EP3219516A1 - Pneumatic tire - Google Patents
Pneumatic tire Download PDFInfo
- Publication number
- EP3219516A1 EP3219516A1 EP17158582.1A EP17158582A EP3219516A1 EP 3219516 A1 EP3219516 A1 EP 3219516A1 EP 17158582 A EP17158582 A EP 17158582A EP 3219516 A1 EP3219516 A1 EP 3219516A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tire
- projection
- circumferential direction
- protectors
- pneumatic tire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001012 protector Effects 0.000 claims abstract description 74
- 239000011324 bead Substances 0.000 description 29
- 239000011435 rock Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 238000010008 shearing Methods 0.000 description 4
- 239000012141 concentrate Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C13/00—Tyre sidewalls; Protecting, decorating, marking, or the like, thereof
- B60C13/02—Arrangement of grooves or ribs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/01—Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C13/00—Tyre sidewalls; Protecting, decorating, marking, or the like, thereof
- B60C13/002—Protection against exterior elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C13/00—Tyre sidewalls; Protecting, decorating, marking, or the like, thereof
- B60C13/02—Arrangement of grooves or ribs
- B60C13/023—Arrangement of grooves or ribs preventing watersplash
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C2200/00—Tyres specially adapted for particular applications
- B60C2200/04—Tyres specially adapted for particular applications for road vehicles, e.g. passenger cars
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C2200/00—Tyres specially adapted for particular applications
- B60C2200/14—Tyres specially adapted for particular applications for off-road use
Definitions
- the present invention relates to a pneumatic tire improved in the durability of the bead portions, off-road performance, and cut resistance performance in a good balance.
- Pneumatic tires to be used with a four-wheel drive vehicle and the like are required to have good rock performance (or running performance on rocky ground) and good mud performance (or running performance on muddy ground).
- these performances are comprehensively referred to as off-road performance.
- the present invention was made in light of the problems described above, and a primary object of the present invention is to provide a pneumatic tire which is improved in the durability of the bead portion, off-road performance and cut resistance performance in a good balance.
- a pneumatic tire comprises a sidewall portion provided in its radially outer region with side protectors protruding axially outwardly from the outer surface of the radially outer sidewall region, the side protectors arranged in the tire circumferential direction at intervals so that a grooved portion is formed between every two of the circumferentially adjacent side protectors, wherein a length in the tire circumferential direction of the above-said grooved portion is in a range of from 50% to 70% of a length in the tire circumferential direction of each of the side protectors on both sides of the above-said grooved portion when the lengths are measured at the same radial position.
- each of the grooved portions is provided with a projection which, in a tire meridian section including the projection, has a substantially triangular shape having an apex projecting axially outwardly.
- the distance in the tire radial direction between the above-said apex and the tread edge is in a range from 20 to 50 mm.
- the apex of the above-said projection extends continuously in the tire circumferential direction between the two side protectors on both sides of the projection.
- the above-said projection has a protruding height in the above-said tire meridian section including the projection which is less than the protruding height of the side protector on each side thereof in a tire meridian section including the side protector.
- the protruding height of the projection is in a range from 2 to 8 mm.
- the protruding heights of the side protectors are in a range from 5 to 10 mm.
- the normally inflated unloaded condition is such that the tire is mounted on a standard wheel rim and inflate to a standard pressure but loaded with no tire load.
- the undermentioned normally inflated loaded condition is such that the tire is mounted on the standard wheel rim and inflated to the standard pressure and loaded with the standard tire load.
- the standard wheel rim is a wheel rim officially approved or recommended for the tire by standards organizations, i.e. JATMA (Japan and Asia), T&RA (North America), ETRTO (Europe), TRAA (Australia), STRO (Scandinavia), ALAPA (Latin America), ITTAC (India) and the like which are effective in the area where the tire is manufactured, sold or used.
- the standard pressure and the standard tire load are the maximum air pressure and the maximum tire load for the tire specified by the same organization in the Air-pressure/Maximum-load Table or similar list.
- the standard wheel rim is the "standard rim” specified in JATMA, the "Measuring Rim” in ETRTO, the "Design Rim” in TRA or the like.
- the standard pressure is the “maximum air pressure” in JATMA, the “Inflation Pressure” in ETRTO, the maximum pressure given in the “Tire Load Limits at various Cold Inflation Pressures” table in TRA or the like.
- the standard load is the "maximum load capacity" in JATMA, the “Load Capacity” in ETRTO, the maximum value given in the above-mentioned table in TRA or the like. In case of passenger car tires, however, the standard pressure and standard tire load are uniformly defined by 180 kPa and 88 % of the maximum tire load, respectively.
- the tread edges Te are the axial outermost edges of the ground contacting patch of the tire which occurs under the normally inflated loaded condition when the camber angle of the tire is zero.
- the tread width TW is the width measured under the normally inflated unloaded condition, as the axial distance between the tread edges Te determined as above.
- the protruding heights of the side protector and the projection are those measured from the smooth contour line S of the radially outer sidewall region from which concavity and convexity for ornamental purposes or for presenting marks, characters and the like are excluded.
- the present invention is suitably applied to all-season tires for four-wheel-drive vehicles such as SUV.
- pneumatic tire 1 as an embodiment of the present invention comprises a tread portion 2, a pair of axially spaced bead portions 4 each with a bead core 5 therein, a pair of sidewall portions 3 extending between the tread edges Te and the bead portions 4, a toroidal carcass 6 extending between the bead portions 4 through the tread portion 2 and the sidewall portions 3, and a tread reinforcing belt 7 disposed radially outside the carcass 6 in the tread portion 2.
- the carcass 6 is composed of at least one ply (in this embodiment, two plies 6A, 6B) of cords arranged at an angle in a range from 70 to 90 degrees with respect to the tire circumferential direction for example, and extending between the bead portions 4 through the tread portion 2 and the sidewall portions 3, and further turned up around the bead core 5 in each of the bead portions so as to form a pair of turned up portions 6b and a toroidal main portion 6a therebetween.
- Each of the bead portions 4 in this example is provided with a bead apex rubber 8 extending radially outwardly from the bead core 5 through the space between the main portion 6a and turnup portion 6b in order to reinforce the bead portion.
- the belt 7 is composed of at least one ply (in this embodiment, two cross plies 7A, 7B) of cords laid at an angle in a range from 10 to 45 degrees with respect to the tire circumferential direction for example.
- the carcass 6 and the belt 7 are not limited to the above described structures.
- the tread portion 2 is provided with crown blocks 10 arranged circumferentially of the tire in two circumferential rows one on each side of the tire equator C, and shoulder blocks 11 arranged circumferentially of the tire in two circumferential rows one on axially outside each circumferential row of the crown blocks 10. Between the shoulder blocks 11, there are formed lateral grooves 12 opened at the tread edges Te.
- Each of the crown blocks 10 is composed of a first inclined portion 10a inclined to one circumferential direction toward the axially outside from the tire equator C, and a second inclined portion 10b inclined to the other circumferential direction toward the axially outside from the tire equator C so that the ground contacting surface of the crown block 10 has a V-shape (in this example L-shape) in its top view.
- the crown block 10 is not limited to such configuration.
- Each of the shoulder block 11 is composed of an axial portion 11a extending axially inwardly from the tread edge Te, and an inclined portion 11b extending axially inwardly from the axial portion 11a while inclining in the same direction as the second inclined portion 10b of the crown block 10.
- the shoulder block 11 is not limited to such configuration.
- the shoulder blocks 11 in this embodiment include a first shoulder block 11A and a second shoulder block 11B alternately arranged in the tire circumferential direction.
- the first shoulder block 11A has a ground contacting top surface which has an axially outer first edge 13a, an axially outer surface 13b extending from the first edge 13a toward the axially outside and toward the radially inside, and a pair of side wall surfaces 13c on both sides of the block in the tire circumferential direction.
- the first edge 13a extends in parallel with the tire circumferential direction.
- each of the side wall surfaces 13c extends axially inwardly and axially outwardly from the axial position of the first edge 13a.
- the first edge 13a of the first shoulder block 11A is positioned axially inside the tread edge Te.
- the second shoulder block 11B has a ground contacting top surface which has an axially outer second edge 14a, an axially outer surface 14b extending from the second edge 14a toward the axially outside and toward the radially inside, and a pair of side wall surfaces 14c on both sides of the block in the tire circumferential direction.
- the second edge 14a extends in parallel with the tire circumferential direction. In the tire axial direction, each of the side wall surfaces 14c extends axially inwardly and axially outwardly from the axial position of the second edge 14a.
- the second edge 14a of the second shoulder block 11B is positioned at the tread edge Te, in other words, the second edge 14a forms a part of the tread edge Te.
- a radially outer sidewall region B which is a radially outer region of each of the sidewall portions 3, is provided on its outer surface Ba with a plurality of axially outwardly protruding side protectors 20 which are arranged at intervals in the tire circumferential direction so that a grooved portion 21 is are formed between every two of the circumferentially adjacent side protectors 20. Therefore, the tire 1 can exert traction by the engagement between the side protectors 20 and rocks as well as by the shearing of the mud entered in the grooved portions 21.
- the side protectors 20 can prevent the grooved portions 21, where the rubber thickness is relatively small, from being hit by rocks and the like to suppress the occurrence of cut damage while ensuring a necessary rubber thickness. Therefore, the off-road performance and the cut resistance performance can be improved.
- the contour line S of the radially outer sidewall region B is smoothly continued to the contour line of the bottom 12S of the lateral groove 12 as shown in Fig. 1 .
- the side protector 20 has an axially outer surface 20b and a pair of side wall surfaces 20a extending axially inwardly from the axially outer surface 20b toward the above-mentioned outer surface Ba on both sides in the tire circumferential direction of the side protector 20. Between the opposite side wall surfaces 20a of every two of the circumferentially adjacent side protectors 20, a grooved portion 21 is formed.
- the side wall surfaces 20a are smoothly continued to the side wall surfaces 13c, 14c of the first and second shoulder blocks 11A, 11B.
- the radially outer edge 20t of the axially outer surface 20b extends in parallel with the tire circumferential direction.
- the above-mentioned axially outer surface 13b/14b of the first/second shoulder block 11A/11B intersects with the axially outer surface 20b at the radially outer edge 20t.
- the width w1 in the tire circumferential direction of the grooved portion 21 is preferably set in a range from 50% to 70% of the width w2 in the tire circumferential direction of the side protector 20. If the width w1 is less than 50% of the width w2, the volume of the side protectors 20 is increased, therefore, the rubber volume and mass of the tire 1 is increased in the radially outer sidewall region B.
- the flexural stress of the sidewall portion concentrates in a region from the lower sidewall portion to the bead portion, and there is a possibility that the durability of the bead portion 4 is deteriorated.
- the width w2 is more than 70% of the width w1
- the volume of the side protectors 20 is decreased.
- the traction due to the engagement between the side protectors 20 and rocks and the traction due to the shearing of the mud in the grooved portions 21 become decreased.
- the protruding height H1 of the side protector 20 is substantially constant, namely, the difference between the maximum and minimum of the protruding height H1 is at most 20% of the maximum of the protruding height H1.
- the cross sectional shape of the side protector 20 is a substantially rectangle or trapezoid in a tire meridian section including the side protector 20.
- the side protector 20 is not limited to such configuration, and various shapes may be employed.
- the protruding height H1 of the side protector 20 is preferably set in a range from 5 to 10 mm measured at the axially outer surface 20b. If the protruding height H1 is less than 5 mm, since the volume of the mud entering in the grooved portions 21 becomes small, the shearing force of the mud is decreased, and the engaging force with the rocks is reduced. Thus, there is a possibility that the off-road performance and cut resistance performance can not be effectively improved. If the protruding height H1 is more than 10 mm, the volume of the radially outer sidewall region B is increased, and there is a possibility that the durability of the bead portion 4 is deteriorated.
- the side protectors 20 have to be disposed radially outside the tire maximum width position Pm in order that the cut resistance performance and off-road performance are exhibited.
- the tire maximum width position Pm is the radial position at which the above-mention contour line S mostly axially outwardly protrudes. Usually, the tire maximum width position Pm occurs at about one half of the tire section height from the bead base line. Instead of the tire maximum width position Pm, the maximum width position of the carcass can be used.
- a length La (shown in Fig. 5 ) in the tire radial direction of the axially outer surface 20b of the side protector 20 is set in a range from 1.5 to 3 times the groove depth D (shown in Fig. 1 ) of the transverse grooves 12, and the radially outer edge 20t of the axially outer surface 20b is positioned in a range between 80% and 90% of the tire section height from the bead base line.
- the side protectors 20 are connected to the respective shoulder blocks 11 in order to form rigid traction members from the tread shoulders to upper (radially outer) sidewalls of the tire and thereby to improve the off-road performance.
- the side protectors 20 include two types: a first protector 22 connected, at the outer edge 20t, with the side surface 13b of the first shoulder block 11A, and a second protector 23 connected, at the outer edges 20t, with the side surface 14b of the second shoulder block 11B.
- the width w1 in the tire circumferential direction of the first protector 22 is gradually decreased toward the radially inside of the tire, whereas the width w1 in the tire circumferential direction of the second protector 23 is gradually increased toward the radially inside of the tire. Since a radially outer part of the first protector 22 which is more likely to contact with the rocks has a larger volume, the first protector 22 can exert a large tractional force upon contact with the rocks. On the other hand, a radially inner part of the first protector 22 is decreased in the mass. As a result, the tire 1 can exhibit an excellent rock performance while suppressing the increase in the mass of the first protectors 22.
- the second protectors 23 and the first protectors 22 are alternately arranged in the tire circumferential direction.
- the grooved portions 21 formed therebetween are, as shown in Fig. 4 , inclined with respect to the respective tire radial directions to both sides in the tire circumferential direction alternately. Such grooved portions 21 can further improve the off-road performance.
- the axially outer surface 20b has a radially inner edge from which a radially inner surface of the first protector 22 extends radially inwardly and axially inwardly.
- the axially outer surface 20b has a radially inner edge from which a radially inner surface of the second protector 23 extends radially inwardly and axially inwardly.
- the second protector 23 in this embodiment is provided in the radially inner surface with a reentrant part. As a result, on the radially inside of the radially inner edge, the second protector 23 is branched into two parts, although the first protector 22 is not branched. Such second protector 23 can increase the traction by the increases edges.
- each of the grooved portions 21 between the side protectors 20 is provided with a projection 25 as shown in Fig. 5 .
- the projection 25 has a substantially triangular shape having an apex 25t projecting axially outwardly.
- Such projection 25 can secure the rubber thickness in the grooved portion 21 to effectively increase the cut resistance performance, while suppressing the increase in the mass of the radially outer sidewall region B to prevent the deterioration of the durability of the bead portion 4.
- the above-mentioned triangular shape of the projection 25 has a radially outer oblique side 25a extending radially outwardly from the apex 25t, and a radially inner oblique side 25b extending radially inwardly from the apex 25t.
- the outer and inner oblique sides 25a and 25b are merged into the contour S of the sidewall portion 3. In other words, the protruding height of the projection 25 gradually decreases to zero toward the radially inside and outside from the apex 25t.
- the radial distance L1 between the apex 25t and the tread edge Te is set in a range from 20 to 50 mm. If cuts occur in a region between 0 mm and 20 mm from the tread edge Te in the tire radial direction, as the rubber thickness of such region is considerably large, the traveling performance is not affected in effect. On the other hand, a region radially inside a position 50 mm from the tread edge Te in the tire radial direction is less likely to contact with rocks, shrubs and like. Therefore, even if the apex 25t is disposed at a position less than 20 mm or more than 50 mm from the tread edge Te in the tire radial direction, the effect of improving the cut resistance performance can not be expected.
- the protruding height H2 of the projection 25 at the apex 25t is greater than the protruding height H1 of the side protector 20, since the amount of mud entering in the grooved portions 21 is reduced, there is a possibility that mud performance is deteriorated. It is therefore preferable that the protruding height H2 is less than the protruding height H1.
- the protruding height H2 of the projections 25 is preferably in a range from 2 to 8 mm.
- the apex 25t namely edge, of the projection 25 extends in the tire circumferential direction continuously between the side protectors 20 on both sides thereof.
- the protruding height H2 of the projection 25 at the apex 25t or edge is constant along the edge (apex).
- the cross-sectional shape of the projection 25 (in this embodiment, triangular shape) is constant in the tire circumferential direction.
- the cross-sectional shape and the protruding height H2 at the apex 25t may be varied.
- the protruding height H2 may be gradually increased toward a central position from both end positions of the projection 25 in the tire circumferential direction. In this case, it may be possible to further improve the durability of the bead portion 4.
- the length Li in the tire radial direction of the radially inner oblique side 25b is set to be greater than the length Lo in the tire radial direction of the radially outer oblique side 25a.
- the angle with respect to the tire axial direction of the radially inner oblique side 25b becomes smaller than the angle with respect to the tire axial direction of the radially outer oblique sides 25a, and the stiffness in the tire radial direction of the projection 25 can be increased.
- the cut resistance performance can be improved while suppressing the weight increase due to the projections 25.
- pneumatic tire of size 265/70R17 were experimentally manufactured as test tires and tested for the off-road performance (rock performance and mud performance), cut resistance performance, and bead durability.
- the test tires (including Comparative examples Re1-Re2 and working examples Ex1-Ex16) had the same structure except for side protectors and projections, specifications of which are listed in Table 1.
- each test tire was run for 24 hours at 100 km/h (tire pressure 350 kPa, tire load 100% of the above-mentioned standard load), and the surface temperature of the bead portion was measured.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
Abstract
Description
- The present invention relates to a pneumatic tire improved in the durability of the bead portions, off-road performance, and cut resistance performance in a good balance.
- Pneumatic tires to be used with a four-wheel drive vehicle and the like are required to have good rock performance (or running performance on rocky ground) and good mud performance (or running performance on muddy ground). Hereinafter, these performances are comprehensively referred to as off-road performance.
- On the other hand, a pneumatic tire which is, in order to improve the cut resistance of the sidewall portions, provided in the sidewall portions with axially outwardly protruding side protectors has been proposed. Such side protectors can exert tractional force by the engagement and friction between the side protectors and rocks on the rocky ground as well as by the shearing of the mud entered into reentrant portions formed between the side protectors. Thus, the off-road performance can be improved.
- In order that the off-road performance and cut resistance performance are improved, if the side protectors are increased in the protruding height, then the tire sidewall portion is increased in the rubber volume in its radially outer region especially. Therefore, there are problems such that the weight of the tire is unfavorably increased, and the durability of the bead portion of the tire is deteriorated because the flexural stress of the sidewall portion concentrates in a region from the lower sidewall region to the bead portion.
- Japanese Patent application Publication No.
2012-006449 - The present invention was made in light of the problems described above, and a primary object of the present invention is to provide a pneumatic tire which is improved in the durability of the bead portion, off-road performance and cut resistance performance in a good balance.
- According to the present invention, a pneumatic tire comprises
a sidewall portion provided in its radially outer region with side protectors protruding axially outwardly from the outer surface of the radially outer sidewall region,
the side protectors arranged in the tire circumferential direction at intervals so that a grooved portion is formed between every two of the circumferentially adjacent side protectors, wherein
a length in the tire circumferential direction of the above-said grooved portion is in a range of from 50% to 70% of a length in the tire circumferential direction of each of the side protectors on both sides of the above-said grooved portion when the lengths are measured at the same radial position. - In the pneumatic tire according to the present invention, it is preferable that each of the grooved portions is provided with a projection which, in a tire meridian section including the projection, has a substantially triangular shape having an apex projecting axially outwardly.
- It is preferable that the distance in the tire radial direction between the above-said apex and the tread edge is in a range from 20 to 50 mm.
- It is preferable that the apex of the above-said projection extends continuously in the tire circumferential direction between the two side protectors on both sides of the projection.
- It is preferable that the above-said projection has a protruding height in the above-said tire meridian section including the projection which is less than the protruding height of the side protector on each side thereof in a tire meridian section including the side protector.
- It is preferable that the protruding height of the projection is in a range from 2 to 8 mm.
- In the pneumatic tire according to the present invention, it is preferable that the protruding heights of the side protectors are in a range from 5 to 10 mm.
- In this application including specification and claims, various dimensions, positions and the like of the tire refer to those under a normally inflated unloaded condition of the tire unless otherwise noted.
- The normally inflated unloaded condition is such that the tire is mounted on a standard wheel rim and inflate to a standard pressure but loaded with no tire load.
- The undermentioned normally inflated loaded condition is such that the tire is mounted on the standard wheel rim and inflated to the standard pressure and loaded with the standard tire load.
- The standard wheel rim is a wheel rim officially approved or recommended for the tire by standards organizations, i.e. JATMA (Japan and Asia), T&RA (North America), ETRTO (Europe), TRAA (Australia), STRO (Scandinavia), ALAPA (Latin America), ITTAC (India) and the like which are effective in the area where the tire is manufactured, sold or used.
The standard pressure and the standard tire load are the maximum air pressure and the maximum tire load for the tire specified by the same organization in the Air-pressure/Maximum-load Table or similar list. For example, the standard wheel rim is the "standard rim" specified in JATMA, the "Measuring Rim" in ETRTO, the "Design Rim" in TRA or the like. The standard pressure is the "maximum air pressure" in JATMA, the "Inflation Pressure" in ETRTO, the maximum pressure given in the "Tire Load Limits at various Cold Inflation Pressures" table in TRA or the like. The standard load is the "maximum load capacity" in JATMA, the "Load Capacity" in ETRTO, the maximum value given in the above-mentioned table in TRA or the like.
In case of passenger car tires, however, the standard pressure and standard tire load are uniformly defined by 180 kPa and 88 % of the maximum tire load, respectively. - The tread edges Te are the axial outermost edges of the ground contacting patch of the tire which occurs under the normally inflated loaded condition when the camber angle of the tire is zero.
- The tread width TW is the width measured under the normally inflated unloaded condition, as the axial distance between the tread edges Te determined as above.
- The protruding heights of the side protector and the projection are those measured from the smooth contour line S of the radially outer sidewall region from which concavity and convexity for ornamental purposes or for presenting marks, characters and the like are excluded.
-
-
Fig. 1 is a cross-sectional partial view of a pneumatic tire as an embodiment of the present invention under the normally inflated unloaded condition taken along a meridian of the tire between the side protectors. -
Fig. 2 is a developed partial view of the tread portion of the pneumatic tire shown inFig. 1 . -
Fig. 3 is a perspective partial view of the pneumatic tire shown inFig. 1 . -
Fig. 4 is a partial side view of the radially outer region of the sidewall portion of the pneumatic tire shown inFig. 1 . -
Fig. 5 is an enlarged cross sectional view showing the radially outer region of the sidewall portion the pneumatic tire shown inFig. 1 . - The present invention is suitably applied to all-season tires for four-wheel-drive vehicles such as SUV.
- Taking an all-season tire as an example, an embodiment of the present invention will now be described with reference to the accompanying drawings.
- In the drawings,
pneumatic tire 1 as an embodiment of the present invention comprises atread portion 2, a pair of axially spacedbead portions 4 each with abead core 5 therein, a pair ofsidewall portions 3 extending between the tread edges Te and thebead portions 4, atoroidal carcass 6 extending between thebead portions 4 through thetread portion 2 and thesidewall portions 3, and atread reinforcing belt 7 disposed radially outside thecarcass 6 in thetread portion 2. - The
carcass 6 is composed of at least one ply (in this embodiment, twoplies bead portions 4 through thetread portion 2 and thesidewall portions 3, and further turned up around thebead core 5 in each of the bead portions so as to form a pair of turned upportions 6b and a toroidalmain portion 6a therebetween. - Each of the
bead portions 4 in this example is provided with abead apex rubber 8 extending radially outwardly from thebead core 5 through the space between themain portion 6a andturnup portion 6b in order to reinforce the bead portion. - The
belt 7 is composed of at least one ply (in this embodiment, twocross plies - Incidentally, the
carcass 6 and thebelt 7 are not limited to the above described structures. - In this embodiment, as shown in
Figs. 2 and3 , thetread portion 2 is provided with
crown blocks 10 arranged circumferentially of the tire in two circumferential rows one on each side of the tire equator C, andshoulder blocks 11 arranged circumferentially of the tire in two circumferential rows one on axially outside each circumferential row of thecrown blocks 10.
Between theshoulder blocks 11, there are formedlateral grooves 12 opened at the tread edges Te. - Each of the
crown blocks 10 is composed of
a firstinclined portion 10a inclined to one circumferential direction toward the axially outside from the tire equator C, and
a secondinclined portion 10b inclined to the other circumferential direction toward the axially outside from the tire equator C
so that the ground contacting surface of thecrown block 10 has a V-shape (in this example L-shape) in its top view. Incidentally, thecrown block 10 is not limited to such configuration. - Each of the
shoulder block 11 is composed of
anaxial portion 11a extending axially inwardly from the tread edge Te, and
aninclined portion 11b extending axially inwardly from theaxial portion 11a while inclining in the same direction as the secondinclined portion 10b of thecrown block 10. Incidentally, theshoulder block 11 is not limited to such configuration. - The
shoulder blocks 11 in this embodiment include afirst shoulder block 11A and asecond shoulder block 11B alternately arranged in the tire circumferential direction. - As shown in
Fig. 3 , thefirst shoulder block 11A has a ground contacting top surface which has
an axially outerfirst edge 13a,
an axiallyouter surface 13b extending from thefirst edge 13a toward the axially outside and toward the radially inside, and
a pair of side wall surfaces 13c on both sides of the block in the tire circumferential direction.
Thefirst edge 13a extends in parallel with the tire circumferential direction. In the tire axial direction, each of the side wall surfaces 13c extends axially inwardly and axially outwardly from the axial position of thefirst edge 13a. Thefirst edge 13a of thefirst shoulder block 11A is positioned axially inside the tread edge Te. - As shown in
Fig. 3 , thesecond shoulder block 11B has a ground contacting top surface which has
an axially outersecond edge 14a,
an axiallyouter surface 14b extending from thesecond edge 14a toward the axially outside and toward the radially inside, and
a pair of side wall surfaces 14c on both sides of the block in the tire circumferential direction.
Thesecond edge 14a extends in parallel with the tire circumferential direction. In the tire axial direction, each of the side wall surfaces 14c extends axially inwardly and axially outwardly from the axial position of thesecond edge 14a. Thesecond edge 14a of thesecond shoulder block 11B is positioned at the tread edge Te, in other words, thesecond edge 14a forms a part of the tread edge Te. - As shown in
Fig. 1 , a radially outer sidewall region B, which is a radially outer region of each of thesidewall portions 3, is provided on its outer surface Ba with a plurality of axially outwardly protrudingside protectors 20 which are arranged at intervals in the tire circumferential direction so that agrooved portion 21 is are formed between every two of the circumferentiallyadjacent side protectors 20. Therefore, thetire 1 can exert traction by the engagement between theside protectors 20 and rocks as well as by the shearing of the mud entered in thegrooved portions 21. In addition, theside protectors 20 can prevent thegrooved portions 21, where the rubber thickness is relatively small, from being hit by rocks and the like to suppress the occurrence of cut damage while ensuring a necessary rubber thickness. Therefore, the off-road performance and the cut resistance performance can be improved.
Incidentally, the contour line S of the radially outer sidewall region B is smoothly continued to the contour line of the bottom 12S of thelateral groove 12 as shown inFig. 1 . - As shown in
Fig. 3 , theside protector 20 has an axiallyouter surface 20b and a pair of side wall surfaces 20a extending axially inwardly from the axiallyouter surface 20b toward the above-mentioned outer surface Ba on both sides in the tire circumferential direction of theside protector 20. Between the opposite side wall surfaces 20a of every two of the circumferentiallyadjacent side protectors 20, agrooved portion 21 is formed. The side wall surfaces 20a are smoothly continued to the side wall surfaces 13c, 14c of the first andsecond shoulder blocks
The radiallyouter edge 20t of the axiallyouter surface 20b extends in parallel with the tire circumferential direction. The above-mentioned axiallyouter surface 13b/14b of the first/second shoulder block 11A/11B intersects with the axiallyouter surface 20b at the radiallyouter edge 20t. - As shown in
Fig. 4 , when each of theside protectors 20 and one of thegrooved portions 21 on each side of theconcerned side protector 20 are measured at the same radial position within the axiallyouter surfaces 20b,
the width w1 in the tire circumferential direction of the groovedportion 21 is preferably set in a range from 50% to 70% of the width w2 in the tire circumferential direction of theside protector 20.
If the width w1 is less than 50% of the width w2, the volume of theside protectors 20 is increased, therefore, the rubber volume and mass of thetire 1 is increased in the radially outer sidewall region B. As a result, the flexural stress of the sidewall portion concentrates in a region from the lower sidewall portion to the bead portion, and there is a possibility that the durability of thebead portion 4 is deteriorated. If the width w2 is more than 70% of the width w1, the volume of theside protectors 20 is decreased. As a result, the traction due to the engagement between theside protectors 20 and rocks and the traction due to the shearing of the mud in thegrooved portions 21 become decreased. - As shown in
Fig. 1 , the protruding height H1 of theside protector 20 is substantially constant, namely, the difference between the maximum and minimum of the protruding height H1 is at most 20% of the maximum of the protruding height H1. The cross sectional shape of theside protector 20 is a substantially rectangle or trapezoid in a tire meridian section including theside protector 20. However, theside protector 20 is not limited to such configuration, and various shapes may be employed. - The protruding height H1 of the
side protector 20 is preferably set in a range from 5 to 10 mm measured at the axiallyouter surface 20b.
If the protruding height H1 is less than 5 mm, since the volume of the mud entering in thegrooved portions 21 becomes small, the shearing force of the mud is decreased, and the engaging force with the rocks is reduced. Thus, there is a possibility that the off-road performance and cut resistance performance can not be effectively improved.
If the protruding height H1 is more than 10 mm, the volume of the radially outer sidewall region B is increased, and there is a possibility that the durability of thebead portion 4 is deteriorated. - The
side protectors 20 have to be disposed radially outside the tire maximum width position Pm in order that the cut resistance performance and off-road performance are exhibited. The tire maximum width position Pm is the radial position at which the above-mention contour line S mostly axially outwardly protrudes. Usually, the tire maximum width position Pm occurs at about one half of the tire section height from the bead base line. Instead of the tire maximum width position Pm, the maximum width position of the carcass can be used. - In order to improve the off-road performance and the durability of the
bead portion 4 in a good balance, it is preferred that a length La (shown inFig. 5 ) in the tire radial direction of the axiallyouter surface 20b of theside protector 20 is set in a range from 1.5 to 3 times the groove depth D (shown inFig. 1 ) of thetransverse grooves 12, and the radiallyouter edge 20t of the axiallyouter surface 20b is positioned in a range between 80% and 90% of the tire section height from the bead base line. - It is preferable that the
side protectors 20 are connected to therespective shoulder blocks 11 in order to form rigid traction members from the tread shoulders to upper (radially outer) sidewalls of the tire and thereby to improve the off-road performance. In this embodiment, therefore, as shown inFig. 4 , theside protectors 20 include two types: afirst protector 22 connected, at theouter edge 20t, with theside surface 13b of thefirst shoulder block 11A, and asecond protector 23 connected, at theouter edges 20t, with theside surface 14b of thesecond shoulder block 11B. - As shown in
Fig. 4 , the width w1 in the tire circumferential direction of thefirst protector 22 is gradually decreased toward the radially inside of the tire, whereas the width w1 in the tire circumferential direction of thesecond protector 23 is gradually increased toward the radially inside of the tire.
Since a radially outer part of thefirst protector 22 which is more likely to contact with the rocks has a larger volume, thefirst protector 22 can exert a large tractional force upon contact with the rocks. On the other hand, a radially inner part of thefirst protector 22 is decreased in the mass. As a result, thetire 1 can exhibit an excellent rock performance while suppressing the increase in the mass of thefirst protectors 22. - The
second protectors 23 and thefirst protectors 22 are alternately arranged in the tire circumferential direction. As a result, thegrooved portions 21 formed therebetween are, as shown inFig. 4 , inclined with respect to the respective tire radial directions to both sides in the tire circumferential direction alternately. Suchgrooved portions 21 can further improve the off-road performance. - In the
first protector 22 in this embodiment, the axiallyouter surface 20b has a radially inner edge from which a radially inner surface of thefirst protector 22 extends radially inwardly and axially inwardly.
In thesecond protector 23 in this embodiment, the axiallyouter surface 20b has a radially inner edge from which a radially inner surface of thesecond protector 23 extends radially inwardly and axially inwardly.
Thesecond protector 23 in this embodiment is provided in the radially inner surface with a reentrant part.
As a result, on the radially inside of the radially inner edge, thesecond protector 23 is branched into two parts, although thefirst protector 22 is not branched. Suchsecond protector 23 can increase the traction by the increases edges. - In this embodiment, each of the
grooved portions 21 between theside protectors 20 is provided with aprojection 25 as shown inFig. 5 . In a tire meridian section including theprojection 25, theprojection 25 has a substantially triangular shape having an apex 25t projecting axially outwardly.Such projection 25 can secure the rubber thickness in the groovedportion 21 to effectively increase the cut resistance performance, while suppressing the increase in the mass of the radially outer sidewall region B to prevent the deterioration of the durability of thebead portion 4. - The above-mentioned triangular shape of the
projection 25 has a radially outeroblique side 25a extending radially outwardly from the apex 25t, and a radiallyinner oblique side 25b extending radially inwardly from the apex 25t. The outer andinner oblique sides sidewall portion 3. In other words, the protruding height of theprojection 25 gradually decreases to zero toward the radially inside and outside from the apex 25t. - It is preferable that the radial distance L1 between the apex 25t and the tread edge Te is set in a range from 20 to 50 mm. If cuts occur in a region between 0 mm and 20 mm from the tread edge Te in the tire radial direction, as the rubber thickness of such region is considerably large, the traveling performance is not affected in effect. On the other hand, a region radially inside a position 50 mm from the tread edge Te in the tire radial direction is less likely to contact with rocks, shrubs and like. Therefore, even if the apex 25t is disposed at a position less than 20 mm or more than 50 mm from the tread edge Te in the tire radial direction, the effect of improving the cut resistance performance can not be expected.
- If the protruding height H2 of the
projection 25 at the apex 25t is greater than the protruding height H1 of theside protector 20, since the amount of mud entering in thegrooved portions 21 is reduced, there is a possibility that mud performance is deteriorated. It is therefore preferable that the protruding height H2 is less than the protruding height H1. The protruding height H2 of theprojections 25 is preferably in a range from 2 to 8 mm. - In order to improve the cut resistance performance, in this embodiment, the apex 25t, namely edge, of the
projection 25 extends in the tire circumferential direction continuously between theside protectors 20 on both sides thereof. And the protruding height H2 of theprojection 25 at the apex 25t or edge is constant along the edge (apex).
The cross-sectional shape of the projection 25 (in this embodiment, triangular shape) is constant in the tire circumferential direction.
However, the cross-sectional shape and the protruding height H2 at the apex 25t may be varied. For example, the protruding height H2 may be gradually increased toward a central position from both end positions of theprojection 25 in the tire circumferential direction. In this case, it may be possible to further improve the durability of thebead portion 4. - Preferably, the length Li in the tire radial direction of the radially
inner oblique side 25b is set to be greater than the length Lo in the tire radial direction of the radially outeroblique side 25a. As a result, the angle with respect to the tire axial direction of the radiallyinner oblique side 25b becomes smaller than the angle with respect to the tire axial direction of the radiallyouter oblique sides 25a, and the stiffness in the tire radial direction of theprojection 25 can be increased. Thus, the cut resistance performance can be improved while suppressing the weight increase due to theprojections 25. - It is preferable that, as shown in
Fig. 5 , the length in the tire radial direction of the projection 25 (= Li + Lo) is less than the length La in the tire radial direction of theouter surface 20b of theside protector 20 in order not to hinder the improvement of the cut resistance performance. For a good balance between the improvement of the cut resistance performance and the improvement of the off-road performance, the length (=Li + Lo) of theprojection 25 is preferably set in a range from 35% to 65% of the length La of theouter surface 20b. - while detailed description has been made of a preferable embodiment of the present invention, the present invention can be embodied in various forms without being limited to the illustrated embodiment.
- Based on the internal structure shown in
Fig. 1 and the tread pattern shown inFig. 2 , pneumatic tire of size 265/70R17 were experimentally manufactured as test tires and tested for the off-road performance (rock performance and mud performance), cut resistance performance, and bead durability. The test tires (including Comparative examples Re1-Re2 and working examples Ex1-Ex16) had the same structure except for side protectors and projections, specifications of which are listed in Table 1. - Using a 2500cc 4WD car provided on all wheels with test tires, the rock performance and mud performance during running on a rocky ground surface and muddy ground +surface of a test course were evaluated by a test driver based on running characteristics, e.g. traction, braking and the like.
The results are indicated in Table 1 by an index based on Comparative Example Re1 being 100, wherein the larger value is better. - Using the above-mentioned test car, after running for about 1500 km on the rocky ground surface, the grooved portions between the side protectors were checked, and the cut resistance was evaluated based on the length and depth of cuts occurred in the grooved portions.
The results are indicated in Table 1 by an index based on Comparative Example Re2 being 100, wherein the greater the numerical value, the better the cut resistance performance. - Using an indoor tire test machine, each test tire was run for 24 hours at 100 km/h (tire pressure 350 kPa, tire load 100% of the above-mentioned standard load), and the surface temperature of the bead portion was measured.
- The results are indicated in Table 1 by an index based on Comparative Example Re1 being 100, wherein the greater the numerical value, the better the durability.
Table 1 Tire Re1 Ex1 Ex2 Ex3 Re2 Ex4 Ex5 Ex6 Ex7 W1/W2(%) 45 50 60 70 75 60 60 60 60 La(mm) 35 35 35 35 35 15 20 50 55 H1(mm) 7 7 7 7 7 7 7 7 7 H2(mm) 5 5 5 5 5 5 5 5 5 Cut resistance 130 125 120 110 100 110 120 120 110 Rock performanc 100 110 120 110 100 115 120 120 115 Mud performance 100 110 120 110 100 115 120 120 115 Bead durability 100 110 120 125 130 115 120 120 120 Tire Ex8 Ex9 Ex10 Ex11 Ex12 Ex13 Ex14 Ex15 Ex16 W1/W2(%) 60 60 60 60 60 60 60 60 60 La(mm) 35 35 35 35 35 35 35 35 - H1(mm) 3 5 10 13 7 7 7 7 7 H2(mm) 5 5 5 5 1 2 8 10 - Cut resistance 115 120 120 125 115 120 120 125 110 Rock performance 120 120 120 120 120 120 120 120 115 Mud performance 120 120 120 120 120 120 120 120 115 Bead durability 125 120 120 115 125 120 120 115 125 - From the test results, it was confirmed that, as compared with Comparative Example tires, working Example tires were improved in the durability of the bead portion, the off-road performance, and the cut resistance performance in a good balance.
-
- 1
- pneumatic tire
- 3
- sidewall portion
- 20
- side protector
- 21
- grooved portion
- B
- radially outer region of sidewall portion
- Ba
- outer surface of radially outer region
Claims (7)
- A pneumatic tire comprising
a sidewall portion provided in its radially outer region thereof with side protectors protruding axially outwardly from the outer surface of the radially outer region,
the side protectors arranged in the tire circumferential direction at intervals so that a grooved portion is formed between every two of the circumferentially adjacent side protectors, wherein
a length in the tire circumferential direction of said grooved portion is in a range of from 50% to 70% of a length in the tire circumferential direction of the side protector on each side of said grooved portion when the lengths are measured at the same radial position. - The pneumatic tire according to claim 1, wherein
each of the grooved portions is provided with a projection having a substantially triangular shape having an apex projecting axially outwardly in a tire meridian section including the grooved portion. - The pneumatic tire according to claim 2, wherein
a distance in the tire radial direction between said apex and the adjacent tread edge is in a range from 20 to 50 mm. - The pneumatic tire according to claim 2 or 3, wherein the apex of said projection extends in the tire circumferential direction continuously between the side protectors on both sides of said projection.
- The pneumatic tire according to any one of claims 2 to 4, wherein said projection has a protruding height in a tire meridian section including the projection which is less than a protruding height of the side protector on each side thereof in a tire meridian section including the side protector.
- The pneumatic tire according to any one of claims 2 to 5, wherein said projection has a protruding height in a range from 2 to 8 mm.
- The pneumatic tire according to any one of claims 1 to 6, wherein the side protectors have protruding heights in a range from 5 to 10 mm.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016055867A JP6724450B2 (en) | 2016-03-18 | 2016-03-18 | Pneumatic tire |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3219516A1 true EP3219516A1 (en) | 2017-09-20 |
EP3219516B1 EP3219516B1 (en) | 2018-12-26 |
Family
ID=58192220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17158582.1A Active EP3219516B1 (en) | 2016-03-18 | 2017-03-01 | Pneumatic tire |
Country Status (4)
Country | Link |
---|---|
US (1) | US10675918B2 (en) |
EP (1) | EP3219516B1 (en) |
JP (1) | JP6724450B2 (en) |
CN (1) | CN107199835B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3613613A1 (en) * | 2018-08-21 | 2020-02-26 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
WO2021099030A1 (en) * | 2019-11-19 | 2021-05-27 | Continental Reifen Deutschland Gmbh | Utility vehicle tyre |
EP4159485A1 (en) * | 2021-10-04 | 2023-04-05 | Sumitomo Rubber Industries, Ltd. | Pneumatic tyre |
EP4173851A1 (en) * | 2021-11-01 | 2023-05-03 | Sumitomo Rubber Industries, Ltd. | Pneumatic tyre |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018052201A (en) * | 2016-09-27 | 2018-04-05 | 東洋ゴム工業株式会社 | Pneumatic tire |
JP6824677B2 (en) * | 2016-09-27 | 2021-02-03 | Toyo Tire株式会社 | Pneumatic tires |
JP6737674B2 (en) * | 2016-09-27 | 2020-08-12 | Toyo Tire株式会社 | Pneumatic tire |
JP6443509B1 (en) * | 2017-07-27 | 2018-12-26 | 横浜ゴム株式会社 | Pneumatic tire |
JP7000788B2 (en) * | 2017-10-13 | 2022-01-19 | 住友ゴム工業株式会社 | Pneumatic tires |
JP6962126B2 (en) * | 2017-10-18 | 2021-11-05 | 住友ゴム工業株式会社 | tire |
JP6929210B2 (en) * | 2017-12-11 | 2021-09-01 | 株式会社ブリヂストン | tire |
JP6990578B2 (en) * | 2017-12-25 | 2022-01-12 | Toyo Tire株式会社 | Pneumatic tires |
JP7017945B2 (en) * | 2018-02-21 | 2022-02-09 | Toyo Tire株式会社 | Pneumatic tires |
JP7053352B2 (en) * | 2018-04-11 | 2022-04-12 | Toyo Tire株式会社 | Pneumatic tires |
JP7119634B2 (en) * | 2018-06-21 | 2022-08-17 | 住友ゴム工業株式会社 | pneumatic tire |
JP7192470B2 (en) * | 2018-12-14 | 2022-12-20 | 住友ゴム工業株式会社 | pneumatic tire |
CN110143103B (en) * | 2019-06-03 | 2024-04-09 | 厦门正新橡胶工业有限公司 | Spare tyre of oblique-crossing car |
JP7298335B2 (en) * | 2019-06-25 | 2023-06-27 | 住友ゴム工業株式会社 | pneumatic tire |
JP7403300B2 (en) * | 2019-12-12 | 2023-12-22 | Toyo Tire株式会社 | pneumatic tires |
JP2022168416A (en) * | 2021-04-26 | 2022-11-08 | Toyo Tire株式会社 | pneumatic tire |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004291937A (en) * | 2003-03-28 | 2004-10-21 | Toyo Tire & Rubber Co Ltd | Pneumatic radial tire |
US20100200135A1 (en) * | 2009-02-06 | 2010-08-12 | Toyo Tire & Rubber Co., Ltd. | Pneumatic Tire |
JP2010188975A (en) * | 2009-02-20 | 2010-09-02 | Toyo Tire & Rubber Co Ltd | Pneumatic tire and mounting method of pneumatic tire |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4913419B2 (en) * | 2006-02-10 | 2012-04-11 | 株式会社ブリヂストン | Tire vulcanizing mold and pneumatic tire |
JP4886812B2 (en) * | 2009-05-18 | 2012-02-29 | 東洋ゴム工業株式会社 | Pneumatic tire |
JP5452388B2 (en) | 2010-06-23 | 2014-03-26 | 住友ゴム工業株式会社 | Pneumatic tire |
JP5066240B2 (en) * | 2010-09-24 | 2012-11-07 | 住友ゴム工業株式会社 | Pneumatic tire |
JP5893370B2 (en) * | 2011-12-06 | 2016-03-23 | 東洋ゴム工業株式会社 | Pneumatic radial tire |
CN107933204B (en) * | 2014-03-26 | 2020-02-07 | 住友橡胶工业株式会社 | Pneumatic tire |
JP6142930B1 (en) * | 2016-01-14 | 2017-06-07 | 横浜ゴム株式会社 | Pneumatic tire |
-
2016
- 2016-03-18 JP JP2016055867A patent/JP6724450B2/en active Active
-
2017
- 2017-03-01 EP EP17158582.1A patent/EP3219516B1/en active Active
- 2017-03-01 CN CN201710116802.2A patent/CN107199835B/en active Active
- 2017-03-07 US US15/452,279 patent/US10675918B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004291937A (en) * | 2003-03-28 | 2004-10-21 | Toyo Tire & Rubber Co Ltd | Pneumatic radial tire |
US20100200135A1 (en) * | 2009-02-06 | 2010-08-12 | Toyo Tire & Rubber Co., Ltd. | Pneumatic Tire |
JP2010188975A (en) * | 2009-02-20 | 2010-09-02 | Toyo Tire & Rubber Co Ltd | Pneumatic tire and mounting method of pneumatic tire |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3613613A1 (en) * | 2018-08-21 | 2020-02-26 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
CN110843425A (en) * | 2018-08-21 | 2020-02-28 | 住友橡胶工业株式会社 | Pneumatic tire |
CN110843425B (en) * | 2018-08-21 | 2023-01-31 | 住友橡胶工业株式会社 | Pneumatic tire |
US11667160B2 (en) | 2018-08-21 | 2023-06-06 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
WO2021099030A1 (en) * | 2019-11-19 | 2021-05-27 | Continental Reifen Deutschland Gmbh | Utility vehicle tyre |
EP4159485A1 (en) * | 2021-10-04 | 2023-04-05 | Sumitomo Rubber Industries, Ltd. | Pneumatic tyre |
US11975569B2 (en) | 2021-10-04 | 2024-05-07 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
EP4173851A1 (en) * | 2021-11-01 | 2023-05-03 | Sumitomo Rubber Industries, Ltd. | Pneumatic tyre |
US12090791B2 (en) | 2021-11-01 | 2024-09-17 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
Also Published As
Publication number | Publication date |
---|---|
JP2017170937A (en) | 2017-09-28 |
EP3219516B1 (en) | 2018-12-26 |
JP6724450B2 (en) | 2020-07-15 |
CN107199835A (en) | 2017-09-26 |
CN107199835B (en) | 2020-10-30 |
US10675918B2 (en) | 2020-06-09 |
US20170267034A1 (en) | 2017-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3219516B1 (en) | Pneumatic tire | |
EP3213931B1 (en) | Pneumatic tire | |
US11161375B2 (en) | Tire | |
EP3056359B1 (en) | Pneumatic tire | |
EP2952362B1 (en) | Pneumatic tire | |
EP2818333B1 (en) | Pneumatic tire | |
EP3219512B1 (en) | Pneumatic tire | |
EP3205516A1 (en) | Pneumatic tire | |
EP2660078A1 (en) | Pneumatic tire | |
EP2650145B1 (en) | Pneumatic tire for running on rough terrain | |
EP2695750B1 (en) | Pneumatic tire for running on rough terrain | |
US10857841B2 (en) | Pneumatic tire | |
EP2682283B1 (en) | Pneumatic tire for running on rough terrain | |
EP3332991B1 (en) | Pneumatic tire | |
EP3647078B1 (en) | Tyre | |
US11155125B2 (en) | Pneumatic tyre | |
EP3424752B1 (en) | Pneumatic tire | |
EP3318420B1 (en) | Tire for running on rough terrain | |
EP3695988B1 (en) | Pneumatic tyre, tyre mold and method for manufacturing pneumatic tyre using the same | |
EP3597451A1 (en) | Tyre | |
JP4380871B2 (en) | Heavy duty radial tire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20171211 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180531 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20181016 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1080895 Country of ref document: AT Kind code of ref document: T Effective date: 20190115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017001505 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190326 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190326 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20181226 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190327 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1080895 Country of ref document: AT Kind code of ref document: T Effective date: 20181226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190426 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190426 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017001505 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190301 |
|
26N | No opposition filed |
Effective date: 20190927 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190301 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170301 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230510 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240130 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240213 Year of fee payment: 8 |