EP3221573B1 - Control device for an internal combustion engine - Google Patents

Control device for an internal combustion engine Download PDF

Info

Publication number
EP3221573B1
EP3221573B1 EP15795168.2A EP15795168A EP3221573B1 EP 3221573 B1 EP3221573 B1 EP 3221573B1 EP 15795168 A EP15795168 A EP 15795168A EP 3221573 B1 EP3221573 B1 EP 3221573B1
Authority
EP
European Patent Office
Prior art keywords
emission
internal combustion
combustion engine
emissions
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15795168.2A
Other languages
German (de)
French (fr)
Other versions
EP3221573A1 (en
Inventor
Benjamin Segtrop
Michael Mazur
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP3221573A1 publication Critical patent/EP3221573A1/en
Application granted granted Critical
Publication of EP3221573B1 publication Critical patent/EP3221573B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1406Introducing closed-loop corrections characterised by the control or regulation method with use of a optimisation method, e.g. iteration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/36Control for minimising NOx emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/38Control for minimising smoke emissions, e.g. by applying smoke limitations on the fuel injection amount

Definitions

  • the present invention relates to a control device for an internal combustion engine for determining at least one reference variable for an internal combustion engine.
  • Control units are used to control important engine functions in the vehicle area. In particular, they also serve to complement structural measures such as combustion chamber design and the influence of mixture formation through injection systems and injection processes, engine operation, fuel consumption and the associated CO 2 emissions as well as essential exhaust gas components such as carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides ( NOx) as well as soot and particles.
  • CO carbon monoxide
  • HC hydrocarbons
  • NOx nitrogen oxides
  • control unit receives information about an operating state of the engine (for example speed, torque, desired torque, temperature, DPF (diesel particle filter) loading and determine reference variables that influence consumption and emissions during operation.
  • an operating state of the engine for example speed, torque, desired torque, temperature, DPF (diesel particle filter) loading and determine reference variables that influence consumption and emissions during operation.
  • DPF diesel particle filter
  • Engine control maps stored in the control unit in which, for example, a target exhaust gas recirculation rate or a target boost pressure as a function of the above-mentioned operating state are stored, are often used to determine these reference variables.
  • Suitable command variables are, for example, exhaust gas recirculation rate, exhaust gas recirculation distribution, filling, injection timing, ignition timing. Control variables are then derived from these reference variables (for example throttle valve position, position of a VTG (variable turbine geometry)).
  • internal combustion engine encompasses the complete internal combustion engine system with all of its units, auxiliary units and adjusting elements.
  • This strategy can be used to ensure that the emission limits in defined speed profiles are not exceeded by an optimized allocation of certain reference variables.
  • An example of such speed profiles are normalized Driving cycles, for example the NEDC (new European driving cycle), which are used to determine the exhaust gas and / or consumption values.
  • NEDC new European driving cycle
  • global optimization approaches are known, for example, as specified in Heiko Sequence: Emission Modeling and Model-Based Optimization of the Engine Control, D17 Darmstadt Dissertations 2012.
  • the consumption and emission values (l / 100km or mg / km) can deviate significantly upwards or downwards in some of these different driving profiles.
  • a global optimization of, for example, fuel consumption or CO2 emissions when the emission limits are not exceeded is therefore no longer provided by the known control strategies.
  • EGR rate exhaust gas recirculation rate
  • SCR selective catalytic reduction
  • control device according to the invention according to claim 1, an internal combustion engine according to claim 6 and a vehicle according to claim 7.
  • a control device of an internal combustion engine determines a reference variable (for example EGR rate, EGR distribution, charge), which is output to the internal combustion engine, taking into account operating status information, upper emission limits and a cumulative actual emission quantity.
  • a reference variable for example EGR rate, EGR distribution, charge
  • the operating status information includes, for example, the speed, the current torque, the desired torque, the temperature, the DPF loading and other variables.
  • the cumulative actual emission size comprises the sum of all emissions emitted by the internal combustion engine in a certain operating period.
  • At least one operating state of the internal combustion engine is set via this reference variable (s) in such a way that a plurality of actual emission variables are influenced in such a way that the cumulative actual emission variables in a specific operating period with a combination of any operating states of the internal combustion engine emission limits set in a random order for this operating period do not exceed (mg / km) and a target function is reduced as much as possible.
  • a size to be minimized or optimized is referred to as the objective function (e.g. fuel consumption or the CO 2 emissions dependent on it, regeneration intervals of various exhaust gas aftertreatment systems such as soot particle filters, AdBlue consumption, NOx emissions etc. or a combination of such sizes).
  • any operating states is intended to encompass all technically sensible operating states that can occur in the normal operation of an internal combustion engine.
  • Such a control concept has the advantage that, for example, a non-critical actual emission quantity is increased by changing the reference quantity to such an extent that a critical actual emission quantity is reduced to such an extent that it is ensured that the emission limit level (emission limit value) of an emission quantity for the critical one Emission size not reached or not exceeded in a period.
  • One or more reference variables are selected using an indifference curve from pareto-optimal alternatives - for example, the injection quantity, actual emissions and / or AdBlue dosing. This is done according to a heuristic that takes into account the distances between the accumulated actual emissions and their limit level. The In this process, the command variable is determined and adapted dynamically and depending on the situation.
  • the operating status information includes at least one speed (n) and a target torque (M).
  • the actual emission quantities include at least two of the following quantities. Sizes include NOx emissions, HC emissions, CO emissions, CO 2 emissions, combined HC and NOx emissions, number of soot particles, soot particle mass, condition of a diesel particle filter, condition of a NOx storage catalytic converter.
  • the command variable comprises at least one of the following variables that affect the emission behavior, namely EGR rate, EGR distribution, filling, ignition timing.
  • the manipulated variables derived therefrom include one of the following variables, by means of which the desired command variable can be achieved in modern engines, namely throttle valve position; Setting the variable turbine geometry, injection timing, camshaft adjustment.
  • two actual emission quantities are considered, in particular nitrogen oxide emissions and soot emissions, which are competingly related to diesel engines.
  • an internal combustion engine With the help of an internal combustion engine with a control device according to the invention, improved consumption values and emission values can be realized.
  • Such an internal combustion engine is particularly suitable for vehicles.
  • FIG. 1 An engine diagram is shown, which is regulated or controlled via a control device 1 according to the invention. Shown is an internal combustion engine designed as a reciprocating piston engine 2 (diesel or Otto engine), which is filled via valves 3 and via a charge air line 4 and is emptied via an exhaust line 5.
  • the supply air passes through an air filter 6 and an exhaust gas turbocharger 7 with adjustable turbine geometry through an intercooler 8 via an inlet valve 3 into the cylinder, where fuel may be supplied via an injection system.
  • the exhaust gas formed is discharged through an exhaust valve 3 via the exhaust line.
  • the compressed exhaust gas passes the exhaust gas turbocharger 7, drives it and thus compresses the charge air. It then passes through a nitrogen storage catalytic converter 10 and a diesel particle filter 11 and finally reaches the exhaust pipe 13 through an exhaust gas flap 12.
  • valves 3 are driven by an adjustable camshaft 14. The adjustment takes place via a camshaft adjusting device 15, which can be controlled by control unit 1.
  • Part of the exhaust gas can be introduced into the charge air duct 4 via a high-pressure exhaust gas recirculation valve 16.
  • An exhaust gas-treated partial flow can in the low pressure area after the exhaust gas turbocharger 7 via a corresponding exhaust gas cooling 17 and an exhaust gas recirculation low pressure valve 18 are guided in the charge air line 4.
  • the turbine geometry of the exhaust gas turbocharger 7 can be adjusted via an adjusting device 19.
  • the charge air supply (“gas") is regulated via the main throttle valve 20.
  • the control unit 1 includes the exhaust gas recirculation low pressure valve 18, the actuating device 19, the main throttle valve 20, the exhaust gas recirculation high pressure valve 16, the camshaft adjusting device 15 and the exhaust gas flap 12 can be controlled (solid lines).
  • control unit 1 is supplied via sensors and setpoint devices, for example with temperature information (intercooler 8, exhaust gas cooling 17) and with actual emission values (e.g. from a sensor or physical / empirical model).
  • the following exemplary embodiments relate to the control and regulation of emission values as a function of predefined upper emission limits and cumulative actual values.
  • the control unit 1 determines one or more effective and effective reference variables x (t) required to influence the emissions.
  • manipulated variables are derived which in the internal combustion engine 2 or its components (for example position of the main throttle valve 20, camshaft setting, setting of the turbine geometry of the exhaust gas turbocharger 7, setting of the exhaust gas valve 12, etc.) are the emissions (for example NOx, HC, CO, soot ) of the internal combustion engine. These are recorded as mass flows (emission rates) Em DS (for example mass per time [mg / s]). Cumulative actual values Em K of the emissions are derived from these emissions (integration of the emission rates over time).
  • Em K are used in control unit 1 together with the elapsed operating time t or the distance s traveled, known or specified upper emission limits Em G and information about the driver's request FW (eg acceleration: a target ; torque: M target ) and other operating conditions SB (eg speed: v; speed: n) of the internal combustion engine 2 determines the reference variable (n) x (t).
  • driver's request FW eg acceleration: a target ; torque: M target
  • SB eg speed: v; speed: n
  • Fig. 3 shows an example of the relationship between NOx emissions and soot emissions as a function of the exhaust gas recirculation rate (EGR), which forms a reference variable x (t) here.
  • EGR exhaust gas recirculation rate
  • Fig. 4 shows a diagram with reference variable combinations of certain soot emissions, which are plotted against certain NOx emissions. If, for example, there is now the task of minimizing / reducing the soot emissions in an (any) operating state, while maintaining a (cumulative) NOx limit value, the emission history (cumulative actual values Em G ) for past (possibly any, in different operating states).
  • Pareto-optimal target size combinations in which soot emissions can only be further reduced if the NOx emission is increased, are identified by the points x. All Pareto-optimal target size combinations form the so-called pareto front, which connects the points x to one another. In the event of a minimization problem, points to the left below the Pareto front (hatched area) cannot be realized and all target size combinations provided to the right above are not Pareto-optimal, since there are combinations (points x) in each case that relate to soot emission and NOx emission can be realized more cheaply on the pareto front.
  • Fig. 5 The selection from pareto-optimal target size combinations of two target sizes (NOx emissions and soot emissions) is shown in Fig. 5 .
  • a NOx limit value NOx-G (dashed line) is shown in the right column as the upper emission limit Em G and the column shown below shows the accumulated actual NOx emissions NOx-K 1 in the shaded area as the accumulated actual value Em K. Since the cumulative NOx emissions NOx-K 1 are already relatively close to the NOx limit value NOx-G, a relatively high exchange ratio between the target values soot emissions and NOx emissions (increased soot emissions in favor of low NOx) has been chosen around the NOx - NOx-G limit not To exceed.
  • This exchange rate desired here is indicated by the indifference curve I, which is shown here to decrease relatively steeply, and is then shifted to the closest target size combination, in which a specific soot emission and a specific NOx emission can be realized for this operating point.
  • This target size combination is then determined using the in the diagram Fig. 3 known information is assigned an EGR as a suitable pareto-optimized reference variable x (t).
  • Fig. 6 shows an example in which the accumulated NOx emissions (NOx-K 2 ) are further below the NOx limit value NOx-G.
  • NOx-K 2 the NOx limit value
  • the exchange ratio of the indifference curve I is smaller (the straight line falls flat). A higher NOx emission can therefore be accepted here without there being any risk that the NOx limit value NOx-G will be exceeded.
  • the soot emission can thus be kept lower.
  • the flatter straight line is shifted to the next target size combination, on which a certain NOx emission and a corresponding soot emission with an associated reference variable x (t) (here the corresponding EGR) Fig. 3 ) can be realized.
  • Fig. 7 shows an example in which the accumulated NOx emissions (NOx-K 3 ) have exceeded the NOx limit value NOx-G.
  • the exchange ratio of the straight line I vertical indifference curve
  • the reference variable x (t) is selected for minimal NOx emissions.
  • Fig. 8 shows analog to Fig. 5 an example in which CO 2 should be minimized depending on the accumulated NOx emissions.
  • Fig. 9 shows analog to Fig. 5 an example in which the indifference curve is not linear.
  • the emission values can be improved in operation and depending on changing boundary conditions.
  • the method can also be extended to multidimensional problems. For example, it is possible to determine pareto-optimized reference variables x (t) for multiple combinations (e.g. for CO 2 emissions, soot emissions and NOx emissions).
  • other reference variables x (t) pareto-optimized can also be determined for control purposes (e.g. VTG position or rail pressure).

Description

Die vorliegende Erfindung betrifft ein Steuergerät für einen Verbrennungsmotor zur Bestimmung wenigstens einer Führungsgröße für einen Verbrennungsmotor.The present invention relates to a control device for an internal combustion engine for determining at least one reference variable for an internal combustion engine.

Steuergeräte dienen dazu, im Fahrzeugbereich wichtige Motorfunktionen zu steuern. Insbesondere dienen sie auch dazu, ergänzend zu konstruktiven Maßnahmen wie Brennraumgestaltung und der Beeinflussung der Gemischbildung durch Einspritzsysteme und Einspritzverfahren, im Motorbetrieb den Kraftstoffverbrauch und die damit zusammenhängenden CO2-Emissionen sowie wesentliche Abgaskomponenten wie Kohlenmonoxid (CO), Kohlenwasserstoffe (HC), Stickoxide (NOx) sowie Ruß und Partikel zu senken.Control units are used to control important engine functions in the vehicle area. In particular, they also serve to complement structural measures such as combustion chamber design and the influence of mixture formation through injection systems and injection processes, engine operation, fuel consumption and the associated CO 2 emissions as well as essential exhaust gas components such as carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides ( NOx) as well as soot and particles.

Bekannte Funktionen eines Steuergeräts erhalten Informationen über einen Betriebszustand des Motors (zum Beispiel Drehzahl, Drehmoment, gewünschtes Drehmoment, Temperatur, DPF (Diesel-Partikelfilter)beladung und bestimmen Führungsgrößen, welche den Verbrauch und die Emissionen im Betrieb beeinflussen.Known functions of a control unit receive information about an operating state of the engine (for example speed, torque, desired torque, temperature, DPF (diesel particle filter) loading and determine reference variables that influence consumption and emissions during operation.

Zur Bestimmung dieser Führungsgrößen dienen oft ebenfalls im Steuergerät hinterlegte Motorkennfelder, in denen bspw. eine Soll-Abgasrückführungsrate oder ein Soll-Ladedruck in Abhängigkeit zum oben genannten Betriebszustand hinterlegt sind.Engine control maps stored in the control unit, in which, for example, a target exhaust gas recirculation rate or a target boost pressure as a function of the above-mentioned operating state are stored, are often used to determine these reference variables.

Geeignete Führungsgrößen sind zum Beispiel Abgasrückführungsrate, Abgasrückführungsaufteilung, Füllung, Einspritzzeitpunkt, Zündzeitpunkt. Von diesen Führungsgrößen werden dann Stellgrößen abgeleitet (zum Beispiel Drosselklappenstellung, Stellung einer VTG (Variable Turbinengeometrie)).Suitable command variables are, for example, exhaust gas recirculation rate, exhaust gas recirculation distribution, filling, injection timing, ignition timing. Control variables are then derived from these reference variables (for example throttle valve position, position of a VTG (variable turbine geometry)).

Der Begriff "Verbrennungsmotor" umfasst in diesem Zusammenhang das vollständige Verbrennungsmotorsystem mit all seinen Aggregaten, Hilfsaggregaten und Stellelementen.In this context, the term “internal combustion engine” encompasses the complete internal combustion engine system with all of its units, auxiliary units and adjusting elements.

Mit dieser Strategie kann sichergestellt werden, dass in festgelegten Geschwindigkeitsprofilen durch eine optimierte Zuordnung bestimmter Führungsgrößen die Emissionsobergrenzen nicht überschritten werden. Ein Beispiel für solche Geschwindigkeitsprofile sind normierte Fahrzyklen, zum Beispiel der NEFZ (neuer Europäischer Fahrzyklus), die zur Bestimmung der Abgas- und/oder Verbrauchswerte gefahren werden. Für solche Zyklen sind beispielsweise globale Optimierungsansätze bekannt, wie sie in Heiko Sequenz: Emission Modelling and Model-Based Optimisation of the Engine Control, D17 Darmstädter Dissertationen 2012 angegeben sind.This strategy can be used to ensure that the emission limits in defined speed profiles are not exceeded by an optimized allocation of certain reference variables. An example of such speed profiles are normalized Driving cycles, for example the NEDC (new European driving cycle), which are used to determine the exhaust gas and / or consumption values. For such cycles, global optimization approaches are known, for example, as specified in Heiko Sequence: Emission Modeling and Model-Based Optimization of the Engine Control, D17 Darmstadt Dissertations 2012.

Des Weiteren offenbaren DE 10 2006 007122 A1 und US 2011/264353 A1 Ansätze für die Optimierung von Emissionswerten. Optimierungsverfahren z.B. anhand von pareto-optimalen Alternativen sind auch in R. Timothy Marler ET AL: "The weighted sum method for multi-objective optimization: new insights", Structural and Multidisciplinary Optimization, Bd.41, Nr. 6, S. 853-862 beschrieben.Furthermore reveal DE 10 2006 007122 A1 and US 2011/264353 A1 Approaches for optimizing emission values. Optimization procedures, for example based on pareto-optimal alternatives, are also in R. Timothy Marler ET AL: "The weighted sum method for multi-objective optimization: new insights", Structural and Multidisciplinary Optimization, Vol. 41, No. 6, pp. 853-862 described.

Im realen Fahrbetrieb (und ggf. bei sogenannten Real-Driving-Emissions-Testverfahren) treten nun beliebige, unterschiedliche Geschwindigkeitsprofile und Betriebszustände auf, die vor und während der Fahrt nicht bekannt sind.Any number of different speed profiles and operating states that are not known before and during the trip now occur in real driving mode (and possibly in so-called real driving emissions test methods).

Da die einzelnen Betriebszustände auch unabhängig von der Motorsteuerung schon unterschiedliche Emissionswerte aufweisen, können die Verbrauchs- und Emissionswerte (l/100km bzw. mg/km) bei diesen beliebigen, unterschiedlichen Fahrprofilen teilweise erheblich nach unten oder oben abweichen. Eine globale Optimierung von bspw. Kraftstoffverbrauch oder CO2-Emissionen bei Nichtüberschreiten von Emissionsgrenzen ist durch die bekannten Steuerstrategien somit nicht mehr gegeben.Since the individual operating states already have different emission values regardless of the engine control system, the consumption and emission values (l / 100km or mg / km) can deviate significantly upwards or downwards in some of these different driving profiles. A global optimization of, for example, fuel consumption or CO2 emissions when the emission limits are not exceeded is therefore no longer provided by the known control strategies.

Insbesondere bei konkurrierenden Emissionsgrößen, wie sie beispielsweise in einem Dieselmotor bei den Ruß(partikel)emissionen und den Stickoxidemissionen auftreten, können Situationen auftreten, bei denen beispielsweise in einem Geschwindigkeitsprofil die zulässigen Stickoxidemissionen überschritten werden und die zulässigen Rußemissionen deutlich unterschritten werden.Particularly in the case of competing emission values, such as those that occur in soot (particulate) emissions and nitrogen oxide emissions in a diesel engine, situations can arise in which, for example, the permissible nitrogen oxide emissions are exceeded in a speed profile and the permissible soot emissions are clearly undercut.

Es besteht also die Aufgabe, ein Steuergerät für einen Verbrennungsmotor mit einer Funktion bereitzustellen, das die oben geschilderten Probleme wenigstens teilweise löst und geeignet ist, bei Real-Driving-Emissions-Testverfahren die Führungsgrößen wie beispielsweise Abgasrückführungsrate (AGR-Rate), AGR-Aufteilung (Hochdruck/Niederdruck), Füllung, Raildruck, aber auch die Nutzung von Abgasnachbehandlungssystemen wie beispielsweise Dieselpartikelfilter und SCR (selektive katalytische Reduktion) im Hinblick auf den Kraftstoff- und AdBlue-Verbrauch sowie die Emissionsgrößen zu optimieren.It is therefore the task of providing a control unit for an internal combustion engine with a function that at least partially solves the problems described above and is suitable, the reference variables such as exhaust gas recirculation rate (EGR rate) and EGR distribution in real driving emission test methods (High pressure / low pressure), filling, rail pressure, but also the use of exhaust gas aftertreatment systems such as diesel particulate filter and SCR (selective catalytic reduction) with regard to fuel and AdBlue consumption as well as the emission variables.

Diese Aufgabe wird durch das erfindungsgemäße Steuergerät nach Anspruch 1, einen Verbrennungsmotor nach Anspruch 6 und ein Fahrzeug nach Anspruch 7 gelöst.This object is achieved by the control device according to the invention according to claim 1, an internal combustion engine according to claim 6 and a vehicle according to claim 7.

Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen und der folgenden Beschreibung bevorzugter Ausführungsbeispiele der vorliegenden Erfindung.Further advantageous embodiments of the invention result from the subclaims and the following description of preferred exemplary embodiments of the present invention.

Ein erfindungsgemäßes Steuergerät eines Verbrennungsmotors bestimmt unter Berücksichtigung einer Betriebszustandsinformation, Emissionsobergrenzen und einer kumulierten Ist-Emissionsgröße eine Führungsgröße (zum Beispiel AGR-Rate, AGR-Aufteilung, Füllung), die an den Verbrennungsmotor abgegeben wird.A control device of an internal combustion engine according to the invention determines a reference variable (for example EGR rate, EGR distribution, charge), which is output to the internal combustion engine, taking into account operating status information, upper emission limits and a cumulative actual emission quantity.

Die Betriebszustandsinformationen umfassen zum Beispiel die Drehzahl, das aktuelle Drehmoment, das gewünschte Drehmoment, die Temperatur, die DPF-Beladung und andere Größen.The operating status information includes, for example, the speed, the current torque, the desired torque, the temperature, the DPF loading and other variables.

Die kumulierte Ist-Emissionsgröße umfasst die Summe aller in einem bestimmten Betriebszeitraum vom Verbrennungsmotor ausgestoßenen Emissionen.The cumulative actual emission size comprises the sum of all emissions emitted by the internal combustion engine in a certain operating period.

Über diese Führungsgröße(n) wird wenigstens ein Betriebszustand des Verbrennungsmotors so eingestellt, dass mehrere Ist-Emissionsgrößen so beeinflusst werden, dass die kumulierten Ist-Emissionsgrößen in einem bestimmten Betriebszeitraum mit einer Zusammenstellung aus beliebigen, in zufälliger Reihenfolge eingestellten,unterschiedlichen Betriebszuständen des Verbrennungsmotors Emissionsobergrenzen für diesen Betriebszeitraum nicht überschreiten (mg/km) und eine Zielfunktion so weit wie möglich reduziert wird. Hier wird eine zu minimierende bzw. zu optimierende Größe als Zielfunktion bezeichnet (z.B. Kraftstoffverbrauch bzw. die davon abhängigen CO2-Emissionen, Regenerationsintervalle diverser Abgasnachbehandlungssysteme wie Rußpartikelfilter, AdBlue-Verbrauch, NOx Emissionen etc. oder eine Kombination solcher Größen).At least one operating state of the internal combustion engine is set via this reference variable (s) in such a way that a plurality of actual emission variables are influenced in such a way that the cumulative actual emission variables in a specific operating period with a combination of any operating states of the internal combustion engine emission limits set in a random order for this operating period do not exceed (mg / km) and a target function is reduced as much as possible. Here, a size to be minimized or optimized is referred to as the objective function (e.g. fuel consumption or the CO 2 emissions dependent on it, regeneration intervals of various exhaust gas aftertreatment systems such as soot particle filters, AdBlue consumption, NOx emissions etc. or a combination of such sizes).

Der Begriff "beliebige" Betriebszustände soll alle technisch sinnvollen Betriebszustände umfassen, die im sachgerechten Normalbetrieb eines Verbrennungsmotors auftreten können.The term “any” operating states is intended to encompass all technically sensible operating states that can occur in the normal operation of an internal combustion engine.

So ein Steuerungskonzept hat den Vorteil, dass beispielsweise eine unkritische Ist-Emissionsgröße durch eine Veränderung der Führungsgröße so weit erhöht wird, dass eine kritische Ist-Emissionsgröße so weit verringert wird, dass sichergestellt wird, dass das Emissionsgrenzniveau (Emissionsgrenzwert) einer Emissionsgröße für die kritische Emissionsgröße nicht erreicht oder in einem Zeitraum nicht überschritten wird.Such a control concept has the advantage that, for example, a non-critical actual emission quantity is increased by changing the reference quantity to such an extent that a critical actual emission quantity is reduced to such an extent that it is ensured that the emission limit level (emission limit value) of an emission quantity for the critical one Emission size not reached or not exceeded in a period.

Es werden dabei eine oder mehrere Führungsgröße(n) durch eine Indifferenzkurve aus pareto-optimalen Alternativen - von bspw. Einspritzmenge, Ist-Emissionen und/oder AdBlue-Dosierung - ausgewählt. Dies geschieht nach einer Heuristik, die die Abstände der kumulierten Ist-Emissionen zu ihrem Grenzniveau berücksichtigt. Die Führungsgröße wird also bei diesem Verfahren dynamisch und situationsbedingt bestimmt bzw. adaptiert.One or more reference variables are selected using an indifference curve from pareto-optimal alternatives - for example, the injection quantity, actual emissions and / or AdBlue dosing. This is done according to a heuristic that takes into account the distances between the accumulated actual emissions and their limit level. The In this process, the command variable is determined and adapted dynamically and depending on the situation.

Dabei gibt es Ausführungen, bei denen die Betriebszustandsinformation wenigstens eine Drehzahl (n) und ein Soll-Drehmoment (M) umfasst.There are versions in which the operating status information includes at least one speed (n) and a target torque (M).

Bei einer Ausführung umfassen die Ist-Emissionsgrößen wenigstens zwei der folgenden Größen. Zu den Größen gehören NOx-Ausstoß, HC-Ausstoß, CO-Ausstoß, CO2-Ausstoß, kombinierter HC- und NOx-Ausstoß, Rußpartikelanzahl, Rußpartikelmasse, Zustand eines Dieselpartikelfilters, Zustand eines NOx-Speicherkatalysators.In one embodiment, the actual emission quantities include at least two of the following quantities. Sizes include NOx emissions, HC emissions, CO emissions, CO 2 emissions, combined HC and NOx emissions, number of soot particles, soot particle mass, condition of a diesel particle filter, condition of a NOx storage catalytic converter.

Die Führungsgröße umfasst wenigstens eine der folgenden Größen, die sich auf das Emissionsverhalten auswirken, nämlich AGR-Rate, AGR-Aufteilung, Füllung, Zündzeitpunkt. Die daraus abgeleiteten Stellgrößen umfassen dabei eine der folgenden Größen, über die bei modernen Motoren die gewünschte Führungsgröße bewirkt werden kann, nämlich Drosselklappenstellung; Einstellung der variablen Turbinengeometrie, Einspritzzeitpunkt, Nockenwellenverstellung.The command variable comprises at least one of the following variables that affect the emission behavior, namely EGR rate, EGR distribution, filling, ignition timing. The manipulated variables derived therefrom include one of the following variables, by means of which the desired command variable can be achieved in modern engines, namely throttle valve position; Setting the variable turbine geometry, injection timing, camshaft adjustment.

In einer anderen Ausführung werden zwei Ist-Emissionsgrößen betrachtet, und zwar insbesondere der Stickoxidausstoß und der Rußausstoß, die bei Dieselmotoren konkurrierend zusammenhängen.In another embodiment, two actual emission quantities are considered, in particular nitrogen oxide emissions and soot emissions, which are competingly related to diesel engines.

Mit Hilfe eines Verbrennungsmotors mit einem erfindungsgemäßen Steuergerät, lassen sich verbesserte Verbrauchswerte und Emissionswerte realisieren. So ein Verbrennungsmotor ist besonders für Fahrzeuge geeignet.With the help of an internal combustion engine with a control device according to the invention, improved consumption values and emission values can be realized. Such an internal combustion engine is particularly suitable for vehicles.

Ausführungsbeispiele der Erfindung werden nun beispielhaft und unter Bezugnahme auf die beigefügte Zeichnung beschrieben. Darin zeigt:

Fig. 1
schematisch ein Motorsystem mit einem erfindungsgemäßen Steuergerät;
Fig. 2
eine schematische Darstellung von Input- und Output-Größen, sowie der Informationsverarbeitung eines erfindungsgemäßen Steuergeräts;
Fig. 3
ein Diagramm, in dem Ruß- und NOx-Emissionen in Abhängigkeit der AGR-Rate dargestellt sind;
Fig. 4
pareto-optimale Arbeitspunkte, für die eine bestimmte Rußemission und eine bestimmte NOx-Emission gilt;
Fig. 5
Auswahl einer Führungsgröße durch eine Indifferenzkurve basierend auf dem Zusammenhang von Rußemissionen und NOx-Emissionen bei einer bestimmten (erhöhten) kumulierten NOx-Emission;
Fig. 6
die in Fig. 5 dargestellte Auswahl für eine niedrigere kumulierte NOx-Emission;
Fig. 7
die in Fig. 5 dargestellte Auswahl für eine überhöhte kumulierte NOx-Emission;
Fig. 8
die in Fig. 5 dargestellte Auswahl basierend auf dem Zusammenhang von CO2- und NOx-Emissionen;
Fig. 9
die in Fig. 5 dargestellte Auswahl durch eine nichtlineare Indifferenzkurve;
Embodiments of the invention will now be described by way of example and with reference to the accompanying drawings. It shows:
Fig. 1
schematically an engine system with a control device according to the invention;
Fig. 2
a schematic representation of input and output variables, and the information processing of a control device according to the invention;
Fig. 3
a diagram showing soot and NOx emissions as a function of the EGR rate;
Fig. 4
pareto-optimal operating points for which a specific soot emission and a specific NOx emission apply;
Fig. 5
Selection of a reference variable by means of an indifference curve based on the relationship between soot emissions and NOx emissions for a specific (increased) cumulative NOx emission;
Fig. 6
in the Fig. 5 illustrated selection for a lower accumulated NOx emission;
Fig. 7
in the Fig. 5 illustrated selection for an excessive cumulative NOx emission;
Fig. 8
in the Fig. 5 Selection shown based on the relationship between CO2 and NOx emissions;
Fig. 9
in the Fig. 5 selection represented by a nonlinear indifference curve;

In Fig. 1 ist ein Motorschema dargestellt, welches über ein erfindungsgemäßes Steuergerät 1 geregelt bzw. gesteuert wird. Dargestellt ist ein als Hubkolbenmotor 2 (Diesel- oder Otto-Motor), ausgebildeter Verbrennungsmotor, der über Ventile 3 und über einen Ladeluftstrang 4 befüllt wird und über einen Abgasstrang 5 entleert wird. Die Zuluft gelangt durch einen Luftfilter 6 und einen Abgasturbolader 7 mit verstellbarer Turbinengeometrie durch einen Zwischenkühler 8 über ein Einlassventil 3 in den Zylinder, wo gegebenenfalls über ein Einspritzsystem Kraftstoff zugeführt wird. Nach der Verdichtung und Verbrennung des Luft-Kraftstoffgemischs wird das entstandene Abgas durch ein Auslassventil 3 über den Abgasstrang abgeführt.In Fig. 1 An engine diagram is shown, which is regulated or controlled via a control device 1 according to the invention. Shown is an internal combustion engine designed as a reciprocating piston engine 2 (diesel or Otto engine), which is filled via valves 3 and via a charge air line 4 and is emptied via an exhaust line 5. The supply air passes through an air filter 6 and an exhaust gas turbocharger 7 with adjustable turbine geometry through an intercooler 8 via an inlet valve 3 into the cylinder, where fuel may be supplied via an injection system. After the compression and combustion of the air-fuel mixture, the exhaust gas formed is discharged through an exhaust valve 3 via the exhaust line.

Das verdichtete Abgas passiert dabei den Abgasturbolader 7, treibt diesen an und verdichtet so die Ladeluft. Anschließend passiert es einen Stickstoffspeicherkatalysator 10 sowie einen Dieselpartikelfilter 11 und gelangt schließlich durch eine Abgasklappe 12 in den Auspuff 13.The compressed exhaust gas passes the exhaust gas turbocharger 7, drives it and thus compresses the charge air. It then passes through a nitrogen storage catalytic converter 10 and a diesel particle filter 11 and finally reaches the exhaust pipe 13 through an exhaust gas flap 12.

Die Ventile 3 werden über eine verstellbare Nockenwelle 14 angetrieben. Die Verstellung erfolgt über eine Nockenwellenverstelleinrichtung 15, die vom Steuergerät 1 ansteuerbar ist.The valves 3 are driven by an adjustable camshaft 14. The adjustment takes place via a camshaft adjusting device 15, which can be controlled by control unit 1.

Ein Teil des Abgases kann über ein Hochdruck-Abgasrückführventil 16 in den Ladeluftstrang 4 eingeleitet werden. Ein abgasbehandelter Teilstrom kann im Niederdruckbereich nach dem Abgasturbolader 7 über eine entsprechende Abgaskühlung 17 und ein Abgasrückführungs-Niederdruckventil 18 in den Ladeluftstrang 4 geführt werden. Die Turbinengeometrie des Abgasturboladers 7 ist über eine Stelleinrichtung 19 einstellbar. Die Ladeluftzufuhr ("Gas") wird über die Hauptdrosselklappe 20 geregelt.Part of the exhaust gas can be introduced into the charge air duct 4 via a high-pressure exhaust gas recirculation valve 16. An exhaust gas-treated partial flow can in the low pressure area after the exhaust gas turbocharger 7 via a corresponding exhaust gas cooling 17 and an exhaust gas recirculation low pressure valve 18 are guided in the charge air line 4. The turbine geometry of the exhaust gas turbocharger 7 can be adjusted via an adjusting device 19. The charge air supply ("gas") is regulated via the main throttle valve 20.

Über das Steuergerät 1 sind u.A. das Abgasrückführungs-Niederdruckventil 18, die Stelleinrichtung 19, die Hauptdrosselklappe 20, das Abgasrückführungs-Hochdruckventil 16, die Nockenwellenverstelleinrichtung 15 sowie die Abgasklappe 12 ansteuerbar (durchgezogene Linien).The control unit 1 includes the exhaust gas recirculation low pressure valve 18, the actuating device 19, the main throttle valve 20, the exhaust gas recirculation high pressure valve 16, the camshaft adjusting device 15 and the exhaust gas flap 12 can be controlled (solid lines).

Weiterhin wird das Steuergerät 1 über Sensoren und Sollwertgeber beispielsweise mit Temperaturinformationen (Zwischenkühler 8, Abgaskühlung 17) und mit Ist-Emissionswerten (z.B. aus einem Sensor oder physikalischen/empirischen Modell) versorgt.Furthermore, the control unit 1 is supplied via sensors and setpoint devices, for example with temperature information (intercooler 8, exhaust gas cooling 17) and with actual emission values (e.g. from a sensor or physical / empirical model).

Dazu können noch weitere Betriebszustandsinformationen kommen wie: Fahrpedalstellung, Drosselklappenstellung, Luftmasse, Batteriespannung, Motortemperatur, Kurbelwellendrehzahl und oberer Totpunkt, Getriebestufe, Fahrzeuggeschwindigkeit.In addition, there may be additional operating status information such as: accelerator pedal position, throttle valve position, air mass, battery voltage, engine temperature, crankshaft speed and top dead center, gear stage, vehicle speed.

Es besteht also ein komplexes Steuer- und Regelsystem, welches den Motorbetrieb in unterschiedlichsten Betriebszuständen hinsichtlich unterschiedlicher Zielgrößen einstellen, regeln und möglichst optimieren soll.There is therefore a complex control system that is intended to set, regulate and optimize engine operation in a wide variety of operating states with regard to different target variables.

Die nachfolgenden Ausführungsbeispiele beziehen sich dabei auf die Steuerung und Regelung von Emissionswerten in Abhängigkeit von vorgegebenen Emissionsobergrenzen und kumulierten Ist-Werten.The following exemplary embodiments relate to the control and regulation of emission values as a function of predefined upper emission limits and cumulative actual values.

Ein solches Grundsystem ist in Fig. 2 dargestellt. Dabei bestimmt das Steuergerät 1 eine oder mehrere zur Beeinflussung der Emissionen erforderliche und wirksame Führungsgrößen x(t).Such a basic system is in Fig. 2 shown. The control unit 1 determines one or more effective and effective reference variables x (t) required to influence the emissions.

Daraus werden Stellgrößen abgeleitet, die im Verbrennungsmotor 2 bzw. dessen Komponenten (zum Beispiel Stellung der Hauptdrosselklappe 20, Nockenwelleneinstellung, Einstellung der Turbinengeometrie des Abgasturboladers 7, Einstellung der Abgasklappe 12, etc.) die Emissionen (zum Beispiel NOx, HC, CO, Ruß) des Verbrennungsmotors beeinflussen. Diese werden als Massenströme (Emissionsraten) EmDS erfasst (zum Beispiel Masse pro Zeit [mg/s]). Aus diesen Emissionen werden kumulierte Ist-Werte EmK der Emissionen abgeleitet (Integration der Emissionsraten über die Zeit).From this, manipulated variables are derived which in the internal combustion engine 2 or its components (for example position of the main throttle valve 20, camshaft setting, setting of the turbine geometry of the exhaust gas turbocharger 7, setting of the exhaust gas valve 12, etc.) are the emissions (for example NOx, HC, CO, soot ) of the internal combustion engine. These are recorded as mass flows (emission rates) Em DS (for example mass per time [mg / s]). Cumulative actual values Em K of the emissions are derived from these emissions (integration of the emission rates over time).

Aus diesen kumulierten Ist-Werten EmK werden im Steuergerät 1 zusammen mit der verstrichenen Betriebszeit t bzw. der zurückgelegten Strecke s, bekannten bzw. vorgegebenen Emissionsobergrenzen EmG und Informationen über den Fahrerwunsch FW (z.B. Beschleunigung: aSoll; Drehmoment: MSoll) und sonstige Betriebsbedingungen SB (z.B. Geschwindigkeit: v; Drehzahl: n) des Verbrennungsmotors 2 die Führungsgröße(n) x(t) bestimmt.These cumulative actual values Em K are used in control unit 1 together with the elapsed operating time t or the distance s traveled, known or specified upper emission limits Em G and information about the driver's request FW (eg acceleration: a target ; torque: M target ) and other operating conditions SB (eg speed: v; speed: n) of the internal combustion engine 2 determines the reference variable (n) x (t).

Fig. 3 zeigt beispielhaft den Zusammenhang zwischen NOx-Emissionen und Rußemissionen in Abhängigkeit von der Abgasrückführrate (AGR), die hier eine Führungsgröße x(t) bildet. Das Diagramm zeigt, dass durch Erhöhung der AGR die NOx-Emissionen zwar gesenkt werden können, dabei aber die Rußemissionen ansteigen. Fig. 3 shows an example of the relationship between NOx emissions and soot emissions as a function of the exhaust gas recirculation rate (EGR), which forms a reference variable x (t) here. The diagram shows that increasing the EGR can reduce the NOx emissions, but increase the soot emissions.

Fig. 4 zeigt ein Diagramm mit Führungsgrößenkombinationen von bestimmten Rußemissionen, die über bestimmte NOx-Emissionen aufgetragen sind. Besteht nun z.B. die Aufgabe, in einem (beliebigen) Betriebszustand die Rußemissionen zu minimieren/zu senken, dabei aber einen (kumulierten) NOx-Grenzwert einzuhalten, muss die Emissionshistorie (kumulierte Ist-Werte EmG) für zurückliegende (ggf. beliebige, in zufälliger Reihenfolge eingestellte, unterschiedliche Betriebszustände) berücksichtigt werden. Fig. 4 shows a diagram with reference variable combinations of certain soot emissions, which are plotted against certain NOx emissions. If, for example, there is now the task of minimizing / reducing the soot emissions in an (any) operating state, while maintaining a (cumulative) NOx limit value, the emission history (cumulative actual values Em G ) for past (possibly any, in different operating states).

Pareto-optimale Zielgrößenkombinationen, bei denen der Ruß-Ausstoß nur weiter gesenkt werden kann, wenn die NOx-Emission erhöht wird, sind durch die Punkte x gekennzeichnet Alle pareto-optimalen Zielgrößenkombinationen bilden die sogenannte Paretofront, welche die Punkte x miteinander verbindet. Bei einem Minimierungsproblem sind Punkte links unterhalb der Pareto-Front (schraffierter Bereich) nicht realisierbar und alle rechts oberhalb vorgesehenen Zielgrößenkombinationen nicht pareto-optimal, da es jeweils Kombinationen (Punkte x) gibt, die sowohl hinsichtlich Ruß- Emission als auch der NOx-Emission günstiger auf der Paretofront realisiert werden können.Pareto-optimal target size combinations, in which soot emissions can only be further reduced if the NOx emission is increased, are identified by the points x. All Pareto-optimal target size combinations form the so-called pareto front, which connects the points x to one another. In the event of a minimization problem, points to the left below the Pareto front (hatched area) cannot be realized and all target size combinations provided to the right above are not Pareto-optimal, since there are combinations (points x) in each case that relate to soot emission and NOx emission can be realized more cheaply on the pareto front.

Die Auswahl aus pareto-optimalen Zielgrößenkombinationen von zwei Zielgrößen (NOx-Emissionen und Rußemissionen) zeigt die Darstellung in Fig. 5. In der rechten Säule ist als Emissionsobergrenze EmG ein NOx-Grenzwert NOx-G (gestrichelte Linie) angegeben und die darunter dargestellte Säule zeigt im schraffierten Bereich als kumulierten Ist-Wert EmK die bisherigen kumulierten NOx-Emissionen NOx-K1. Da die kumulierten NOx-Emissionen NOx-K1 bereits relativ nah am NOx-Grenzwert NOx-G sind, ist hier ein relativ hohes Austauschverhältnis zwischen den Zielgrößen Rußemissionen und NOx-Emissionen gewählt (erhöhte Rußemissionen, zugunsten von geringen NOx), um den NOx-Grenzwert NOx-G nicht zu überschreiten. Diese hier gewünschte Austauschrate wird durch die Indifferenzkurve I angegeben, die hier relativ steil abfallend dargestellt ist, und dann an die nächstliegende Zielgrößenkombination verschoben wird, in dem für diesen Betriebspunkt eine bestimmte Rußemission und eine bestimmte NOx-Emission realisierbar ist. Dieser Zielgrößenkombination wird dann mit Hilfe der im Diagramm aus Fig. 3 bekannten Informationen eine AGR als geeignete pareto-optimierte Führungsgröße x(t) zugeordnet.The selection from pareto-optimal target size combinations of two target sizes (NOx emissions and soot emissions) is shown in Fig. 5 . A NOx limit value NOx-G (dashed line) is shown in the right column as the upper emission limit Em G and the column shown below shows the accumulated actual NOx emissions NOx-K 1 in the shaded area as the accumulated actual value Em K. Since the cumulative NOx emissions NOx-K 1 are already relatively close to the NOx limit value NOx-G, a relatively high exchange ratio between the target values soot emissions and NOx emissions (increased soot emissions in favor of low NOx) has been chosen around the NOx - NOx-G limit not To exceed. This exchange rate desired here is indicated by the indifference curve I, which is shown here to decrease relatively steeply, and is then shifted to the closest target size combination, in which a specific soot emission and a specific NOx emission can be realized for this operating point. This target size combination is then determined using the in the diagram Fig. 3 known information is assigned an EGR as a suitable pareto-optimized reference variable x (t).

Fig. 6 zeigt ein Beispiel, bei dem die kumulierten NOx-Emissionen (NOx-K2) weiter unter dem NOx-Grenzwert NOx-G liegen. Hier ist das Austauschverhältnis der Indifferenzkurve I kleiner (die Gerade fällt flacher ab). Hier kann also eine höhere NOx-Emission in Kauf genommen werden, ohne dass Gefahr bestünde, dass der NOx-Grenzwert NOx-G überschritten wird. Damit kann die Rußemission geringer gehalten werden. Die flacher verlaufende Gerade wird an die nächste Zielgrößenkombination verschoben, an dem eine bestimmte NOx-Emission und eine entsprechende Rußemission mit einer zugehörigen Führungsgröße x(t) (hier die entsprechende AGR aus Fig.3) realisierbar ist. Fig. 6 shows an example in which the accumulated NOx emissions (NOx-K 2 ) are further below the NOx limit value NOx-G. Here the exchange ratio of the indifference curve I is smaller (the straight line falls flat). A higher NOx emission can therefore be accepted here without there being any risk that the NOx limit value NOx-G will be exceeded. The soot emission can thus be kept lower. The flatter straight line is shifted to the next target size combination, on which a certain NOx emission and a corresponding soot emission with an associated reference variable x (t) (here the corresponding EGR) Fig. 3 ) can be realized.

Fig. 7 zeigt ein Beispiel, bei dem die kumulierten NOx-Emissionen (NOx-K3) den NOx-Grenzwert NOx-G überschritten haben. Hier ist das Austauschverhältnis der Geraden I (senkrechte Indifferenzkurve) quasi unendlich. Ungeachtet der Höhe der Rußemissionen wird die Führungsgröße x(t) für minimale NOx-Emission ausgewählt. Fig. 7 shows an example in which the accumulated NOx emissions (NOx-K 3 ) have exceeded the NOx limit value NOx-G. Here the exchange ratio of the straight line I (vertical indifference curve) is almost infinite. Regardless of the level of soot emissions, the reference variable x (t) is selected for minimal NOx emissions.

Fig. 8 zeigt analog zu Fig. 5 ein Beispiel, bei dem in Abhängigkeit der kumulierten NOx-Emissionen CO2 minimiert werden soll. Fig. 8 shows analog to Fig. 5 an example in which CO 2 should be minimized depending on the accumulated NOx emissions.

Fig. 9 zeigt analog zu Fig. 5 ein Beispiel, bei dem die Indifferenzkurve nicht linear verläuft. Fig. 9 shows analog to Fig. 5 an example in which the indifference curve is not linear.

Mit dem dargestellten Ansatz lassen sich im Betrieb und in Abhängigkeit von sich ändernden Randbedingungen die Emissionswerte (Zielfunktionen) verbessern. Neben den hier dargestellten Problemen, bei denen Emissionsgrößen paarweise berücksichtigt wurden, kann das Verfahren auch auf mehrdimensionale Probleme ausgedehnt werden. So ist es zum Beispiel möglich, pareto-optimierte Führungsgrößen x(t) für Mehrfach-Kombinationen (z.B. für CO2-Ausstoß, Rußemission und NOx-Emission) zu bestimmen. Es können auch in Ergänzung zur Führungsgröße AGR noch andere Führungsgrößen x(t) pareto-optimiert zur Regelung bestimmt werden (z.B. VTG-Stellung oder Raildruck).With the approach shown, the emission values (target functions) can be improved in operation and depending on changing boundary conditions. In addition to the problems presented here, in which emission quantities were taken into account in pairs, the method can also be extended to multidimensional problems. For example, it is possible to determine pareto-optimized reference variables x (t) for multiple combinations (e.g. for CO 2 emissions, soot emissions and NOx emissions). In addition to the reference variable AGR, other reference variables x (t) pareto-optimized can also be determined for control purposes (e.g. VTG position or rail pressure).

BezugszeichenlisteReference list

11
SteuergerätControl unit
22nd
HubkolbenmotorReciprocating engine
2a2a
Getriebetransmission
33rd
VentileValves
44th
LadeluftstrangCharge air line
55
AbgasstrangExhaust line
66
LuftfilterAir filter
77
AbgasturboladerExhaust gas turbocharger
88th
ZwischenkühlerIntercooler
99
Zylindercylinder
1010th
NOx-SpeicherkatalysatorNOx storage catalytic converter
1111
DieselpartikelfilterDiesel particulate filter
1212th
AbgasklappeExhaust flap
1313
AuspuffExhaust
1414
Nockenwellecamshaft
1515
Nockenwellen-VerstelleinrichtungCamshaft adjustment device
1616
AGR-HochdruckventilEGR high pressure valve
1717th
AbgaskühlungExhaust cooling
1818th
AGR-NiederdruckventilEGR low pressure valve
1919th
StelleinrichtungActuator
2020th
HauptdrosselMain choke
x(t)x (t)
FührungsgrößeLeadership variable
NOx-GNOx-G
Grenzwertlimit
NOx-K1 NOx-K 1
kumulierter Ist-Wertaccumulated actual value
FWFW
FahrerwunschDriver request
SBSB
Sonstige BetriebsbedingungenOther operating conditions
EMG EM G
EmissionsobergrenzeEmission ceiling
EMK EM K
kumulierte Emissionswertecumulative emission values
EMDS EM DS
EmissionsdurchsätzeThroughputs
II.
IndifferenzkurveIndifference curve

Claims (7)

  1. Control unit (1) for an internal combustion engine (2), with a function which determines, with consideration of an operating state information item (FW, SB)
    - of an upper limit and
    - of a cumulative actual variable, the cumulative actual variable comprising the sum of all the emissions emitted by the internal combustion engine in a defined operating time period,
    a command variable (x(t)) which comprises at least one of the variables of EGR rate, EGR distribution, filling, boost pressure, injection time, ignition time or rail pressure and influences an operating state of the internal combustion engine (2) in such a way that a plurality of actual variables are set in such a way that cumulative actual variables in an operating time period with a combination of any desired different operating states of the internal combustion engine (2) which are set in a random sequence do not exceed upper limits for the said operating time period, a target function which comprises at least one actual emissions variable (EmDS), a fuel consumption and/or a CO2 emission, by the command variable (x(t)) being selected from pareto-optimal alternatives by means of an indifference curve (1) with consideration of a separation of the cumulative actual variable from the upper limit.
  2. Control unit (1) according to Claim 1, the operating state information item (SB, FW) comprising a rotational speed (n(t)) and a setpoint torque (MSoll(t)).
  3. Control unit (1) according to Claim 1 or 2, the operating time period and the different operating states of a journey being known.
  4. Control unit (1) according to Claim 1, 2 or 3, the actual emissions variables (EmDS) comprising at least two of the following variables: NOx emission, HC emission, CO emission, CO2 emission, combined HC and NOx emission, soot particle quantity, soot particle mass, AdBlue consumption.
  5. Control unit (1) according to Claim 1, 2, 3 or 4, at least two actual emissions variables (EmDS), in particular NOx emission and soot emission, being considered.
  6. Internal combustion engine (2) with a control unit (1) according to Claim 5.
  7. Vehicle with an internal combustion engine (2) according to Claim 6.
EP15795168.2A 2014-11-17 2015-11-17 Control device for an internal combustion engine Active EP3221573B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014116748 2014-11-17
PCT/EP2015/076845 WO2016079132A1 (en) 2014-11-17 2015-11-17 Control device for an internal combustion engine

Publications (2)

Publication Number Publication Date
EP3221573A1 EP3221573A1 (en) 2017-09-27
EP3221573B1 true EP3221573B1 (en) 2020-04-22

Family

ID=54548175

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15795168.2A Active EP3221573B1 (en) 2014-11-17 2015-11-17 Control device for an internal combustion engine

Country Status (6)

Country Link
US (1) US10690075B2 (en)
EP (1) EP3221573B1 (en)
KR (1) KR101836787B1 (en)
CN (1) CN107002576B (en)
DE (1) DE102015222684B4 (en)
WO (1) WO2016079132A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016208236A1 (en) * 2016-05-12 2017-11-30 Volkswagen Ag Control method for an internal combustion engine, control unit and internal combustion engine
DE102016208834A1 (en) 2016-05-23 2017-11-23 Technische Universität Dresden A method of operating an internal combustion engine installed in a vehicle
DE102017215251B4 (en) * 2017-08-31 2019-04-18 Volkswagen Aktiengesellschaft Method and control unit for emission control of an internal combustion engine
SE542561C2 (en) 2018-06-11 2020-06-09 Scania Cv Ab Method and system determining a reference value in regard of exhaust emissions
GB2578155B (en) * 2018-10-19 2021-01-13 Delphi Automotive Systems Lux Method of controlling vehicle emissions
CN112282949B (en) * 2020-09-23 2021-07-16 北汽福田汽车股份有限公司 Method and device for optimizing control parameters of ignition working condition of electric control gasoline engine and vehicle
IT202100020744A1 (en) * 2021-08-02 2023-02-02 Fpt Motorenforschung Ag Method of modeling a powertrain and controlling the modeled powertrain
JP7364000B1 (en) 2022-09-12 2023-10-18 いすゞ自動車株式会社 NOx generation amount control device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110264353A1 (en) * 2010-04-22 2011-10-27 Atkinson Christopher M Model-based optimized engine control

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6417852B2 (en) * 2000-03-09 2002-07-09 Vladimir Sevastyanov Method of visualization and graphical analysis for multidimensional functions
DE10104151A1 (en) * 2001-01-30 2002-09-05 Alstom Switzerland Ltd Process for manufacturing a burner system
DE10104150A1 (en) * 2001-01-30 2002-09-05 Alstom Switzerland Ltd Burner system and method for its operation
US7398257B2 (en) * 2003-12-24 2008-07-08 Yamaha Hatsudoki Kabushiki Kaisha Multiobjective optimization apparatus, multiobjective optimization method and multiobjective optimization program
DE102006007122A1 (en) * 2006-02-16 2007-08-23 Daimlerchrysler Ag Operating process for internal combustion engine involves reporting suitable combinations of engine operating values for preset nitrogen oxide emission value
US7921371B1 (en) * 2006-03-22 2011-04-05 Versata Development Group, Inc. System and method of interactive, multi-objective visualization
JP2008234439A (en) * 2007-03-22 2008-10-02 Toyota Motor Corp Automated adapting device and method
JP4928484B2 (en) * 2008-02-29 2012-05-09 株式会社小野測器 Method, computer and program for calculating engine design variables
JP5565295B2 (en) 2010-12-21 2014-08-06 ダイヤモンド電機株式会社 Exhaust gas recirculation control device for internal combustion engine
AT510328A2 (en) * 2011-12-12 2012-03-15 Avl List Gmbh METHOD FOR EVALUATING THE SOLUTION OF A MULTICRITERIAL OPTIMIZATION PROBLEM
EP3158408A4 (en) * 2014-06-20 2017-05-10 Atigeo Corp. Cooperative distributed control of target systems

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110264353A1 (en) * 2010-04-22 2011-10-27 Atkinson Christopher M Model-based optimized engine control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R. TIMOTHY MARLER ET AL: "The weighted sum method for multi-objective optimization: new insights", STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, vol. 41, no. 6, 12 December 2009 (2009-12-12), Berlin/Heidelberg, pages 853 - 862, XP055535565, ISSN: 1615-147X, DOI: 10.1007/s00158-009-0460-7 *

Also Published As

Publication number Publication date
DE102015222684B4 (en) 2019-11-07
US20170248091A1 (en) 2017-08-31
DE102015222684A1 (en) 2016-05-19
CN107002576B (en) 2020-10-23
CN107002576A (en) 2017-08-01
KR20170067890A (en) 2017-06-16
EP3221573A1 (en) 2017-09-27
US10690075B2 (en) 2020-06-23
WO2016079132A1 (en) 2016-05-26
KR101836787B1 (en) 2018-04-19

Similar Documents

Publication Publication Date Title
EP3221573B1 (en) Control device for an internal combustion engine
EP3455114B1 (en) Control method for a hybrid drive, controller, and hybrid drive
DE102015102753B4 (en) METHOD FOR REGENERATION OF A PARTICULATE FILTER, REGENERATION SYSTEM FOR A PARTICULATE FILTER AND METHOD FOR SETTING A REGENERATION PROCESS OF A PARTICULATE FILTER
DE102007045817B4 (en) A method and apparatus for controlling engine operation during regeneration of an exhaust aftertreatment system
DE10135954A1 (en) Control system for engine with lean NOx trap that is periodically purged, uses engine torque, feedgas emissions and exhaust gas temperature models, based on engine operating parameters
DE112008001903B4 (en) Vehicle control method and vehicle control device
WO2009112056A1 (en) Cylinder pressure guided regeneration operation and operation type change
WO2006111280A1 (en) Internal combustion engine with exhaust gas recirculation
DE102010000289A1 (en) Exhaust emission control system
EP3253959B1 (en) Control method and controller for an internal combustion engine
EP3155247B1 (en) Method and control unit for carrying out a gas exchange in a cylinder of an internal combustion engine and internal combustion engine having such a control unit
WO2017108652A1 (en) Method and device for operating a motor vehicle with a hybrid drive
DE10029504C2 (en) Method for operating a diesel engine
WO2019081130A1 (en) Control device for controlling an internal combustion engine and method for heating an exhaust emission control device
EP3244046B1 (en) Control method for a combustion engine, control device and combustion engine
DE102018220485B4 (en) Method for regulating an internal combustion engine with which fuel consumption and pollutant emissions are adapted to influencing variables
WO2018046212A1 (en) Method and device for controlling the residual gas mass remaining in the cylinder of an internal combustion engine after a gas exchange process and/or the purge air mass introduced into the exhaust manifold of the internal combustion engine during a gas exchange process
DE102017215251B4 (en) Method and control unit for emission control of an internal combustion engine
DE60216714T2 (en) Control device for motor vehicle diesel engines
WO2016055465A1 (en) Method for determining a torque reserve
DE102009028617A1 (en) Method for determining exhaust gas mass flow into exhaust pipe of combustion engine of motor vehicle, involves determining fresh air mass flow, measured before compressor, by air mass sensor
DE102019219892A1 (en) Method and device for the regeneration of a coated particle filter in the exhaust tract of a gasoline-powered motor vehicle
DE102013209815B3 (en) Method and system for controlling an internal combustion engine
DE202014005189U1 (en) Computer program for controlling an oxygen concentration
WO2018158089A1 (en) Method and device for controlling an internal combustion engine supercharged by an exhaust-gas turbocharger

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170619

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SEGTROP, BENJAMIN

Inventor name: MAZUR, MICHAEL

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180608

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191105

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015012372

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1260398

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200822

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200723

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200824

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015012372

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201117

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201117

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1260398

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231123

Year of fee payment: 9

Ref country code: DE

Payment date: 20231130

Year of fee payment: 9