EP3218101A1 - Zeolite adsorbents made from lsx zeolite with a controlled external surface area, method for preparation of same and uses thereof - Google Patents

Zeolite adsorbents made from lsx zeolite with a controlled external surface area, method for preparation of same and uses thereof

Info

Publication number
EP3218101A1
EP3218101A1 EP15797924.6A EP15797924A EP3218101A1 EP 3218101 A1 EP3218101 A1 EP 3218101A1 EP 15797924 A EP15797924 A EP 15797924A EP 3218101 A1 EP3218101 A1 EP 3218101A1
Authority
EP
European Patent Office
Prior art keywords
zeolite
adsorbent
μηη
crystals
inclusive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP15797924.6A
Other languages
German (de)
French (fr)
Inventor
Ludivine Bouvier
Cécile LUTZ
Catherine Laroche
Julien Grandjean
Arnaud Baudot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Arkema France SA
Original Assignee
IFP Energies Nouvelles IFPEN
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN, Arkema France SA filed Critical IFP Energies Nouvelles IFPEN
Publication of EP3218101A1 publication Critical patent/EP3218101A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/183Physical conditioning without chemical treatment, e.g. drying, granulating, coating, irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • B01D15/1807Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns using counter-currents, e.g. fluidised beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • B01D15/1814Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns recycling of the fraction to be distributed
    • B01D15/1821Simulated moving beds
    • B01D15/1828Simulated moving beds characterized by process features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • B01D15/1814Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns recycling of the fraction to be distributed
    • B01D15/1821Simulated moving beds
    • B01D15/185Simulated moving beds characterized by the components to be separated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/08Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds according to the "moving bed" method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28088Pore-size distribution
    • B01J20/28092Bimodal, polymodal, different types of pores or different pore size distributions in different parts of the sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3028Granulating, agglomerating or aggregating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • C07C7/13Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers by molecular-sieve technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/306Surface area, e.g. BET-specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/308Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/31Pore size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/311Porosity, e.g. pore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • B01D2255/2022Potassium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40086Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by using a purge gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/4009Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating using hot gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/406Further details for adsorption processes and devices using more than four beds
    • B01D2259/4068Further details for adsorption processes and devices using more than four beds using more than ten beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography

Definitions

  • the invention relates to zeolite adsorbents in the form of agglomerates comprising zeolite structure Faujasite (FAU) type LSX for their use in applications where the transfer of material is an important parameter, said adsorbents having an outer surface controlled, measured by nitrogen adsorption, between 20 m 2 . g -1 and 100 m 2 g -1 .
  • FAU Faujasite
  • the present invention also relates to a process for preparing said zeolite adsorbents, and their uses, in particular for the separation of gaseous or liquid mixtures of isomers, more particularly xylenes and especially for the production of very pure paraxylene from an aromatic hydrocarbon feed containing isomers containing 8 carbon atoms.
  • zeolitic adsorbents comprising at least zeolite Faujasite (FAU) type X or Y and comprising, in addition to sodium cations, barium, potassium or strontium ions, alone or in mixtures, for selectively adsorbing the paraxylene in a mixture of aromatic hydrocarbons is well known in the art.
  • FAU zeolite Faujasite
  • US 6 884 918 recommends a faujasite X atomic Si / Al ratio between 1, 15 and 1.5 exchanged with barium or barium and potassium.
  • Document US 6,410,815 teaches that zeolite adsorbents as described in the prior art, but for which the faujasite is low in silica content and has an Si / Al atomic ratio close to 1 (that the we will call LSX, abbreviation for Low Silica X of which the French translation is zeolite X with a low silica content) are advantageously used for the separation of paraxylene, especially when it is necessary to treat ethylbenzene-rich feeds, because of a better selectivity of paraxylene with respect to this compound. isomer with respect to zeolite X adsorbents with an Si / Al atomic ratio of between 1.15 and 1.5.
  • the zeolitic adsorbents are in the form of crystals in the form of powder or in the form of agglomerates consisting mainly of zeolite powder and up to 20% by weight of inert binder.
  • FAU zeolites The synthesis of FAU zeolites is usually carried out by nucleation and crystallization of silico-aluminate gels. This synthesis leads to crystals (generally in the form of powder) whose use on an industrial scale is particularly difficult (significant losses of loads during handling).
  • crystals generally in the form of powder
  • the agglomerated forms of these crystals in the form of grains, yarns and other agglomerates are then preferred, these forms being obtainable by extrusion, pelletization, atomization and other agglomeration techniques known to those skilled in the art. These agglomerates do not have the disadvantages inherent to the pulverulent materials.
  • the agglomerates whether they are in the form of platelets, beads, extrudates, and the like, generally consist of crystals of zeolite (s), which constitute the active element (in the sense of adsorption). ) and an agglomeration binder.
  • This agglomeration binder is intended to ensure the cohesion of the crystals with each other in the agglomerated structure, but also must make it possible to ensure sufficient mechanical strength for said agglomerates in order to avoid, or at least to minimize as much as possible, the risks fractures, breaks or breaks that may occur during their industrial uses during which the agglomerates are subjected to numerous constraints, such as vibrations, strong and / or frequent variations of pressures, movements and others.
  • agglomerates are carried out for example by pasting zeolite crystals in powder form with a clay paste, in proportions of the order of 80% to 90% by weight of zeolite powder for 20% to 10% by weight of binder, then shaped into balls, platelets or extrudates, and high temperature heat treatment for baking the clay and reactivation of the zeolite, the cationic exchange (s) , such as, for example, the barium and optionally potassium exchange that can be carried out before and / or after the zeolite powder has been agglomerated with the binder.
  • the cationic exchange (s) such as, for example, the barium and optionally potassium exchange that can be carried out before and / or after the zeolite powder has been agglomerated with the binder.
  • zeolite agglomerates whose particle size is a few millimeters, or even of the order of a millimeter, and which, if the choice of agglomeration binder and granulation are made in the rules of the art, have a set of properties satisfactory, in particular porosity, mechanical strength, abrasion resistance.
  • the adsorption properties of these agglomerates are obviously reduced relative to the starting active powder due to the presence of agglomeration binder inert with respect to the adsorption.
  • zeolitization To easily perform this operation, zeolitizable binders are used, most often belonging to the family of kaolinite, and preferably previously calcined at temperatures generally between 500 ° C and 700 ° C.
  • Patent FR 2 925 366 describes a process for the manufacture of LSX zeolite agglomerates with Si / Al atomic ratio such that 1.00 ⁇ Si / Al ⁇ 1, 15 exchanged with barium and optionally with barium and potassium. , by agglomerating LSX zeolite crystals with a kaolinic binder, and then zeolizing the binder by immersing the agglomerate in an alkaline liquor.
  • the agglomerates thus obtained have, from the point of view of the adsorption of the paraxylene contained in the C8 aromatic cuts and of the mechanical strength, properties improved with respect to adsorbents prepared from the same amount of LSX zeolite and binder, but whose binder is not zeolite.
  • the adsorbent In addition to a high adsorption capacity and good selectivity properties in favor of the species to be separated from the reaction mixture, the adsorbent must have good material transfer properties to ensure a sufficient number of theoretical plates for achieve effective separation of mixed species, as Ruthven points out in "Principles of Adsorption and Adsorption Processes," John Wiley & Sons, (1984) pages 326 and 407. Ruthven indicates (ibid., p. 243) that, in the case of an agglomerated adsorbent, the transfer of global matter depends on the sum of the diffusional intracrystalline and intercrystalline resistances (between the crystals). ).
  • the intra-crystalline diffusional resistance is proportional to the square of the diameters of the crystals and inversely proportional to the intra-crystalline diffusivity of the molecules to be separated.
  • the inter-crystalline diffusion resistance (also called “macroporous resistance”) is in turn proportional to the square of the diameters of the agglomerates, inversely proportional to the porosity contained in the macropores and mesopores (that is to say the pores whose opening is greater than 2 nm) within the agglomerate, and inversely proportional to the diffusivity of the molecules to be separated in this porosity.
  • the size of the agglomerates is an important parameter when using the adsorbent in the industrial application, because it determines the pressure drop within the industrial unit and the uniformity of the filling.
  • the particle size distribution of the agglomerates must therefore be narrow, and centered on number average diameters typically between 0.40 mm and 0.65 mm in order to avoid excessive pressure losses.
  • the porosity contained in the macropores and mesopores within the agglomerate can be increased by using porogenic agents, such as, for example, the corn starch recommended in the US 8 document. 283,274 to improve material transfer.
  • porogenic agents such as, for example, the corn starch recommended in the US 8 document. 283,274 to improve material transfer.
  • this porosity does not participate in the adsorption capacity and the improvement of the transfer of macroporous material is then to the detriment of the adsorption capacity volume. Consequently, this pathway for improving the transfer of macroporous material is very limited.
  • the diffusivities are fixed, and one of the means for improving the transfer of material is to reduce the diameter of the crystals. A gain on the global material transfer will thus be obtained by reducing the size of the crystals.
  • the skilled person will therefore seek to reduce as much as possible the diameter of the zeolite crystals to improve the transfer of material.
  • the CN patent 1,267,185C thus claims adsorbents containing 90% to 95% of BaX or BaKX zeolite for the separation of paraxylene, in which the zeolite X crystals are of size between 0.1 ⁇ and 0, 4 ⁇ and this to improve the performance in material transfer.
  • application US2009 / 0326308 describes a process for separating xylene isomers whose performance has been improved by the use of adsorbents based on zeolite X crystals less than 0.5 ⁇ .
  • Patent FR 2 925 366 describes adsorbents containing LSX zeolite crystals with a number-average diameter of between 0.1 ⁇ and 4.0 ⁇ .
  • the Applicant has observed that the synthesis, filtration, handling and agglomeration of zeolite crystals whose size is less than 0.5 ⁇ implement heavy processes, uneconomical and therefore hardly industrialized.
  • such adsorbents having crystals smaller than 0.5 ⁇ are also more fragile, and it then becomes necessary to increase the level of agglomeration binder to enhance the cohesion of the crystals. between them within the adsorbent.
  • the increase in the level of agglomeration binder leads to densification of the adsorbents, causing an increase in the macroporous diffusional resistance.
  • the increase in the macroporous diffusional resistance due to the densification of the adsorbent does not allow an improvement in the overall transfer.
  • the increase in the binder content does not make it possible to obtain a good adsorption capacity.
  • the present invention thus has for its first object to provide zeolite adsorbents in the form of agglomerates with optimized properties for the separation of gaseous or liquid mixtures of isomers and more particularly for the separation of xylenes, gas phase or phase liquid, especially paraxylene aromatic C8 cuts, and especially when said sections are rich in ethylbenzene.
  • the zeolitic adsorbents of the invention advantageously have selectivity properties of paraxylene with respect to its isomers greater than 2.1, preferably greater than 2.3, and improved material transfer properties, while having high mechanical strength and adsorption capacity and are particularly suitable for use in a process for separating paraxylene in the liquid phase, preferably of the simulated countercurrent type.
  • the present invention relates to a zeolitic adsorbent comprising at least one zeolite of structure FAU LSX type and comprising barium and / or potassium, wherein the outer surface of said zeolite adsorbent, measured by nitrogen adsorption, is between 20 m 2 . g "1 and 100 m 2 .g -1 , inclusive and more preferably between 20 m 2 . g "1 and 80 m 2, g " 1 inclusive limits and even more preferably between 30 m 2 . g "1 and 80 m 2, g " 1 , inclusive terminals.
  • zeolite adsorbents of controlled external surface that is to say between 20 m 2 . g "1 and 100 m 2 g -1 , as measured by nitrogen adsorption, and prepared from LSX zeolite crystals of Si / Al atomic ratio equal to 1.00 ⁇ 0.05 having a size greater than 0.5 ⁇ , exhibit an improved overall material transfer with respect to zeolite adsorbents prepared from LSX zeolite crystals, with an atomic ratio Si / Al and of identical size, but of external surface, measured by nitrogen adsorption, strictly less than 20 m 2 . g "1 .
  • the present invention therefore allows the provision of zeolitic adsorbents with improved properties compared to the prior art while facilitating the filtration, handling and agglomeration of zeolite powders used in the manufacturing process.
  • Another object of the present invention is to provide a process for preparing said adsorbents, as well as the uses of said adsorbents for the separation of gaseous or liquid mixtures of isomers, more particularly xylenes and especially for the separation of very pure paraxylene from a charge of aromatic hydrocarbons containing isomers containing 8 carbon atoms, and in particular from a feed rich in ethylbenzene.
  • Still another object of the present invention is to maximize the transfer of material within the zeolite adsorbent, while maintaining selectivities of paraxylene vis-à-vis its high isomers, especially greater than 2.1 and an adsorption capacity suitable for the application, at the same time as a mechanical strength compatible with the application in question.
  • the present invention relates to a zeolitic adsorbent:
  • the zeolitic adsorbent of the invention has an Si / Al atomic ratio of between 1.00 and 1.5, preferably between 1.00 and 1.4, inclusive, preferably between 1, 00 and 1, 20 inclusive, and even more preferably between 1.00 and 1.1 inclusive.
  • the crystals have, together with the microporosity, internal cavities of nanometric size (mesoporosity), easily identifiable by observation by means of a Transmission Electron Microscope (TEM or "TEM” in English) as described for example in US 7,785,563.
  • TEM Transmission Electron Microscope
  • the outer surface of the zeolite adsorbent of the invention is calculated by the t-plot method from the nitrogen adsorption isotherm at a temperature of 77K, after degassing under vacuum (P ⁇ 6). , 7.10 "4 Pa), at a temperature between 300 ° C and 450 ° C for a period ranging from 9 hours to 16 hours, preferably at 400 ° C. for 10 hours
  • the outer surface of the zeolite crystals FAU adsorbent before agglomeration is measured in the same way.
  • the barium content (Ba) of the zeolite adsorbent of the invention is greater than 25%, preferably greater than 28%, very preferably preferred greater than 34%, even more preferably greater than 37%, by weight relative to the total weight of the adsorbent, and advantageously, the barium content expressed as barium oxide (BaO) is between 28% and 42%; %, and typically between 37% and 40%, limits included, by weight relative to the total weight of the adsorbent.
  • the potassium content (K) of the zeolite adsorbent of the invention is less than 30%, preferably less than 15%, and preferably between 0 and 10%, limits included by weight relative to the total weight of the adsorbent.
  • the total content of alkaline or alkaline-earth ions, other than barium and potassium expressed as total content of alkaline or alkaline earth metal oxides other than hydroxide oxide. BaO barium and K 2 0 potassium oxide is between 0 and 5%, limits included, relative to the total mass of the adsorbent.
  • the zeolitic adsorbent according to the invention has a total volume contained in the macropores and mesopores (sum of macroporous volume and mesoporous volume) measured by intrusion of mercury, between 0.15 cm 3 . g "1 and 0.5 cm 3, g " 1 , preferably between 0.20 cm 3 . g "1 and 0.40 cm 3 g -1 and very preferably between 0.20 cm 3 . g "1 and 0.35 cm 3, g " 1 , inclusive.
  • the zeolite adsorbent comprises both macropores, mesopores and micropores.
  • Macropores means pores whose diameter is greater than 50 nm.
  • mesopores is meant pores whose diameter is between 2 nm and 50 nm, limits included.
  • Micropores means pores whose diameter is less than 2 nm.
  • the adsorbent of the invention advantageously has a ratio (macroporous volume) / (macroporous volume + mesoporous volume) of between 0.2 and 1, very preferably between 0.5 and 0.9. , terminals included.
  • a zeolite adsorbent whose microporous volume, evaluated by the t-plot method from the nitrogen adsorption isotherm (N 2 ) at a temperature of 77K, is greater than 0.160 cm 3 . g "1 , preferably between 0.170 cm 3 .g -1 and 0.275 cm 3 . g "1 and more preferably between 0.180 cm 3 .g -1 and 0.250 cm 3 . g "1. Said isothermal nitrogen adsorption that is also used for measuring the outer surface by the t-plot method.
  • the crystalline structure of the FAU zeolite LSX type in the zeolite adsorbent of the present invention is identified by X-ray diffraction (known to those skilled in the art under the acronym DRX).
  • no zeolite structure other than the FAU structure is detected by X-ray diffraction in the zeolite adsorbent of the present invention.
  • no zeolite structure other than the FAU structure is meant less than 5%, preferably less than 2% by weight inclusive of one or more other zeolitic phases, other than the FAU structure.
  • the mass fraction determined by XRD is expressed by weight relative to the total weight of the adsorbent.
  • the zeolitic adsorbent according to the invention further comprises and preferably at least one non-zeolitic phase which comprises inter alia an agglomeration binder used in the method of preparation to ensure the cohesion of the crystals with each other, whence the term “agglomerate” or “zeolite agglomerate” sometimes used instead of the term “zeolite adsorbent" of the invention, as described above.
  • binder means an agglomeration binder which makes it possible to ensure the cohesion of the zeolite crystals (s) in the zeolite adsorbent (or agglomerated zeolite material) of the invention.
  • This binder is further distinguished from zeolite crystals in that it does not exhibit a crystalline structure, and in particular no zeolitic crystalline structure, for which reason the binder is often described as inert, and more precisely inert. with respect to adsorption and ion exchange.
  • the mass fraction of zeolite FAU in the adsorbent is greater than or equal to 85%, preferably greater than or equal to 90% by weight, inclusive, relative to the total weight of the adsorbent of the present invention, the 100% complement being preferably constituted of non-zeolitic phase.
  • the mass fraction of zeolite FAU is between 92% and 98%, preferably between 94% and 98% by weight, limits included, relative to the total weight of the adsorbent of the present invention, the 100% complement being preferably constituted of non-zeolitic phase.
  • the mass fraction of zeolite (s) (crystallinity level) of the adsorbent according to the invention can be determined by X-ray diffraction analysis, known to those skilled in the art under the acronym XRD.
  • the zeolite adsorbent according to the invention has a loss on ignition, measured at 950 ° C. according to the NF EN 196-2 standard, between 3.0 and 7.7%, so that still more preferred between 3.5% and 6.7% and advantageously between 4.0% and 6%, limits included.
  • the zeolitic adsorbent according to the present invention has, in particular, both a mechanical strength, adsorption selectivities of paraxylene with respect to its isomers of greater than 2.1, preferably greater than 2.2, of more preferably greater than 2.3 and an adsorption capacity also very particularly suitable for use in the processes for separating xylene isomers in the gas phase or in the liquid phase.
  • the mechanical strength is measured by the Shell method SMS1471 -74 series suitable for agglomerates of size less than 1, 6 mm.
  • This mechanical resistance, measured for the zeolite adsorbent defined above, is generally between 1, 5 MPa and 4 MPa, preferably between 1.7 MPa and 4 MPa more preferably between 1.8 MPa and 4 MPa and most preferably between 2 MPa and 4 MPa, inclusive.
  • Another object of the invention relates to a process for preparing the zeolite adsorbent as just defined, said process comprising at least the steps of: a) agglomeration of crystals of at least one zeolite FAU structure type LSX, having an outer surface of between 20 m 2 . g "1 and 150 m 2, g " 1 , inclusive terminals, preferably between 20 m 2 . g "1 and 120 m 2, g " 1 , more preferably between 20 m 2 .
  • g "1 and 100 m 2 .g " 1 , inclusive terminals whose number average diameter of the crystals is between 0.5 ⁇ and 20 ⁇ inclusive, preferably between 0.5 ⁇ and 10 ⁇ , included terminals, more preferably between 0.8 ⁇ and ⁇ ⁇ ⁇ , included terminals, better still between 1 ⁇ and 10 ⁇ , included terminals, and preferably between 1 m and 8 ⁇ , limits included, with a binder preferably comprising at least 80% of clay or a mixture of clays and up to 5% of additives as well as with the amount of water which allows shaping of the agglomerated material, followed by drying and calcination of the agglomerates;
  • step b) optionally zeolizing step of all or part of the binder by contacting the agglomerates obtained in step a) with an aqueous basic solution;
  • step b) cationic exchange (s) of the agglomerates of step b) by contacting with a solution of barium ions and / or potassium ions;
  • step c) additional cationic exchange of the agglomerates of step c) by contacting with a solution of potassium ions;
  • step f) obtaining the zeolitic adsorbent according to the invention by activating the agglomerates obtained in step e) under an oxidizing and / or inert gas scavenging, with in particular gases such as oxygen, nitrogen, air, a dry air and / or decarbonated oxygen-depleted air, optionally dry and / or decarbonated, at a temperature between 100 ° C and 400 ° C, preferably between 200 ° C and 300 ° C.
  • gases such as oxygen, nitrogen, air, a dry air and / or decarbonated oxygen-depleted air, optionally dry and / or decarbonated
  • the drying of the agglomerates in step a) above is generally carried out at a temperature of between 50 ° C. and 150 ° C. C, and the calcination of the dried agglomerates is generally carried out under an oxidizing and / or inert gas scavenging, with, in particular, gases such as oxygen, nitrogen, air, dry air and / or decarbonated air, an air depleted of oxygen, possibly dry and / or decarbonated, a temperature above 150 ° C, typically between 180 ° C and 800 ° C, preferably between 200 ° C and 650 ° C, for a few hours, for example from 2 hours to 6 hours.
  • gases such as oxygen, nitrogen, air, dry air and / or decarbonated air
  • an air depleted of oxygen possibly dry and / or decarbonated
  • said zeolite adsorbents are obtained from zeolite crystals having an external surface measured by nitrogen adsorption of between 20 m 2 . 1 and 150 m 2 g -1 , said zeolite crystals are preferably zeolite crystals with a hierarchical porosity.
  • zeolite By “hierarchically porous zeolite” is meant a zeolite having both micropores and mesopores, ie a zeolite both microporous and mesoporous.
  • mesoporous zeolite By “mesoporous zeolite” is meant a zeolite whose microporous zeolite crystals have, together with the microporosity, internal cavities of nanometric size (mesoporosity), easily identifiable by observation by means of a Transmission Electron Microscope (TEM or "TEM"). In English), as described for example in US 7,785,563.
  • TEM Transmission Electron Microscope
  • said zeolite crystals with an external surface of between 20 m 2 . g "1 and 150 m 2 g -1 by direct synthesis through the use of structuring agents or by seeding techniques and / or by adjusting the synthesis operating conditions such as the ratio Si0 2 / Al 2 0 3 , the sodium content and the alkalinity of the synthesis mixture or by indirect synthesis according to post-treatment methods of conventional FAU zeolite crystals and known to those skilled in the art.
  • the post-treatment processes generally consist in removing atoms from the already formed zeolite network, either by one or more acid treatments which dealuminate the solid, treatment (s) followed by one or more washing (s) to sodium hydroxide (NaOH) in order to eliminate the aluminum residues formed, as described for example by D. Verboekend et al. ⁇ Adv. Funct. Mater., 22, (2012), pp. 916-928), or else by treatments which combine the action of an acid and that of a structuring agent which improve the efficiency of the acid treatment, as described for example in the application WO2013 / 106816.
  • the methods of direct synthesis of these zeolites are preferred and generally involve one or more structuring agents or sacrificial templates.
  • the sacrificial templates that can be used can be of any type known to those skilled in the art and in particular those described in the application WO2007 / 043731.
  • the sacrificial template is advantageously chosen from organosilanes and more preferably from [3- (trimethoxysilyl) propyl] octadecyldimethylammonium chloride, [3- (trimethoxysilyl) propyl] hexadecyl dimethylammonium chloride, [3- (trimethoxysilyl) propyl] dodecyldimethylammonium chloride, [3- (trimethoxysilyl) propyl] octylammonium chloride, N- [3- (trimethoxysilyl) propyl] aniline, 3- [2- (2-amino) ethylamino) ethylamino] propyltrimethoxysilane, N- [3- (trimethoxysilyl) propyl] -N '- (4-vinylbenzyl) ethylenediamine, triethoxy-3
  • sacrificial templates of higher molar mass for example PPDA (Poly-Diallyldimethylammonium Polymer), PVB (PolyVinyl Butyral) and other oligomeric compounds known in the art to increase the diameter of the mesopores.
  • PPDA Poly-Diallyldimethylammonium Polymer
  • PVB PolyVinyl Butyral
  • other oligomeric compounds known in the art to increase the diameter of the mesopores.
  • step a) the agglomeration of crystals of at least one zeolite FAU of LSX type with hierarchical porosity is carried out, as previously described, prepared in the presence of a sacrificial template to be eliminated.
  • This removal can be carried out according to the methods known to those skilled in the art, for example by calcination, and in a nonlimiting manner, the calcination of zeolite crystals comprising the sacrificial template can be carried out under oxidizing gaseous sweep and / or inert, in particular with gases such as oxygen, nitrogen, air, dry and / or decarbonated air, oxygen-depleted air, optionally dry and / or decarbonated, at a temperature or temperatures above 150 ° C. C, typically between 180 ° C and 800 ° C, preferably between 200 ° C and 650 ° C, for a few hours, for example between 2 and 6 hours.
  • gases such as oxygen, nitrogen, air, dry and / or decarbonated air, oxygen-depleted air, optionally dry and / or decarbonated
  • the nature of the gases, the ramps of temperature rise and the successive stages of temperatures, their durations will be adapted according to the nature of the sacrificial template.
  • the additional step of removing the optional sacrificial template can be performed at any time during the process for preparing the zeolite adsorbent of the invention.
  • the elimination of said sacrificial template can thus advantageously be carried out by calcination of the zeolite crystals before the agglomeration step a), or else concomitantly with the calcination of the adsorbent during step a).
  • step a) included the agglomeration of several LSX type FAU zeolites having an Si / Al atomic ratio equal to 1.00 ⁇ 0, And having an external surface area measured by nitrogen adsorption of between 20 m 2 . g "1 and 150 m 2 .g " 1 obtained in different modes.
  • zeolite FAU LSX type is generally in alkaline medium (sodium hydroxide and potassium and thus Na + and K + cations).
  • the LSX type FAU zeolite crystals thus obtained comprise mainly, or even exclusively, sodium and potassium cations.
  • step c) and possibly step d) of exchange may (possibly) not be necessary.
  • the size of LSX-type FAU zeolite crystals used in step a) and FAU zeolite crystals in the adsorbents according to the invention is measured by scanning electron microscope (SEM) observation.
  • the number average diameter of the crystals is between 0.5 ⁇ and 20 ⁇ inclusive, preferably between 0.5 ⁇ and 10 ⁇ inclusive, more preferably between 0.8 ⁇ and 10 ⁇ , included terminals, better still between 1 ⁇ and 10 ⁇ , included terminals, and more preferably between 1 ⁇ and 8 ⁇ , included terminals.
  • the term "number average diameter" or "size” is used, in particular for zeolite crystals. The method of measuring these quantities is explained later in the description.
  • step a) can be carried out according to all the techniques known to those skilled in the art, and in particular according to one or more of the techniques chosen from extrusion, compacting, agglomeration. on granulator plate, granulator drum, atomization and others.
  • agglomeration binder (see definition below) and zeolite used are 8 parts to 15 parts by weight of binder for 92 parts to 85 parts by weight of zeolite.
  • the finest agglomerated adsorbents can be removed by cycloning and / or sieving and / or agglomerates too large by sieving or crushing, in the case of extruded, for example.
  • the adsorbents thus obtained whether in the form of beads, extrudates or the like, preferably have a mean diameter by volume, or their length (larger dimension when they are not spherical), between 0.2 mm and 2 mm, and in particular between 0.2 mm and 0.8 mm and preferably between 0.40 mm and 0.65 mm inclusive.
  • the binder used in the context of the present invention may be chosen from conventional binders known to those skilled in the art, zeolitizable or non-zeolizable, and preferably chosen from clays and mixtures of clays, silicas, aluminas, colloidal silicas, alumina gels, and the like, and mixtures thereof.
  • the clays are preferably chosen from: kaolin, kaolinite, nacrite, dickite, halloysites, attapulgite, sepiolite, montmorillonite, bentonite, illite and metakaolin, as well as mixtures of two or more of them in all proportions.
  • the binder may also comprise one or more additives.
  • the additives are preferably organic, for example lignin, starch, carboxymethylcellulose, surfactant molecules (cationic, anionic, nonionic or amphoteric), intended to facilitate the handling of the dough zeolite (s) / clay (s) by modifying the rheology and / or stickiness or to give the final adsorbents satisfactory properties, including macroporosity.
  • Mention may preferably be made of, but not limited to, methylcelluloses and their derivatives, lignosulfonates, polycarboxylic acids and carboxylic acid copolymer acids, their amino derivatives and their salts, in particular alkaline salts and sodium salts. 'ammonium.
  • the additives are introduced at from 0 to 5%, preferably from 0.1% to 2%, by weight relative to the total weight of the adsorbent.
  • the additives may also comprise a source of liquid and / or solid silica, preferably representing from 1% to 5% of the total mass of said solids.
  • the possible source of silica may be of any type known to those skilled in the art, specialist in the synthesis of zeolites, for example colloidal silica, diatoms, perlite, fly ash ash in the language English), sand, or any other form of solid silica.
  • the nature of the gases, the ramps for temperature rise and the successive temperature increments, as well as their respective durations will be adapted in particular according to the nature of the sacrificial template to be eliminated and depending on the nature of the binder used in the agglomeration step a).
  • the SEM observation of the zeolitic adsorbent confirms the presence of non-zeolitic phase comprising, for example, agglomeration binder or any other amorphous phase in the adsorbents.
  • cation exchange (s) (s) (c) and (d) stages described above are carried out according to the conventional methods known to those skilled in the art, and most often by contacting the adsorbents originating from step a) or step b) with a barium salt, such as barium chloride (BaCl 2 ) and / or potassium (KCl) and / or barium and potassium, in aqueous solution at a temperature between room temperature and 100 ° C, and preferably between 80 ° C and 100 ° C to quickly obtain high levels of barium, ie levels of preferably greater than 25%, preferably greater than 28% very preferably greater than 34%, even more preferably greater than 37%, expressed by weight of barium oxide relative to the total mass of the adsorbent.
  • a barium salt such as barium chloride (BaCl 2 ) and / or potassium (KCl) and / or barium and potassium
  • the barium content expressed as barium oxide is between 28% and 42%, and typically between 37% and 40%, limits included, by weight relative to the total weight of the adsorbent. It is preferred to operate with a large excess of barium ions relative to the cations of the zeolite that it is desired to exchange, typically an excess of the order of 10 to 12, advantageously by proceeding by successive exchanges.
  • step d) Potential exchange with potassium in step d) can be practiced before and / or after the barium exchange (step c). It is also possible to agglomerate in step a) LSX-type zeolite crystals already containing barium or potassium ions or barium and potassium (pre-exchange of the cations present in the zeolite type LSX starting, typically sodium cations and potassium, by barium or potassium ions or barium and potassium before step a) and overcome (or not) steps c) and / or d).
  • the Applicant has observed that the cation exchange step, which can be difficult because of the relative fragility of the zeolite crystal structure hierarchized porosity does not affect the intrinsic properties of external surface and the microporous volume (reduced to mass of the adsorbent once exchanged) of said zeolite crystals with hierarchical porosity.
  • step f the drying which follows the drying (step f) is carried out in a conventional manner, according to the methods known to those skilled in the art, for example at a temperature generally between 100 ° C. and 400 ° C., as indicated previously in step f) of the process. Activation is carried out for a fixed period of time depending on the desired loss on fire. This duration is generally between a few minutes and a few hours, typically between 1 hour and 6 hours.
  • the present invention also relates to the uses of the zeolite adsorbents described above as adsorption agents which may advantageously replace the adsorption agents described in the literature, based on conventional zeolite crystals FAU LSX type comprising barium and / or potassium, and in particular in the uses listed below:
  • the present invention relates to a process for separating xylene isomers in the gas phase or in the liquid phase using at least one zeolite adsorbent as defined above, and preferably in which the zeolite crystals ( s) of the zeolitic adsorbent are prepared by direct synthesis using one or more structuring agents (or sacrificial templates).
  • the invention relates in particular to a process for separating high purity paraxylene (that is to say a purity greater than or equal to 90%) in a simulated moving bed from a feedstock.
  • aromatic hydrocarbons containing 8-carbon isomers comprising the following steps:
  • a step of contacting the adsorbent bed with a desorbent the desorbent being preferably either toluene or paradiethylbenzene
  • the invention relates in particular to a process for separating paraxylene from a filler of cuts of aromatic isomers containing 8 carbon atoms, using, as paraxylene adsorption agent, a zeolite adsorbent as defined above, and in particular a zeolite adsorbent based on FAU LSX type comprising barium and / or potassium and having a large external surface characterized by nitrogen adsorption, typically between 20 m 2 . g "1 and 100 m 2 .g -1 , and more preferably between 20 m 2 . g "1 and 80 m 2 .g -1 and even more preferably between 30 and 80 m 2 . g "1 inclusive terminals, implemented in processes in the liquid phase, but also in the gas phase.
  • the separation process according to the invention can be carried out by preparative adsorption liquid chromatography (in batch), and advantageously continuously in a simulated moving bed unit, that is to say against simulated current or simulated co-current, and more particularly counter-current simulated.
  • a temperature of between 100 ° C. and 250 ° C. preferably between 140 ° C. and 190 ° C .
  • ratio of desorbent flows on charge 0.7 to 2.5, preferably 0.7 to 2.0 (for example 0.9 to 1.8 for a unit of adsorption only ("stand alone” in English language) and 0.7 to 1.4 for an adsorption unit combined with a crystallization unit);
  • Recycling rate 2 to 12, preferably 2.5 to 6;
  • cycle time corresponding to the time between two injections of desorbent on a given bed: advantageously between 4 and 25 min.
  • the desorbent is a desorption solvent whose boiling point is lower than that of the feedstock, such as toluene or greater than that of the feedstock, such as para-diethylbenzene (PDEB).
  • PDEB para-diethylbenzene
  • the desorbent is toluene or para-diethylbenzene.
  • the selectivity of the adsorbents according to the invention for the adsorption of paraxylene contained in aromatic C 8 cuts is optimal when their loss on ignition measured at 950 ° C. is preferably less than or equal to 7.7%, preferably between 0 and 7.7%, very preferably between 3.0% and 7.7%, more preferably between 3.5% and 6.5% and even more preferably between 4.5% and 6%, terminals included.
  • the water content in the incoming stream is preferably adjusted between 20 ppm and 150 ppm, for example by adding water in the feed stream and / or desorbent.
  • Another advantage is to be able to have crystals of micrometric size (typically between 0.5 ⁇ and 20 ⁇ , inclusive, more preferably between 0.5 ⁇ and 10 ⁇ , included terminals, more preferably between 0 , 8 ⁇ and ⁇ ⁇ ⁇ , limits included, better still between 1 ⁇ and 10 ⁇ , limits included, and more preferably between 1 ⁇ and 8 ⁇ , limits included) which are more easily manipulated, thus making the manufacture of adsorbents easier.
  • crystals of micrometric size typically between 0.5 ⁇ and 20 ⁇ , inclusive, more preferably between 0.5 ⁇ and 10 ⁇ , included terminals, more preferably between 0 , 8 ⁇ and ⁇ ⁇ ⁇ , limits included, better still between 1 ⁇ and 10 ⁇ , limits included, and more preferably between 1 ⁇ and 8 ⁇ , limits included
  • the zeolitic adsorbents of the invention exhibit, in particular, improved material transfer properties while maintaining optimum selectivity properties of paraxylene with respect to its isomers, and typically greater than 2, 1, as well as of adsorption capacity, and maintaining a high mechanical strength for use in a method of separation of paraxylene in the liquid phase, preferably simulated countercurrent type.
  • step a The estimation of the average number diameter of the FAU zeolite crystals used during the agglomeration (step a) and the crystals contained in the zeolite adsorbents according to the invention is carried out by observation under a scanning electron microscope (SEM). .
  • SEM scanning electron microscope
  • a set of images is carried out at a magnification of at least 5000.
  • the diameter of at least 200 crystals is then measured using a dedicated software.
  • the accuracy is of the order of 3%.
  • the transmission electron microscope further makes it possible to verify whether the zeolite crystals of the adsorbent of the present invention are solid zeolite crystals (ie non-mesoporous) or aggregates.
  • solid zeolite crystals or mesoporous crystals see the comparison of the TEM images of Figure 1, where the mesoporosity is clearly visible and Figure 2 shows solid crystals.
  • the MET observation thus makes it possible to visualize the presence or the absence of the mesopores.
  • An elemental chemical analysis of the final product obtained after the steps a) to f) described above can be carried out according to various analytical techniques known to those skilled in the art. Among these techniques, mention may be made of the technique of chemical analysis by X-ray fluorescence as described in standard NF EN ISO 12677: 201 1 on a wavelength dispersive spectrometer (WDXRF), for example Tiger S8 of the Bruker company.
  • WDXRF wavelength dispersive spectrometer
  • X-ray fluorescence is a non-destructive spectral technique exploiting the photoluminescence of atoms in the X-ray domain, to establish the composition elementary of a sample.
  • the excitation of the atoms generally by an X-ray beam or by bombardment with electrons, generates specific radiations after return to the ground state of the atom.
  • the X-ray fluorescence spectrum has the advantage of relying very little on the chemical combination of the element, which offers a precise determination, both quantitative and qualitative. A measurement uncertainty of less than 0.4% by weight is obtained conventionally after calibration for each oxide.
  • the quality of the ion exchange is related to the number of moles of sodium oxide, Na 2 0, remaining in the zeolite adsorbent after exchange.
  • the exchange rate by barium ions is estimated by evaluating the ratio between the number of moles of barium oxide, BaO, and the number of moles of the whole (BaO + Na 2 0 + K 2 0 ).
  • the exchange rate by potassium ions is estimated by evaluating the ratio between the number of moles of potassium oxide K 2 0 and the number of moles of the whole (BaO + K 2 0 + Na 2 0 ). It should be noted that the contents of various oxides are given in percentage by weight relative to the total weight of the anhydrous zeolite adsorbent.
  • the determination of the average volume diameter of the zeolite adsorbents obtained at the end of step a) of agglomeration and shaping is carried out by analysis of the particle size distribution of an adsorbent sample by imaging. according to ISO 13322-2: 2006, using a treadmill allowing the sample to pass in front of the camera lens.
  • volume mean diameter is then calculated from the particle size distribution by applying the ISO 9276-2: 2001 standard.
  • volume mean diameter or "size” is used for zeolite adsorbents.
  • accuracy is of the order of 0.01 mm for the size range of adsorbents of the invention.
  • the crush resistance of a bed of zeolitic adsorbents as described in the present invention is characterized according to the Shell method SMS series 1471-74 (Shell Method Series SMS1471-74 "Determination of Bulk Crushing Strength of Catalysts. Compression-Sieve Method ”) associated with the" BCS Tester "device marketed by Vinci Technologies.
  • This method initially intended for the characterization of catalysts from 3 mm to 6 mm is based on the use of a screen of 425 ⁇ which will allow in particular to separate the fines created during the crash.
  • the use of a 425 ⁇ sieve remains suitable for particles greater than 1.6 mm in diameter, but must be adapted according to the particle size of the adsorbents that are to be characterized.
  • the adsorbents of the present invention generally in the form of beads or extrudates, generally have a volume average diameter or a length, ie the largest dimension in the case of nonspherical adsorbents, of between 0.2 mm. and 2 mm, and in particular between 0.2 mm and 0.8 mm and preferably between 0.40 mm and 0.65 mm inclusive. Therefore, a sieve of 100 ⁇ is used in place of the sieve of 425 ⁇ mentioned in the standard Shell method SMS1471-74.
  • the measurement protocol is as follows: a sample of 20 cm 3 of agglomerated adsorbents, previously sieved with the appropriate sieve (100 ⁇ ) and previously dried in an oven for at least 2 hours at 250 ° C. (at instead of 300 ° C mentioned in the standard Shell method SMS 1471-74), is placed in a metal cylinder of known internal section. An increasing force is imposed in steps on this sample by means of a piston, through a bed of 5 cm 3 of steel balls in order to better distribute the force exerted by the piston on the agglomerated adsorbents (use of balls 2 mm in diameter for particles of spherical shape with a diameter strictly less than 1.6 mm). The fines obtained at the different pressure levels are separated by sieving (100 ⁇ adapted sieve) and weighed.
  • the crush strength in bed is determined by the pressure in megaPascal (MPa) for which the amount of cumulative fines passing through the sieve is 0.5% by weight of the sample. This value is obtained by plotting the mass of fines obtained as a function of the force applied on the adsorbent bed and by interpolating at 0.5% by mass of cumulated fines.
  • the mechanical resistance to crushing in a bed is typically between a few hundred kPa and a few tens of MPa and generally between 0.3 MPa and 3.2 MPa. The accuracy is conventionally less than 0.1 MPa.
  • Identification and quantification of zeolite fractions of zeolite adsorbents and estimation of the mesh parameter The identification of the zeolite fractions (in bulk) contained in the adsorbent is performed by X-ray diffraction analysis (XRD). This analysis is carried out on a device of the Bruker brand.
  • XRD X-ray diffraction analysis
  • the identification of the crystalline phases present in the zeolite adsorbent is carried out by comparison with the sheets of the ICDD database and possibly by comparison with the diffractogram of an appropriate reference (zeolite crystals FAU LSX type (supposed to be 100% crystalline ) Si / Al atomic ratio equal to 1.00, and having undergone the same cation exchange treatments as the adsorbent considered).
  • the presence of the X-type zeolite exchanged with Barium will be confirmed by comparison of the lines of the diffractogram obtained with the ICDD sheet No. 38-0234 ("Zeolite X, (Ba)").
  • the comparison of the diffractograms is completed by a comparison of the mesh parameters measured on the reference zeolite and on the adsorbent under consideration.
  • the measurement of the zeolite mesh parameter is performed accurately (to ⁇ 0.01 ⁇ ): to do this, an internal standard (NIST-certified Si 640b) is added and the data is processed with the TOPAS software.
  • a measurement carried out on zeolite X crystals having an Si / Al atomic ratio equal to 1.25 and exchanged at 95% by barium gives a mesh parameter of 25.02 ⁇ 0.01 ⁇
  • a measurement carried out on zeolite LSX crystals, having an Si / Al atomic ratio equal to 1.00, and exchanged at 95% with barium gives a mesh parameter of 25.19 ⁇ 0.01 ⁇ .
  • the amount of zeolite fractions (in bulk) is evaluated from the relative peak intensities of the diffractograms by taking as reference the peak intensities of the reference zeolite mentioned above.
  • the peaks, allowing to go back to the crystallinity, are the most intense peaks of the angular zone 2 ⁇ between 9 ° and 37 °, namely the peaks observed in the angular ranges 2 ⁇ between respectively 11 ° and 13 °, between 22 ° and 26 ° and between 31 ° and 33 °.
  • the crystallinity of the zeolite adsorbents of the invention is also evaluated by measuring their microporous volume by comparing it with that of an appropriate reference (100% crystalline zeolite under identical cationic treatment conditions or theoretical zeolite). This microporous volume is determined from the measurement of the gas adsorption isotherm, such as nitrogen, at its liquefaction temperature.
  • the zeolitic adsorbent Prior to the adsorption, the zeolitic adsorbent is degassed between 300 ° C and 450 ° C for a period of between 9 hours and 16 hours, under vacuum (P ⁇ 6.7 ⁇ 10 -4 Pa). The measurement of the isotherm adsorption of nitrogen at 77K is then carried out on a device of Micromeritics ASAP 2020 M, taking at least 35 measurement points for reporting relative pressure P / P 0 between 0.002 and 1.
  • the microporous volume and the external surface are determined by the t-plot method from the obtained isotherm, by applying the ISO 15901-3: 2007 standard and by calculating the statistical thickness t by the equation of Harkins-Jura.
  • the microporous volume and the external surface are obtained by linear regression on the points of the t-plot between 0.45 nm and 0.57 nm, respectively from the ordinate at the origin and the slope of the linear regression. .
  • the microporous volume evaluated is expressed in cm 3 of liquid adsorbate per gram of anhydrous adsorbent.
  • the external surface is expressed in m 2 per gram of anhydrous adsorbent.
  • the macroporous and mesoporous volumes and the grain density are measured by porosimetry by mercury intrusion.
  • Such a mercury porosimeter Autopore 9500 Micromeritics ® is used to analyze the distribution of the pore volume contained in macropores and the mesopores.
  • the experimental method described in the operating manual of the apparatus referring to the ASTM D4284-83 standard, consists in placing a sample of adsorbent (zeolite granular material to be measured) (known loss to fire) previously weighed. , in a cell of the porosimeter, then, after a prior degassing (discharge pressure of 30 ⁇ Hg for at least 10 min), to fill the cell with mercury at a given pressure (0.0036 MPa), and then to apply incrementally increasing pressure up to 400 MPa in order to gradually penetrate mercury into the porous network of the sample.
  • adsorbent zeolite granular material to be measured
  • the relationship between the applied pressure and the apparent diameter of the pores is established by assuming cylindrical pores, an angle of contact between the mercury and the pore wall of 140 ° and a mercury surface tension of 485 dynes / cm. .
  • the cumulative amount of mercury introduced as a function of the applied pressure is recorded.
  • the value at which the mercury fills all the inter-granular voids is fixed at 0.2 MPa, and it is considered that, beyond this, the mercury penetrates into the pores of the granular material.
  • Vg volume of grain (Vg) is then calculated by subtracting the cumulative volume of mercury at this pressure (0.2 MPa) from the volume of the cell of the porosimeter, and dividing this difference by the mass of the anhydrous equivalent granular material, that is to say the mass of said material corrected for loss on ignition.
  • the grain density is the inverse of the grain volume (Vg), and is expressed in grams of anhydrous adsorbent per cm 3 .
  • the macroporous volume of the granular material is defined as the cumulative volume of mercury introduced at a pressure of between 0.2 MPa and 30 MPa, corresponding to the volume contained in the pores with an apparent diameter of greater than 50 nm.
  • the mesoporous volume of the granular material is defined as the cumulative volume of mercury introduced at a pressure of between 30 MPa and 400 MPa.
  • macroporous and mesoporous volumes of zeolitic adsorbents are thus measured by mercury intrusion and reported to the mass of the sample in anhydrous equivalent, that is to say the mass of said material corrected for loss on ignition.
  • the loss on ignition is determined in an oxidizing atmosphere, by calcining the sample in air at a temperature of 950 ° C. ⁇ 25 ° C., as described in standard NF EN 196-2 (April 2006). The standard deviation of measurement is less than 0.1%.
  • the technique used to characterize the adsorption of molecules in liquid phase on a porous solid is the so-called drilling technique, described by Ruthven in “Principles of Adsorption and Adsorption Processes” (Chapters 8 and 9, John Wiley & Sons, 1984) which defines the technique of breakthrough curves as the study of the response to the injection of a step of adsorbable constituents.
  • the analysis of the average time of exit (first moment) of the drilling curves provides information on the adsorbed quantities and also makes it possible to evaluate the selectivities, that is to say the separation factor, between two adsorbable constituents.
  • the injection of a non-adsorbable component used as a tracer is recommended for the estimation of non-selective volumes.
  • microporous volume and the external surface measured according to the t-plot method from the nitrogen adsorption isotherm at 77K after vacuum degassing at 400 ° C. for 10 hours are respectively 0.305 cm 3 / g and 6 m 2 / g.
  • the analysis of the size of the zeolite crystals is carried out by scanning electron microscopy.
  • the average crystal size is 2.6 ⁇ .
  • g "1 is synthesized directly according to the synthesis mode described in the article Inayat et al (Angew Chem Int, Ed., (2012), 57, 1962-1965).
  • Step 1) Preparation of gel growth in stirred reactor with Archimedean screw 300 tr.min 1.
  • a growth gel is prepared by mixing an aluminate solution containing 19 g of sodium hydroxide (FIG. NaOH), 128 g of alumina trihydrate (Al 2 0 3 .3H 2 0 containing 65.2% by weight AI 2 0 3) and 195.5 g water at 25 ° C in 25 minutes with a speed stirring 300 tr.min "1 in a silicate solution containing 565.3 g of sodium silicate, 55.3 g of NaOH and 1997.5 g of water at 25 ° C.
  • FOG. NaOH sodium hydroxide
  • Al 2 0 3 .3H 2 0 alumina trihydrate
  • the stoichiometry of the gel growth is as follows: 3.48 Na 2 0 / AI 2 0 3 / 3.07 Si0 2/180 H 2 0.
  • the homogenization of the gel growth is carried out with stirring at 300 revolutions min -1 for 25 minutes at 25 ° C.
  • Step 2) Introduction into the reaction medium of the structuring agent
  • the stirring speed is maintained at 50 rpm "-1 , and the setpoint of the jacket of the reactor is set at 80 ° C. so that the reaction medium rises to 75 ° C. in 80 minutes. 72 hours of residence at 75 ° C., the reaction medium is cooled by circulating cold water in the jacket to stop the crystallization Step 5): Filtration / washing
  • the solids are recovered on sintered and then washed with deionized water until neutral pH.
  • the drying is carried out in an oven at 90 ° C. for 8 hours, the loss on ignition of the dried product is 22% by weight.
  • the calcination of the dried product necessary to release both the microporosity (water) and the mesoporosity by eliminating the structuring agent is carried out with the following temperature profile: 30 minutes of rise at 200 ° C., then 1 hour of bearing at 200 ° C, then 3 hours of rise at 550 ° C, and finally 1.5 hours of bearing at 550 ° C.
  • microporous volume and the external surface measured by the t-plot method from the 77K nitrogen adsorption isotherm after degassing under vacuum at 400 ° C. for 10 hours are respectively 0.260 cm 3 . g -1 and 90 m 2 g -1 .
  • the number average diameter of the crystals of the mesoporous zeolite (or hierarchically porous) thus obtained is 4.5 ⁇ and the Si / Al ratio is equal to 1.24.
  • a growth gel is prepared by mixing an aluminate solution containing 300 g of sodium hydroxide. sodium (NaOH), 264 g of 85% potassium hydroxide, 169 g of alumina trihydrate (Al 2 O 3 , 3H 2 O, containing 65.2% by weight of Al 2 O 3 ) and 1200 g water at 25 ° C in 5 minutes with a speed stirring 250 tr.min "1 silicate with a solution containing 490 g of sodium silicate, 29.4 g of NaOH and 470 g of water at 25 ° C.
  • the stoichiometry of the gel growth is as follows: 4.32 Na 2 0/1 85 K 2 0 / AI 2 0 3 / Si0 2 2.0 / 1 14H 2 0.
  • the homogenization of the gel growth is carried out with stirring at 250 tr.min "1 for 15 minutes at 25 ° C.
  • nucleating gel (0.4% by weight) of composition 12 Na 2 0 / Al 2 0 3/10 Si0 2/180 H 2 0 prepared in the same manner as the growth of frost, and ripened for 1 hour at 40 ° C. After 5 minutes of homogenization at 250 tr.min "1 speed agitation is reduced to 50 tr.min "1 and continued for 30 minutes.
  • the stirring speed is maintained at 50 rpm "1 and then an increase in the set point of the jacket of the reactor at 63 ° C is programmed linearly so that the reaction medium rises in temperature at 60 ° C. in 5 hours followed by a 21 hour stage at 60 ° C., then the set point of the jacket of the reactor is set at 102 ° C. so that the reaction medium rises to 95 ° C. in 60 minutes. at 95 ° C, the reaction medium is cooled by circulating cold water in the jacket to stop the crystallization.
  • the solids are recovered on sintered and then washed with deionized water until neutral pH.
  • the drying is carried out in an oven at 90 ° C. for 8 hours.
  • the calcination of the dried product necessary to release both the microporosity (water) and the mesoporosity by eliminating the structuring agent is carried out by vacuum degassing with a gradual increase in steps of 50 ° C. up to 400 ° C. C for a period of between 9 hours and 16 hours under vacuum (P ⁇ 6.7 ⁇ 10 -4 Pa).
  • the microporous volume and the external surface measured according to the t-plot method from the nitrogen adsorption isotherm at 77K after vacuum degassing at 400 ° C. for 10 hours are respectively 0.215 cm 3 . g -1 and 95 m 2 g -1 .
  • the average number diameter of the crystals is 6 ⁇ .
  • the diameters of the mesopores calculated from the nitrogen adsorption isotherm by the DFT method are between 5 nm and 10 nm.
  • the X-ray diffractogram corresponds to a pure Faujasite structure (FAU), no LTA zeolite is detected.
  • the Si / Al molar ratio of the LSXPH determined by X-ray fluorescence is 1.01.
  • Example B3 LSXPH zeolite crystal synthesis of external surface equal to 146 m 2 .g -1 (comparative example)
  • a LSX zeolite having a higher surface area outermost porosity than the zeolite synthesized in Example B2 is obtained by strictly following the procedure of Example B2, except for the TPOAC / Al 2 O 3 molar ratio of step 2 which is equal to 0.07.
  • microporous volume and the external surface measured by the t-plot method from the 77K nitrogen adsorption isotherm after degassing under vacuum at 400 ° C. for 10 hours are 0.198 cm 3, respectively. g -1 and 146 m 2 g -1 .
  • the number average diameter of the crystals of the mesoporous zeolite (or hierarchical porosity) thus obtained is 6 ⁇ and the Si / Al ratio is equal to 1.01.
  • zeolitic adsorbent in the form of granules with zeolite crystals of LSX according to Example A, of 2.6 ⁇ m in diameter, and a kaolin-type binder.
  • An adsorbent is prepared by reproducing example 6 described in patent FR 2 925 366, and grains are recovered which are selected by sieving in the particle size range between 0.3 mm and 0.5 mm, and such that the volume average diameter is 0.4 mm.
  • the barium exchange rate of this adsorbent evaluated from the elemental chemical analysis by WDXRF is 97% and its loss on ignition is 6.2%.
  • the mesh parameter measured by DRX on this adsorbent is evaluated at 25.19 ⁇ 0.01 ⁇ .
  • the microporous volume and the external surface measured according to the t-plot method from the 77K nitrogen adsorption isotherm after degassing under vacuum at 400 ° C. for 10 hours are respectively 0.231 cm 3 . g "1 and 7 m 2, g " 1 .
  • the total volume contained in the macropores and mesopores (sum of macroporous volume and mesoporous volume) measured by intrusion of mercury, is 0.25 cm 3 . g "1.
  • the ratio (macroporous volume) / (macroporous volume + mesoporous volume) is equal to 0.9.
  • the mechanical strength of this adsorbent measured according to the method presented in the characterization techniques is 2.1 MP
  • Klebosol® 30 containing 30% by weight of SiO 2 and 0.5% of Na 2 O
  • the extrudates are dried, crushed so as to recover grains in the particle size range between 0.3 mm and 0.5 mm, and such that the average volume diameter is 0.4 mm, and then calcined for 2 hours at 550.degree. ° C under nitrogen sweep, then 2 hours at 550 ° C under dry decarbonated air.
  • the barium exchange is then operated with a concentration of barium chloride solution, BaCl 2 , 0.7M at 95 ° C in 4 steps. At each stage, the volume ratio of solution to mass of solid is 20 ml / g and the exchange is continued for 4 hours each time. Between each exchange, the solid is washed several times in order to rid it of excess salt. It is then dried at 80 ° C. for 2 hours and then activated at 250 ° C. for 2 hours under a stream of nitrogen.
  • the mesh parameter measured by DRX on this adsorbent is evaluated at 25.02 ⁇ 0.01 ⁇ .
  • the microporous volume and the external surface measured by the t-plot method from the nitrogen adsorption isotherm at 77K after vacuum degassing at 400 ° C. for 10 hours are respectively 0.192 cm 3 .g -1 and 70 m 2 .g "1 .
  • the total volume contained in the macropores and mesopores (sum of the macroporous volume and the mesoporous volume) measured by intrusion of mercury, is 0.33 cm 3 . g "1.
  • the ratio (macropore volume) / (volume macroporous + mesopore volume) is equal to 0.6.
  • An adsorbent is prepared identically to the preparation of the adsorbent of Example 2, but from LSX zeolite crystals synthesized according to the procedure of Example B2 (crystal size 6 ⁇ ).
  • the mesh parameter measured by DRX on this adsorbent is evaluated at 25.20 ⁇ 0.01 ⁇ .
  • the microporous volume and the external surface measured by the t-plot method from the nitrogen adsorption isotherm at 77K after degassing under vacuum at 400 ° C. for 10 hours are respectively 0.167 cm 3 .g -1 and 64 m 2 .g "1 .
  • the total volume contained in the macropores and mesopores (sum of macroporous volume and mesoporous volume) measured by intrusion of mercury, is 0.29 cm 3 . g "1.
  • the ratio (macropore volume) / (volume macroporous + mesopore volume) is equal to 0.73.
  • the mechanical strength of this adsorbent measured according to the method presented in the characterization techniques is 2.3 MPa, corresponding to the pressure necessary to obtain 0.5% of fines.
  • An adsorbent is prepared in an identical way to the preparation of the adsorbent of Example 3, but from LSX zeolite crystals synthesized according to the procedure of Example B3 (average diameter of the crystals 6 ⁇ ).
  • the mesh parameter measured by DRX on this adsorbent is evaluated at 25.21 ⁇ 0.01 ⁇ .
  • the microporous volume and the external surface measured by the t-plot method from the nitrogen adsorption isotherm at 77K after degassing under vacuum at 400 ° C. for 10 hours are respectively 0.147 cm 3 .g -1 and 121 m 2 .g "1 .
  • the total volume contained in the macropores and mesopores (sum of macroporous volume and mesoporous volume) measured by intrusion of mercury, is 0.34 cm 3 . g "1.
  • the ratio (macropore volume) / (volume macroporous + mesopore volume) is equal to 0.63.
  • the mechanical strength of this adsorbent measured according to the method presented in the characterization techniques is 2.2 MPa, corresponding to the pressure necessary to obtain 0.5% of fines.
  • a piercing test (frontal chromatography) is carried out on the adsorbent of Example 2 and on the adsorbent of Example 3 according to the invention to evaluate their selectivity for the adsorption of paraxylene vis-à-vis ethylbenzene screw.
  • the amount of adsorbent used for this test is about 34 g.
  • the desorption solvent used is para-diethylbenzene.
  • the selectivity between two isomers is evaluated using a feed containing 45% by weight of each of the isomers and 10% by weight of a tracer (isooctane) used for the estimation of non-selective volumes and not involved in the separation. .
  • the test performed uses a load whose composition of the load is as follows:
  • the pressure is sufficient for the charge to remain in the liquid phase at the adsorption temperature, ie 1 MPa.
  • the superficial velocity is 0.2 cm. s "1 .
  • the adsorption capacity of xylenes is expressed in cm 3 of C8-aromatics adsorbed per gram of adsorbent;
  • the adsorbents of Examples 2 to 4 have comparable total adsorption capacities for xylenes.
  • the adsorbent of Example 3 according to the invention, has a selectivity between para-xylene and ethylbenzene of greater than 2.5 while the selectivity obtained with the adsorbents of Examples 2 and 4 is less than 2.1.
  • the adsorbent of Example 3 will therefore be more efficient in separating a feed rich in ethylbenzene.
  • Example 6 The purpose of Example 6 is to illustrate the productivity gain obtained with an adsorbent according to the invention (adsorbent of Example 3) with respect to:
  • the adsorbents of Examples 1, 3 and 4 were tested to evaluate their performance in separating paraxylene on a simulated counter-current chromatography pilot unit consisting of 15 columns in series of 2 cm in diameter, of 1.10 m. length.
  • the circulation between the last and the first column is done by means of a recycling pump.
  • At each intercolumn link one can inject either a charge to be separated or desorbent. You can also extract either a raffinate or an extract. All columns and dispensing winnowing is maintained at 175 ° C, and the pressure is maintained above 1.5 MPa.
  • the offsets of the different injection or withdrawal points are simultaneous according to a permutation time that can be adjusted.
  • the beds are divided into 4 chromatographic zones according to the following configuration: • 3 beds between the desorbent injection and extract extraction defining zone 1
  • the filler is composed of 21.3% by weight of paraxylene, 19.6% of orthoxylene, 45.1% of metaxylene and 14.0% of ethylbenzene.
  • a test is carried out from the adsorbent according to Example 1. This test makes it possible to determine the charge and desorbent injection rates necessary to obtain paraxylene with a purity of 99.7% and a yield of at least 97%.
  • the paraxylene is obtained at the extract at a purity of 99.7% and a yield of 97% by injecting the feedstock at a flow rate of 39.5 g. min- 1 and the desorbent at a flow rate of 35.5 g.min -1 , and by applying a switching time of the injection and withdrawal points of 1 18 seconds.
  • the extract flow rate is 24.7 g.min "1 and the flow rate zone 4 is 105.9 g. Min" 1.
  • Figure 3 illustrates the variation of the charge rate as a function of the external surface, the 3 points corresponding to Examples 1, 3 and 4 of Table 2.
  • adsorbent beads based on LSX crystals having an outer surface of 64 m 2 . g "1 that is to say adsorbents according to the invention, it is possible to obtain a paraxylene with the required performance of purity and yield, by injecting a higher charge rate than that treated with the adsorbent of Reference Example 1, while injecting the reference desorbent flow rate, namely 35.5 g.min -1 , using identical columns.
  • Example 3 With the adsorbent of Example 3 according to the invention, it is possible to produce paraxylene with a purity of 99.7% with a yield of 97% identical to those obtained with the adsorbent of the Reference example 1 while increasing the load flow by 26%. Therefore, at iso-specification, the productivity is increased by 26% with the adsorbent of Example 3 according to the invention relative to the adsorbent of Example 1.
  • adsorbent beads based on LSX crystals having an outer surface greater than 100 m 2 . g "1 that is to say beyond the upper limit defined by the invention, it is not possible to obtain a paraxylene with the required performance of purity and yield, by injecting a flow rate of feed greater than or equal to that treated with the adsorbent of Reference Example 1, while injecting the reference desorbent flow rate, namely 35.5 g.min -1 , using identical columns.
  • a charge rate lower than that treated with the adsorbent of reference example 1 will be treated.
  • ⁇ adsorbent of Example 4 based on LSX crystals of external surface equal to 121 m 2 . g "1 , that is to say, distinguished from the invention by an external surface greater than 100 m 2 .g -1 , can be produced paraxylene in a purity of 99.7% with a yield of 97% identical to those obtained with the adsorbent of Reference Example 1 while reducing the charge flow rate by 28%. Therefore, at isospecification, the productivity is decreased by 28% with the adsorbent of Example 4 relative to the adsorbent of Example 1.
  • Example 7 The purpose of Example 7 is to illustrate the productivity gain obtained with an adsorbent according to the invention (adsorbent of Example 3) with respect to an adsorbent having the same external surface, but with zeolite crystals.
  • X (adsorbent of Example 2), for charges containing ethylbenzene.
  • the adsorbents of Examples 2 and 3 were tested to evaluate their performance in separating paraxylene on a simulated countercurrent chromatography pilot unit consisting of 15 columns in series 2 cm in diameter, 1.1 m in length. according to an operation identical to that described in Example 6.
  • a filler composed of 21.3% by weight of paraxylene, 19.6% of orthoxylene, 45.1% of metaxylene and 14.0% of ethylbenzene by mass, as in the preceding example,
  • a filler composed of 21.3% of paraxylene, 14.8% of orthoxylene, 33.9% of metaxylene and 30% of ethylbenzene by mass.
  • Example 6 a test was carried out from the adsorbent of Example 3 according to the invention. This test made it possible to determine the charge and desorbent injection rates necessary to obtain paraxylene with a purity of 99.7% and a yield of at least 97%, for the feed containing 14% of ethylbenzene.
  • Paraxylene is obtained at the extract at a purity of 99.7% and a yield of 97% by injecting the feedstock at a flow rate of 49.9 g.min -1 and the desorbent at a flow rate of 35. 5 g.min -1 , and applying an injection point swap time of 66 seconds.
  • the extract flow rate is 19.9 g.min "1 and zone 4 of the flow rate is 194.8 g. Min" 1.
  • Example 2 and Example 3 are tested with the different fillers by applying the same desorbent flow rate.
  • the charge flow, the time of rotation of the injection and withdrawal points, as well as the recycling flow rate can be adjusted in order to reach the required performances, namely a purity of 99.7% and a yield of 97%.
  • the results are reported in Table 3 below:
  • FIG. 4 illustrates the variation of the feed rate as a function of the content of ethylbenzene contained therein, in the case of the adsorbent according to Example 2, based on X crystals and in the case of the adsorbent according to Example 3 according to the invention consisting of LSX crystals.
  • Example 3 using the adsorbent of Example 3 according to the invention, it is possible to obtain a paraxylene with the required performance of purity and yield, by injecting a charge flow greater than or equal to that treated with the adsorbent of Comparative Example 2, while injecting the reference desorbent flow rate, namely 35.5 g.

Abstract

The present invention relates to a zeolite absorbent comprising at least one LSX zeolite with faujasite structure (FAU) and containing barium and/or potassium, in which the external surface area of said zeolite absorbent, as measured by nitrogen absorption, is between 20 m2∙g-1 and 100 m2∙g-1, terminals included. The present invention also relates to the use of such a zeolite absorbent as an adsorption agent, as well as the method for separation of para-xylene from aromatic isomer fractions with 8 carbon atoms.

Description

ADSORBANTS ZÉOLITHIQUES À BASE DE ZÉOLITHE LSX DE SURFACE EXTERNE CONTROLEE, LEUR PROCÉDÉ DE PRÉPARATION ET LEURS UTILISATIONS  ZEOLITHIC LSX-BASED ZEOLITE BASED ZEOLITE BASED ADSORBENTS, PREPARATION METHOD AND USES THEREOF
DOMAINE DE L'INVENTION FIELD OF THE INVENTION
[0001] L'invention concerne des adsorbants zéolithiques sous forme d'agglomérés comprenant de la zéolithe de structure Faujasite (FAU) de type LSX pour leurs utilisations dans des applications où le transfert de matière est un paramètre important, lesdits adsorbants présentant une surface externe contrôlée, mesurée par adsorption d'azote, comprise entre 20 m2. g"1 et 100 m2. g"1. The invention relates to zeolite adsorbents in the form of agglomerates comprising zeolite structure Faujasite (FAU) type LSX for their use in applications where the transfer of material is an important parameter, said adsorbents having an outer surface controlled, measured by nitrogen adsorption, between 20 m 2 . g -1 and 100 m 2 g -1 .
[0002] La présente invention concerne également un procédé de préparation desdits adsorbants zéolithiques, ainsi que leurs utilisations, notamment pour la séparation de mélanges gazeux ou liquides d'isomères, plus particulièrement des xylènes et notamment pour la production de paraxylène très pur à partir d'une charge d'hydrocarbures aromatiques contenant des isomères à 8 atomes de carbone.  The present invention also relates to a process for preparing said zeolite adsorbents, and their uses, in particular for the separation of gaseous or liquid mixtures of isomers, more particularly xylenes and especially for the production of very pure paraxylene from an aromatic hydrocarbon feed containing isomers containing 8 carbon atoms.
ART ANTERIEUR PRIOR ART
[0003] L'utilisation d'adsorbants zéolithiques comprenant au moins de la zéolithe Faujasite (FAU) de type X ou Y et comprenant, outre des cations sodium, des ions baryum, potassium ou strontium, seuls ou en mélanges, pour adsorber sélectivement le paraxylène dans un mélange d'hydrocarbures aromatiques, est bien connue de l'art antérieur.  The use of zeolitic adsorbents comprising at least zeolite Faujasite (FAU) type X or Y and comprising, in addition to sodium cations, barium, potassium or strontium ions, alone or in mixtures, for selectively adsorbing the paraxylene in a mixture of aromatic hydrocarbons is well known in the art.
[0004] Les brevets US 3 558 730, US 3 558 732, US 3 626 020 et US 3 663 638 montrent que des adsorbants zéolithiques comprenant des aluminosilicates à base de sodium et de baryum (US 3 960 774) ou à base de sodium, de baryum et de potassium, sont efficaces pour la séparation du paraxylène présent dans des coupes aromatiques en C8 (coupes comprenant des hydrocarbures aromatiques à 8 atomes de carbone).  US Pat. Nos. 3,558,730, 3,558,732, 3,626,020 and 3,663,638 show that zeolitic adsorbents comprising aluminosilicates based on sodium and barium (US Pat. No. 3,960,774) or on sodium-based aluminosilicates. , barium and potassium, are effective for the separation of paraxylene present in aromatic C8 cuts (cuts comprising aromatic hydrocarbons with 8 carbon atoms).
[0005] Les adsorbants décrits dans le brevet US 3 878 127 sont utilisés comme agents d'adsorption dans les procédés en phase liquide, de préférence de type contre-courant simulé, similaires à ceux décrits dans le brevet US 2 985 589 et qui s'appliquent, entre autres, aux coupes aromatiques en C8. The adsorbents described in US Pat. No. 3,878,127 are used as adsorption agents in liquid phase processes, preferably of simulated countercurrent type, similar to those described in US Pat. No. 2,985,589 and which are incorporated herein by reference. apply, inter alia, to C8 aromatic cuts.
[0006] Le document US 6 884 918 préconise une faujasite X de rapport atomique Si/AI entre 1 ,15 et 1 ,5 échangée au baryum ou au baryum et au potassium. Le document US 6 410 815 enseigne quant à lui, que des adsorbants zéolithiques tels que décrits dans l'art antérieur, mais pour lesquels la faujasite est à faible teneur en silice et présente un rapport atomique Si/AI proche de 1 (que l'on appellera LSX, abréviation de Low Silica X dont la traduction française est zéolite X à faible teneur en silice) sont avantageusement utilisés pour la séparation du paraxylène, notamment lorsqu'il faut traiter des charges riches en éthylbenzène, du fait d'une meilleure sélectivité du paraxylène vis-à-vis de cet isomère par rapport aux adsorbants à base de zéolithe X de rapport atomique Si/AI entre 1 ,15 et 1 ,5. US 6 884 918 recommends a faujasite X atomic Si / Al ratio between 1, 15 and 1.5 exchanged with barium or barium and potassium. Document US 6,410,815 teaches that zeolite adsorbents as described in the prior art, but for which the faujasite is low in silica content and has an Si / Al atomic ratio close to 1 (that the we will call LSX, abbreviation for Low Silica X of which the French translation is zeolite X with a low silica content) are advantageously used for the separation of paraxylene, especially when it is necessary to treat ethylbenzene-rich feeds, because of a better selectivity of paraxylene with respect to this compound. isomer with respect to zeolite X adsorbents with an Si / Al atomic ratio of between 1.15 and 1.5.
[0007] Dans les brevets listés ci-dessus, les adsorbants zéolithiques se présentent sous forme de cristaux à l'état de poudre ou sous forme d'agglomérés constitués majoritairement de poudre de zéolithe et jusqu'à 20% en poids de liant inerte.  In the patents listed above, the zeolitic adsorbents are in the form of crystals in the form of powder or in the form of agglomerates consisting mainly of zeolite powder and up to 20% by weight of inert binder.
[0008] La synthèse des zéolithes FAU s'effectue habituellement par nucléation et cristallisation de gels de silico-aluminates. Cette synthèse conduit à des cristaux (généralement sous forme de poudre) dont l'emploi à l'échelle industrielle est particulièrement malaisé (pertes de charges importantes lors des manipulations). On préfère alors les formes agglomérées de ces cristaux, sous forme de grains, de filés et autres agglomérés, ces dites formes pouvant être obtenues par extrusion, pastillage, atomisation et autres techniques d'agglomération connues de l'homme du métier. Ces agglomérés ne présentent pas les inconvénients inhérents aux matières pulvérulentes. The synthesis of FAU zeolites is usually carried out by nucleation and crystallization of silico-aluminate gels. This synthesis leads to crystals (generally in the form of powder) whose use on an industrial scale is particularly difficult (significant losses of loads during handling). The agglomerated forms of these crystals in the form of grains, yarns and other agglomerates are then preferred, these forms being obtainable by extrusion, pelletization, atomization and other agglomeration techniques known to those skilled in the art. These agglomerates do not have the disadvantages inherent to the pulverulent materials.
[0009] Les agglomérés, qu'ils soient sous forme de plaquettes, de billes, d'extrudés, et autres, sont en général constitués de cristaux de zéolithe(s), qui constituent l'élément actif (au sens de l'adsorption) et d'un liant d'agglomération. Ce liant d'agglomération est destiné à assurer la cohésion des cristaux entre eux dans la structure agglomérée, mais aussi doit permettre d'assurer une résistance mécanique suffisante auxdits agglomérés afin d'éviter, ou tout au moins de minimiser le plus possible, les risques de fractures, brisures ou cassures qui pourraient survenir lors de leurs utilisations industrielles pendant lesquelles les agglomérés sont soumis à de nombreuses contraintes, telles que vibrations, variations fortes et/ou fréquentes de pressions, mouvements et autres. The agglomerates, whether they are in the form of platelets, beads, extrudates, and the like, generally consist of crystals of zeolite (s), which constitute the active element (in the sense of adsorption). ) and an agglomeration binder. This agglomeration binder is intended to ensure the cohesion of the crystals with each other in the agglomerated structure, but also must make it possible to ensure sufficient mechanical strength for said agglomerates in order to avoid, or at least to minimize as much as possible, the risks fractures, breaks or breaks that may occur during their industrial uses during which the agglomerates are subjected to numerous constraints, such as vibrations, strong and / or frequent variations of pressures, movements and others.
[0010] La préparation de ces agglomérés s'opère par exemple par empâtage de cristaux de zéolithe à l'état de poudre avec une pâte argileuse, dans des proportions de l'ordre de 80% à 90% en poids de poudre de zéolithe pour 20% à 10% en poids de liant, puis mise en forme en billes, plaquettes ou extrudés, et traitement thermique à haute température pour cuisson de l'argile et réactivation de la zéolithe, le ou les échange(s) cationique(s), comme par exemple l'échange au baryum et éventuellement au potassium pouvant être effectué avant et/ou après l'agglomération de la zéolithe pulvérulente avec le liant. The preparation of these agglomerates is carried out for example by pasting zeolite crystals in powder form with a clay paste, in proportions of the order of 80% to 90% by weight of zeolite powder for 20% to 10% by weight of binder, then shaped into balls, platelets or extrudates, and high temperature heat treatment for baking the clay and reactivation of the zeolite, the cationic exchange (s) , such as, for example, the barium and optionally potassium exchange that can be carried out before and / or after the zeolite powder has been agglomerated with the binder.
[0011] On obtient des agglomérés zéolithiques dont la granulométrie est de quelques millimètres, voire de l'ordre du millimètre, et qui, si le choix du liant d'agglomération et la granulation sont faits dans les règles de l'art, présentent un ensemble de propriétés satisfaisantes, en particulier de porosité, de résistance mécanique, de résistance à l'abrasion. Cependant, les propriétés d'adsorption de ces agglomérés sont évidemment réduites par rapport à la poudre active de départ en raison de la présence de liant d'agglomération inerte vis-à-vis de l'adsorption. We obtain zeolite agglomerates whose particle size is a few millimeters, or even of the order of a millimeter, and which, if the choice of agglomeration binder and granulation are made in the rules of the art, have a set of properties satisfactory, in particular porosity, mechanical strength, abrasion resistance. However, the adsorption properties of these agglomerates are obviously reduced relative to the starting active powder due to the presence of agglomeration binder inert with respect to the adsorption.
[0012] Divers moyens ont déjà été proposés pour pallier cet inconvénient du liant d'agglomération d'être inerte quant aux performances d'adsorption, parmi lesquels, la transformation de la totalité ou d'au moins une partie du liant d'agglomération en zéolithe active du point de vue de l'adsorption. Cette opération est maintenant bien connue de l'homme du métier, par exemple sous la dénomination de « zéolithisation ». Pour effectuer facilement cette opération, on utilise des liants zéolithisables, le plus souvent appartenant à la famille de la kaolinite, et de préférence préalablement calcinés à des températures généralement comprises entre 500°C et 700°C. Various means have already been proposed to overcome this disadvantage of the agglomeration binder to be inert with respect to the adsorption performance, among which, the transformation of all or at least a portion of the agglomeration binder into active zeolite from the point of view of adsorption. This operation is now well known to those skilled in the art, for example under the name of "zeolitization". To easily perform this operation, zeolitizable binders are used, most often belonging to the family of kaolinite, and preferably previously calcined at temperatures generally between 500 ° C and 700 ° C.
[0013] Le brevet FR 2 925 366 décrit un procédé de fabrication d'agglomérés de zéolithe LSX, de rapport atomique Si/AI tel que 1 ,00 < Si/AI < 1 ,15 échangés au baryum et éventuellement au baryum et au potassium, en agglomérant des cristaux de zéolithe LSX avec un liant kaolinique, puis en zéolithisant le liant par immersion de l'aggloméré dans une liqueur alcaline. Après échange des cations de la zéolithe par des ions baryum (et éventuellement potassium) et activation, les agglomérés ainsi obtenus présentent, du point de vue de l'adsorption du paraxylène contenu dans les coupes aromatiques en C8 et de la résistance mécanique, des propriétés améliorées par rapport à des adsorbants préparés à partir de la même quantité de zéolithe LSX et de liant, mais dont le liant n'est pas zéolithisé.  Patent FR 2 925 366 describes a process for the manufacture of LSX zeolite agglomerates with Si / Al atomic ratio such that 1.00 <Si / Al <1, 15 exchanged with barium and optionally with barium and potassium. , by agglomerating LSX zeolite crystals with a kaolinic binder, and then zeolizing the binder by immersing the agglomerate in an alkaline liquor. After exchanging the cations of the zeolite with barium (and optionally potassium) ions and activation, the agglomerates thus obtained have, from the point of view of the adsorption of the paraxylene contained in the C8 aromatic cuts and of the mechanical strength, properties improved with respect to adsorbents prepared from the same amount of LSX zeolite and binder, but whose binder is not zeolite.
[0014] Outre une capacité d'adsorption élevée et de bonnes propriétés de sélectivité en faveur de l'espèce à séparer du mélange réactionnel, l'adsorbant doit présenter de bonnes propriétés de transfert de matière afin de garantir un nombre de plateaux théoriques suffisants pour réaliser une séparation efficace des espèces en mélange, comme l'indique Ruthven dans l'ouvrage intitulé « Principles ofAdsorption and Adsorption Processes » (« Principes de l'Adsorption et des Procédés d'Adsorption »), John Wiley & Sons, (1984), pages 326 et 407. Ruthven indique {ibid., page 243), que, dans le cas d'un adsorbant aggloméré, le transfert de matière global dépend de la somme des résistances diffusionnelles intra-cristalline et inter-cristalline (entre les cristaux).  In addition to a high adsorption capacity and good selectivity properties in favor of the species to be separated from the reaction mixture, the adsorbent must have good material transfer properties to ensure a sufficient number of theoretical plates for achieve effective separation of mixed species, as Ruthven points out in "Principles of Adsorption and Adsorption Processes," John Wiley & Sons, (1984) pages 326 and 407. Ruthven indicates (ibid., p. 243) that, in the case of an agglomerated adsorbent, the transfer of global matter depends on the sum of the diffusional intracrystalline and intercrystalline resistances (between the crystals). ).
[0015] La résistance diffusionnelle intra-cristalline est proportionnelle au carré des diamètres des cristaux et inversement proportionnelle à la diffusivité intra-cristalline des molécules à séparer. The intra-crystalline diffusional resistance is proportional to the square of the diameters of the crystals and inversely proportional to the intra-crystalline diffusivity of the molecules to be separated.
[0016] La résistance diffusionnelle inter-cristalline (également appelée « résistance macroporeuse ») est quant à elle proportionnelle au carré des diamètres des agglomérés, inversement proportionnelle à la porosité contenue dans les macropores et mésopores (c'est-à-dire les pores dont l'ouverture est supérieure à 2 nm) au sein de l'aggloméré, et inversement proportionnelle à la diffusivité des molécules à séparer dans cette porosité. The inter-crystalline diffusion resistance (also called "macroporous resistance") is in turn proportional to the square of the diameters of the agglomerates, inversely proportional to the porosity contained in the macropores and mesopores (that is to say the pores whose opening is greater than 2 nm) within the agglomerate, and inversely proportional to the diffusivity of the molecules to be separated in this porosity.
[0017] La taille des agglomérés est un paramètre important lors de l'utilisation de l'adsorbant dans l'application industrielle, car elle détermine la perte de charge au sein de l'unité industrielle et l'uniformité du remplissage. La distribution granulométrique des agglomérés doit donc être étroite, et centrée sur des diamètres moyens en nombre compris typiquement entre 0,40 mm et 0,65 mm afin d'éviter des pertes de charges excessives. The size of the agglomerates is an important parameter when using the adsorbent in the industrial application, because it determines the pressure drop within the industrial unit and the uniformity of the filling. The particle size distribution of the agglomerates must therefore be narrow, and centered on number average diameters typically between 0.40 mm and 0.65 mm in order to avoid excessive pressure losses.
[0018] La porosité contenue dans les macropores et mésopores au sein de l'aggloméré (respectivement macroporosité et mésoporosité inter-cristallines) peut être augmentée en utilisant des agents porogènes, tels que par exemple l'amidon de maïs conseillé dans le document US 8 283 274 pour améliorer le transfert de matière. Cependant, cette porosité ne participe pas à la capacité d'adsorption et l'amélioration du transfert de matière macroporeux se fait alors au détriment de la capacité d'adsorption volumique. Par conséquent, cette voie d'amélioration du transfert de matière macroporeux s'avère très limitée. The porosity contained in the macropores and mesopores within the agglomerate (inter-crystalline macroporosity and mesoporosity respectively) can be increased by using porogenic agents, such as, for example, the corn starch recommended in the US 8 document. 283,274 to improve material transfer. However, this porosity does not participate in the adsorption capacity and the improvement of the transfer of macroporous material is then to the detriment of the adsorption capacity volume. Consequently, this pathway for improving the transfer of macroporous material is very limited.
[0019] Pour estimer l'amélioration de la cinétique de transfert, il est possible d'utiliser la théorie des plateaux décrite par Ruthven dans « Principles of Adsorption and Adsorption Processes », ibid., pages 248-250. Cette approche est basée sur la représentation d'une colonne par un nombre fini de réacteurs hypothétiques idéalement agités (étages théoriques). La hauteur équivalente de plateaux théoriques est une mesure directe de la dispersion axiale et de la résistance au transfert de matière du système. To estimate the improvement of the transfer kinetics, it is possible to use the plateau theory described by Ruthven in "Principles of Adsorption and Adsorption Processes", ibid., Pages 248-250. This approach is based on the representation of a column by a finite number of ideally stirred hypothetical reactors (theoretical stages). The equivalent height of theoretical plates is a direct measure of the axial dispersion and resistance to material transfer of the system.
[0020] Pour une structure zéolithique donnée, une taille d'adsorbant donnée et une température de fonctionnement donnée, les diffusivités sont fixées, et un des moyens pour améliorer le transfert de matière consiste à réduire le diamètre des cristaux. Un gain sur le transfert de matière global sera ainsi obtenu en réduisant la taille des cristaux. For a given zeolite structure, a given adsorbent size and a given operating temperature, the diffusivities are fixed, and one of the means for improving the transfer of material is to reduce the diameter of the crystals. A gain on the global material transfer will thus be obtained by reducing the size of the crystals.
[0021] L'homme du métier va donc chercher à réduire le plus possible le diamètre des cristaux de zéolithes afin d'améliorer le transfert de matière. The skilled person will therefore seek to reduce as much as possible the diameter of the zeolite crystals to improve the transfer of material.
[0022] Le brevet CN 1 267 185C, revendique ainsi des adsorbants contenant 90% à 95% de zéolithe BaX ou BaKX pour la séparation du paraxylène, dans lesquels les cristaux de zéolithe X sont de taille comprise entre 0,1 μηι et 0,4 μηι et ceci afin d'améliorer les performances en transfert de matière. De même, la demande US2009/0326308 décrit un procédé de séparation des isomères du xylène dont les performances ont été améliorées par l'utilisation d'adsorbants à base de cristaux de zéolithe X de taille inférieure à 0,5 μηι. Le brevet FR 2 925 366 décrit des adsorbants contenant des cristaux de zéolithe LSX de diamètre moyen en nombre compris entre 0,1 μηι et 4,0 μηι. [0023] La demanderesse a néanmoins observé que la synthèse, la filtration, la manipulation et l'agglomération de cristaux de zéolithe dont la taille est inférieure à 0,5 μηη mettent en œuvre des procédés lourds, peu économiques et donc difficilement industrialisâmes. The CN patent 1,267,185C thus claims adsorbents containing 90% to 95% of BaX or BaKX zeolite for the separation of paraxylene, in which the zeolite X crystals are of size between 0.1 μηι and 0, 4 μηι and this to improve the performance in material transfer. Similarly, application US2009 / 0326308 describes a process for separating xylene isomers whose performance has been improved by the use of adsorbents based on zeolite X crystals less than 0.5 μηι. Patent FR 2 925 366 describes adsorbents containing LSX zeolite crystals with a number-average diameter of between 0.1 μηι and 4.0 μηι. However, the Applicant has observed that the synthesis, filtration, handling and agglomeration of zeolite crystals whose size is less than 0.5 μηη implement heavy processes, uneconomical and therefore hardly industrialized.
[0024] De plus, de tels adsorbants comportant des cristaux de taille inférieure à 0,5 μηι, s'avèrent également plus fragiles, et il devient alors nécessaire d'augmenter le taux de liant d'agglomération afin de renforcer la cohésion des cristaux entre eux au sein de l'adsorbant. Toutefois, l'augmentation du taux de liant d'agglomération conduit à une densification des adsorbants, à l'origine d'une augmentation de la résistance diffusionnelle macroporeuse. Ainsi, malgré une résistance diffusionnelle intra-cristalline réduite du fait de la diminution de la taille des cristaux, l'augmentation de la résistance diffusionnelle macroporeuse en raison de la densification de l'adsorbant, ne permet pas une amélioration du transfert global. Par ailleurs, l'augmentation du taux de liant ne permet pas d'obtenir une bonne capacité d'adsorption. In addition, such adsorbents having crystals smaller than 0.5 μηι, are also more fragile, and it then becomes necessary to increase the level of agglomeration binder to enhance the cohesion of the crystals. between them within the adsorbent. However, the increase in the level of agglomeration binder leads to densification of the adsorbents, causing an increase in the macroporous diffusional resistance. Thus, despite reduced intra-crystalline diffusion resistance due to the decrease in the size of the crystals, the increase in the macroporous diffusional resistance due to the densification of the adsorbent, does not allow an improvement in the overall transfer. Moreover, the increase in the binder content does not make it possible to obtain a good adsorption capacity.
[0025] Il reste par conséquent un besoin pour des matériaux adsorbants zéolithiques améliorés préparés à partir de cristaux de zéolithe FAU de type LSX facilement manipulables au niveau industriel, et dont lesdits cristaux (ou éléments cristallisés constitutifs) sont avantageusement de taille supérieure à 0,5 μηη, et présentant un transfert de matière global amélioré par rapport aux adsorbants de taille de cristaux identique connus de l'art antérieur, tout en conservant une capacité d'adsorption et des sélectivités d'adsorption du paraxylène vis-à-vis de ses isomères élevées. There remains therefore a need for improved zeolitic adsorbent materials prepared from zeolite crystals FAU type LSX easily manipulated at the industrial level, and said crystals (or constituent crystalline elements) are advantageously larger than 0, 5 μηη, and having an overall material transfer improved over the adsorbents of identical crystal size known from the prior art, while maintaining an adsorption capacity and adsorption selectivities of paraxylene vis-à-vis its high isomers.
[0026] Ces adsorbants améliorés seraient ainsi particulièrement adaptés à la séparation des isomères des xylènes en phase gaz ou en phase liquide. These improved adsorbents would thus be particularly suitable for the separation of isomers xylenes gas phase or liquid phase.
[0027] La présente invention a ainsi pour premier objet de proposer des adsorbants zéolithiques sous forme d'agglomérés aux propriétés optimisées pour la séparation de mélanges gazeux ou liquides d'isomères et plus particulièrement pour la séparation des xylènes, en phase gaz ou en phase liquide, notamment du paraxylène des coupes aromatiques en C8, et notamment lorsque lesdites coupes sont riches en éthylbenzène.  The present invention thus has for its first object to provide zeolite adsorbents in the form of agglomerates with optimized properties for the separation of gaseous or liquid mixtures of isomers and more particularly for the separation of xylenes, gas phase or phase liquid, especially paraxylene aromatic C8 cuts, and especially when said sections are rich in ethylbenzene.
[0028] Les adsorbants zéolithiques de l'invention présentent avantageusement des propriétés de sélectivité du paraxylène vis-à-vis de ses isomères supérieures à 2,1 , de préférence supérieures à 2,3, et des propriétés de transfert de matière améliorées, tout en présentant une résistance mécanique et une capacité d'adsorption élevées et sont particulièrement adaptés pour une utilisation dans un procédé de séparation du paraxylène en phase liquide, de préférence de type contre-courant simulé. The zeolitic adsorbents of the invention advantageously have selectivity properties of paraxylene with respect to its isomers greater than 2.1, preferably greater than 2.3, and improved material transfer properties, while having high mechanical strength and adsorption capacity and are particularly suitable for use in a process for separating paraxylene in the liquid phase, preferably of the simulated countercurrent type.
[0029] Plus précisément, la présente invention concerne un adsorbant zéolithique comprenant au moins une zéolithe de structure FAU de type LSX et comprenant du baryum et/ou du potassium, dans lequel la surface externe dudit adsorbant zéolithique, mesurée par adsorption d'azote, est comprise entre 20 m2. g"1 et 100 m2. g"1, bornes incluses et plus préférentiellement comprise entre 20 m2. g"1 et 80 m2. g"1 bornes incluses et encore plus préférentiellement comprise entre 30 m2. g"1 et 80 m2. g"1, bornes incluses. More specifically, the present invention relates to a zeolitic adsorbent comprising at least one zeolite of structure FAU LSX type and comprising barium and / or potassium, wherein the outer surface of said zeolite adsorbent, measured by nitrogen adsorption, is between 20 m 2 . g "1 and 100 m 2 .g -1 , inclusive and more preferably between 20 m 2 . g "1 and 80 m 2, g " 1 inclusive limits and even more preferably between 30 m 2 . g "1 and 80 m 2, g " 1 , inclusive terminals.
[0030] Il a en effet été constaté par la demanderesse que des adsorbants zéolithiques de surface externe contrôlée, c'est-à-dire comprise entre 20 m2. g"1 et 100 m2. g"1, telle que mesurée par adsorption d'azote, et préparés à partir de cristaux de zéolithe LSX de rapport atomique Si/AI égal à 1 ,00 ± 0,05 ayant une taille supérieure à 0,5 μηι, présentent un transfert de matière global amélioré par rapport à des adsorbants zéolithiques préparés à partir de cristaux de zéolithe LSX, de rapport atomique Si/AI et de taille identiques, mais de surface externe, mesurée par adsorption d'azote, strictement inférieure à 20 m2. g"1. It has indeed been found by the applicant that zeolite adsorbents of controlled external surface, that is to say between 20 m 2 . g "1 and 100 m 2 g -1 , as measured by nitrogen adsorption, and prepared from LSX zeolite crystals of Si / Al atomic ratio equal to 1.00 ± 0.05 having a size greater than 0.5 μηι, exhibit an improved overall material transfer with respect to zeolite adsorbents prepared from LSX zeolite crystals, with an atomic ratio Si / Al and of identical size, but of external surface, measured by nitrogen adsorption, strictly less than 20 m 2 . g "1 .
[0031] La présente invention permet donc la mise à disposition d'adsorbants zéolithiques aux propriétés améliorées par rapport à l'art antérieur tout en facilitant la filtration, la manipulation et l'agglomération des poudres zéolithiques utilisées lors du procédé de fabrication. Un autre but de la présente invention consiste à fournir un procédé de préparation desdits adsorbants, ainsi que les utilisations desdits adsorbants pour la séparation de mélanges gazeux ou liquides d'isomères, plus particulièrement des xylènes et notamment pour la séparation de paraxylène très pur à partir d'une charge d'hydrocarbures aromatiques contenant des isomères à 8 atomes de carbone, et notamment à partir d'une charge riche en éthylbenzène.  The present invention therefore allows the provision of zeolitic adsorbents with improved properties compared to the prior art while facilitating the filtration, handling and agglomeration of zeolite powders used in the manufacturing process. Another object of the present invention is to provide a process for preparing said adsorbents, as well as the uses of said adsorbents for the separation of gaseous or liquid mixtures of isomers, more particularly xylenes and especially for the separation of very pure paraxylene from a charge of aromatic hydrocarbons containing isomers containing 8 carbon atoms, and in particular from a feed rich in ethylbenzene.
[0032] Un autre but encore de la présente invention consiste à maximiser le transfert de matière au sein de l'adsorbant zéolithique, tout en maintenant des sélectivités du paraxylène vis-à-vis de ses isomères élevées, notamment supérieures à 2,1 et une capacité d'adsorption convenables pour l'application, en même temps qu'une résistance mécanique compatible avec l'application considérée.  Still another object of the present invention is to maximize the transfer of material within the zeolite adsorbent, while maintaining selectivities of paraxylene vis-à-vis its high isomers, especially greater than 2.1 and an adsorption capacity suitable for the application, at the same time as a mechanical strength compatible with the application in question.
[0033] Dans ce qui va suivre, et à moins d'une autre indication, les bornes d'un domaine de valeurs sont comprises dans ce domaine, notamment dans les expressions « compris entre » et « allant de ... à ... ».  In what follows, and unless otherwise indicated, the boundaries of a domain of values are included in this field, especially in the expressions "between" and "ranging from ... to .. . "
Description détaillée de l'invention Detailed description of the invention
Adsorbants selon l'invention Adsorbents according to the invention
[0034] Ainsi, la présente invention concerne un adsorbant zéolithique :  [0034] Thus, the present invention relates to a zeolitic adsorbent:
- comprenant au moins une zéolithe de structure FAU de type LSX comprising at least one zeolite of structure FAU of type LSX
- comprenant du baryum et/ou du potassium, - pour lequel la surface externe, mesurée par adsorption d'azote, est comprise entre 20 m2. g"1 et 100 m2. g"1, et préférentiellement comprise entre 20 m2. g"1 et 80 m2. g"1 et plus préférentiellement comprise entre 30 et 80 m2. g"1 bornes incluses. - comprising barium and / or potassium, for which the external surface, measured by nitrogen adsorption, is between 20 m 2 . g "1 and 100 m 2 .g -1 , and preferably between 20 m 2 . g "1 and 80 m 2, g " 1 and more preferably between 30 and 80 m 2 . g "1 terminals included.
[0035] Dans un mode de réalisation, l'adsorbant zéolithique de l'invention présente un rapport atomique Si/AI compris entre 1 ,00 et 1 ,50 de préférence entre 1 ,00 et 1 ,40 bornes incluses, de préférence encore entre 1 ,00 et 1 ,20, bornes incluses et de manière encore plus préférée entre 1 ,00 et 1 ,10 bornes incluses.  In one embodiment, the zeolitic adsorbent of the invention has an Si / Al atomic ratio of between 1.00 and 1.5, preferably between 1.00 and 1.4, inclusive, preferably between 1, 00 and 1, 20 inclusive, and even more preferably between 1.00 and 1.1 inclusive.
[0036] Dans un mode de réalisation préféré de l'invention, la zéolithe de structure FAU de l'adsorbant zéolithique est une zéolithe de structure FAU de type LSX (généralement définie par son rapport atomique Si/AI = 1 ,00 ± 0,05), pour laquelle le diamètre moyen en nombre des cristaux est compris entre 0,5 μηη et 20 μηη, bornes incluses, de préférence compris entre 0,5 μηη et 10 μηη, bornes incluses, plus préférentiellement entre 0,8 μηη et Ι Ο μηη, bornes incluses, mieux encore entre 1 μηη et 10 μηη, bornes incluses, et de préférence encore entre 1 μηη et 8 μηη, bornes incluses.  In a preferred embodiment of the invention, the zeolite with structure FAU of the zeolite adsorbent is a zeolite of structure FAU of type LSX (generally defined by its atomic ratio Si / Al = 1, 00 ± 0, 05), for which the number average diameter of the crystals is between 0.5 μηη and 20 μηη inclusive, preferably between 0.5 μηη and 10 μηη inclusive, more preferably between 0.8 μηη and Ι Ο μηη, included terminals, better still between 1 μηη and 10 μηη, included terminals, and more preferably between 1 μηη and 8 μηη, included terminals.
[0037] Selon encore un mode de réalisation préféré de l'invention, les cristaux présentent, conjointement à la microporosité, des cavités internes de taille nanométrique (mésoporosité), facilement identifiables par observation au moyen d'un Microscope Électronique à Transmission (MET ou « TEM » en langue anglaise) comme décrit par exemple dans US 7 785 563.  According to another preferred embodiment of the invention, the crystals have, together with the microporosity, internal cavities of nanometric size (mesoporosity), easily identifiable by observation by means of a Transmission Electron Microscope (TEM or "TEM" in English) as described for example in US 7,785,563.
[0038] La surface externe de l'adsorbant zéolithique de l'invention est calculée par la méthode du t-plot à partir de l'isotherme d'adsorption d'azote à une température de 77K, après dégazage sous vide (P < 6,7.10"4 Pa), à une température comprise entre 300°C et 450°C pendant une durée allant de 9 heures à 16 heures, de préférence à 400°C pendant 10 heures. La surface externe des cristaux de zéolithe FAU de l'adsorbant avant agglomération est mesurée de la même manière. The outer surface of the zeolite adsorbent of the invention is calculated by the t-plot method from the nitrogen adsorption isotherm at a temperature of 77K, after degassing under vacuum (P <6). , 7.10 "4 Pa), at a temperature between 300 ° C and 450 ° C for a period ranging from 9 hours to 16 hours, preferably at 400 ° C. for 10 hours The outer surface of the zeolite crystals FAU adsorbent before agglomeration is measured in the same way.
[0039] Selon un aspect préféré, la teneur en baryum (Ba) de l'adsorbant zéolithique de l'invention, exprimée en oxyde de baryum (BaO), est supérieure à 25%, de préférence supérieure à 28%, de manière très préférée supérieure à 34%, de manière encore plus préférée supérieure à 37%, en poids par rapport au poids total de l'adsorbant, et avantageusement, la teneur en baryum exprimée en oxyde de baryum (BaO) est comprise entre 28% et 42%, et typiquement entre 37% et 40%, bornes incluses, en poids par rapport au poids total de l'adsorbant.  According to a preferred aspect, the barium content (Ba) of the zeolite adsorbent of the invention, expressed as barium oxide (BaO), is greater than 25%, preferably greater than 28%, very preferably preferred greater than 34%, even more preferably greater than 37%, by weight relative to the total weight of the adsorbent, and advantageously, the barium content expressed as barium oxide (BaO) is between 28% and 42%; %, and typically between 37% and 40%, limits included, by weight relative to the total weight of the adsorbent.
[0040] Selon un autre aspect préféré, la teneur en potassium (K) de l'adsorbant zéolithique de l'invention, exprimée en oxyde de potassium (K20), est inférieure à 30%, de préférence inférieure à 15% et de manière préférée comprise entre 0 et 10%, bornes incluses en poids par rapport au poids total de l'adsorbant. [0041] Selon encore un autre mode de réalisation préféré, la teneur totale en ions alcalins ou alcalino-terreux, autres que baryum et potassium, exprimée en teneur totale d'oxydes d'ions alcalins ou alcalino-terreux autres que l'oxyde de baryum BaO et l'oxyde de potassium K20, est comprise entre 0 et 5%, bornes incluses, par rapport à la masse totale de l'adsorbant. According to another preferred aspect, the potassium content (K) of the zeolite adsorbent of the invention, expressed as potassium oxide (K 2 O), is less than 30%, preferably less than 15%, and preferably between 0 and 10%, limits included by weight relative to the total weight of the adsorbent. According to yet another preferred embodiment, the total content of alkaline or alkaline-earth ions, other than barium and potassium, expressed as total content of alkaline or alkaline earth metal oxides other than hydroxide oxide. BaO barium and K 2 0 potassium oxide is between 0 and 5%, limits included, relative to the total mass of the adsorbent.
[0042] De manière avantageuse, l'adsorbant zéolithique selon l'invention présente un volume total contenu dans les macropores et les mésopores (somme du volume macroporeux et du volume mésoporeux) mesuré par intrusion de mercure, compris entre 0,15 cm3. g"1 et 0,5 cm3. g"1, de préférence compris entre 0,20 cm3. g"1 et 0,40 cm3. g"1 et de manière très préférée compris entre 0,20 cm3. g"1 et 0,35 cm3. g"1, bornes incluses. Advantageously, the zeolitic adsorbent according to the invention has a total volume contained in the macropores and mesopores (sum of macroporous volume and mesoporous volume) measured by intrusion of mercury, between 0.15 cm 3 . g "1 and 0.5 cm 3, g " 1 , preferably between 0.20 cm 3 . g "1 and 0.40 cm 3 g -1 and very preferably between 0.20 cm 3 . g "1 and 0.35 cm 3, g " 1 , inclusive.
[0043] Selon un mode de réalisation préféré de la présente invention, l'adsorbant zéolithique comprend à la fois des macropores, des mésopores et des micropores. Par « macropores », on entend des pores dont le diamètre est supérieur à 50 nm. Par « mésopores », on entend des pores dont le diamètre est compris entre 2 nm et 50 nm, bornes incluses. Par « micropores », on entend des pores dont le diamètre est inférieur à 2 nm. According to a preferred embodiment of the present invention, the zeolite adsorbent comprises both macropores, mesopores and micropores. "Macropores" means pores whose diameter is greater than 50 nm. By "mesopores" is meant pores whose diameter is between 2 nm and 50 nm, limits included. "Micropores" means pores whose diameter is less than 2 nm.
[0044] En outre, l'adsorbant de l'invention présente avantageusement un ratio (volume macroporeux)/(volume macroporeux + volume mésoporeux) compris entre 0,2 et 1 , de manière très préférée compris entre 0,5 et 0,9, bornes incluses.  In addition, the adsorbent of the invention advantageously has a ratio (macroporous volume) / (macroporous volume + mesoporous volume) of between 0.2 and 1, very preferably between 0.5 and 0.9. , terminals included.
[0045] On préfère également, dans le cadre de la présente invention, un adsorbant zéolithique dont le volume microporeux, évalué par la méthode de t-plot à partir de l'isotherme d'adsorption d'azote (N2) à une température de 77K, est supérieur à 0,160 cm3. g"1, de préférence compris entre 0,170 cm3. g"1 et 0,275 cm3. g"1 et de préférence encore compris entre 0,180 cm3. g"1 et 0,250 cm3. g"1. Ledit isotherme d'adsorption d'azote est celui utilisé également pour la mesure de la surface externe par la méthode du t-plot. It is also preferred in the context of the present invention, a zeolite adsorbent whose microporous volume, evaluated by the t-plot method from the nitrogen adsorption isotherm (N 2 ) at a temperature of 77K, is greater than 0.160 cm 3 . g "1 , preferably between 0.170 cm 3 .g -1 and 0.275 cm 3 . g "1 and more preferably between 0.180 cm 3 .g -1 and 0.250 cm 3 . g "1. Said isothermal nitrogen adsorption that is also used for measuring the outer surface by the t-plot method.
[0046] La structure cristalline de la zéolithe FAU de type LSX dans l'adsorbant zéolithique de la présente invention, est identifiable par diffraction des rayons X (connue de l'homme du métier sous l'acronyme DRX). The crystalline structure of the FAU zeolite LSX type in the zeolite adsorbent of the present invention is identified by X-ray diffraction (known to those skilled in the art under the acronym DRX).
[0047] Selon un autre mode de réalisation préféré, aucune structure zéolithique autre que la structure FAU n'est détectée par diffraction des rayons X dans l'adsorbant zéolithique de la présente invention.  According to another preferred embodiment, no zeolite structure other than the FAU structure is detected by X-ray diffraction in the zeolite adsorbent of the present invention.
[0048] Par « aucune structure zéolithique autre que la structure FAU », on entend moins de 5%, de préférence moins de 2% en poids, borne incluse, d'une ou de plusieurs autres phases zéolithiques, autres que la structure FAU. La fraction massique déterminée par DRX (technique décrite ci-après) est exprimée en poids par rapport au poids total de l'adsorbant. [0049] L'adsorbant zéolithique selon l'invention comprend en outre et de préférence au moins une phase non zéolithique qui comprend entre autres un liant d'agglomération utilisé dans le mode de préparation pour assurer la cohésion des cristaux entre eux, d'où le terme « aggloméré » ou « aggloméré zéolithique » employé parfois en lieu et place du terme « adsorbant zéolithique » de l'invention, tel que décrit précédemment. By "no zeolite structure other than the FAU structure" is meant less than 5%, preferably less than 2% by weight inclusive of one or more other zeolitic phases, other than the FAU structure. The mass fraction determined by XRD (technique described hereinafter) is expressed by weight relative to the total weight of the adsorbent. The zeolitic adsorbent according to the invention further comprises and preferably at least one non-zeolitic phase which comprises inter alia an agglomeration binder used in the method of preparation to ensure the cohesion of the crystals with each other, whence the term "agglomerate" or "zeolite agglomerate" sometimes used instead of the term "zeolite adsorbent" of the invention, as described above.
[0050] Dans la présente invention, le terme « liant » signifie un liant d'agglomération qui permet d'assurer la cohésion des cristaux de zéolithe(s) dans l'adsorbant zéolithique (ou matériau zéolithique aggloméré) de l'invention. Ce liant se distingue en outre des cristaux de zéolithe(s) en ce qu'il ne présente pas de structure cristalline, et en particulier pas de structure cristalline zéolithique, raison pour laquelle le liant est souvent qualifié d'inerte, et plus précisément inerte vis-à-vis de l'adsorption et de l'échange ionique.  In the present invention, the term "binder" means an agglomeration binder which makes it possible to ensure the cohesion of the zeolite crystals (s) in the zeolite adsorbent (or agglomerated zeolite material) of the invention. This binder is further distinguished from zeolite crystals in that it does not exhibit a crystalline structure, and in particular no zeolitic crystalline structure, for which reason the binder is often described as inert, and more precisely inert. with respect to adsorption and ion exchange.
[0051] Selon un mode de réalisation préféré, la fraction massique de zéolithe FAU dans l'adsorbant est supérieure ou égale à 85%, de préférence supérieure ou égale à 90% en poids, bornes incluses, par rapport au poids total de l'adsorbant de la présente invention, le complément à 100% étant de préférence constitué de phase non zéolithique. Selon un aspect particulièrement avantageux, la fraction massique de zéolithe FAU est comprise entre 92% et 98%, de préférence comprise entre 94% et 98% en poids, bornes incluses, par rapport au poids total de l'adsorbant de la présente invention, le complément à 100% étant de préférence constitué de phase non zéolithique. According to a preferred embodiment, the mass fraction of zeolite FAU in the adsorbent is greater than or equal to 85%, preferably greater than or equal to 90% by weight, inclusive, relative to the total weight of the adsorbent of the present invention, the 100% complement being preferably constituted of non-zeolitic phase. According to a particularly advantageous aspect, the mass fraction of zeolite FAU is between 92% and 98%, preferably between 94% and 98% by weight, limits included, relative to the total weight of the adsorbent of the present invention, the 100% complement being preferably constituted of non-zeolitic phase.
[0052] Comme déjà indiqué, la fraction massique de zéolithe(s) (taux de cristallinité) de l'adsorbant selon l'invention peut être déterminée par analyse par diffraction de rayons X, connue de l'homme du métier sous l'acronyme DRX. As already indicated, the mass fraction of zeolite (s) (crystallinity level) of the adsorbent according to the invention can be determined by X-ray diffraction analysis, known to those skilled in the art under the acronym XRD.
[0053] Selon un mode de réalisation préféré, l'adsorbant zéolithique selon l'invention présente une perte au feu, mesurée à 950°C selon la norme NF EN 196-2, entre 3,0 et 7,7%, de manière encore préférée entre 3,5% et 6,7% et avantageusement entre 4,0% et 6%, bornes incluses.  According to a preferred embodiment, the zeolite adsorbent according to the invention has a loss on ignition, measured at 950 ° C. according to the NF EN 196-2 standard, between 3.0 and 7.7%, so that still more preferred between 3.5% and 6.7% and advantageously between 4.0% and 6%, limits included.
[0054] L'adsorbant zéolithique selon la présente invention présente notamment à la fois une résistance mécanique, des sélectivités d'adsorption du paraxylène vis-à-vis de ses isomères supérieures à 2,1 , de préférence supérieures à 2,2, de préférence encore supérieure à 2,3 et une capacité d'adsorption également tout particulièrement adaptée pour être utilisé dans les procédés de séparation des isomères de xylènes en phase gaz ou en phase liquide.  The zeolitic adsorbent according to the present invention has, in particular, both a mechanical strength, adsorption selectivities of paraxylene with respect to its isomers of greater than 2.1, preferably greater than 2.2, of more preferably greater than 2.3 and an adsorption capacity also very particularly suitable for use in the processes for separating xylene isomers in the gas phase or in the liquid phase.
[0055] Dans le cadre de la présente invention, la résistance mécanique est mesurée par la méthode Shell série SMS1471 -74 adaptée pour des agglomérés de taille inférieure à 1 ,6 mm. Cette résistance mécanique, mesurée pour l'adsorbant zéolithique défini précédemment, est généralement comprise entre 1 ,5 MPa et 4 MPa, de préférence entre 1 ,7 MPa et 4 MPa de préférence encore entre 1 ,8 MPa et 4 MPa et de manière tout à fait préférée entre 2 MPa et 4 MPa, bornes incluses. In the context of the present invention, the mechanical strength is measured by the Shell method SMS1471 -74 series suitable for agglomerates of size less than 1, 6 mm. This mechanical resistance, measured for the zeolite adsorbent defined above, is generally between 1, 5 MPa and 4 MPa, preferably between 1.7 MPa and 4 MPa more preferably between 1.8 MPa and 4 MPa and most preferably between 2 MPa and 4 MPa, inclusive.
Préparation des adsorbants selon l'invention Preparation of adsorbents according to the invention
[0056] Un autre objet de l'invention concerne un procédé de préparation de l'adsorbant zéolithique tel qu'il vient d'être défini, ledit procédé comprenant au moins les étapes de : a) agglomération de cristaux d'au moins une zéolithe de structure FAU de type LSX, présentant une surface externe comprise entre 20 m2. g"1 et 150 m2. g"1, bornes incluses, de préférence comprise entre 20 m2. g"1 et 120 m2. g"1, de préférence encore comprise entre 20 m2. g"1 et 100 m2. g"1, bornes incluses, dont le diamètre moyen en nombre des cristaux est compris entre 0,5 μηη et 20 μηη, bornes incluses, de préférence encore compris entre 0,5 μηη et 10 μηη, bornes incluses, plus préférentiellement entre 0,8 μηη et Ι Ο μηη, bornes incluses, mieux encore entre 1 μηη et 10 μηη, bornes incluses, et de préférence encore entre 1 m et 8 μηη, bornes incluses, avec un liant comprenant de préférence au moins 80% d'argile ou d'un mélange d'argiles et jusqu'à 5% d'additifs ainsi qu'avec la quantité d'eau qui permet la mise en forme du matériau aggloméré, puis séchage et calcination des agglomérats ; Another object of the invention relates to a process for preparing the zeolite adsorbent as just defined, said process comprising at least the steps of: a) agglomeration of crystals of at least one zeolite FAU structure type LSX, having an outer surface of between 20 m 2 . g "1 and 150 m 2, g " 1 , inclusive terminals, preferably between 20 m 2 . g "1 and 120 m 2, g " 1 , more preferably between 20 m 2 . g "1 and 100 m 2 .g " 1 , inclusive terminals, whose number average diameter of the crystals is between 0.5 μηη and 20 μηη inclusive, preferably between 0.5 μηη and 10 μηη, included terminals, more preferably between 0.8 μηη and Ι Ο μηη, included terminals, better still between 1 μηη and 10 μηη, included terminals, and preferably between 1 m and 8 μηη, limits included, with a binder preferably comprising at least 80% of clay or a mixture of clays and up to 5% of additives as well as with the amount of water which allows shaping of the agglomerated material, followed by drying and calcination of the agglomerates;
b) étape de zéolithisation éventuelle de tout ou partie du liant par mise en contact des agglomérats obtenus à l'étape a) avec une solution basique aqueuse ; b) optionally zeolizing step of all or part of the binder by contacting the agglomerates obtained in step a) with an aqueous basic solution;
c) échange(s) cationique(s) des agglomérats de l'étape b) par mise en contact avec une solution d'ions baryum et/ou d'ions potassium ; c) cationic exchange (s) of the agglomerates of step b) by contacting with a solution of barium ions and / or potassium ions;
d) échange cationique éventuel supplémentaire des agglomérats de l'étape c) par mise en contact avec une solution d'ions potassium ; d) additional cationic exchange of the agglomerates of step c) by contacting with a solution of potassium ions;
e) lavage et séchage des agglomérats obtenus aux étapes c) ou d), à une température comprise entre 50°C et 150°C ; et e) washing and drying the agglomerates obtained in steps c) or d), at a temperature between 50 ° C and 150 ° C; and
f) obtention de l'adsorbant zéolithique selon l'invention par activation des agglomérats obtenus à l'étape e) sous balayage gazeux oxydant et/ou inerte, avec notamment des gaz tels que l'oxygène, l'azote, l'air, un air sec et/ou décarbonaté, un air appauvri en oxygène, éventuellement sec et/ou décarbonaté, à une température comprise entre 100°C et 400°C, de préférence entre 200°C et 300°C. f) obtaining the zeolitic adsorbent according to the invention by activating the agglomerates obtained in step e) under an oxidizing and / or inert gas scavenging, with in particular gases such as oxygen, nitrogen, air, a dry air and / or decarbonated oxygen-depleted air, optionally dry and / or decarbonated, at a temperature between 100 ° C and 400 ° C, preferably between 200 ° C and 300 ° C.
[0057] Dans un mode de réalisation préféré du procédé de préparation de l'adsorbant zéolithique de la présente invention, le séchage des agglomérats à l'étape a) ci-dessus est généralement réalisé à une température comprise entre 50°C et 150°C, et la calcination des agglomérats séchés est généralement réalisée sous balayage gazeux oxydant et/ou inerte, avec notamment des gaz tels que l'oxygène, l'azote, l'air, un air sec et/ou décarbonaté, un air appauvri en oxygène, éventuellement sec et/ou décarbonaté, à une température supérieure à 150°C, typiquement comprise entre 180°C et 800°C, préférentiellement entre 200°C et 650°C, pendant quelques heures, par exemple de 2 heures à 6 heures. In a preferred embodiment of the method for preparing the zeolite adsorbent of the present invention, the drying of the agglomerates in step a) above is generally carried out at a temperature of between 50 ° C. and 150 ° C. C, and the calcination of the dried agglomerates is generally carried out under an oxidizing and / or inert gas scavenging, with, in particular, gases such as oxygen, nitrogen, air, dry air and / or decarbonated air, an air depleted of oxygen, possibly dry and / or decarbonated, a temperature above 150 ° C, typically between 180 ° C and 800 ° C, preferably between 200 ° C and 650 ° C, for a few hours, for example from 2 hours to 6 hours.
[0058] En particulier, lesdits adsorbants zéolithiques sont obtenus à partir de cristaux de zéolithe ayant une surface externe mesurée par adsorption d'azote comprise entre 20 m2. g"1 et 150 m2. g"1, lesdits cristaux de zéolithe sont de préférence des cristaux de zéolithe à porosité hiérarchisée. In particular, said zeolite adsorbents are obtained from zeolite crystals having an external surface measured by nitrogen adsorption of between 20 m 2 . 1 and 150 m 2 g -1 , said zeolite crystals are preferably zeolite crystals with a hierarchical porosity.
[0059] Par « zéolithe à porosité hiérarchisée », on entend une zéolithe possédant à la fois des micropores et des mésopores, autrement dit une zéolithe à la fois microporeuse et mésoporeuse. Par « zéolithe mésoporeuse », on entend une zéolithe dont les cristaux zéolithiques microporeux présentent, conjointement à la microporosité, des cavités internes de taille nanométrique (mésoporosité), facilement identifiables par observation au moyen d'un Microscope Électronique à Transmission (MET ou « TEM » en langue anglaise), comme décrit par exemple dans US 7 785 563.  By "hierarchically porous zeolite" is meant a zeolite having both micropores and mesopores, ie a zeolite both microporous and mesoporous. By "mesoporous zeolite" is meant a zeolite whose microporous zeolite crystals have, together with the microporosity, internal cavities of nanometric size (mesoporosity), easily identifiable by observation by means of a Transmission Electron Microscope (TEM or "TEM"). In English), as described for example in US 7,785,563.
[0060] Selon un mode de réalisation préféré, les cristaux de ladite zéolithe de structure FAU de type LSX utilisés à l'étape a) présentent un rapport atomique Si/AI = 1 ,00 ± 0,05, mesuré par analyse chimique élémentaire, selon des techniques bien connues de l'homme du métier et détaillées plus loin.  According to a preferred embodiment, the crystals of said LSX-type FAU structure zeolite used in step a) have an Si / Al atomic ratio = 1.00 ± 0.05, measured by elemental chemical analysis, according to techniques well known to those skilled in the art and detailed below.
[0061] Il est possible de préparer lesdits cristaux de zéolithe à surface externe comprise entre 20 m2. g"1 et 150 m2. g"1 par synthèse directe grâce à l'utilisation d'agents structurants ou grâce à des techniques d'ensemencement et/ou par ajustement des conditions opératoires de synthèse tels que le rapport Si02/Al203, la teneur en sodium et l'alcalinité du mélange de synthèse ou par synthèse indirecte selon des procédés de post-traitement de cristaux de zéolithe FAU conventionnels et connus de l'homme du métier. It is possible to prepare said zeolite crystals with an external surface of between 20 m 2 . g "1 and 150 m 2 g -1 by direct synthesis through the use of structuring agents or by seeding techniques and / or by adjusting the synthesis operating conditions such as the ratio Si0 2 / Al 2 0 3 , the sodium content and the alkalinity of the synthesis mixture or by indirect synthesis according to post-treatment methods of conventional FAU zeolite crystals and known to those skilled in the art.
[0062] Les procédés de post-traitements consistent généralement à éliminer des atomes du réseau zéolithique déjà formé, soit par un ou plusieurs traitements acides qui désaluminent le solide, traitement(s) suivi(s) par un ou plusieurs lavage(s) à la soude (NaOH) afin d'éliminer les résidus aluminiques formés, comme décrit par exemple par D. Verboekend et coll. {Adv. Funct. Mater., 22, (2012), pp. 916-928), soit encore par des traitements qui associent l'action d'un acide et celle d'un agent structurant qui améliorent l'efficacité du traitement acide, comme décrit par exemple dans la demande WO2013/106816. The post-treatment processes generally consist in removing atoms from the already formed zeolite network, either by one or more acid treatments which dealuminate the solid, treatment (s) followed by one or more washing (s) to sodium hydroxide (NaOH) in order to eliminate the aluminum residues formed, as described for example by D. Verboekend et al. {Adv. Funct. Mater., 22, (2012), pp. 916-928), or else by treatments which combine the action of an acid and that of a structuring agent which improve the efficiency of the acid treatment, as described for example in the application WO2013 / 106816.
[0063] Les procédés de synthèse directe de ces zéolithes (c'est-à-dire des procédés de synthèse autre que le post-traitement) sont préférés et font généralement intervenir un ou plusieurs agents structurants ou gabarits sacrificiels. [0064] Les gabarits sacrificiels pouvant être utilisés peuvent être de tout type connu de l'homme du métier et notamment ceux décrits dans la demande WO2007/043731. Selon un mode de réalisation préféré, le gabarit sacrificiel est avantageusement choisi parmi les organosilanes et plus préférentiellement parmi le chlorure de [3-(triméthoxysilyl)propyl]- octadécyldiméthylammonium, le chlorure de [3-(triméthoxysilyl)propyl]hexadécyldiméthyl- ammonium, le chlorure de [3-(triméthoxysilyl)propyl]dodécyldiméthylammonium, le chlorure de [3-(triméthoxysilyl)propyl]octylammonium, la N-[3-(triméthoxysilyl)-propyl]- aniline, le 3-[2-(2-amino-éthylamino)éthylamino]propyltriméthoxysilane, la N-[3-(trimétho- xysilyl)propyl]-N'-(4-vinylbenzyl)éthylènediamine, le triéthoxy-3-(2-imidazolin-1 -yl)propyl- silane, la 1 -[3-(triméthoxysilyl)propyl]urée, la N-[3-(triméthoxysilyl)propyl]-éthylènediamine, le [3-(diéthylamino)propyl]triméthoxysilane, le (3-glycidyloxypropyl)triméthoxysilane, le méthacrylate de 3-(triméthoxysilyl)propyle, le [2-(cyclohexényl)éthyl]triéthoxysilane, le dodécyltriéthoxysilane, rhexadécyltriméthoxysilane, le (3-aminopropyl)triméthoxysilane, le (3-mercaptopropyl)triméthoxysilane, le (3-chloropropyl)triméthoxysilane, ainsi que les mélanges de deux ou plusieurs d'entre eux en toutes proportions. The methods of direct synthesis of these zeolites (that is to say, synthetic methods other than post-treatment) are preferred and generally involve one or more structuring agents or sacrificial templates. The sacrificial templates that can be used can be of any type known to those skilled in the art and in particular those described in the application WO2007 / 043731. According to a preferred embodiment, the sacrificial template is advantageously chosen from organosilanes and more preferably from [3- (trimethoxysilyl) propyl] octadecyldimethylammonium chloride, [3- (trimethoxysilyl) propyl] hexadecyl dimethylammonium chloride, [3- (trimethoxysilyl) propyl] dodecyldimethylammonium chloride, [3- (trimethoxysilyl) propyl] octylammonium chloride, N- [3- (trimethoxysilyl) propyl] aniline, 3- [2- (2-amino) ethylamino) ethylamino] propyltrimethoxysilane, N- [3- (trimethoxysilyl) propyl] -N '- (4-vinylbenzyl) ethylenediamine, triethoxy-3- (2-imidazolin-1-yl) propylsilane, 1 - [3- (trimethoxysilyl) propyl] urea, N- [3- (trimethoxysilyl) propyl] -ethylenediamine, [3- (diethylamino) propyl] trimethoxysilane, (3-glycidyloxypropyl) trimethoxysilane, methacrylate of 3- (trimethoxysilyl) propyl, [2- (cyclohexenyl) ethyl] triethoxysilane, dodecyltriethoxysilane, hexadecyltrimethoxysilane, (3-aminopropyl) trimethoxysilane, (3-mercaptopropyl) trimethoxysilane, (3-chloropropyl) trimethoxysilane, as well as mixtures of two or more of them in all proportions.
[0065] Parmi les gabarits sacrificiels listés ci-dessus, on préfère tout particulièrement le chlorure de [3-(triméthoxysilyl)propyl]octadécyldiméthylammonium, ou TPOAC.  Of the sacrificial templates listed above, [3- (trimethoxysilyl) propyl] octadecyldimethylammonium chloride, or TPOAC, is particularly preferred.
[0066] On peut également utiliser des gabarits sacrificiels de masse molaire plus élevée et par exemple les PPDA (Polymer Poly-DiallyldimethylAmmonium), PVB (PolyVinyl Butyral) et autres composés oligomères connus dans le domaine pour augmenter le diamètre des mésopores. It is also possible to use sacrificial templates of higher molar mass and for example PPDA (Poly-Diallyldimethylammonium Polymer), PVB (PolyVinyl Butyral) and other oligomeric compounds known in the art to increase the diameter of the mesopores.
[0067] Selon un mode de réalisation préféré du procédé de la présente invention, on procède, à l'étape a), à l'agglomération de cristaux d'au moins une zéolithe FAU de type LSX à porosité hiérarchisée, comme décrit précédemment, préparée en présence d'un gabarit sacrificiel destiné à être éliminé.  According to a preferred embodiment of the process of the present invention, in step a), the agglomeration of crystals of at least one zeolite FAU of LSX type with hierarchical porosity is carried out, as previously described, prepared in the presence of a sacrificial template to be eliminated.
[0068] Cette élimination peut être réalisée selon les méthodes connues de l'homme du métier, par exemple par calcination, et de manière non limitative, la calcination des cristaux de zéolithe comprenant le gabarit sacrificiel peut être effectuée sous balayage gazeux oxydant et/ou inerte, avec notamment des gaz tels que l'oxygène, l'azote, l'air, un air sec et/ou décarbonaté, un air appauvri en oxygène, éventuellement sec et/ou décarbonaté, à une ou des températures supérieures à 150°C, typiquement comprises entre 180°C et 800°C, préférentiellement entre 200°C et 650°C, pendant quelques heures, par exemple entre 2 et 6 heures. La nature des gaz, les rampes de montée en température et les paliers successifs de températures, leurs durées seront adaptées en fonction de la nature du gabarit sacrificiel. [0069] L'étape supplémentaire d'élimination de l'éventuel gabarit sacrificiel peut être effectuée à tout moment au cours du procédé de préparation de l'adsorbant zéolithique de l'invention. L'élimination dudit gabarit sacrificiel peut ainsi avantageusement être effectuée par calcination des cristaux de zéolithe avant l'étape d'agglomération a), ou encore de manière concomitante avec la calcination de l'adsorbant lors de l'étape a). This removal can be carried out according to the methods known to those skilled in the art, for example by calcination, and in a nonlimiting manner, the calcination of zeolite crystals comprising the sacrificial template can be carried out under oxidizing gaseous sweep and / or inert, in particular with gases such as oxygen, nitrogen, air, dry and / or decarbonated air, oxygen-depleted air, optionally dry and / or decarbonated, at a temperature or temperatures above 150 ° C. C, typically between 180 ° C and 800 ° C, preferably between 200 ° C and 650 ° C, for a few hours, for example between 2 and 6 hours. The nature of the gases, the ramps of temperature rise and the successive stages of temperatures, their durations will be adapted according to the nature of the sacrificial template. The additional step of removing the optional sacrificial template can be performed at any time during the process for preparing the zeolite adsorbent of the invention. The elimination of said sacrificial template can thus advantageously be carried out by calcination of the zeolite crystals before the agglomeration step a), or else concomitantly with the calcination of the adsorbent during step a).
[0070] On ne sortirait toutefois pas du cadre de l'invention si l'agglomération de l'étape a) comprenait l'agglomération de plusieurs zéolithes FAU de type LSX ayant un rapport atomique Si/AI égal à 1 ,00 ± 0,05 et ayant une surface externe mesurée par adsorption d'azote comprise entre 20 m2. g"1 et 150 m2.g"1obtenues selon des modes différents. However, it would not be departing from the scope of the invention if the agglomeration of step a) included the agglomeration of several LSX type FAU zeolites having an Si / Al atomic ratio equal to 1.00 ± 0, And having an external surface area measured by nitrogen adsorption of between 20 m 2 . g "1 and 150 m 2 .g " 1 obtained in different modes.
[0071] La synthèse de zéolithe FAU de type LSX se fait généralement en milieu alcalin (hydroxyde de sodium et de potassium et donc cations Na+ et K+). Les cristaux de zéolithe FAU de type LSX ainsi obtenus comprennent majoritairement, voire exclusivement des cations sodium et potassium. On ne sortirait toutefois pas du cadre de l'invention en utilisant des cristaux ayant subi un ou plusieurs échanges cationiques, entre la synthèse, avant ou après l'élimination éventuelle du gabarit sacrificiel si cette étape est opérée avant la mise en œuvre à l'étape a). Dans ce cas, l'étape c) et éventuellement l'étape d) d'échange peu(ven)t éventuellement ne pas être nécessaire(s). The synthesis of zeolite FAU LSX type is generally in alkaline medium (sodium hydroxide and potassium and thus Na + and K + cations). The LSX type FAU zeolite crystals thus obtained comprise mainly, or even exclusively, sodium and potassium cations. However, it is not beyond the scope of the invention to use crystals which have undergone one or more cationic exchanges, between the synthesis, before or after the eventual elimination of the sacrificial template, if this step is carried out before the implementation of the procedure. step a). In this case, step c) and possibly step d) of exchange may (possibly) not be necessary.
[0072] La taille des cristaux de zéolithe FAU de type LSX utilisés à l'étape a) et des cristaux de zéolithe FAU dans les adsorbants selon l'invention est mesurée par observation au microscope électronique à balayage (MEB). Comme indiqué précédemment, de manière préférée, le diamètre moyen en nombre des cristaux est compris entre 0,5 μηη et 20 μηι, bornes incluses, de préférence compris entre 0,5 μηη et 10 μηη, bornes incluses, plus préférentiellement entre 0,8 μηη et 10 μηη, bornes incluses, mieux encore entre 1 μηη et 10 μηη, bornes incluses, et de préférence encore entre 1 μηη et 8 μηη, bornes incluses. Dans le présent document, on emploie l'appellation « diamètre moyen en nombre » ou bien « taille », notamment pour les cristaux de zéolithe. La méthode de mesure de ces grandeurs est explicitée plus loin dans la description.  The size of LSX-type FAU zeolite crystals used in step a) and FAU zeolite crystals in the adsorbents according to the invention is measured by scanning electron microscope (SEM) observation. As indicated above, preferably, the number average diameter of the crystals is between 0.5 μηη and 20 μηι inclusive, preferably between 0.5 μηη and 10 μηη inclusive, more preferably between 0.8 μηη and 10 μηη, included terminals, better still between 1 μηη and 10 μηη, included terminals, and more preferably between 1 μηη and 8 μηη, included terminals. In this document, the term "number average diameter" or "size" is used, in particular for zeolite crystals. The method of measuring these quantities is explained later in the description.
[0073] L'agglomération et la mise en forme de l'étape a) peuvent être réalisées selon toutes les techniques connues de l'homme de l'art, et en particulier selon une ou plusieurs des techniques choisies parmi extrusion, compactage, agglomération sur assiette granulatrice, tambour granulateur, atomisation et autres. The agglomeration and the shaping of step a) can be carried out according to all the techniques known to those skilled in the art, and in particular according to one or more of the techniques chosen from extrusion, compacting, agglomeration. on granulator plate, granulator drum, atomization and others.
[0074] Les proportions de liant d'agglomération (voir définition plus loin) et de zéolithe mises en œuvre sont de 8 parties à 15 parties en poids de liant pour 92 parties à 85 parties en poids de zéolithe.  The proportions of agglomeration binder (see definition below) and zeolite used are 8 parts to 15 parts by weight of binder for 92 parts to 85 parts by weight of zeolite.
[0075] À l'issue de l'étape a) les adsorbants agglomérés les plus fins peuvent être éliminés par cyclonage et/ou tamisage et/ou les agglomérés trop gros par tamisage ou concassage, dans le cas d'extrudés, par exemple. Les adsorbants ainsi obtenus, qu'ils soient sous forme de billes, d'extrudés ou autres, ont de préférence un diamètre moyen en volume, ou leur longueur (plus grande dimension lorsqu'ils ne sont pas sphériques), comprise entre 0,2 mm et 2 mm, et en particulier comprise entre 0,2 mm et 0,8 mm et de préférence entre 0,40 mm et 0,65 mm, bornes incluses. At the end of step a) the finest agglomerated adsorbents can be removed by cycloning and / or sieving and / or agglomerates too large by sieving or crushing, in the case of extruded, for example. The adsorbents thus obtained, whether in the form of beads, extrudates or the like, preferably have a mean diameter by volume, or their length (larger dimension when they are not spherical), between 0.2 mm and 2 mm, and in particular between 0.2 mm and 0.8 mm and preferably between 0.40 mm and 0.65 mm inclusive.
[0076] Le liant utilisable dans le cadre de la présente invention peut être choisi parmi les liants classiques connus de l'homme du métier, zéolithisables ou non zéolithisables, et de préférence choisis parmi les argiles et les mélanges d'argiles, les silices, les alumines, les silices colloïdales, les gels d'alumine, et autres, et leurs mélanges.  The binder used in the context of the present invention may be chosen from conventional binders known to those skilled in the art, zeolitizable or non-zeolizable, and preferably chosen from clays and mixtures of clays, silicas, aluminas, colloidal silicas, alumina gels, and the like, and mixtures thereof.
[0077] Les argiles sont de préférence choisies parmi : kaolins, kaolinites, nacrites, dickites, halloysites, attapulgites, sépiolites, montmorillonites, bentonites, illites et métakaolins, ainsi que les mélanges de deux ou plusieurs d'entre elles en toutes proportions. The clays are preferably chosen from: kaolin, kaolinite, nacrite, dickite, halloysites, attapulgite, sepiolite, montmorillonite, bentonite, illite and metakaolin, as well as mixtures of two or more of them in all proportions.
[0078] Lors de l'étape a), outre le ou les cristaux de zéolithe(s), le liant peut comprendre également un ou plusieurs additifs. Les additifs sont préférentiellement organiques, par exemple de la lignine, de l'amidon, de la carboxyméthylcellulose, des molécules tensio- actives (cationiques, anioniques, non ioniques ou amphotères), destinées à faciliter la manipulation de la pâte zéolithe(s)/argile(s) par modification de la rhéologie et/ou du pouvoir collant ou à conférer aux adsorbants finaux des propriétés satisfaisantes, notamment de macroporosité.  In step a), in addition to the zeolite crystal (s), the binder may also comprise one or more additives. The additives are preferably organic, for example lignin, starch, carboxymethylcellulose, surfactant molecules (cationic, anionic, nonionic or amphoteric), intended to facilitate the handling of the dough zeolite (s) / clay (s) by modifying the rheology and / or stickiness or to give the final adsorbents satisfactory properties, including macroporosity.
[0079] On peut citer de manière préférentielle, mais non exhaustive, les méthyl- celluloses et leurs dérivés, les lignosulfonates, les acides polycarboxyliques et les acides de copolymères carboxyliques, leurs dérivés aminés et leurs sels, notamment les sels alcalins et les sels d'ammonium. Les additifs sont introduits à raison de 0 à 5%, de préférence de 0,1 % à 2%, en poids par rapport au poids total de l'adsorbant.  Mention may preferably be made of, but not limited to, methylcelluloses and their derivatives, lignosulfonates, polycarboxylic acids and carboxylic acid copolymer acids, their amino derivatives and their salts, in particular alkaline salts and sodium salts. 'ammonium. The additives are introduced at from 0 to 5%, preferably from 0.1% to 2%, by weight relative to the total weight of the adsorbent.
[0080] Les additifs peuvent également comprendre une source de silice liquide et/ou solide, de préférence représentant de 1 % à 5% de la masse totale desdits solides. La source éventuelle de silice peut être de tout type connu de l'homme du métier, spécialiste de la synthèse de zéolithes, par exemple de la silice colloïdale, des diatomées, de la perlite, des cendres de calcination (« fly ash » en langue anglaise), du sable, ou toute autre forme de silice solide. Pour la calcination comprise dans l'étape a), la nature des gaz, les rampes de montée en température et les paliers successifs de températures, ainsi que leurs durées respectives, seront adaptés notamment en fonction de la nature du gabarit sacrificiel à éliminer et en fonction de la nature du liant mis en œuvre à l'étape d'agglomération a). [0081] L'observation MEB de l'adsorbant zéolitique permet de confirmer la présence de phase non zéolithique comprenant par exemple du liant d'agglomération ou toute autre phase amorphe dans les adsorbants. The additives may also comprise a source of liquid and / or solid silica, preferably representing from 1% to 5% of the total mass of said solids. The possible source of silica may be of any type known to those skilled in the art, specialist in the synthesis of zeolites, for example colloidal silica, diatoms, perlite, fly ash ash in the language English), sand, or any other form of solid silica. For the calcination included in step a), the nature of the gases, the ramps for temperature rise and the successive temperature increments, as well as their respective durations, will be adapted in particular according to the nature of the sacrificial template to be eliminated and depending on the nature of the binder used in the agglomeration step a). The SEM observation of the zeolitic adsorbent confirms the presence of non-zeolitic phase comprising, for example, agglomeration binder or any other amorphous phase in the adsorbents.
[0082] Les étapes d'échange(s) cationique(s) c) et d) décrites plus haut s'effectuent selon les méthodes classiques connues de l'homme du métier, et le plus souvent par mise en contact des adsorbants issus de l'étape a) ou de l'étape b) avec un sel de baryum, tel que le chlorure de baryum (BaCI2) et/ou de potassium (KCI) et/ou de baryum et de potassium, en solution aqueuse à une température comprise entre la température ambiante et 100°C, et de préférence comprise entre 80°C et 100°C afin d'obtenir rapidement des teneurs élevées en baryum, i.e. des teneurs de préférence supérieures à 25%, de préférence supérieures à 28%, de manière très préférée supérieures à 34%, de manière encore plus préférée supérieures à 37%, exprimées en poids d'oxyde de baryum par rapport à la masse totale de l'adsorbant. The cation exchange (s) (s) (c) and (d) stages described above are carried out according to the conventional methods known to those skilled in the art, and most often by contacting the adsorbents originating from step a) or step b) with a barium salt, such as barium chloride (BaCl 2 ) and / or potassium (KCl) and / or barium and potassium, in aqueous solution at a temperature between room temperature and 100 ° C, and preferably between 80 ° C and 100 ° C to quickly obtain high levels of barium, ie levels of preferably greater than 25%, preferably greater than 28% very preferably greater than 34%, even more preferably greater than 37%, expressed by weight of barium oxide relative to the total mass of the adsorbent.
[0083] Avantageusement, la teneur en baryum exprimée en oxyde de baryum est comprise entre 28% et 42%, et typiquement entre 37% et 40%, bornes incluses, en poids par rapport au poids total de l'adsorbant. On préfère opérer avec un large excès d'ions baryum par rapport aux cations de la zéolithe que l'on souhaite échanger, typiquement un excès de l'ordre de 10 à 12, avantageusement en procédant par échanges successifs.  Advantageously, the barium content expressed as barium oxide is between 28% and 42%, and typically between 37% and 40%, limits included, by weight relative to the total weight of the adsorbent. It is preferred to operate with a large excess of barium ions relative to the cations of the zeolite that it is desired to exchange, typically an excess of the order of 10 to 12, advantageously by proceeding by successive exchanges.
[0084] Un échange éventuel au potassium à l'étape d) peut être pratiqué avant et/ou après l'échange au baryum (étape c). Il est également possible d'agglomérer à l'étape a) des cristaux de zéolithe de type LSX contenant déjà des ions baryum ou potassium ou baryum et potassium (pré-échange des cations présents dans la zéolithe de type LSX de départ, typiquement cations sodium et potassium, par des ions baryum ou potassium ou baryum et potassium avant l'étape a) et s'affranchir (ou non) des étapes c) et/ou d). Potential exchange with potassium in step d) can be practiced before and / or after the barium exchange (step c). It is also possible to agglomerate in step a) LSX-type zeolite crystals already containing barium or potassium ions or barium and potassium (pre-exchange of the cations present in the zeolite type LSX starting, typically sodium cations and potassium, by barium or potassium ions or barium and potassium before step a) and overcome (or not) steps c) and / or d).
[0085] De manière surprenante, la demanderesse a observé que l'étape d'échange cationique, qui peut être délicate en raison de la relative fragilité de la structure des cristaux de zéolite à porosité hiérarchisée n'affecte pas les propriétés intrinsèques de surface externe et du volume microporeux (ramené à la masse de l'adsorbant une fois échangé) desdits cristaux de zéolithe à porosité hiérarchisée. Surprisingly, the Applicant has observed that the cation exchange step, which can be difficult because of the relative fragility of the zeolite crystal structure hierarchized porosity does not affect the intrinsic properties of external surface and the microporous volume (reduced to mass of the adsorbent once exchanged) of said zeolite crystals with hierarchical porosity.
[0086] Après la ou les étape(s) d'échange(s) cationique(s), on procède ensuite à un lavage, généralement et de préférence à l'eau, puis d'un séchage de l'adsorbant ainsi obtenu (étape e). L'activation qui suit le séchage (étape f), est conduite de manière classique, selon les méthodes connues de l'homme du métier, par exemple à une température en général comprise entre 100°C et 400°C, comme indiqué précédemment à l'étape f) du procédé. L'activation est opérée pendant une durée déterminée en fonction de la perte au feu souhaitée. Cette durée est généralement comprise entre quelques minutes et quelques heures, typiquement entre 1 heure et 6 heures. After the cation exchange step (s), the washing is then carried out, generally and preferably with water, followed by drying of the adsorbent thus obtained ( step e). The activation which follows the drying (step f) is carried out in a conventional manner, according to the methods known to those skilled in the art, for example at a temperature generally between 100 ° C. and 400 ° C., as indicated previously in step f) of the process. Activation is carried out for a fixed period of time depending on the desired loss on fire. This duration is generally between a few minutes and a few hours, typically between 1 hour and 6 hours.
Utilisation des adsorbants selon l'invention Use of adsorbents according to the invention
[0087] La présente invention concerne également les utilisations des adsorbants zéolithiques décrits ci-dessus comme agents d'adsorption susceptibles de remplacer avantageusement les agents d'adsorption décrits dans la littérature, à base de cristaux conventionnels de zéolithe FAU de type LSX, comprenant du baryum et/ou du potassium, et notamment dans les utilisations listées ci-dessous :  The present invention also relates to the uses of the zeolite adsorbents described above as adsorption agents which may advantageously replace the adsorption agents described in the literature, based on conventional zeolite crystals FAU LSX type comprising barium and / or potassium, and in particular in the uses listed below:
• séparation de coupes d'isomères aromatiques en C8 et notamment des xylènes, Separation of sections of C8 aromatic isomers and in particular xylenes,
• séparation d'isomères de toluène substitué tels que nitrotoluène, diéthyltoluène, toluènediamine, et autres, Separation of isomers of substituted toluene such as nitrotoluene, diethyltoluene, toluene diamine, and others,
• séparation des crésols,  • separation of cresols,
• séparation des alcools polyhydriques, tels que les sucres.  • separation of polyhydric alcohols, such as sugars.
[0088] Selon un autre objet, la présente invention concerne un procédé de séparation des isomères de xylènes en phase gaz ou en phase liquide mettant en œuvre au moins un adsorbant zéolithique tel que défini précédemment, et de préférence dans lequel les cristaux de zéolithe(s) de l'adsorbant zéolithique sont préparés par synthèse directe mettant en œuvre un ou plusieurs agents structurants (ou gabarits sacrificiels).  According to another subject, the present invention relates to a process for separating xylene isomers in the gas phase or in the liquid phase using at least one zeolite adsorbent as defined above, and preferably in which the zeolite crystals ( s) of the zeolitic adsorbent are prepared by direct synthesis using one or more structuring agents (or sacrificial templates).
[0089] Dans une variante, l'invention concerne en particulier un procédé de séparation du paraxylène à haute pureté (c'est-à-dire une pureté supérieure ou égale à 90%) en lit mobile simulé à partir d'une charge d'hydrocarbures aromatiques contenant des isomères à 8 atomes de carbones comprenant les étapes suivantes : In one variant, the invention relates in particular to a process for separating high purity paraxylene (that is to say a purity greater than or equal to 90%) in a simulated moving bed from a feedstock. aromatic hydrocarbons containing 8-carbon isomers comprising the following steps:
a) une étape de mise en contact de la charge avec un lit d'adsorbant comprenant au moins un adsorbant zéolithique tel que défini précédemment, de manière à adsorber préférentiellement le paraxylène, a) a step of bringing the charge into contact with an adsorbent bed comprising at least one zeolite adsorbent as defined above, so as to preferentially adsorb the paraxylene,
b) une étape de mise en contact du lit d'adsorbant avec un désorbant, le désorbant étant préférentiellement soit du toluène, soit du paradiéthylbenzène, c) une étape de soutirage du lit d'adsorbant d'un flux contenant le désorbant et les produits de la charge les moins sélectivement adsorbés, b) a step of contacting the adsorbent bed with a desorbent, the desorbent being preferably either toluene or paradiethylbenzene, c) a step of withdrawing the adsorbent bed from a stream containing the desorbent and the products the least selectively adsorbed charge,
d) une étape de soutirage du lit d'adsorbant d'un flux contenant le désorbant et le produit recherché, à savoir le paraxylène, d) a step of withdrawing the adsorbent bed from a stream containing the desorbent and the desired product, namely paraxylene,
e) une séparation du flux issu de l'étape c) en un premier flux contenant le désorbant et un second flux contenant les produits de la charge les moins sélectivement adsorbés, f) une séparation du flux issu de l'étape d) en un premier flux contenant le désorbant et un second flux contenant du paraxylène à un niveau de pureté supérieure ou égale à 90%, de manière préférée supérieure ou égale à 99%, et de manière très préférée supérieure ou égale à 99,7%. e) a separation of the stream resulting from stage c) into a first stream containing the desorbent and a second stream containing the products of the least selectively adsorbed feed, f) a separation of the stream resulting from stage d) into a first stream containing the desorbent and a second stream containing paraxylene at a purity level greater than or equal to 90%, preferably greater than or equal to 99%, and very preferably greater than or equal to 99.7%.
[0090] L'invention concerne notamment un procédé de séparation de paraxylène à partir d'une charge de coupes d'isomères aromatiques à 8 atomes de carbone, utilisant, comme agent d'adsorption du paraxylène, un adsorbant zéolithique tel que défini précédemment, et notamment un adsorbant zéolithique à base de FAU de type LSX comprenant du baryum et/ou du potassium et présentant une importante surface externe caractérisée par adsorption d'azote, typiquement comprise entre 20 m2. g"1 et 100 m2. g"1, et plus préférentiellement comprise entre 20 m2. g"1 et 80 m2. g"1 et encore plus préférentiellement comprise entre 30 et 80 m2. g"1 bornes incluses, mis en œuvre dans des procédés en phase liquide, mais aussi en phase gazeuse. The invention relates in particular to a process for separating paraxylene from a filler of cuts of aromatic isomers containing 8 carbon atoms, using, as paraxylene adsorption agent, a zeolite adsorbent as defined above, and in particular a zeolite adsorbent based on FAU LSX type comprising barium and / or potassium and having a large external surface characterized by nitrogen adsorption, typically between 20 m 2 . g "1 and 100 m 2 .g -1 , and more preferably between 20 m 2 . g "1 and 80 m 2 .g -1 and even more preferably between 30 and 80 m 2 . g "1 inclusive terminals, implemented in processes in the liquid phase, but also in the gas phase.
[0091] Le procédé de séparation selon l'invention peut être mis en oeuvre par chromatographie liquide d'adsorption préparative (en batch), et avantageusement en continu dans une unité en en lit mobile simulé, c'est-à-dire à contre-courant simulé ou à co-courant simulé, et plus particulièrement à contre-courant simulé.  The separation process according to the invention can be carried out by preparative adsorption liquid chromatography (in batch), and advantageously continuously in a simulated moving bed unit, that is to say against simulated current or simulated co-current, and more particularly counter-current simulated.
[0092] Les conditions opératoires d'une unité industrielle d'adsorption en lit mobile simulé, fonctionnant à contre-courant, sont en général les suivantes : The operating conditions of a simulated moving bed adsorption industrial unit operating countercurrently are generally as follows:
• nombre de lits : 4 à 24 ;  • number of beds: 4 to 24;
• nombre de zones : au moins 4 zones de fonctionnement, chacune étant localisée entre un point d'alimentation (flux de charge à traiter ou flux de désorbant) et un point de soutirage (flux de raffinât ou flux d'extrait) ;  • number of zones: at least 4 operating zones, each located between a feed point (charge flow to be treated or desorbent flow) and a withdrawal point (raffinate flow or extract flow);
• avantageusement à une température comprise entre 100°C et 250°C, de préférence entre 140°C et 190°C ;  Advantageously at a temperature of between 100 ° C. and 250 ° C., preferably between 140 ° C. and 190 ° C .;
• pression comprise entre la pression de bulle des xylènes (ou du toluène lorsque le toluène est choisi comme désorbant) à la température du procédé et 3 MPa ;  Pressure between the bubble pressure of xylenes (or toluene when toluene is chosen as the desorbent) at the process temperature and 3 MPa;
• rapport des débits désorbant sur charge : 0,7 à 2,5, de préférence 0,7 à 2,0 (par exemple 0,9 à 1 ,8 pour une unité d'adsorption seule (« stand alone » en langue anglaise) et 0,7 à 1 ,4 pour une unité d'adsorption combinée à une unité de cristallisation) ;  • ratio of desorbent flows on charge: 0.7 to 2.5, preferably 0.7 to 2.0 (for example 0.9 to 1.8 for a unit of adsorption only ("stand alone" in English language) and 0.7 to 1.4 for an adsorption unit combined with a crystallization unit);
• taux de recyclage : 2 à 12, de préférence 2,5 à 6 ;  Recycling rate: 2 to 12, preferably 2.5 to 6;
• temps de cycle, correspondant au temps entre deux injections de désorbant sur un lit donné : de manière avantageuse, compris entre 4 et 25 min.  • cycle time, corresponding to the time between two injections of desorbent on a given bed: advantageously between 4 and 25 min.
[0093] On pourra en outre se référer à l'enseignement des brevets US 2 985 589, US 5 284 992 et US 5 629 467.  [0093] Reference may also be made to the teaching of patents US 2,985,589, US 5,284,992 and US 5,629,467.
[0094] Les conditions opératoires d'une unité industrielle d'adsorption à co-courant simulé sont en général les mêmes que celles fonctionnant à contre-courant simulé à l'exception du taux de recyclage qui est en général compris entre 0,8 et 7. On pourra se référer aux brevets US4402832 et US4498991. The operating conditions of a simulated co-current adsorption industrial unit are in general the same as those operating at the counter-current simulated at the exception of the recycling rate, which is in general between 0.8 and 7. Reference may be made to patents US4402832 and US4498991.
[0095] Le désorbant est un solvant de désorption dont le point d'ébullition est inférieur à celui de la charge, tel que le toluène ou supérieur à celui de la charge, tel que le para- diéthylbenzène (PDEB). Avantageusement, le désorbant est le toluène ou le para- diéthylbenzène.  The desorbent is a desorption solvent whose boiling point is lower than that of the feedstock, such as toluene or greater than that of the feedstock, such as para-diethylbenzene (PDEB). Advantageously, the desorbent is toluene or para-diethylbenzene.
[0096] La sélectivité des adsorbants selon l'invention pour l'adsorption du paraxylène contenu dans des coupes aromatiques en C8 est optimale lorsque leur perte au feu mesurée à 950°C est de préférence inférieure ou égale à 7,7%, de préférence comprise entre 0 et 7,7%, de manière très préférée entre 3,0% et 7,7%, de manière plus préférée entre 3,5% et 6,5% et de manière encore plus préférée entre 4,5% et 6%, bornes incluses.  The selectivity of the adsorbents according to the invention for the adsorption of paraxylene contained in aromatic C 8 cuts is optimal when their loss on ignition measured at 950 ° C. is preferably less than or equal to 7.7%, preferably between 0 and 7.7%, very preferably between 3.0% and 7.7%, more preferably between 3.5% and 6.5% and even more preferably between 4.5% and 6%, terminals included.
[0097] La teneur en eau dans les flux entrants est préférentiellement ajustée entre 20 ppm et 150 ppm, par exemple en ajoutant de l'eau dans les flux de charge et/ou de désorbant.  The water content in the incoming stream is preferably adjusted between 20 ppm and 150 ppm, for example by adding water in the feed stream and / or desorbent.
[0098] En outre, il a été remarqué que la sélection d'une surface externe supérieure à 20 m2. g"1 comme indiqué précédemment permet de réduire le temps de transport vers les micropores, conduisant à un transfert de matière significativement amélioré par rapport à l'art antérieur. In addition, it has been noted that the selection of an outer surface greater than 20 m 2 . g "1 as previously indicated makes it possible to reduce the transport time to the micropores, leading to a significantly improved material transfer compared to the prior art.
[0099] Par ailleurs, il a été remarqué que la sélection d'une surface externe comprise entre 20 m2. g"1 et 100 m2. g"1, comme indiqué précédemment associée au choix d'une zéolithe FAU de type LSX de rapport atomique Si/AI égal à 1 ,00 ± 0,05 permet d'obtenir des sélectivités d'adsorption du paraxylène vis-à-vis des autres isomères suffisantes pour une bonne séparation, et notamment des sélectivités du paraxylène vis-à-vis de l'éthylbenzène, dont l'affinité pour l'adsorbant est la plus élevée après le paraxylène, supérieures à 2,1 . Moreover, it has been noticed that the selection of an outer surface of between 20 m 2 . g "1 and 100 m 2 .g -1 , as indicated above associated with the choice of an LSX type FAU zeolite of Si / Al atomic ratio equal to 1.00 ± 0.05 makes it possible to obtain adsorption selectivities. paraxylene vis-à-vis other isomers sufficient for good separation, and especially selectivities of paraxylene vis-à-vis ethylbenzene, whose affinity for the adsorbent is highest after paraxylene, greater than 2.1.
[0100] Il a été remarqué que la sélectivité du paraxylène vis-à-vis de l'éthylbenzène des adsorbants à base de LSX de même rapport atomique Si/AI dont la surface externe est supérieure à 100 m2. g"1 ou des adsorbants à base de zéolithe FAU de type X de rapport atomique Si/AI supérieur à 1 ,00 ± 0,05 et de surface externe comprise entre 20 m2. g"1 et 100 m2. g"1, est strictement inférieure à 2,1. It was noted that the selectivity of paraxylene with respect to ethylbenzene adsorbents based on LSX same atomic ratio Si / Al whose external surface is greater than 100 m 2 . g "1 or adsorbents based on zeolite type FAU X atom Si / Al greater than 1 00 ± 0.05 and external surface between 20 m 2 .g -1 and 100 m 2 . g "1 , is strictly less than 2.1.
[0101] Un autre avantage est de pouvoir disposer de cristaux de taille micrométrique (typiquement comprise entre 0,5 μηη et 20 μηι, bornes incluses, de préférence encore compris entre 0,5 μηη et 10 μηη, bornes incluses, plus préférentiellement entre 0,8 μηη et Ι Ο μηη, bornes incluses, mieux encore entre 1 μηη et 10 μηη, bornes incluses, et de préférence encore entre 1 μηι et 8 μηη, bornes incluses) qui sont plus facilement manipulables, rendant ainsi la fabrication d'adsorbants plus aisée. Another advantage is to be able to have crystals of micrometric size (typically between 0.5 μηη and 20 μηι, inclusive, more preferably between 0.5 μηη and 10 μηη, included terminals, more preferably between 0 , 8 μηη and Ι Ο μηη, limits included, better still between 1 μηη and 10 μηη, limits included, and more preferably between 1 μηι and 8 μηη, limits included) which are more easily manipulated, thus making the manufacture of adsorbents easier.
[0102] Ainsi, les adsorbants zéolithiques de l'invention présentent notamment des propriétés de transfert de matière améliorées tout en maintenant des propriétés optimales de sélectivité du paraxylène vis-à-vis de ses isomères, et typiquement supérieures à 2, 1 , ainsi que de capacité d'adsorption, et en conservant une résistance mécanique élevée pour une utilisation dans un procédé de séparation du paraxylène en phase liquide, de préférence de type contre-courant simulé.  Thus, the zeolitic adsorbents of the invention exhibit, in particular, improved material transfer properties while maintaining optimum selectivity properties of paraxylene with respect to its isomers, and typically greater than 2, 1, as well as of adsorption capacity, and maintaining a high mechanical strength for use in a method of separation of paraxylene in the liquid phase, preferably simulated countercurrent type.
TECHNIQUES DE CARACTÉRISATION CHARACTERIZATION TECHNIQUES
Granulométrie des cristaux zéolithiques - Détection des mésopores  Granulometry of zeolitic crystals - Detection of mesopores
[0103] L'estimation du diamètre moyen en nombre des cristaux de zéolithe FAU utilisés lors de l'agglomération (étape a) et des cristaux contenus dans les adsorbants zéolithiques selon l'invention est réalisée par observation au microscope électronique à balayage (MEB).  The estimation of the average number diameter of the FAU zeolite crystals used during the agglomeration (step a) and the crystals contained in the zeolite adsorbents according to the invention is carried out by observation under a scanning electron microscope (SEM). .
[0104] Afin d'estimer la taille des cristaux de zéolithe sur les échantillons, on effectue un ensemble de clichés à un grossissement d'au moins 5000. On mesure ensuite le diamètre d'au moins 200 cristaux à l'aide d'un logiciel dédié. La précision est de l'ordre de 3%.  In order to estimate the size of the zeolite crystals on the samples, a set of images is carried out at a magnification of at least 5000. The diameter of at least 200 crystals is then measured using a dedicated software. The accuracy is of the order of 3%.
[0105] Comme indiqué dans US 7 785 563, le microscope électronique à transmission (MET) permet en outre de vérifier si les cristaux zéolithiques de l'adsorbant de la présente invention sont des cristaux de zéolithe pleins (i.e. non mésoporeux) ou des agrégats de cristaux de zéolithes pleins ou des cristaux mésoporeux (cf. la comparaison des clichés MET de la Figure 1 , où la mésoporosité est clairement visible et la Figure 2 qui montre des cristaux pleins). L'observation MET permet ainsi de visualiser la présence ou l'absence des mésopores. As indicated in US Pat. No. 7,785,563, the transmission electron microscope (TEM) further makes it possible to verify whether the zeolite crystals of the adsorbent of the present invention are solid zeolite crystals (ie non-mesoporous) or aggregates. solid zeolite crystals or mesoporous crystals (see the comparison of the TEM images of Figure 1, where the mesoporosity is clearly visible and Figure 2 shows solid crystals). The MET observation thus makes it possible to visualize the presence or the absence of the mesopores.
Analyse chimique des adsorbants zéolithiques - rapport Si/Ai et taux d'échange :  Chemical analysis of zeolite adsorbents - Si / Al ratio and exchange rate:
[0106] Une analyse chimique élémentaire du produit final obtenu à l'issue des étapes a) à f) décrites précédemment, peut être réalisée selon différentes techniques analytiques connues de l'homme du métier. Parmi ces techniques, on peut citer la technique d'analyse chimique par fluorescence de rayons X telle que décrite dans la norme NF EN ISO 12677 : 201 1 sur un spectromètre dispersif en longueur d'onde (WDXRF), par exemple Tiger S8 de la société Bruker.  An elemental chemical analysis of the final product obtained after the steps a) to f) described above, can be carried out according to various analytical techniques known to those skilled in the art. Among these techniques, mention may be made of the technique of chemical analysis by X-ray fluorescence as described in standard NF EN ISO 12677: 201 1 on a wavelength dispersive spectrometer (WDXRF), for example Tiger S8 of the Bruker company.
[0107] La fluorescence X est une technique spectrale non destructive exploitant la photoluminescence des atomes dans le domaine des rayons X, pour établir la composition élémentaire d'un échantillon. L'excitation des atomes généralement par un faisceau de rayons X ou par bombardement avec des électrons, génère des radiations spécifiques après retour à l'état fondamental de l'atome. Le spectre de fluorescence X a l'avantage de dépendre très peu de la combinaison chimique de l'élément, ce qui offre une détermination précise, à la fois quantitative et qualitative. On obtient de manière classique après étalonnage pour chaque oxyde une incertitude de mesure inférieure à 0,4% en poids. X-ray fluorescence is a non-destructive spectral technique exploiting the photoluminescence of atoms in the X-ray domain, to establish the composition elementary of a sample. The excitation of the atoms generally by an X-ray beam or by bombardment with electrons, generates specific radiations after return to the ground state of the atom. The X-ray fluorescence spectrum has the advantage of relying very little on the chemical combination of the element, which offers a precise determination, both quantitative and qualitative. A measurement uncertainty of less than 0.4% by weight is obtained conventionally after calibration for each oxide.
[0108] Ces analyses chimiques élémentaires permettent à la fois de vérifier le rapport atomique Si/Ai de la zéolithe utilisée lors de la préparation de l'adsorbant, ainsi que le rapport atomique Si/ Al de l'adsorbant et de vérifier la qualité de l'échange ionique décrit à l'étape c) et à l'étape optionnelle d). Dans la description de la présente invention, l'incertitude de mesure du rapport atomique Si/Ai est de ± 5%. These elementary chemical analyzes make it possible both to verify the Si / Al atomic ratio of the zeolite used during the preparation of the adsorbent, as well as the Si / Al atomic ratio of the adsorbent, and to verify the quality of the the ion exchange described in step c) and in optional step d). In the description of the present invention, the measurement uncertainty of the Si / Al atomic ratio is ± 5%.
[0109] La qualité de l'échange ionique est liée au nombre de mole d'oxyde de sodium, Na20, restant dans l'adsorbant zéolithique après échange. Par exemple, le taux d'échange par les ions baryum est estimé en évaluant le rapport entre le nombre de moles d'oxyde de baryum, BaO, et le nombre de moles de l'ensemble (BaO + Na20 + K20). De même, le taux d'échange par les ions potassium est estimé en évaluant le rapport entre le nombre de moles d'oxyde de potassium K20 et le nombre de moles de l'ensemble (BaO + K20 + Na20). Il est à noter que les teneurs en différents oxydes sont donnés, en pourcentage en poids par rapport au poids total de l'adsorbant zéolithique anhydre. The quality of the ion exchange is related to the number of moles of sodium oxide, Na 2 0, remaining in the zeolite adsorbent after exchange. For example, the exchange rate by barium ions is estimated by evaluating the ratio between the number of moles of barium oxide, BaO, and the number of moles of the whole (BaO + Na 2 0 + K 2 0 ). Likewise, the exchange rate by potassium ions is estimated by evaluating the ratio between the number of moles of potassium oxide K 2 0 and the number of moles of the whole (BaO + K 2 0 + Na 2 0 ). It should be noted that the contents of various oxides are given in percentage by weight relative to the total weight of the anhydrous zeolite adsorbent.
Granulométrie des adsorbants zéolithiques : Granulometry of zeolite adsorbents:
[01 10] La détermination du diamètre moyen en volume des adsorbants zéolithiques obtenus à l'issus de l'étape a) d'agglomération et de mise en forme est effectuée par analyse de la distribution granulométrique d'un échantillon d'adsorbant par imagerie selon la norme ISO 13322-2:2006, en utilisant un tapis roulant permettant à l'échantillon de passer devant l'objectif de la caméra.  The determination of the average volume diameter of the zeolite adsorbents obtained at the end of step a) of agglomeration and shaping is carried out by analysis of the particle size distribution of an adsorbent sample by imaging. according to ISO 13322-2: 2006, using a treadmill allowing the sample to pass in front of the camera lens.
[01 11 ] Le diamètre moyen en volume est ensuite calculé à partir de la distribution granulométrique en appliquant la norme ISO 9276-2:2001. Dans le présent document, on emploie l'appellation « diamètre moyen en volume» ou bien « taille » pour les adsorbants zéolithiques. La précision est de l'ordre de 0,01 mm pour la gamme de taille d'adsorbants de l'invention.  [01 11] The volume mean diameter is then calculated from the particle size distribution by applying the ISO 9276-2: 2001 standard. In this document, the term "volume mean diameter" or "size" is used for zeolite adsorbents. The accuracy is of the order of 0.01 mm for the size range of adsorbents of the invention.
Résistance mécanique des adsorbants zéolithiques :  Mechanical resistance of zeolite adsorbents:
[01 12] La résistance à l'écrasement d'un lit d'adsorbants zéolithiques tels que décrits dans la présente invention est caractérisée selon la méthode Shell série SMS 1471-74 (Shell Method Séries SMS1471-74 « Détermination of Bulk Crushing Strength of Catalysts. Compression-Sieve Method »), associée à l'appareil « BCS Tester » commercialisé par la société Vinci Technologies. Cette méthode, initialement destinée à la caractérisation de catalyseurs de 3 mm à 6 mm est basée sur l'utilisation d'un tamis de 425 μιη qui va permettre notamment de séparer les fines créées lors de l'écrasement. L'utilisation d'un tamis de 425 μιη reste adaptée pour des particules de diamètre supérieur à 1,6 mm, mais doit être adaptée selon la granulométrie des adsorbants que l'on cherche à caractériser. The crush resistance of a bed of zeolitic adsorbents as described in the present invention is characterized according to the Shell method SMS series 1471-74 (Shell Method Series SMS1471-74 "Determination of Bulk Crushing Strength of Catalysts. Compression-Sieve Method ") associated with the" BCS Tester "device marketed by Vinci Technologies. This method, initially intended for the characterization of catalysts from 3 mm to 6 mm is based on the use of a screen of 425 μιη which will allow in particular to separate the fines created during the crash. The use of a 425 μιη sieve remains suitable for particles greater than 1.6 mm in diameter, but must be adapted according to the particle size of the adsorbents that are to be characterized.
[0113] Les adsorbants de la présente invention, généralement sous forme de billes ou d'extrudés, ont en général un diamètre moyen en volume ou une longueur, i.e. plus grande dimension dans le cas des adsorbants non sphériques, comprise entre 0,2 mm et 2 mm, et en particulier comprise entre 0,2 mm et 0,8 mm et de préférence entre 0,40 mm et 0,65 mm, bornes incluses. Par conséquent, un tamis de 100 μιη est utilisé à la place du tamis de 425 μιη mentionné dans la méthode Shell standard SMS1471-74. The adsorbents of the present invention, generally in the form of beads or extrudates, generally have a volume average diameter or a length, ie the largest dimension in the case of nonspherical adsorbents, of between 0.2 mm. and 2 mm, and in particular between 0.2 mm and 0.8 mm and preferably between 0.40 mm and 0.65 mm inclusive. Therefore, a sieve of 100 μιη is used in place of the sieve of 425 μιη mentioned in the standard Shell method SMS1471-74.
[0114] Le protocole de mesure est le suivant : un échantillon de 20 cm3 d' adsorbants agglomérés, préalablement tamisé avec le tamis adapté (100 μιη) et préalablement séché à l'étuve pendant au moins 2 heures à 250°C (au lieu de 300°C mentionné dans la méthode Shell standard SMS 1471-74), est placé dans un cylindre métallique de section interne connue. Une force croissante est imposée par paliers sur cet échantillon par l'intermédiaire d'un piston, à travers un lit de 5 cm3 de billes d'acier afin de mieux répartir la force exercée par le piston sur les adsorbants agglomérés (utilisation de billes de 2 mm de diamètre pour des particules de forme sphérique de diamètre strictement inférieur à 1,6 mm). Les fines obtenues aux différents paliers de pression sont séparées par tamisage (tamis adapté de 100 μιη) et pesées. The measurement protocol is as follows: a sample of 20 cm 3 of agglomerated adsorbents, previously sieved with the appropriate sieve (100 μιη) and previously dried in an oven for at least 2 hours at 250 ° C. (at instead of 300 ° C mentioned in the standard Shell method SMS 1471-74), is placed in a metal cylinder of known internal section. An increasing force is imposed in steps on this sample by means of a piston, through a bed of 5 cm 3 of steel balls in order to better distribute the force exerted by the piston on the agglomerated adsorbents (use of balls 2 mm in diameter for particles of spherical shape with a diameter strictly less than 1.6 mm). The fines obtained at the different pressure levels are separated by sieving (100 μιη adapted sieve) and weighed.
[0115] La résistance à l'écrasement en lit est déterminée par la pression en mégaPascal (MPa) pour laquelle la quantité de fines cumulées passant à travers le tamis s'élève à 0,5% pondéral de l'échantillon. Cette valeur est obtenue en traçant sur un graphique la masse de fines obtenue en fonction de la force appliquée sur le lit d'adsorbant et en interpolant à 0,5% massique de fines cumulées. La résistance mécanique à l'écrasement en lit est typiquement comprise entre quelques centaines de kPa et quelques dizaines de MPa et généralement comprise entre 0,3 MPa et 3,2 MPa. La précision est de manière classique inférieure à 0,1 MPa.  The crush strength in bed is determined by the pressure in megaPascal (MPa) for which the amount of cumulative fines passing through the sieve is 0.5% by weight of the sample. This value is obtained by plotting the mass of fines obtained as a function of the force applied on the adsorbent bed and by interpolating at 0.5% by mass of cumulated fines. The mechanical resistance to crushing in a bed is typically between a few hundred kPa and a few tens of MPa and generally between 0.3 MPa and 3.2 MPa. The accuracy is conventionally less than 0.1 MPa.
Identification et quantification des fractions zéolithiques des adsorbants zéolithiques et estimation du paramètre de maille [0116] L'identification des fractions zéolithiques (en masse) contenues dans l'adsorbant est effectuée par analyse par diffraction de rayons X (DRX). Cette analyse est réalisée sur un appareil de la marque Bruker. L'identification des phases cristallines présentes dans l'adsorbant zéolithique est réalisée par comparaison avec les fiches de la base de données ICDD et éventuellement par comparaison avec le diffractogramme d'une référence appropriée (cristaux de zéolithe FAU de type LSX (supposée 100% cristalline) de rapport atomique Si/ Al égal à 1,00, et ayant subi les mêmes traitements d'échange cationique que l'adsorbant considéré). Par exemple la présence de la zéolithe de type X échangée au Baryum sera confirmée par comparaison des raies du diffractogramme obtenu avec la fiche ICDD n°38-0234 (« Zeolite X, (Ba) »). La comparaison des diffractogrammes est complétée par une comparaison des paramètres de maille mesurés sur la zéolithe de référence et sur l'adsorbant considéré. La mesure du paramètre de maille de la zéolithe est effectuée avec précision (à ± 0,01 Â) : pour ce faire, un étalon interne (Si 640b certifié NIST) est ajouté et les données sont traitées avec le logiciel d'affïnement TOPAS. Par exemple, une mesure réalisée sur des cristaux de zéolithe X, de rapport atomique Si/Ai égal à 1,25, et échangée à 95% au Baryum donne un paramètre de maille de 25,02 Â ± 0,01 Â, tandis qu'une mesure réalisée sur des cristaux de zéolithe LSX, de rapport atomique Si/ Al égal à 1,00, et échangée à 95% au baryum donne un paramètre de maille de 25,19 Â ± 0,01 Â. Identification and quantification of zeolite fractions of zeolite adsorbents and estimation of the mesh parameter The identification of the zeolite fractions (in bulk) contained in the adsorbent is performed by X-ray diffraction analysis (XRD). This analysis is carried out on a device of the Bruker brand. The identification of the crystalline phases present in the zeolite adsorbent is carried out by comparison with the sheets of the ICDD database and possibly by comparison with the diffractogram of an appropriate reference (zeolite crystals FAU LSX type (supposed to be 100% crystalline ) Si / Al atomic ratio equal to 1.00, and having undergone the same cation exchange treatments as the adsorbent considered). For example, the presence of the X-type zeolite exchanged with Barium will be confirmed by comparison of the lines of the diffractogram obtained with the ICDD sheet No. 38-0234 ("Zeolite X, (Ba)"). The comparison of the diffractograms is completed by a comparison of the mesh parameters measured on the reference zeolite and on the adsorbent under consideration. The measurement of the zeolite mesh parameter is performed accurately (to ± 0.01 Â): to do this, an internal standard (NIST-certified Si 640b) is added and the data is processed with the TOPAS software. For example, a measurement carried out on zeolite X crystals having an Si / Al atomic ratio equal to 1.25 and exchanged at 95% by barium gives a mesh parameter of 25.02 ± 0.01 Å, whereas A measurement carried out on zeolite LSX crystals, having an Si / Al atomic ratio equal to 1.00, and exchanged at 95% with barium gives a mesh parameter of 25.19 Å 0.01 Å.
[0117] La quantité des fractions zéolithiques (en masse) est évaluée à partir des intensités relatives de pic des diffractogrammes en prenant comme référence les intensités de pic de la zéolithe de référence mentionnée précédemment. Les pics, permettant de remonter à la cristallinité, sont les pics les plus intenses de la zone angulaire 2Θ comprise entre 9° et 37°, à savoir les pics observés dans les plages angulaires 2Θ comprises respectivement entre 11° et 13°, entre 22° et 26° et entre 31° et 33°.  The amount of zeolite fractions (in bulk) is evaluated from the relative peak intensities of the diffractograms by taking as reference the peak intensities of the reference zeolite mentioned above. The peaks, allowing to go back to the crystallinity, are the most intense peaks of the angular zone 2Θ between 9 ° and 37 °, namely the peaks observed in the angular ranges 2Θ between respectively 11 ° and 13 °, between 22 ° and 26 ° and between 31 ° and 33 °.
Volume microporeux et surface externe Microporous volume and external surface
[0118] La cristallinité des adsorbants zéolithiques de l'invention est également évaluée par mesure de leur volume microporeux en le comparant à celui d'une référence appropriée (zéolithe 100% cristalline dans des conditions de traitements cationiques identiques ou zéolithe théorique). Ce volume microporeux est déterminé à partir de la mesure de l'isotherme d'adsorption de gaz, tel que l'azote, à sa température de liquéfaction.  The crystallinity of the zeolite adsorbents of the invention is also evaluated by measuring their microporous volume by comparing it with that of an appropriate reference (100% crystalline zeolite under identical cationic treatment conditions or theoretical zeolite). This microporous volume is determined from the measurement of the gas adsorption isotherm, such as nitrogen, at its liquefaction temperature.
[0119] Préalablement à l'adsorption, l'adsorbant zéolithique est dégazé entre 300°C et 450°C pendant une durée comprise entre 9 heures et 16 heures, sous vide (P < 6,7.10"4 Pa). La mesure de l'isotherme d'adsorption d'azote à 77K est ensuite effectuée sur un appareil de type ASAP 2020 M de Micromeritics, en prenant au moins 35 points de mesure à des pressions relatives de rapport P/P0 compris entre 0,002 et 1. Prior to the adsorption, the zeolitic adsorbent is degassed between 300 ° C and 450 ° C for a period of between 9 hours and 16 hours, under vacuum (P <6.7 × 10 -4 Pa). The measurement of the isotherm adsorption of nitrogen at 77K is then carried out on a device of Micromeritics ASAP 2020 M, taking at least 35 measurement points for reporting relative pressure P / P 0 between 0.002 and 1.
[0120] Le volume microporeux et la surface externe sont déterminés par la méthode du t- plot à partir de l'isotherme obtenue, en appliquant la norme ISO 15901-3:2007 et en calculant l'épaisseur statistique t par l'équation de Harkins-Jura. Le volume microporeux et la surface externe sont obtenus par régression linéaire sur les points du t-plot compris entre 0,45 nm et 0,57 nm, respectivement à partir de l'ordonnée à l'origine et de la pente de la régression linéaire. Le volume microporeux évalué s'exprime en cm3 d'adsorbat liquide par gramme d'adsorbant anhydre. La surface externe s'exprime en m2 par gramme d'adsorbant anhydre. The microporous volume and the external surface are determined by the t-plot method from the obtained isotherm, by applying the ISO 15901-3: 2007 standard and by calculating the statistical thickness t by the equation of Harkins-Jura. The microporous volume and the external surface are obtained by linear regression on the points of the t-plot between 0.45 nm and 0.57 nm, respectively from the ordinate at the origin and the slope of the linear regression. . The microporous volume evaluated is expressed in cm 3 of liquid adsorbate per gram of anhydrous adsorbent. The external surface is expressed in m 2 per gram of anhydrous adsorbent.
Volume macroporeux et mésoporeux et densité de grain  Macroporous and mesoporous volume and grain density
[0121] Les volumes macroporeux et mésoporeux ainsi que la densité de grain sont mesurés par porosimétrie par intrusion de mercure. Un porosimètre à mercure type Autopore® 9500 de Micromeritics est utilisé pour analyser la répartition du volume poreux contenu dans les macropores et dans les mésopores. The macroporous and mesoporous volumes and the grain density are measured by porosimetry by mercury intrusion. Such a mercury porosimeter Autopore 9500 Micromeritics ® is used to analyze the distribution of the pore volume contained in macropores and the mesopores.
[0122] La méthode expérimentale, décrite dans le manuel opératoire de l'appareil faisant référence à la norme ASTM D4284-83, consiste à placer un échantillon d'adsorbant (matériau granulaire zéolithique à mesurer) (de perte au feu connue) préalablement pesé, dans une cellule du porosimètre, puis, après un dégazage préalable (pression d'évacuation de 30 μιη Hg pendant au moins 10 min), à remplir la cellule avec du mercure à une pression donnée (0,0036 MPa), et ensuite à appliquer une pression croissante par palier jusqu'à 400 MPa afin de faire pénétrer progressivement le mercure dans le réseau poreux de l'échantillon.  The experimental method, described in the operating manual of the apparatus referring to the ASTM D4284-83 standard, consists in placing a sample of adsorbent (zeolite granular material to be measured) (known loss to fire) previously weighed. , in a cell of the porosimeter, then, after a prior degassing (discharge pressure of 30 μιη Hg for at least 10 min), to fill the cell with mercury at a given pressure (0.0036 MPa), and then to apply incrementally increasing pressure up to 400 MPa in order to gradually penetrate mercury into the porous network of the sample.
[0123] La relation entre la pression appliquée et le diamètre apparent des pores est établie en supposant des pores cylindriques, un angle de contact entre le mercure et la paroi des pores de 140° et une tension de surface du mercure de 485 dynes/cm. La quantité cumulée de mercure introduite en fonction de la pression appliquée est enregistrée. On fixe à 0,2 MPa la valeur à partir de laquelle le mercure remplit tous les vides inter-granulaires, et on considère qu'au delà le mercure pénètre dans les pores du matériau granulaire. Le volume de grain (Vg) est alors calculé en soustrayant le volume cumulé de mercure à cette pression (0,2 MPa) au volume de la cellule du porosimètre, et en divisant cette différence par la masse du matériau granulaire équivalent anhydre, c'est-à-dire la masse dudit matériau corrigée de la perte au feu. The relationship between the applied pressure and the apparent diameter of the pores is established by assuming cylindrical pores, an angle of contact between the mercury and the pore wall of 140 ° and a mercury surface tension of 485 dynes / cm. . The cumulative amount of mercury introduced as a function of the applied pressure is recorded. The value at which the mercury fills all the inter-granular voids is fixed at 0.2 MPa, and it is considered that, beyond this, the mercury penetrates into the pores of the granular material. The volume of grain (Vg) is then calculated by subtracting the cumulative volume of mercury at this pressure (0.2 MPa) from the volume of the cell of the porosimeter, and dividing this difference by the mass of the anhydrous equivalent granular material, that is to say the mass of said material corrected for loss on ignition.
[0124] La densité de grain est l'inverse du volume de grain (Vg), et s'exprime en gramme d'adsorbant anhydre par cm3. The grain density is the inverse of the grain volume (Vg), and is expressed in grams of anhydrous adsorbent per cm 3 .
[0125] Le volume macroporeux du matériau granulaire est défini comme étant le volume cumulé de mercure introduit à une pression comprise entre 0,2 MPa et 30 MPa, correspondant au volume contenu dans les pores de diamètre apparent supérieur à 50 nm. Le volume mésoporeux du matériau granulaire est défini comme étant le volume cumulé de mercure introduit à une pression comprise entre 30 MPa et 400 MPa.  The macroporous volume of the granular material is defined as the cumulative volume of mercury introduced at a pressure of between 0.2 MPa and 30 MPa, corresponding to the volume contained in the pores with an apparent diameter of greater than 50 nm. The mesoporous volume of the granular material is defined as the cumulative volume of mercury introduced at a pressure of between 30 MPa and 400 MPa.
[0126] Dans le présent document, les volumes macroporeux et mésoporeux des adsorbants zéolithiques, exprimés en cm3. g"1, sont ainsi mesurés par intrusion de mercure et rapportés à la masse de l'échantillon en équivalent anhydre, c'est-à-dire la masse dudit matériau corrigée de la perte au feu. In this document, macroporous and mesoporous volumes of zeolitic adsorbents, expressed in cm 3 . g "1 , are thus measured by mercury intrusion and reported to the mass of the sample in anhydrous equivalent, that is to say the mass of said material corrected for loss on ignition.
Perte au feu des adsorbants zéolithiques : Loss on fire of zeolite adsorbents:
[0127] La perte au feu est déterminée en atmosphère oxydante, par calcination de l'échantillon à l'air à une température de 950°C ± 25°C, comme décrit dans la norme NF EN 196-2 (avril 2006). L'écart type de mesure est inférieur à 0,1%.  The loss on ignition is determined in an oxidizing atmosphere, by calcining the sample in air at a temperature of 950 ° C. ± 25 ° C., as described in standard NF EN 196-2 (April 2006). The standard deviation of measurement is less than 0.1%.
Caractérisation de l'adsorption en phase liquide par perçage : Characterization of liquid phase adsorption by drilling:
[0128] La technique utilisée pour caractériser l'adsorption de molécules en phase liquide sur un solide poreux est la technique dite de perçage, décrite par Ruthven dans « Principles of Adsorption and Adsorption Processes » (Chapitres 8 et 9, John Wiley & Sons, 1984) qui définit la technique des courbes de perçage (« breakthrough curves ») comme l'étude de la réponse à l'injection d'un échelon de constituants adsorbables. L'analyse du temps moyen de sortie (premier moment) des courbes de perçage fournit une information sur les quantités adsorbées et permet également d'évaluer les sélectivités, c'est-à-dire le facteur de séparation, entre deux constituants adsorbables. L'injection d'un constituant non adsorbable utilisé comme traceur est conseillée pour l'estimation des volumes non-sélectifs. L'analyse de la dispersion (second moment) des courbes de perçage, permet d'évaluer la hauteur équivalente de plateaux théoriques, basée sur la représentation d'une colonne par un nombre fini de réacteurs hypothétiques idéalement agités (étages théoriques), qui est une mesure directe de la dispersion axiale et de la résistance au transfert de matière du système. EXEMPLES The technique used to characterize the adsorption of molecules in liquid phase on a porous solid is the so-called drilling technique, described by Ruthven in "Principles of Adsorption and Adsorption Processes" (Chapters 8 and 9, John Wiley & Sons, 1984) which defines the technique of breakthrough curves as the study of the response to the injection of a step of adsorbable constituents. The analysis of the average time of exit (first moment) of the drilling curves provides information on the adsorbed quantities and also makes it possible to evaluate the selectivities, that is to say the separation factor, between two adsorbable constituents. The injection of a non-adsorbable component used as a tracer is recommended for the estimation of non-selective volumes. The analysis of the dispersion (second moment) of the drilling curves makes it possible to evaluate the equivalent height of theoretical plates, based on the representation of a column by a finite number of ideally stirred hypothetical reactors (theoretical stages), which is a direct measurement of the axial dispersion and resistance to material transfer of the system. EXAMPLES
Exemple A : Synthèse de cristaux de zéolithe LSX conventionnels (synthèse A du brevet FR 2 925 366) (exemple comparatif) Example A Synthesis of Conventional LSX Zeolite Crystals (Synthesis A of Patent FR 2 925 366) (Comparative Example)
[0129] On prépare des cristaux selon la synthèse A décrite dans le brevet FR 2925366). Les cristaux obtenus après filtration, lavage et séchage sont identifiés par diffraction des rayons X comme faujasite. L'analyse chimique du solide donne un rapport Si/AI = 1 ,01 .  Crystals are prepared according to the synthesis A described in patent FR 2925366). The crystals obtained after filtration, washing and drying are identified by X-ray diffraction as faujasite. The chemical analysis of the solid gives a ratio Si / Al = 1.01.
[0130] Le volume microporeux et la surface externe mesurés selon la méthode du t-plot à partir de l'isotherme d'adsorption d'azote à 77K après dégazage sous vide à 400°C pendant 10 heures sont respectivement de 0,305 cm3/g et 6 m2/g. The microporous volume and the external surface measured according to the t-plot method from the nitrogen adsorption isotherm at 77K after vacuum degassing at 400 ° C. for 10 hours are respectively 0.305 cm 3 / g and 6 m 2 / g.
[0131] L'analyse de la taille des cristaux de zéolite est réalisée par microscopie électronique à balayage. La taille moyenne des cristaux est de 2,6 μηη. The analysis of the size of the zeolite crystals is carried out by scanning electron microscopy. The average crystal size is 2.6 μηη.
Exemple B : Synthèse de cristaux de zéolithe FAU à porosité hiérarchisée Example B Synthesis of zeolite crystals FAU with hierarchical porosity
Exemple B1 : synthèse de cristaux de zéolithe de type XPH de rapport Si/AI = 1 ,24 de surface externe égale à 90 m2.g"1 (exemple comparatif) Example B1: Synthesis of zeolite crystals of XPH type of Si / Al = 1.24 ratio of external surface equal to 90 m 2 · g -1 (comparative example)
[0132] Une zéolithe X à surface externe égale à 90 m2. g"1 est synthétisée de manière directe d'après le mode de synthèse décrit dans l'article Inayat et coll. (Angew. Chem. Int. Ed., (2012), 57, 1962-1965). A zeolite X with an external surface equal to 90 m 2 . g "1 is synthesized directly according to the synthesis mode described in the article Inayat et al (Angew Chem Int, Ed., (2012), 57, 1962-1965).
Étape 1) : Préparation du gel de croissance dans réacteur agité avec vis d'Archimède à 300 tr.min 1. Step 1) Preparation of gel growth in stirred reactor with Archimedean screw 300 tr.min 1.
[0133] Dans un réacteur en inox muni d'une double enveloppe chauffante, d'une sonde température et d'un agitateur, on prépare un gel de croissance en mélangeant une solution d'aluminate contenant 1 19 g d'hydroxyde de sodium (NaOH) à, 128 g d'alumine trihydratée (Al203, 3H20, contenant 65,2% en poids d'AI203) et 195,5 g eau à 25°C en 25 minutes avec une vitesse d'agitation de 300 tr.min"1 dans une solution de silicate contenant 565,3 g de silicate de sodium, 55,3 g de NaOH et 1997,5 g d'eau à 25°C. In a stainless steel reactor equipped with a heating jacket, a temperature probe and a stirrer, a growth gel is prepared by mixing an aluminate solution containing 19 g of sodium hydroxide (FIG. NaOH), 128 g of alumina trihydrate (Al 2 0 3 .3H 2 0 containing 65.2% by weight AI 2 0 3) and 195.5 g water at 25 ° C in 25 minutes with a speed stirring 300 tr.min "1 in a silicate solution containing 565.3 g of sodium silicate, 55.3 g of NaOH and 1997.5 g of water at 25 ° C.
[0134] La stœchiométrie du gel de croissance est la suivante : 3,48 Na20 / Al203 / 3,07 Si02 / 180 H20. L'homogénéisation du gel de croissance est réalisée sous agitation à 300 tr.min"1, pendant 25 minutes à 25°C. [0134] The stoichiometry of the gel growth is as follows: 3.48 Na 2 0 / AI 2 0 3 / 3.07 Si0 2/180 H 2 0. The homogenization of the gel growth is carried out with stirring at 300 revolutions min -1 for 25 minutes at 25 ° C.
Étape 2) : Introduction dans le milieu réactionnel de l'agent structurant  Step 2): Introduction into the reaction medium of the structuring agent
[0135] On introduit dans le milieu réactionnel 27,3 g de solution de TPOAC à 60% dans le MeOH avec une vitesse d'agitation de 300 tr.min"1 (ratio molaire TPOAC/AI203 = 0,04). Après 5 minutes d'homogénéisation, on baisse la vitesse d'agitation à 50 tr.min"1. Étape 3) : Phase de mûrissement 27.3 g of 60% TPOAC solution in MeOH are introduced into the reaction medium with a stirring speed of 300 rpm "1 (TPOAC / Al 2 O 3 molar ratio = 0.04). After 5 minutes of homogenization, the stirring speed is lowered to 50 rpm "1 . Step 3): ripening phase
[0136] On maintient le milieu réactionnel agité à 50 tr.min"1 à 25°C, pendant 22 heures, puis on démarre la cristallisation. [0136] maintaining the reaction medium stirred at 50 tr.min "1 to 25 ° C for 22 hours and then start the crystallisation.
Étape 4) : Cristallisation Step 4): Crystallization
[0137] On maintient la vitesse d'agitation à 50 tr.min"1, et on fixe la consigne de la double enveloppe du réacteur à 80°C afin que le milieu réactionnel monte en température à 75°C en 80 minutes. Après 72 heures de palier à 75°C, on refroidit le milieu réactionnel en faisant circuler de l'eau froide dans la double enveloppe pour stopper la cristallisation. Étape 5) : Filtration / lavage The stirring speed is maintained at 50 rpm "-1 , and the setpoint of the jacket of the reactor is set at 80 ° C. so that the reaction medium rises to 75 ° C. in 80 minutes. 72 hours of residence at 75 ° C., the reaction medium is cooled by circulating cold water in the jacket to stop the crystallization Step 5): Filtration / washing
[0138] Les solides sont récupérés sur fritté puis lavés avec de l'eau permutée jusqu'à pH neutre.  The solids are recovered on sintered and then washed with deionized water until neutral pH.
Étape 6) : Séchage / Calcination  Step 6): Drying / Calcination
[0139] Afin de caractériser le produit, le séchage est réalisé en étuve à 90°C pendant 8 heures, la perte au feu du produit séché est de 22% en poids.  In order to characterize the product, the drying is carried out in an oven at 90 ° C. for 8 hours, the loss on ignition of the dried product is 22% by weight.
[0140] La calcination du produit séché nécessaire pour libérer à la fois la microporosité (eau) et la mésoporosité en éliminant l'agent structurant est effectuée avec le profil de température suivant : 30 minutes de montée à 200°C, puis 1 heure de palier à 200°C, puis 3 heures de montée à 550°C, et enfin 1 ,5 heures de palier à 550°C.  The calcination of the dried product necessary to release both the microporosity (water) and the mesoporosity by eliminating the structuring agent is carried out with the following temperature profile: 30 minutes of rise at 200 ° C., then 1 hour of bearing at 200 ° C, then 3 hours of rise at 550 ° C, and finally 1.5 hours of bearing at 550 ° C.
[0141] Le volume microporeux et la surface externe mesurés selon la méthode du t-plot à partir de l'isotherme d'adsorption d'azote à 77K après dégazage sous vide à 400°C pendant 10 heures sont respectivement 0,260 cm3. g"1 et 90 m2. g"1. Le diamètre moyen en nombre des cristaux de la zéolithe mésoporeuse (ou à porosité hiérarchisée) ainsi obtenue est de 4,5 μηη et le rapport Si/AI est égal à 1 ,24. The microporous volume and the external surface measured by the t-plot method from the 77K nitrogen adsorption isotherm after degassing under vacuum at 400 ° C. for 10 hours are respectively 0.260 cm 3 . g -1 and 90 m 2 g -1 . The number average diameter of the crystals of the mesoporous zeolite (or hierarchically porous) thus obtained is 4.5 μηη and the Si / Al ratio is equal to 1.24.
[0142] Dans ce qui suit une masse exprimée en équivalent anhydre signifie une masse de produit diminuée de sa perte au feu.  In what follows a mass expressed in anhydrous equivalent means a mass of product less its loss on ignition.
Exemple B2 : Synthèse de cristaux de zéolithe de type LSXPH de rapport Si/AI = 1 ,01 de surface externe égale à 95 m2.g"1 (selon l'invention) Example B2 Synthesis of zeolite crystals of LSXPH type of Si / Al ratio = 1.01 of external surface equal to 95 m 2 .g -1 (according to the invention)
a) Préparation du gel de croissance : réacteur agité par vis d'Archimède à 250 tr.min"1. a) Preparation of the growth gel: reactor stirred by Archimedes screw at 250 rpm "1 .
[0143] Dans un réacteur en inox de 3 litres muni d'une double enveloppe chauffante, d'une sonde température et d'un agitateur, on prépare un gel de croissance en mélangeant une solution d'aluminate contenant 300 g d'hydroxyde de sodium (NaOH), 264 g d'hydroxyde de potassium à 85%, 169 g d'alumine trihydratée (Al203, 3H20, contenant 65,2% en poids d'AI203) et 1200 g eau à 25°C en 5 minutes avec une vitesse d'agitation de 250 tr.min"1 avec une solution de silicate contenant 490 g de silicate de sodium, 29,4 g de NaOH et 470 g d'eau à 25°C. In a 3 liter stainless steel reactor equipped with a heating jacket, a temperature probe and a stirrer, a growth gel is prepared by mixing an aluminate solution containing 300 g of sodium hydroxide. sodium (NaOH), 264 g of 85% potassium hydroxide, 169 g of alumina trihydrate (Al 2 O 3 , 3H 2 O, containing 65.2% by weight of Al 2 O 3 ) and 1200 g water at 25 ° C in 5 minutes with a speed stirring 250 tr.min "1 silicate with a solution containing 490 g of sodium silicate, 29.4 g of NaOH and 470 g of water at 25 ° C.
[0144] La stcechiométrie du gel de croissance est la suivante : 4,32 Na20 / 1 ,85 K20 / Al203 / 2,0 Si02 / 1 14 H20. L'homogénéisation du gel de croissance est réalisée sous agitation à 250 tr.min"1, pendant 15 minutes, à 25°C. [0144] The stoichiometry of the gel growth is as follows: 4.32 Na 2 0/1 85 K 2 0 / AI 2 0 3 / Si0 2 2.0 / 1 14H 2 0. The homogenization of the gel growth is carried out with stirring at 250 tr.min "1 for 15 minutes at 25 ° C.
b) Ajout du gel de nucléation b) Addition of the nucleation gel
[0145] On ajoute au gel de croissance, à 25°C sous agitation à 300 tr.min"1, 1 1 ,6 g de gel de nucléation (soit 0,4% en poids) de composition 12 Na20/ Al203 / 10 Si02 / 180 H20 préparé de la même manière que le gel de croissance, et ayant mûri pendant 1 heure à 40°C. Après 5 minutes d'homogénéisation à 250 tr.min"1, la vitesse d'agitation est diminuée à 50 tr.min"1 et poursuivie pendant 30 minutes. [0145] To the gel growth at 25 ° C with stirring at 300 tr.min "1, 1 1, 6 g of nucleating gel (0.4% by weight) of composition 12 Na 2 0 / Al 2 0 3/10 Si0 2/180 H 2 0 prepared in the same manner as the growth of frost, and ripened for 1 hour at 40 ° C. After 5 minutes of homogenization at 250 tr.min "1 speed agitation is reduced to 50 tr.min "1 and continued for 30 minutes.
c) Introduction dans le milieu réactionnel de l'agent structurant c) Introduction into the reaction medium of the structuring agent
[0146] On introduit dans le milieu réactionnel 35,7 g de solution de TPOAC à 60% dans le méthanol (MeOH) avec une vitesse d'agitation de 250 tr.min"1 pendant 5 minutes (ratio molaire TPOAC/AI203 = 0,04). Puis on opère à 30°C une étape de maturation pendant 20 heures à 50 tr.min"1 avant de démarrer la cristallisation. [0146] are introduced into the reaction mixture 35.7 g of 60% TPOAC solution in methanol (MeOH) with an agitation speed of 250 tr.min "1 for 5 minutes (molar ratio TPOAC / AI 2 0 3 = 0.04). Then the reaction is carried at 30 ° C a ripening step for 20 hours at 50 tr.min "1 before starting the crystallization.
d) Cristallisation en 2 étapes d) Crystallization in 2 steps
[0147] On maintient la vitesse d'agitation à 50 tr.min"1 puis on programme une augmentation de la consigne de la double enveloppe du réacteur à 63°C de façon linéaire afin que le milieu réactionnel monte en température à 60°C en 5 heures suivi d'un palier de 21 heures à 60°C ; puis on fixe la consigne de la double enveloppe du réacteur à 102°C afin que le milieu réactionnel monte en température à 95°C en 60 minutes. Après 3 heures de palier à 95°C, on refroidit le milieu réactionnel en faisant circuler de l'eau froide dans la double enveloppe pour stopper la cristallisation. The stirring speed is maintained at 50 rpm "1 and then an increase in the set point of the jacket of the reactor at 63 ° C is programmed linearly so that the reaction medium rises in temperature at 60 ° C. in 5 hours followed by a 21 hour stage at 60 ° C., then the set point of the jacket of the reactor is set at 102 ° C. so that the reaction medium rises to 95 ° C. in 60 minutes. at 95 ° C, the reaction medium is cooled by circulating cold water in the jacket to stop the crystallization.
e) Filtration / lavage e) Filtration / washing
[0148] Les solides sont récupérés sur fritté puis lavés avec de l'eau permutée jusqu'à pH neutre.  The solids are recovered on sintered and then washed with deionized water until neutral pH.
f) Séchage / Calcination f) Drying / Calcination
[0149] Afin de caractériser le produit, le séchage est réalisé en étuve à 90°C pendant 8 heures.  In order to characterize the product, the drying is carried out in an oven at 90 ° C. for 8 hours.
[0150] La calcination du produit séché nécessaire pour libérer à la fois la microporosité (eau) et la mésoporosité en éliminant l'agent structurant est effectuée par un dégazage sous vide avec une montée progressive par pas de 50 °C jusqu'à 400°C pendant une durée comprise entre 9 heures et 16 heures, sous vide (P < 6,7.10"4 Pa). The calcination of the dried product necessary to release both the microporosity (water) and the mesoporosity by eliminating the structuring agent is carried out by vacuum degassing with a gradual increase in steps of 50 ° C. up to 400 ° C. C for a period of between 9 hours and 16 hours under vacuum (P <6.7 × 10 -4 Pa).
[0151] Le volume microporeux et la surface externe mesurés selon la méthode du t-plot à partir de l'isotherme d'adsorption d'azote à 77K après dégazage sous vide à 400°C pendant 10 heures sont respectivement 0,215 cm3. g"1 et 95 m2. g"1. Le diamètre moyen en nombre des cristaux est de 6 μηη. Les diamètres des mésopores calculés à partir de l'isotherme d'adsorption d'azote par la méthode DFT sont compris entre 5 nm à 10 nm. Le diffractogramme RX correspond à une structure Faujasite (FAU) pure, aucune zéolithe LTA n'est détectée. Le rapport molaire Si/AI de la LSXPH déterminé par fluorescence X est égal à 1 ,01 . The microporous volume and the external surface measured according to the t-plot method from the nitrogen adsorption isotherm at 77K after vacuum degassing at 400 ° C. for 10 hours are respectively 0.215 cm 3 . g -1 and 95 m 2 g -1 . The average number diameter of the crystals is 6 μηη. The diameters of the mesopores calculated from the nitrogen adsorption isotherm by the DFT method are between 5 nm and 10 nm. The X-ray diffractogram corresponds to a pure Faujasite structure (FAU), no LTA zeolite is detected. The Si / Al molar ratio of the LSXPH determined by X-ray fluorescence is 1.01.
Exemple B3 : synthèse de cristaux de zéolithe LSXPH de surface externe égale à 146 m2.g"1 (exemple comparatif) Example B3: LSXPH zeolite crystal synthesis of external surface equal to 146 m 2 .g -1 (comparative example)
[0152] Une zéolithe LSX à porosité hiérarchisée de plus haute surface externe que la zéolithe synthétisée à l'exemple B2 est obtenue en suivant strictement le mode opératoire de l'exemple B2, sauf pour le ratio molaire TPOAC/AI203 de l'étape 2 qui est égal à 0,07. A LSX zeolite having a higher surface area outermost porosity than the zeolite synthesized in Example B2 is obtained by strictly following the procedure of Example B2, except for the TPOAC / Al 2 O 3 molar ratio of step 2 which is equal to 0.07.
[0153] Le volume microporeux et la surface externe mesurés selon la méthode du t-plot à partir de l'isotherme d'adsorption d'azote à 77K après dégazage sous vide à 400°C pendant 10 heures sont respectivement 0,198 cm3. g"1 et 146 m2. g"1. Le diamètre moyen en nombre des cristaux de la zéolithe mésoporeuse (ou à porosité hiérarchisée) ainsi obtenue est de 6 μηη et le rapport Si/AI est égal à 1 ,01 . The microporous volume and the external surface measured by the t-plot method from the 77K nitrogen adsorption isotherm after degassing under vacuum at 400 ° C. for 10 hours are 0.198 cm 3, respectively. g -1 and 146 m 2 g -1 . The number average diameter of the crystals of the mesoporous zeolite (or hierarchical porosity) thus obtained is 6 μηη and the Si / Al ratio is equal to 1.01.
Exemple 1 : (comparatif) Example 1: (comparative)
Préparation d'un adsorbant zéolithique sous forme de granulés avec des cristaux de zéolithe de LSX selon l'Exemple A, de 2,6 μιη de diamètre, et un liant de type kaolin.  Preparation of a zeolitic adsorbent in the form of granules with zeolite crystals of LSX according to Example A, of 2.6 μm in diameter, and a kaolin-type binder.
[0154] On prépare un adsorbant en reproduisant l'exemple 6 décrit dans le brevet FR 2 925 366, et on récupère des grains que l'on sélectionne par tamisage dans la gamme granulométrique comprise entre 0,3 mm et 0,5 mm, et telle que le diamètre moyen en volume est de 0,4 mm.  An adsorbent is prepared by reproducing example 6 described in patent FR 2 925 366, and grains are recovered which are selected by sieving in the particle size range between 0.3 mm and 0.5 mm, and such that the volume average diameter is 0.4 mm.
[0155] Le taux d'échange en baryum de cet adsorbant évalué à partir de l'analyse chimique élémentaire par WDXRF est de 97% et sa perte au feu est de 6,2%. Le paramètre de maille mesuré par DRX sur cet adsorbant est évalué à 25,19 Â ± 0,01 Â. Le volume microporeux et la surface externe mesurés selon la méthode du t-plot à partir de l'isotherme d'adsorption d'azote à 77K après dégazage sous vide à 400°C pendant 10 heures sont respectivement de 0,231 cm3. g"1 et 7 m2. g"1. Le volume total contenu dans les macropores et les mésopores (somme du volume macroporeux et du volume mésoporeux) mesuré par intrusion de mercure, est de 0,25 cm3. g"1. Le ratio (volume macroporeux)/(volume macroporeux + volume mésoporeux) est égal à 0,9. La résistance mécanique de cet adsorbant mesurée selon la méthode présentée dans les techniques de caractérisation est de 2,1 MPa. The barium exchange rate of this adsorbent evaluated from the elemental chemical analysis by WDXRF is 97% and its loss on ignition is 6.2%. The mesh parameter measured by DRX on this adsorbent is evaluated at 25.19 ± 0.01 Å. The microporous volume and the external surface measured according to the t-plot method from the 77K nitrogen adsorption isotherm after degassing under vacuum at 400 ° C. for 10 hours are respectively 0.231 cm 3 . g "1 and 7 m 2, g " 1 . The total volume contained in the macropores and mesopores (sum of macroporous volume and mesoporous volume) measured by intrusion of mercury, is 0.25 cm 3 . g "1. The ratio (macroporous volume) / (macroporous volume + mesoporous volume) is equal to 0.9. The mechanical strength of this adsorbent measured according to the method presented in the characterization techniques is 2.1 MPa.
Exemple 2 : (comparatif) Example 2 (comparative)
Préparation d'un adsorbant zéolithique sous forme de granulés avec cristaux de XPH de taille 4,5 μm et un liant d'agglomération de type kaolin tel que la surface externe est égale à 70 m2. g'1 Preparation of a zeolitic adsorbent in the form of granules with 4.5 μm size XPH crystals and a kaolin type agglomeration binder such that the external surface is equal to 70 m 2 . g '1
[0156] On prépare un mélange homogène constitué de 1600 g équivalent anhydre de cristaux de zéolithe X synthétisée selon le mode opératoire de l'exemple B1 (taille des cristaux 4,5 μηι), de 350 g équivalent anhydre de kaolin, de 130 g de silice colloïdale vendue sous la dénomination commerciale de Klebosol® 30 (contenant 30% en poids de Si02 et 0,5% de Na20) ainsi que de la quantité d'eau qui permet l'agglomération du mélange par extrusion. Les extrudés sont séchés, concassés de manière à récupérer des grains dans la gamme granulométrique comprise entre 0,3 mm et 0,5 mm, et telle que le diamètre moyen en volume est de 0,4 mm, puis calcinés pendant 2 heures à 550°C sous balayage à l'azote, puis 2 heures à 550°C sous balayage à l'air sec décarbonaté. A homogeneous mixture consisting of 1600 g anhydrous equivalent of zeolite crystals X synthesized according to the procedure of Example B1 (crystal size 4.5 μηι), 350 g anhydrous equivalent of kaolin, 130 g is prepared. colloidal silica sold under the trade name Klebosol® 30 (containing 30% by weight of SiO 2 and 0.5% of Na 2 O) and the amount of water which allows agglomeration of the mixture by extrusion. The extrudates are dried, crushed so as to recover grains in the particle size range between 0.3 mm and 0.5 mm, and such that the average volume diameter is 0.4 mm, and then calcined for 2 hours at 550.degree. ° C under nitrogen sweep, then 2 hours at 550 ° C under dry decarbonated air.
[0157] L'échange au baryum est ensuite opéré avec une concentration de solution de chlorure de baryum, BaCI2, 0,7M à 95°C en 4 étapes. A chaque étape, le ratio volume de solution sur masse de solide est de 20 ml/g et l'échange est poursuivi pendant 4 heures à chaque fois. Entre chaque échange, le solide est lavé plusieurs fois de manière à le débarrasser des excédents de sel. Il est ensuite séché à 80°C pendant 2 h puis activé à 250°C pendant 2 h sous courant d'azote. The barium exchange is then operated with a concentration of barium chloride solution, BaCl 2 , 0.7M at 95 ° C in 4 steps. At each stage, the volume ratio of solution to mass of solid is 20 ml / g and the exchange is continued for 4 hours each time. Between each exchange, the solid is washed several times in order to rid it of excess salt. It is then dried at 80 ° C. for 2 hours and then activated at 250 ° C. for 2 hours under a stream of nitrogen.
[0158] Le taux d'échange en baryum de cet adsorbant évalué à partir de l'analyse chimique élémentaire par WDXRF, comme décrit plus haut dans les techniques analytiques, est de 97% et la perte au feu est de 5,5%. Le paramètre de maille mesuré par DRX sur cet adsorbant est évalué à 25,02 Â ± 0,01 Â. Le volume microporeux et la surface externe mesurés selon la méthode du t-plot à partir de l'isotherme d'adsorption d'azote à 77K après dégazage sous vide à 400°C pendant 10 heures sont respectivement 0,192 cm3.g"1 et 70 m2.g"1. The barium exchange rate of this adsorbent evaluated from the elemental chemical analysis by WDXRF, as described above in the analytical techniques, is 97% and the loss on ignition is 5.5%. The mesh parameter measured by DRX on this adsorbent is evaluated at 25.02 ± 0.01 Å. The microporous volume and the external surface measured by the t-plot method from the nitrogen adsorption isotherm at 77K after vacuum degassing at 400 ° C. for 10 hours are respectively 0.192 cm 3 .g -1 and 70 m 2 .g "1 .
[0159] Le volume total contenu dans les macropores et les mésopores (somme du volume macroporeux et du volume mésoporeux) mesuré par intrusion de mercure, est de 0,33 cm3. g"1. Le ratio (volume macroporeux)/(volume macroporeux + volume mésoporeux) est égal à 0,6. The total volume contained in the macropores and mesopores (sum of the macroporous volume and the mesoporous volume) measured by intrusion of mercury, is 0.33 cm 3 . g "1. The ratio (macropore volume) / (volume macroporous + mesopore volume) is equal to 0.6.
[0160] La résistance mécanique de cet adsorbant mesurée selon la méthode présentée dans les techniques de caractérisation est de 2,1 MPa, correspondant à la pression nécessaire pour obtenir 0,5% de fines. Exemple 3 : (selon l'invention) The mechanical strength of this adsorbent measured according to the method presented in the characterization techniques is 2.1 MPa, corresponding to the pressure necessary to obtain 0.5% of fines. Example 3 (according to the invention)
Préparation d'un adsorbant zéolithique sous forme de granulés avec cristaux de LSXPH de taille 6 μm et un liant d'agglomération de type kaolin tel que la surface externe est égale à 64 m2. g'1 Preparation of a zeolite adsorbent in the form of granules with LSXPH crystals of size 6 μm and a kaolin type agglomeration binder such that the external surface is equal to 64 m 2 . g '1
[0161] On prépare un adsorbant de manière identique à la préparation de l'adsorbant de l'exemple 2, mais à partir de cristaux de zéolithe LSX synthétisés selon le mode opératoire de l'exemple B2 (taille des cristaux 6 μηη).  An adsorbent is prepared identically to the preparation of the adsorbent of Example 2, but from LSX zeolite crystals synthesized according to the procedure of Example B2 (crystal size 6 μηη).
[0162] Le taux d'échange en baryum de cet adsorbant évalué à partir de l'analyse chimique élémentaire par WDXRF, comme décrit plus haut dans les techniques analytiques, est de 97% et la perte au feu est de 5,0%. Le paramètre de maille mesuré par DRX sur cet adsorbant est évalué à 25,20 Â ± 0.01 Â. Le volume microporeux et la surface externe mesurés selon la méthode du t-plot à partir de l'isotherme d'adsorption d'azote à 77K après dégazage sous vide à 400°C pendant 10 heures sont respectivement 0,167 cm3.g"1 et 64 m2.g"1. The barium exchange rate of this adsorbent evaluated from the elemental chemical analysis by WDXRF, as described above in the analytical techniques, is 97% and the loss on ignition is 5.0%. The mesh parameter measured by DRX on this adsorbent is evaluated at 25.20 ± 0.01 Å. The microporous volume and the external surface measured by the t-plot method from the nitrogen adsorption isotherm at 77K after degassing under vacuum at 400 ° C. for 10 hours are respectively 0.167 cm 3 .g -1 and 64 m 2 .g "1 .
[0163] Le volume total contenu dans les macropores et les mésopores (somme du volume macroporeux et du volume mésoporeux) mesuré par intrusion de mercure, est de 0,29 cm3. g"1. Le ratio (volume macroporeux)/(volume macroporeux + volume mésoporeux) est égal à 0,73. The total volume contained in the macropores and mesopores (sum of macroporous volume and mesoporous volume) measured by intrusion of mercury, is 0.29 cm 3 . g "1. The ratio (macropore volume) / (volume macroporous + mesopore volume) is equal to 0.73.
[0164] La résistance mécanique de cet adsorbant mesurée selon la méthode présentée dans les techniques de caractérisation est de 2,3 MPa, correspondant à la pression nécessaire pour obtenir 0,5% de fines.  The mechanical strength of this adsorbent measured according to the method presented in the characterization techniques is 2.3 MPa, corresponding to the pressure necessary to obtain 0.5% of fines.
Exemple 4 : (comparatif) Example 4: (comparative)
Préparation d'un adsorbant zéolithique sous forme de granulés avec cristaux de LSXPH de taille 6 μπ? et un liant d'agglomération de type kaolin tel que la surface externe est égale à 121 m2. g'1 Preparation of a zeolitic adsorbent in the form of granules with LSXPH crystals of size 6 μπ? and a kaolin agglomeration binder such that the external surface is equal to 121 m 2 . g '1
[0165] On prépare un adsorbant de manière identique à la préparation de l'adsorbant de l'exemple 3, mais à partir de cristaux de zéolithe LSX synthétisée selon le mode opératoire de l'exemple B3 (diamètre moyen en nombre des cristaux 6 μηη).  An adsorbent is prepared in an identical way to the preparation of the adsorbent of Example 3, but from LSX zeolite crystals synthesized according to the procedure of Example B3 (average diameter of the crystals 6 μηη ).
[0166] Le taux d'échange en baryum de cet adsorbant évalué à partir de l'analyse chimique élémentaire par WDXRF, comme décrit plus haut dans les techniques analytiques, est de 97% et la perte au feu est de 5,1 %. Le paramètre de maille mesuré par DRX sur cet adsorbant est évalué à 25,21 Â ± 0,01 Â. Le volume microporeux et la surface externe mesurés selon la méthode du t-plot à partir de l'isotherme d'adsorption d'azote à 77K après dégazage sous vide à 400°C pendant 10 heures sont respectivement 0,147 cm3.g"1 et 121 m2.g"1. [0167] Le volume total contenu dans les macropores et les mésopores (somme du volume macroporeux et du volume mésoporeux) mesuré par intrusion de mercure, est de 0,34 cm3. g"1. Le ratio (volume macroporeux)/(volume macroporeux + volume mésoporeux) est égal à 0,63. The barium exchange rate of this adsorbent evaluated from the elemental chemical analysis by WDXRF, as described above in the analytical techniques, is 97% and the loss on ignition is 5.1%. The mesh parameter measured by DRX on this adsorbent is evaluated at 25.21 ± 0.01 Å. The microporous volume and the external surface measured by the t-plot method from the nitrogen adsorption isotherm at 77K after degassing under vacuum at 400 ° C. for 10 hours are respectively 0.147 cm 3 .g -1 and 121 m 2 .g "1 . The total volume contained in the macropores and mesopores (sum of macroporous volume and mesoporous volume) measured by intrusion of mercury, is 0.34 cm 3 . g "1. The ratio (macropore volume) / (volume macroporous + mesopore volume) is equal to 0.63.
[0168] La résistance mécanique de cet adsorbant mesurée selon la méthode présentée dans les techniques de caractérisation est de 2,2 MPa, correspondant à la pression nécessaire pour obtenir 0,5% de fines.  The mechanical strength of this adsorbent measured according to the method presented in the characterization techniques is 2.2 MPa, corresponding to the pressure necessary to obtain 0.5% of fines.
Exemple 5 : Example 5
[0169] Un test de perçage (chromatographie frontale) est réalisé sur l'adsorbant de l'exemple 2 et sur l'adsorbant de l'exemple 3 selon l'invention pour évaluer leur sélectivité pour l'adsorption du paraxylène vis-à-vis de l'ethylbenzène. La quantité d'adsorbant utilisée pour ce test est d'environ 34 g.  A piercing test (frontal chromatography) is carried out on the adsorbent of Example 2 and on the adsorbent of Example 3 according to the invention to evaluate their selectivity for the adsorption of paraxylene vis-à-vis ethylbenzene screw. The amount of adsorbent used for this test is about 34 g.
[0170] Le mode opératoire pour obtenir les courbes de perçage est le suivant :  The procedure for obtaining the drilling curves is as follows:
• remplissage de la colonne par l'adsorbant et mise en place dans le banc de test ;  • filling of the column with the adsorbent and setting up in the test bench;
• remplissage par le solvant de désorption à température ambiante ;  • filling with the desorption solvent at room temperature;
• montée progressive à 175°C sous flux de solvant (5 cm3. min"1) ; • gradual increase to 175 ° C under a stream of solvent (5 cm 3 min -1 );
• injection de solvant à 5 cm3. min"1 lorsque la température d'adsorption (175°C) est atteinte ; • injection of solvent at 5 cm 3 . min -1 when the adsorption temperature (175 ° C) is reached;
• permutation solvant/charge pour injecter la charge (5 cm3. min"1) ; • solvent / charge permutation to inject the charge (5 cm 3 min -1 );
• collecte et analyse de l'effluent du perçage ; l'injection de la charge sera maintenue jusqu'à ce que la concentration en solvant dans l'effluent soit nulle.  • collection and analysis of the drilling effluent; the injection of the charge will be maintained until the solvent concentration in the effluent is zero.
[0171] Le solvant de désorption utilisé est le para-diéthylbenzène. La sélectivité entre deux isomères est évaluée en utilisant une charge contenant 45% poids de chacun des isomères et 10% poids d'un traceur (iso-octane) utilisé pour l'estimation des volumes non- sélectifs et n'intervenant pas dans la séparation. Le test effectué utilise une charge dont la composition de la charge est la suivante :  The desorption solvent used is para-diethylbenzene. The selectivity between two isomers is evaluated using a feed containing 45% by weight of each of the isomers and 10% by weight of a tracer (isooctane) used for the estimation of non-selective volumes and not involved in the separation. . The test performed uses a load whose composition of the load is as follows:
• Paraxylène : 45% poids,  • Paraxylene: 45% weight,
• Ethylbenzène : 45% poids,  • Ethylbenzene: 45% by weight,
• Iso-octane : 10% poids  • Iso-octane: 10% by weight
[0172] La pression est suffisante pour que la charge reste en phase liquide à la température d'adsorption, soit 1 MPa. La vitesse superficielle est de 0,2 cm. s"1. The pressure is sufficient for the charge to remain in the liquid phase at the adsorption temperature, ie 1 MPa. The superficial velocity is 0.2 cm. s "1 .
[0173] La sélectivité du paraxylène par rapport à l'éthylbenzène est calculée à partir des quantités adsorbées de chaque composé, ces dernières étant déterminées par bilan matière à partir des premiers moments des courbes de perçage de l'ensemble des constituants présents dans l'effluent. Les résultats sont consignés dans le Tableau 1 ci-dessous : The selectivity of paraxylene relative to ethylbenzene is calculated from the adsorbed quantities of each compound, the latter being determined by material balance from the first moments of the drilling curves of all the compounds. constituents present in the effluent. The results are shown in Table 1 below:
-- Tableau 1 --  - Table 1 -
[0174] Dans le tableau ci-dessus : [0174] In the table above:
- la capacité d'adsorption de xylènes est exprimée en cm3 de C8-aromatiques adsorbé par gramme d'adsorbant ; the adsorption capacity of xylenes is expressed in cm 3 of C8-aromatics adsorbed per gram of adsorbent;
- « PX » signifie paraxylène et « EB » signifie éthylbenzène  - "PX" means paraxylene and "EB" means ethylbenzene
[0175] Les adsorbants des exemples 2 à 4 présentent des capacités d'adsorption totale des xylènes comparables. En revanche, l'adsorbant de l'exemple 3, selon l'invention, présente une sélectivité entre le para-xylène et l'éthylbenzène supérieure à 2,5 tandis que la sélectivité obtenue avec les adsorbants des exemples 2 et 4 est inférieure à 2,1. L'adsorbant de l'exemple 3 sera donc plus performant pour séparer une charge riche en éthylbenzène.  The adsorbents of Examples 2 to 4 have comparable total adsorption capacities for xylenes. On the other hand, the adsorbent of Example 3, according to the invention, has a selectivity between para-xylene and ethylbenzene of greater than 2.5 while the selectivity obtained with the adsorbents of Examples 2 and 4 is less than 2.1. The adsorbent of Example 3 will therefore be more efficient in separating a feed rich in ethylbenzene.
Exemple 6 : Example 6
[0176] L'exemple 6 a pour but d'illustrer le gain de productivité obtenu avec un adsorbant selon l'invention (adsorbant de l'exemple 3) par rapport à :  The purpose of Example 6 is to illustrate the productivity gain obtained with an adsorbent according to the invention (adsorbent of Example 3) with respect to:
• un adsorbant avec des cristaux de zéolithe LSX de surface externe non-conforme (trop faible) selon l'art antérieur (adsorbant comparatif de l'exemple 1),  An adsorbent with zeolite crystals LSX of external surface non-compliant (too weak) according to the prior art (comparative adsorbent of Example 1),
• et un adsorbant de surface externe non-conforme (trop élevée) avec des cristaux de zéolithe LSX de rapport Si/Ai égal à 1,00 ± 0,05 (adsorbant de l'exemple 4).  And a non-compliant outer surface adsorbent (which is too high) with LSX zeolite crystals of Si / Al ratio equal to 1.00 ± 0.05 (adsorbent of Example 4).
[0177] On teste les adsorbants des exemples 1 , 3 et 4 pour évaluer leur performance en séparation du paraxylène sur une unité pilote de chromatographie à contre-courant simulé constituée de 15 colonnes en série de 2 cm de diamètre, de 1 ,10 m de longueur. La circulation entre la dernière et la première colonne se fait au moyen d'une pompe de recyclage. À chaque liaison intercolonne, on peut injecter soit une charge à séparer soit du désorbant. On peut également soutirer soit un raffinât soit un extrait. L'ensemble des colonnes et du vannage de distribution est maintenu à 175°C, et la pression est maintenue au-dessus de 1 ,5 MPa. Les décalages des différents points d'injection ou de soutirage sont simultanés selon un temps de permutation qui peut être ajusté. Les lits sont répartis en 4 zones chromatographiques selon la configuration suivante : • 3 lits entre l'injection de désorbant et le soutirage d'extrait définissant la zone 1The adsorbents of Examples 1, 3 and 4 were tested to evaluate their performance in separating paraxylene on a simulated counter-current chromatography pilot unit consisting of 15 columns in series of 2 cm in diameter, of 1.10 m. length. The circulation between the last and the first column is done by means of a recycling pump. At each intercolumn link, one can inject either a charge to be separated or desorbent. You can also extract either a raffinate or an extract. All columns and dispensing winnowing is maintained at 175 ° C, and the pressure is maintained above 1.5 MPa. The offsets of the different injection or withdrawal points are simultaneous according to a permutation time that can be adjusted. The beds are divided into 4 chromatographic zones according to the following configuration: • 3 beds between the desorbent injection and extract extraction defining zone 1
• 6 lits entre le soutirage d'extrait et l'injection de charge définissant la zone 2 • 6 beds between extract extraction and charge injection defining zone 2
• 4 lits entre l'injection de charge et le soutirage de raffinât définissant la zone 3 • 4 beds between charge injection and raffinate withdrawal defining zone 3
• 2 lits entre le soutirage de raffinât et l'injection de désorbant définissant la zone 4. • 2 beds between raffinate withdrawal and desorbent injection defining zone 4.
[0178] La charge est composée de 21 ,3% en masse de paraxylène, de 19,6% d'orthoxylène, de 45,1 % de métaxylène et de 14,0% d'éthylbenzène. The filler is composed of 21.3% by weight of paraxylene, 19.6% of orthoxylene, 45.1% of metaxylene and 14.0% of ethylbenzene.
[0179] Dans un premier temps, on réalise un test à partir de l'adsorbant selon l'exemple 1 . Ce test permet de déterminer les débits d'injection de charge et de désorbant nécessaires pour obtenir du paraxylène avec une pureté de 99,7% et un rendement d'au moins 97%.  In a first step, a test is carried out from the adsorbent according to Example 1. This test makes it possible to determine the charge and desorbent injection rates necessary to obtain paraxylene with a purity of 99.7% and a yield of at least 97%.
[0180] On obtient le paraxylène à l'extrait à une pureté de 99,7% et un rendement de 97% en injectant la charge à un débit de 39,5 g. min"1 et le désorbant à un débit de 35,5 g. min"1, et en appliquant un temps de permutation des points d'injection et soutirage de 1 18 secondes. Le débit d'extrait est de 24,7 g.min"1et le débit de zone 4 est de 105,9 g. min"1. The paraxylene is obtained at the extract at a purity of 99.7% and a yield of 97% by injecting the feedstock at a flow rate of 39.5 g. min- 1 and the desorbent at a flow rate of 35.5 g.min -1 , and by applying a switching time of the injection and withdrawal points of 1 18 seconds. The extract flow rate is 24.7 g.min "1 and the flow rate zone 4 is 105.9 g. Min" 1.
[0181] Par la suite, l'ensemble des adsorbants sont testés en appliquant le même débit de désorbant. En revanche, le débit de charge, le temps de permutation des points d'injection et soutirage, ainsi que le débit de recyclage pourront être ajustés afin d'atteindre les performances requises, à savoir une pureté de 99,7% et un rendement de 97%. Les résultats sont reportés dans le Tableau 2.  Subsequently, all of the adsorbents are tested by applying the same flow of desorbent. On the other hand, the charge flow, the time of rotation of the injection and withdrawal points, as well as the recycling flow rate can be adjusted in order to reach the required performances, namely a purity of 99.7% and a yield of 97%. The results are reported in Table 2.
-- Tableau 2 -- - Table 2 -
[0182] La Figure 3 illustre la variation du débit de charge en fonction de la surface externe, les 3 points correspondant aux exemples 1 , 3 et 4 du Tableau 2. Figure 3 illustrates the variation of the charge rate as a function of the external surface, the 3 points corresponding to Examples 1, 3 and 4 of Table 2.
[0183] En utilisant des billes d'adsorbant à base de cristaux LSX présentant une surface externe de 64 m2. g"1, c'est-à-dire des adsorbants selon l'invention, il est possible d'obtenir un paraxylène avec les performances de pureté et de rendement requises, en injectant un débit de charge supérieur à celui traité avec l'adsorbant de l'exemple 1 de référence, tout en injectant le débit de désorbant de référence, à savoir 35,5 g. min"1, en utilisant des colonnes identiques. Using adsorbent beads based on LSX crystals having an outer surface of 64 m 2 . g "1 , that is to say adsorbents according to the invention, it is possible to obtain a paraxylene with the required performance of purity and yield, by injecting a higher charge rate than that treated with the adsorbent of Reference Example 1, while injecting the reference desorbent flow rate, namely 35.5 g.min -1 , using identical columns.
[0184] Par exemple, avec l'adsorbant de l'exemple 3 selon l'invention, on peut produire le paraxylène à une pureté de 99,7% avec un rendement de 97% identiques à ceux obtenus avec l'adsorbant de l'exemple 1 de référence tout en augmentant le débit de charge de 26%. Par conséquent, à iso-spécification, la productivité est augmentée de 26% avec l'adsorbant de l'exemple 3 selon l'invention par rapport à l'adsorbant de l'exemple 1 .  For example, with the adsorbent of Example 3 according to the invention, it is possible to produce paraxylene with a purity of 99.7% with a yield of 97% identical to those obtained with the adsorbent of the Reference example 1 while increasing the load flow by 26%. Therefore, at iso-specification, the productivity is increased by 26% with the adsorbent of Example 3 according to the invention relative to the adsorbent of Example 1.
[0185] À l'inverse des adsorbants selon l'invention, en utilisant des billes d'adsorbant à base de cristaux LSX présentant une surface externe supérieure à 100 m2. g"1, c'est-à-dire au-delà de la borne supérieure définie par l'invention, il n'est pas possible d'obtenir un paraxylène avec les performances de pureté et de rendement requises, en injectant un débit de charge supérieur ou égal à celui traité avec l'adsorbant de l'exemple 1 de référence, tout en injectant le débit de désorbant de référence, à savoir 35,5 g. min"1, en utilisant des colonnes identiques. Au contraire, pour obtenir les performances de pureté et de rendement requises avec des adsorbants de surface extérieure à 100 m2. g"1, on traitera un débit de charge inférieur à celui traité avec l'adsorbant de l'exemple 1 de référence. In contrast to the adsorbents according to the invention, using adsorbent beads based on LSX crystals having an outer surface greater than 100 m 2 . g "1 , that is to say beyond the upper limit defined by the invention, it is not possible to obtain a paraxylene with the required performance of purity and yield, by injecting a flow rate of feed greater than or equal to that treated with the adsorbent of Reference Example 1, while injecting the reference desorbent flow rate, namely 35.5 g.min -1 , using identical columns. On the contrary, to obtain the purity and yield performance required with surface surface adsorbents at 100 m 2 . g "1 , a charge rate lower than that treated with the adsorbent of reference example 1 will be treated.
[0186] Par exemple, avec Γ adsorbant de l'exemple 4 à base de cristaux LSX de surface externe égale à 121 m2. g"1, c'est-à-dire se distinguant de l'invention par une surface externe supérieure à 100 m2. g"1, on peut produire le paraxylène à une pureté de 99,7% avec un rendement de 97% identiques à ceux obtenus avec l'adsorbant de l'exemple 1 de référence tout en diminuant le débit de charge de 28%. Par conséquent, à isospécification, la productivité est diminuée de 28% avec l'adsorbant de l'exemple 4 par rapport à l'adsorbant de l'exemple 1. For example, with Γ adsorbent of Example 4 based on LSX crystals of external surface equal to 121 m 2 . g "1 , that is to say, distinguished from the invention by an external surface greater than 100 m 2 .g -1 , can be produced paraxylene in a purity of 99.7% with a yield of 97% identical to those obtained with the adsorbent of Reference Example 1 while reducing the charge flow rate by 28%. Therefore, at isospecification, the productivity is decreased by 28% with the adsorbent of Example 4 relative to the adsorbent of Example 1.
Exemple 7 : Example 7
[0187] L'exemple 7 a pour but d'illustrer le gain de productivité obtenu avec un adsorbant selon l'invention (adsorbant de l'exemple 3) par rapport à un adsorbant ayant la même surface externe, mais avec des cristaux de zéolithe X (adsorbant de l'exemple 2), pour des charges contenant de l'éthylbenzène. [0188] On teste les adsorbants des exemples 2 et 3 pour évaluer leur performance en séparation du paraxylène sur une unité pilote de chromatographie à contre-courant simulé constituée de 15 colonnes en série de 2 cm de diamètre, de 1 ,10 m de longueur selon un fonctionnement identique à celui décrit dans l'exemple 6. The purpose of Example 7 is to illustrate the productivity gain obtained with an adsorbent according to the invention (adsorbent of Example 3) with respect to an adsorbent having the same external surface, but with zeolite crystals. X (adsorbent of Example 2), for charges containing ethylbenzene. The adsorbents of Examples 2 and 3 were tested to evaluate their performance in separating paraxylene on a simulated countercurrent chromatography pilot unit consisting of 15 columns in series 2 cm in diameter, 1.1 m in length. according to an operation identical to that described in Example 6.
[0189] On utilise trois compositions de charge pour évaluer l'impact de la teneur en éthylbenzène dans celle-ci sur la productivité des adsorbants :  Three filler compositions are used to evaluate the impact of the ethylbenzene content thereon on the productivity of the adsorbents:
• une charge composée de 21 ,3% en masse de paraxylène, 19,6% d'orthoxylène, de 45,1 % de métaxylène et de 14,0% d'éthylbenzène en masse, comme dans l'exemple précédent,  A filler composed of 21.3% by weight of paraxylene, 19.6% of orthoxylene, 45.1% of metaxylene and 14.0% of ethylbenzene by mass, as in the preceding example,
• une charge composée de 21 ,3% en masse de paraxylène, 23,8% d'orthoxylène et de 54,9% de métaxylène, charge ne contenant pas d'éthylbenzène,  A filler composed of 21.3% by weight of paraxylene, 23.8% of orthoxylene and 54.9% of metaxylene, which filler does not contain ethylbenzene,
• une charge composée de 21 ,3% de paraxylène, 14,8% d'orthoxylène, de 33,9% de métaxylène et de 30% d'éthylbenzène en masse.  A filler composed of 21.3% of paraxylene, 14.8% of orthoxylene, 33.9% of metaxylene and 30% of ethylbenzene by mass.
[0190] Dans l'exemple 6, on a réalisé un test à partir de l'adsorbant de l'exemple 3 selon l'invention. Ce test a permis de déterminer les débits d'injection de charge et de désorbant nécessaires pour obtenir du paraxylène avec une pureté de 99,7% et un rendement d'au moins 97%, pour la charge contenant 14% d'éthylbenzène.  In Example 6, a test was carried out from the adsorbent of Example 3 according to the invention. This test made it possible to determine the charge and desorbent injection rates necessary to obtain paraxylene with a purity of 99.7% and a yield of at least 97%, for the feed containing 14% of ethylbenzene.
[0191] On obtient le paraxylène à l'extrait à une pureté de 99,7% et un rendement de 97% en injectant la charge à un débit de 49,9 g.min"1et le désorbant à un débit de 35,5 g. min"1, et en appliquant un temps de permutation des points d'injection et soutirage de 66 secondes. Le débit d'extrait est de 19,9 g.min"1et le débit de zone 4 est de 194,8 g. min"1. Paraxylene is obtained at the extract at a purity of 99.7% and a yield of 97% by injecting the feedstock at a flow rate of 49.9 g.min -1 and the desorbent at a flow rate of 35. 5 g.min -1 , and applying an injection point swap time of 66 seconds. The extract flow rate is 19.9 g.min "1 and zone 4 of the flow rate is 194.8 g. Min" 1.
[0192] Par la suite, les adsorbants de l'exemple 2 et de l'exemple 3 sont testés avec les différentes charges en appliquant le même débit de désorbant. En revanche, le débit de charge, le temps de permutation des points d'injection et soutirage, ainsi que le débit de recyclage pourront être ajustés afin d'atteindre les performances requises, à savoir une pureté de 99,7% et un rendement de 97%. Les résultats sont reportés dans le Tableau 3 suivant : Subsequently, the adsorbents of Example 2 and Example 3 are tested with the different fillers by applying the same desorbent flow rate. On the other hand, the charge flow, the time of rotation of the injection and withdrawal points, as well as the recycling flow rate can be adjusted in order to reach the required performances, namely a purity of 99.7% and a yield of 97%. The results are reported in Table 3 below:
-- Tableau 3 -- Table 3 -
Changement de la composition de charge Changing the composition of charge
[0193] La figure 4 illustre la variation du débit de charge en fonction de la teneur en éthylbenzène contenue dans celle-ci, dans le cas de l'adsorbant selon l'exemple 2, à base de cristaux X et dans le cas de l'adsorbant selon l'exemple 3 selon l'invention constitué à base de cristaux LSX. FIG. 4 illustrates the variation of the feed rate as a function of the content of ethylbenzene contained therein, in the case of the adsorbent according to Example 2, based on X crystals and in the case of the adsorbent according to Example 3 according to the invention consisting of LSX crystals.
[0194] Dans cet exemple, en utilisant l'adsorbant de l'exemple 3 selon l'invention, il est possible d'obtenir un paraxylène avec les performances de pureté et de rendement requises, en injectant un débit de charge supérieur ou égal à celui traité avec l'adsorbant de l'exemple 2 comparatif, tout en injectant le débit de désorbant de référence, à savoir 35,5 g. min"1, en utilisant des colonnes identiques, quelle que soit la teneur en éthylbenzène obtenue dans la charge. On observe également que le gain en productivité apporté par l'adsorbant de l'exemple 3 selon l'invention est d'autant plus grand que la teneur en éthylbenzène est élevée. On observe également une moindre variabilité de la productivité en fonction de la teneur en éthylbenzène dans le cas de l'adsorbant de l'exemple 3 par rapport à l'adsorbant de l'exemple 2. In this example, using the adsorbent of Example 3 according to the invention, it is possible to obtain a paraxylene with the required performance of purity and yield, by injecting a charge flow greater than or equal to that treated with the adsorbent of Comparative Example 2, while injecting the reference desorbent flow rate, namely 35.5 g. min -1 , using identical columns, regardless of the ethylbenzene content obtained in the feedstock It is also observed that the productivity gain provided by the adsorbent of Example 3 according to the invention is even greater The content of ethylbenzene is high, and there is also less variability in productivity as a function of the ethylbenzene content in the case of the adsorbent of Example 3 compared to the adsorbent of Example 2.
[0195] Pour une composition de charge variant entre 0 et 30% en éthylbenzène, on constate une variation de productivité inférieure à 5% dans le cas de l'adsorbant de l'exemple 3 selon l'invention. Au contraire, pour la même variation de composition, on constate une variation de productivité supérieure à 12% dans le cas de l'adsorbant de l'exemple 2 selon l'invention.  For a charge composition varying between 0 and 30% ethylbenzene, there is a productivity variation of less than 5% in the case of the adsorbent of Example 3 according to the invention. On the contrary, for the same variation in composition, there is a productivity variation of greater than 12% in the case of the adsorbent of Example 2 according to the invention.

Claims

REVENDICATIONS
1. Adsorbant zéolithique comprenant au moins une zéolithe de structure FAU de type LSX, comprenant du baryum et/ou du potassium, et pour lequel la surface externe dudit adsorbant zéolithique, mesurée par adsorption d'azote, est comprise entre 20 m2. g"1 et 100 m2. g"1, et préférentiellement comprise entre 20 m2. g"1 et 80 m2. g"1 et plus préférentiellement comprise entre 30 et 80 m2. g"1 bornes incluses. A zeolitic adsorbent comprising at least one zeolite of FAU LSX structure, comprising barium and / or potassium, and for which the external surface of said zeolite adsorbent, measured by nitrogen adsorption, is between 20 m 2 . g "1 and 100 m 2 .g -1 , and preferably between 20 m 2 . g "1 and 80 m 2, g " 1 and more preferably between 30 and 80 m 2 . g "1 terminals included.
2. Adsorbant zéolithique selon la revendication 1 , dans lequel la zéolithe de structure FAU est une zéolithe de structure FAU de type LSX pour laquelle le diamètre moyen en nombre des cristaux est compris entre 0,5 μηη et 20 μηη, bornes incluses, de préférence compris entre 0,5 μηη et 10 μηη, bornes incluses, plus préférentiellement entre 0,8 μηη et 10 μηη, bornes incluses, mieux encore entre 1 μηη et 10 μηη, bornes incluses, et de préférence encore entre 1 μηη et 8 μηη, bornes incluses. 2. Zeolitic adsorbent according to claim 1, in which the zeolite of structure FAU is a zeolite of structure FAU of type LSX for which the number average diameter of the crystals is between 0.5 μηη and 20 μηη, inclusive, preferably between 0.5 μηη and 10 μηη, inclusive, more preferably between 0.8 μηη and 10 μηη, inclusive, more preferably between 1 μηη and 10 μηη, inclusive, and more preferably between 1 μηη and 8 μηη, terminals included.
3. Adsorbant zéolithique selon la revendication 1 ou 2, dans lequel la teneur en baryum (Ba) exprimée en oxyde de baryum (BaO) est supérieure à 25%, de préférence supérieure à 28%, de manière très préférée supérieure à 34%, de manière encore plus préférée supérieure à 37%, en poids par rapport au poids total de l'adsorbant. A zeolitic adsorbent according to claim 1 or 2, wherein the barium content (Ba) expressed as barium oxide (BaO) is greater than 25%, preferably greater than 28%, very preferably greater than 34%, even more preferably greater than 37%, by weight relative to the total weight of the adsorbent.
4. Adsorbant zéolithique selon l'une des revendications précédentes, dans lequel la teneur en potassium (K), exprimée en oxyde de potassium (K20), est inférieure à 30%, de préférence inférieure à 15% et de manière préférée comprise entre 0% et 10%, bornes incluses en poids par rapport au poids total de l'adsorbant. 4. Zeolitic adsorbent according to one of the preceding claims, wherein the potassium content (K), expressed as potassium oxide (K 2 0), is less than 30%, preferably less than 15% and preferably included between 0% and 10%, limits included by weight relative to the total weight of the adsorbent.
5. Adsorbant zéolithique selon l'une des revendications précédentes, dans lequel le volume total contenu dans les macropores et les mésopores mesuré par intrusion de mercure, est compris entre 0,15 cm3. g"1 et 0,5 cm3. g"1, de préférence compris entre 0,20 cm3. g"1 et 0,40 cm3. g"1 et de manière très préférée compris entre 0,20 cm3. g"1 et 0,35 cm3. g"1, bornes incluses. 5. Zeolitic adsorbent according to one of the preceding claims, wherein the total volume contained in the macropores and mesopores measured by mercury intrusion, is between 0.15 cm 3 . g "1 and 0.5 cm 3, g " 1 , preferably between 0.20 cm 3 . g "1 and 0.40 cm 3 g -1 and very preferably between 0.20 cm 3 . g "1 and 0.35 cm 3, g " 1 , inclusive.
6. Adsorbant zéolithique selon l'une quelconque des revendications précédentes, dans lequel la fraction massique de zéolithe FAU est supérieure ou égale à 85%, de préférence supérieure ou égale à 90% en poids par rapport au poids total de l'adsorbant. 6. Zeolitic adsorbent according to any one of the preceding claims, wherein the mass fraction of zeolite FAU is greater than or equal to 85%, preferably greater than or equal to 90% by weight relative to the total weight of the adsorbent.
7. Adsorbant zéolithique selon l'une quelconque des revendications précédentes, présentant un ratio (volume macroporeux)/(volume macroporeux + volume mésoporeux) compris entre 0,2 et 1 , de manière très préférée compris entre 0,5 et 0,9, bornes incluses. 7. Zeolitic adsorbent according to any one of the preceding claims, having a ratio (macroporous volume) / (macroporous volume + mesoporous volume) of between 0.2 and 1, very preferably between 0.5 and 0.9, terminals included.
8. Procédé de préparation d'un adsorbant zéolithique selon l'une quelconque des revendications précédentes, ledit procédé comprenant au moins les étapes de : 8. Process for the preparation of a zeolite adsorbent according to any one of the preceding claims, said process comprising at least the steps of:
a) agglomération de cristaux d'au moins une zéolithe de structure FAU de type LSX, présentant une surface externe comprise entre 20 m2. g"1 et 150 m2. g"1, bornes incluses, dont le diamètre moyen en nombre des cristaux est compris entre 0,5 μηη et 20 μηη, bornes incluses, avec un liant comprenant de préférence au moins 80% d'argile ou d'un mélange d'argiles et jusqu'à 5% d'additifs ainsi qu'avec la quantité d'eau qui permet la mise en forme du matériau aggloméré, puis séchage et calcination des agglomérats ; a) agglomeration of crystals of at least one zeolite of structure FAU LSX type, having an external surface of between 20 m 2 . g "1 and 150 m 2 .g " 1 , inclusive terminals, whose number average crystal diameter is between 0.5 μηη and 20 μηη inclusive, with a binder preferably comprising at least 80% of clay or a mixture of clays and up to 5% of additives and with the amount of water which allows the shaping of the agglomerated material, then drying and calcination of the agglomerates;
b) étape de zéolithisation éventuelle de tout ou partie du liant par mise en contact des agglomérats obtenus à l'étape a) avec une solution basique aqueuse ; b) optionally zeolizing step of all or part of the binder by contacting the agglomerates obtained in step a) with an aqueous basic solution;
c) échange(s) cationique(s) des agglomérats de l'étape b) par mise en contact avec une solution d'ions baryum et/ou d'ions potassium ; c) cationic exchange (s) of the agglomerates of step b) by contacting with a solution of barium ions and / or potassium ions;
d) échange cationique éventuel supplémentaire des agglomérats de l'étape c) par mise en contact avec une solution d'ions potassium ; d) additional cationic exchange of the agglomerates of step c) by contacting with a solution of potassium ions;
e) lavage et séchage des agglomérats obtenus aux étapes c) ou d), à une température comprise entre 50°C et 150°C ; et e) washing and drying the agglomerates obtained in steps c) or d), at a temperature between 50 ° C and 150 ° C; and
f) obtention de l'adsorbant zéolithique selon l'invention par activation des agglomérats obtenus à l'étape e) sous balayage gazeux oxydant et/ou inerte, avec notamment des gaz tels que l'oxygène, l'azote, l'air, un air sec et/ou décarbonaté, un air appauvri en oxygène, éventuellement sec et/ou décarbonaté, à une température comprise entre 100°C et 400°C, de préférence entre 200°C et 300°C. f) obtaining the zeolitic adsorbent according to the invention by activating the agglomerates obtained in step e) under an oxidizing and / or inert gas scavenging, with in particular gases such as oxygen, nitrogen, air, a dry air and / or decarbonated oxygen-depleted air, optionally dry and / or decarbonated, at a temperature between 100 ° C and 400 ° C, preferably between 200 ° C and 300 ° C.
9. Procédé selon la revendication 8, dans lequel les argiles sont de préférence choisies parmi : kaolins, kaolinites, nacrites, dickites, halloysites, attapulgites, sépiolites, montmorillonites, bentonites, illites et métakaolins, ainsi que les mélanges de deux ou plusieurs d'entre elles en toutes proportions. 9. Process according to claim 8, in which the clays are preferably chosen from: kaolin, kaolinite, nacrite, dickite, halloysites, attapulgite, sepiolite, montmorillonite, bentonite, illite and metakaolin, as well as mixtures of two or more of between them in all proportions.
10. Utilisation d'un adsorbant zéolithique selon l'une quelconque des revendications 1 à 7 ou préparé selon l'une des revendications 8 à 9, comme agent d'adsorption dans : 10. Use of a zeolite adsorbent according to any one of claims 1 to 7 or prepared according to one of claims 8 to 9, as adsorption agent in:
• la séparation de coupes d'isomères aromatiques en C8 et notamment des xylènes, The separation of sections of C8 aromatic isomers and in particular xylenes,
• la séparation d'isomères de toluène substitué tels que nitrotoluène, diéthyltoluène, toluènediamine, et autres, • la séparation des crésols, The separation of isomers of substituted toluene such as nitrotoluene, diethyltoluene, toluene diamine and the like, • the separation of cresols,
• la séparation des alcools polyhydriques, tels que les sucres.  • the separation of polyhydric alcohols, such as sugars.
11. Procédé de séparation des isomères de xylènes en phase gaz ou en phase liquide mettant en œuvre au moins un adsorbant zéolithique selon l'une quelconque des revendications 1 à 7 ou préparé selon l'une des revendications 8 à 9. 11. Process for separating the isomers of xylenes in the gas phase or in the liquid phase using at least one zeolite adsorbent according to any one of claims 1 to 7 or prepared according to one of claims 8 to 9.
12. Procédé de séparation selon la revendication 1 1 , qui est un procédé de séparation de paraxylène à partir d'une charge de coupes d'isomères aromatiques à 8 atomes de carbone, utilisant, comme agent d'adsorption du paraxylène un adsorbant zéolithique selon l'une quelconque des revendications 1 à 7 ou préparé selon l'une des revendications 8 à 9. 12. Separation process according to claim 11, which is a process for separating paraxylene from a filler of cuts of aromatic isomers with 8 carbon atoms, using, as adsorption agent for paraxylene, a zeolitic adsorbent according to any of claims 1 to 7 or prepared according to one of claims 8 to 9.
13. Procédé selon la revendication 12, mis en œuvre dans une unité industrielle d'adsorption en lit mobile simulé, fonctionnant à contre-courant dans les conditions opératoires : 13. The method of claim 12, implemented in a simulated moving bed adsorption industrial unit, operating against the current under the operating conditions:
• nombre de lits : 4 à 24 ;  • number of beds: 4 to 24;
• nombre de zones : au moins 4 zones de fonctionnement, chacune étant localisée entre un point d'alimentation et un point de soutirage ;  • number of zones: at least 4 operating zones, each located between a feed point and a draw-off point;
• température comprise entre 100°C et 250°C ;  • temperature between 100 ° C and 250 ° C;
• pression comprise entre la pression de bulle des xylènes (ou du toluène lorsque le toluène est choisi comme désorbant) à la température du procédé et 3 MPa ;  Pressure between the bubble pressure of xylenes (or toluene when toluene is chosen as the desorbent) at the process temperature and 3 MPa;
• rapport des débits désorbant sur charge à traiter : 0,7 à 2,5 ;  • ratio of desorbent flows on charge to be treated: 0.7 to 2.5;
• taux de recyclage : 2 à 12, de préférence 2,5 à 6 ;  Recycling rate: 2 to 12, preferably 2.5 to 6;
• temps de cycle, correspondant au temps entre deux injections de désorbant sur un lit donné : compris entre 4 et 25 min.  • cycle time, corresponding to the time between two injections of desorbent on a given bed: between 4 and 25 min.
14. Procédé selon la revendication 13, dans lequel le désorbant est le toluène ou le para- diéthylbenzène. 14. The process of claim 13 wherein the desorbent is toluene or para-diethylbenzene.
15. Procédé selon l'une quelconque des revendications 13 ou 14, dans lequel la teneur en eau dans les flux entrants est ajustée entre 20 ppm et 150 ppm. The method of any one of claims 13 or 14, wherein the water content in the incoming streams is adjusted between 20 ppm and 150 ppm.
EP15797924.6A 2014-11-13 2015-11-13 Zeolite adsorbents made from lsx zeolite with a controlled external surface area, method for preparation of same and uses thereof Pending EP3218101A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1460953A FR3028430B1 (en) 2014-11-13 2014-11-13 LSX ZEOLITHIC ZEOLITHIC ADSORBENTS WITH EXTERNAL SURFACE CONTROL, PREPARATION METHOD AND USES THEREOF
PCT/EP2015/076532 WO2016075281A1 (en) 2014-11-13 2015-11-13 Zeolite adsorbents made from lsx zeolite with a controlled external surface area, method for preparation of same and uses thereof

Publications (1)

Publication Number Publication Date
EP3218101A1 true EP3218101A1 (en) 2017-09-20

Family

ID=52423894

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15797924.6A Pending EP3218101A1 (en) 2014-11-13 2015-11-13 Zeolite adsorbents made from lsx zeolite with a controlled external surface area, method for preparation of same and uses thereof

Country Status (9)

Country Link
US (1) US9919289B2 (en)
EP (1) EP3218101A1 (en)
JP (1) JP6641368B2 (en)
KR (1) KR102449639B1 (en)
CN (2) CN113083224A (en)
FR (1) FR3028430B1 (en)
TW (1) TWI598149B (en)
WO (1) WO2016075281A1 (en)
ZA (1) ZA201703816B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3038529B1 (en) * 2015-07-09 2020-10-23 Ceca Sa ZEOLITHIC ADSORBANTS, THEIR PREPARATION PROCESS AND THEIR USES
FR3038528B1 (en) 2015-07-09 2020-10-23 Ifp Energies Now ZEOLITHIC ADSORBANTS, THEIR PREPARATION PROCESS AND THEIR USES
FR3070685B1 (en) 2017-09-04 2021-08-13 Ifp Energies Now HYBRID PROCESS FOR THE PRODUCTION OF HIGH PURITY PARAXYLENE WITH TOLUENE SOLVENT
FR3075793B1 (en) 2017-12-22 2019-11-29 Arkema France ZEOLITHIC ADSORBENTS BASED ON BARIUM, STRONTIUM AND POTASSIUM, PROCESS FOR PREPARING THEM AND USES THEREOF
FR3078897B1 (en) * 2018-03-18 2022-05-06 Arkema France GAS FLOW DECARBONATION PROCESS
CN113457212A (en) * 2021-06-25 2021-10-01 中触媒新材料股份有限公司 Preparation and use method of trapping agent for simultaneously improving purity and chromaticity of m-methylphenol

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2985589A (en) 1957-05-22 1961-05-23 Universal Oil Prod Co Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets
US3558730A (en) 1968-06-24 1971-01-26 Universal Oil Prod Co Aromatic hydrocarbon separation by adsorption
US3626020A (en) 1969-03-12 1971-12-07 Universal Oil Prod Co Separation of paraxylene from mixture of c aromatic utilizing crystalline aluminosilicate adsorbent
US3558732A (en) 1969-05-12 1971-01-26 Universal Oil Prod Co Aromatic hydrocarbon separation by adsorption
US3663638A (en) 1970-08-31 1972-05-16 Universal Oil Prod Co Aromatic hydrocarbon separation by adsorption
US3960774A (en) 1973-05-02 1976-06-01 Universal Oil Products Company Zeolitic adsorbent for xylene separation
US3878127A (en) 1973-05-02 1975-04-15 Universal Oil Prod Co Method of manufacturing a zeolitic absorbent
US4402832A (en) 1982-08-12 1983-09-06 Uop Inc. High efficiency continuous separation process
US4498991A (en) 1984-06-18 1985-02-12 Uop Inc. Serial flow continuous separation process
TW200454B (en) 1991-09-05 1993-02-21 Inst Of France Petroleum
FR2767524B1 (en) * 1997-08-21 1999-09-24 Ceca Sa IMPROVED PROCESS FOR OBTAINING PARAXYLENE FROM AROMATIC C8 CUTS
US6171370B1 (en) * 1998-03-04 2001-01-09 Tosoh Corporation Adsorbent for separating gases
JP3518319B2 (en) * 1998-03-06 2004-04-12 東ソー株式会社 Activated low silica X-type zeolite compact
FR2789914B1 (en) * 1999-02-22 2001-04-06 Ceca Sa SINTERED BINDER ZEOLITIC ADSORBENTS WITH LOW INERT BINDER, PROCESS FOR OBTAINING SAME AND USES THEREOF
FR2800995B1 (en) * 1999-10-05 2002-01-04 Ceca Sa ZEOLITIC ADSORBENTS, THEIR PROCESS FOR OBTAINING AND THEIR USE FOR THE DECARBONATION OF GAS STREAMS
CN1267185C (en) 2003-06-30 2006-08-02 中国石油化工股份有限公司 Paraxylene sorbent and its preparing method
FR2863909B1 (en) * 2003-12-22 2006-05-26 Ceca Sa PROCESS FOR PURIFYING GASEOUS STREAMS CONTAMINATED BY CO2 AND HYDROCARBON (S) AND / OR NITROGEN OXIDE (S) BY AGGLOMERIC ZEOLITIC ADSORBENT
KR100727288B1 (en) 2005-10-14 2007-06-13 한국과학기술원 Method of the preparation of microporous crystalline molecular sieve possessing mesoporous frameworks
FR2903978B1 (en) * 2006-07-19 2010-09-24 Ceca Sa AGGLOMERATED ZEOLITIC ADSORBENTS, PROCESS FOR THEIR PREPARATION AND USES THEREOF
FR2925367B1 (en) * 2007-12-20 2010-01-15 Ceca Sa AGGLOMERATED ZEOLITIC ADSORBENTS, PROCESS FOR THEIR PREPARATION AND USES THEREOF
FR2925366B1 (en) * 2007-12-20 2011-05-27 Ceca Sa AGGLOMERATED ZEOLITIC ADSORBENTS, PROCESS FOR THEIR PREPARATION AND USES THEREOF
FR2930549B1 (en) * 2008-04-25 2010-10-08 Inst Francais Du Petrole SIMILAR REACTIVE MOBILE BED FOR PARAXYLENE PRODUCTION
US20090326308A1 (en) 2008-06-30 2009-12-31 Uop Llc Binderless adsorbents comprising nano-size zeolite x and their use in the adsorptive separation of para-xylene
US8283274B2 (en) 2009-07-20 2012-10-09 Uop Llc Binderless zeolitic adsorbents, methods for producing binderless zeolitic adsorbents, and processes for adsorptive separation of para-xylene from mixed xylenes using the binderless zeolitic adsorbents
US8852326B2 (en) * 2011-03-07 2014-10-07 Exxonmobil Research And Engineering Company Aggregates of small particles of synthetic faujasite zeolite
US8557028B2 (en) * 2011-03-31 2013-10-15 Uop Llc Binderless zeolitic adsorbents, methods for producing binderless zeolitic adsorbents, and adsorptive separation processes using the binderless zeolitic adsorbents
US9580329B2 (en) 2012-01-13 2017-02-28 Rive Technology, Inc. Introduction of mesoporosity into low silica zeolites
FR2998807B1 (en) * 2012-12-03 2015-10-16 IFP Energies Nouvelles SIMPLE BACKWATER CHROMATOGRAPHIC SEPARATION METHOD AND DEVICE FOR THE PRODUCTION OF HIGH PRODUCTIVITY PARAXYLENE
FR3010402B1 (en) 2013-09-09 2015-08-28 Ceca Sa EXTERNAL HIGH SURFACE ZEOLITHIC ADSORBENTS, PROCESS FOR THEIR PREPARATION AND USES THEREOF

Also Published As

Publication number Publication date
FR3028430B1 (en) 2018-08-17
KR20170083602A (en) 2017-07-18
CN113083224A (en) 2021-07-09
CN107206349B (en) 2021-06-25
ZA201703816B (en) 2019-09-25
FR3028430A1 (en) 2016-05-20
JP6641368B2 (en) 2020-02-05
KR102449639B1 (en) 2022-09-29
WO2016075281A1 (en) 2016-05-19
JP2017536979A (en) 2017-12-14
US20170304800A1 (en) 2017-10-26
TWI598149B (en) 2017-09-11
CN107206349A (en) 2017-09-26
US9919289B2 (en) 2018-03-20
TW201628711A (en) 2016-08-16

Similar Documents

Publication Publication Date Title
EP3043902B1 (en) Zeolitic adsorbents with large external surface area comprising baryum and/or potassium and uses thereof
CA2894606C (en) Zeolitic adsorbents, process for preparing same and uses thereof
EP2237878B1 (en) Agglomerated zeolitic absorbents, method of preparing them and uses thereof
EP3218100B1 (en) Zeolite adsorbents made from x zeolite with low binder content and low external surface area, method for preparation of same and uses thereof
EP3177381B1 (en) Zeolite adsorbents with low binder content and large external surface area, method for preparation of same and uses thereof
EP3218101A1 (en) Zeolite adsorbents made from lsx zeolite with a controlled external surface area, method for preparation of same and uses thereof
EP2991760B1 (en) Zeolite adsorbents comprising emt zeolite, method for preparing same and uses thereof
EP3177395B1 (en) Zeolitic adsorbents comprising a zeolite with hierarchical porosity
WO2017005907A1 (en) Zeolitic adsorbents, method for the production thereof, and uses of same
EP3727628B1 (en) Zeolitic adsorbents containing baryum, strontium, potassium and sodium, method for preparation thereof and uses of the same
EP3177584B1 (en) Method for separating meta-xylene using a zeolitic adsorbent with a large external surface area
WO2017005908A1 (en) Zeolitic adsorbents, method for the production thereof, and uses of same

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170511

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARKEMA FRANCE

Owner name: IFP ENERGIES NOUVELLES

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210312

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524