EP3195647B1 - Anpassung der zellenzahl zur messung in einem netzwerk mit ein-/aus-zellen - Google Patents

Anpassung der zellenzahl zur messung in einem netzwerk mit ein-/aus-zellen Download PDF

Info

Publication number
EP3195647B1
EP3195647B1 EP15724388.2A EP15724388A EP3195647B1 EP 3195647 B1 EP3195647 B1 EP 3195647B1 EP 15724388 A EP15724388 A EP 15724388A EP 3195647 B1 EP3195647 B1 EP 3195647B1
Authority
EP
European Patent Office
Prior art keywords
type
cells
wireless device
cell
network node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15724388.2A
Other languages
English (en)
French (fr)
Other versions
EP3195647A1 (de
Inventor
Ali Behravan
Muhammad Kazmi
Imadur RAHMAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Publication of EP3195647A1 publication Critical patent/EP3195647A1/de
Application granted granted Critical
Publication of EP3195647B1 publication Critical patent/EP3195647B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • Particular embodiments are directed to wireless communications and, more particularly, to a device, a network node and methods therein for adapting the number of cells to measure in a network with on/off cells.
  • FIGURE 1 illustrates an example of a wireless communications network that includes one or more wireless devices 110 (which may interchangeably be referred to as user equipment, UEs) and one or more network nodes, such as wireless network nodes 120 (e.g., a base station or an evolved Node B, eNB) and core network nodes 130.
  • Wireless network nodes 120 can be associated with various types of cells, such as legacy cell 120a (e.g., a cell configured to transmit at least one type of reference signal in each subframe over a time period, T0) and on/off cell 120b (e.g., a cell that does not transmit any type of reference signal in at least one subframe over the time period, T0).
  • legacy cell 120a e.g., a cell configured to transmit at least one type of reference signal in each subframe over a time period, T0
  • on/off cell 120b e.g., a cell that does not transmit any type of reference signal in at least one subframe over the time period, T0).
  • wireless devices 110 within coverage of a wireless network node 120 communicate with the wireless network node 120 over a wireless interface.
  • wireless devices 110 and wireless network nodes 120 may communicate wireless signals containing voice traffic, data traffic, and control signals.
  • Core network node 130 manages the establishment of communication sessions and various other functionality for wireless device 110.
  • the network nodes connect through interconnecting network 125, which refers to any interconnecting system capable of transmitting audio, video, signals, data, messages, or any combination of the preceding.
  • small cell on/off feature According to this feature the small cell may be turned on and off where the "on” and “off” period may depend on the criteria or application.
  • the criteria for cell on/off can be traffic load, UE arrival/departure, etc.
  • the criteria in this case can be packet arrival/completion or interference coordination and avoidance (i.e. reduce interference towards other nodes or UEs). So this means that the cell turns off at the subframe boundary (or end of current subframe) when the transmission of packet is completed and turns on at the next subframe boundary when a new packet arrives.
  • Another purpose of small cell on/off can be for energy saving.
  • Some preliminary evaluation of the energy saving impact of the small cell on/off is presented in 3GPP TR 36.872, ver. 12.0.0, "Small cell enhancements for E-UTRA and E-UTRAN; Physical layer aspects .”
  • Some discussion of physical layer aspects of small cell enhancements is presented in 3GPP RP-132073 .
  • a discovery signal might be needed in order to assist the UE with the measurements. This is referred to as Discovery Reference Signal (DRS) in some cases.
  • DRS Discovery Reference Signal
  • the discovery signal needs to support the properties for enabling RRM measurements, RLM related procedures, and coarse time/frequency synchronization.
  • the eNB has to wake up periodically (e.g. once every 40ms, 80ms, or 160ms, etc.) and send the discovery signal so that it can be used by the UE for mobility related operations such as cell identification, RLM, and measurement.
  • the UE Since the discovery signal is rather sparse in time, it is desirable that the UE is able to make a meaningful measurement in one instance of the discovery signal rather than having to wait for multiple instances which may occur tens or hundreds of milliseconds apart. In addition to that, in order to make the measurement based on fewer samples in time more reliable, the discovery signal may need to be sent on wide bandwidth (e.g. the whole bandwidth).
  • UE assumes primary synchronization signal (PSS) / secondary synchronization signal (SSS) / cell-specific reference signal (CRS) in the discovery reference signal (DRS).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • CRS cell-specific reference signal
  • DRS discovery reference signal
  • CSI-RS Channel State Information-Reference Signals
  • a UE assumes that a DRS occasion for a cell consists of
  • radio-related measurements are used by the UE or the radio network node to establish and keep the connection, as well as ensuring the quality of a radio link.
  • the measurements are used in radio resource control (RRC) idle state operations such as cell selection, cell reselection (e.g. between E-UTRANs, between different radio access technologies (RATs), and to non-3GPP RATs), and minimization of drive test (MDT), and also in RRC connected state operations such as for cell change (e.g. handover between E-UTRANs, handover between different RATs, and handover to non-3GPP RATs).
  • RRC radio resource control
  • the UE has to first detect a cell and therefore cell identification, e.g. acquisition of a physical cell identity (PCI), is also a signal measurement.
  • PCI physical cell identity
  • the UE may also have to acquire the cell global ID (CGI) of a node (or cell).
  • CGI cell global ID
  • the RSRP and RSRQ are used for at least RRM measurements such as for mobility, which include mobility in RRC connected state as well as in RRC idle state.
  • the RSRP and RSRQ are also used for other purposes, e.g. for enhanced cell ID positioning, minimization of drive test etc.
  • the UE can perform intra-frequency measurements without measurement gaps.
  • the UE performs inter-frequency and inter-RAT measurements in measurement gaps unless it is capable of performing them without gaps.
  • the network has to configure the measurement gaps. Two periodic measurement gap patterns both with a measurement gap length of 6 ms are defined for LTE:
  • the measurements performed by the UE are then reported to the network, which may use them for various tasks.
  • the radio network node may also perform signal measurements. Examples of radio network node measurements in LTE are propagation delay between UE and itself, uplink signal-to-interference-plus-noise ratio (UL SINR), uplink signal-to-noise ratio (UL SNR), uplink signal strength, Received Interference Power (RIP), etc.
  • UL SINR uplink signal-to-interference-plus-noise ratio
  • UL SNR uplink signal-to-noise ratio
  • RIP Received Interference Power
  • the eNB may also perform positioning measurements which are described in a later section.
  • the UE also performs measurements on the serving cell (aka primary cell) in order to monitor the serving cell performance. This is called as radio link monitoring (RLM) or RLM related measurements in LTE.
  • RLM radio link monitoring
  • the UE monitors the downlink link quality based on the cell-specific reference signal in order to detect the downlink radio link quality of the serving or PCell.
  • the UE compares the estimated quality with the thresholds Qout and Qin respectively.
  • the threshold Qout and Qin are defined as the level at which the downlink radio link cannot be reliably received and corresponds to 10% and 2% block error rate of a hypothetical PDCCH transmissions respectively.
  • the overall serving cell or neighbour cell measurement quantity results comprises of non-coherent averaging of 2 or more basic non-coherent averaged samples.
  • the exact sampling depends upon the implementation and is generally not specified.
  • An example of RSRP measurement averaging in E-UTRAN is shown in FIGURE 2 .
  • the figure illustrates that the UE obtains the overall measurement quantity result by collecting four non-coherent averaged samples or snapshots (each of 3 ms length in this example) during the physical layer measurement period (i.e., 200 ms) when no discontinuous reception (DRX) is used or when DRX cycle is not larger than 40 ms. Every coherent averaged sample is 1 ms long.
  • the sampling also depends upon the length of the DRX cycle. For example for DRX cycle > 40 ms, the UE typically takes one sample every DRX cycle over the measurement period.
  • a similar measurement sampling mechanism is used for other signal measurements by the UE and also by the base station (BS) for UL measurements.
  • Some embodiments of the disclosure may provide one or more technical advantages. Some embodiments may benefit from some, none, or all of the advantages. Other technical advantages may be readily ascertained by one of ordinary skill in the art.
  • An example of a technical advantage of certain embodiments includes the UE is able to perform measurements on an adequate number of legacy cells as well as cells operating with an on/off scheme.
  • Another example of a technical advantage of certain embodiments includes enhancing mobility performance in a deployment scenario comprising of mixture of cells (e.g., legacy cells and cells operating with on/off scheme).
  • Another example of a technical advantage of certain embodiments includes the ability to dynamically adapt the total number of legacy and on/off cells on which UE performs measurements depending on one or more criteria. This ensures that overall the UE can measure on sufficient number of cells.
  • Yet another example of a technical advantage of certain embodiments includes on/off cells can adapt to different DRS parameters suitable for certain UE to measure on a second type of cells.
  • a UE must perform certain measurements on reference signals transmitted from a cell with certain periodicity.
  • the on/off scheme changes the availability of such reference signals and therefore has direct impact on the measurement procedure as well as the performance of the measurements.
  • a UE in a network with different types of cells where cells with on/off schemes exist together with legacy cells, a UE must be able to perform measurements on all cells and report the measurements to the network. Hence it is necessary that there is a mechanism to efficiently perform measurements on enough number of cells with on/off scheme together with legacy cells.
  • Particular embodiments of the present disclosure may allow for efficient measurement of the reference signals in networks having both small cells with on/off scheme and legacy cells.
  • a UE Under normal operation of cells, a UE performs measurements on reference signals that are transmitted periodically by the network node. For example CRSs are transmitted in every subframe and PSS/SSS are transmitted every 5th subframe. So the UE assumes that the reference signals are available with predefined configurations, for example, CRS in every subframe, and/or PSS/SSS in every 5th subframe.
  • discovery bursts i.e., subframe(s) carrying DRS
  • the network node may transmit them with one of the several pre-defined configurations, for example, in terms of length of discovery burst, periodicity of discovery burst, etc.
  • a UE performs measurements on different cells including both legacy cells and cells with the on/off feature.
  • the UE can only measure a limited number of cells on a carrier due to limited hardware and memory resources. Due to more availability of the legacy cells, the UE will most likely perform measurements on the legacy cell and report those measurements. If only legacy cells are measured and reported to the network, the cells operating in on/off scheme or mode might not be used for certain radio operations or procedures that rely on UE radio measurements (e.g., on/off cells might not be used for cell change, etc.). This means such cells operating in on/off scheme will be under-utilized and hence the overall network performance is impacted. In particular, the UE mobility performance will be degraded. Furthermore the legacy cells will be overburdened to accommodate more UEs due to lack of handover/cell change to cells using on/off scheme. This in turn will also degrade the UE performance (e.g. lower user throughput).
  • particular embodiments of the present disclosure ensure that the UE is able to perform measurements efficiently when cells with on/off scheme are used together with legacy cells.
  • the disclosure contemplates several embodiments, some embodiments relate to functionality of a network node 120 or 130 and some embodiments related to functionality of a wireless device/UE 110. Particular embodiments relate to the determination of a minimum number of legacy cells (Min_LC) and a minimum number of cells operating with on/off scheme (Min_on_off) based on one or more suitable pre-defined rules/criteria, and performing UE radio measurements on the determined cells.
  • Min_LC minimum number of legacy cells
  • Min_on_off minimum number of cells operating with on/off scheme
  • steps performed by wireless device 110 may comprise:
  • the steps performed in a network node serving a wireless device 110 may comprise:
  • on/off cell refers to a cell where on/off scheme is configured, and a legacy cell is a cell with no on/off scheme, i.e., the cell is always on.
  • the legacy cells are also interchangeably called as a first type of cells.
  • the legacy cell scheme i.e., non on/off scheme or non on/off cell scheme
  • a first type of scheme is characterized by a reference signal transmission comprising of a first reference signal (RS) configuration.
  • RS reference signal
  • the network node i.e., legacy cell 120a
  • transmits at least one type of RS in every subframe such as a CRS in every subframe.
  • other RS such as PSS/SSS, CSI-RS, etc. may still be transmitted only in some of the subframes.
  • the legacy cells are in "always on" state unless otherwise signaled by the network. This essentially means that legacy cells or first kind of cells have certain broadcast signals for every subframe unless otherwise mentioned.
  • the on/off cells are also interchangeably called as a second type of cells.
  • the on/off scheme or on/off cell scheme or a second type of scheme is characterized by a reference signal transmission comprising of a second reference signal (RS) configuration.
  • the network node i.e., on/off cell 120b
  • the network node does not transmit any of the RS in all the subframes. That is, while certain subframes transmit certain reference signals, other subframes do not transmit any type of reference signal such that not all subframes transmit reference signals.
  • CRS, CSI-RS, PSS/SSS, etc. may be transmitted in one subframe once every 40 ms.
  • CRSs are transmitted in 5 consecutive subframes once every 40 ms and PSS/SSS are transmitted in 1 consecutive subframe once every 40 ms.
  • the on/off cells or second kind of cells do not necessarily have broadcast signals in every subframe.
  • the following parameters represent the number of cells or more specifically the number of identified cells on whose signals the UE (wireless device 110) performs one or more radio measurements during at least partially overlapping time period T0 (e.g., the layer 1 (L1) period).
  • Example of radio measurements are RSRP, RSRQ, etc.
  • Example of T0 is the physical layer measurement period which may also be referred to as the L1 measurement period or L1 period.
  • the L1 period used by the UE for measuring on first type of cells may be the same or may be different compared to L1 period used by the UE for measuring on second type of cells.
  • the L1 period for measuring on second type of cells may be longer than L1 period for measuring on first type of cells.
  • their L1 periods may at least partly overlap. This is because in the latter case the DRS signals typically occur less frequently. Therefore the term T0 is at least a partially overlapping time over which radio measurements are done on first and second types of cells.
  • the radio measurements are to be performed on identified cells, that is, on cells that have been detected or identified by the UE. Therefore, parameters M total, Min_LC, and Min_on_off represent the minimum number of identified cells. After identifying a cell, the UE regularly performs radio measurements (such as RSRP measurements) on the identified cell over T0.
  • radio measurements such as RSRP measurements
  • the M_total cells may be assumed to be measured on the same carrier frequency, i.e., first and second type of cells operating on the same carrier.
  • the variables M_total, Min_LC and Min_on_off can be per carrier frequency.
  • the value of these parameters may be the same or different for different carriers.
  • M total can be 8 for the serving carrier (e.g., for primary component carrier (PCC) or secondary component carrier (SCC)) and 4 for the non-serving carrier.
  • PCC primary component carrier
  • SCC secondary component carrier
  • the embodiments are also applicable for the case when M_total cells denotes the number of cells belonging to different carriers where, for example, some cells are on the same carrier and some cells are on different carriers.
  • the embodiments are also applicable for different RATs when M_total cells denotes the number of cells belonging to different RATs (e.g. some cells on the same RAT and some cells on different RATs).
  • At least the minimum number of the second type of cell (i.e., on/off cells) on whose signals the one or more radio measurements are to be performed by the UE is determined based on one or more pre-defined rules.
  • the UE may also be configured by the network node with the specific pre-defined rule to be used for determining the value of Min_on_off.
  • the UE may perform one or more measurements on the first type of cells (i.e., legacy cells) and the second type of cells (i.e., on/off cells) based on the obtained rule or criteria while meeting the following constraints: Min _ LC + Min _ on _ off ⁇ M _ total
  • one or more parameters related to minimum number of cells (Min_LC and/or Min_on_off) on which measurements are performed by the UE is based on one or combination of predetermined rules and/or on suitable criteria.
  • the UE may:
  • Example Rule 1 determining number of cells to measure based on the periodicity of on/off scheme:
  • the minimum number of at least second type of cells on which measurements are to be performed is determined based on the periodicity with which the DRS burst is transmitted in the second RS configuration, which may be referred to as periodicity (Tp) of the on/off scheme in some embodiments.
  • periodicity Tp
  • the parameter Min LC may then also be determined based on Min_on_off and using the constraint in (1).
  • the UE obtains the value of Tp from higher layer signaling message received from the network node.
  • the UE may also obtain the value of Tp by retrieving it from the memory or by blindly detecting the reception of DRS signals at regular intervals.
  • FIGURE 3 is a diagram illustrating examples of on and off intervals for different types of cells, according to a particular embodiment.
  • the time unit can be radio frame, subframe, a burst of subframes, etc.
  • the figure shows that a legacy cell is on during every time unit.
  • the figure also shows an example of an on/off cell with a period of 10 such that the cell is off except for time units 0, 10, and 20 (and so on).
  • the figure also shows an example of another on/off cell with a different period, a period of 20, such that the cell is off except for time units 0 and 20 (and so on).
  • a DRS burst occurs during the on period of the on/off cell.
  • the length of the off period affects the periodicity of the DRS burst.
  • a threshold e.g. 80 ms
  • the UE may be required to perform measurements on fewer number of second type of cells (i.e., on/off cells).
  • Min_on_off a lower number, such as 2 cells.
  • T_threshold which could be 80 ms in certain embodiments
  • the parameter, "T_threshold” is a threshold that can be predetermined, autonomously determined by the UE, or configured by the network node.
  • Tp is 80 ms. Examples of m and n are 5 and 2, respectively.
  • Example Rule 2 determining number of cells to measure based on a length of DRS burst
  • the minimum number of at least second type of cells (i.e. on/off cells) on which measurements are performed by the UE is determined based on the length of the DRS burst (e.g., the discovery burst).
  • the discovery burst can have a length ranging between 1 subframe and 5 subframes.
  • Min_on_off can be larger for larger bursts.
  • a larger burst means larger number of DRS signals (i.e., more dense DRS signals in time and frequency) are available for measurement at the UE.
  • the advantage of this method is that if the bursts are longer (e.g. 3-5 ms), then the measurements are more accurate due to more dense availability of reference signals. Therefore, it is useful to do measurements on larger number of second type of cells and report such measurements which are also more accurate. This may improve mobility performance since mobility decisions rely on UE radio measurement results. On the other hand, if the DRS burst is shorter (e.g., 1 or 2 ms), then the accuracy of measurement might be less accurate, and it may be better to measure on larger number of first type of cells (i.e. on legacy cells).
  • Min_on_off can be determined based on a certain length of DRS burst as follows: if DRS burst is longer (e.g., 3-5ms), then Min_on_off cells ⁇ m and Min_LC cells ⁇ n; otherwise, if DRS burst is shorter (e.g. 1-2ms), then Min_on_off cells ⁇ n and Min_LC cells ⁇ m (where m > n).
  • DRS burst is longer (e.g. 3-5ms)
  • Min_on_off cells ⁇ m and Min_LC cells ⁇ n if DRS burst is shorter (e.g. 1-2ms), then Min_on_off cells ⁇ n and Min_LC cells ⁇ m (where m > n).
  • Example Rule 3 determining number of cells to measure based on signal quality
  • the minimum number of at least second type of cells (i.e., on/off cells) on which measurements are performed by the UE is determined based on signal quality of a cell on which measurement is to be done.
  • signal quality e.g., SINR
  • DRS signals are CRS, PSS/SSS (also known as synchronization channel (SCH)), CSI-RS, etc. This is elaborated with several examples: As an example:
  • the threshold can be pre-defined or configured by the network node or autonomously selected by the UE (e.g., based on its radio receiver type).
  • Example Rule 4 determining number of cells to measure based on UE location
  • the minimum number of at least second type of cells (i.e., on/off cells) on which measurements are performed by the UE is determined based on location of the UE. For example at certain location of the UE in its serving cell (e.g., in part of cell border region) there are more closely deployed second type of cells, whereas at some other locations, such as close to the base station, the UE may observe larger number of first type of cells. The UE can therefore be informed about the location (e.g., geographical coordinates) and also the type of cells in that location.
  • the UE can be informed that x% and y% of cells are of first and second types respectively at a particular location or K and L number of cells of first and second types respectively at a particular location in the serving cell of the UE.
  • This type of mapping information between location and type of cells can also be pre-defined in the form of lookup table.
  • the UE location in the cell can be determined by using one or combination of positioning methods such as GNSS, A-GNSS, OTDOA, enhanced cell ID (E-CID), etc.
  • the positioning methods such as OTDOA and E-CID in turn rely on UE and/or base station radio measurements such as RSRP and RSRQ measurements, timing measurements (e.g., UE Rx-Tx time difference), angle of arrival of signal measured at base station, etc.
  • the UE location can be determined by the UE itself and/or by the network node. In the latter case the UE can be informed by the network node about its location.
  • the UE uses its own location and the obtained mapping information (i.e., between location and types of cells) for selecting appropriate values of the parameters Min_on_off and Min_LC. For example, if UE is located close to serving base station where most cells are of the first type then Min LC is larger than Min_on_off.
  • the UE location can also be determined by the network node (e.g., eNBs) by comparing the signal quality with a threshold. For example, a node can compare the CRS SINR reported by a UE with a threshold. If the SINR is higher than certain threshold, then the UE is considered to be close the network node (e.g., eNB). Depending on the location of the network node (e.g., eNB), the network node (e.g., eNB) can signal the UE regarding the proportion of first type and second type of cells.
  • the network node e.g., eNBs
  • Example Rule 5 determining number of cells to measure based on type of DRS
  • the minimum number of at least second type of cells (i.e., on/off cells) on which measurements are performed by the UE is determined based on the type of discovery signal (i.e., DRS signals) that is configured by the network node.
  • the UE is informed by the network node about the type of DRS signals configured for transmission by the network node.
  • the UE can perform both CRS-based RSRP measurements and CSI-RS-based RSRP measurements.
  • the UE is also configured about the type of DRS signals to be used for the measurements e.g. CSI-RS, CRS or both.
  • the CSI-RS is configurable. CSI-RS is assumed in the DRS for measurement if configured by higher layers. But CRS are always transmitted. So depending on whether there is only CRS or both CRS and CSI-RS are configured for measurement, the number of type of cells to be measured will vary.
  • Min_on_off Min_LC or Min_LC > Min_on_off.
  • the values of the parameters M_total and/or ⁇ can be pre-defined or one or both parameters can be configured at the UE by the network node, e.g., by core network node 130 or by eNB 120 itself.
  • the parameter M_total can also be based on the UE capability in terms of maximum total number (M_total_max) of supported measurements.
  • Example Rule 7 determining number of cells to measure based on combination of rules and/or criteria
  • a threshold Example Rule 1
  • UE could measure for example in principle up to 5 cells. But the UE may also check the signal quality (the criterion in Example Rule 3) of cells. If the signal quality (e.g., SCH SINR) is above a threshold of only 3 cells of second type, then the
  • the UE may be requested by the network node to use a specific rule or specific combination of rules for determining the minimum number of at least second type of cells on which measurements are to be done by the UE.
  • the network node may decide the criteria according to the scenario or conditions in which a particular UE is operating:
  • the network node may adapt one or more parameters related to DRS configuration and/or parameters signaled to the UE in measurement configuration depending upon the minimum number of first and/or second types of cells on which UE does measurements.
  • the network node may suggest one or more second types of cells to adapt one or more DRS parameters in the deployment area.
  • the serving network node may request the second types of cells directly (e.g., via X2 interface) or via another network node (e.g., core network node) to reduce DRS periodicity (e.g., from 80 ms to 40 ms) and/or increase DRS burst length (e.g., from 2 to 4 subframes per burst). This will allow the UE to measure more cells of the second type and therefore the mobility performance can be enhanced.
  • FIGURE 4 is a flow diagram illustrating an example of a method in a wireless device 110 that performs radio measurements on radio signals from multiple types of cells, according to a particular embodiment.
  • wireless device 110 adapts, based on one or more pre-defined rules or criteria, a minimum number of a first type of cells, Min_type_1, and a minimum number of a second type of cells, Min_type_2, for which the wireless device is to perform radio measurements during an at least partly overlapping measurement time, T0.
  • the first type of cell may be a legacy cell that transmits at least one type of reference signal in every subframe of the first type of cell over T0.
  • the second type of cell may be an on/off cell that does not transmit any type of reference signal in at least one subframe of the second type of cell over T0.
  • Min_type_1 The minimum number of the first type of cells, Min_type_1, may be determined in any suitable manner.
  • Min_type_1 can be received from a wireless network node 120 or determined based on one or more pre-defined rules received from a wireless network node 120.
  • Min_type_1 can be determined autonomously by wireless device 110, for example, based on one or more pre-defined rules retrieved from memory of wireless device 110.
  • the minimum number of the second type of cells, Min_type_2 can be received from a wireless network node 120, determined based on one or more pre-defined rules received from a wireless network node 120, or determined autonomously based on one or more pre-defined rules retrieved from memory of wireless device 110.
  • Min_type_1 and Min_type_2 e.g., both types could be received from network node 120 or both types could be determined autonomously
  • one technique could be used to determine Min_type_1 and another technique could be used to determine Min_type_2 (e.g., one type could be received from network node 120 and the other type could be determined autonomously).
  • the sum of Min_type_1 plus Min_type_2 is less than or equal to a minimum number of total cells, M total, that are to be measured by the wireless device during T0. If the sum of Min_type_1 plus Min_type_2 is less than M_total, wireless device 110 can select at least (M_total minus (Min_type_1 plus Min_type_2)) cells on which to perform the radio measurements based on criteria that is not restricted to a particular type of cell.
  • Min_type_1 comprises a first number of the first type of cells on a serving carrier and a second number of the first type of cells on a non-serving carrier.
  • Min_type_2 comprises a first number of the second type of cells on the serving carrier and a second number of the second type of cells on the non-serving carrier.
  • Min_type_1 comprises a first number of the first type of cells on a serving radio access technology and a second number of the first type of cells on a non-serving radio access technology.
  • Min_type_2 comprises a first number of the second type of cells on the serving radio access technology and a second number of the second type of cells on the non-serving radio access technology.
  • Min_type_2 is determined based on a periodicity (Tp) with which a discovery reference signal (DRS) burst is transmitted in the reference signal configuration of the second type of cells. See e.g., Example Rule 1 discussed above.
  • Tp periodicity
  • DRS discovery reference signal
  • Min_type_2 is determined based on the length of a discovery reference signal (DRS) burst in the second type of cells. See e.g., Example Rule 2 discussed above.
  • DRS discovery reference signal
  • Min_type_2 is determined based on one or any combination of the following: periodicity of a DRS burst, length of the DRS burst, signal quality, location, number of the second type of cells relative to number of the first type of cells in proximity to the wireless device, DRS type, and priority factor. See e.g., Example Rules 1-7 discussed above.
  • wireless device 110 performs the radio measurements on radio signals from at least Min_type_1 of the first type of cells and at least Min_type_2 of the second type of cells during T0.
  • wireless device 406 uses the radio measurements for one or more radio tasks. Examples of radio tasks include: reporting radio measurements to the network node, determining the wireless device 110's position, performing cell change, and/or any combination of the preceding.
  • FIGURE 5 is a flow diagram illustrating an example of a method in a network node 120 that sends a wireless device 110 pre-defined rules and/or criteria for adapting a minimum number of cells on which to perform radio measurements, according to a particular embodiment.
  • network node 120 determines one or more pre-defined rules or criteria to be used by the wireless device 110 for adapting a minimum number of a first type of cells, Min_type_1, and a minimum number of a second type of cells, Min_type_2, on which the wireless device 110 is to perform radio measurements during an at least partly overlapping measurement time, T0.
  • the first type of cell may be a legacy cell that transmits at least one type of reference signal in every subframe of the first type of cell over T0.
  • the second type of cell may be an on/off cell that does not transmit any type of reference signal in at least one subframe of the second type of cell over T0.
  • the one or more pre-defined rules or criteria to be used by the wireless device 110 is determined based on one or any combination of the following conditions or scenarios: cell load, interference in cell, and the wireless device 110's speed.
  • the sum of Min_type_1 plus Min_type_2 is less than or equal to a minimum number of total cells, M total, that are to be measured by the wireless device 110 during T0.
  • Min_type_1 comprises a first number of the first type of cells on a serving carrier and a second number of the first type of cells on a non-serving carrier.
  • Min_type_2 comprises a first number of the second type of cells on the serving carrier and a second number of the second type of cells on the non-serving carrier.
  • Min_type_1 comprises a first number of the first type of cells on a serving radio access technology and a second number of the first type of cells on a non-serving radio access technology.
  • Min_type_2 comprises a first number of the second type of cells on the serving radio access technology and a second number of the second type of cells on the non-serving radio access technology.
  • Min_type_2 is determined based on a periodicity (Tp) with which a discovery reference signal (DRS) burst is transmitted in the reference signal configuration of the second type of cells. See e.g., Example Rule 1 discussed above.
  • Tp periodicity
  • DRS discovery reference signal
  • Min_type_2 is determined based on the length of a discovery reference signal (DRS) burst in the second type of cells. See e.g., Example Rule 2 discussed above.
  • DRS discovery reference signal
  • Min_type_2 is determined based on one or any combination of the following: periodicity of a DRS burst, length of the DRS burst, signal quality, location, number of the second type of cells relative to number of the first type of cells in proximity to the wireless device, DRS type, and priority factor. See e.g., Example Rules 1-7 discussed above.
  • network node 120 sends the determined one or more pre-defined rules or criteria to the wireless device 110.
  • network node 120 receives a measurement report from the wireless device 110, the measurement report including radio measurements for at least Min_type_1 of the first type of cells and at least Min_type_2 of the second type of cells during T0.
  • network node 120 uses the measurement report received from the wireless device 110 to perform one or more radio tasks. Examples of radio tasks include at least one of: re-configuring the DRS parameters of the network node; signaling to a neighboring cell of the second type to adjust its DRS parameters; and performing cell change. Steps 506 and 508 may be optional in certain embodiments.
  • FIGURES 6A-6B are block diagrams illustrating example components of a wireless device 110, according to a particular embodiment.
  • wireless device 110 include a mobile phone, a smart phone, a PDA (Personal Digital Assistant), a portable computer (e.g., laptop, tablet), a sensor, a modem, a machine type (MTC) device / machine to machine (M2M) device, laptop embedded equipment (LEE), laptop mounted equipment (LME), USB dongles, a device-to-device capable device, or any other device that can provide wireless communication.
  • MTC machine type
  • M2M machine to machine
  • LME laptop mounted equipment
  • USB dongles a device-to-device capable device, or any other device that can provide wireless communication.
  • wireless device 110 includes transceiver 610, processor 620, and memory 630.
  • transceiver 610 facilitates transmitting wireless signals to and receiving wireless signals from wireless network node 120 (e.g., via an antenna)
  • processor 620 executes instructions to provide some or all of the functionality described herein as provided by a wireless device 110 and/or some or all of the functionality described herein as provided by a UE (which may be referred to interchangeably as wireless device 110)
  • memory 630 stores the instructions executed by processor 620.
  • Processor 620 includes any suitable combination of hardware and software implemented in one or more integrated circuits or modules to execute instructions and manipulate data to perform some or all of the described functions of wireless device 110.
  • Memory 630 is generally operable to store computer executable code and data. Examples of memory 630 include computer memory (for example, Random Access Memory (RAM) or Read Only Memory (ROM)), mass storage media (for example, a hard disk), removable storage media (for example, a Compact Disk (CD) or a Digital Video Disk (DVD)), and/or or any other volatile or nonvolatile, non-transitory computer-readable and/or computer-executable memory devices that store information.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • mass storage media for example, a hard disk
  • removable storage media for example, a Compact Disk (CD) or a Digital Video Disk (DVD)
  • CD Compact Disk
  • DVD Digital Video Disk
  • wireless device 110 includes additional components (beyond those shown in FIGURE 6A ) responsible for providing certain aspects of the wireless device's functionality, including any of the functionality described above and/or any additional functionality (including any functionality necessary to support the solution described above).
  • FIGURE 6B illustrates a general processor unit 640, which in certain embodiments may be implemented as a processor 620 of wireless device 110.
  • General processor unit 640 includes input module 650, processor module 660, and output module 670.
  • input module 650 comprises a rule receiving module that receives one or more pre-defined rules. The rules can be received from a network node 120 and/or from memory 630 of wireless device 110.
  • Input module 650 communicates the pre-defined rules to processor module 660.
  • Processor module 660 comprises a measurement adapting module that determines a minimum number of a first type of cells, Min_type_1, and a minimum number of a second type of cells, Min_type_2, for which the wireless device is to perform radio measurements during an at least partly overlapping measurement time, T0, wherein the first type of cell transmits at least one type of reference signal in every subframe of the first type of cell over T0 and the second type of cell does not transmit any type of reference signal in at least one subframe of the second type of cell over T0.
  • the measurement determining module may further facilitate performing the radio measurements on radio signals from at least Min_type_1 of the first type of cells and at least Min_type_2 of the second type of cells during T0.
  • the measurement determining module may communicate the radio measurements to output module 670.
  • Output module 670 may include a measurement reporting module that reports the radio measurements for use in one or more radio tasks.
  • FIGURES 7A-7B are block diagrams illustrating example components of a wireless network node 120, according to a particular embodiment.
  • Wireless network node 120 can be, for example, a radio access node, such as an eNodeB, a node B, a base station, a wireless access point (e.g., a Wi-Fi access point), a low power node, a base transceiver station (BTS), a transmission point or node, or a remote RF unit (RRU).
  • Other network nodes such as one or more radio network controllers, can be configured between the radio access nodes and core network nodes 130.
  • Such other network nodes can include processors, memory, and interfaces similar to those described with respect to FIGURE 7A ; such other network nodes, however, might not necessarily include a wireless interface, such as transceiver 710.
  • wireless network node 120 includes at least one processor 720, at least one memory 730, and at least one network interface 740; in certain embodiments, wireless network node 120 can also include a transceiver 710.
  • Transceiver 710 facilitates transmitting wireless signals to and receiving wireless signals from wireless device 110 (e.g., via an antenna);
  • processor 720 executes instructions to provide some or all of the functionality described above as being provided by a wireless network node 120 (which may be referred to interchangeably as an eNodeB/base station/legacy cell/on-off cell); memory 730 stores the instructions executed by processor 720; and network interface 735 communicates signals to backend network components, such as a gateway, switch, router, Internet, Public Switched Telephone Network (PSTN), other wireless network nodes 120, and/or core network nodes 130.
  • the processor 720 and memory 730 can be of the same types as described supra with respect to FIGURE 6A .
  • network interface 735 is communicatively coupled to processor 720 and refers to any suitable device operable to receive input for wireless network node 120, send output from wireless network node 120, perform suitable processing of the input or output or both, communicate to other devices, or any combination of the preceding.
  • Network interface 735 includes appropriate hardware (e.g., port, modem, network interface card, etc.) and software, including protocol conversion and data processing capabilities, to communicate through a network.
  • wireless network node 120 include additional components (beyond those shown in FIGURE 7A ) responsible for providing certain aspects of the node's functionality, including any of the functionality described above and/or any additional functionality (including any functionality necessary to support the solution described above).
  • the various different types of wireless network nodes may include components having the same physical hardware but configured (e.g., via programming) to support different radio access technologies, or may represent partly or entirely different physical components.
  • FIGURE 7B illustrates a general processor unit 740, which in certain embodiments may be implemented as a processor 720 of network node 120.
  • General processor unit 740 includes input module 750, processor module 760, and output module 770.
  • Processor module 760 may include a rule determining module configured to determine one or more pre-defined rules or criteria to be used by the wireless device for adapting a minimum number of a first type of cells, Min_type_1, and a minimum number of a second type of cells, Min_type_2, for which the wireless device is to perform radio measurements during an at least partly overlapping measurement time, T0, wherein the first type of cell transmits at least one type of reference signal in every subframe of the first type of cell over T0 and the second type of cell does not transmit any type of reference signal in at least one subframe of the second type of cell over T0.
  • Processor module 760 may communicate the rule(s)/criteria to output module 770.
  • Output module 770 may include a rule sending module that sends the rule(s)/criteria to the wireless device.
  • the wireless device may send a measurement report to the network node with radio measurements for at least Min_type_1 of the first type of cells and at least Min_type_2 of the second type of cells during T0.
  • the measurement report may be received by a report receiving module of input module 750.
  • Input module 750 may communicate the measurement report to processor module 760, and processor module 760 may use the measurement report for performing radio tasks.
  • FIGURE 8 is a block diagram illustrating an example of a core network node 130, according to a particular embodiment.
  • a core network node 130 include, but are not limited to, a mobile switching center (MSC) and a serving GPRS support node (SGSN).
  • Core network node 130 includes processor 820, memory 830, and network interface 840.
  • Processor 820 executes instructions to provide some or all of the functionality described above as being provided by core network node 130; memory 830 stores the instructions executed by processor 820; and network interface 840 communicates signals to other network nodes.
  • the processor 820 and memory 830 can be of the same types as described supra with respect to FIGURE 6A .
  • network interface 840 is communicatively coupled to processor 820 and may refer to any suitable device operable to receive input for core network node 130, send output from core network node 130, perform suitable processing of the input or output or both, communicate to other devices, or any combination of the preceding.
  • Network interface 840 includes appropriate hardware (e.g., port, modem, network interface card, etc.) and software, including protocol conversion and data processing capabilities, to communicate through a network.
  • Other embodiments of core network node 130 include additional components (beyond those shown in FIGURE 8 ) responsible for providing certain aspects of the core network node's functionality, including any of the functionality described above and/or any additional functionality (including any functionality necessary to support the solution described above).
  • a method in a wireless device comprises determining a minimum number of legacy cells to be measured by the wireless device during a measurement time (T0), wherein the legacy cells transmit at least one type of reference signal in each subframe over T0; determining a minimum number of on/off cells to be measured by the wireless device during the measurement time (T0), wherein the on/off cells do not transmit any type of reference signal in at least one subframe over T0; measuring the minimum number of legacy cells and the minimum number of on/off cells during T0; and sending the measurements to a network node.
  • a method in a network node comprises: sending a wireless device one or more pre-defined rules for determining a minimum number of on/off cells to be measured by the wireless device during a measurement time (T0), wherein the on/off cells do not transmit any type of reference signal in at least one subframe over T0; receiving a measurement report from the wireless device, the measurement report including measurements for the minimum number of on/off cells during T0; and using the measurement report to perform a radio task.
  • eNodeB and UE should be considering non-limiting and does in particular not imply a certain hierarchical relation between the two; in general "eNodeB” could be considered as device 1 and “UE” device 2, and these two devices communicate with each other over some radio channel.
  • eNodeB could be considered as device 1 and "UE” device 2
  • these two devices communicate with each other over some radio channel.
  • the embodiments are described with main emphasis on single carrier operation of the UE. However the embodiments are applicable for multi-carrier or carrier aggregation operation of the UE. Therefore the embodiment methods of signaling information to the UE or to the other network node can be carried out independently for each cell on each carrier frequency supported by the network node.

Claims (15)

  1. Verfahren, das in einer drahtlosen Vorrichtung durchgeführt wird, wobei das Verfahren umfasst:
    Anpassen (402) einer Mindestanzahl eines ersten Typs von Zellen Min_type_1 und einer Mindestanzahl eines zweiten Typs von Zellen Min_type_2, für welche die drahtlose Vorrichtung Funkmessungen während einer wenigstens teilweise überlappenden Messzeit T0 durchführen soll, basierend auf einer oder mehreren vordefinierten Regeln oder einem oder mehreren vordefinierten Kriterien, wobei eine Zelle des ersten Typs mindestens einen Typ von Referenzsignal in jedem Unterrahmen über T0 sendet, und eine Zelle des zweiten Typs gemäß einem Ein-/Aus-Schema funktioniert, wobei die Zelle des zweiten Typs in keinem Unterrahmen einen Typ von Referenzsignal über T0 sendet, wobei Min_type_2 basierend auf einer Periodizität Tp mit welcher ein Erkennungsreferenzsignal-,DRS-,Burst gesendet wird, und/oder der Länge eines Erkennungsreferenzsignal-,DRS-,Bursts in der Referenzsignalkonfiguration des zweiten Typs von Zellen bestimmt wird;
    Durchführen der Funkmessungen (404) an Referenzsignalen, die während T0 von mindestens der Min_type_1 des ersten Typs von Zellen und mindestens der Min type 2 des zweiten Typs von Zellen empfangen werden; und
    Verwenden (406) der Funkmessungen für eine oder mehrere Funkaufgaben.
  2. Verfahren nach Anspruch 1, wobei mindestens eine der vordefinierten Regeln oder mindestens eines der vordefinierten Kriterien zum Anpassen mindestens einer von Min_type_1 und Min_type_2:
    vom Netzwerkknoten empfangen wird; oder
    vom Speicher der drahtlosen Vorrichtung abgerufen wird; und/oder
    die Summe von Min_type_1 plus Min_type_2 kleiner als oder gleich wie eine Mindestanzahl der gesamten Zellen M_total ist, die während T0 von der drahtlosen Vorrichtung gemessen werden sollen; und/oder
    mindestens eine von Min_type_1 und Min_type_2:
    vom Netzwerkknoten empfangen wird; oder
    von der drahtlosen Vorrichtung unabhängig bestimmt wird.
  3. Verfahren nach einem der Ansprüche 1 bis 2, wobei:
    Min_type_1 eine erste Anzahl des ersten Typs von Zellen auf einem versorgenden Träger und eine zweite Anzahl des ersten Typs von Zellen auf einem nicht versorgenden Träger umfasst; und/oder eine erste Anzahl des ersten Typs von Zellen bei einer versorgenden Funkzugangstechnologie und eine zweite Anzahl des ersten Typs von Zellen bei einer nicht versorgenden Funkzugangstechnologie umfasst; und/oder
    Min_type_2 eine erste Anzahl des zweiten Typs von Zellen auf dem versorgenden Träger und eine zweite Anzahl des zweiten Typs von Zellen auf dem nicht versorgenden Träger umfasst; und/oder eine erste Anzahl des zweiten Typs von Zellen bei der versorgenden Funkzugangstechnologie und eine zweite Anzahl des zweiten Typs von Zellen bei der nicht versorgenden Funkzugangstechnologie umfasst; und/oder
    wobei Min type 2 ferner auf einem oder einer Kombination von Folgenden basiert:
    Signalqualität, Standort, Anzahl des zweiten Typs von Zellen in Bezug auf Anzahl des ersten Typs von Zellen in der Nähe der drahtlosen Vorrichtung, DRS-Typ und Prioritätsfaktor.
  4. Verfahren, das in einem Netzwerkknoten durchgeführt wird, wobei das Verfahren umfasst:
    Bestimmen (502) einer oder mehrerer vordefinierter Regeln oder eines oder mehrerer vordefinierter Kriterien, die von einer drahtlosen Vorrichtung zum Anpassen einer Mindestanzahl eines ersten Typs von Zellen Min type 1 und einer Mindestanzahl eines zweiten Typs von Zellen Min_type2 verwendet werden sollen, für welche von der drahtlosen Vorrichtung Funkmessungen an einem Referenzsignal, das während einer wenigstens teilweise überlappenden Messzeit T0 empfangen wird, durchgeführt werden sollen, wobei eine Zelle des ersten Typs mindestens einen Typ von Referenzsignal in jedem Unterrahmen über T0 sendet, und eine Zelle des zweiten Typs gemäß einem Ein-/Aus-Schema funktioniert, wobei die Zelle des zweiten Typs in keinem Unterrahmen einen Typ von Referenzsignal über T0 sendet, wobei Min type2 basierend auf einer Periodizität Tp mit welcher ein Erkennungsreferenzsignal-,DRS-,Burst gesendet wird, und/oder der Länge eines Erkennungsreferenzsignal- ,DRS-,Bursts in der Referenzsignalkonfiguration des zweiten Typs von Zellen bestimmt wird; und
    Senden (504) der einen oder der mehreren bestimmten Regeln oder des einen oder der mehreren bestimmten Kriterien an die drahtlose Vorrichtung.
  5. Verfahren nach Anspruch 4, wobei die eine oder die mehreren vordefinierten Regeln oder das eine oder die mehreren vordefinierten Kriterien, die von der drahtlosen Vorrichtung verwendet werden sollen, basierend auf einer der folgenden Bedingungen oder einem der folgenden Szenarien oder einer beliebigen Kombination davon bestimmt werden: Zellenlast, Störung in einer Zelle und Geschwindigkeit der drahtlosen Vorrichtung.
  6. Verfahren nach einem der Ansprüche 4 bis 5, ferner umfassend:
    Empfangen (506) eines Messberichts von der drahtlosen Vorrichtung, wobei der Messbericht Funkmessungen für mindestens die Min_type_1 des ersten Typs von Zellen und mindestens die Min_type_2 des zweiten Typs von Zellen während T0 umfasst; und
    Verwenden (508) des von der drahtlosen Vorrichtung empfangenen Messberichts zum Ausführen einer oder mehrerer Funkaufgaben; und/oder
    wobei die Summe von Min_type_1 plus Min_type_2 kleiner als oder gleich wie eine Mindestanzahl der gesamten Zellen M total ist, die während T0 von der drahtlosen Vorrichtung gemessen werden sollen; und/oder
    wobei Min type 1 eine erste Anzahl des ersten Typs von Zellen auf einem versorgenden Träger und eine zweite Anzahl des ersten Typs von Zellen auf einem nicht versorgenden Träger umfasst; und/oder eine erste Anzahl des ersten Typs von Zellen bei einer versorgenden Funkzugangstechnologie und einer zweiten Anzahl des ersten Typs von Zellen bei einer nicht versorgenden Funkzugangstechnologie umfasst; und/oder
    wobei Min type 2 eine erste Anzahl des zweiten Typs von Zellen auf dem versorgenden Träger und eine zweite Anzahl des zweiten Typs von Zellen auf dem nicht versorgenden Träger umfasst; und/oder eine erste Anzahl des zweiten Typs von Zellen bei der versorgenden Funkzugangstechnologie und eine zweite Anzahl des zweiten Typs von Zellen bei der nicht versorgenden Funkzugangstechnologie umfasst; und/oder
    wobei die Funkaufgabe mindestens einem entspricht von:
    Neukonfigurieren der DRS-Parameter des Netzwerkknotens;
    Signalisieren an eine Nachbarzelle des zweiten Typs, dass sie ihre DRS-Parameter anpassen soll; und
    Durchführen eines Zellwechsels.
  7. Verfahren nach einem der Ansprüche 4 bis 6, wobei die eine oder die mehreren vordefinierten Regeln oder das eine oder die mehreren vordefinierten Kriterien die drahtlose Vorrichtung veranlassen zum:
    Bestimmen von Min type 2 ferner basierend auf einem oder einer Kombination von Folgenden basiert: Signalqualität, Standort, Anzahl des zweiten Typs von Zellen in Bezug auf Anzahl des ersten Typs von Zellen in der Nähe der drahtlosen Vorrichtung, DRS-Typ und Prioritätsfaktor.
  8. Drahtlose Vorrichtung (110), umfassend einen Prozessor (620) und einen Speicher (630), wobei der Speicher Anweisungen enthält, die vom Prozessor ausgeführt werden können, wodurch die drahtlose Vorrichtung konfiguriert ist zum:
    Anpassen (402) einer Mindestanzahl eines ersten Typs von Zellen Min_type_1 und einer Mindestanzahl eines zweiten Typs von Zellen Min_type_2, für welche die drahtlose Vorrichtung Funkmessungen während einer wenigstens teilweise überlappenden Messzeit T0 durchführen soll, basierend auf einer oder mehreren vordefinierten Regeln oder einem oder mehreren vordefinierten Kriterien, wobei eine Zelle des ersten Typs mindestens einen Typ von Referenzsignal in jedem Unterrahmen über T0 sendet, und eine Zelle des zweiten Typs gemäß einem Ein-/Aus-Schema funktioniert, wobei die Zelle des zweiten Typs in keinem Unterrahmen einen Typ von Referenzsignal über T0 sendet, wobei Min_type_2 basierend auf einer Periodizität Tp mit welcher ein Erkennungsreferenzsignal-,DRS-,Burst gesendet wird, und/oder der Länge eines Erkennungsreferenzsignal-,DRS-,Bursts in der Referenzsignalkonfiguration des zweiten Typs von Zellen bestimmt wird;
    Durchführen der Funkmessungen (404) an Referenzsignalen, die während T0 von mindestens der Min_type_1 des ersten Typs von Zellen und mindestens der Min_type_2 des zweiten Typs von Zellen empfangen werden; und
    Verwenden (406) der Funkmessungen für eine oder mehrere Funkaufgaben.
  9. Drahtlose Vorrichtung nach Anspruch 8, wobei mindestens eine der vordefinierten Regeln oder mindestens eines der vordefinierten Kriterien zum Anpassen mindestens einer von Min_type_1 und Min_type_2:
    vom Netzwerkknoten empfangen wird; oder
    vom Speicher der drahtlosen Vorrichtung abgerufen wird; und/oder
    wobei die Summe von Min_type_1 plus Min_type_2 kleiner als oder gleich wie eine Mindestanzahl der gesamten Zellen M total ist, die während T0 von der drahtlosen Vorrichtung gemessen werden sollen; und/oder
    wobei mindestens eine von Min_type_1 und Min_type_2 vom Netzwerkknoten empfangen wird; oder mindestens eine von Min_type_1 und Min_type_2 von der drahtlosen Vorrichtung unabhängig bestimmt wird; und/oder
    wobei Min type 1 eine erste Anzahl des ersten Typs von Zellen auf einem versorgenden Träger und eine zweite Anzahl des ersten Typs von Zellen auf einem nicht versorgenden Träger umfasst; und/oder eine erste Anzahl des ersten Typs von Zellen bei einer versorgenden Funkzugangstechnologie und einer zweiten Anzahl des ersten Typs von Zellen bei einer nicht versorgenden Funkzugangstechnologie umfasst; und/oder
    wobei Min_type_2 eine erste Anzahl des zweiten Typs von Zellen auf dem versorgenden Träger und eine zweite Anzahl des zweiten Typs von Zellen auf dem nicht versorgenden Träger umfasst; und/oder eine erste Anzahl des zweiten Typs von Zellen bei der versorgenden Funkzugangstechnologie und eine zweite Anzahl des zweiten Typs von Zellen bei der nicht versorgenden Funkzugangstechnologie umfasst; und/oder
    wobei Min-type_2 ferner basierend auf einem oder einer Kombination von Folgenden bestimmt wird: Signalqualität, Standort, Anzahl des zweiten Typs von Zellen in Bezug auf Anzahl des ersten Typs von Zellen in der Nähe der drahtlosen Vorrichtung, DRS-Typ und Prioritätsfaktor.
  10. Netzwerknoten (120), umfassend einen Prozessor (720) und einen Speicher (730), wobei der Speicher Anweisungen enthält, die vom Prozessor ausgeführt werden können, wodurch der Netzwerkknoten konfiguriert ist zum:
    Bestimmen (502) einer oder mehrerer vordefinierter Regeln oder eines oder mehrerer vordefinierter Kriterien, die von einer drahtlosen Vorrichtung zum Anpassen einer Mindestanzahl eines ersten Typs von Zellen, Min type 1, und einer Mindestanzahl eines zweiten Typs von Zellen, Min type 2, verwendet werden sollen, für welche die drahtlose Vorrichtung Funkmessungen an Referenzsignalen, die während einer wenigstens teilweise überlappenden Messzeit T0 empfangen werden, durchführen soll, wobei eine Zelle des ersten Typs mindestens einen Typ von Referenzsignal in jedem Unterrahmen über T0 sendet, und eine Zelle des zweiten Typs gemäß einem Ein-/Aus-Schema funktioniert, wobei die Zelle des zweiten Typs in keinem Unterrahmen einen Typ von Referenzsignal über T0 sendet, wobei Min type2 basierend auf einer Periodizität Tp mit welcher ein Erkennungsreferenzsignal-,DRS-,Burst gesendet wird, und/oder der Länge eines Erkennungsreferenzsignal- ,DRS-,Bursts in der Referenzsignalkonfiguration des zweiten Typs von Zellen bestimmt wird; und
    Senden (504) der einen oder der mehreren bestimmten Regeln oder des einen oder der mehreren bestimmten Kriterien an die drahtlose Vorrichtung.
  11. Netzwerkknoten nach Anspruch 10, wobei die eine oder die vordefinierte Regeln oder das eine oder die mehreren vordefinierten Kriterien, die von der drahtlosen Vorrichtung verwendet werden sollen, basierend auf einer der folgenden Bedingungen oder einem der folgenden Szenarien oder einer beliebigen Kombination davon bestimmt werden: Zellenlast, Störung in einer Zelle und Geschwindigkeit der drahtlosen Vorrichtung; und/oder
    wobei der Netzwerkknoten ferner ausgelegt ist zum:
    Empfangen (506) eines Messberichts von der drahtlosen Vorrichtung, wobei der Messbericht Funkmessungen für mindestens die Min type 1 des ersten Typs von Zellen und mindestens die Min_type_2 des zweiten Typs von Zellen während T0 umfasst; und
    Verwenden (508) des von der drahtlosen Vorrichtung empfangenen Messberichts zum Ausführen einer oder mehrerer Funkaufgaben.
  12. Netzwerkknoten nach einem der Ansprüche 9 bis 10, wobei die Summe von Min_type_1 plus Min_type_2 kleiner als oder gleich wie eine Mindestanzahl der gesamten Zellen M_total ist, die während T0 von der drahtlosen Vorrichtung gemessen werden sollen; und/oder
    wobei Min type 1 eine erste Anzahl des ersten Typs von Zellen auf einem versorgenden Träger und eine zweite Anzahl des ersten Typs von Zellen auf einem nicht versorgenden Träger umfasst; und/oder eine erste Anzahl des ersten Typs von Zellen bei einer versorgenden Funkzugangstechnologie und einer zweiten Anzahl des ersten Typs von Zellen bei einer nicht versorgenden Funkzugangstechnologie umfasst; und/oder
    wobei Min type 2 eine erste Anzahl des zweiten Typs von Zellen auf dem versorgenden Träger und eine zweite Anzahl des zweiten Typs von Zellen auf dem nicht versorgenden Träger umfasst; und/oder eine erste Anzahl des zweiten Typs von Zellen bei der versorgenden Funkzugangstechnologie und eine zweite Anzahl des zweiten Typs von Zellen bei der nicht versorgenden Funkzugangstechnologie umfasst; und/oder
    wobei die Funkaufgabe mindestens einem entspricht von:
    Neukonfigurieren der DRS-Parameter des Netzwerkknotens;
    Signalisieren an eine Nachbarzelle des zweiten Typs, dass sie ihre DRS-Parameter anpassen soll; und
    Durchführen eines Zellwechsels.
  13. Netzwerkknoten nach einem der Ansprüche 10 bis 12, wobei die eine oder die mehreren vordefinierten Regeln oder das eine oder die mehreren vordefinierten Kriterien die drahtlose Vorrichtung zum Bestimmen von Min_type-2 ferner basierend auf einem oder einer Kombination von Folgenden veranlassen: Signalqualität, Standort, Anzahl des zweiten Typs von Zellen in Bezug auf Anzahl des ersten Typs von Zellen in der Nähe der drahtlosen Vorrichtung, DRS-Typ und Prioritätsfaktor.
  14. Computerprogrammprodukt für eine drahtlose Vorrichtung, wobei das Computerprogrammprodukt ein nicht-transitorisches computerlesbares Speichermedium mit computerlesbarem Programmcode umfasst, der im Medium enthalten ist, wobei der computerlesbare Programmcode, wenn von einem Prozessor der drahtlosen Vorrichtung gelesen, die drahtlose Vorrichtung zum Ausführen eines jeden der Verfahrensschritte nach Anspruch 1 veranlasst.
  15. Computerprogrammprodukt für einen Netzwerkknoten, wobei das Computerprogrammprodukt ein nicht-transitorisches computerlesbares Speichermedium mit computerlesbarem Programmcode umfasst, der im Medium enthalten ist, wobei der computerlesbare Programmcode, wenn von einem Prozessor des Netzwerkknotens gelesen, den Netzwerkknoten zum Ausführen eines jeden der Verfahrensschritte nach Anspruch 4 veranlasst.
EP15724388.2A 2014-08-08 2015-04-27 Anpassung der zellenzahl zur messung in einem netzwerk mit ein-/aus-zellen Active EP3195647B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462035051P 2014-08-08 2014-08-08
PCT/SE2015/050466 WO2016022051A1 (en) 2014-08-08 2015-04-27 Adapting the number of cells to measure in a network with on/off cells

Publications (2)

Publication Number Publication Date
EP3195647A1 EP3195647A1 (de) 2017-07-26
EP3195647B1 true EP3195647B1 (de) 2020-10-21

Family

ID=53264713

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15724388.2A Active EP3195647B1 (de) 2014-08-08 2015-04-27 Anpassung der zellenzahl zur messung in einem netzwerk mit ein-/aus-zellen

Country Status (5)

Country Link
US (1) US10070375B2 (de)
EP (1) EP3195647B1 (de)
CN (1) CN106797610B (de)
AR (1) AR102330A1 (de)
WO (1) WO2016022051A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021983A1 (ko) 2014-08-08 2016-02-11 주식회사 아이티엘 단말간 통신을 지원하는 무선 통신 시스템에서 무선 통신 방법 및 장치
US10542447B2 (en) * 2014-12-30 2020-01-21 Lg Electronics Inc. Method and device for reporting measurement result by terminal in coverage expansion area
KR20180031167A (ko) * 2016-09-19 2018-03-28 삼성전자주식회사 이동 통신 시스템에서의 기준 신호, 제어 신호 및 데이터 송신 방법 및 장치
EP3536066B1 (de) 2016-11-04 2023-06-28 Telefonaktiebolaget LM Ericsson (PUBL) Bedingter abschluss von rstd-messungen
AR113219A1 (es) * 2017-04-03 2020-02-19 Ericsson Telefon Ab L M Gestión de filtros de medición de nivel de haz
JP6947483B2 (ja) * 2017-12-22 2021-10-13 ホアウェイ・テクノロジーズ・カンパニー・リミテッド アンライセンスキャリア処理方法、装置、及びシステム
US11678245B2 (en) * 2019-12-23 2023-06-13 Qualcomm Incorporated User equipment (UE) requested enablement for L1/L2 inter-cell mobility
CN111163506B (zh) * 2019-12-23 2021-05-28 京信通信技术(广州)有限公司 节能方法、装置、计算机设备和存储介质
WO2024036480A1 (en) * 2022-08-16 2024-02-22 Apple Inc. Technologies for formulaic determination of measurement opportunity sharing for layer one measurements

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101676033B1 (ko) * 2010-01-08 2016-11-29 삼성전자주식회사 무선 통신 시스템에서 기지국의 전력 소모 감소 방법 및 장치
US9031530B2 (en) * 2010-11-08 2015-05-12 Qualcomm Incorporated System and method for assisting in powering on sleeping network entities
MX2014001533A (es) * 2011-08-15 2014-02-27 Ericsson Telefon Ab L M Metodos y nodos para el manejo de las mediciones en un sistema de comunicacion inalambrico.
KR101605979B1 (ko) 2011-08-22 2016-03-23 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 무선 통신 네트워크에서의 측정 및 보고 구성
WO2014040643A1 (en) * 2012-09-14 2014-03-20 Huawei Technologies Co., Ltd. Method for energy saving in a cellular communication system
EP2944036B1 (de) 2013-01-09 2021-05-12 LG Electronics Inc. Verfahren und vorrichtung zur durchführung von messungen in einem drahtlosen kommunikationssystem
US9692584B2 (en) * 2013-01-17 2017-06-27 Telefonatiebolaget L M Ericsson (Publ) Methods of radio communications using different subframe configurations and related radio and/or network nodes
WO2014185674A1 (ko) * 2013-05-11 2014-11-20 엘지전자 주식회사 캐리어 타입을 고려한 통신 방법 및 이를 위한 장치
US9749938B2 (en) * 2014-01-31 2017-08-29 Futurewei Technologies, Inc. Device, network, and method of cell discovery
EP3114786A4 (de) * 2014-03-04 2017-11-01 LG Electronics Inc. Verfahren zum empfangen von steuerungsinformationen für den empfang von entdeckungsreferenzsignalen und vorrichtung dafür
US10333738B2 (en) * 2015-06-04 2019-06-25 Electronics And Telecommunications Research Institute Method and apparatus for receiving data and method for transmitting data in mobile communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
AR102330A1 (es) 2017-02-22
EP3195647A1 (de) 2017-07-26
US20160205574A1 (en) 2016-07-14
CN106797610A (zh) 2017-05-31
US10070375B2 (en) 2018-09-04
WO2016022051A1 (en) 2016-02-11
CN106797610B (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
EP3195647B1 (de) Anpassung der zellenzahl zur messung in einem netzwerk mit ein-/aus-zellen
US11133911B2 (en) UE, network node and methods of assisting measurements in mixed signal configuration
US10244415B2 (en) Measurement method, configuration method, related device, and system
JP6553127B2 (ja) 無線通信システムでの測定を扱うための方法及び装置
EP3429275B1 (de) Unterstützung von messungen in kleinen zellen mit einem on/off-schema
JP6046823B2 (ja) ユーザ機器、ネットワークノード及びその中の方法
RU2592775C2 (ru) Конфигурация измерений и представления в виде отчета в сетях радиосвязи
EP2604060B1 (de) Verfahren und vorrichtung zur begrenzung der meldung von nachbarzellenmessungen
US20150289141A1 (en) Radio Resource Management in Inter-Operator Time Sharing of Frequency Spectrum
US10645661B2 (en) Configuring discovery signals
US10630404B2 (en) Received signal strength indication measurement with uplink interference handling
US8359034B2 (en) Mobile communication system, base station apparatus, user equipment and method
WO2021161217A1 (en) Methods for performing measurements under ue power saving modes
CN108632925B (zh) 一种基站选择方法及系统
EP2830358A1 (de) Beurteilung, ob eine nicht aktivierte Kleinzelle aktiviert werden sollte, um einem Benutzergerät zu dienen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170302

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602015060761

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H04W0024100000

Ipc: H04W0048160000

RIC1 Information provided on ipc code assigned before grant

Ipc: H04W 24/10 20090101ALN20200317BHEP

Ipc: H04W 48/16 20090101AFI20200317BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: H04W 24/10 20090101ALN20200403BHEP

Ipc: H04W 48/16 20090101AFI20200403BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200525

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015060761

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1327152

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1327152

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201021

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210121

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210222

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210122

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210121

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210221

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015060761

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

26N No opposition filed

Effective date: 20210722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210427

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220427

Year of fee payment: 8

Ref country code: FR

Payment date: 20220425

Year of fee payment: 8

Ref country code: DE

Payment date: 20220427

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602015060761

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230427

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021