EP3223980A1 - Additive production method using thicker powder layers, and component - Google Patents

Additive production method using thicker powder layers, and component

Info

Publication number
EP3223980A1
EP3223980A1 EP16700568.5A EP16700568A EP3223980A1 EP 3223980 A1 EP3223980 A1 EP 3223980A1 EP 16700568 A EP16700568 A EP 16700568A EP 3223980 A1 EP3223980 A1 EP 3223980A1
Authority
EP
European Patent Office
Prior art keywords
powder
component
layers
thick
powder layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16700568.5A
Other languages
German (de)
French (fr)
Inventor
Christian Brunhuber
Thomas Soller
David Regnery
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3223980A1 publication Critical patent/EP3223980A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/67Blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/144Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a process or component in the field of additive manufacturing (AM), in which thick powder layers are used to accelerate the manufacturing process.
  • AM additive manufacturing
  • Beam melting techniques such as Selective Laser Melting (SLM) or Electron Beam Melting (EBM) are currently the technology of choice to fabricate complex gas turbine components, particularly torch parts. Due to the relatively small layer thicknesses of about 0.05 mm, which are due to the desired accuracy, and the time-consuming application of these thin layers by placement by means of a doctor blade or roller, resulting slow Baugeschwindig ⁇ speeds. The low construction speeds (-20 cm 3 / h) are the reason that currently many components can be konven ⁇ tionally cheaper manufactured.
  • SLM Selective Laser Melting
  • EBM Electron Beam Melting
  • the object is achieved by a method according to claim 1 and a component according to claim 9.
  • the invention is based on the idea to accelerate the time-consuming step of powder deposition.
  • the aim is in addition to the commonly used grain sizes in the range 0.025 0,045mm, which are necessary for the generation of fine structures, preferably also one or more coarser Pulverfrak ⁇ functions, ie come with grain sizes, for example in the range of at least 0.1 mm, are used.
  • the invention contains or contain one or more coarse powder fractions non-spherical, preferably oblate and / or prolate Parti ⁇ angle to obtain a very high packing density and thus bestmög ⁇ Liche heat transfer within the layer.
  • the one or more coarser powder fractions can be applied by means of a doctor blade, which works perpendicular to the Ra ⁇ angle for the finer powder - the powder deposit would be arranged accordingly.
  • the blasting power of the additive manufacturing process, preferably the SLM process, and the lowering of the build platform are applied as appropriate
  • An inventive step is in particular the use of a second powder (with mono- or multimodal particle size distribution) with larger metal particles in the additive manufacturing process.
  • a second powder with mono- or multimodal particle size distribution
  • a higher morphology and grain size composition of the second powder a higher
  • FIG. 1 shows the procedure according to the invention.
  • the component to be produced comprises a substrate 4, on which material in powder form is applied in an application direction 22 ⁇ according to an additive manufacturing method.
  • a thick layer of at least 0.1 mm by a plurality of layers 7, 10 is achieved, in which a corresponding squeegee is set gap width or the squeegee travels across several times ⁇ be already known, not yet molten jet Pulverschich ⁇ th.
  • the powder layers 7, 10 have powders with particle sizes ⁇ 50 ⁇ m.
  • the thick powder layer 7, 10 is melted, wherein the melting is selectively carried out to achieve a certain contour of the manufactured ⁇ part ⁇ 1 ⁇ .
  • Figure 2 shows a further procedure in which ⁇ a thick powder layer 13 is generated in comparison to the same Figure 1 are identical, but one layer powder layer 13 is used here preferably having coarser particles.
  • the larger particles preferably have a minimum grain size of 0.1 mm.
  • FIG. 3 shows a component 1 ⁇ ⁇ ⁇ in cross-section with various ⁇ nen sections, in which in a first end portion 15 ⁇ thin powder layers, ie significantly smaller than 0.1mm are used to achieve a certain contour accuracy and in the other end portion 15 ⁇ ⁇ ⁇ coarser particles or meh ⁇ rere powder layers according to the procedure of Figures 1 and 2 are used, since the contour accuracy in this Ab ⁇ section 15 ⁇ ⁇ ⁇ is not required.
  • a middle section 15 ⁇ ⁇ which may be present, the procedure according to the section 15 ⁇ or 15 ⁇ ⁇ ⁇ is used or a combination thereof.
  • Figure 4 shows a plan view of a component 1 in order ⁇ direction 22 IV , in which in an outer portion 18 ⁇ ⁇ higher contour accuracy than in the other section 18 ⁇ is to be achieved, so that there thin powder layers, ie ⁇ 50ym be used and in a different range 18 ⁇ ⁇ the procedure of Figure 1 or Figure 2 is selected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Powder Metallurgy (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The manufacturing rate of selective production methods is increased by using thicker powder layers (7, 10).

Description

Additives Herstellungsverfahren unter Verwendung dickerer Additive manufacturing process using thicker
Pulverschichten und Bauteil Powder layers and component
Die Erfindung betrifft ein Verfahren oder ein Bauteil aus dem Bereich der additiven Fertigung (AM) , bei dem dicke Pulverschichten verwendet werden, um das Herstellungsverfahren zu beschleunigen . The invention relates to a process or component in the field of additive manufacturing (AM), in which thick powder layers are used to accelerate the manufacturing process.
Strahlschmelzverfahren wie das Selektive Laserschmelzen (SLM) oder das Elektronenstrahlschmelzen (EBM) stellen derzeit die Technologie der Wahl dar, um komplexe Gasturbinenkomponenten, insbesondere Brennerteile, zu fertigen. Aufgrund der relativ geringen Schichtdicken von ca. 0,05 mm, die durch die angestrebten Genauigkeiten bedingt sind, und der zeitaufwändigen Auftragung dieser dünnen Schichten durch Platzierung mittels einer Rakel oder Walze, resultieren langsame Baugeschwindig¬ keiten. Die geringen Baugeschwindigkeiten (-20 cm3/h) sind die Ursache dafür, dass derzeit noch viele Bauteile konven¬ tionell günstiger hergestellt werden können. Beam melting techniques such as Selective Laser Melting (SLM) or Electron Beam Melting (EBM) are currently the technology of choice to fabricate complex gas turbine components, particularly torch parts. Due to the relatively small layer thicknesses of about 0.05 mm, which are due to the desired accuracy, and the time-consuming application of these thin layers by placement by means of a doctor blade or roller, resulting slow Baugeschwindig ¬ speeds. The low construction speeds (-20 cm 3 / h) are the reason that currently many components can be konven ¬ tionally cheaper manufactured.
Es sind verschiedene technische Lösungen zur Beschleunigung des Verfahrens angedacht. Die meisten Hersteller versuchen durch große Laser-Leistungen und durch Integration mehrerer Laser (multi-beam) die Baugeschwindigkeiten zu verkürzen. Durch dieses Vorgehen steigt jedoch die Gefahr von thermo- mechanisch bedingten Spannungen und Verzügen im Bauteil. Various technical solutions are proposed to speed up the process. Most manufacturers try to shorten the construction speeds by large laser powers and by integration of several lasers (multi-beam). However, this procedure increases the risk of thermo-mechanically induced stresses and distortions in the component.
Es ist daher Aufgabe der Erfindung oben genanntes Problem zu lösen . It is therefore an object of the invention to solve the above-mentioned problem.
Die Aufgabe wird gelöst durch ein Verfahren gemäß Anspruch 1 und ein Bauteil gemäß Anspruch 9. The object is achieved by a method according to claim 1 and a component according to claim 9.
In den Unteransprüchen sind weitere vorteilhafte Maßnahmen aufgelistet, die beliebig miteinander kombiniert werden kön¬ nen, um weitere Vorteile zu erzielen. Die Figuren 1 bis 4 zeigen Ausführungsbeispiele der Erfin¬ dung . In the dependent claims further advantageous measures are listed, which are combined with each other Kings ¬ nen to obtain further advantages. Figures 1 to 4 show embodiments of the OF INVENTION ¬ dung.
Die Beschreibung und Figuren stellen nur Ausführungsbeispiele der Erfindung dar. The description and figures represent only embodiments of the invention.
Der Erfindung liegt die Idee zugrunde, den zeitraubenden Schritt der Pulverdeposition zu beschleunigen. Dabei soll neben den häufig verwendeten Korngrößen im Bereich 0,025- 0,045mm, die zur Generierung feiner Strukturen notwendig sind, vorzugsweise auch eine oder mehrere gröbere Pulverfrak¬ tionen, d.h. mit Korngrößen z.B. im Bereich von mindestens 0,1 mm, zum Einsatz kommen. In einer speziellen Ausgestaltung der Erfindung enthält oder enthalten die eine oder mehreren groben Pulverfraktionen nicht-sphärische, vorzugsweise oblate und/oder prolate Parti¬ kel, um eine möglichst hohe Packungsdichte und damit bestmög¬ liche Wärmeübertragung innerhalb der Schicht zu erhalten. The invention is based on the idea to accelerate the time-consuming step of powder deposition. The aim is in addition to the commonly used grain sizes in the range 0.025 0,045mm, which are necessary for the generation of fine structures, preferably also one or more coarser Pulverfrak ¬ functions, ie come with grain sizes, for example in the range of at least 0.1 mm, are used. In a specific embodiment of the invention contains or contain one or more coarse powder fractions non-spherical, preferably oblate and / or prolate Parti ¬ angle to obtain a very high packing density and thus bestmög ¬ Liche heat transfer within the layer.
Die eine oder mehrere gröberen Pulverfraktionen können mittels einer Rakel aufgetragen werden, die senkrecht zu der Ra¬ kel für das feinere Pulver arbeitet - das Pulverdepot wäre entsprechend anzuordnen. Die Strahlleistung des additiven Fertigungsprozesses, vorzugsweise des SLM-Prozesses , und das Absenken der Bau-Plattform werden je nach aufgetragener The one or more coarser powder fractions can be applied by means of a doctor blade, which works perpendicular to the Ra ¬ angle for the finer powder - the powder deposit would be arranged accordingly. The blasting power of the additive manufacturing process, preferably the SLM process, and the lowering of the build platform are applied as appropriate
Pulver-Schichtdicke angepasst. Adapted to powder layer thickness.
Ein erfinderischer Schritt liegt insbesondere in der Verwen- dung eines zweiten Pulvers (mit mono- oder multimodaler Korngrößenverteilung) mit größeren Metallpartikeln im additiven Fertigungsprozess . Für Bauteile, bzw. in Abschnitten von Bau¬ teilen, bei denen die Konturgenauigkeit einen gröberen Pul¬ verauftrag zulässt, würde sich ein deutlicher Geschwindig- keitsvorteil ergeben. Bei einem Pulver mit Korngrößen im Bereich von mindestens 0,1 mm, wäre der Pulverauftrag 2-4mal so schnell als für Pulver mit Korngrößen im Bereich von 0,025- 0, 045mm. Weiterhin sind durch Optimierung von Morphologie und Korngrößenzusammensetzung des zweiten Pulvers eine höhere An inventive step is in particular the use of a second powder (with mono- or multimodal particle size distribution) with larger metal particles in the additive manufacturing process. For components or in portions of construction parts ¬, in which the contour accuracy allows a coarser Pul ¬ verauftrag, there was a significant velocity would result keitsvorteil. For a powder with grain sizes in the range of at least 0.1 mm, the powder application would be 2-4 times faster than for powders with grain sizes in the range of 0.025-0.045 mm. Furthermore, by optimizing the morphology and grain size composition of the second powder, a higher
Packungsdichte und damit ein schnelleres und defektärmeres Aufschmelzen möglich, was die Aufbaurate und -qualität zu¬ sätzlich verbessert. Packing density and thus a faster and poorer defect melting possible what the addition rate and quality to ¬ additionally improved.
Die Figur 1 zeigt die Vorgehensweise gemäß der Erfindung. Das herzustellende Bauteil weist ein Substrat 4 auf, auf dem Material in Pulverform gemäß eines additiven Fertigungsverfahrens in einer Auftragsrichtung 22 λ aufgetragen wird. Dabei wird eine dicke Schicht von mindestens 0,1mm durch mehrere Schichten 7, 10 erreicht, in dem eine entsprechende Rakel- spaltbreite eingestellt wird oder die Rakel mehrmals über be¬ reits vorhandene, noch nicht strahlgeschmolzene Pulverschich¬ ten hinüberfährt. FIG. 1 shows the procedure according to the invention. The component to be produced comprises a substrate 4, on which material in powder form is applied in an application direction 22 λ according to an additive manufacturing method. Here, a thick layer of at least 0.1 mm by a plurality of layers 7, 10 is achieved, in which a corresponding squeegee is set gap width or the squeegee travels across several times ¬ be already known, not yet molten jet Pulverschich ¬ th.
Die Pulverschichten 7, 10 weisen Pulver mit Korngrößen < 50ym auf. Durch einen angepassten Schmelzstrahl 11 wird die dicke Pulverschicht 7, 10 geschmolzen, wobei das Schmelzen selektiv erfolgt, um eine bestimmte Kontur des herzustellenden Bau¬ teils 1λ zu erzielen. The powder layers 7, 10 have powders with particle sizes <50 μm. By an adapted melt stream 11, the thick powder layer 7, 10 is melted, wherein the melting is selectively carried out to achieve a certain contour of the manufactured ¬ part ¬ 1 λ .
Figur 2 zeigt eine weitere Vorgehensweise, bei dem im Ver¬ gleich zur Figur 1 gleich eine dicke Pulverschicht 13 erzeugt wird, wobei hier jedoch eine Lage Pulverschicht 13 verwendet wird, die vorzugsweise gröbere Partikel aufweist. Die gröbe- ren Partikel haben vorzugsweise eine Mindestkorngröße von 0, 1mm. Figure 2 shows a further procedure in which ¬ a thick powder layer 13 is generated in comparison to the same Figure 1 are identical, but one layer powder layer 13 is used here preferably having coarser particles. The larger particles preferably have a minimum grain size of 0.1 mm.
Diese Pulverschicht 13 mit den gröberen Pulverkörnern wird ebenfalls durch einen Schmelzstrahl 11 geschmolzen, um ein Bauteil 1λ λ zu erzeugen. Figur 3 zeigt ein Bauteil 1 λ λ λ im Querschnitt mit verschiede¬ nen Abschnitten, bei dem in einem ersten Endabschnitt 15 λ dünne Pulverschichten, d. h. deutlich kleiner als 0,1mm verwendet werden, um eine gewisse Konturgenauigkeit zu erzielen und im anderen Endabschnitt 15λ λ λ gröbere Partikel oder meh¬ rere Pulverschichten gemäß Vorgehensweise der Figuren 1 und 2 verwendet werden, da die Konturgenauigkeit in diesem Ab¬ schnitt 15λ λ λ nicht so gefordert ist. This powder layer 13 with the coarser powder grains is also melted by a melt jet 11 to produce a component 1 λ λ . Figure 3 shows a component 1 λ λ λ in cross-section with various ¬ nen sections, in which in a first end portion 15 λ thin powder layers, ie significantly smaller than 0.1mm are used to achieve a certain contour accuracy and in the other end portion 15 λ λ λ coarser particles or meh ¬ rere powder layers according to the procedure of Figures 1 and 2 are used, since the contour accuracy in this Ab ¬ section 15 λ λ λ is not required.
In einem mittleren Abschnitt 15 λ λ, der ggf. vorhanden ist, wird die Vorgehensweise gemäß für den Abschnitt 15 λ oder 15 λ λ λ verwendet oder eine Kombination daraus. In a middle section 15 λ λ , which may be present, the procedure according to the section 15 λ or 15 λ λ λ is used or a combination thereof.
Figur 4 zeigt eine Aufsicht auf ein Bauteil 1 in Auftrags¬ richtung 22IV, bei dem in einem äußeren Abschnitt 18 λ λ eine höhere Konturgenauigkeit als im anderen Abschnitt 18 λ erzielt werden soll, so dass dort dünne Pulverschichten, d. h. < 50ym verwendet werden und in einem anderen Bereich 18 λ λ die Vorgehensweise gemäß Figur 1 oder Figur 2 gewählt wird. Figure 4 shows a plan view of a component 1 in order ¬ direction 22 IV , in which in an outer portion 18 λ λ higher contour accuracy than in the other section 18 λ is to be achieved, so that there thin powder layers, ie <50ym be used and in a different range 18 λ λ the procedure of Figure 1 or Figure 2 is selected.

Claims

Patentansprüche claims
1. Verfahren 1. Procedure
zur Herstellung eines Bauteils (1 1IV) , for the production of a component (1 1 IV ),
bei dem lagenweise Pulver als eine Pulverschicht (7, 10, in the layered powder as a powder layer (7, 10,
13) aufgetragen wird und 13) is applied and
selektiv verdichtet wird,  is selectively compressed,
insbesondere selektiv geschmolzen wird,  in particular selectively melted,
dadurch gekennzeichnet, dass  characterized in that
zumindest teilweise und zumindest lagenweise dicke Pulver¬ schichten (7, 10, 13) von mindestens 0,1mm aufgetragen werden und at least partially and at least in layers thick powder ¬ layers (7, 10, 13) are applied by at least 0.1 mm and
verdichtet,  compacted
insbesondere geschmolzen,  especially melted,
werden.  become.
2. Verfahren nach Anspruch 1, 2. The method according to claim 1,
bei dem die dicke Pulverschicht (7, 10, 13) unter Verwen- dung von feinen Pulvern mit einer Korngröße von < 50ym erzielt wird.  in which the thick powder layer (7, 10, 13) is obtained by using fine powders with a particle size of <50 μm.
3. Verfahren nach Anspruch 2, 3. The method according to claim 2,
bei dem die dicke Pulverschicht (13) in einem Arbeitsgang in which the thick powder layer (13) in one operation
(13) aufgetragen wird. (13) is applied.
4. Verfahren nach Anspruch 2, 4. The method according to claim 2,
bei dem die dicke Pulverschicht (7, 10) durch Auftragen mehrerer Pulverschichten (7, 10) erzielt wird.  in which the thick powder layer (7, 10) is achieved by applying a plurality of powder layers (7, 10).
5. Verfahren nach Anspruch 1, 3 oder 4, 5. The method according to claim 1, 3 or 4,
bei dem Korngrößen von mindestens 0,1mm verwendet werden, um die dicke Pulverschicht (13) zu erzielen. be used with the grain sizes of at least 0.1mm to achieve the thick powder layer (13).
6. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, 6. The method according to one or more of the preceding claims,
bei dem prolate und/oder oblate Pulverpartikel verwendet werden .  in which prolate and / or wafer powder particles are used.
7. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, 7. The method according to one or more of the preceding claims,
dadurch gekennzeichnet, dass  characterized in that
das Auftragen der Pulverschichten mittels zweier Rakel erfolgt,  the application of the powder layers takes place by means of two doctor blades,
insbesondere die senkrecht zueinander angeordnet sind.  in particular, which are arranged perpendicular to each other.
Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, Method according to one or more of the preceding claims,
bei dem als Pulver eine Pulvermischung verwendet wird, insbesondere nach Anspruch 2  in which a powder mixture is used as powder, in particular according to claim 2
und insbesondere nach Anspruch 5 oder 6.  and in particular according to claim 5 or 6.
Bauteil (1\ 1IV) Component (1 \ 1 IV )
insbesondere hergestellt durch ein Verfahren gemäß einem oder mehreren der Ansprüche 1, 2, 3, 4, 5, 6, 7 oder 8, das verschiedene Bereiche (15 15 λ λ, 15λ λ λ; 18 18 λ λ) aufweist, in particular produced by a method according to one or more of claims 1, 2, 3, 4, 5, 6, 7 or 8, having different regions (15 15 λ λ , 15 λ λ λ , 18 18 λ λ ),
wobei das Bauteil (1 1IV) zumindest einen Bereich auf weist, wherein the component (1 1 IV ) has at least one area,
der bezüglich der Dicke der zu verdichtenden,  the thickness of the compacted,
insbesondere zu schmelzender,  in particular, to be melted,
Pulverschicht sich unterscheidet und demensprechend eine andere Rauigkeit aufweist.  Powder layer is different and therefore has a different roughness.
EP16700568.5A 2015-01-30 2016-01-13 Additive production method using thicker powder layers, and component Withdrawn EP3223980A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015201686.2A DE102015201686A1 (en) 2015-01-30 2015-01-30 Additive manufacturing process using thicker powder layers and component
PCT/EP2016/050550 WO2016120069A1 (en) 2015-01-30 2016-01-13 Additive production method using thicker powder layers, and component

Publications (1)

Publication Number Publication Date
EP3223980A1 true EP3223980A1 (en) 2017-10-04

Family

ID=55135223

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16700568.5A Withdrawn EP3223980A1 (en) 2015-01-30 2016-01-13 Additive production method using thicker powder layers, and component

Country Status (5)

Country Link
US (1) US20180001424A1 (en)
EP (1) EP3223980A1 (en)
CN (1) CN107206488B (en)
DE (1) DE102015201686A1 (en)
WO (1) WO2016120069A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
EP3858519A1 (en) 2020-01-29 2021-08-04 Siemens Aktiengesellschaft 3d printing method and tool

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2142636C (en) * 1994-02-18 2005-09-20 Salvatore Caldarise Implantable articles with as-cast macrotextured surface regions and method of manufacturing the same
DE19649865C1 (en) * 1996-12-02 1998-02-12 Fraunhofer Ges Forschung Shaped body especially prototype or replacement part production
JPH115254A (en) * 1997-04-25 1999-01-12 Toyota Motor Corp Lamination shaping method
WO2001045882A2 (en) * 1999-11-16 2001-06-28 Triton Systems, Inc. Laser fabrication of discontinuously reinforced metal matrix composites
DE10235434A1 (en) * 2002-08-02 2004-02-12 Eos Gmbh Electro Optical Systems Device for producing a three-dimensional object by e.g. selective laser sintering comprises a support and a material-distributing unit which move relative to each other
DE102004008054B8 (en) * 2003-02-25 2007-02-08 Matsushita Electric Works, Ltd., Kadoma Metal powder composition for use in selective laser sintering
DE102004022386B4 (en) * 2004-05-01 2006-05-04 Laserinstitut Mittelsachsen E.V. Molding apparatus for micro-components has molding chamber in which particles are sintered by laser, external acousto-optical modulator below laser controlling beam so that it operates in pulsed or continuous wave mode
DE102006030350A1 (en) * 2006-06-30 2008-01-03 Voxeljet Technology Gmbh Method for constructing a layer body
US20080018018A1 (en) * 2006-07-20 2008-01-24 Nielsen Jeffrey A Solid freeform fabrication methods and systems
DE102006056422B3 (en) * 2006-11-28 2008-04-17 Cl Schutzrechtsverwaltungs Gmbh Coating or compensating arrangement for a building device for forming molded parts for a laser sintering installation comprises a two-piece blade unit consisting of a connecting body and an end piece impinging a building material
EP2292357B1 (en) * 2009-08-10 2016-04-06 BEGO Bremer Goldschlägerei Wilh.-Herbst GmbH & Co KG Ceramic article and methods for producing such article
FR2984779B1 (en) * 2011-12-23 2015-06-19 Michelin Soc Tech METHOD AND APPARATUS FOR REALIZING THREE DIMENSIONAL OBJECTS
DE102012200161A1 (en) * 2012-01-06 2013-07-11 Evonik Industries Ag Device for the layered production of three-dimensional objects
FR2998496B1 (en) * 2012-11-27 2021-01-29 Association Pour La Rech Et Le Developpement De Methodes Et Processus Industriels Armines ADDITIVE MANUFACTURING PROCESS OF A PART BY SELECTIVE FUSION OR SELECTIVE SINTING OF BEDS OF POWDER WITH COMPACITY OPTIMIZED BY A HIGH ENERGY BEAM
US9505057B2 (en) * 2013-09-06 2016-11-29 Arcam Ab Powder distribution in additive manufacturing of three-dimensional articles

Also Published As

Publication number Publication date
CN107206488B (en) 2020-01-03
CN107206488A (en) 2017-09-26
WO2016120069A1 (en) 2016-08-04
DE102015201686A1 (en) 2016-08-04
US20180001424A1 (en) 2018-01-04

Similar Documents

Publication Publication Date Title
DE112011101779T5 (en) Metal powder for selective laser sintering, process for producing a three-dimensional molded article using the same, and three-dimensional molded article obtained therefrom
EP1844181A1 (en) Cold gas spraying method
EP3230492B1 (en) Method for cold gas dynamic spraying using a mask
CH694164A5 (en) High-temperature component, especially for a gas turbine, and methods for their preparation.
DE102009036343A1 (en) Component with anti-fretting layer for use in e.g. gas- or aviation turbines, is formed by kinetic cold gas spraying of solid lubricant and metallic particles
WO2009062732A2 (en) Multicomponent heat sink
EP2439305A1 (en) Thermal spray process avoiding the blockage of cooling holes in turbine components
EP4382635A2 (en) Method for producing gas turbines, gas turbine and method for operating gas turbine plants
DE102013222865A1 (en) Device for generating layers in layers and a method
EP2882939B1 (en) Method for refurbishing a gas turbine blade and use of a gas turbine having said blade
WO2016120069A1 (en) Additive production method using thicker powder layers, and component
EP3153269B1 (en) Worn workpiece surfaces repair
WO2011088817A1 (en) Structured surface coating by means of dynamic cold gas spraying
DE102015217670A1 (en) Sealing element, sealing system with a sealing element, turbomachine with a sealing system and method for producing a sealing element
WO2018184725A1 (en) Method for additively manufacturing a three-dimensional component and method for calculating a scanning strategy for the corresponding control of a system for additively manufacturing a three-dimensional component
DE102006044416A1 (en) Process for the electrochemical coating or stripping of components
DE3325251A1 (en) Process for testing and reconditioning protective layers applied to building elements
DE102019219133A1 (en) Additive manufacturing process
DE19934856A1 (en) Turbine blade and method for its manufacture
DE102010024226A1 (en) Producing or repairing component, preferably components of turbomachine, comprises applying first material layer on base and solidifying, producing first component portion, and applying second material layer on produced component portion
WO2014146997A1 (en) Additive method, in particular for producing a coating, device for performing the method, coating, component production method, and component
DE102016226061A1 (en) Burner tip for installation in a burner with air duct system and fuel channel system and method for their production
WO2012051978A2 (en) Component, and method for developing, repairing and/or constructing such a component
WO2009144109A1 (en) Method for high speed flame spraying
EP2402096A1 (en) Porous beam structure

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170627

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181203

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B29C 64/153 20170101ALI20201007BHEP

Ipc: B22F 1/00 20060101AFI20201007BHEP

Ipc: B29C 67/00 20170101ALI20201007BHEP

Ipc: B33Y 10/00 20150101ALI20201007BHEP

Ipc: B22F 3/105 20060101ALI20201007BHEP

INTG Intention to grant announced

Effective date: 20201110

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210323