EP3216248B1 - Verfahren und system zur bereitstellung von dynamischer servicequalität für push-to-talk-service - Google Patents
Verfahren und system zur bereitstellung von dynamischer servicequalität für push-to-talk-service Download PDFInfo
- Publication number
- EP3216248B1 EP3216248B1 EP15857435.0A EP15857435A EP3216248B1 EP 3216248 B1 EP3216248 B1 EP 3216248B1 EP 15857435 A EP15857435 A EP 15857435A EP 3216248 B1 EP3216248 B1 EP 3216248B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- poc
- server
- dedicated bearer
- bearer
- dynamic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 15
- 230000007704 transition Effects 0.000 claims description 34
- 238000004891 communication Methods 0.000 claims description 25
- 230000011664 signaling Effects 0.000 claims description 18
- 230000003068 static effect Effects 0.000 claims description 14
- 230000007774 longterm Effects 0.000 claims description 8
- 230000000977 initiatory effect Effects 0.000 claims description 6
- 238000005516 engineering process Methods 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims 2
- 230000006870 function Effects 0.000 description 35
- 238000007726 management method Methods 0.000 description 31
- 238000010586 diagram Methods 0.000 description 11
- 230000008859 change Effects 0.000 description 9
- CVRALZAYCYJELZ-UHFFFAOYSA-N O-(4-bromo-2,5-dichlorophenyl) O-methyl phenylphosphonothioate Chemical compound C=1C=CC=CC=1P(=S)(OC)OC1=CC(Cl)=C(Br)C=C1Cl CVRALZAYCYJELZ-UHFFFAOYSA-N 0.000 description 8
- 230000001413 cellular effect Effects 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 238000013475 authorization Methods 0.000 description 3
- 230000008676 import Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000013439 planning Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000000060 site-specific infrared dichroism spectroscopy Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000012384 transportation and delivery Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/40—Connection management for selective distribution or broadcast
- H04W76/45—Connection management for selective distribution or broadcast for Push-to-Talk [PTT] or Push-to-Talk over cellular [PoC] services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/40—Support for services or applications
- H04L65/4061—Push-to services, e.g. push-to-talk or push-to-video
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0268—Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/06—Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
- H04W4/10—Push-to-Talk [PTT] or Push-On-Call services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/80—Responding to QoS
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/08—Trunked mobile radio systems
Definitions
- This invention relates in general to advanced voice services in wireless communications networks, and more specifically, to a system and method for providing dynamic quality-of-service (QoS) for Push-to-Talk (PTT) services.
- QoS quality-of-service
- PTT Push-to-Talk
- AVS Advanced voice services
- AVS Advanced Group Services
- P2C Push-to-talk-ovcr-Cellular
- P2T Push-to-Talk
- P2T Press-to-Talk
- P2C Push-to-Conference
- IC Instant Conferencing
- P2M Push-to-Message
- US2008/027704 describes a method and apparatus for reducing access delay in PTT over cellular communications.
- US2007/183372 describes a method of establishing a connection one of more mobile radio users.
- VoIP voice-over-IP
- VoIP voice-over-IP
- This approach capitalizes on the "bursty" nature of PoC/PTT conversations and makes network resources available only during talk bursts and hence is highly efficient from the point of view of network and spectral resources.
- This approach promises compliance with newer and emerging packet-based standards, such as GPRS (General Packet Radio Service), UMTS (Universal Mobile Telecommunications System), 3G/4G/LTE (3 rd Generation/4 th Generation/Long Term Evolution), etc.
- the present invention discloses a system and method for providing dynamic QoS for PTT services in a wireless communications network as defined in the appended independent claims. Preferred embodiments are defined in the appended dependent claims.
- the present invention discloses a system for implementing advanced voice services in wireless communications networks that provides a feature-rich server architecture with a flexible client strategy.
- This system is an Open Mobile Alliance (OMA) standards-compliant solution that can be easily deployed, thereby enabling carriers to increase their profits, improve customer retention and attract new customers without costly upgrades to their network infrastructure.
- OMA Open Mobile Alliance
- This system is built on a proven, reliable all-IP (Internet Protocol) platform.
- the highly scalable platform is designed to allow simple network planning and growth. Multiple servers can be distributed across operator networks for broad geographic coverage and scalability to serve a large and expanding subscriber base.
- PoC Session A feature enabling a PoC User to establish a PoC Session with another PoC User.
- Ad Hoc PoC Group Session A PoC Group Session established by a PoC User to PoC Users listed on the invitation. The list includes PoC Users or PoC Groups or both. Answer Mode A PoC Client mode of operation for the terminating PoC Session invitation handling.
- Allocation and Retention Priority Allocation and Retention Priority is used for deciding whether new bearer modifications or establishment requests should be accepted considering the current resource situation Controlling PoC Function A function implemented in a PoC Server, providing centralized PoC Session handling, which includes media distribution, Talk Burst Control, Media Burst Control, policy enforcement for participation in the PoC Group Sessions, and participant information.
- PoC Function A function implemented in a PoC Server, providing centralized PoC Session handling, which includes media distribution, Talk Burst Control, Media Burst Control, policy enforcement for participation in the PoC Group Sessions, and participant information.
- Corporate will only receive contacts and groups from a corporate administrator. That means they cannot create their own contacts and groups from handset.
- Corporate Public receive contacts and groups from a corporate administrator in addition to user-created contacts and groups.
- Corporate Administrator A user who manages corporate subscribers, their contacts and groups.
- Evolved Packet Core Evolved Packet Core is a framework for providing converged voice and data on a 4G/LTE network.
- Evolved Packet System Evolved Packet System (EPS) is a complete end-to-end system, that is UE, eUTRAN and EPC.
- eUTRAN An LTE radio access network (RAN).
- Firewall A device that acts as a barrier to prevent unauthorized or unwanted communications between computer networks and external devices.
- Guaranteed Bit Rate Guaranteed Bit Rate (GBR) is the minimum bit rate per EPS bearer. The GBR is specified independently for uplink and downlink.
- Home PoC Server The PoC Server of the PoC Service Provider that provides PoC service to the PoC User.
- Notification A message sent from the Presence Service to a subscribed watcher when there is a change in the Presence Information of some presentity of interest, as recorded in one or more Subscriptions.
- Participating PoC Function A function implemented in a PoC Server, which provides PoC Session handling, which includes policy enforcement for incoming PoC Sessions and relays Talk Burst Control and Media Burst Control messages between the PoC Client and the PoC Server performing the Controlling PoC Function.
- the Participating PoC Function may also relay RTP Media between the PoC Client and the PoC Server performing the Controlling PoC Function.
- PoC Client A functional entity that resides on the User Equipment that supports the PoC service.
- Pre-Arranged PoC Group Identity A SIP URI identifying a Pre-Arranged PoC Group.
- a Pre-Arranged PoC Group Identity is used by the PoC Client, e.g., to establish PoC Group Sessions to the Pre-Arranged PoC Groups.
- Pre-Arranged PoC Group A persistent PoC Group.
- the establishment of a PoC Session to a Pre-Arranged PoC Group results in the members being invited.
- Pre-Established Session The Pre-Established Session is a SIP Session established between the PoC Client and its Home PoC Server.
- the PoC Client establishes the Pre-Established Session prior to making requests for PoC Sessions to other PoC Users.
- Presence Server A logical entity that receives Presence Information from a multitude of Presence Sources pertaining to the Presentities it serves and makes this information available to Watchers according to the rules associated with those Presentities.
- Pres entity A logical entity that has Presence Information associated with it. This Presence Information may be composed from a multitude of Presence Sources.
- a Presentity is most commonly a reference for a person, although it may represent a role such as "help desk” or a resource such as "conference room #27".
- the Presentity is identified by a SIP URI, and may additionally be identified by a tel URI or a pres URI. Public These subscribers create and manage their contacts and groups.
- Quality of Service Class of Identifier Quality of Service (QoS) Class of Identifier (QCI) is a mechanism used in LTE networks to ensure bearer traffic is allocated an appropriate QoS. Different bearer traffic requires different QoS, and therefore different QCI values, with 9 different QCI values currently specified.
- Serving Server A set of primary and secondary servers. Subscription The information kept by the Presence Service about a subscribed watcher's request to be notified of changes in the Presence Information of one or more Presentities.
- Traffic Flow Template Traffic Flow Template is a set of information structures that is used to map service data flows to a specific bearer.
- a TFT is always associated with a dedicated bearer, while default bearers may or may not have a TFT.
- a dedicated bearer provides QoS to a special service or application and TFT defines rules so that UE and network knows which IP packets should be sent on particular dedicated bearer. It usually has rules on the basis of IP packet destination/source or protocol used.
- Watcher Any uniquely identifiable entity that requests Presence Information about a Presentity from the Presence Service.
- WiFi A wireless local area network (WLAN).
- 4G/LTE Fourth Generation / Long Term Evolution (4G/LTE) is a standard for wireless communication of high-speed data for mobile phones and data terminals.
- FIG. 1 illustrates the system architecture used in the present invention.
- This architecture conforms to the Advanced Telecommunications Computing Architecture (ATCA) standard to support the advanced voice services of the present invention.
- ATCA is an open standards-based, high-availability telecommunications platform architecture.
- the system 100 includes one or more PoC Service Layers 102 and one or more Management Layers 104, each of which is comprised of one or more servers interconnected by one or more IP networks 106.
- the PoC Service Layer 102 includes one or more XML Document Management (XDM) Servers 108, Presence Servers 110, PoC Servers 112, and Media Servers 114
- the Management Layer 104 includes one or more Element Management System (EMS) Servers 116, Lawful Intercept (LI) Servers 118, Web Customer Service Representative (WCSR) Servers 120, and Web Group Provisioning (WGP) Servers 122.
- EMS Element Management System
- LI Lawful Intercept
- WCSR Web Customer Service Representative
- WGP Web Group Provisioning
- the PoC Service Layer 102 and Management Layer 104 are connected to one or more wireless communications networks, such as cellular phone networks 124 and wireless data networks 126, as well as one or more IP networks 106.
- the cellular phone networks 124 and wireless data networks 126 may be implemented in a single network or as separate networks.
- the cellular phone network 124 includes one or more Short Message Service Centers (SMSCs) 128, Mobile Switching Centers (MSCs) 130, and Base Station Components (BSCs) 132, wherein the BSCs 132 include controllers and transceivers that communicate with one or more customer handsets 134 executing a PoC Client 136.
- a handset 134 is also referred to as a mobile unit, mobile station, mobile phone, cellular phone, etc.
- the wireless data network 126 includes one or more Gateway GPRS Support Nodes (GGSNs) or Packet Gateways (PGWs) 138 and Serving GPRS Support Nodes (SGSNs) or Serving GateWays (SGWs) 140, which also communicate with customer handsets 134 via BSCs or eNodeBs 132.
- GGSNs Gateway GPRS Support Nodes
- PGWs Packet Gateways
- SGSNs Serving GPRS Support Nodes
- SGWs Serving GateWays
- the PoC Service Layer 102 and Management Layer 104 are connected to one or more Gateways 142, which are coupled to one or more external IP networks 144, in order to communicate with one or more PoC Clients 136 on one or more handsets 134. Traffic to and from the wireless data networks 126 may also traverse Gateways 142.
- the handsets 134 may be WiFi-enabled and thus capable of communicating with local IP networks 144, which may be comprised of one or more WiFi Access Points (APs) 146, as well as other network 144 appliances such as Firewalls 148.
- local IP networks 144 may be comprised of one or more WiFi Access Points (APs) 146, as well as other network 144 appliances such as Firewalls 148.
- APs WiFi Access Points
- Firewalls 148 such as Firewalls 148.
- the PoC Service Layer 102 interacts with the SMSC 128 on the cellular phone network 124 to handle Short Message Service (SMS) operations, such as routing, forwarding and storing incoming text messages on their way to desired endpoints.
- SMS Short Message Service
- the PoC Service Layer 102 also interacts with the following entities on the wireless data network 126:
- the PoC Service Layer 102 also interacts with the following entities on the IP network 144:
- the PoC Service Layer 102 is comprised of the following elements:
- the PoC Server 112 handles the PoC/PTT call session management and is the core for managing the PoC/PTT services for the PoC Clients 136 using SIP protocol.
- the PoC Server 112 implements a Control Plane portion of Controlling and Participating PoC Functions.
- a Controlling PoC Function acts as an arbitrator for a call session and controls the sending of control and bearer traffic by the PoC Clients 136.
- a Participating PoC Function relays control and bearer traffic between the PoC Client 136 and the PoC Server 112 performing the Controlling PoC Function.
- the Media Server 114 implements a User Plane portion of the Controlling and Participating PoC Functions.
- the Media Server 114 supports the Controlling PoC Function by duplicating voice packets received from an originator PoC Client 136 to all recipients of the PoC Session.
- the Media Server 114 also supports the Participating PoC Function by relaying the voice packets between PoC Clients 136 and the Media Server 114 supporting the Controlling PoC Function.
- the Media Server 114 also handles packets sent to and received from the PoC Clients 136 for floor control during call sessions.
- the Presence Server 110 implements a presence enabler for the PoC service.
- the Presence Server 110 accepts, stores and distributes Presence Information for Presentities, such as PoC Clients 136.
- the Presence Server 110 also implements a Resource List Server (RLS), which accepts and manages subscriptions to Presence Lists.
- Presence Lists enable a "watcher" application to subscribe to the Presence Information of multiple Presentities using a single subscription transaction.
- the Presence Server 110 uses certain XDM functions to provide these functions, which are provided by XDM Server 108.
- the XDM Server 108 implements an XDM enabler for the PoC service.
- the XDM enabler defines a common mechanism that makes user-specific service-related information accessible to the functions that need them. Such information is stored in the XDM Server 108 where it can be located, accessed and manipulated (e.g., created, changed, deleted, etc.).
- the XDM Server 108 uses well-structured XML documents and HTTP protocol for access and manipulation of such XML documents.
- the XDM Server 108 also connects to the operator SMSC 128 for the purposes of PoC Client 136 activation using SMS. In addition, the XDM Server 108 maintains the configuration information for all PoC subscribers.
- the Gateway 142 implements an interworking solution for the PoC service to communicate via one or more IP network 144 to the PoC Clients 136.
- the Gateway 142 provides PoC service over an IP network 144 (such as an external WiFi network), as well as the wireless data networks 126, and supports a seamless user experience while the transport of IP control messages and IP voice data is transitioned between different types of wireless communications networks, such as wireless data networks 126 comprising cellular data packet networks and IP networks 144.
- the Gateway 142 also resolves security concerns that arise with such interworking solutions.
- the interworking solution implemented by the Gateway 142 provides following benefits:
- Management Layer 104 is comprised of the following elements:
- the EMS Server 116 is an operations, administration, and maintenance platform for the system 100.
- the EMS Server 116 enables system administrators to perform system-related configuration, network monitoring and network performance data collection functions.
- the EMS Server 116, or another dedicated server, may also provide billing functions. All functions of the EMS Server 116 are accessible through a web-based interface.
- the LI Server 118 is used for tracking services required by various Lawful Enforcement Agents (LEAs).
- LSAs Lawful Enforcement Agents
- the LI Server 118 generates and pushes an IRI (Intercept Related Information) Report for all PoC services used by a target.
- the target can be added or deleted in to the PoC Server 112 via the LI Server 118 using a Command Line Interface (CLI).
- CLI Command Line Interface
- the WGP Server 122 provides a web interface for corporate administrators to manage PoC contacts and groups.
- the web interface includes contact and group management operations, such as create, delete and update contacts and groups.
- the WCSR Server 120 provides access to customer service representatives (CSRs) for managing end user provisioning and account maintenance.
- CSRs customer service representatives
- the PoC Server 112 controls PoC/PTT call sessions, including 1-1, Ad Hoc and Pre-Arranged PoC/PTT call sessions.
- the PoC Server 112 also controls Instant Personal Alerts.
- the PoC Server 112 expects the PoC Clients 136 to setup "pre-established sessions" at the time of start up and use these sessions to make outgoing calls.
- the PoC Server 112 also uses pre-established sessions to terminate incoming calls to the PoC Clients 136.
- the PoC Clients 136 are setup in auto-answer mode by default. The use of pre-established sessions and auto-answer mode together allow for faster call setup for call sessions.
- the PoC Server 112 allocates and manages the media ports of the Media Servers 114 associated with each SIP INVITE dialog for pre-established sessions and controls the Media Servers 114 to dynamically associate these ports at run time for sending RTP packets during call sessions.
- Media ports are assigned and tracked by the PoC Server 112 at the time of setting up pre-established sessions.
- the PoC Server 112 instructs the Media Server 114 to associate the media ports of various subscribers dynamically into a session when a PoC call is originated and this session is maintained for the duration of the call.
- the PoC Server 112 also controls the floor states of the various participants in a PoC call session by receiving indications from the Media Servers 114 and sending appropriate requests back to the Media Servers 114 to send MBCP messages to the participants in the call.
- the Media Server 114 uses the media ports association and current talker information to send the RTP packets from the talker's media port onto the listeners' media ports.
- the PoC Server 112 handles the incoming and outgoing Instant Personal Alerts (IPAs) by routing SIP MESSAGE requests to the PoC Clients 136 and remote PoC Servers 112 for final delivery as applicable.
- IPAs Instant Personal Alerts
- the PoC Server 112 uses static and dynamic data related to each subscriber to perform these functions.
- Static data include subscriber profile, contacts and groups.
- Dynamic data include the subscriber's registration state, PoC/PTT settings and SIP dialog states are maintained only on the PoC Server 112.
- the Media Server 114 handles the flow of data to and from the PoC Clients 136 as instructed by the PoC Server 112. Each Media Server 114 is controlled by a single PoC Server 112, although multiple Media Servers 114 may be controlled by a PoC Server 112 simultaneously.
- the Media Server 114 is completely controlled by the PoC Server 112. As noted above, even the media ports of the Media Server 114 are allocated by the PoC Server 112 and then communicated to the Media Server 114. Likewise, floor control requests received by the Media Server 114 from PoC Clients 136 are sent to the PoC Server 112, and the PoC Server 112 instructs the Media Server 114 appropriately. Based on these instructions, the Media Server 114 sends floor control messages to the PoC Clients 136 and sends the RTP packets received from the talker to all the listeners.
- the Presence Server 110 accepts presence information published by PoC Clients 136, as well as availability information received from other entities.
- the Presence Server 110 keeps track of these presence states and sends notifications to various "watcher" applications whenever a presence state changes.
- the Presence Server 110 maintains separate subscriptions for each watcher and dynamically applies the presence authorization rules for each watcher independently.
- the Presence Server 110 also accepts resource list subscriptions from the watchers, which identify one or more entities ("Presentities") whose presence should be monitored. The Presence Server 110 then aggregates all the presence information into one or more presence notifications transmitted to each watcher. This allows watchers to subscribe to large number of Presentities without putting strain on the network as well as client and server resources.
- Presentities entities whose presence should be monitored.
- the Presence Server 110 then aggregates all the presence information into one or more presence notifications transmitted to each watcher. This allows watchers to subscribe to large number of Presentities without putting strain on the network as well as client and server resources.
- the XDM Server 108 performs client authentication and subscription functions.
- the XDM Server 108 also stores subscriber and group information data.
- the XDM Server 108 also interacts with the SMSC 128 to receive PoC Client 136 activation commands.
- All subscriber provisioning and CSR operations in the XDM Server 108 are performed through the WCSR Server 120, while corporate administrative operations, as well as contacts and group management, are handled through the WGP Server 122.
- the XDM Server 108 includes a Subscriber Profile Manager module that provides subscriber management functionality, such as creation, deletion and modification of subscriber profiles.
- the subscriber profile includes data such as the MDN, subscriber name, subscriber type, etc. This also determines other system-wide configurations applicable for the subscriber including the maximum number of contacts and groups per subscriber and the maximum number of members per group.
- the XDM Server 108 includes a Subscriber Data Manager module that manages the subscriber document operations, such as contact and group management operations, initiated by the PoC Clients 136 or the WGP Server 122.
- the Gateway 142 performs interworking for the PoC service by communicating with the PoC Clients 136 via one or more IP networks 144 and/or wireless data networks 126.
- the PoC Client 136 sets up one or more connections using the configured Fully Qualified Domain Name (FQDN), or absolute domain name, of the Gateway 142, which may be publicly exposed to the Internet 142.
- FQDN Fully Qualified Domain Name
- Secure transport protocols may (or may not) be used for the connections across the IP networks 144 and/or wireless data networks 126.
- the PoC Clients 136 may use the Transport Layer Security (TLS) and/or Secure Sockets Layer (SSL) protocols for encrypting information transmitted over the connections between the PoC Client 136 and the Gateway 142.
- TLS Transport Layer Security
- SSL Secure Sockets Layer
- HTTP Hypertext Transfer Protocol Secure
- the Gateway 142 may perform as an encryption/decryption off-loader that provides end-to-end encryption for all traffic transmitted to and from the PoC Client 136. Specifically, all of the traffic sent to the PoC Client 136 may be encrypted at the Gateway 142 and all the traffic received from the PoC Client 136 may be decrypted at the Gateway 142.
- the Gateway 142 terminates the SSL/TLS connections and aggregates or dis-aggregates the PoC Client 136 traffic to the appropriate Servers 108, 110, 112, 114, 116, 118, 120 and 122.
- the Gateway 142 acts as an intelligent traffic distributor for SIP signaling and RTP/RTCP traffic by forwarding the traffic to the appropriate Servers 108, 110, 112, 114, 116, 118, 120 and 122, depending on the message types and the availability of the Servers 108, 110, 112, 114, 116, 118, 120 and 122. Consequently, the Gateway 142 is a single point-of-contact for all traffic to and from the PoC Clients 136 at an IP transport layer via the IP networks 144 and/or wireless data networks 126.
- the SSL/TLS connections are persisted and used for any bidirectional data transfer between the Gateway 142, or other Servers, and the PoC Clients 136.
- a PoC Client 136 maintains an "always-on" connection with the Gateway 142 by periodically sending "keep-alive” messages over the SSL/TLS connections.
- the system also simplifies the use of the WiFi APs 146 and Firewalls 148 or other network appliances.
- the EMS Server 116 is the central management entity in the system and includes the following modules:
- the WCSR Server 120 provides a web user interface for customer service representatives (CSRs) to carry out various operations.
- the web user interface provides access to CSRs for managing subscriber provisioning and account maintenance.
- the WGP Server 122 allows provides for central management of all corporate subscribers and associated contacts and groups within a corporation.
- the WGP Server 122 allows corporate administrators to manage contacts and groups for corporate subscribers.
- the WGP Server 122 includes a Corporate Administration Tool (CAT) that is used by corporate administrators to manage contacts and groups of corporate subscribers.
- CAT has a Web User Interface for corporate administrators that supports the following operations:
- the CAT of the WGP Server 122 includes the following operations:
- the CAT of the WGP Server 122 includes the following operations:
- the CAT of the WGP Server 122 includes the following operations:
- the PoC Client 136 is an OMA-compatible client application executed on a handset 134. The following features are supported by the PoC Client 136:
- the PoC Client 136 includes a database module, a presence module, an XDM module and a client module.
- the database module stores configuration information, presence information, contact and group information, user settings, and other information in an optimized and persistent way. Information is preserved when the user unregisters with the PoC Server 112 or power cycles the device.
- the database module also has a mechanism to reset the data and synchronize from the XDM Server 108 when the data in the database module is corrupt or unreadable.
- the presence module creates and maintains the presence information for the subscriber. Typically, the presence information supports Available, Unavailable and Do-not-Disturb (DnD) states.
- the presence module also subscribes to the Presence Server 110 as a "watcher" of all contacts in the handset 134 and updates the user interface of the handset 134 whenever it receives a notification with such presence information.
- the XDM module communicates with the XDM Server 108 for management of contacts and groups.
- the XDM module may subscribe with the XDM Server 108 to send and receive any changes to the contacts or group list, and updates the user interface of the handset 134 based on the notifications it receives from the XDM Server 108.
- the client module provides the most important function of making and receiving PoC/PTT calls. To support PoC/PTT calls, the client module creates and maintains pre-established sessions with the PoC Server 112. The client module supports 1-1, Ad Hoc and Pre-Arranged PoC/PTT calls. The client module also supports sending and receiving Instant Personal Alerts (IPA).
- IPA Instant Personal Alerts
- FIG. 2 is a state diagram that illustrates the operation of a PTT call session according to one embodiment of the present invention.
- State 200 represents a PoC Client 136 in a NULL state, i.e., the start of the logic.
- a transition out of this state is triggered by a user making a request to originate a PTT call, or by a request being made to terminate a PTT call at the handset 134.
- a request to originate a PTT call is normally made by pressing a PTT button, but may be initiated in this embodiment by dialing some sequence of one or more numbers on the handset 134 that are interpreted by the PoC Server 112, by pressing one or more other keys on the handset 134 that are interpreted by the PoC Server 112, by speaking one or more commands that are interpreted by the PoC Server 112, or by some other means.
- State 202 represents the PoC Client 136 in an active group call state, having received a "floor grant" (permit to speak).
- the user receives a chirp tone that indicates that the user may start talking.
- the user responds by talking on the handset 134.
- the handset 134 uses the reverse traffic channel to send voice frames to the Media Server 114, and the Media Server 114 switches voice frames only in one direction, i.e., from talker to one or more listeners, which ensures the half-duplex operation required for a PTT call.
- State 204 represents the group "floor" being available to all members of the group.
- the signal to release the floor is normally made by releasing the PTT button, but may be performed in this embodiment by voice activity detection, e.g., by not speaking for some time period (which is interpreted by the PoC Server 112 as a release command). All members of the group receive a "free floor” tone on their handset 134. A user who requests the floor first (in the "free-floor” state), for example, is granted the floor, wherein the system 100 sends a chirp tone to the successful user.
- the signal to request the floor is normally made by pressing the PTT button, but may be performed in this embodiment by voice activity detection, e.g., by speaking for some time period (which is interpreted by the PoC Server 112 as a request command).
- State 206 represents the PoC Client 136 being in an active group call state. In this state, the user is listening to the group call. If a non-talking user requests the floor in the active group call state, the user does not receive any response from the system 100 and remains in the same functional state.
- the signal to request the floor is normally made by pressing the PTT button, but may be performed in this embodiment by voice activity detection, e.g., by speaking for some time period (which is interpreted by the PoC Server 112 as a request command).
- State 208 represents a user receiving an "unsuccessful bidding" tone on his handset 134, after the user has requested the floor, but was not granted the floor, of the group call. The user subsequently listens to the voice message of the talking user.
- Non-talking users can request the system 100 to end their respective call legs explicitly.
- State 210 represents a terminating leg being released from the call after the user ends the call.
- State 212 also represents a terminating leg being released from the call after the user ends the call.
- State 214 represents all terminating legs being released from the call when no user makes a request for the within a specified time period, or after all users have ended their respective call legs.
- This invention describes a method and apparatus for providing dynamic QoS over a network for PTT services.
- the invention includes methods utilized to establish dedicated bearers statically or dynamically, without incurring any additional delay during PTT call setup time.
- Various criteria can be applied based on policies defined per corporation, per subscribers, or per any dynamic conditions, such as load conditions.
- Policies may be derived based on the priority of the PTT call, that can be determined based on a static configuration, or that can be decided based on dynamic conditions.
- FIG. 3 is a diagram depicts the components and connectivity between components necessary for implementing QoS usage in the PoC system 100 according to one embodiment of the present invention.
- the PoC system 100 implements the IP Multimedia Subsystem (IMS) standard developed by the Third Generation Partnership Project (3GPP), and the wireless data network 126 is an EPC/LTE access network.
- IMS IP Multimedia Subsystem
- 3GPP Third Generation Partnership Project
- the PoC Server 112 performs the role of an Application Function (AF) according to the IMS standard, and a Policy Charging and Rules Function (PCRF) defined by the IMS standard is implemented in a PCRF Server 150, which is also shown in FIG. 1 , although the PCRF could be implemented in another server in the system 100.
- the PoC Server 112 and the PCRF Server 150 communicate via an Rx interface, which is also defined under the IMS standard.
- the PCRF Server 150 provides policy control decision and flow based charging control functionalities.
- the PCRF Server 150 provides network control regarding service data flow detection, gating, QoS, and flow based charging to a Policy Control Enforcement Function (PCEF) defined by the IMS standard and implemented in the PGW 138, although the PCEF could be implemented in another server in the system 100.
- PCEF Policy Control Enforcement Function
- the PoC Server 112 uses the Rx interface to communicate with the PCRF Server 150 during call initiation and re-negotiation to ensure that a call conforms to policy.
- the PoC Server 112 also uses the Rx interface during registration to learn access network 126 information.
- the PCRF Server 150 performs the following functions for the PoC Server 112 via the Rx interface:
- the PCEF implemented by the PGW 138 provides service data flow detection, user plane traffic handling, triggering control plane session management, QoS handling, service data flow measurement, as well as online and offline charging interactions.
- the PCEF enforces the policy control as indicated by the PCRF Server 150, e.g., the PCRF Server 150 determines how a certain data flow is treated in the PCEF and ensures that the enforcement function traffic mapping and treatment is in accordance with a user's subscription profile.
- the PCRF Server 150 delivers rules concerning traffic classification, QoS, and charging to the PCEF in the PGW 138 via a Gx interface.
- the PoC system 100 also includes a Home Subscriber Server (HSS) function, which is implemented in an HSS Server 152, which is also shown in FIG. 1 , although the HSS function could be implemented in another server in the system 100.
- HSS Server 152 comprises a subscription profile repository storing records for each subscriber, wherein the PCRF Server 150 communicates with the HSS Server 152 via an Sh interface. Each subscriber record includes a subscription profile, authentication vectors, and other information for the subscriber.
- QoS plays a key role, in that QoS defines priorities for certain customers and/or services during the time of high congestion in the network 126.
- QoS is implemented between the handset 134 and the PGW 138, and is applied to a set of bearers.
- bearer is basically a virtual concept and is a set of network configurations to provide special treatment to set of traffic, e.g., PTT traffic is prioritized by the network 126 as compared to other traffic.
- a bearer is a mechanism that enables the network 126 to discriminate both in quality and charging for different applications.
- a handset 134 attaches to the network 126 for the first time, it is assigned a "default bearer," which remains as long as the handset 134 is attached.
- Devices can have more than one default bearer, but each default bearer has a separate, unique IP address.
- the default bearer does not provide a GBR, and typically, non-GBR QCI values can be specified.
- a dedicated bearer is essentially a dedicated tunnel for one or more specific applications (e.g., PTT, VoIP, video, gaming, etc.).
- a dedicated bearer does not require a separate IP address, and uses the IP address associated with the previously-established default bearer.
- a Traffic Flow Template (TFT) is used to specify QoS settings for a specific traffic application carried on a dedicated bearer, which can be GBR or non-GBR depending on the QCI value chosen to support a specific use case.
- QoS support for the PTT services can be provided by one of the following mechanisms:
- This invention describes methods and systems to overcome the various limitations described above. This invention particularly focuses on providing QoS service dynamically using the Rx interface, without compromising any key service parameters such as PTT call setup time.
- the PoC Server 112 communicates with the PCRF Server 150 via the Rx interface to manage the QoS and authorize the usage of specific bearer services in relation to the PTT call.
- the Rx interface is used for the service-based policy set-up information exchange between the PCRF Server and the PoC Server 112.
- the PTT service uses a combination of SIP and RTCP messages for call signaling, and RTP for media.
- SIP Session Initiation Protocol
- the RTP and RTCP traffic are carried over dynamic dedicated QoS bearers with the required QoS.
- the dynamic dedicated QoS bearers are established in parallel while PTT call setup is in progress over the default bearer. That means the RTCP and RTP packets are carried over the default bearer until the dynamic dedicated QoS bearers are established dynamically.
- FIG. 4 illustrates Deployment Model A, wherein the SIP traffic is carried over the default bearer
- FIG. 5 illustrates Deployment Model B, wherein the SIP traffic is carried over the dynamic dedicated QoS bearer.
- the PoC service can support multiple levels of priority, in which the priority of the dynamic dedicated bearers depends on user roles and types of calls. For example, dedicated bearers may only be used for dispatch group calls and dispatcher calls, but not for calls between fleet members. In another example, when a PoC call is setup with emergency priority, then dedicated bearers used for this call could have the highest priority and would pre-empt any other calls or data sessions in progress, and the dedicated bearers used for the emergency call itself could not be pre-empted by other types of data sessions or calls. Still another example is that a broadcast call may have a higher priority than normal PoC calls, and hence may pre-empt such PoC calls.
- ARP Allocation Retention Priority
- HSS subscriber profile
- ARP has following three sub-parameters:
- FIG. 6 is a call flow diagram illustrating the PTT call setup with the establishment of dynamic dedicated QoS bearers.
- FIG. 7 is a call flow diagram illustrating the PTT call end with the teardown of dynamic dedicated QoS bearers.
- FIG. 8 is a call flow diagram illustrating the PTT call transitioning to WiFi with the teardown of dynamic dedicated QoS bearers.
- the following table provides a detailed summary of the various use cases on transitions between the WiFi network 144 and the EPC/LTE access network 126: # Transition Case Expected Behavior 1 LTE->WiFi (regular Internet offload ): Pre-condition: The handset 134 is connected to the network 126 and is participating in an active PTT call. 1. The PoC Client 136 reconnects to the PoC Server 112 over the WiFi network 144, and reports the transport change event to the PoC Server 112. Transition: The handset 134 attaches to the WiFi network 144 and offloads all Internet traffic to the WiFi network 144. 2.
- the PoC Server 112 recognizes the WiFi network 144 transition of the PoC Client 136, and tears down the dynamic dedicated QoS bearer for the transitioned PoC Client 136 that was established while the handset was on the network 126. 3.
- the PoC Client 136 continues to participate in the PTT call. Note that the availability of the network 126 after the WiFi network 144 transition is irrelevant, as the PoC Client 136 transitions to the WiFi network 144 regardless.
- the PoC Client 136 utilizes a regular WiFi network 144 offload mechanism as described in case #1 above. Transition: The handset 134 attaches to the WiFi network 144, offloads all Internet traffic to the WiFi network 144 and also offloads the IMS Access Point Name (APN) to the WiFi network 144. 2 WiFi ->LTE : 1. The PoC Client 136 reconnects to the PoC Server 112 through the network 126 and reports transport change events to the PoC Server 112. Pre-condition: The handset 134 is connected to the WiFi network 144 and is participating in an active PTT call. Transition: The handset 134 loses the connection to the WiFi network 144 and transitions to the network 126 during an active PTT call. 2.
- the PoC Server 112 recognizes the transition by the PoC Client 136 to the network 126, and hence establishes a dynamic dedicated QoS bearer for the transitioned PoC Client 136. 3. Media packets flow through the default bearer until the dynamic dedicated QoS bearer is setup (similar to the call setup flow). 4. The PoC Client 136 continues to be active in the PoC call. Note that the PoC Client 136 connects to the PoC Server 112 directly over the WiFi network 144. 4 WiFi only: 1. The PoC Client 136 communicates with the Pre-condition: The handset 134 is connected to the WiFi network 144 PoC Server 112 using the WiFi network 144. 2. Call participation as normal. Action: 3.
- the PoC Server 112 Based on transport information provided by the PoC Client 136 previously, the PoC Server 112 does not attempt to establish a dynamic dedicated QoS bearer when the PoC Client 136 is using the WiFi network 144.
- the handset 134 participates in an active PTT call. Note that the PoC Client 136 interacts with the PoC Server 112 directly over the WiFi network 144.
- LTE-> Non-LTE RAT Pre-condition: The handset 134 is connected to the network 126 and participating in an active PTT call. Transition: The handset 134 transitions to a non-LTE RAT. 1. The PoC Client 136 detects transition and reports the RAT type change to the PoC Server 112. The capability of the PoC Client 136 to detect and report the non-LTE RAT transition is being evaluated. 2.
- RAT Radio Access Technology
- Non-LTE RAT->LTE Pre-condition: The handset 134 is connected to a non-LTE RAT and participating in an active PTT call. 1. The PoC Client 136 reconnects to the PoC Server 112 through the network 126. 2.
- the PoC Server 112 recognizes the transition of the PoC Client 136 to the network 126 based on a report from the PoC Client 136, and hence establishes a dynamic dedicated QoS bearer for the transitioned PoC Client 136. 3. Media packets flow through default bearer until the dynamic dedicated QoS bearer is setup (similar to a call setup flow).
- the PoC Client 136 has the capability to detect and report the non-LTE RAT to LTE transition is being evaluated. Transition: The handset 134 transition from the non-LTE RAT to the network 126. 4.
- the PoC Client 136 continues to be active in the PTT call. 2
- Non-LTE RAT only 1. Call participation as normal.
- the PoC Client 136 participates in an active PTT call.
- WiFi (with or without IMS) No bearer Established Non-LTE RAT or WiFi None None LTE Establish Bearer None Establish Trigger - Transition event Report from the PoC Client 136.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Mobile Radio Communication Systems (AREA)
- Telephonic Communication Services (AREA)
Claims (11)
- System (100) zum Bereitstellen von fortschrittlichen Sprachdiensten in einem drahtlosen Kommunikationsnetzwerk (124, 126), wobei das System Folgendes umfasst:einen oder mehrere Server, die mit dem drahtlosen Kommunikationsnetzwerk (124, 126) eine Schnittstelle bilden, um fortschrittliche Sprachdienste für eine Vielzahl von Mobileinheiten (134) darin auszuführen, wobei die fortschrittlichen Sprachdienste einen sofortigen gegenseitigen Halbduplex-Sprachanruf innerhalb einer Gruppe der Vielzahl von Mobileinheiten (134) umfassen, die eine "Push-to-Talk-", PTT, Anrufsitzung umfassen;wobei sowohl ein erster Server des einen oder der mehreren Server als auch die Vielzahl von Mobileinheiten (134), welche die fortschrittlichen Sprachdienste verwenden, miteinander unter Verwendung von Steuernachrichten kommunizieren, die über Träger in dem drahtlosen Kommunikationsnetzwerk übertragen werden, und mindestens einer der Server Medienströme überträgt, die aus Sprachnachrichten für die Kommunikationsdienste zwischen den Mobileinheiten über die Träger in dem drahtlosen Kommunikationsnetzwerk bestehen;wobei die PTT-Anrufsitzung ursprünglich auf einem Standardträger aufgebaut wird;wobei der erste Server einen dynamischen dedizierten Träger aufbaut, wobei ein dynamischer dedizierter Träger ein dedizierter Träger ist, der bei einem PTT-Anrufaufbau in dem drahtlosen Kommunikationsnetzwerk mit einer ersten Mobileinheit der Vielzahl der Mobileinheiten aufgebaut wird, und der dynamische dedizierte Träger eine vorgegebene Dienstqualität, QoS, für die Übertragung mindestens der Medienströme an die erste Mobileinheit aufweist;wobei der dynamische dedizierte Träger parallel zum Aufbau der PTT-Anrufsitzung aufgebaut wird, wobei die Signalgebung des Sitzungseinleitungsprotokolls, SIP, für die Steuernachrichten über einen statischen dedizierten Träger erfolgt, wobei ein statischer dedizierter Träger ein dedizierter Träger ist, der auf einem Abonnement basiert, und hergestellt wird, wenn eine Mobileinheit in das drahtlose Kommunikationsnetzwerk (124, 126) eingebunden wird, wobei eine Priorität des dynamischen dedizierten Trägers auf Benutzerrollen und einem Typ der PTT-Anrufsitzung basiert;wobei der Medienstrom auf dem Standardträger übertragen wird, bis der dynamische dedizierte Träger aufgebaut ist; undwobei der Medienstrom auf dem dynamischen dedizierten Träger übertragen wird, sobald der dynamische dedizierte Träger aufgebaut ist.
- System (100) nach Anspruch 1, wobei der erste Server die Vielzahl der PTT-Anrufsitzungen verwaltet, indem er als Vermittler für jede von einer Vielzahl der PTT-Anrufsitzungen dient, und indem er das Senden der Steuernachrichten und der Medienströme für jede der Vielzahl der PTT-Anrufsitzungen steuert.
- System (100) nach Anspruch 1, wobei der dedizierte Träger nur aufgebaut wird, falls die Mobileinheit (134) mit dem drahtlosen Kommunikationsnetzwerk unter Verwendung von "Long Term Evolution" (LTE) verbunden ist.
- System (100) nach Anspruch 1, wobei der dedizierte Träger abgebrochen wird, wenn die PTT-Anrufsitzung beendet ist.
- System (100) nach Anspruch 1, wobei der dedizierte Träger während der PTT-Anrufsitzung hergestellt wird, wenn die Mobileinheit (134) von der Nichtverwendung von Long Term Evolution (LTE) auf die Verwendung von Long Term Evolution (LTE) übergeht.
- System (100) nach Anspruch 1, wobei der dedizierte Träger während der PTT-Anrufsitzung abgebrochen wird, wenn die Mobileinheit (134) von der Verwendung von Long Term Evolution (LTE) auf die Nichtverwendung von Long Term Evolution (LTE) übergeht.
- System (100) nach Anspruch 1, wobei die Mobileinheit (134) den Typ einer Funkzugangstechnologie detektiert und meldet, der verwendet wird, um das drahtlose Kommunikationsnetzwerk (124, 126) mit dem ersten Server zu verbinden.
- System (100) nach Anspruch 1, wobei die PTT-Anrufsitzung mit einem Standardträger fortgeführt wird, falls der Aufbau des dedizierten Trägers fehlschlägt.
- System (100) nach Anspruch 1, wobei ein Träger basierend auf Benutzerrollen und einem Typ der PTT-Anrufsitzung vorweggenommen wird.
- Verfahren zum Bereitstellen von fortschrittlichen Sprachdiensten in mindestens einem drahtlosen Kommunikationsnetzwerk (124, 126), wobei das Verfahren folgende Schritte umfasst:Bilden einer Schnittstelle von einem oder mehreren Servern mit dem drahtlosen Kommunikationsnetzwerk (124, 126), um fortschrittliche Sprachdienste einer Vielzahl von Mobileinheiten (134) darin auszuführen, wobei die fortschrittlichen Sprachdienste einen sofortigen gegenseitigen Halbduplex-Sprachanruf innerhalb einer Gruppe der Vielzahl von Mobileinheiten umfassen, die eine Push-to-Talk-, PTT, Anrufsitzung umfassen;wobei sowohl ein erster Server des einen oder der mehreren Server als auch die Vielzahl von Mobileinheiten (134), welche die fortschrittlichen Sprachdienste verwenden, miteinander unter Verwendung von Steuernachrichten kommunizieren, die über Träger in dem drahtlosen Kommunikationsnetzwerk übertragen werden, und mindestens einer der Server Medienströme überträgt, die aus Sprachnachrichten für die fortschrittlichen Sprachdienste zwischen den Mobileinheiten über die Träger in dem drahtlosen Kommunikationsnetzwerk bestehen;wobei die PTT-Anrufsitzung ursprünglich auf einem Standardträger aufgebaut wird;wobei der erste Server einen dynamischen dedizierten Träger aufbaut, wobei ein dynamischer dedizierter Träger ein dedizierter Träger ist, der bei einem PTT-Anrufaufbau in dem drahtlosen Kommunikationsnetzwerk mit einer ersten Mobileinheit der Vielzahl der Mobileinheiten aufgebaut wird, und der dynamische dedizierte Träger eine vorgegebene Dienstqualität, QoS, für die Übertragung mindestens der Medienströme an die erste Mobileinheit aufweist;wobei der dynamische dedizierte Träger parallel zum Aufbau des PTT-Anrufsitzung aufgebaut wird, wobei die Signalgebung des Sitzungseinleitungsprotokolls, SIP, für die Steuernachrichten über einen statischen dedizierten Träger erfolgt, wobei ein statischer dedizierter Träger ein dedizierter Träger ist, der auf einem Abonnement basiert, und hergestellt wird, wenn eine Mobileinheit in das drahtlose Kommunikationsnetzwerk (124, 126) eingebunden wird, wobei eine Priorität des dynamischen dedizierten Trägers auf Benutzerrollen und einem Typ der PTT-Anrufsitzung basiert;wobei der Medienstrom auf dem Standardträger übertragen wird, bis der dynamische dedizierte Träger aufgebaut ist; undwobei der Medienstrom auf dem dynamischen dedizierten Träger übertragen wird, sobald der dynamische dedizierte Träger aufgebaut ist.
- Verfahren nach Anspruch 10, wobei der dedizierte Träger abgebrochen wird, wenn die PTT-Anrufsitzung beendet ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462074386P | 2014-11-03 | 2014-11-03 | |
PCT/US2015/058804 WO2016073461A1 (en) | 2014-11-03 | 2015-11-03 | Method for providing dynamic quality of service for push-to-talk service |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3216248A1 EP3216248A1 (de) | 2017-09-13 |
EP3216248A4 EP3216248A4 (de) | 2018-05-23 |
EP3216248B1 true EP3216248B1 (de) | 2021-08-04 |
Family
ID=55909688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15857435.0A Active EP3216248B1 (de) | 2014-11-03 | 2015-11-03 | Verfahren und system zur bereitstellung von dynamischer servicequalität für push-to-talk-service |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3216248B1 (de) |
CA (1) | CA2966609C (de) |
MX (1) | MX2017005411A (de) |
WO (1) | WO2016073461A1 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10356565B2 (en) | 2016-12-01 | 2019-07-16 | Kodiak Networks, Inc. | System and method for situational awareness driven group communications |
WO2018130290A1 (en) * | 2017-01-12 | 2018-07-19 | Telefonaktiebolaget Lm Ericsson (Publ) | Radio resource management in a group communications system |
US10616935B2 (en) * | 2018-06-22 | 2020-04-07 | Blackberry Limited | Emergency calls |
EP3977696B1 (de) * | 2019-06-27 | 2022-11-30 | Telefonaktiebolaget Lm Ericsson (Publ) | Verfahren, knoten und computerprogramm von systemen und netzwerken für rechtmässiges abfangen |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2486072A1 (en) | 2002-05-24 | 2003-12-04 | Kodiak Networks, Inc. | Dispatch service architecture framework |
DE10332746B4 (de) * | 2003-07-17 | 2005-10-13 | Siemens Ag | Beschleunigter Aufbau einer Verbindung zwischen mehreren Mobilfunkteilnehmern |
US7664517B2 (en) * | 2004-06-21 | 2010-02-16 | Qualcomm Incorporated | Wireless communication system utilizing a persistence value for group communication requests to reduce latency |
US8958348B2 (en) * | 2008-10-20 | 2015-02-17 | Kodiak Networks, Inc. | Hybrid push-to-talk for mobile phone networks |
US7853279B2 (en) * | 2006-04-26 | 2010-12-14 | Kodiak Networks, Inc. | Advanced features on a real-time exchange system |
US7797008B2 (en) * | 2006-08-30 | 2010-09-14 | Motorola, Inc. | Method and apparatus for reducing access delay in push to talk over cellular (PoC) communications |
EP2856655B1 (de) * | 2012-05-24 | 2018-05-02 | Hughes Network Systems, LLC | System und verfahren zur effizienten verwendung von funkressourcen für push-to-talk-dienste in mobilen drahtlosen kommunikationssystemen |
US9554389B2 (en) * | 2012-08-31 | 2017-01-24 | Qualcomm Incorporated | Selectively allocating quality of service to support multiple concurrent sessions for a client device |
US9055554B2 (en) * | 2012-12-12 | 2015-06-09 | At&T Intellectual Property I, L.P. | Management of voice communications over long term evolution networks |
-
2015
- 2015-11-03 EP EP15857435.0A patent/EP3216248B1/de active Active
- 2015-11-03 CA CA2966609A patent/CA2966609C/en active Active
- 2015-11-03 MX MX2017005411A patent/MX2017005411A/es active IP Right Grant
- 2015-11-03 WO PCT/US2015/058804 patent/WO2016073461A1/en active Application Filing
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3216248A4 (de) | 2018-05-23 |
CA2966609A1 (en) | 2016-05-12 |
WO2016073461A1 (en) | 2016-05-12 |
MX2017005411A (es) | 2018-02-09 |
EP3216248A1 (de) | 2017-09-13 |
CA2966609C (en) | 2021-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2804368C (en) | Wifi interworking solutions for push-to-talk-over-cellular (poc) | |
EP3213468B1 (de) | System und verfahren zur nutzung von web-echtzeitkommunikation zur implementierung von push-to-talk-lösungen | |
US10367863B2 (en) | Method for providing dynamic quality of service for push-to-talk service | |
US10750327B2 (en) | Method for multiplexing media streams to optimize network resource usage for push-to-talk-over-cellular service | |
US20170231014A1 (en) | System for inter-communication between land mobile radio and push-to-talk-over-cellular systems | |
CA2936083C (en) | Optimized methods for large group calling using unicast and multicast transport bearers for push-to-talk-over-cellular (poc) | |
US9485787B2 (en) | Method to achieve a fully acknowledged mode communication (FAMC) in push-to-talk-over-cellular (PoC) | |
US9510165B2 (en) | Push-to-talk-over-cellular (PoC) service in heterogeneous networks (HETNETS) and multimode small cell environments | |
US10178513B2 (en) | Relay-mode and direct-mode operations for push-to-talk-over-cellular (PoC) using WiFi-technologies | |
EP3216248B1 (de) | Verfahren und system zur bereitstellung von dynamischer servicequalität für push-to-talk-service | |
EP3210400A1 (de) | System zur interkommunication zwischen landmobilfunk- und push-to talk-over cellular-systemen | |
EP3183898B1 (de) | Betrieb im relaismodus direktmodus für push-to-talk-over-cellular (poc) mit wifi-technologien | |
US20170280306A1 (en) | System for Inter-Communication Between Integrated Digital Enhanced Network Systems and Push-To-Talk-Over-Cellular Systems | |
US10111055B2 (en) | Optimized methods for large group calling using unicast and multicast transport bearer for PoC | |
US9883357B2 (en) | Radio access network (RAN) aware service delivery for Push-to-talk-over-Cellular (PoC) networks | |
CA2921531C (en) | Radio access network (ran) aware service delivery for push-to-talk-over-cellular (poc) networks | |
EP3216176B1 (de) | Architekturrahmen zur durchführung von push-to-x diensten mittels cloud-basierter speicherdienste | |
WO2015013449A1 (en) | Radio access network aware service push-to-talk-over-cellular networks | |
WO2016073515A1 (en) | Method for multiplexing media streams to optimize network resource usage for push-to-talk-over-cellular service |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170427 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20180424 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H04L 29/06 20060101ALI20180419BHEP Ipc: H04W 28/02 20090101ALI20180419BHEP Ipc: H04W 8/18 20090101AFI20180419BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190128 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210331 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1418277 Country of ref document: AT Kind code of ref document: T Effective date: 20210815 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015072042 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210804 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1418277 Country of ref document: AT Kind code of ref document: T Effective date: 20210804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211104 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211104 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211206 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015072042 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20220506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211103 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20151103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230529 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231019 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231019 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |