membrane. En revanche, en situation de « co-flux », la partie de la membrane correspondant à l'entrée des gaz se retrouve avec un niveau de sécheresse beaucoup plus élevé que la partie de la membrane correspondant à la sortie des gaz. [0014] Cette alternance « co-flux », « contre-flux » conduit donc à une variation hygrométrique forte au niveau de l'assemblage membrane électrode, et peut conduire à une dégradation prématurée de la pile à combustible. [0015] Dans l'ensemble de la description on utilisera indifféremment les expressions « première position » et « co-flux », et les expressions « seconde position » et « contre-flux ». Les premières de ces expressions faisant référence à la position de l'élément d'aiguillage, là où les secondes font plutôt référence au mouvement du gaz en découlant. [0016] Toutefois, cette variation hygrométrique est limitée, dans la présente invention, par la présence d'un réservoir d'humidité dans le circuit d'alimentation en comburant, en amont du premier point d'accès. En effet, lorsque la pile fonctionne en position « contre-flux », le réservoir d'humidité est traversé par les gaz sortant de la pile, et donc chargés en humidité. Pendant cette phase, le réservoir d'humidité se charge en eau. Ensuite, lorsque la pile fonctionne en position « co-flux », l'humidité est restituée au gaz avant son entrée dans la pile à combustible, ce qui a pour conséquence de limiter fortement les variations d'humidité vues par les membranes.
[0017] Dans une réalisation préférentielle, le réservoir d'humidité est composé d'un matériau fortement hygroscopique, par exemple de la fibre de papier et coton structuré en nid d'abeille. Dans un autre exemple, on peut envisager l'utilisation de matériaux à base de cordiérite. Le volume du réservoir d'humidité est préférentiellement adapté en fonction de la puissance de la PAC. Par exemple pour une pile à combustible de lOkW, le réservoir d'humidité est constitué de fibre de papier et présente un volume d'environ 250 cm3. Dans une réalisation préférentielle, les cellules électrochimiques sont séparées par des plaques bipolaires, un canal étant ménagé dans chaque face d'une plaque bipolaire pour la circulation des gaz carburant et comburant, caractérisé en ce que les premier et second points d'accès forment une entrée et une sortie d'un canal. Ainsi, lorsque l'élément d'aiguillage est situé dans la première position, le gaz circule dans le canal du premier point vers le second point, et inversement lorsque l'élément d'aiguillage est situé dans la deuxième position. [0018] Dans une réalisation préférentielle, l'élément d'aiguillage est une vanne quatre voies. Cette vanne peut être une vanne monostable ou bistable.
[0019] On a constaté que la dynamique de la vanne, à savoir le temps de commutation d'une position à une autre, avait un impact sur la durée de la rupture du flux d'entrée de gaz comburant lors d'un changement de position. Or, une rupture prolongée de flux d'entrée conduit à une pénurie temporaire de comburant, et à une rupture de puissance en sortie de la pile à combustible. [0020] Pour remédier à cela, dans une réalisation préférentielle, la vanne est équipée d'un moteur angulaire à aimant permanent, dont le fonctionnement sera ultérieurement détaillé à l'aide de figures. Ce moteur permet une commutation plus rapide, et est utilisé de manière à minimiser le temps d'interruption de l'alimentation en gaz comburant en entrée de la pile. De manière avantageuse, le moteur est installé de telle sorte que l'axe du moteur soit directement relié à l'axe de la vanne quatre voies. On précise ici que la caractéristique consistant à utiliser un tel moteur couplé avec un élément d'aiguillage pourrait être revendiqué indépendamment de l'utilisation d'un réservoir d'humidité tel que précédemment décrit. Dans une autre réalisation préférentielle, le système comprend en outre deux capteurs de pression installés dans le circuit d'alimentation en gaz comburant, entre l'élément d'aiguillage et respectivement les premier et second points d'accès. Ces capteurs de pression permettent de vérifier en permanence le fonctionnement correct de la vanne, par comparaison des pressions présentes en entrée et en sortie de la pile à combustible. Alternativement il est aussi possible de vérifier l'inversement régulier du sens d'écoulement de l'air par corrélation avec une mesure de la température de l'air au niveau de l'un des deux d'accès à la pile à combustible. En effet, l'air traversant la pile se trouvant réchauffé par cette dernière, l'inversion du sens d'écoulement conduit à une inversion de la tendance d'évolution de la température de l'air mesurée au niveau d'un accès de la pile.
[0021] Dans une autre réalisation avantageuse, l'élément d'aiguillage est installé dans une plaque d'extrémité de la pile à combustible comprenant également un ou plusieurs systèmes de gestion et/ou de pilotage de la pile à combustible, ou au moins un composant d'un tel système. Une telle plaque sera appelée « plaque système » dans la suite de la description. Un tel positionnement permet d'augmenter la compacité de l'ensemble du système de pile à combustible, et permet également de faciliter l'intégration des différents composants. [0022] En outre, le positionnement de l'élément d'aiguillage au niveau de la plaque système, moins exposée aux conditions climatiques extérieures, permet de garantir un fonctionnement de l'élément d'aiguillage quelle que soit la température extérieure à laquelle est soumise la pile. En effet, on a constaté que lors de démarrage de la pile à des températures négatives, la commutation de l'élément d'aiguillage était parfois rendue impossible par des résidus d'humidité transformés en glace. En outre, le positionnement de l'élément d'aiguillage au niveau de la plaque système, permet, en raison de la proximité immédiate, de minimiser le volume des conduites entre l'élément d'aiguillage et les canaux d'alimentation en air de la pile à combustible. Ainsi le volume d'air appauvri sortant de la pile à combustible se trouvant réintroduit à chaque inversion du sens d'écoulement de l'air se trouve réduit et permet par conséquent de minimiser la rupture de puissance mentionnée précédemment.
[0023] L'invention concerne également un procédé de pilotage d'un système à pile à combustible selon l'invention, le procédé comprenant l'étape de piloter l'élément d'aiguillage de manière à le faire passer de la première à la deuxième position selon un cycle régulier. Ce cycle est, dans une réalisation préférentielle, d'une durée comprise entre quelques secondes et quelques minutes, par exemple entre 15 et 30 secondes.
[0024] De manière préférentielle encore, le procédé de pilotage est tel que ce cycle régulier est asymétrique, c'est-à-dire que la durée pendant laquelle l'élément d'aiguillage reste dans la première position est différente de la durée pendant laquelle il reste dans la seconde position. Cette asymétrie permet de prendre en compte le caractère non symétrique du comportement interne de la pile étant donné que le sens de circulation du gaz hydrogène n'est lui pas inversé. On comprend qu'en position « contre-flux », l'air entrant circule dans le même sens que le gaz hydrogène sortant, et vient donc lui prélever de l'humidité au travers de la membrane. Cette situation est favorable pour l'humidification de la membrane coté air et pour le chargement du réservoir d'humidité, cette phase doit normalement durer plus longtemps que la phase « co-flux », mais ne peut pas durer trop longtemps car elle conduirait à un assèchement du coté anodique. Le bon équilibre entre durée du « co-flux » et de « contre- flux » doit être réglé pour optimiser les performances globales de la pile à combustible. [0025] Par ailleurs, dans une réalisation préférentielle, le procédé comprend une étape de mesure de température au sein de la pile à combustible, et dans ce cas le pilotage de l'élément d'aiguillage n'est effectué que lorsque la température devient supérieure à un seuil prédéterminé. Une telle caractéristique permet d'améliorer les conditions de démarrage à froid de la pile à combustible. En effet, tant que la pile n'est pas dégelée, on n'effectue pas l'alternance, ce qui évite d'humidifier l'ensemble du canal alors même que la température dans la pile entraînerait un gel immédiat de l'eau.
[0026] Par ailleurs, un procédé de pilotage selon l'invention permet également, dans une réalisation préférentielle, de provoquer une pénurie d'air régulière à l'entrée de la pile à combustible. Une telle pénurie permet un maintien des performances de la pile sur une durée plus longue. En effet, la cathode d'une cellule est chargée en catalyseur, à savoir un composé capable d'augmenter la vitesse de réaction dont la cathode est le siège. Or, l'oxydation progressive du platine utilisé dans le catalyseur de la cathode conduit à une baisse de performance se traduisant par une baisse de tension. La pénurie régulière d'air permet que la réaction au niveau du platine s'inverse et devienne une réaction de réduction, ce qui permet de préserver les performances du catalyseur.
BREVE DESCRIPTION DES FIGURES
[0027] D'autres avantages et caractéristiques de l'invention apparaîtront avec la description, effectuée à titre non limitatif, de différentes mises en œuvre illustrées par les figures suivantes : la figure 1 montre le circuit cathodique d'un système à pile à combustible de l'état de la technique,
la figure 2 montre le circuit cathodique d'un système à pile à combustible selon la présente invention.
Les figures 3a et 3b, déjà décrites, montrent la circulation des gaz dans l'assemblage membrane électrode d'une pile à combustible, dans une situation de « co-flux » et une situation de « contre-flux ».
Les figures 4a et 4b montrent le fonctionnement d'une vanne quatre voies couplée à un moteur angulaire selon l'invention.
La figure 5 montre la position angulaire du tambour de la vanne lors de la commutation entre deux positions de la vanne,
- La figure 6 montre une vue en coupe de l'ensemble moteur/vanne mise en œuvre dans un système selon l'invention.
DESCRIPTION DE MEILLEURS MODES DE REALISATION DE L'INVENTION
[0028] A la figure 1, on voit un système comprenant une pile à combustible 6 du type à électrolyte sous la forme d'une membrane polymère (c'est à dire de type PEFC pour Polymer Electrolyte Fuel Cell ou PEM pour Proton Exchange Membrane). La pile à combustible 6 est approvisionnée par deux gaz, à savoir le carburant (l'hydrogène stocké ou fabriqué à bord du véhicule) et le comburant (air ou l'oxygène pur) qui alimentent les électrodes des cellules électrochimiques. A cet effet, le système comprend deux circuits de gaz : un circuit d'alimentation en gaz carburant, également appelé circuit anodique, et un circuit d'alimentation en gaz comburant, également appelé circuit cathodique. La figure 1 ne représente que les éléments du circuit cathodique utiles à la compréhension de l'invention. Bien entendu, la présente invention n'est pas limitée à ces éléments, et peut inclure tous les dispositifs connus de l'homme du métier et utilisables dans le cas d'un tel système à pile à combustible.
[0029] Ainsi, l'installation comprend un circuit d'alimentation en air côté cathode. Ce circuit comprend un filtre d'entrée d'air 1, un débitmètre 2 permettant de mesurer le débit de l'air entrant, un compresseur d'air 3, et une vanne anti-retour 4, permettant d'éviter que du gaz sortant de la pile à combustible ne revienne en direction du compresseur 3. Comme indiqué précédemment, à la sortie du compresseur 3, l'air est chaud et sec, et risquerait donc, s'il était introduit pendant une trop longue durée dans la pile à combustible, de dégrader la membrane polymère. Par conséquent, dans une pile classique, un humidificateur 5, par exemple du type de ceux de la marque Permapure® , est placé en amont de l'entrée 7 qui permet l'entrée de gaz comburant dans la pile à combustible.
[0030] Le principe de l'humidificateur 5 est le suivant : on sait que les gaz sortants de la pile à combustible sont chargés en humidité, du fait de la demi-réaction chimique se produisant à la cathode 02 + 4 H+ + 4 e- = 2 H20 qui produit de l'eau. Ce gaz sortant par la sortie 8 de la pile est introduit dans l'humidificateur 5, en même temps que le gaz sec sortant du compresseur 3. L'humidificateur 5 comprend une membrane polymère, par exemple de type Nafïon®. A travers cette membrane, une partie de l'humidité présente dans les gaz sortants de la pile à combustible est transférée vers les gaz secs avant leur entrée dans la pile à combustible, ce qui permet de garantir un niveau d'humidité suffisant pour ne pas endommager la membrane polymère de la pile à combustible 6. Les gaz sortants de la pile sont ensuite dirigés, après leur passage dans l'humidificateur 5, vers un échappement de sortie 10, via une vanne de régulation de pression 9. Une telle configuration présente différents inconvénients liés à l'utilisation d'un tel humidificateur. En effet, cet humidificateur est très encombrant, puisqu'il représente une fraction du volume non négligeable de la pile à combustible 6 (il est à noter que les dimensions utilisées sur les figures 1 et 2 ne sont pas représentatives de la réalité). Or, dans le cas d'une application mobile, telle que l'utilisation dans un véhicule, il est utile de pouvoir réduire au maximum le poids et l'encombrement de l'ensemble. Par ailleurs les membranes polymères utilisées dans l'humidificateur sont relativement chères. En outre, dans le cas d'une utilisation d'un tel humidificateur, l'humidité n'est pas homogène dans le canal de la plaque bipolaire côté cathode. En effet, les gaz se chargeant en humidité au cours de leur parcours dans le canal, et donc de la réaction électrochimique, il en résulte une très forte humidité en fin de canal. [0031] Pour remédier à ces inconvénients, la présente invention propose une solution dont un exemple de mise en œuvre est montré en figure 2. Cette installation comprend une vanne 11, reliée d'un côté à la vanne anti-retour 4 et à la vanne de régulation de pression 9, et de l'autre côté à la pile à combustible, au niveau des entrée et sortie 7 et 8. La vanne 11 est une vanne quatre voies, qui peut être monostable ou bistable. Le choix entre les deux s'effectuera notamment au vu des contraintes énergétiques du système, puisque dans un cas il faut maintenir un courant électrique pour maintenir la vanne dans la seconde position, alors que dans l'autre cas une simple impulsion permet de faire passer la vanne de l'une à l'autre des positions, ce qui se révèle avantageux en termes de consommation d'énergie. [0032] Grâce au pilotage de la vanne 11, la sortie du compresseur d'air 3 est reliée alternativement à l'entrée 7 de la pile à combustible, et à la sortie 8 de la pile à combustible. On utilise ici les termes « entrée » et « sortie » par similitude avec la figure 1 , mais dans la configuration de la figure 2 ces points d'accès 7 et 8 sont alternativement des entrées et des sorties de la pile à combustible. Ainsi, dans une première position, le gaz issu du compresseur 3 pénètre dans la pile par l'entrée 7, il parcourt le canal situé sur la plaque bipolaire, parcours au cours duquel la réaction électrochimique se produit. Les gaz résultant de cette réaction ressortent de la pile par la sortie 8 et sont alors dirigés vers la vanne de régulation de sortie 9. Dans une seconde position, le gaz issu du compresseur d'air 3 est dirigé vers la sortie 8, il parcourt le canal situé sur la plaque bipolaire jusqu'à l'entrée 7, et les gaz sortants sont ensuite dirigés, via la vanne 11, vers la vanne de régulation de sortie 9.
[0033] Ainsi, le gaz circule alternativement dans un sens et dans l'autre dans le canal. Or, ainsi qu'expliqué précédemment, lors de son trajet dans le canal, le gaz se charge en eau de par la réaction électrochimique qui se produit. Ainsi, la partie du canal qui se trouve en fin de trajet présente un taux d'humidité très élevé. En alternant l'entrée du gaz, on permet ainsi au gaz sec issu du compresseur 3 d'entrer dans la pile par une portion de canal présentant une humidité élevée, et ainsi de se charger en eau, afin de ne pas dégrader la membrane polymère. Ainsi, on fournit un système permettant de garantir une humidification correcte des gaz en contact avec la membrane sans qu'il ne soit nécessaire de les humidifier avant leur entrée dans la pile 6. Ceci est très avantageux en termes de coût et d'encombrement, puisque la vanne quatre voies est un dispositif courant, disponible à faible coût et présentant un faible encombrement. [0034] En outre, l'alternance d'entrée de gaz entre les points d'accès 7 et 8 permet d'alterner le sens de parcours du gaz dans le canal, et ainsi d'homogénéiser l'humidité tout au long de ce canal. Ainsi, l'humidité varie de manière parabolique le long du canal, avec un point haut atteint au milieu du canal, sans atteindre les très hauts niveaux atteints en fin de canal dans un système classique.
[0035] Les figures 4a et 4b montrent respectivement une première et seconde position de la vanne quatre voies, activée par un moteur angulaire à aimant permanent, fonctionnant tel un électro-aimant. La figure 4a correspond à une situation de « co-flux », et la figure 4b correspond à une situation de « contre-flux ».
[0036] De manière préférentielle, le pilotage de cette vanne est asymétrique. En effet, la situation de « co-flux » a tendance à assécher la membrane plus vite que la situation de « contre-flux », et il est donc avantageux d'avoir un cycle dans lequel la situation de « co- flux » dure entre 5 et 15 secondes, et la situation de « contre-flux » entre 10 et 25 secondes.
[0037] La figure 5 montre, sur la courbe Gl la position angulaire du tambour de la vanne lors de la commutation entre deux positions de la vanne. On constate ainsi que le temps de déplacement tu tambour Td est inférieur à 40 millisecondes, ce qui permet de ne pas observer de rupture de puissance en sortie de la pile à combustible, puisque l'effet capacitif de la pile est suffisant pour maintenir la puissance pendant la courte commutation.
[0038] De manière préférentielle, et comme montré en figure 6, l'axe du moteur 100 et couplé avec l'axe de la vanne quatre voies. En outre, des butées élastiques 102 sont avantageusement installées pour absorber l'énergie emmagasinée par le tambour 101 pendant son déplacement, et limiter le phénomène de rebond, qui apparaît dans le cadre Cl sur la figure 5.
[0039] Ainsi, la présente invention permet de fournir un système à pile à combustible tel que l'humidification des gaz est préservée, sans augmenter le coût et l'encombrement du système de manière démesurée.

Claims

REVENDICATIONS
1. Système à pile à combustible comprenant un empilement de cellules électrochimiques formant pile à combustible (6) à membrane polymère échangeuse d'ions, un circuit d'alimentation en gaz carburant et un circuit d'alimentation en gaz comburant,
ledit circuit d'alimentation en gaz comburant comprenant un compresseur (3) destiné à compressé l'air ambiant avant son entrée dans la pile à combustible (6), et un échappement de sortie (10) destiné à évacuer les gaz sortant de la pile à combustible, ledit circuit d'alimentation étant relié à la pile à combustible en un premier (7) et un second points (8) d'accès,
le système comprenant en outre un élément d'aiguillage (11) possédant deux positions : une première position dans laquelle la sortie du compresseur (3) est reliée au premier point d'accès (7), et le second point d'accès (8) est relié à l'échappement de sortie (10), et une seconde position dans laquelle la sortie du compresseur (3) est reliée au second point d'accès (8), et le premier point d'accès (7) est relié à l'échappement de sortie (10), et le système étant caractérisé en ce qu'il comprend un réservoir d'humidité positionné dans le circuit d'alimentation en gaz comburant, en amont du premier point d'accès (7).
2. Système selon la revendication 1, dans lequel le réservoir d'humidité est composé d'un matériau hygroscopique.
3. Système selon la revendication 1 ou 2, dans lequel les cellules électrochimiques sont séparées par des plaques bipolaires, un canal étant ménagé dans chaque face d'une plaque bipolaire pour la circulation des gaz carburant et comburant, caractérisé en ce que les premier et second points d'accès forment une entrée et une sortie d'un canal.
4. Système selon l'une des revendications 1 à 3, dans lequel l'élément d'aiguillage est une vanne quatre voies.
5. Système selon la revendication 4 dans lequel l'élément d'aiguillage comprend un moteur angulaire aimant permanent couplé à la vanne quatre voies.
6. Système selon l'une des revendications précédentes, comprenant en outre deux capteurs de pression installés dans le circuit d'alimentation en gaz comburant, entre l'élément d'aiguillage et respectivement les premier et second points d'accès.
7. Système selon l'une des revendications précédentes, dans lequel l'élément d'aiguillage est installé dans plaque d'extrémité de la pile à combustible comprenant également un ou plusieurs systèmes de gestion de la pile à combustible.
8. Procédé de pilotage d'un système à pile à combustible selon l'une des revendications précédentes, le procédé comprenant l'étape de piloter l'élément d'aiguillage de manière à le faire passer de la première à la deuxième position selon un cycle régulier asymétrique.
9. Procédé de pilotage selon la revendication 8, dans lequel le cycle régulier a une durée de 15 secondes.
10. Procédé de pilotage selon la revendication 8 ou 9, comprenant une étape de mesure de température au sein de la pile à combustible, et dans lequel le pilotage de l'élément d'aiguillage n'est effectué que lorsque la température de la pile à combustible devient supérieure à un seuil prédéterminé.
EP15800858.1A 2014-11-27 2015-11-26 Système à pile à combustible Active EP3224889B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1461550A FR3029359A1 (fr) 2014-11-27 2014-11-27 Systeme a pile a combustible
PCT/EP2015/077723 WO2016083489A1 (fr) 2014-11-27 2015-11-26 Système à pile à combustible

Publications (2)

Publication Number Publication Date
EP3224889A1 true EP3224889A1 (fr) 2017-10-04
EP3224889B1 EP3224889B1 (fr) 2019-07-31

Family

ID=52779753

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15800858.1A Active EP3224889B1 (fr) 2014-11-27 2015-11-26 Système à pile à combustible

Country Status (6)

Country Link
US (1) US20170338501A1 (fr)
EP (1) EP3224889B1 (fr)
JP (1) JP2018501608A (fr)
CN (1) CN107004874B (fr)
FR (1) FR3029359A1 (fr)
WO (1) WO2016083489A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3030895B1 (fr) 2014-12-19 2017-01-13 Michelin & Cie Systeme a pile a combustible
FR3030900A1 (fr) 2014-12-19 2016-06-24 Michelin & Cie Systeme de mesure de l'hygrometrie d'une membrane echangeuse d'ions dans une pile a combustible
FR3044170B1 (fr) 2015-11-23 2022-12-30 Michelin & Cie Pile a combustible comprenant des plaques de rechauffage et installation comprenant une telle pile
DE102019211171A1 (de) * 2019-07-26 2021-01-28 Siemens Mobility GmbH Verfahren, Vorrichtung und Schienenfahrzeug
CN114497641B (zh) * 2022-01-21 2024-03-26 国鸿氢能科技(嘉兴)股份有限公司 一种燃料电池空气子系统及其控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935726A (en) * 1997-12-01 1999-08-10 Ballard Power Systems Inc. Method and apparatus for distributing water to an ion-exchange membrane in a fuel cell
DE19929472A1 (de) * 1999-06-26 2000-12-28 Dornier Gmbh Verfahren zur Regulierung des Wasserhaushalts einer PEM-Brennstoffzelle
AU7644800A (en) * 1999-09-30 2001-04-30 Stefan Holler Method for operating a fuel cell and device therefor
FR2853765B1 (fr) * 2003-04-08 2009-02-20 Peugeot Citroen Automobiles Sa Procede et dispositif pour humidifier le gaz oxygene d'alimentation de la cellule cathodique d'une pile a membrane echangeuse de protons
JP5009168B2 (ja) * 2006-01-13 2012-08-22 パナソニック株式会社 燃料電池システム及び燃料電池システムの運転方法
DE102012020130B4 (de) * 2012-10-15 2018-12-06 Mann + Hummel Gmbh Befeuchtungseinrichtung, insbesondere für eine Brennstoffzelle

Also Published As

Publication number Publication date
FR3029359A1 (fr) 2016-06-03
WO2016083489A1 (fr) 2016-06-02
EP3224889B1 (fr) 2019-07-31
US20170338501A1 (en) 2017-11-23
CN107004874B (zh) 2020-07-21
CN107004874A (zh) 2017-08-01
JP2018501608A (ja) 2018-01-18

Similar Documents

Publication Publication Date Title
EP3224889B1 (fr) Système à pile à combustible
EP1776730B1 (fr) Controle de l'humidification de la membrane polymere d'une pile a combustible
JP4644064B2 (ja) 燃料電池システム
EP2017916B1 (fr) Arrêt d'une plie à combustible alimentée en oxygène pur
EP2494644B1 (fr) Procedure de detection de l'etat de permeabilite de la membrane polymere echangeuse d'ions d'une pile a combustible.
EP3017492B1 (fr) Procédé d'arrêt d'un système à pile à combustible, et système à pile à combustible
FR2952233A1 (fr) Procedure de detection de l'etat d'une pile a combustible.
EP3005454B1 (fr) Système à pile à combustible
EP3235032A1 (fr) Procédé de pilotage de pile à combustible
WO2021079045A1 (fr) Procédé de conditionnement d'une pile a combustible
JP2005251441A (ja) 燃料電池システム
Belatel et al. Contribution à l’étude d’une pile à combustible de type PEMFC utilisée pour la production d’énergie électrique verte
EP1482588B1 (fr) Module de puissance pour véhicule automobile comprenant une pile à combustible et procédé de mise hors gel d'une pile à combustible
EP2452388B1 (fr) Méthode et dispositif pour augmenter la durée de vie d'une pile à combustible à membrane échangeuse de protons
EP3224890B1 (fr) Procédé de pilotage d'une pile à combustible et système de pile à combustible associé
WO2024089160A1 (fr) Procédé de rodage d'une pile à combustible
EP4113676A1 (fr) Procédé d'activation d'une pile à combustible
EP4120407A1 (fr) Système de régénération d'une pile à combustible comprenant plusieurs groupes et procédé de régénération
EP4386912A1 (fr) Procédé d'activation d'une pile à combustible par électrolyse
FR3036230A1 (fr) Pile a combustible a membrane d’echange de protons presentant une duree de vie accrue

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170627

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602015034911

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01M0008040000

Ipc: H01M0008043800

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01M 8/04223 20160101ALI20181116BHEP

Ipc: H01M 8/04119 20160101ALI20181116BHEP

Ipc: H01M 8/04111 20160101ALI20181116BHEP

Ipc: H01M 8/0438 20160101AFI20181116BHEP

Ipc: H01M 8/04089 20160101ALI20181116BHEP

Ipc: H01M 8/0432 20160101ALI20181116BHEP

Ipc: H01M 8/1018 20160101ALI20181116BHEP

Ipc: H01M 8/04828 20160101ALI20181116BHEP

Ipc: H01M 8/04746 20160101ALI20181116BHEP

INTG Intention to grant announced

Effective date: 20181221

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20190304

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1161893

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015034911

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190731

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1161893

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191031

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191031

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191202

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015034911

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191126

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191126

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151126

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231110

Year of fee payment: 9

Ref country code: FR

Payment date: 20231012

Year of fee payment: 9

Ref country code: DE

Payment date: 20231107

Year of fee payment: 9