EP3201367B1 - Method and device for determining the time of ignition in an oxygen blowing method - Google Patents

Method and device for determining the time of ignition in an oxygen blowing method Download PDF

Info

Publication number
EP3201367B1
EP3201367B1 EP15750684.1A EP15750684A EP3201367B1 EP 3201367 B1 EP3201367 B1 EP 3201367B1 EP 15750684 A EP15750684 A EP 15750684A EP 3201367 B1 EP3201367 B1 EP 3201367B1
Authority
EP
European Patent Office
Prior art keywords
oxygen
exhaust gas
value
time
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15750684.1A
Other languages
German (de)
French (fr)
Other versions
EP3201367A1 (en
Inventor
Bernhard Voglmayr
Franz Hartl
Andreas ROHRHOFER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Austria GmbH
Original Assignee
Primetals Technologies Austria GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primetals Technologies Austria GmbH filed Critical Primetals Technologies Austria GmbH
Publication of EP3201367A1 publication Critical patent/EP3201367A1/en
Application granted granted Critical
Publication of EP3201367B1 publication Critical patent/EP3201367B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4673Measuring and sampling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/0014Devices for monitoring temperature

Definitions

  • the invention relates to a method for determining the time of ignition in the inflation process, in particular in the LD method, in a converter in which the oxygen amount value and the exhaust gas temperature value are determined, and a corresponding device.
  • the aim of steelmaking is to produce steel, ie iron alloys with low carbon content and desired properties such as hardness, rust resistance or ductility.
  • the pig iron is refined with oxygen.
  • the oxidation process which lowers the carbon content (the refining), provides enough heat in these processes to keep the steel liquid, so external heat input is not necessary in the converters.
  • the blowing process can also be subdivided into inflation and bottom blowing processes. Bottom blowing techniques include the Bessemer process, the Thomas process, the racing fires and early blast furnaces. The best known inflation method is the LD method.
  • the converter may be mounted in a "doghouse” which has slidable gates and is designed to protect the environment from expulsion from the converter and to direct gas leakage between the converter manifold and the exhaust gas chimney into the chimney or secondary gas exhaust.
  • a "doghouse” which has slidable gates and is designed to protect the environment from expulsion from the converter and to direct gas leakage between the converter manifold and the exhaust gas chimney into the chimney or secondary gas exhaust.
  • the fire-side lining mainly hematite plates are used; certain zones receive refractory vaporisation or, in the flexible ceiling area, heat-resistant steel panels.
  • the combustion in the converter does not begin immediately with the beginning of the injection of oxygen, but is usually delayed by a few seconds up to 90 seconds, and then spontaneously use at an unpredictable time. Knowing the exact timing of ignition is very important because only from this point on oxygen will react in reaction with the melt and the actual duration of this reaction will be critical to process control and steel quality, especially carbon content. Together with other parameters, the time of ignition allows the blowing process to be controlled from beginning to end. Knowing the timing of the ignition can improve the quality of the steel, and re-inject oxygen (re-blowing) or re-carburizing (associated with renewed sulfur use). The repeatability of the blowing process is improved, which also has a positive effect on the further steps of the process chain, such as secondary metallurgy.
  • the thermal expansion in the head of the lance can be used to determine the timing of the ignition (by means of strain gauges).
  • strain gauges the thermal expansion in the head of the lance
  • the operator can directly see the reaction and recognize the ignition timing.
  • An open doghouse always carries an immense security risk.
  • the ignition timing can be set manually by pressing a button.
  • an installed camera allows the operator to track the reaction on a monitor.
  • An automatic optical method is the connection of the camera recording with an evaluation system, which analyzes the image material and thus automatically passes the ignition point to the process model.
  • the solutions with video camera have a high installation costs result, since the camera must be cooled accordingly and a non-pollutable opening clear view of the converter mouth must be guaranteed.
  • a disadvantage of the method of AT 299 283 B is that this provides only a single data value, which is often insufficient for the safe ignition detection of the inflation process.
  • the photocell could also be triggered by a single failure, such as a single spark close to the photocell, although the actual ignition of the oxygen has not yet taken place.
  • a plurality of temporally successive images of the area between the converter mouth and the exhaust hood are recorded by means of a CCD image sensor and by the sensor measured radiation intensity determines a course of the radiation intensity over time and the time at which a predetermined radiation intensity or a predetermined increase in the radiation intensity is reached, as the time of ignition determines.
  • a first object of the invention to provide a method which allows a reliable and redundant determination of the time of ignition.
  • a second object is the disclosure of a device which is particularly suitable for carrying out the method.
  • the object related to the method is achieved by specifying a method for determining the time of ignition in an oxygen blowing method, in particular in the case of the LD method, in a converter, wherein an oxygen quantity for the amount of inflated oxygen and an exhaust gas temperature value for the current exhaust gas temperature is determined by the oxygen blowing process resulting exhaust gases and the time at which a predetermined oxygen limit value for the amount of oxygen and at the same time reaches a predetermined exhaust gas temperature limit in the exhaust gas is determined as the time of ignition.
  • the device-related object is achieved by the specification of a device for determining the time of ignition in an oxygen blowing method, in particular in the LD method, comprising a converter which is provided for injecting oxygen, wherein a device for determining an oxygen amount value for the Amount of the inflated oxygen is provided and means for determining an exhaust gas temperature value for the current exhaust gas temperature is provided in the produced by the oxygen blowing exhaust gases and the time at which reaching a predetermined oxygen limit for the amount of oxygen and at the same time a predetermined exhaust gas temperature limit in Exhaust gas is effected, is defined as the time of ignition.
  • the currently measured Exhaust gas temperature value and the oxygen amount value transmitted to a computing unit.
  • the arithmetic unit comprises an evaluation algorithm which compares at least the currently measured exhaust gas temperature value and the oxygen quantity value with the exhaust gas limit temperature value and oxygen limit quantity value.
  • the invention By the invention, a reliable automatic ignition detection is possible.
  • the invention also makes it possible to achieve the target values of the process model more precisely. Also, a reduction of Nachblasroutinen done and O 2 , which is required in the blowing process can be saved. According to the invention, a generation of reproducible steel grades is now possible.
  • a cost-effective implementation is possible if an O 2 volumetric flow measurement is already present. The installation of such a measurement is cost-effective to retrofit, if this is not available.
  • a maximum utilization of crucible gas can be achieved, since this can be done reliably via the primary dedusting in the gasometer.
  • the exhaust gas temperature value is detected at an exhaust gas stack, here in particular at the vertical section of the exhaust gas chimney or at the section which is arranged in fluidic manner before the evaporative cooler inlet.
  • the exhaust gas temperature value may be detected at an evaporative cooler inlet of an evaporative cooler.
  • the oxygen amount value and the exhaust gas temperature value are determined continuously.
  • the oxygen amount value and the exhaust gas temperature value may be determined continuously after the start of the inflation of the oxygen and / or during the inflation or during the inflation process.
  • simplification in the method can be brought about by fewer measured values.
  • other positions are conceivable.
  • the oxygen amount value is determined by means of a volume flow sensor.
  • the oxygen is injected by means of a lance in the converter, the lance is connected to an oxygen supply with valve.
  • the determination of the oxygen quantity value is now preferably carried out by means of a volumetric flow sensor mounted in the region of the valve, in particular on the valve. There, a particularly simple determination of the oxygen amount value is possible.
  • the oxygen limit amount value and / or the exhaust gas limit temperature value are preferably determined empirically.
  • the limit values for signaling an ignition eg based on a Measurement series can be determined empirically. These can vary, for example, depending on the converter and converter content.
  • the limit values can be stored in a database. These can also be updated at certain intervals.
  • the evaluation algorithm is activated in the arithmetic unit only at the beginning of the oxygen blowing.
  • the evaluation algorithm can be activated in the arithmetic unit only during the oxygen blowing.
  • oxygen is blown onto the liquid metal melt.
  • This cumulative, blown O 2 amount is measured, for example via a volumetric flow sensor and transmitted together with the currently measured exhaust gas temperature value to a computer system.
  • the evaluation algorithm runs on the computer system.
  • the evaluation algorithm is now based on the following contexts: If the ignition has taken place, then an increase in the exhaust gas temperature value can be ascertained. Exceeds this value a preset limit value in the presence of a certain amount of inflated O 2 , it can be concluded that an ignition.
  • a feedback from the currently active process phase enables the evaluation to be actively activated.
  • the evaluation algorithm may be inactive during charging, after-blowing, parting, etc., but active at the beginning of the blowing cycle.
  • a monitoring of the relationship between a temperature increase and the oxygen amount value can be provided in the computing unit.
  • an alarm can be output.
  • a multimedia device to which the alarm is passed, may be provided.
  • This alarm can be fed to an alarm system or displayed to operators using a user interface (HMI) or other mobile visualization device.
  • a camera may be provided with a sensor containing a plurality of photodiodes, preferably with a CCD image sensor, wherein the camera is aligned with its optical axis on a gap between a converter mouth and a hood, and a computer for evaluating the images of the camera wherein the computer is programmed to determine a course of the radiation intensity over time on the basis of the radiation intensity recorded by the sensors.
  • the inventive method and the device according to the invention a reliable automatic ignition detection is possible. Also, the accuracy of the triggering time can be further increased. Also, a more accurate achievement of the target values of underlying process model and a reduction of Nachblasroutinen achievable.
  • O 2 which is required in the blowing process, saved. Reliable automatic ignition detection ensures the production of reproducible steel grades. This means that better set process models enable the production of better steel grades.
  • Fig. 1 the converter 1 is shown, in which there is the use to be refurbished, namely scrap and lumpy pig iron 2 and liquid pig iron 3.
  • the exhaust gas chimney 4 is arranged. This can be subdivided into different sections and fluidly connected to an evaporator cooler 16.
  • the raisable and lowerable lance 7 is inserted through the opening 8 of the exhaust stack 4 in the converter 1.
  • the lance 7 descends from the position H 2 , in which the lance 7 is drawn with continuous lines and where the oxygen supply is not yet open, to the operating position H 1 from. Already shortly before reaching the operating position H 1 , the oxygen supply is opened and the oxygen required for blowing 9 emerges. The lance 7 is further lowered while oxygen 9 exits the mouth until it reaches the operating position H 1 , which is shown in phantom.
  • the ignition should be made if no ignition delay occurs. However, if the ignition is delayed by supernatant scrap or the like, an amount of oxygen that does not participate in the freshness reaction flows out and must be taken into consideration.
  • the reaction gases 10 rise from the converter 1, which consist mainly of carbon monoxide (CO).
  • the hood 5 is then, as in Fig. 1 shown, open so that so-called false air 11 flows through the gap between the hood 5 and converter 1 and its converter mouth.
  • the carbon monoxide of the reaction gases 10 burns with air.
  • the incipient combustion of the blast oxygen with the carbon from the pig iron produces white glowing flames or gases.
  • the proposed method or device is based on the analysis of the oxygen amount value, ie the cumulative, blown O 2 amount, in conjunction with the exhaust gas temperature value located in the exhaust gas. These two parameters have a clear relationship, whereby a detonation detection is realized.
  • FIG. 2 the method is shown schematically.
  • an oxygen amount value 110 for the amount of inflated oxygen and an exhaust gas temperature value 20 for the current exhaust gas temperature in the exhaust gas produced by the oxygen blowing method are determined and the time at which a predetermined oxygen limit for the amount of oxygen and at the same time a predetermined exhaust gas temperature limit in the exhaust gas is reached, as the timing of the ignition sets.
  • the oxygen amount value 110 which is also referred to below as the blown O 2 amount 110, is measured, for example, via a volume flow measuring sensor and transmitted to a computer system 40 together with the currently measured exhaust gas temperature value 20.
  • the evaluation algorithm 30 runs on the computer system 40.
  • the exhaust gas temperature value 20 can be displayed, for example, at the evaporator inlet 15 (FIG. FIG. 1 ). Also, the exhaust temperature value 20 at the exhaust stack 4 (FIG. FIG. 1 ), in particular the fluid technology directly in front of the evaporator inlet 15 ( FIG. 1 ) connected portion 14 of the exhaust stack 4 ( FIG. 1 ). Also, it can be at the vertical section 17 ( FIG. 1 ) of the exhaust stack 4 ( FIG. 1 ). At these locations, the attachment of a temperature sensor 18 (FIG. FIG. 1 ) especially easy.
  • the oxygen amount value 110 and the exhaust gas temperature value 20 may be determined continuously or may also be determined continuously after the start of the inflation of the oxygen and / or during the inflation. Other constellations are conceivable as long as they serve the purpose.
  • the evaluation algorithm 30 is based on the following contexts: If the ignition has taken place, an increase in the exhaust gas temperature value 20 can be ascertained. Exceeds this exhaust gas temperature value 20 a preset limit with the simultaneous presence of a certain inflated O 2 amount 110, it can be concluded that an ignition.
  • an AND combination of the O 2 and temperature condition for example in the form of oxygen quantity> 270 Nm 3 AND exhaust gas temperature value> 500 ° C.
  • the oxygen limit value to be determined in advance for the amount of oxygen and the exhaust gas temperature limit value to be determined in advance for signaling an ignition can be determined empirically on the basis of a series of measurements. These can vary, for example, depending on the converter. However, other mathematical methods can be used to set the limits.
  • the evaluation can be actively switched as a function of this.
  • the evaluation algorithm 30 may be inactive during charging, after-blowing, parting, etc., but active at the beginning of the blowing cycle.
  • This alarm may be supplied to an alarm system 60, or displayed to operators via a human-machine interface 70 or other mobile visualization device 80.
  • the device according to the invention is particularly suitable for carrying out the method according to the invention.
  • the "uncertainty factor human" in connection with the ignition detection can be eliminated, whereby a higher or more reproducible product quality results.
  • the crucible driver no longer has to worry about the ignition detection or the process is simplified (saving a control element).
  • the safety can be increased because the doghouse at the beginning of the blowing phase does not have to be open.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Endoscopes (AREA)
  • Air Bags (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Bestimmen des Zeitpunktes der Zündung beim Aufblasverfahren, insbesondere beim LD-Verfahren, in einem Konverter, bei dem der Sauerstoffmengenwert und der Abgastemperaturwert bestimmt werden, sowie eine entsprechende Vorrichtung.The invention relates to a method for determining the time of ignition in the inflation process, in particular in the LD method, in a converter in which the oxygen amount value and the exhaust gas temperature value are determined, and a corresponding device.

Ziel der Stahlerzeugung ist es, Stahl, also Eisenlegierungen mit geringem Kohlenstoffgehalt und gewünschten Eigenschaften wie Härte, Rostbeständigkeit oder Verformbarkeit, herzustellen.The aim of steelmaking is to produce steel, ie iron alloys with low carbon content and desired properties such as hardness, rust resistance or ductility.

Bei den Blasverfahren wird das Roheisen mit Sauerstoff gefrischt. Der Oxidationsprozess, der den Kohlenstoffanteil senkt (das Frischen), liefert in diesen Verfahren genug Wärme, um den Stahl flüssig zu halten, eine externe Wärmezufuhr ist in den Konvertern deshalb nicht notwendig. Die Blasverfahren kann man zusätzlich in Aufblasverfahren und Bodenblasverfahren unterteilen. Zu den Bodenblasverfahren gehören das Bessemer-Verfahren, das Thomas-Verfahren, die Rennfeuer und frühe Hochöfen. Das bekannteste Aufblasverfahren ist das LD-Verfahren.In the blowing process, the pig iron is refined with oxygen. The oxidation process, which lowers the carbon content (the refining), provides enough heat in these processes to keep the steel liquid, so external heat input is not necessary in the converters. The blowing process can also be subdivided into inflation and bottom blowing processes. Bottom blowing techniques include the Bessemer process, the Thomas process, the racing fires and early blast furnaces. The best known inflation method is the LD method.

Beim Linz-Donawitz-Verfahren (kurz LD-Verfahren) werden in den LD-Konverter metallischer Schrott und flüssiges Roheisen eingefüllt und Schlackenbildner hinzugegeben. Über eine Lanze wird Sauerstoff auf die Schmelze geblasen. Dabei verbrennen im Stahl unerwünschte Begleitelemente wie Schwefel, Phosphor, Kohlenstoff usw. und gehen in das Rauchgas oder die Schlacke über. Durch die mit der Verbrennung verbundene enorme Wärmeentwicklung wird der beigegebene Schrott aufgeschmolzen bzw. kann durch Zugabe von Schrott und Erz der Roheiseneinsatz verringert und die Schmelze gekühlt werden. Die Blasdauer beträgt zwischen 10 und 20 Minuten und wird so gewählt, dass die gewünschte Entkohlung und die Verbrennung der unerwünschten Beimengungen sowie die erwünschte Endtemperatur erreicht werden. Der fertige Stahl wird durch Kippen des Konvertergefäßes in Pfannen abgestochen. Erst wird das Stahlbad mit einer Temperatur von mehr als 1. 600°C durch das Abstichloch in eine Pfanne abgestochen, danach wird die Schlacke über den Konverterrand abgegossen.In the case of the Linz-Donawitz process (LD process for short), metallic scrap and molten pig iron are filled into the LD converter and slag formers are added. Oxygen is blown onto the melt via a lance. In the process, unwanted accompanying elements such as sulfur, phosphorus, carbon, etc. are burned in the steel and are transferred to the flue gas or slag. Due to the enormous heat generation associated with the combustion of the added scrap is melted or can be reduced by adding scrap and ore, the pig iron and cooled the melt. The blowing time is between 10 and 20 minutes and is chosen so that the desired decarburization and the combustion of unwanted admixtures and the desired final temperature can be achieved. The finished steel will tapped into pans by tilting the converter vessel. First, the steel bath is tapped at a temperature of more than 1. 600 ° C through the tap hole in a pan, then the slag is poured off over the converter edge.

Der Konverter kann in einer Konvertereinhausung ("Doghouse") angebracht sein, welche verschiebbare Tore aufweist und die Aufgabe hat, die Umgebung vor Auswürfen aus dem Konverter zu schützen und Gasausschwallungen zwischen Konvertermund und Abgaskühlkamin in den Kühlkamin oder in die Sekundärgasabsaugung zu leiten. Als feuerseitige Auskleidung werden vornehmlich Hämatitplatten eingesetzt; gewisse Zonen erhalten eine feuerfeste Bestampfung oder aber, im Bereich der flexiblen Decke, auch Platten aus hitzebeständigem Stahl.The converter may be mounted in a "doghouse" which has slidable gates and is designed to protect the environment from expulsion from the converter and to direct gas leakage between the converter manifold and the exhaust gas chimney into the chimney or secondary gas exhaust. As the fire-side lining mainly hematite plates are used; certain zones receive refractory vaporisation or, in the flexible ceiling area, heat-resistant steel panels.

Die Verbrennung im Konverter setzt aber nicht sofort mit dem Beginn des Einblasens des Sauerstoffs ein, sondern verzögert sich in der Regel um einige Sekunden bis zu 90 Sekunden, um dann spontan zu einem nicht vorbestimmbaren Zeitpunkt einzusetzen. Die Kenntnis des genauen Zeitpunkts der Zündung ist sehr wichtig, weil nur ab diesem Zeitpunkt der Sauerstoff in Reaktion mit der Schmelze tritt und die tatsächliche Dauer dieser Reaktion für die Prozessführung und die Stahlqualität, insbesondere dessen Kohlenstoffgehalt, ausschlaggebend ist. Zusammen mit anderen Parametern ermöglicht der Zeitpunkt der Zündung die Steuerung des Blasvorgangs vom Anfang bis zum Ende. Durch eine genaue Kenntnis des Zeitpunkts der Zündung kann die Qualität des Stahls verbessert werden, und ein erneutes Einblasen von Sauerstoff (Nachblasen) oder ein erneutes Aufkohlen (verbunden mit neuerlichem Schwefeleinsatz) fällt weg. Die Wiederholbarkeit des Blasvorgangs wird verbessert, was sich auch positiv auf die weiteren Schritte der Prozesskette, etwa die Sekundärmetallurgie, auswirkt.However, the combustion in the converter does not begin immediately with the beginning of the injection of oxygen, but is usually delayed by a few seconds up to 90 seconds, and then spontaneously use at an unpredictable time. Knowing the exact timing of ignition is very important because only from this point on oxygen will react in reaction with the melt and the actual duration of this reaction will be critical to process control and steel quality, especially carbon content. Together with other parameters, the time of ignition allows the blowing process to be controlled from beginning to end. Knowing the timing of the ignition can improve the quality of the steel, and re-inject oxygen (re-blowing) or re-carburizing (associated with renewed sulfur use). The repeatability of the blowing process is improved, which also has a positive effect on the further steps of the process chain, such as secondary metallurgy.

Aktuell eingesetzte Verfahren beruhen auf manuellen Eingaben oder nicht absolut verlässlichen automatisierten Systemen. Bisher wurde der Zeitpunkt der Zündung durch den Operator mittels Beobachtung des Konverters bestimmt und somit der Zeitpunkt der Zündung manuell in die Prozesssteuerung eingegeben. Starke Rauch- und Staubentwicklung beeinträchtigen die eindeutige Zünderkennung durch den Operator jedoch, ebenso wie Unerfahrenheit oder eventuelle Unaufmerksamkeit des Operators. Diese Methode ist aber mit einer Zeitverzögerung zwischen dem tatsächlichen Zeitpunkt der Zündung und der Erfassung des Zeitpunkts der Zündung von mehreren Sekunden, oft bis zu 30 Sekunden, verbunden. Eine derart zeitverzögerte Bestimmung des Zeitpunkts der Zündung ist jedoch für die Prozessführung nachteilig. Zudem kann der Zeitpunkt der Zündung im Nachhinein nicht exakt, sondern nur annähernd bestimmt werden.Currently used methods are based on manual input or not completely reliable automated systems. So far, the time of ignition by the operator was determined by observing the converter and thus the timing of the Ignition manually entered into the process control. Strong smoke and dust, however, affect the operator's clear igniter detection, as well as inexperience or eventual inattentiveness of the operator. However, this method is associated with a time delay between the actual time of ignition and the detection of the time of ignition of several seconds, often up to 30 seconds. However, such a time-delayed determination of the timing of the ignition is disadvantageous for the process management. In addition, the timing of the ignition in hindsight, not exactly, but only approximately determined.

Auch die Wärmedehnung im Kopf der Lanze kann zur Bestimmung des Zeitpunkts der Zündung herangezogen werden (mittels Dehnmessstreifen). Dies bedingt jedoch einen hohen technischen Aufwand und ermöglicht nur eine verzögerte Bestimmung des Zeitpunkts der Zündung.Also, the thermal expansion in the head of the lance can be used to determine the timing of the ignition (by means of strain gauges). However, this requires a high technical complexity and allows only a delayed determination of the timing of the ignition.

Bei einem geöffneten Doghouse beispielsweise kann das Bedienpersonal direkt die Reaktion einsehen und den Zündzeitpunkt erkennen. Ein geöffnetes Doghouse birgt aber immer ein immenses Sicherheitsrisiko. So kann der Zündzeitpunkt manuell durch Drücken eines Knopfs gesetzt werden. Auch kann durch eine installierte Kamera das Bedienpersonal die Reaktion auf einem Monitor verfolgen.For example, when the doghouse is open, the operator can directly see the reaction and recognize the ignition timing. An open doghouse always carries an immense security risk. Thus, the ignition timing can be set manually by pressing a button. Also, an installed camera allows the operator to track the reaction on a monitor.

Ein automatisches optisches Verfahren ist die Verbindung der Kamera-Aufnahme mit einem Auswertesystem, welches das Bildmaterial analysiert und so den Zündzeitpunkt automatisch an das Prozessmodell weitergibt. Die Lösungen mit Videokamera haben jedoch einen hohen Installationsaufwand zur Folge, da die Kamera entsprechend gekühlt und über eine nicht verschmutzbare Öffnung freie Sicht auf den Konvertermund garantiert werden muss.An automatic optical method is the connection of the camera recording with an evaluation system, which analyzes the image material and thus automatically passes the ignition point to the process model. The solutions with video camera, however, have a high installation costs result, since the camera must be cooled accordingly and a non-pollutable opening clear view of the converter mouth must be guaranteed.

Aus der DE 10 2012 224 184 A1 ist bekannt, im Rahmen eines Sauerstoff-Blasverfahrens mehrere Betriebsgrößen zu erfassen und anhand einer Verknüpfung der Betriebsgrößen Zielgrößen des Betriebs zu ermitteln. Als zu erfassende Betriebsgrößen werden unter anderem die Abgaszusammensetzung, die Abgastemperatur und die Strahlungsleistung der Konverterflamme genannt. Als Zielgrößen werden ein Kohlenstoffendgehalt, Temperatur und Zusammensetzung der Schmelze genannt.From the DE 10 2012 224 184 A1 It is known to detect several operating variables in the context of an oxygen-blowing process and to determine target variables of the operation on the basis of a combination of the operating variables. As to be recorded operating variables including the exhaust gas composition, the exhaust gas temperature and the radiant power of the converter flame called. The target values are a final carbon content, temperature and composition of the melt.

Aus der WO 2007/109 850 A1 ist bekannt, im Rahmen des Betriebs eines Sauerstoff-Blasofens mittels fotosensitiver Elemente eine Abgaszusammensetzung zu ermitteln und beim Betrieb des Blasofens zu berücksichtigen.From the WO 2007/109 850 A1 It is known to determine an exhaust gas composition in the context of the operation of an oxygen blast furnace by means of photosensitive elements and to take into account during operation of the blast furnace.

Aus der Patentschrift AT 299 283 B ist bekannt, zur genauen Feststellung des Zündungszeitpunktes die Flammenhelligkeit durch eine Fotozelle, also einer Elektronenröhre im weiteren Sinn, zu messen. Die Fotozelle wird gemäß AT 299 283 B mit ihrer optischen Achse horizontal etwa 10 cm über der Oberkante der Konvertermündung angeordnet, sodass sie bei offener Kaminhaube jene Strahlung detektiert, die zwischen Oberkante der Konvertermündung (Konvertermund) und Unterkante der Kaminhaube (Abzugshaube) austritt. Die Fotozelle wird nun so eingestellt, dass ihr Steuerstrom bei einer Temperatur der anvisierten Reaktionsgase von über etwa 1100°C, vorzugsweise etwa 1200°C, auftritt und damit den Zeitpunkt der Zündung darstellt. Der Steuerstrom der Fotozelle löst die Messung für die vorausbestimmte "metallurgische" Sauerstoffmenge aus.From the patent AT 299 283 B It is known to measure the flame brightness by a photocell, ie an electron tube in a broader sense, for the exact determination of the ignition time. The photocell will be according to AT 299 283 B with its optical axis arranged horizontally about 10 cm above the upper edge of the converter mouth, so that it detects with open chimney hood the radiation that emerges between the upper edge of the converter mouth (converter mouth) and the lower edge of the chimney hood (hood). The photocell is now adjusted so that its control current at a temperature of the targeted reaction gases of about 1100 ° C, preferably about 1200 ° C, occurs and thus represents the time of ignition. The control current of the photocell triggers the measurement for the predetermined "metallurgical" amount of oxygen.

Nachteilig am Verfahren der AT 299 283 B ist, dass diese nur einen einzigen Datenwert liefert, der für die sichere Zünderkennung des Aufblasverfahrens oft nicht ausreichend ist. Die Fotozelle könnte auch durch eine einmalige Störung, etwa einem einzigen Funken nahe an der Fotozelle, ausgelöst werden, obwohl die eigentliche Zündung des Sauerstoffs noch nicht stattgefunden hat.A disadvantage of the method of AT 299 283 B is that this provides only a single data value, which is often insufficient for the safe ignition detection of the inflation process. The photocell could also be triggered by a single failure, such as a single spark close to the photocell, although the actual ignition of the oxygen has not yet taken place.

In der AT 509 866 A4 werden frühestens beginnend mit dem Sauerstoffblasen bzw. Erreichen eines gewissen O2-Durchflusses mehrere zeitlich aufeinander folgende Bilder des Bereichs zwischen Konvertermund und Abzugshaube mittels eines CCD-Bildsensors aufgenommen und aufgrund der von den Sensor gemessenen Strahlungsintensität ein Verlauf der Strahlungsintensität über die Zeit bestimmt und jener Zeitpunkt, bei dem eine vorbestimmte Strahlungsintensität oder ein vorbestimmter Anstieg der Strahlungsintensität erreicht wird, als Zeitpunkt der Zündung festlegt.In the AT 509 866 A4 At the earliest starting with the oxygen bubbles or reaching a certain O 2 flow, a plurality of temporally successive images of the area between the converter mouth and the exhaust hood are recorded by means of a CCD image sensor and by the sensor measured radiation intensity determines a course of the radiation intensity over time and the time at which a predetermined radiation intensity or a predetermined increase in the radiation intensity is reached, as the time of ignition determines.

Es ist daher eine erste Aufgabe der Erfindung, ein Verfahren anzugeben, das eine verlässliche und redundante Bestimmung des Zeitpunkts der Zündung erlaubt. Eine zweite Aufgabe liegt in der Angabe einer Vorrichtung, welche sich insbesondere zum Durchführen des Verfahrens eignet.It is therefore a first object of the invention to provide a method which allows a reliable and redundant determination of the time of ignition. A second object is the disclosure of a device which is particularly suitable for carrying out the method.

Die auf das Verfahren bezogene Aufgabe wird gelöst durch die Angabe eines Verfahrens zum Bestimmen des Zeitpunktes der Zündung bei einem Sauerstoffblasverfahren, insbesondere beim LD-Verfahren, in einem Konverter, wobei ein Sauerstoffmengenwert für die Menge des aufgeblasenen Sauerstoffs und ein Abgastemperaturwert für die aktuelle Abgastemperatur in dem durch das Sauerstoffblasverfahren entstehenden Abgasen bestimmt wird und jener Zeitpunkt, bei dem ein vorab festgelegter Sauerstoffgrenzwert für die Menge des Sauerstoffs und gleichzeitig ein vorab festgelegter Abgastemperaturgrenzwert im Abgas erreicht wird, als Zeitpunkt der Zündung festlegt wird.The object related to the method is achieved by specifying a method for determining the time of ignition in an oxygen blowing method, in particular in the case of the LD method, in a converter, wherein an oxygen quantity for the amount of inflated oxygen and an exhaust gas temperature value for the current exhaust gas temperature is determined by the oxygen blowing process resulting exhaust gases and the time at which a predetermined oxygen limit value for the amount of oxygen and at the same time reaches a predetermined exhaust gas temperature limit in the exhaust gas is determined as the time of ignition.

Die auf die Vorrichtung bezogene Aufgabe wird gelöst durch die Angabe einer Vorrichtung zum Bestimmen des Zeitpunktes der Zündung bei einem Sauerstoffblasverfahren, insbesondere beim LD-Verfahren, umfassend einen Konverter, welcher zum Einblasen von Sauerstoff vorgesehen ist, wobei eine Einrichtung zur Ermittlung eines Sauerstoffmengenwerts für die Menge des aufgeblasenen Sauerstoffs vorgesehen ist und eine Einrichtung zur Ermittlung eines Abgastemperaturwerts für die aktuelle Abgastemperatur in dem durch das Sauerstoffblasverfahren entstehenden Abgasen vorgesehen ist und jener Zeitpunkt, bei dem ein Erreichen eines vorab festgelegten Sauerstoffgrenzwertes für die Menge des Sauerstoffs und gleichzeitig ein vorab festgelegter Abgastemperaturgrenzwert im Abgas bewirkt ist, als Zeitpunkt der Zündung festgelegt wird. Hierbei werden der aktuell gemessene Abgastemperaturwert und der Sauerstoffmengenwert an eine Recheneinheit übermittelt. Die Recheneinheit umfasst einen Auswertealgorithums, welcher zumindest den aktuell gemessenen Abgastemperaturwert und den Sauerstoffmengenwert mit dem Abgasgrenztemperaturwert und Sauerstoffgrenzmengenwert vergleicht.The device-related object is achieved by the specification of a device for determining the time of ignition in an oxygen blowing method, in particular in the LD method, comprising a converter which is provided for injecting oxygen, wherein a device for determining an oxygen amount value for the Amount of the inflated oxygen is provided and means for determining an exhaust gas temperature value for the current exhaust gas temperature is provided in the produced by the oxygen blowing exhaust gases and the time at which reaching a predetermined oxygen limit for the amount of oxygen and at the same time a predetermined exhaust gas temperature limit in Exhaust gas is effected, is defined as the time of ignition. Here, the currently measured Exhaust gas temperature value and the oxygen amount value transmitted to a computing unit. The arithmetic unit comprises an evaluation algorithm which compares at least the currently measured exhaust gas temperature value and the oxygen quantity value with the exhaust gas limit temperature value and oxygen limit quantity value.

Beim Blasprozess wird Sauerstoff auf die Flüssigmetallschmelze aufgeblasen. Diese kumulierte, geblasene O2-Menge wird über z.B. über einen Volumenstrommesssensor gemessen und gemeinsam mit dem aktuell gemessenen Abgastemperaturwert z.B. an ein Computersystem übermittelt. Es wurde erkannt, dass, sobald die Zündung erfolgt ist, ein Anstieg des Abgastemperaturwertes festzustellen ist. Überschreitet dieser Wert einen voreingestellten Grenzwert bei gleichzeitigem Vorhandensein einer gewissen aufgeblasenen O2-Menge, kann auf eine erfolgte Zündung geschlossen werden. D.h. durch eine UND-Verknüpfung der O2- und Temperatur-Bedingung, z.B. in der Form O2-Menge > 270 Nm3 und Temperatur > 500 °C, ergibt sich eine sehr robuste und reproduzierbare Zündbedingung, die die relativ unzuverlässige Zünderkennung durch den Operator obsolet macht.In the blowing process, oxygen is blown onto the liquid metal melt. This cumulative, blown O 2 amount is measured, for example via a volumetric flow sensor and transmitted together with the currently measured exhaust gas temperature value, for example, to a computer system. It has been recognized that as soon as the ignition has occurred, an increase in the exhaust gas temperature value can be detected. Exceeds this value a preset limit value in the presence of a certain amount of inflated O 2 , it can be concluded that an ignition. That is, by an AND operation of the O 2 - and temperature condition, for example in the form O 2 amount> 270 Nm3 and temperature> 500 ° C, results in a very robust and reproducible ignition condition, the relatively unreliable ignition detection by the operator makes obsolete.

Durch die Erfindung ist eine zuverlässige automatische Zünderkennung möglich. Durch die Erfindung ist zudem ein exakteres Erreichen der Zielwerte des Prozessmodells möglich. Auch kann eine Reduktion von Nachblasroutinen erfolgen und O2, welches beim Blasverfahren benötigt wird, eingespart werden. Erfindungsgemäß ist nun eine Erzeugung von reproduzierbaren Stahlqualitäten möglich. Zudem ist eine kostengünstige Umsetzung möglich, wenn eine O2-Volumenstrommessung schon vorhanden ist. Die Installation solch einer Messung ist weiter kostengünstig nachzurüsten, falls diese nicht vorhanden ist. Durch die Erfindung ist eine maximale Nutzung von Tiegelgas erreichbar, da dies zuverlässig über die Primärentstaubung in den Gasometer geführt werden kann. Auch ist eine Minderung des Explosionsrisikos durch zu spät erkannte Zündungen des O2-Blasverfahrens bei der Sekundärentstaubung erlangbar. Durch die Erfindung sind vorteilhafterweise besser eingestellte Prozessmodelle und dadurch bessere Stahlqualitäten erzeugbar. Auch ist eine einfache Umsetzung vorteilhaft.By the invention, a reliable automatic ignition detection is possible. The invention also makes it possible to achieve the target values of the process model more precisely. Also, a reduction of Nachblasroutinen done and O 2 , which is required in the blowing process can be saved. According to the invention, a generation of reproducible steel grades is now possible. In addition, a cost-effective implementation is possible if an O 2 volumetric flow measurement is already present. The installation of such a measurement is cost-effective to retrofit, if this is not available. By the invention, a maximum utilization of crucible gas can be achieved, since this can be done reliably via the primary dedusting in the gasometer. Also, a reduction of the risk of explosion can be obtained by late detected ignitions of the O 2 -Blasverfahrens in the secondary dedusting. By the invention are advantageously better set process models and thereby better steel qualities can be produced. Also, a simple implementation is advantageous.

In den Unteransprüchen sind weitere vorteilhafte Maßnahmen aufgelistet, die beliebig miteinander kombiniert werden können, um weitere Vorteile zu erzielen.In the dependent claims further advantageous measures are listed, which can be combined with each other in order to achieve further advantages.

In vorteilhafter Ausgestaltung wird der Abgastemperaturwert an einem Abgaskamin erfasst, hier insbesondere am vertikalen Abschnitt des Abgaskamins oder an dem Abschnitt, welcher fluidtechnisch vor dem Verdampfungskühlereintritt angeordnet ist. Auch kann der Abgastemperaturwert an einem Verdampfungskühlereintritt eines Verdampfungskühlers erfasst werden. Dort ist die Messung der Temperatur besonders einfach bzw. ist die Anbringung einer Messvorrichtung besonders einfach.In an advantageous embodiment, the exhaust gas temperature value is detected at an exhaust gas stack, here in particular at the vertical section of the exhaust gas chimney or at the section which is arranged in fluidic manner before the evaporative cooler inlet. Also, the exhaust gas temperature value may be detected at an evaporative cooler inlet of an evaporative cooler. There, the measurement of the temperature is particularly simple or the attachment of a measuring device is particularly simple.

Bevorzugt werden der Sauerstoffmengenwert und der Abgastemperaturwert kontinuierlich bestimmt. Auch können der Sauerstoffmengenwert und der Abgastemperaturwert kontinuierlich nach dem Beginn des Aufblasens des Sauerstoffs und/oder während des Aufblasens bzw. während des Aufblasprozesses bestimmt werden. Dadurch kann eine Vereinfachung im Verfahren durch weniger Messwerte herbeigeführt werden. Auch andere Positionen sind jedoch denkbar.Preferably, the oxygen amount value and the exhaust gas temperature value are determined continuously. Also, the oxygen amount value and the exhaust gas temperature value may be determined continuously after the start of the inflation of the oxygen and / or during the inflation or during the inflation process. As a result, simplification in the method can be brought about by fewer measured values. However, other positions are conceivable.

In bevorzugter Ausgestaltung wird der Sauerstoffmengenwert mittels eines Volumenstrommesssensors ermittelt. Der Sauerstoff wird mittels einer Lanze in den Konverter eingeblasen, wobei die Lanze mit einem Sauerstoffvorrat mit Ventil verbunden ist. Bevorzugt wird nun die Ermittlung des Sauerstoffmengenwerts durch einen im Bereich des Ventils, insbesondere am Ventil, angebrachten Volumenstrommesssensors vorgenommen. Dort ist eine besonders einfache Bestimmung des Sauerstoffmengenwerts möglich.In a preferred embodiment, the oxygen amount value is determined by means of a volume flow sensor. The oxygen is injected by means of a lance in the converter, the lance is connected to an oxygen supply with valve. The determination of the oxygen quantity value is now preferably carried out by means of a volumetric flow sensor mounted in the region of the valve, in particular on the valve. There, a particularly simple determination of the oxygen amount value is possible.

Bevorzugt werden der Sauerstoffgrenzmengenwert und/oder der Abgasgrenztemperaturwert empirisch ermittelt. D.h. dass die Grenzwerte zur Signalisierung einer Zündung z.B. auf Basis einer Messreihe empirisch ermittelt werden. Diese können beispielsweise je nach Konverter und Konverterinhalt variieren. Die Grenzwerte können in einer Datenbank hinterlegt werden. Auch können diese in gewissen Abständen aktualisiert werden.The oxygen limit amount value and / or the exhaust gas limit temperature value are preferably determined empirically. This means that the limit values for signaling an ignition eg based on a Measurement series can be determined empirically. These can vary, for example, depending on the converter and converter content. The limit values can be stored in a database. These can also be updated at certain intervals.

Bevorzugt wird der Auswertealgorithmus in der Recheneinheit erst mit Beginn des Sauerstoffblasens aktiviert. Jedoch kann der Auswertealgorithmus in der Recheneinheit nur während des Sauerstoffblasens aktiviert werden. Beim Blasprozess wird Sauerstoff auf die Flüssigmetallschmelze aufgeblasen. Diese kumulierte, geblasene O2-Menge wird über z.B. über einen Volumenstrommesssensor gemessen und gemeinsam mit dem aktuell gemessenen Abgastemperaturwert an ein Computersystem übermittelt. Auf dem Computersystem läuft der Auswertealgorithmus. Der Auswertealgorithmus basiert nun auf folgenden Zusammenhängen: Ist die Zündung erfolgt, so ist ein Anstieg der Abgastemperaturwert festzustellen. Überschreitet dieser Wert einen voreingestellten Grenzwert bei gleichzeitigem Vorhandensein einer gewissen aufgeblasenen O2-Menge, kann auf eine erfolgte Zündung geschlossen werden. Durch eine Rückmeldung von der aktuell aktiven Prozessphase kann die Auswertung abhängig davon aktiv geschalten werden. So kann der Auswertealgorithmus beim Chargieren, Nachblasen, Abstechen, usw. inaktiv, zu Beginn des Blaszyklusses hingegen aktiv sein.Preferably, the evaluation algorithm is activated in the arithmetic unit only at the beginning of the oxygen blowing. However, the evaluation algorithm can be activated in the arithmetic unit only during the oxygen blowing. In the blowing process, oxygen is blown onto the liquid metal melt. This cumulative, blown O 2 amount is measured, for example via a volumetric flow sensor and transmitted together with the currently measured exhaust gas temperature value to a computer system. The evaluation algorithm runs on the computer system. The evaluation algorithm is now based on the following contexts: If the ignition has taken place, then an increase in the exhaust gas temperature value can be ascertained. Exceeds this value a preset limit value in the presence of a certain amount of inflated O 2 , it can be concluded that an ignition. A feedback from the currently active process phase enables the evaluation to be actively activated. Thus, the evaluation algorithm may be inactive during charging, after-blowing, parting, etc., but active at the beginning of the blowing cycle.

Zudem kann eine Überwachung des Zusammenhangs zwischen einem Temperaturanstieg und dem Sauerstoffmengenwert in der Recheneinheit vorgesehen sein. Bei Nichteintritt dieses Zusammenhangs, insbesondere bei Nichteintritt eines Temperaturanstiegs, ist bevorzugt ein Alarm ausgebbar. Auch kann ein Alarmsystem und/oder eine Benutzerschnittstelle (HMI = Human-Machine-Interface System) und/oder ein Multimediagerät, an das der Alarm weitergegeben wird, vorgesehen sein.In addition, a monitoring of the relationship between a temperature increase and the oxygen amount value can be provided in the computing unit. In the absence of this relationship, especially in the absence of a rise in temperature, preferably an alarm can be output. Also, an alarm system and / or a user interface (HMI = Human Machine Interface System) and / or a multimedia device, to which the alarm is passed, may be provided.

Auch kann das Alarmsystem den Alarm anschließend erst an eine Benutzerschnittstelle (HMI = Human-Machine-Interface System) und/oder ein Multimediagerät, weitergeben. Da der Zusammenhang zwischen Temperatur-Anstieg und O2-Konzentration charakteristisch für den Blasprozess ist, kann dieser durch ein Rechnersystem, insbesondere ein Computersystem, ebenfalls überwacht werden. Tritt dieser Zusammenhang nach genügend langer Zeit nicht ein, so kann von einem Problem im Blasprozess ausgegangen werden. Dieser Alarm kann einem Alarmsystem zugeführt oder mithilfe einer Benutzerschnittstelle (HMI) oder einem anderen mobilem Visualisierungsgerät dem Bedienpersonal angezeigt werden.The alarm system can then forward the alarm to a user interface (HMI = Human-Machine-Interface System) and / or a multimedia device. Since the relationship between temperature rise and O 2 concentration is characteristic for the blowing process, this can also be monitored by a computer system, in particular a computer system. If this relationship does not occur after a sufficiently long time, then a problem in the blowing process can be assumed. This alarm can be fed to an alarm system or displayed to operators using a user interface (HMI) or other mobile visualization device.

Auch kann eine Kamera mit einem Sensor vorgesehen sein, der mehrere Fotodioden enthält, vorzugsweise mit einem CCD-Bildsensor, wobei die Kamera mit ihrer optischen Achse auf einem Spalt zwischen einem Konvertermund und einer Abzugshaube ausgerichtet ist, sowie ein Rechner zur Auswertung der Bilder der Kamera, wobei der Rechner so programmiert ist, dass er aufgrund der von den Sensoren aufgenommenen Strahlungsintensität einen Verlauf der Strahlungsintensität über die Zeit bestimmt. Frühestens (weil sonst gegebenenfalls andere, nicht von der Zündung stammende Flammen noch hell lodern) beginnend mit dem Sauerstoffblasen (etwa beim Erreichen eines gewissen Sauerstoff-Durchflusses) werden mehrere zeitlich aufeinander folgende Bilder desselben Bereichs zwischen Konvertermund und Abzugshaube mittels eines Sensors, der mehrere, jeweils einem Bildpunkt entsprechende Fotodioden enthält, vorzugsweise mittels eines CCD-Bildsensors, aufgenommen, wird aufgrund der von den Fotodioden gemessenen Strahlungsintensität ein Verlauf der Strahlungsintensität über die Zeit bestimmt und wird jener Zeitpunkt, bei dem eine vorbestimmte Strahlungsintensität oder ein vorbestimmter Anstieg der Strahlungsintensität erreicht wird, als Zeitpunkt der Zündung festlegt. Beide Vorrichtungen/Verfahren können zum Bestimmen des Zündungszeitpunkts auch miteinander verknüpft werden. Die Verbindung der beiden Verfahren liefert ein noch weiter verbessertes Ergebnis für den Zündzeitpunkt.Also, a camera may be provided with a sensor containing a plurality of photodiodes, preferably with a CCD image sensor, wherein the camera is aligned with its optical axis on a gap between a converter mouth and a hood, and a computer for evaluating the images of the camera wherein the computer is programmed to determine a course of the radiation intensity over time on the basis of the radiation intensity recorded by the sensors. At the earliest (because otherwise possibly other, not from the ignition originating flames still brightly blaze) starting with the oxygen bubbles (about when reaching a certain oxygen flow) several temporally successive images of the same area between converter mouth and hood by means of a sensor, which several, contains each corresponding to a pixel photodiodes, preferably recorded by means of a CCD image sensor, a course of the radiation intensity over time is determined due to the radiation intensity measured by the photodiodes and is the time at which a predetermined radiation intensity or a predetermined increase in the radiation intensity is achieved , as timing of ignition sets. Both devices / methods may also be linked together to determine the ignition timing. The combination of the two methods provides an even better result for the ignition timing.

Durch das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung ist eine zuverlässige automatische Zünderkennung möglich. Auch kann die Genauigkeit des Auslösezeitpunkts weiter erhöht werden. Auch ist ein exakteres Erreichen der Zielwerte des zugrunde liegenden Prozessmodells sowie eine Reduktion von Nachblasroutinen erreichbar. Vorteilhafterweise wird zudem O2, welches beim Blasverfahren benötigt wird, eingespart. Durch die zuverlässige automatische Zünderkennung wird die Erzeugung von reproduzierbaren Stahlqualitäten gewährleistet. D.h. dass durch besser eingestellte Prozessmodelle eine Erzeugung von besseren Stahlqualitäten ermöglicht wird.The inventive method and the device according to the invention a reliable automatic ignition detection is possible. Also, the accuracy of the triggering time can be further increased. Also, a more accurate achievement of the target values of underlying process model and a reduction of Nachblasroutinen achievable. Advantageously, in addition O 2 , which is required in the blowing process, saved. Reliable automatic ignition detection ensures the production of reproducible steel grades. This means that better set process models enable the production of better steel grades.

Besonders vorteilhaft ist die Minderung des Explosionsrisikos bei der Sekundärentstaubung durch zu spät erkannte Zündungen des O2-Blasverfahrens. Auch ist eine kostengünstige Umsetzung des Verfahrens bzw. der Vorrichtung möglich, da die O2 Volumenstrommessung leicht anzubringen ist. Auch eine maximale Nutzung von Tiegelgas ist möglich, da dieses zuverlässig über eine Primärentstaubung in einen Gasometer geführt werden kann. Die Erfindung kann zudem kostengünstig in ein bestehendes Condition Monitoring System eingebunden werden.Particularly advantageous is the reduction of the risk of explosion in the secondary dedusting detected by too late ignitions of the O 2 -Blasverfahrens. Also, a cost-effective implementation of the method or the device is possible because the O 2 volume flow measurement is easy to install. Maximum utilization of crucible gas is also possible because it can be reliably fed into a gasometer via primary dedusting. The invention can also be integrated cost-effectively into an existing condition monitoring system.

Weitere Merkmale, Eigenschaften und Vorteile der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung unter Bezugnahme auf die beiliegenden Figuren. Darin zeigen schematisch:

Fig. 1:
eine seitliche Schnittansicht eines Konverters mit erfindungsgemäßem Sensor,
Fig. 2:
schematisch das Verfahren.
Further features, properties and advantages of the present invention will become apparent from the following description with reference to the accompanying figures. In it show schematically:
Fig. 1:
a side sectional view of a converter with inventive sensor,
Fig. 2:
schematically the method.

Obwohl die Erfindung im Detail durch das bevorzugte Ausführungsbeispiel näher illustriert und beschrieben wird, ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt. Variationen hiervon können vom Fachmann abgeleitet werden, ohne den Schutzumfang der Erfindung, wie er durch die nachfolgenden Patentansprüche definiert wird, zu verlassen.Although the invention is illustrated and described in detail by the preferred embodiment, the invention is not limited by the disclosed examples. Variations thereof may be derived by those skilled in the art without departing from the scope of the invention as defined by the appended claims.

In Fig. 1 ist der Konverter 1 dargestellt, in welchem sich der zu frischende Einsatz befindet, nämlich Schrott und stückiges Roheisen 2 sowie flüssiges Roheisen 3. Über dem Konvertermund, zu dem sich der Konverter 1 nach oben hin verjüngt, ist der Abgaskamin 4 angeordnet. Dieser ist in verschiedene Abschnitte unterteilbar und mit einem Verdampferkühler 16 fluidtechnisch verbunden. Eine Abzugshaube 5, welche entlang des Doppelpfeils 6 abgesenkt bzw. angehoben werden kann, umgibt den Abgaskamin 4. Sie dient zum Abdichten des Konvertermunds und zum Auffangen der Frischgase während des Frischens. Die heb- und senkbare Lanze 7 wird durch die Öffnung 8 des Abgaskamins 4 in den Konverter 1 eingeführt.In Fig. 1 the converter 1 is shown, in which there is the use to be refurbished, namely scrap and lumpy pig iron 2 and liquid pig iron 3. About the converter mouth, to which the converter 1 tapers upwards, the exhaust gas chimney 4 is arranged. This can be subdivided into different sections and fluidly connected to an evaporator cooler 16. An exhaust hood 5, which can be lowered or raised along the double arrow 6, surrounds the exhaust gas chimney 4. It serves to seal the converter mouth and to catch the fresh gases during the refining. The raisable and lowerable lance 7 is inserted through the opening 8 of the exhaust stack 4 in the converter 1.

Die Lanze 7 senkt sich von der Position H2, in welcher die Lanze 7 mit durchgehenden Strichen gezeichnet ist und wo die Sauerstoffzufuhr noch nicht geöffnet ist, bis zur Betriebsposition H1 ab. Bereits kurz vor Erreichen der Betriebsposition H1 wird die Sauerstoffzufuhr geöffnet und der zum Blasen benötigte Sauerstoff 9 tritt aus. Die Lanze 7 wird weiter abgesenkt, während Sauerstoff 9 aus der Mündung austritt, bis sie die Betriebsposition H1 erreicht, welche strichpunktiert dargestellt ist. Bei Erreichen der Betriebsposition H1 sollte die Zündung erfolgen, wenn keine Zündverzögerung auftritt. Wenn jedoch die Zündung durch überstehenden Schrott oder dergleichen verzögert wird, so strömt eine Menge Sauerstoff aus, die an der Frischreaktion nicht teilnimmt, und sehr wohl berücksichtigt werden muss.The lance 7 descends from the position H 2 , in which the lance 7 is drawn with continuous lines and where the oxygen supply is not yet open, to the operating position H 1 from. Already shortly before reaching the operating position H 1 , the oxygen supply is opened and the oxygen required for blowing 9 emerges. The lance 7 is further lowered while oxygen 9 exits the mouth until it reaches the operating position H 1 , which is shown in phantom. When operating position H 1 is reached , the ignition should be made if no ignition delay occurs. However, if the ignition is delayed by supernatant scrap or the like, an amount of oxygen that does not participate in the freshness reaction flows out and must be taken into consideration.

Erfolgt die Zündung, so steigen die Reaktionsgase 10 aus dem Konverter 1 auf, die vorwiegend aus Kohlenmonoxid (CO) bestehen. Die Abzugshaube 5 ist dann, wie in Fig. 1 dargestellt, offen, sodass sogenannte Falschluft 11 durch den Spalt zwischen Abzugshaube 5 und Konverter 1 bzw. dessen Konvertermund einströmt. Das Kohlenmonoxid der Reaktionsgase 10 verbrennt mit Luft. Die mit der Zündung beginnende Verbrennung des Blasesauerstoffs mit dem Kohlenstoff aus dem Roheisen erzeugt weiß leuchtende Flammen bzw. Gase.If the ignition, the reaction gases 10 rise from the converter 1, which consist mainly of carbon monoxide (CO). The hood 5 is then, as in Fig. 1 shown, open so that so-called false air 11 flows through the gap between the hood 5 and converter 1 and its converter mouth. The carbon monoxide of the reaction gases 10 burns with air. The incipient combustion of the blast oxygen with the carbon from the pig iron produces white glowing flames or gases.

Bei dem Sauerstoffblasverfahren wird mit hohem Druck (bis 12 bar) Sauerstoff auf das Metallbad aufgeblasen. In einer heftigen Reaktion oxidiert der Sauerstoff das Eisen zu Eisenoxid und den Kohlenstoff zu Kohlenmonoxid (CO), wobei das Eisenoxid den Sauerstoff sofort an die Eisenbegleiter weitergibt. Im Reaktionszentrum, dem Brennfleck, entstehen Temperaturen von 2500 bis 3000°C und eine lebhafte umlaufende Badbewegung, die auch noch während des Prozesses noch nicht gefrischte Teile des Bades an den Brennfleck heranführt.In the oxygen blowing process, oxygen is blown onto the metal bath at high pressure (up to 12 bar). In a violent reaction, the oxygen oxidizes the iron to iron oxide and the Carbon to carbon monoxide (CO), where the iron oxide immediately passes the oxygen to the iron companion. In the reaction center, the focal point, arise temperatures of 2500 to 3000 ° C and a lively circulating Badbewegung that even during the process not yet refined parts of the bath at the focal point introduces.

Zur exakten Prozessführung durch die Prozessmodelle ist eine exakte Erkennung des Zündzeitpunkts von immenser Wichtigkeit. Ab diesem Zeitpunkt beginnt der von der Blaslanze aufgeblasene O2 mit der Flüssigmetallschmelze zu reagieren. Wird dieser Zeitpunkt nicht richtig erkannt, kann es zu Folgen wie beispielsweise einem nicht exakten Erreichen der Zielwerte des Prozessmodells kommen. Auch können Nachblasroutinen benötigt werden.For exact process control through the process models, an exact detection of the ignition timing is of immense importance. From this point on, the O 2 inflated by the lance starts to react with the liquid metal melt. If this point in time is not recognized correctly, it can lead to consequences such as a non-exact achievement of the target values of the process model. Also Nachblasroutinen can be needed.

Auch kann ein erhöhter O2-Verbrauch durch "Nachblasen" vorkommen. Als weitere Folge eines nicht richtig erkannten Zeitpunkts können auch Stahlqualitäten nicht reproduzierbar erzeugt werden. Auch kann vom Prozess erzeugtes CO-Gas nicht verwertet werden - es kommt zur Vollverbrennung.Also, an increased O 2 consumption by "Nachblasen" occur. As a further consequence of an incorrectly recognized time, steel qualities can not be produced reproducibly. Also, CO generated by the process can not be recycled - it comes to full combustion.

Auch kann es zu einem erhöhten Explosionsrisiko bei der Sekundärentstaubung kommen, da durch die Schlauchfilteranlagen zündbares Gas geführt wird. Zudem beruhen die aktuell eingesetzten Verfahren auf manuellen Eingaben oder nicht absolut verlässlichen automatisierten Systemen.It can also lead to an increased risk of explosion in the secondary dedusting, as is guided by the bag filter systems ignitable gas. In addition, the currently used methods are based on manual input or not completely reliable automated systems.

Die Schwierigkeiten im Zusammenhang mit einer visuellen Zünderkennung durch den Operator beim LD-Prozess sind daher hinlänglich bekannt: keine oder schlechte Reproduzierbarkeit, erfahrene Tiegelfahrer sind notwendig, es ist ein offenes Doghouse zu Beginn der Blasphase notwendig, was ein potentielles Sicherheitsrisiko darstellt etc.. Falls kein Zündsignal seitens des Operators kommt, kann dies zu einer erhöhten Belastung des Abgaskamins 4 führen. Bei manchen Anlagen wird dann das Zündsignal nach einer hinreichend langen Zeit automatisch generiert, wobei es sich hierbei um ein stark verzögertes Signal im Vergleich zum tatsächlichen Zündzeitpunkt handelt.The difficulties associated with a visual ignition detection by the operator in the LD process are therefore well known: no or poor reproducibility, experienced crucible drivers are necessary, it is an open doghouse at the beginning of the blowing phase necessary, which represents a potential security risk etc .. If no ignition signal from the operator comes, this can lead to an increased load on the exhaust stack 4. In some systems, the ignition signal then automatically after a sufficiently long time generated, which is a greatly delayed signal compared to the actual ignition timing.

Diese Probleme werden mithilfe der Erfindung nun vermieden.These problems are now avoided by means of the invention.

Das vorgeschlagene Verfahren bzw. Vorrichtung beruht auf der Analyse des Sauerstoffmengenwerts, d.h. der kumulierten, geblasenen O2-Menge, in Verbindung mit dem sich im Abgas befindlichen Abgastemperaturwert. Diese beiden Parameter haben einen eindeutigen Zusammenhang, wodurch eine Zünderkennung realisiert wird.The proposed method or device is based on the analysis of the oxygen amount value, ie the cumulative, blown O 2 amount, in conjunction with the exhaust gas temperature value located in the exhaust gas. These two parameters have a clear relationship, whereby a detonation detection is realized.

In FIG 2 wird das Verfahren schematisch aufgezeigt.In FIG. 2 the method is shown schematically.

Erfindungsgemäß wird ein Sauerstoffmengenwert 110 für die Menge des aufgeblasenen Sauerstoffs und ein Abgastemperaturwert 20 für die aktuellen Abgastemperatur in den durch das Sauerstoffblasverfahren entstehenden Abgasen bestimmt und jener Zeitpunkt, bei dem ein vorab festgelegter Sauerstoffgrenzwert für die Menge des Sauerstoffs und gleichzeitig ein vorab festgelegter Abgastemperaturgrenzwert im Abgas erreicht wird, als Zeitpunkt der Zündung festlegt.According to the present invention, an oxygen amount value 110 for the amount of inflated oxygen and an exhaust gas temperature value 20 for the current exhaust gas temperature in the exhaust gas produced by the oxygen blowing method are determined and the time at which a predetermined oxygen limit for the amount of oxygen and at the same time a predetermined exhaust gas temperature limit in the exhaust gas is reached, as the timing of the ignition sets.

Beim Blasprozess wird Sauerstoff auf die Flüssigmetallschmelze aufgeblasen. Der Sauerstoffmengenwert 110, welche auch nachfolgend als geblasene O2-Menge 110 bezeichnet wird, wird z.B. über einen Volumenstrommesssensor gemessen und gemeinsam mit dem aktuell gemessenen Abgastemperaturwert 20 an ein Computersystem 40 übermittelt. Auf dem Computersystem 40 läuft der Auswertealgorithmus 30. Der Abgastemperaturwert 20 kann z.B. am Verdampfungskühlereintritt 15 (FIG 1) erfasst werden. Auch kann der Abgastemperaturwert 20 an dem Abgaskamin 4 (FIG 1), insbesondere dem fluidtechnisch direkt vor dem Verdampfungskühlereintritt 15 (FIG 1) geschalteten Abschnitt 14 des Abgaskamins 4 (FIG 1), erfasst werden. Auch kann sie am vertikalen Abschnitt 17 (FIG 1) des Abgaskamins 4 (FIG 1) erfasst werden. An diesen Stellen ist die Anbringung eines Temperatursensors 18 (FIG 1) besonders einfach.In the blowing process, oxygen is blown onto the liquid metal melt. The oxygen amount value 110, which is also referred to below as the blown O 2 amount 110, is measured, for example, via a volume flow measuring sensor and transmitted to a computer system 40 together with the currently measured exhaust gas temperature value 20. The evaluation algorithm 30 runs on the computer system 40. The exhaust gas temperature value 20 can be displayed, for example, at the evaporator inlet 15 (FIG. FIG. 1 ). Also, the exhaust temperature value 20 at the exhaust stack 4 (FIG. FIG. 1 ), in particular the fluid technology directly in front of the evaporator inlet 15 ( FIG. 1 ) connected portion 14 of the exhaust stack 4 ( FIG. 1 ). Also, it can be at the vertical section 17 ( FIG. 1 ) of the exhaust stack 4 ( FIG. 1 ). At these locations, the attachment of a temperature sensor 18 (FIG. FIG. 1 ) especially easy.

Der Sauerstoffmengenwert 110 und der Abgastemperaturwert 20 können kontinuierlich bestimmt werden oder aber auch kontinuierlich nach dem Beginn des Aufblasens des Sauerstoffs und/ oder während des Aufblasens bestimmt werden. Auch andere Konstellationen sind vorstellbar, solange sie den Zweck erfüllen.The oxygen amount value 110 and the exhaust gas temperature value 20 may be determined continuously or may also be determined continuously after the start of the inflation of the oxygen and / or during the inflation. Other constellations are conceivable as long as they serve the purpose.

Der Auswertealgorithmus 30 basiert nun auf folgenden Zusammenhängen: Ist die Zündung erfolgt, so ist ein Anstieg des Abgastemperaturwertes 20 festzustellen. Überschreitet dieser Abgastemperaturwert 20 einen voreingestellten Grenzwert bei gleichzeitigem Vorhandensein einer gewissen aufgeblasenen O2-Menge 110, kann auf eine erfolgte Zündung geschlossen werden.The evaluation algorithm 30 is based on the following contexts: If the ignition has taken place, an increase in the exhaust gas temperature value 20 can be ascertained. Exceeds this exhaust gas temperature value 20 a preset limit with the simultaneous presence of a certain inflated O 2 amount 110, it can be concluded that an ignition.

Erfindungsgemäß ergibt sich durch eine UND-Verknüpfung der O2-und Temperatur-Bedingung z.B. in der Form Sauerstoffmengenwert > 270 Nm3 UND Abgastemperaturwert > 500°C eine sehr robuste und reproduzierbare Zündbedingung, die die relativ unzuverlässige Zünderkennung durch den Operator obsolet macht. Der vorab festzulegende Sauerstoffgrenzwert für die Menge des Sauerstoffs und der vorab festzulegende Abgastemperaturgrenzwert zur Signalisierung einer Zündung können auf Basis einer Messreihe empirisch ermittelt werden. Diese können beispielsweise je nach Konverter variieren. Es können aber auch andere mathematische Methoden zum Festlegen der Grenzwerte verwendet werden.According to the invention, an AND combination of the O 2 and temperature condition, for example in the form of oxygen quantity> 270 Nm 3 AND exhaust gas temperature value> 500 ° C., results in a very robust and reproducible ignition condition which makes the relatively unreliable ignition identification obsolete by the operator. The oxygen limit value to be determined in advance for the amount of oxygen and the exhaust gas temperature limit value to be determined in advance for signaling an ignition can be determined empirically on the basis of a series of measurements. These can vary, for example, depending on the converter. However, other mathematical methods can be used to set the limits.

Durch eine Rückmeldung von der aktuell aktiven Prozessphase 50 kann die Auswertung abhängig davon aktiv geschalten werden. So kann der Auswertealgorithmus 30 beim Chargieren, Nachblasen, Abstechen, usw. inaktiv, zu Beginn des Blaszykluses hingegen aktiv sein.As a result of feedback from the currently active process phase 50, the evaluation can be actively switched as a function of this. For example, the evaluation algorithm 30 may be inactive during charging, after-blowing, parting, etc., but active at the beginning of the blowing cycle.

Da der Zusammenhang zwischen Temperaturanstieg und Sauerstoffmengenwert charakteristisch für den Blasprozess ist, kann dieser durch das Computersystem 40 ebenfalls überwacht werden. Tritt dieser Zusammenhang nach genügend langer Zeit nicht ein, so kann von einem Problem im Blasprozess ausgegangen werden.Since the relationship between temperature rise and oxygen level is characteristic of the blowing process, it can also be monitored by the computer system 40. If this relationship does not occur after a sufficiently long time, then a problem in the blowing process can be assumed.

Dieser Alarm kann einem Alarmsystem 60 zugeführt, oder mithilfe einer Benutzerschnittstelle (Human-Machine-Interface) 70 oder einem anderen mobilem Visualisierungsgerät 80 dem Bedienpersonal angezeigt werden.This alarm may be supplied to an alarm system 60, or displayed to operators via a human-machine interface 70 or other mobile visualization device 80.

Die erfindungsgemäße Vorrichtung eignet sich insbesondere dazu das erfindungsgemäße Verfahren durchzuführen.The device according to the invention is particularly suitable for carrying out the method according to the invention.

Durch die Erfindung kann der "Unsicherheitsfaktor Mensch" im Zusammenhang mit der Zünderkennung eliminiert werden, wodurch eine höhere bzw. reproduzierbarere Produktqualität entsteht. Der Tiegelfahrer braucht sich nicht mehr um die Zünderkennung zu kümmern bzw. die Prozessführung wird vereinfacht (Einsparung eines Bedienelements). Außerdem kann die Sicherheit erhöht werden, da das Doghouse zu Beginn der Blasphase nicht mehr offen stehen muss.By means of the invention, the "uncertainty factor human" in connection with the ignition detection can be eliminated, whereby a higher or more reproducible product quality results. The crucible driver no longer has to worry about the ignition detection or the process is simplified (saving a control element). In addition, the safety can be increased because the doghouse at the beginning of the blowing phase does not have to be open.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Konverter, inbesondere StahlkonverterConverters, in particular steel converters
22
Schrott und stückiges RoheisenScrap and lumpy pig iron
33
Flüssiges RoheisenMolten pig iron
44
Abgaskaminexhaust stack
55
Abzughaubehood
66
Richtung der Absenkung bzw. Anhebung der Abzughaube 5Direction of lowering or raising the exhaust hood 5
77
Lanzelance
88th
Öffnung für die Lanze 7Opening for the lance 7
99
Sauerstoffoxygen
1010
Reaktionsgasereaction gases
1111
Falschluftsecondary air
1414
Schräg nach unten gerichtet Abschnitt des AbzugskaminsSlanted down section of the flue
1515
VerdampfungskühlereintrittEvaporative cooler inlet
1616
VerdampfungskühlerEvaporative cooler
1717
Horizontalabschnitt des AbzugskaminsHorizontal section of the exhaust chimney
1818
Temperatursensortemperature sensor
2020
AbgastemperaturwertExhaust gas temperature value
3030
AuswertealgorithumsAuswertealgorithums
4040
Computersystemcomputer system
5050
Prozessphaseprocess phase
6060
Alarmsystemalarm system
7070
Benutzerschnittstelle(HMI = HumanInterfaceSystem)User interface (HMI = Human Interface System)
8080
Multimediagerätmultimedia device
110110
SauerstoffmengenwertAmount of oxygen value
H1 H 1
Betriebsposition der Lanze 7Operating position of the lance 7
H2 H 2
Position der Lanze 7, wo die Sauerstoffzufuhr geöffnet wirdPosition of the lance 7, where the oxygen supply is opened

Claims (20)

  1. Method for determining the time of ignition in an oxygen steelmaking process, in particular, in the LD method, in a converter (1),
    characterised in that
    an oxygen quantity value (110) for the quantity of the top-blown oxygen and an exhaust gas temperature value (20) for the current exhaust gas temperature in the exhaust gases arising as a result of the oxygen steelmaking process is determined and the time at which a predetermined oxygen threshold value for the quantity of oxygen and simultaneously a predetermined exhaust gas temperature threshold value in the exhaust gas is reached, is established as the time of ignition.
  2. Method for determining the time of ignition according to claim 1,
    characterised in that
    the exhaust gas temperature value (20) is determined at an evaporative cooler inlet of an evaporative cooler and/or the exhaust gas temperature value (20) on an exhaust gas stack (4), in particular, the section of the exhaust gas stack connected in a fluid-technical manner immediately in front of the evaporative cooler inlet.
  3. Method for determining the time of ignition according to one of the preceding claims,
    characterised in that
    the oxygen quantity value (110) and the exhaust gas temperature value (20) are continuously determined.
  4. Method for determining the time of ignition according to one of the preceding claims 1-2,
    characterised in that
    the oxygen quantity value (110) and the exhaust gas temperature value (20) are continuously determined after starting the top blowing of the oxygen and/or during the top blowing.
  5. Method for determining of the time of ignition according to one of the preceding claims,
    characterised in that
    the oxygen quantity value (110) is determined by means of a volume flow measurement sensor.
  6. Method for determining of the time of ignition according to claim 5,
    characterised in that
    the oxygen is blown into the converter (1) by means of a lance (7), wherein the lance (7) is connected to an oxygen supply with a valve, and wherein the ascertainment of the oxygen quantity value (110) is undertaken by a volume flow measurement sensor mounted in the area of the valve, in particular, on the valve.
  7. Method for determining the time of ignition according to one of the preceding claims,
    characterised in that
    the oxygen threshold quantity value and/or the exhaust gas temperature value are ascertained empirically.
  8. Method for determining the time of ignition according to one of the preceding claims,
    characterised in that
    the currently measured exhaust gas temperature value (20) and the oxygen quantity value (110) is relayed to a computing unit (40) and the computing unit (40) comprises an analysis algorithm (30) which compares at least the currently measured exhaust gas temperature value (20) and the oxygen quantity value (110) with the exhaust gas temperature value and oxygen threshold quantity value.
  9. Method for determining the time of ignition according to claim 8,
    characterised in that
    the analysis algorithm (30) in the computing unit (40) is not activated until the start of the oxygen blast.
  10. Method for determining the time of ignition according to claim 8,
    characterised in that
    the analysis algorithm (30) in the computing unit (40) is only activated during the oxygen blast.
  11. Method for determining the time of ignition according to one of the preceding claims,
    characterised in that
    in addition, the connection between the temperature increase and the oxygen quantity value (110) is monitored and if the connection does not occur, in particular, if a temperature increase does not occur, an alarm is emitted.
  12. Method for determining the time of ignition according to claim 11,
    characterised in that
    the alarm is relayed to an alarm system (60) and/or to a user interface (HMI = Human Machine Interface System) (70) and/or to a multimedia device (80).
  13. Device for determining the time of ignition in an oxygen steelmaking process, in particular, in the LD method, comprising a converter (1),
    characterised in that
    a device for determining an oxygen quantity value (110) is provided for the quantity of the top-blown oxygen and a device for determining an exhaust gas temperature value (20) for the current exhaust gas temperature in the exhaust gases arising as a result of the oxygen steelmaking process is provided and a computing unit is provided to which the currently measured exhaust gas temperature value (20) and the oxygen quantity value (110) are conveyed, which comprises an analysis algorithm (30) which at least compares the currently measured exhaust gas temperature value (20) and the oxygen quantity value (110) to the exhaust gas threshold temperature value and oxygen threshold quantity value, and establishes the time at which a predetermined oxygen threshold value is reached for the quantity of oxygen and a predetermined exhaust gas temperature threshold value is simultaneously effected in the exhaust gas as the time of ignition.
  14. Device according to claim 13,
    characterised in that
    an evaporative cooler (16) is provided with an evaporative cooler inlet (15) and an exhaust gas stack (4) and the exhaust gas temperature value (20) can be recorded at the evaporative cooler inlet (15) and/or on the exhaust gas stack (4), in particular, the section of the exhaust gas stack (4) connected in a fluid-technical technical manner immediately in front of the evaporative cooler inlet (15).
  15. Device according to claim 13 or 14,
    characterised in that
    a volume flow measurement sensor for ascertaining the oxygen quantity value (110) is provided.
  16. Device according to claim 15,
    characterised in that
    the oxygen can be blown into the converter (1) by means of a lance (7), wherein the lance (7) is connected to an oxygen supply with a valve, and wherein the volume flow measurement sensor is mounted in the area of the valve, in particular, on the valve.
  17. Device according to one of claims 13 to 16,
    characterised in that
    an activation of the analysis algorithm (30) in the computing unit is not provided until the start of the oxygen blast.
  18. Device according to claim 17,
    characterised in that
    activation of the analysis algorithm (30) in the computing unit is only provided during the oxygen blast.
  19. Device according to one of claims 13 to 18,
    characterised in that monitoring of the connection between an increase in temperature and the oxygen quantity value (110) is provided and in the event of the connection not occurring, in particular, if a temperature increase does not occur, an alarm can be emitted.
  20. Device according to one of claims 13 to 19,
    characterised in that
    an alarm system (60) and/or a user interface (HMI = Human Machine Interface System) (70) and/or a multimedia device (80) to which the alarm is relayed, is provided.
EP15750684.1A 2014-09-30 2015-08-06 Method and device for determining the time of ignition in an oxygen blowing method Active EP3201367B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14186962.8A EP3002342A1 (en) 2014-09-30 2014-09-30 Method and device for determining the time of ignition in an oxygen blowing method
PCT/EP2015/068148 WO2016050399A1 (en) 2014-09-30 2015-08-06 Method and device for determining the point in time of ignition during an oxygen blowing process

Publications (2)

Publication Number Publication Date
EP3201367A1 EP3201367A1 (en) 2017-08-09
EP3201367B1 true EP3201367B1 (en) 2018-06-13

Family

ID=51625940

Family Applications (2)

Application Number Title Priority Date Filing Date
EP14186962.8A Withdrawn EP3002342A1 (en) 2014-09-30 2014-09-30 Method and device for determining the time of ignition in an oxygen blowing method
EP15750684.1A Active EP3201367B1 (en) 2014-09-30 2015-08-06 Method and device for determining the time of ignition in an oxygen blowing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP14186962.8A Withdrawn EP3002342A1 (en) 2014-09-30 2014-09-30 Method and device for determining the time of ignition in an oxygen blowing method

Country Status (4)

Country Link
EP (2) EP3002342A1 (en)
CN (1) CN106795573B (en)
BR (1) BR112017006451B1 (en)
WO (1) WO2016050399A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110129513B (en) * 2019-05-05 2021-04-20 河钢股份有限公司承德分公司 Method for preventing explosion venting of electric dust collector
CN115491458B (en) * 2021-06-19 2024-02-02 上海梅山钢铁股份有限公司 Method for setting running time of converter acoustic discrete descaling unit
CN115232908B (en) * 2022-08-02 2024-06-14 广东韶钢松山股份有限公司 Converter steelmaking method capable of preventing dry dedusting explosion venting
CN115491459A (en) * 2022-08-30 2022-12-20 石钢京诚装备技术有限公司 Method for climbing at start of blowing oxygen flow of dry dedusting converter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT299283B (en) 1969-04-08 1972-06-12 Voest Ag Process for controlling the operation of oxygen inflation processes
JPS57203715A (en) * 1981-06-09 1982-12-14 Kawasaki Steel Corp Discriminating method of ignition in top-blown converter
CA2541092A1 (en) * 2006-03-28 2007-09-28 Murray Thomson Infrared light sensors for diagnosis and control of industrial furnace gases
AT509866B1 (en) 2010-06-02 2011-12-15 Siemens Vai Metals Tech Gmbh METHOD FOR DETERMINING THE TIME OF IGNITION IN THE INFLATION METHOD
CN202074844U (en) * 2011-03-10 2011-12-14 中国恩菲工程技术有限公司 Ignition control system for oxygen top-blown smelting furnace
DE102012224184A1 (en) * 2012-12-21 2014-06-26 Sms Siemag Ag Method for the prediction, control and / or regulation of steelworks processes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3002342A1 (en) 2016-04-06
EP3201367A1 (en) 2017-08-09
CN106795573B (en) 2020-08-18
WO2016050399A1 (en) 2016-04-07
BR112017006451B1 (en) 2022-01-18
CN106795573A (en) 2017-05-31
BR112017006451A2 (en) 2017-12-12

Similar Documents

Publication Publication Date Title
EP3201367B1 (en) Method and device for determining the time of ignition in an oxygen blowing method
CN105308191B (en) Blast furnace method for detecting abnormality and method for operating blast furnace
EP2576846B1 (en) Method for determining the time of ignition in the top-blowing process
EP2287581B1 (en) Method and device for contactless determination of a temperature T of molten metal
EP2394124B1 (en) Method for controlling a carbon monoxide output of an electric arc light oven
CN104392213B (en) A kind of image information state recognition system suitable for fusion process
EP2935633B1 (en) Method and device for predicting, controlling and/or regulating steelworks processes
EP2329210A1 (en) Method for operating a furnace and device for carrying out the method
CN109266808A (en) The synthesis cognitive method of converter
CN112501377A (en) Method and system for detecting content abnormality of converter steelmaking slag
JP2015052149A (en) Method for determining operational situation of blast furnace
CN209456489U (en) The synthesis sensing device arragement construction of converter
EP3748267A1 (en) Method for controlling or regulating an industrial system
DE2239578C3 (en) Gas collecting hood for converter
EP3002341A1 (en) Method and device for determining the time of ignition in an oxygen blowing method
CN105987929A (en) Primary and secondary short circuit test box
EP2843340B1 (en) Method for detecting a combustible gas in a furnace and furnace
CN101245408A (en) Combustion suppressing gas supply device for molten metal and combustion suppressing gas supply method for molten metal
EP3215642B1 (en) Method and apparatus for controlling the pressure in the exhaust gas duct of a converter
EP3555527B1 (en) Flame image analysis for furnace combustion control
CN100406834C (en) Detection device of corrosion of induction furnace bottom aeration element
DE2015788A1 (en) Controlling oxygen top blowing processes in - steel smelting plant
JP6553532B2 (en) Electric furnace operation control system, electric furnace and electric furnace operation control method
EP3456850A1 (en) Method and device for controlling a combustion and furnace
DE1433702A1 (en) Device for recovering unburned gases given off by fresh furnaces for metals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170502

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1008575

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015004695

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180613

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180913

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180913

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180914

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181013

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015004695

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180806

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180831

26N No opposition filed

Effective date: 20190314

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150806

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180806

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230825

Year of fee payment: 9

Ref country code: AT

Payment date: 20230822

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230821

Year of fee payment: 9