EP3201089B1 - Smart passenger service unit - Google Patents
Smart passenger service unit Download PDFInfo
- Publication number
- EP3201089B1 EP3201089B1 EP15846009.7A EP15846009A EP3201089B1 EP 3201089 B1 EP3201089 B1 EP 3201089B1 EP 15846009 A EP15846009 A EP 15846009A EP 3201089 B1 EP3201089 B1 EP 3201089B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- service unit
- passenger service
- speaker
- passenger
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 56
- 229910052760 oxygen Inorganic materials 0.000 claims description 55
- 239000001301 oxygen Substances 0.000 claims description 55
- 238000004891 communication Methods 0.000 claims description 16
- 239000003550 marker Substances 0.000 claims description 9
- 235000012054 meals Nutrition 0.000 claims description 3
- 230000007246 mechanism Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 26
- 238000007726 management method Methods 0.000 description 21
- 238000013461 design Methods 0.000 description 15
- 229920002492 poly(sulfone) Polymers 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 10
- 238000013459 approach Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- QRABSTLMZWUWIQ-UHFFFAOYSA-N CSCP Chemical compound CSCP QRABSTLMZWUWIQ-UHFFFAOYSA-N 0.000 description 5
- VGVIKVCCUATMNG-UHFFFAOYSA-N 1,2,4-trichloro-5-phenylbenzene Chemical compound C1=C(Cl)C(Cl)=CC(Cl)=C1C1=CC=CC=C1 VGVIKVCCUATMNG-UHFFFAOYSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 101000699762 Homo sapiens RNA 3'-terminal phosphate cyclase Proteins 0.000 description 2
- 102100029143 RNA 3'-terminal phosphate cyclase Human genes 0.000 description 2
- IWUCXVSUMQZMFG-AFCXAGJDSA-N Ribavirin Chemical compound N1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 IWUCXVSUMQZMFG-AFCXAGJDSA-N 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 239000013256 coordination polymer Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000011058 failure modes and effects analysis Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000000153 supplemental effect Effects 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 208000031963 Beta-mercaptolactate cysteine disulfiduria Diseases 0.000 description 1
- 101100059509 Mus musculus Ccs gene Proteins 0.000 description 1
- 241000218220 Ulmaceae Species 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000004693 coupled cluster singles and doubles theory Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 238000011990 functional testing Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/02—Casings; Cabinets ; Supports therefor; Mountings therein
- H04R1/028—Casings; Cabinets ; Supports therefor; Mountings therein associated with devices performing functions other than acoustics, e.g. electric candles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D11/00—Passenger or crew accommodation; Flight-deck installations not otherwise provided for
- B64D11/0015—Arrangements for entertainment or communications, e.g. radio, television
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D11/00—Passenger or crew accommodation; Flight-deck installations not otherwise provided for
- B64D11/0015—Arrangements for entertainment or communications, e.g. radio, television
- B64D11/00155—Individual entertainment or communication system remote controls therefor, located in or connected to seat components, e.g. to seat back or arm rest
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V33/00—Structural combinations of lighting devices with other articles, not otherwise provided for
- F21V33/0004—Personal or domestic articles
- F21V33/0052—Audio or video equipment, e.g. televisions, telephones, cameras or computers; Remote control devices therefor
- F21V33/0056—Audio equipment, e.g. music instruments, radios or speakers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/20—Arrangements for obtaining desired frequency or directional characteristics
- H04R1/22—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only
- H04R1/28—Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D11/00—Passenger or crew accommodation; Flight-deck installations not otherwise provided for
- B64D2011/0053—Cabin passenger reading lights
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D45/00—Aircraft indicators or protectors not otherwise provided for
- B64D2045/007—Indicators or signs in the cabin, e.g. exit signs or seat numbering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D2231/00—Emergency oxygen systems
- B64D2231/02—Supply or distribution systems
- B64D2231/025—Oxygen masks; Mask storages; Features related to mask deployment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2499/00—Aspects covered by H04R or H04S not otherwise provided for in their subgroups
- H04R2499/10—General applications
- H04R2499/13—Acoustic transducers and sound field adaptation in vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/40—Weight reduction
Definitions
- a passenger service unit is a unit provided on a vehicle that allows interaction between the vehicle's service providers and passengers, and provides necessary hardware/software for providing various passenger services. In an aircraft, this unit is typically located above a passenger's seat. In general, it is desirable to make PSUs highly functional, yet at the same time, keeping them simple, inexpensive, and lightweight.
- US 6,393,343 B1 and US 2012/0230530 A1 disclose passenger service units for aircraft.
- the passenger service unit comprises a plurality of service functions implemented on the basis of functional electronic units. These service functions are for example LED reading lights with switching knobs, loudspeaker, projection display.
- the functional electronic units are accommodated without cabling on a common circuit board.
- the passenger service units in an aircraft are equipped with a passenger interface and supply adapter.
- Each adapter includes an individual processor which is programmable independently of the aircraft central control through a programming input.
- the programmable interface permits controlling passenger service components in the passenger cabin such as lamps in a cabin lighting system, a public address system, and so forth, directly by the interface independently of the aircraft central control.
- the interface with its own individual processor and memory is connected through a databus to the aircraft central control, for example, for remote programming of the interface and for reporting the module's activities to the aircraft central control.
- the interface reduces the memory capacity requirements for the aircraft central control and permits the individual programming of each passenger service unit also independently of any other passenger service unit thereby avoiding retesting of the entire cabin system when for example only one passenger service unit is reprogrammed.
- the present invention refers to a passenger service unit for an aircraft as defined in claim 1.
- a PSU architecture design that incorporates features to convert input power (115 VAC/28 VDC) to supply control voltage and switching capability from digital communication signals to PSU components.
- This panel is mounted overhead in the aircraft and houses the passenger speaker, reading lights, attendant call lights, oxygen supply, and pulse oxygen controller.
- the Integrated PSU concept reduces part count and consolidates components such as heat-sinks, bezels, housings and wire harnesses.
- the architecture developed varies from the existing architecture design in that the PSU would also house the electrical components necessary to reduce electrical wiring throughout the aircraft and reduce the need for multiple overhead equipment units (OEUs), or separate power conversion and control modules throughout the aircraft.
- OFEUs overhead equipment units
- a passenger service unit for a vehicle (as described herein, the vehicle is an aircraft, but could be any vehicle with a PSU) with an intelligent design that forms a part of an integrated cabin system.
- PSU passenger service unit
- FIG. 1 is a block diagram showing an overview of an integrated cabin system 1.
- the cabin systems comprise various elements that are able to communicate with one another over a common network 14. These elements include main cabin lighting 2, a passenger address system 4, in-flight entertainment (IFE) 6, passenger connectivity 8, crew mobile devices 10, in-seat power 12, and a control panel 13. These interact with or support a lighting system 15 that provides dynamic cabin lighting that creates an immersive experience for the passengers, monuments 16, such as galley inserts, lavatories, closets, dividers, entryways, and potable and waste water.
- the seat systems 18 integrate the IFE and passenger overhead unit (POU) power, actuation, reading lights, and controls.
- In-cabin connectivity 19 is provided for passengers, such as WiFi, Internet and IFE delivery, and entertainment content.
- the integrated cabin system includes the PSUs 20, which incorporate an attendant call, digital signage, displays, reading lights, etc.
- Figure 2 provides a further breakdown of certain aircraft cabin components illustrated in Figure 1 .
- the aircraft cabin may be broken down into two primary elements: cabin interior and cabin system.
- the cabin interior which includes seats, structures, and monuments
- the seats may be broken down into first, business, and economy classes.
- the structures include PSUs, stow bins and closets, and sidewalls/flooring.
- the monuments include galley and galley inserts, lavatory lighting & waste control.
- the IFE & connectivity may be broken down into content & transactions, IFE servers and WAPs, and tables & embedded displays.
- the cabin management may include zone management, PA, and interphone, cabin and seat power, and lighting & attendant controls.
- the environmental & safety may include oxygen delivery, air conditioning & humidification, and fire suppression.
- the aircraft modification shown on the left-hand side of Figure 2 is overarching, and refers to modification of the aircraft as a whole.
- An OEM attains a type certificate (TC) from the FAA that grants regulatory authorization to fly the aircraft. All modifications done to the aircraft after original type certification are approved via amended type certificate (by the OEM) or Supplemental Type Certificate (STC) which is open for parties other than the OEM.
- TC type certificate
- STC Supplemental Type Certificate
- FIG 3A illustrates an embodiment of a wiring architecture for PSUs 20 in which a group of PSUs 20 are shown. In the design shown, there are four PSUs 20 per OEU 100.
- the wiring allows cabin pressure to be monitored at each oxygen control module.
- the initiator sequencing is managed by a built-in test (BIT) power wire assert between the control modules in the column (of seats running fore and aft, and center column, on a twin aisle aircraft (left and right columns on a single aisle aircraft.
- BIT built-in test
- FIG 3B is a more detailed diagram of the OEU shown in Figure 3A and illustrates the composition of the PSUs 20 and associated wiring.
- the PSUs 20 can include a programmable active display (information sign) 21 that is readily viewable by a seated passenger and displays things such as "fasten seat belt” and “no personal electronic devices (PEDs)", a dynamic seat row marker 23 that is readily viewable from a vehicle aisle, an oxygen system 24 (with masks and associated deployment hardware), a call button 26, task lights 28, and first 30 and second 32 cable bundle connectors for connecting, respectively, first 34 and second 36 cable bundles to the PSU 20. There is also a third connector 33 for connecting the oxygen system cable bundle 38 to the oxygen system 24.
- a programmable active display information sign
- PEDs personal electronic devices
- the wiring requirements include a total of forty-eight wires, broken down as follows: OEU Drops 34: an eight-wire bundle • two for power (115 VAC) • six for data (RS-485 in/out) OEU Feeds 36: a common thirty-six wire bundle • twenty for reading lights • eight for ordinance • eight for attendant call Oxygen Power 38: a four-wire bundle • main power (28VDC, 5A) • backup power (28VDC, 5A) • BIT power (28VDC, 2.5A) • common
- FIGs 4A and 4B illustrate an embodiment similar to that shown in Figures 3A and 3B , but also includes an oxygen system that has an altitude input module.
- the oxygen cable bundle 38 adds two additional wires to accommodate controller area network (CAN) (high/low) bus communications over which the altitude data can be sent and enabling health management.
- CAN controller area network
- the wiring requirements include a total of fifty wires, broken down as follows: OEU 34: Drops an eight-wire bundle • two for power (115 VAC) • six for data (RS-485 in/out) OEU Feeds 36: a common thirty-six wire bundle • twenty for reading lights • eight for ordinance • eight for attendant call Oxygen Power 38: a six -wire bundle • main power (28VDC, 5A) • backup power (28VDC, 5A) • BIT power (28VDC, 2.5A) • common • CAN (high/low)
- Figures 5A and 5B illustrate a more integrated embodiment in which a single wire bundle 42 connects to the PSU 20 via a single connector 35.
- this may be a thirteen-wire bundle in which: SU Drops 34': a thirteen-wire bundle • three for 02 power (main, backup, and return) • two for 02 CAN (high/low) • two for SU power (inc. 02 BIT) • six for SU data (RS-485 in/out)
- FIG. 7 is an example block diagram layout according to an embodiment.
- the cabin services system (CSS) 110 is connected to a zone management unit (ZMU) 120 via some form of network .
- the ZMU 120 interfaces to the smart service unit (SSU) 130 providing power 34.1 (e.g., 28 VDC) and data communication 34.2 (e.g., RS-485) lines.
- Oxygen power 150 e.g., 28 VDC
- the altitude management unit 50 can be connected to the oxygen CANBUS interface via a network, and this interface is connected to the SSU 130 via cable bundle 38.2.
- Figure 8 is an example block diagram layout similar to Figure 7 , where a single cable bundle 42 is provided to the SSU 130 (the cable branching occurs at other locations within the aircraft).
- the SSU 130 reduces visual clutter for the passenger and provides a targeted delivery of information to the passenger, as is illustrated in the embodiments according to Figures G-K.
- the integrated systems permit PSU lighting scenes to be coordinated with the cabin scenes. They also permit a comprehensive onboard diagnostics and health management ability.
- the enhanced cabin crew communications provide a new tool to streamline cabin services.
- Figure 32 shows a networked interconnection between a number of service units 130 and the central service unit power/control 140 having interfaces to power, audio, and communications of the aircraft.
- Figure 9 is a block diagram illustrating an organization of the PSUs into zone management areas, each controlled by a zone management unit. It illustrates how the smart PSU elements can be integrated into an existing airplane system architecture. Everything connected with the leftmost lines on the PSU is existing. The components connected with the rightmost lines on the PSUs relate to the new "smart" PSU.
- FIG 10 is a block diagram illustrating both the PSU controller 20.1 and the oxygen controller 24.1.
- the PSU controller 20.1 contains a power supply that may take either AC (e.g., 115 VAC @ 400 Hz) or DC (e.g., 28 VDC) and convert it into DC voltage usable by the PSU controller.
- the PSU Controller contains a micro-controller with a communications interface for, e.g., RS-485 and a token-in, token-out communications. It also has I/O for the reading lights 28, attendant call, non-smoking display, fasten seatbelt display, seat row marker display, and the speaker.
- the oxygen controller 24.1 comprises a power supply converter and a micro-controller that interfaces with the oxygen system equipment 24.2.
- Figure 11 is a block diagram for the lighting controller 15.1, also including a power supply and micro-controller.
- the micro-controller interfaces to the reading lights 28.
- it shows the PSU controller interfacing to these lights.
- the lighting controller is a part of the PSU interface, and includes a zone management unit interface for RS-485 and token communications.
- Figure 10 shows the PSU controller including both lighting and oxygen system control.
- Figure 11 shows the lighting portion only, with slightly more detail.
- FIG 12 is a block diagram illustrating the oxygen controller 24.1 in a no controller area network (CAN) configuration.
- the local electronics are powered by a power supply and provide an interface to LED flow indicators and the PSU door latch that opens the door to allow oxygen masks to drop.
- the local electronics also comprise an interface to the oxygen cylinder initiator that begins the flow of high pressure oxygen into a regulator.
- the regulator controls the correct amount of oxygen flow.
- the local electronics comprise interfaces to breath sensors, control valves for the regulated oxygen, a pressure/temperature transducer, and a cabin pressure transducer.
- the breath sensor and control valve interfaces with the passenger mask to ensure proper flow of oxygen to the user.
- FIG 13 is a block diagram illustrating the oxygen controller 24.1 using a remote power distribution unit (RPDU) and CAN configuration.
- RPDU remote power distribution unit
- RDC remote data concentrator
- Figure 14 is a pictorial bottom perspective view of an embodiment of a PSU 20 shown in its mounted position.
- the active display 21 shows a current seatbelt and seating status, along with a seat row marker 23 and reading/task lights 28.
- Figure 15 is a pictorial view showing the active display 21 of the PSU 20, e.g., during a boarding phase of the flight, indicating an amount of time until departure.
- the smooth surface contour features present reduced visual clutter to the user and allow many different languages (including seat-row individualized languages) to be easily presented to passengers.
- Figure 16 shows the PSU 20 during a cruising portion of the flight, where a passenger has activated a do-not-disturb status 23.1. The remaining flight time is indicated in the active display 21, as well as a possible indication of the aircraft's position.
- Figure 17 provides an illustration in which the active display 21 provides attendant call feedback along with the particular seat it relates to, and an additional status portion 23.2 provides an illustration of a passenger preference (e.g., type of meal).
- the seat row marker 23 can light up in different colors to indicate some form of status (e.g., to help the flight attendant navigate the cabin during meal service).
- Figure 18 shows the PSU 130 during an arrival/deplaning phase, with a welcome message showing in the active display 21 and local weather information showing in the status portion 23.1 of the row marker 23.
- the PSU displays 21, 23 are connected to a centralized server unit that provides relevant status. Updates can be triggered periodically or as a result of a change of a situation, such as the passenger providing some input or some predefined point in the flight being reached.
- the PSU displays 21, 23 can be programmed to provide passengers information about the destination as well as transfer and luggage claim information and directions.
- FIG 19 is an exploded perspective view that illustrates the use of a flexible printed circuit board (flex PCB) 29 as a basis for a lighting unit containing light emitting diode (LED) lights 28.
- the flex PCB 29 is designed in a manner that keeps the components in a relatively tight packing space and on a single PCB, yet significantly thermally isolates the LEDs from the circuitry by the use of a U-shaped channel 29c that segregates the PCB 29 into an LED potion 29a, and a control circuitry portion 29b.
- the LED comprises an LED extension portion 29al that extends laterally and comprises the LED 29a2 itself.
- the control circuitry portion 29b comprises a connector that provides the PCB 29 power and control signals, and circuitry for communicating and controlling the LEDs.
- Figure 20 is an exploded side view of the LED lights 28 with flex PCB 29.
- design solutions include: variations on a traditional architecture, a centralized architecture, a centralized architecture with integrated speaker, and a centralized rib or group architecture. These architectures provides LED based lighting solutions that leverage traditional as well as modular line replaceable unit (LRU) task/reading light technologies and solutions.
- LRU modular line replaceable unit
- all of the lights may be individual LRUs and hence are vertically integrated components or they may alternatively leverage modular technology methods for all lighting applications.
- the modular approach has significant merits including enabling increased commonality of subassemblies, greater flexibility in manufacturing, easy removal/installation on the assembly line or in the field. Additionally, these lights can have all of the benefits of new LED technology including: smooth on/off transitions and optional dimming; multiple color temperatures, color rendering index (CRI) and dispersion angle options; and improved reliability and mean time between failure/mean time between unit replacement (MTBF/MTBUR).
- the variations on the traditional architecture can support an existing style OEU 100 and/or PSU 20, power and control feeds or other controllers that individually interface to each PSU/LRU. This requires a separate power run for each light, sign, marker, etc. Signals are discrete and may include some form of communications (TIA-485 or CANbus).
- the LED task/reading lights and other LEDs lights can be designed to support an 11. 4 VAC/VDC - 30 VAC/VDC input range or other input range as required.
- Each LRU may require its own power supply to interface with the power bus.
- An optional 115 VAC, 400 Hz style task/reading light can be provided and would require a separate power supply that may be incorporated in external electronics.
- Figure 21 is a bottom pictorial view illustrating placement of the various PSU 20 components, along with example dimensions for the PSU.
- the task lights 28 occupy a leftmost position
- the oxygen canister 24.2a a rightmost position.
- the oxygen masks 24.2b (above the panel) are located to the left of the oxygen canister 24.2a
- the lighted sign/display 21, speaker 27, and call light 28a are located to the left of the masks 24.2b.
- Figure 22 is a pictorial perspective bottom view of the modified traditional embodiment in which the PSU has a generally flat bottom surface with the exception of the display 21, which may protrude from the bottom surface for easier viewing.
- This design shows the location of an oxygen mask door panel 24.3 and an oxygen canister 24.2 located at one end of the PSU 20.
- Figure 22 is a detailed perspective top view illustrating a configuration of the various PSU components.
- Figure 26 illustrates a design using the centralized architecture.
- the lights for this approach leverage the same technologies deployed in the architecture discussed above while eliminating redundant power and control circuitry.
- this integrated architecture offloads all power supply functionality, control logic, and optionally oxygen system functionality onto one PC board, the power/logic module 20.1.
- This power/logic module can be centrally located in the PSU 20 or located at one side, as illustrated in Figure 26 , and allows for a single point of entry for power, control, and audio.
- the advantages for this configuration include:
- the unified and centralized architecture also enables BIT/BITE simplicity and can leverage a common microcontroller leading to a streamlined RTCA/DO-178/254 documentation process, as applicable.
- the PSU panel is designed to have a simplified modular construction that lends itself readily to kit design components and helps to reduce the part count.
- the modules may comprise a lighting module/panel portion 28 (e.g., a 2, 3, 4, or n number of lights to conform to a particular vehicle configuration), an oxygen module 24 that comprises the oxygen bottle/canister 24.2a, masks 24.2b, and related hardware, and a sign module 21 that displays signs (seatbelt, etc.) to the user.
- a lighting module/panel portion 28 e.g., a 2, 3, 4, or n number of lights to conform to a particular vehicle configuration
- an oxygen module 24 that comprises the oxygen bottle/canister 24.2a, masks 24.2b, and related hardware
- a sign module 21 that displays signs (seatbelt, etc.) to the user.
- the panel may be designed to have a smooth bottom surface when viewed from the bottom (customer view) (see Figures 14 , 17 , 18 ). In an embodiment, it has a monolithic construction or at least is manufactured to have a surface that is contiguous. In an embodiment, the contiguous surface has a large planar portion.
- the sign module portion has a translucent or semi-transparent cover (such a cover could cover the entire lower portion of the panel) so that the illuminated signs can be visible through the cover, but the cover can hide or reduce visibility of components that the customers should not see. This can be achieved by specific positioning of the lighting and other components, the use of a masked coating, which blocks the translucent cover in all areas other than the sign areas. In this way, electronics, masks, oxygen bottles, etc. are not visible to the customers during normal use.
- the PSU panel may be designed so that it utilizes a drop hinge or an articulated hinge. This permits the panel to drop away when oxygen masks need to be deployed, yet at the same time retains a clean and uncluttered appearance during normal operation of the vehicle.
- the oxygen bottle/canister 24.2a can be turned 90 degrees with respect to the other electronic components and orientation with respect to the seats (the axial direction of the cylindrical canister is perpendicular to the viewing direction of the seat locations) to make maximum use of available space.
- the axial direction is parallel to the viewing direction).
- a bottle mount 24.4 may be provided on the mask housing. This can permit a maximum storage situation when the masks are packed, while at the same time capable of being deployed.
- Figure 27 illustrates an architecture that utilizes a centralized power and control system within each SU along with a vertically integrated task/light and speaker.
- Known vehicle speakers typically are old large paper cone type speakers, which require large amplifiers. Such speakers are not tuned for optimal sound quality.
- the speaker cone is heavy and not ideal for high frequency response, which is important for intelligible audio, and such speakers take up space on the PSU 20 (where real estate is valuable).
- the speaker takes up a large volume above it (meaning other things cannot be mounted in this volume).
- New LED technology is much more efficient than traditional incandescent or fluorescent lighting. LEDs themselves, along with drive circuitry, can be shared with circuitry used to drive the speaker which frees up space in the real estate formerly occupied by both the light and the speaker.
- the speaker is vertically integrated into the reading light so that they can share a common housing.
- a speaker of this size has a higher frequency response because the cone is smaller and lighter than older traditional vehicle speaker designs. This is horn loaded and is tuned to treble, which helps with voice intelligibility, giving a nice clean sound.
- This speaker can use a small point-of-load amplifier, as opposed to a large amplifier that would be needed to drive the larger traditional speakers.
- the small amplifier can receive audio data or digital data, and in either case can be uniquely adjusted for each user. If a digital signal is used, the digital signal processing (DSP) and further processing/enhancements of the audio can be done. Such processing can include equalization and phase correction (to the extent that others' speaker outputs may be undesirably combined with the current speaker).
- DSP digital signal processing
- Such processing can include equalization and phase correction (to the extent that others' speaker outputs may be undesirably combined with the current speaker).
- the small speakers being directional means that a passenger typically will not hear their neighbor's speaker, and will not get multiple phases of their sound (delay).
- This approach would have the same features, benefits and technologies deployed in the systems described above as well as providing added value and functionality by incorporating high a quality speaker into the task/reading light assembly.
- the value this provides includes: weight savings, and space savings for other PSU and oxygen system components.
- the speaker may be located in the back of the light where the heat sink was previously located. It can pass the sound through a throat, and thus it forms a horn that directionalizes the sound.
- the reading light assembly is levitated within the throat of that horn, and the speaker sound feeds through it.
- Figure 27 illustrates an embodiment of this design, an integrated speaker/task light 200 is provided, which saves space on the PSU 20.
- Figure 28 is a bottom perspective view of the integrated unit 200 illustrating a housing 205 which may be of a truncated spherical form, an LED light module 210, a speaker horn 215, and a mount 230.
- Figure 29 is a top perspective view of the integrated unit 200 showing, in addition, the speaker 220.
- Figure 30 is a cross-sectional side view of the integrated unit 200, additionally showing the location of the speaker/light electronics 225.
- “Horn tuning” can be used to directivity and sound pressure level (SPL) in the upper-mid to high frequency range (5k - 20k Hz) which improves intelligibility within the audible range.
- Free air architecture allows the PSU to act as an enclosure for low frequency extension. Further tuning can be accomplished via the offloaded amplifier circuit for enhancing audio perception.
- this integrated design is advantageous in that it is weight neutral with respect to existing task/reading lights, and creates an overall net weight reduction per PSU due to elimination of the PSU speaker.
- the speaker provides a superior sound quality, directivity, control, and minimization of distortion. Through the use of tunable sound filters, click/pop suppression and soft clipping can be provided in either analog or digital form.
- the speaker may not be required for all task/reading lights and/or PSU panels. In one embodiment, alternating assemblies can be utilized which may lead to further ship set weight savings.
- the vertically integrated task light and speaker may be used with any of the proposed architectures discussed above.
- Figure 32 illustrates a centralized rib or group architecture that utilizes a centralized power and control system outside of each SU.
- this approach leverages the same technologies and applicable features and benefits of the architectures described above. Additionally, this architecture offers even more synergy and possible part count reduction by eliminating redundant circuitry via offloading the power/logic module 140 to a separate assembly that feeds a group of PSU's 130. Costs can be potentially lowered by a reduction in overall 115 VAC, 400 Hz shipside power supply count/capacity that typically require a larger front end for power factor correction and harmonic distortion reduction. This has traditionally been a major cost/weight driver for individual power supplies.
- the architecture is scalable and may be integrated into existing aircraft subsystems.
- the lighting elements may be individual LRUs and are either vertically integrated LED based components or are LED driven fiber optic end nodes that can also be designed in a modular fashion thus enabling increased commonality and flexibility.
- fiber optic/light pipes and associated driver engines can be utilized to transmit light to task/reading, ordinance, call lights, etc. This offloads all LED's and their associated electronics/heat sources to a single LRU.
- This multiplexed light engine could have its own passive thermal management and power supply with multiple collimated fiber outputs that can have a range of several feet. Reliability is enhanced by virtue of commonality and reduced part numbers/count. Power and control to this LRU is a single feed for multiple SU's. Communications may be daisy chained via a TIA-485 architecture or a similar multi-drop topology.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Multimedia (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Otolaryngology (AREA)
- Circuit Arrangement For Electric Light Sources In General (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Description
- A passenger service unit (PSU) is a unit provided on a vehicle that allows interaction between the vehicle's service providers and passengers, and provides necessary hardware/software for providing various passenger services. In an aircraft, this unit is typically located above a passenger's seat. In general, it is desirable to make PSUs highly functional, yet at the same time, keeping them simple, inexpensive, and lightweight.
-
US 6,393,343 B1 andUS 2012/0230530 A1 disclose passenger service units for aircraft. InUS2012/0230530 A1 , the passenger service unit comprises a plurality of service functions implemented on the basis of functional electronic units. These service functions are for example LED reading lights with switching knobs, loudspeaker, projection display. The functional electronic units are accommodated without cabling on a common circuit board. InUS6393343 the passenger service units in an aircraft are equipped with a passenger interface and supply adapter. Each adapter includes an individual processor which is programmable independently of the aircraft central control through a programming input. The programmable interface permits controlling passenger service components in the passenger cabin such as lamps in a cabin lighting system, a public address system, and so forth, directly by the interface independently of the aircraft central control. The interface with its own individual processor and memory is connected through a databus to the aircraft central control, for example, for remote programming of the interface and for reporting the module's activities to the aircraft central control. The interface reduces the memory capacity requirements for the aircraft central control and permits the individual programming of each passenger service unit also independently of any other passenger service unit thereby avoiding retesting of the entire cabin system when for example only one passenger service unit is reprogrammed. - The present invention refers to a passenger service unit for an aircraft as defined in
claim 1. - Further optional features of the invention are mentioned in the dependent claims 2-10.
- Disclosed herein is a PSU architecture design that incorporates features to convert input power (115 VAC/28 VDC) to supply control voltage and switching capability from digital communication signals to PSU components. This panel is mounted overhead in the aircraft and houses the passenger speaker, reading lights, attendant call lights, oxygen supply, and pulse oxygen controller. The Integrated PSU concept reduces part count and consolidates components such as heat-sinks, bezels, housings and wire harnesses. The architecture developed varies from the existing architecture design in that the PSU would also house the electrical components necessary to reduce electrical wiring throughout the aircraft and reduce the need for multiple overhead equipment units (OEUs), or separate power conversion and control modules throughout the aircraft.
-
- ACARS
- Aircraft Communications Addressing Reporting System
- ACP
- Audio Control Panel
- ASCII
- American Standard Code for Information Interchange
- AIMS
- Airplane Information Management System
- AMU
- Audio Management Unit
- AEP
- Audio Entertainment Player
- ASG
- ARINC Signal Generator
- ATA
- Air Transport Association
- ANS
- Ambient Noise Sensor
- ARINC
- Aeronautical Radio, Inc.
- AWG
- American Wire Gauge
- BIT
- Built in Test
- BITE
- Built in Test Equipment
- CACP
- Cabin Area Control Panel
- CAH
- Cabin Attendant Handset
- CAN
- Controller Area Network
- CCITT
- Consulting Committee, The International Telegraph and Telephone
- CCP
- Cabin Control Panel
- CCS
- Cabin Communication System
- CCSD
- CSS Central Storage Device
- CDR
- Critical Design Review
- CDU
- Control and Display Unit
- CFS
- Cabin File Server
- CI
- Cabin Interphone
- CIS
- Cabin Interphone System
- CLS
- Cabin Lighting System
- CMCS
- Central Maintenance Computer System
- CP
- Core Partition
- CRC
- Cyclic Redundancy Check
- CSCP
- Cabin System Control Panel
- CSCP CP
- CSCP Core Partition
- CSCP DP
- CSCP Display Partition
- CSMU
- Cabin System Management Unit
- CSS
- Cabin Services System
- CW
- Continuous Wave
- dB
- Decibels
- dBc
- Decibels relative to carrier level
- dBm
- Decibels relative to a milliwatt
- dBmV
- Decibels relative to a millivolt
- DCAS
- Digital Control Audio System
- DCMF
- Data Communication Management Function
- DLS
- Data Load System
- DITS
- Digital Information Transfer System
- DP
- Display Partition
- D1MF
- Dual Tone Multi-frequency
- ECS
- Environmental Control System
- EEPROM
- Electrically Erasable Programmable Read Only Memory
- EICAS
- Engine Indication Caution Alerting System
- ELMS
- Electrical Load Management System
- EMC
- Electromagnetic Compatibility
- EMI
- Electromagnetic Interference
- ETOPS
- Extended Twin Operations
- FAR
- Federal Aviation Regulation
- FCC
- Federal Communications Commission
- FCM
- Functional Circuit Module
- FDD
- Floppy Disk Drive
- FDH
- Flight Deck Handset
- FMEA
- Failure Modes and Effects Analysis
- FSEU
- Flap Slat Electronics Unit
- FTK
- Functional Test Kernel
- FTP
- File Transfer Protocol
- GSE
- Ground Support Equipment
- GTR
- General Technical Requirements
- Hz
- Hertz
- IFE
- In-Flight Entertainment (System/Unit)
- IFES
- In-Flight Entertainment System
- INOP
- Inoperable
- ISO
- International Standard Organization
- LAN
- Local Area Network
- LAV
- Lavatory
- LCD
- Liquid Crystal Display
- LED
- light emitting diode
- LRU
- Line Replaceable Unit
- MAT
- Maintenance Access Terminal
- MCF
- Monitor and Control Functions
- MCDU
- Multi-purpose Control and Display Unit
- MCU
- Modular Concept Unit
- MMC
- Mass Memory Card
- MMo
- Mach Number, Maximum Operating
- MTBF
- Mean Time Between Failure
- NTSC
- National Television Standard Committee
- NVM
- Non-volatile Memory
- O.D.
- Outside Diameter
- OEU
- Overhead Electronics Unit
- OMS
- Onboard Maintenance System
- OPAS
- Overhead Panel ARINC System
- OPC
- Operational Program Configuration
- OPS
- Operational Program Software
- OSI
- Open Systems Interconnect
- PA
- Passenger Address
- PAL
- Phase Alternation Line
- PAS
- Passenger Address System
- PCB
- Printed Circuit Board
- PDR
- Preliminary Design Review
- PABX
- Private Automatic Branch Exchange
- PCU
- Passenger Control Unit
- POU
- Passenger Overhead Unit
- PRAM
- Prerecorded Announcement Machine
- PSEU
- Proximity Electronic Sensor Unit
- PSS
- Passenger Service System
- PSU
- Passenger Service Unit
- PTT
- Push-To-Talk
- RAM
- Random Access Memory
- RF
- Radio Frequency
- RPDU
- Remote Power Distribution Unit
- RTCA
- Radio Technical Commission for Aeronautics
- SCD
- Specification Control Drawing
- SCSRD
- Standard Cabin System Requirements Document (D6-36440)
- SDM
- Speaker Drive Module
- SDRL
- Supplier Data Requirements List
- SFE
- Seller Furnished Equipment
- SSU
- Smart Service Unit
- STC
- Supplemental Type Certification
- SWCM
- Software Configuration Management
- TBD
- To Be Determined
- TCF
- Test Control Function
- TCP/IP
- Transmission Control Protocol/Internet Protocol
- THD
- Total Harmonic Distortion
- TIU
- Telephone Interface Unit
- ULC
- Universal Logic Card
- VAC
- Voltage, Alternating Current
- VcAs
- Velocity, Calibrated Air Speed
- VDC
- Volts Direct Current
- VGA
- Video Graphics Array
- VIU
- Video Interface Unit
- VMo
- Velocity, Maximum Operating
- VTR
- Video Tape Reproducer
- WAP
- Wireless Access Point
- WES
- Warning Electronics System
- ZMU
- Zone Management Unit
- Various embodiments of the invention are illustrated in the following drawings:
- Figure 1
- is a block diagram illustrating various operational components of an aircraft interior;
- Figure 2
- is a block diagram illustrating the relationships of various components within the aircraft;
- Figure 3A
- is a pictorial top view diagram illustrating a first embodiment of an OEU with multiple PSUs;
- Figure 3B
- is a pictorial top view diagram illustrating details of the PSU in
Figure 3A ; - Figure 4A
- is a pictorial top view diagram illustrating a second embodiment of an OEU with multiple PSUs;
- Figure 4B
- is a pictorial top view diagram illustrating details of the PSU in
Figure 4A ; - Figure 5A
- is a pictorial top view diagram illustrating a third embodiment of an OEU with multiple PSUs;
- Figure 5B
- is a pictorial top view diagram illustrating details of the PSU in
Figure 5A ; - Figure 6
- is a block diagram illustrating various wiring architectures related to the PSUs;
- Figure 7
- is a block diagram illustrating the interconnected components, including oxygen system and altitude management unit;
- Figure 8
- is a block diagram illustrating an alternate approach for interconnecting the components;
- Figure 9
- is a block diagram illustrating additional components and interconnection hierarchy;
- Figure 10
- is a block diagram illustrating an embodiment of a PSU controller and oxygen controller;
- Figure 11
- is a block diagram illustrating an embodiment of a PSU controller and oxygen controller;
- Figure 12
- is a detailed block diagram illustrating a first embodiment (no CAN) of the oxygen controller;
- Figure 13
- is a detailed block diagram illustrating a second embodiment (RPDU and CAN) of the oxygen controller;
- Figure 14
- is a bottom perspective pictorial view of a PSU;
- Figure 15
- is a bottom perspective pictorial view of a mounted PSU (with seating components reflected in the reflective surface covering) during a boarding phase;
- Figure 16
- is a bottom perspective pictorial view of a mounted PSU (with seating components reflected in the reflective surface covering) during a midflight phase;
- Figure 17
- is a bottom perspective pictorial view of an embodiment of a mounted PSU (with aircraft windows reflected in the reflective surface covering) after an attendant call has been activated;
- Figure 18
- is a bottom perspective pictorial view of an embodiment of a mounted PSU (with aircraft windows reflected in the reflective surface covering) after arrival;
- Figure 19
- is a top pictorial exploded perspective view of an embodiment using a flexible PCB;
- Figure 20
- is an exploded side view of the embodiment shown in
Figure 19 ; - Figure 21
- is a pictorial perspective bottom view of another embodiment of the PSU;
- Figure 22
- is a pictorial perspective top view of an embodiment of the PSU;
- Figure 23
- is pictorial perspective top view of another embodiment of the PSU;
- Figure 24
- is pictorial perspective top view of a further embodiment of the PSU;
- Figure 25
- is a pictorial bottom view of an embodiment of the PSU;
- Figure 26
- is a pictorial bottom view of an embodiment of the PSU that includes the power/logic module;
- Figure 27
- is a pictorial bottom view of an embodiment of the PSU that includes the integrated speaker-light component;
- Figure 28
- is a bottom perspective view of the integrated speaker-light component;
- Figure 29
- is a top perspective view of the integrated speaker-light component;
- Figure 30
- is a cross-sectional side view of the integrated speaker-light component;
- Figure 31
- is a graph illustrating frequency response curves at different equal loudness levels; and
- Figure 32
- is a block diagram illustrating the relationship between the service units and central service unit power/control in a centralized group or rib architecture.
- Described herein is a passenger service unit (PSU) for a vehicle (as described herein, the vehicle is an aircraft, but could be any vehicle with a PSU) with an intelligent design that forms a part of an integrated cabin system.
-
Figure 1 is a block diagram showing an overview of anintegrated cabin system 1. The cabin systems comprise various elements that are able to communicate with one another over acommon network 14. These elements includemain cabin lighting 2, apassenger address system 4, in-flight entertainment (IFE) 6,passenger connectivity 8, crewmobile devices 10, in-seat power 12, and acontrol panel 13. These interact with or support alighting system 15 that provides dynamic cabin lighting that creates an immersive experience for the passengers,monuments 16, such as galley inserts, lavatories, closets, dividers, entryways, and potable and waste water. Theseat systems 18 integrate the IFE and passenger overhead unit (POU) power, actuation, reading lights, and controls. In-cabin connectivity 19 is provided for passengers, such as WiFi, Internet and IFE delivery, and entertainment content. Finally, the integrated cabin system includes thePSUs 20, which incorporate an attendant call, digital signage, displays, reading lights, etc. -
Figure 2 provides a further breakdown of certain aircraft cabin components illustrated inFigure 1 . The aircraft cabin may be broken down into two primary elements: cabin interior and cabin system. Regarding the cabin interior (which includes seats, structures, and monuments), the seats may be broken down into first, business, and economy classes. The structures include PSUs, stow bins and closets, and sidewalls/flooring. The monuments include galley and galley inserts, lavatory lighting & waste control. - Regarding the cabin systems (which includes IFE & connectivity, cabin management, and environmental & safety), the IFE & connectivity may be broken down into content & transactions, IFE servers and WAPs, and tables & embedded displays. The cabin management may include zone management, PA, and interphone, cabin and seat power, and lighting & attendant controls. The environmental & safety may include oxygen delivery, air conditioning & humidification, and fire suppression. The aircraft modification shown on the left-hand side of
Figure 2 is overarching, and refers to modification of the aircraft as a whole. An OEM attains a type certificate (TC) from the FAA that grants regulatory authorization to fly the aircraft. All modifications done to the aircraft after original type certification are approved via amended type certificate (by the OEM) or Supplemental Type Certificate (STC) which is open for parties other than the OEM. -
Figure 3A illustrates an embodiment of a wiring architecture forPSUs 20 in which a group ofPSUs 20 are shown. In the design shown, there are fourPSUs 20 perOEU 100. The wiring allows cabin pressure to be monitored at each oxygen control module. The initiator sequencing is managed by a built-in test (BIT) power wire assert between the control modules in the column (of seats running fore and aft, and center column, on a twin aisle aircraft (left and right columns on a single aisle aircraft. -
Figure 3B is a more detailed diagram of the OEU shown inFigure 3A and illustrates the composition of thePSUs 20 and associated wiring. The PSUs 20 can include a programmable active display (information sign) 21 that is readily viewable by a seated passenger and displays things such as "fasten seat belt" and "no personal electronic devices (PEDs)", a dynamicseat row marker 23 that is readily viewable from a vehicle aisle, an oxygen system 24 (with masks and associated deployment hardware), acall button 26, task lights 28, and first 30 and second 32 cable bundle connectors for connecting, respectively, first 34 and second 36 cable bundles to thePSU 20. There is also athird connector 33 for connecting the oxygensystem cable bundle 38 to theoxygen system 24. In this design, the wiring requirements include a total of forty-eight wires, broken down as follows:OEU Drops 34: an eight-wire bundle • two for power (115 VAC) • six for data (RS-485 in/out) OEU Feeds 36: a common thirty-six wire bundle • twenty for reading lights • eight for ordinance • eight for attendant call Oxygen Power 38: a four-wire bundle • main power (28VDC, 5A) • backup power (28VDC, 5A) • BIT power (28VDC, 2.5A) • common -
Figures 4A and4B illustrate an embodiment similar to that shown inFigures 3A and3B , but also includes an oxygen system that has an altitude input module. In this configuration, theoxygen cable bundle 38 adds two additional wires to accommodate controller area network (CAN) (high/low) bus communications over which the altitude data can be sent and enabling health management. In this design, the wiring requirements include a total of fifty wires, broken down as follows:OEU 34: Drops an eight-wire bundle • two for power (115 VAC) • six for data (RS-485 in/out) OEU Feeds 36: a common thirty-six wire bundle • twenty for reading lights • eight for ordinance • eight for attendant call Oxygen Power 38: a six -wire bundle • main power (28VDC, 5A) • backup power (28VDC, 5A) • BIT power (28VDC, 2.5A) • common • CAN (high/low) -
Figures 5A and5B illustrate a more integrated embodiment in which asingle wire bundle 42 connects to thePSU 20 via asingle connector 35. In this embodiment, by way of example only, this may be a thirteen-wire bundle in which:SU Drops 34': a thirteen-wire bundle • three for 02 power (main, backup, and return) • two for 02 CAN (high/low) • two for SU power (inc. 02 BIT) • six for SU data (RS-485 in/out) - This results in a significant reduction in wiring, connectors, weight, service burden, etc. for the aircraft. That is, the benefits of the integrated system include eliminating a significant amount of wiring, pinouts, OEUs, significantly simplifies the engineering by having a single, stable wire bundle for all layouts. It simplifies line fit operations and minimizes part number count.
Figure 6 illustrates wiring architectures according to various embodiments. -
Figure 7 is an example block diagram layout according to an embodiment. The cabin services system (CSS) 110 is connected to a zone management unit (ZMU) 120 via some form of network . TheZMU 120 interfaces to the smart service unit (SSU) 130 providing power 34.1 (e.g., 28 VDC) and data communication 34.2 (e.g., RS-485) lines. Oxygen power 150 (e.g., 28 VDC) can also be provided via cable bundle 38.1. Finally, thealtitude management unit 50 can be connected to the oxygen CANBUS interface via a network, and this interface is connected to theSSU 130 via cable bundle 38.2. -
Figure 8 is an example block diagram layout similar toFigure 7 , where asingle cable bundle 42 is provided to the SSU 130 (the cable branching occurs at other locations within the aircraft). - The
SSU 130 reduces visual clutter for the passenger and provides a targeted delivery of information to the passenger, as is illustrated in the embodiments according to Figures G-K. The integrated systems permit PSU lighting scenes to be coordinated with the cabin scenes. They also permit a comprehensive onboard diagnostics and health management ability. The enhanced cabin crew communications provide a new tool to streamline cabin services. -
Figure 32 shows a networked interconnection between a number ofservice units 130 and the central service unit power/control 140 having interfaces to power, audio, and communications of the aircraft. -
Figure 9 is a block diagram illustrating an organization of the PSUs into zone management areas, each controlled by a zone management unit. It illustrates how the smart PSU elements can be integrated into an existing airplane system architecture. Everything connected with the leftmost lines on the PSU is existing. The components connected with the rightmost lines on the PSUs relate to the new "smart" PSU. -
Figure 10 is a block diagram illustrating both the PSU controller 20.1 and the oxygen controller 24.1. The PSU controller 20.1 contains a power supply that may take either AC (e.g., 115 VAC @ 400 Hz) or DC (e.g., 28 VDC) and convert it into DC voltage usable by the PSU controller. The PSU Controller contains a micro-controller with a communications interface for, e.g., RS-485 and a token-in, token-out communications. It also has I/O for the reading lights 28, attendant call, non-smoking display, fasten seatbelt display, seat row marker display, and the speaker. The oxygen controller 24.1 comprises a power supply converter and a micro-controller that interfaces with the oxygen system equipment 24.2. -
Figure 11 is a block diagram for the lighting controller 15.1, also including a power supply and micro-controller. The micro-controller interfaces to the reading lights 28. In the previousFigure 10 , it shows the PSU controller interfacing to these lights. The lighting controller is a part of the PSU interface, and includes a zone management unit interface for RS-485 and token communications.Figure 10 shows the PSU controller including both lighting and oxygen system control.Figure 11 shows the lighting portion only, with slightly more detail. -
Figure 12 is a block diagram illustrating the oxygen controller 24.1 in a no controller area network (CAN) configuration. The local electronics are powered by a power supply and provide an interface to LED flow indicators and the PSU door latch that opens the door to allow oxygen masks to drop. The local electronics also comprise an interface to the oxygen cylinder initiator that begins the flow of high pressure oxygen into a regulator. The regulator controls the correct amount of oxygen flow. The local electronics comprise interfaces to breath sensors, control valves for the regulated oxygen, a pressure/temperature transducer, and a cabin pressure transducer. The breath sensor and control valve interfaces with the passenger mask to ensure proper flow of oxygen to the user. -
Figure 13 is a block diagram illustrating the oxygen controller 24.1 using a remote power distribution unit (RPDU) and CAN configuration. In this configuration, the local electronics receive power from remote power distribution units and interface, via a CAN bus to a remote data concentrator (RDC). This illustrates the flexibility to adapt to the specific aircraft manufacturer and model databus configuration when different databus protocols are used. -
Figure 14 is a pictorial bottom perspective view of an embodiment of aPSU 20 shown in its mounted position. Theactive display 21 shows a current seatbelt and seating status, along with aseat row marker 23 and reading/task lights 28. -
Figure 15 is a pictorial view showing theactive display 21 of thePSU 20, e.g., during a boarding phase of the flight, indicating an amount of time until departure. As can be seen, the smooth surface contour features present reduced visual clutter to the user and allow many different languages (including seat-row individualized languages) to be easily presented to passengers.Figure 16 shows thePSU 20 during a cruising portion of the flight, where a passenger has activated a do-not-disturb status 23.1. The remaining flight time is indicated in theactive display 21, as well as a possible indication of the aircraft's position.Figure 17 provides an illustration in which theactive display 21 provides attendant call feedback along with the particular seat it relates to, and an additional status portion 23.2 provides an illustration of a passenger preference (e.g., type of meal). Theseat row marker 23 can light up in different colors to indicate some form of status (e.g., to help the flight attendant navigate the cabin during meal service). - Finally,
Figure 18 shows thePSU 130 during an arrival/deplaning phase, with a welcome message showing in theactive display 21 and local weather information showing in the status portion 23.1 of therow marker 23. The PSU displays 21, 23 are connected to a centralized server unit that provides relevant status. Updates can be triggered periodically or as a result of a change of a situation, such as the passenger providing some input or some predefined point in the flight being reached. In the deplaning phase, the PSU displays 21, 23 can be programmed to provide passengers information about the destination as well as transfer and luggage claim information and directions. -
Figure 19 is an exploded perspective view that illustrates the use of a flexible printed circuit board (flex PCB) 29 as a basis for a lighting unit containing light emitting diode (LED) lights 28. Theflex PCB 29 is designed in a manner that keeps the components in a relatively tight packing space and on a single PCB, yet significantly thermally isolates the LEDs from the circuitry by the use of aU-shaped channel 29c that segregates thePCB 29 into anLED potion 29a, and acontrol circuitry portion 29b. The LED comprises an LED extension portion 29al that extends laterally and comprises the LED 29a2 itself. Thecontrol circuitry portion 29b comprises a connector that provides thePCB 29 power and control signals, and circuitry for communicating and controlling the LEDs.Figure 20 is an exploded side view of the LED lights 28 withflex PCB 29. - Various configurations for the
PSU 20 are envisioned that offer a range of feasible architectural solutions for the lighting requirements including a unique integrated speaker approach forPSU panels 20. These can reduce part numbers, leverage common parts, and support all uses in the cabin including passenger seating areas, attendant seating areas, galley work areas, crew rest areas, cross aisle areas and in the lavatories as required. In summary, design solutions include: variations on a traditional architecture, a centralized architecture, a centralized architecture with integrated speaker, and a centralized rib or group architecture. These architectures provides LED based lighting solutions that leverage traditional as well as modular line replaceable unit (LRU) task/reading light technologies and solutions. - In the variations on the traditional architecture, all of the lights may be individual LRUs and hence are vertically integrated components or they may alternatively leverage modular technology methods for all lighting applications. The modular approach has significant merits including enabling increased commonality of subassemblies, greater flexibility in manufacturing, easy removal/installation on the assembly line or in the field. Additionally, these lights can have all of the benefits of new LED technology including: smooth on/off transitions and optional dimming; multiple color temperatures, color rendering index (CRI) and dispersion angle options; and improved reliability and mean time between failure/mean time between unit replacement (MTBF/MTBUR).
- Furthermore, the variations on the traditional architecture can support an existing
style OEU 100 and/orPSU 20, power and control feeds or other controllers that individually interface to each PSU/LRU. This requires a separate power run for each light, sign, marker, etc. Signals are discrete and may include some form of communications (TIA-485 or CANbus). The LED task/reading lights and other LEDs lights can be designed to support an 11. 4 VAC/VDC - 30 VAC/VDC input range or other input range as required. Each LRU may require its own power supply to interface with the power bus. An optional 115 VAC, 400 Hz style task/reading light can be provided and would require a separate power supply that may be incorporated in external electronics. -
Figure 21 is a bottom pictorial view illustrating placement of thevarious PSU 20 components, along with example dimensions for the PSU. As can be seen inFigure 21 , the task lights 28 occupy a leftmost position, and the oxygen canister 24.2a a rightmost position. The oxygen masks 24.2b (above the panel) are located to the left of the oxygen canister 24.2a, and the lighted sign/display 21,speaker 27, and call light 28a, are located to the left of the masks 24.2b. -
Figure 22 is a pictorial perspective bottom view of the modified traditional embodiment in which the PSU has a generally flat bottom surface with the exception of thedisplay 21, which may protrude from the bottom surface for easier viewing. This design shows the location of an oxygen mask door panel 24.3 and an oxygen canister 24.2 located at one end of thePSU 20.Figure 22 is a detailed perspective top view illustrating a
configuration of the various PSU components. -
Figure 26 illustrates a design using the centralized architecture. The lights for this approach leverage the same technologies deployed in the architecture discussed above while eliminating redundant power and control circuitry. Moreover, this integrated architecture offloads all power supply functionality, control logic, and optionally oxygen system functionality onto one PC board, the power/logic module 20.1. This power/logic module can be centrally located in thePSU 20 or located at one side, as illustrated inFigure 26 , and allows for a single point of entry for power, control, and audio. The advantages for this configuration include: - a. task/
reading lights 28,seat row markers 23,signage 21, and call light 28a internal power supplies are not needed, leading to possible lower weight and costs; - b. power supply front end protection devices are designed once and are common across the
entire PSU 20; - c. external shipside cable management and power quality certification can be leveraged, leading to possible lower PSU cable weight and costs;
- d. a power supply that can support an 11.4 VAC/VDC - 30 VAC/VDC input range, as required or optional 115 VAC, 400 Hz input;
- e. the ability to power other systems, such as washlighting, USB charging, etc.;
- f. use a single input connector per
PSU 20; - g. provide audio amplification on the power/logic board 20.1 accepting differential audio signal or digital formats;
- h. provide a common look/feel in a normalized manner, such as fade in/out transition times or illumination profiles as required; and
- i. allow advanced occupancy sensing technology to dim lights, adjust volume, etc.
- The unified and centralized architecture also enables BIT/BITE simplicity and can leverage a common microcontroller leading to a streamlined RTCA/DO-178/254 documentation process, as applicable.
- Regarding the physical construction, the PSU panel is designed to have a simplified modular construction that lends itself readily to kit design components and helps to reduce the part count. The modules may comprise a lighting module/panel portion 28 (e.g., a 2, 3, 4, or n number of lights to conform to a particular vehicle configuration), an
oxygen module 24 that comprises the oxygen bottle/canister 24.2a, masks 24.2b, and related hardware, and asign module 21 that displays signs (seatbelt, etc.) to the user. - The panel may be designed to have a smooth bottom surface when viewed from the bottom (customer view) (see
Figures 14 ,17 ,18 ). In an embodiment, it has a monolithic construction or at least is manufactured to have a surface that is contiguous. In an embodiment, the contiguous surface has a large planar portion. In an embodiment, the sign module portion has a translucent or semi-transparent cover (such a cover could cover the entire lower portion of the panel) so that the illuminated signs can be visible through the cover, but the cover can hide or reduce visibility of components that the customers should not see. This can be achieved by specific positioning of the lighting and other components, the use of a masked coating, which blocks the translucent cover in all areas other than the sign areas. In this way, electronics, masks, oxygen bottles, etc. are not visible to the customers during normal use. - The PSU panel may be designed so that it utilizes a drop hinge or an articulated hinge. This permits the panel to drop away when oxygen masks need to be deployed, yet at the same time retains a clean and uncluttered appearance during normal operation of the vehicle.
In certain embodiments (Figures 24 ,25 ), the oxygen bottle/canister 24.2a can be turned 90 degrees with respect to the other electronic components and orientation with respect to the seats (the axial direction of the cylindrical canister is perpendicular to the viewing direction of the seat locations) to make maximum use of available space. In other embodiments (Figures 22 ,23 ), the axial direction is parallel to the viewing direction). In an embodiment (Figure 24 ), a bottle mount 24.4 may be provided on the mask housing. This can permit a maximum storage situation when the masks are packed, while at the same time capable of being deployed. -
Figure 27 illustrates an architecture that utilizes a centralized power and control system within each SU along with a vertically integrated task/light and speaker. Known vehicle speakers typically are old large paper cone type speakers, which require large amplifiers. Such speakers are not tuned for optimal sound quality. The speaker cone is heavy and not ideal for high frequency response, which is important for intelligible audio, and such speakers take up space on the PSU 20 (where real estate is valuable). Furthermore, the speaker takes up a large volume above it (meaning other things cannot be mounted in this volume). - New LED technology is much more efficient than traditional incandescent or fluorescent lighting. LEDs themselves, along with drive circuitry, can be shared with circuitry used to drive the speaker which frees up space in the real estate formerly occupied by both the light and the speaker. In one embodiment, the speaker is vertically integrated into the reading light so that they can share a common housing.
- Since the reading light is already directional and is usually pointed at the user, this configuration benefits the inclusion of the speaker as well. Having individual speakers that are directed to the user means that the size can be reduced (such a speaker can be, e.g., 2" in diameter).
- Additionally, a speaker of this size has a higher frequency response because the cone is smaller and lighter than older traditional vehicle speaker designs. This is horn loaded and is tuned to treble, which helps with voice intelligibility, giving a nice clean sound. This speaker can use a small point-of-load amplifier, as opposed to a large amplifier that would be needed to drive the larger traditional speakers. The small amplifier can receive audio data or digital data, and in either case can be uniquely adjusted for each user. If a digital signal is used, the digital signal processing (DSP) and further processing/enhancements of the audio can be done. Such processing can include equalization and phase correction (to the extent that others' speaker outputs may be undesirably combined with the current speaker). However, in general, the small speakers being directional means that a passenger typically will not hear their neighbor's speaker, and will not get multiple phases of their sound (delay).
- This approach would have the same features, benefits and technologies deployed in the systems described above as well as providing added value and functionality by incorporating high a quality speaker into the task/reading light assembly. The value this provides includes: weight savings, and space savings for other PSU and oxygen system components.
- The mass/volume savings (since traditional heat sinking can be reduced or eliminated when using LED technology) are then replaced with a water resistant speaker that is compression loaded into a horn configuration.
- The speaker may be located in the back of the light where the heat sink was previously located. It can pass the sound through a throat, and thus it forms a horn that directionalizes the sound. The reading light assembly is levitated within the throat of that horn, and the speaker sound feeds through it.
-
Figure 27 illustrates an embodiment of this design, an integrated speaker/task light 200 is provided, which saves space on thePSU 20.Figure 28 is a bottom perspective view of theintegrated unit 200 illustrating ahousing 205 which may be of a truncated spherical form, anLED light module 210, aspeaker horn 215, and amount 230.Figure 29 is a top perspective view of theintegrated unit 200 showing, in addition, thespeaker 220.Figure 30 is a cross-sectional side view of theintegrated unit 200, additionally showing the location of the speaker/light electronics 225. - "Horn tuning" can be used to directivity and sound pressure level (SPL) in the upper-mid to high frequency range (5k - 20k Hz) which improves intelligibility within the audible range. Free air architecture allows the PSU to act as an enclosure for low frequency extension. Further tuning can be accomplished via the offloaded amplifier circuit for enhancing audio perception.
- Performance of this new approach surpasses existing PSU speaker technology since legacy products are not designed to produce comparable high frequency response characteristics and have to be played at higher SPL levels to achieve similar performance. Other advantages include the application of a slight notch filter in the mid frequency range (∼2k - 5k Hz) which addresses a "voice squawk" that is often discomforting to passengers (reference Fletcher-Munson Curves, also known as the "equal-loudness contours", illustrated in
Figure 31 ). - Thus, this integrated design is advantageous in that it is weight neutral with respect to existing task/reading lights, and creates an overall net weight reduction per PSU due to elimination of the PSU speaker. The speaker provides a superior sound quality, directivity, control, and minimization of distortion. Through the use of tunable sound filters, click/pop suppression and soft clipping can be provided in either analog or digital form. The speaker may not be required for all task/reading lights and/or PSU panels. In one embodiment, alternating assemblies can be utilized which may lead to further ship set weight savings. The vertically integrated task light and speaker may be used with any of the proposed architectures discussed above.
-
Figure 32 illustrates a centralized rib or group architecture that utilizes a centralized power and control system outside of each SU. - This approach leverages the same technologies and applicable features and benefits of the architectures described above. Additionally, this architecture offers even more synergy and possible part count reduction by eliminating redundant circuitry via offloading the power/
logic module 140 to a separate assembly that feeds a group of PSU's 130. Costs can be potentially lowered by a reduction in overall 115 VAC, 400 Hz shipside power supply count/capacity that typically require a larger front end for power factor correction and harmonic distortion reduction. This has traditionally been a major cost/weight driver for individual power supplies. The architecture is scalable and may be integrated into existing aircraft subsystems. - The lighting elements may be individual LRUs and are either vertically integrated LED based components or are LED driven fiber optic end nodes that can also be designed in a modular fashion thus enabling increased commonality and flexibility. For instance, fiber optic/light pipes and associated driver engines can be utilized to transmit light to task/reading, ordinance, call lights, etc. This offloads all LED's and their associated electronics/heat sources to a single LRU. This multiplexed light engine could have its own passive thermal management and power supply with multiple collimated fiber outputs that can have a range of several feet. Reliability is enhanced by virtue of commonality and reduced part numbers/count. Power and control to this LRU is a single feed for multiple SU's. Communications may be daisy chained via a TIA-485 architecture or a similar multi-drop topology.
- For the purposes of promoting an understanding of the principles of the invention, reference has been made to the preferred embodiments illustrated in the drawings, and specific language has been used to describe these embodiments. However, no limitation of the scope of the invention is intended by this specific language, and the invention should be construed to encompass all embodiments that would normally occur to one of ordinary skill in the art.
- The embodiments may be described in terms of functional block components and various processing steps. Such functional blocks may be realized by any number of components that perform the specified functions.
- The particular implementations shown and described herein are illustrative examples of the invention and are not intended to otherwise limit the scope of the invention in any way. For the sake of brevity, conventional aspects of the systems (and components of the individual operating components of the systems) may not be described in detail. Furthermore, the connecting lines, or connectors shown in the various figures presented are intended to represent exemplary functional relationships and/or physical or logical couplings between the various elements. It should be noted that many alternative or additional functional relationships, physical connections or logical connections may be present in a practical device. Moreover, no item or component is essential to the practice of the invention unless the element is specifically described as "essential" or "critical".
- The use of "including," "comprising," or "having" and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms "mounted," "connected," "supported," and "coupled" and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, "connected" and "coupled" are not restricted to physical or mechanical connections or couplings. Expressions such as "at least one of," when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list.
- The use of the terms "a" and "an" and "the" and similar referents in the context of describing the invention (especially in the context of the following claims) should be construed to cover both the singular and the plural. Furthermore, recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. Finally, the steps of all methods described herein are performable in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., "such as") provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed.
- The words "mechanism" and "element" are used herein generally and are not limited solely to mechanical embodiments. Numerous modifications and adaptations will be readily apparent to those skilled in this art without departing from the spirit and scope of the invention.
-
- 1
- cabin system
- 2
- main cabin lighting
- 4
- passenger address system
- 6
- in-flight entertainment system
- 8
- passenger connectivity system
- 10
- crew mobile devices
- 12
- in-seat power
- 13
- control panel
- 14
- common network
- 15
- lighting system
- 15.1
- lighting controller
- 16
- monuments
- 18
- seat systems
- 19
- in-cabin connectivity
- 20
- passenger service unit (PSU)
- 20.1
- PSU controller
- 21
- programmable active display/information sign
- 23
- dynamic seat row marker
- 23.1
- status portion
- 23.2
- additional status portion
- 24
- oxygen supply system
- 24.1
- oxygen controller
- 24.2
- oxygen system equipment
- 24.2a
- oxygen canister
- 24.2b
- oxygen mask
- 24.3
- oxygen mask door panel
- 24.4
- bottle mount
- 26
- call button
- 27
- speaker
- 28
- task (reading) lights
- 28a
- call light
- 29
- PCB, flexible (flex) PCB
- 29a
- LED portion of flex PCB
- 29a1
- LED extended PCB portion
- 29a2
- LED
- 29b
- control circuitry portion of flex PCB
- 29b1
- connector
- 30
- first cable bundle connector
- 32
- second cable bundle connector
- 33
- third cable bundle connector
- 34
- first cable bundle (OEU drops)
- 34'
- combined cable bundle
- 34.1
- power
- 34.2
- RS-485
- 35
- single connector for single wire bundle
- 36
- second cable bundle (OEU feeds)
- 38
- oxygen (3rd) system cable bundle
- 38.1
- power
- 38.2
- CANBUS
- 40
- single connector
- 42
- single wire bundle (SU drops)
- 100
- overhead equipment unit (OEU)
- 110
- cabin services system (CSS)
- 120
- zone management unit (ZMU)
- 130
- smart service unit (SSU) w/ service unit control system
- 150
- oxygen power
- 200
- integrated speaker/task light
- 205
- housing; truncated spherical housing
- 210
- LED light module
- 215
- horn
- 220
- speaker
- 225
- speaker and light electronics
- 230
- mount
Claims (10)
- A passenger service unit (20) for an aircraft cabin, comprising:a mounting mechanism for mounting the passenger service unit (20) above at least one seat;a dynamic seat row marker (23) that is adapted to provide an indication of a seat position and a status portion indicating a status of a passenger or trip aspect that is readily viewable from an aircraft aisle and is changeable during a trip;a programmable active display that is readily viewable from the seat and provides trip changeable information about the trip to the passenger;an oxygen supply module (24) comprising an oxygen canister (24.2a) and a plurality of oxygen masks (24.2b);a lighting module (28) comprising a plurality of LED reading lights;at least one speaker (220) comprising a horn (215) having a circular cross section; anda power/logic module (20.1) for controlling the lighting module (28), andthe at least one speaker (220), wherein the power/logic module (20.1) comprisesa power supply adapted to convert supplied AC oder DC power into DC voltage usable by the power/logic module (20.1), anda common data communications interface for communicating with a cabin management system; andwherein a first speaker (200) of the at least one speaker (200) is vertically integrated into a first LED reading light of the plurality of LED reading lights, wherein an LED for illuminating the first LED reading light is at least partially surrounded by the horn (215) of the first speaker, and wherein the first speaker (200) and the first LED reading light share a common housing.
- The passenger service unit of claim 1, comprising a flexible printed circuit board (29) having a control circuitry portion (29b) and an LED portion (29a) including a plurality of LEDs for illuminating the plurality of LED reading lights.
- The passenger service unit of claim 1, wherein the at least one speaker comprises three speakers each integrated with a respective LED reading light of the plurality of reading lights.
- The passenger service unit of claim 1, wherein the first speaker is directed to a passenger positioned to use the first LED reading light.
- The passenger service unit of claim 1, wherein the dynamic seat row marker (23) is configured to identify a meal preference of a passenger seated beneath the passenger service unit.
- The passenger service unit of claim 1, wherein the programmable active display is configured to display luggage claim information.
- The passenger service unit of any of claims 1 through 6, wherein the oxygen canister (24.2a) of the oxygen supply module (24) is mounted perpendicular to a longitudinal axis of the passenger service unit (20).
- The passenger service unit of any of claims 1 through 7, further comprising a translucent cover disposed over the sign module (21).
- The passenger service unit of claim 8, wherein the translucent cover is a portion of a cover disposed over an entire bottom portion of the passenger service unit.
- The passenger service unit of claim 1, further comprising a single connector (35) for a single wire bundle (42) entering the passenger service unit from an external source, the single wire bundle (42) comprising the common data communication interface and a power supply to the passenger service unit.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462057133P | 2014-09-29 | 2014-09-29 | |
US201562133123P | 2015-03-13 | 2015-03-13 | |
US201562173855P | 2015-06-10 | 2015-06-10 | |
PCT/US2015/053022 WO2016054097A1 (en) | 2014-09-29 | 2015-09-29 | Smart passenger service unit |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3201089A1 EP3201089A1 (en) | 2017-08-09 |
EP3201089A4 EP3201089A4 (en) | 2018-09-05 |
EP3201089B1 true EP3201089B1 (en) | 2021-04-07 |
Family
ID=55583669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15846009.7A Active EP3201089B1 (en) | 2014-09-29 | 2015-09-29 | Smart passenger service unit |
Country Status (4)
Country | Link |
---|---|
US (1) | US10219059B2 (en) |
EP (1) | EP3201089B1 (en) |
CN (1) | CN107108034B (en) |
WO (1) | WO2016054097A1 (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10219059B2 (en) * | 2014-09-29 | 2019-02-26 | B/E Aerospace, Inc. | Smart passenger service unit |
US9742898B2 (en) * | 2015-08-31 | 2017-08-22 | The Boeing Company | Mobile cabin panel |
US10239617B2 (en) * | 2015-09-11 | 2019-03-26 | The Boeing Company | Oxygen box for a limited maintenance access area above a ceiling panel of an aircraft cabin |
JP6722759B2 (en) * | 2015-11-06 | 2020-07-15 | システムズ アンド ソフトウェア エンタープライゼス, エルエルシーSystems And Software Enterprises, Llc | How to associate a location with a device |
WO2017087566A1 (en) * | 2015-11-16 | 2017-05-26 | Civiq Smartscapes, Llc | Techniques and systems for servicing a personal communication structure (pcs) |
US10214287B2 (en) * | 2016-02-26 | 2019-02-26 | The Boeing Company | Vehicle cabin wayfinding assembly |
EP3235545B1 (en) * | 2016-04-22 | 2018-10-03 | Airbus Operations GmbH | Oxygen supply system with built-in test equipment |
US10200110B2 (en) * | 2016-06-30 | 2019-02-05 | Ge Aviation Systems Llc | Aviation protocol conversion |
US10513335B2 (en) * | 2016-10-07 | 2019-12-24 | The Boeing Company | Systems and methods for providing electrical signals to electrical devices within an interior cabin of a vehicle |
US10118701B2 (en) * | 2017-03-08 | 2018-11-06 | B/E Aerospace, Inc. | Aircraft cabin LED lighting system and lighting assembly |
CN110520359B (en) * | 2017-03-30 | 2023-07-14 | 赛峰座椅美国有限责任公司 | Passenger communication system |
CN107270213A (en) * | 2017-05-05 | 2017-10-20 | 中国商用飞机有限责任公司 | Interior integrated form emergency lighting device |
DE102017009880B4 (en) * | 2017-10-24 | 2023-03-02 | Diehl Aerospace Gmbh | Address allocation to PSUs, service arrangement and passenger cabin |
GB2595198B (en) * | 2018-02-07 | 2023-06-14 | Ifpl Group Ltd | Apparatus for device charging |
US10906646B2 (en) * | 2018-05-11 | 2021-02-02 | B/E Aerospace, Inc. | Integrated passenger service unit (PSU) |
CN109319124A (en) * | 2018-08-03 | 2019-02-12 | 李宗谕 | Method of supplying power in civil aircraft main cabin |
US20200164233A1 (en) * | 2018-11-28 | 2020-05-28 | Zodiac Cabin Controls Gmbh | Oxygen system with electronic flow indication |
CN110636060B (en) * | 2019-09-19 | 2021-03-23 | 西北工业大学 | Reliable real-time wireless voice transmission method for civil aircraft |
US11615542B2 (en) * | 2019-11-14 | 2023-03-28 | Panasonic Avionics Corporation | Automatic perspective correction for in-flight entertainment (IFE) monitors |
CN111049549A (en) * | 2019-11-28 | 2020-04-21 | 太仓市同维电子有限公司 | Civil airborne WIFI system with BITE function |
US11655032B2 (en) * | 2020-03-19 | 2023-05-23 | B/E Aerospace, Inc. | Systems and methods for efficient boarding of passenger vehicles |
US11490484B1 (en) | 2021-10-15 | 2022-11-01 | Aircraft Lighting International Inc. | Retrofit light-emitting diode lamp and circuit thereof |
EP4414265A1 (en) * | 2023-02-08 | 2024-08-14 | B/E Aerospace, Inc. | Executive and vip seating integrated air ionizer |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080298045A1 (en) * | 2005-06-17 | 2008-12-04 | Doug Wright | Recessed light fixture and speaker combination |
US20160090192A1 (en) * | 2014-09-29 | 2016-03-31 | B/E Aerospace, Inc. | Smart passenger service unit |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4158400A (en) * | 1978-05-15 | 1979-06-19 | Vice Charles L | Sound reproducing system |
US6393343B1 (en) * | 1997-03-13 | 2002-05-21 | Airbus Deutschland Gmbh | Passenger service unit and an aircraft cabin systems control with such service units |
US5980057A (en) * | 1997-11-10 | 1999-11-09 | Recoton Corporation | Speaker light unit connected to conventional electrical light socket |
US6371637B1 (en) | 1999-02-26 | 2002-04-16 | Radiantz, Inc. | Compact, flexible, LED array |
US6177887B1 (en) | 1999-07-06 | 2001-01-23 | George A. Jerome | Multi-passenger vehicle catering and entertainment system |
WO2004007241A2 (en) | 2002-07-16 | 2004-01-22 | Schefenacker Vision Systems Usa Inc. | White led headlight |
KR100576866B1 (en) | 2004-06-16 | 2006-05-10 | 삼성전기주식회사 | Light emitting diode and fabrication method thereof |
US6998538B1 (en) | 2004-07-30 | 2006-02-14 | Ulectra Corporation | Integrated power and data insulated electrical cable having a metallic outer jacket |
EP1934990B1 (en) | 2005-09-19 | 2012-11-07 | Telefonix, Inc. | Flexible and lightweight seat-to-seat cabin cable system and method of manufacturing same |
US20070107277A1 (en) | 2005-11-14 | 2007-05-17 | The Boeing Company | Seat identification system |
DE102007052671B4 (en) * | 2007-11-05 | 2012-11-08 | Airbus Operations Gmbh | Display module for displaying passenger-specific display information |
US8240875B2 (en) | 2008-06-25 | 2012-08-14 | Cree, Inc. | Solid state linear array modules for general illumination |
US20160053977A1 (en) | 2008-09-24 | 2016-02-25 | B/E Aerospace, Inc. | Flexible led lighting element |
US20100188778A1 (en) | 2009-01-29 | 2010-07-29 | Castagna Joseph T | Disk Drive Assembly Having Flexible Support for Flexible Printed Circuit Board |
US8300869B2 (en) * | 2009-04-02 | 2012-10-30 | Mitek Corp., Inc. | Lighting and audio communication system |
WO2011082998A1 (en) | 2009-12-15 | 2011-07-14 | Airbus Operations Gmbh | Supply module for passenger transport vehicles |
KR101671389B1 (en) * | 2010-03-05 | 2016-11-01 | 삼성전자 주식회사 | Adaptive notch filter with variable bandwidth, and method and apparatus for cancelling howling using the adaptive notch filter with variable bandwidth |
DE102010018502A1 (en) | 2010-04-28 | 2011-11-03 | Airbus Operations Gmbh | Supply system for supplying passengers in a passenger compartment of a vehicle |
DE102011013368B4 (en) * | 2011-03-08 | 2024-02-01 | Diehl Aerospace Gmbh | Passenger service unit, passenger service channel and means of transport |
WO2012167107A1 (en) * | 2011-06-01 | 2012-12-06 | B/E Aerospace, Inc. | Vehicle led reading light grouping system and method |
US9756733B2 (en) | 2011-10-04 | 2017-09-05 | Apple Inc. | Display and multi-layer printed circuit board with shared flexible substrate |
US9079528B2 (en) * | 2012-02-14 | 2015-07-14 | C&D Zodiac, Inc. | PSU pod assembly and method for using same |
US20130340749A1 (en) * | 2012-06-22 | 2013-12-26 | Wolfgang Rittner | Passenger reading light integrated in psu/emergency oxygen device |
US8806543B1 (en) * | 2013-03-05 | 2014-08-12 | The Boeing Company | In-flight passenger information system |
US9335034B2 (en) | 2013-09-27 | 2016-05-10 | Osram Sylvania Inc | Flexible circuit board for electronic applications, light source containing same, and method of making |
US9487296B2 (en) * | 2013-09-30 | 2016-11-08 | Peco Manufacturing Co., Inc. | Passenger service unit and related systems |
-
2015
- 2015-09-29 US US14/869,651 patent/US10219059B2/en active Active
- 2015-09-29 CN CN201580059348.0A patent/CN107108034B/en active Active
- 2015-09-29 WO PCT/US2015/053022 patent/WO2016054097A1/en active Application Filing
- 2015-09-29 EP EP15846009.7A patent/EP3201089B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080298045A1 (en) * | 2005-06-17 | 2008-12-04 | Doug Wright | Recessed light fixture and speaker combination |
US20160090192A1 (en) * | 2014-09-29 | 2016-03-31 | B/E Aerospace, Inc. | Smart passenger service unit |
Also Published As
Publication number | Publication date |
---|---|
CN107108034B (en) | 2021-03-09 |
WO2016054097A1 (en) | 2016-04-07 |
US10219059B2 (en) | 2019-02-26 |
US20160090192A1 (en) | 2016-03-31 |
CN107108034A (en) | 2017-08-29 |
EP3201089A4 (en) | 2018-09-05 |
EP3201089A1 (en) | 2017-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3201089B1 (en) | Smart passenger service unit | |
US10715911B2 (en) | Smart passenger service unit | |
US7597286B2 (en) | Simplified power system for a cabin services system for an aircraft | |
US9499270B2 (en) | Supply module for passenger transport vehicles | |
US7036889B2 (en) | Aircraft passenger seat and in-flight entertainment integrated electronics | |
EP2483150B1 (en) | System and method for providing an integrated user interface system at a seat | |
US6824104B2 (en) | Under floor remote seat cluster and integrated housing system for aircraft passenger entertainment systems and the like | |
US20120191297A1 (en) | Simplified cabin services system for an aircraft | |
US20120230530A1 (en) | Passenger service unit, passenger service channel and means of transport | |
US20080104642A1 (en) | Cabin management and entertainment system | |
ATE259075T1 (en) | DATA MANAGEMENT SYSTEM FOR AN AIRCRAFT | |
US8485703B2 (en) | Aircraft cabin lighting system and kit therefor | |
EP1535495A2 (en) | Methods and systems for illuminating environments | |
US20100187354A1 (en) | Information system for messages from passengers to the cabin crew | |
JP2005531267A (en) | Aircraft communication distribution system | |
CN110356561B (en) | Monitoring system for aircraft cabin, data distribution device and aircraft | |
US20050052339A1 (en) | Electroluminescent programmable signs for use onboard an aircraft | |
US11607957B1 (en) | Accent lighting based display systems and associated methods thereof | |
US7971221B2 (en) | Overhead video system for an aircraft | |
US9481463B2 (en) | Panel and system for aircraft cabin management | |
US12012222B2 (en) | Programmable lighting methods and systems for a removable peripheral bar | |
US20230365259A1 (en) | Display systems with a modular peripheral bar assembly and associated methods thereof | |
RU2473117C2 (en) | Intelligent information system for aircraft passenger cabin | |
FR2887051A1 (en) | Aircraft passenger seat e.g. luxury seat, control and supply system, has supply unit that electrically supplies central unit, and buses connected to entertainment and comfort equipment, where each bus has electric supply wires |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170427 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: TODZIA, JONATHAN Inventor name: JOHANNESSEN, ERIC Inventor name: LASALA, DONALD Inventor name: BARKER, JOHN TERENCE Inventor name: LINTON, ROBERT Inventor name: MOSS, RONNIE R. Inventor name: DUNN, MATTHEW Inventor name: GAMBESKI, GANNON T. Inventor name: SAM, LUIS Inventor name: PECK, JESSE RICHARD |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20180808 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B64D 11/00 20060101AFI20180802BHEP Ipc: F21V 33/00 20060101ALI20180802BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180917 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B64D 11/00 20060101AFI20180912BHEP Ipc: F21V 33/00 20060101ALI20180912BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20201022 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1379386 Country of ref document: AT Kind code of ref document: T Effective date: 20210415 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015067901 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210407 Ref country code: AT Ref legal event code: MK05 Ref document number: 1379386 Country of ref document: AT Kind code of ref document: T Effective date: 20210407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210807 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210708 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210809 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015067901 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220110 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210807 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210929 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210929 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240820 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240820 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240820 Year of fee payment: 10 |