EP3194773B1 - Vibrating armature pump - Google Patents

Vibrating armature pump Download PDF

Info

Publication number
EP3194773B1
EP3194773B1 EP15777619.6A EP15777619A EP3194773B1 EP 3194773 B1 EP3194773 B1 EP 3194773B1 EP 15777619 A EP15777619 A EP 15777619A EP 3194773 B1 EP3194773 B1 EP 3194773B1
Authority
EP
European Patent Office
Prior art keywords
housing parts
housing part
pump
welding seam
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15777619.6A
Other languages
German (de)
French (fr)
Other versions
EP3194773A1 (en
Inventor
Hubert Ott
Norbert Helbling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysko AG
Original Assignee
Sysko AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysko AG filed Critical Sysko AG
Publication of EP3194773A1 publication Critical patent/EP3194773A1/en
Application granted granted Critical
Publication of EP3194773B1 publication Critical patent/EP3194773B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • F04B17/04Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids
    • F04B17/042Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids the solenoid motor being separated from the fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • F04B17/04Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids
    • F04B17/046Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids the fluid flowing through the moving part of the motor

Definitions

  • the invention relates to a vibrating armature pump for a household appliance and a method for assembling a vibrating armature pump.
  • a vibrating armature pump with at least two housing parts firmly connected to one another is already known.
  • Examples of known oscillating armature pumps are in US 2010/284837 A1 and DE 31 09 090 A1 shown.
  • these documents do not disclose a laser weld seam which is arranged between two housing parts in an overlapping area.
  • none of the housing parts of these documents is at least partially made of a material that is transparent to a welding laser beam.
  • EP 2 548 714 A1 discloses a laser beam welding method for joining components, one of the components being at least partially formed from a material transparent to a welding laser beam.
  • the object of the invention is in particular to achieve a vibrating armature pump with improved properties with regard to a particularly efficient assembly process and the corresponding assembly method.
  • the object is achieved according to the invention by claims 1 and 5, while advantageous configurations and developments of the invention can be found in the subclaims.
  • the invention is based on a vibrating armature pump for a household appliance, with at least two housing parts firmly connected to one another.
  • the oscillating armature pump have at least one weld seam which connects the housing parts to one another, the at least one weld seam being designed as a laser weld seam, the at least two housing parts forming a press fit in which the housing parts are fixed by means of the at least one weld seam.
  • the parts to be connected can be positioned particularly precisely with respect to one another and connected to one another particularly reliably.
  • a particularly precise and reliable weld seam can be provided particularly quickly and thermal loading of the housing parts can be limited.
  • a high strength and tightness of the weld seam can be achieved.
  • a particularly reliable welded connection can be provided.
  • a particularly efficient assembly process can be achieved and a particularly durable oscillating armature pump can be provided.
  • the oscillating armature pump is preferably as designed a low-pressure oscillating armature pump and intended to provide a pressure of 3 bar.
  • the oscillating armature pump is designed as a high-pressure oscillating armature pump, ie it is provided to provide a pressure of at least 10 bar, preferably at least 15 bar.
  • the oscillating armature pump preferably has a pressure chamber in which the pressure is provided.
  • the oscillating armature pump is preferably provided to convey a fluid, for example water, against a pressure of at least 3 bar.
  • the oscillating armature pump is preferably provided for a coffee machine.
  • a “housing part” is to be understood as meaning, in particular, a component that is provided to hold and / or store further components.
  • the housing parts have an overlap area in which the weld seam is arranged.
  • a “laser weld seam” is to be understood in particular as a weld seam produced by means of a welding laser, for example in a transmission welding process.
  • “Provided” is to be understood in particular as specifically designed and / or equipped.
  • the housing parts are preferably formed from a weldable plastic, for example a polyamide, such as Grivory HT1 V-FWA, at least in one area of the weld seam.
  • the at least one weld seam is designed to be closed.
  • a fluid-tight connection between the housing parts can be provided particularly effectively.
  • “closed” should be understood to mean, in particular, both uninterrupted along a course of the weld seam and geometrically closed, for example circular and / or ring-shaped and, in a geometrical sense, free of an end and / or starting point.
  • the oscillating armature pump has a pump chamber which is closed in a pressure-tight manner by the at least one weld seam.
  • pressure-tight is to be understood in particular to be tight against a pressurized fluid, as a result of which the pumping chamber filled with the fluid is in particular separated from a fluid-free environment.
  • the fluid is preferably designed as a liquid, for example as water.
  • the weld seam is preferably provided for a To withstand a pressure of at least 3 bar, preferably a pressure of at least 15 bar and particularly preferably a pressure of at least 20 bar.
  • the at least two housing parts have an overlap area in which the at least one weld seam is arranged.
  • a laser welding process can be carried out in a particularly simple manner and a particularly reliable connection can be provided.
  • the housing parts preferably interlock in the overlap area.
  • one of the at least two interconnected housing parts forms a pump chamber wall and another of the interconnected housing parts is configured as a connection element.
  • a particularly simple construction of a housing of the oscillating armature pump can thereby be achieved.
  • the pumping chamber can be closed in a particularly efficient pressure-tight manner in one assembly process.
  • a “pumping chamber wall” is to be understood as meaning, in particular, a material surface which delimits the pumping chamber.
  • a “connection element” is to be understood in particular as a component which has a fluid connection which is provided for the purpose of conveying fluid, in particular, into the pump chamber or out of the pump chamber.
  • the connection element preferably has a connecting piece.
  • one of the at least two interconnected housing parts forms a spring seat for a spring.
  • a position of the spring seat can be set and fixed particularly precisely.
  • the spring is preferably provided to exert a force on a piston of the oscillating armature pump in order to move the piston and is designed, for example, as a pump spring.
  • the at least one weld seam defines a pretensioning of the spring.
  • a pretensioning of the spring can be determined and fixed in a particularly simple and precise manner.
  • a particularly efficient oscillating armature pump can be provided.
  • one of the at least two interconnected housing parts forms a connection element and a further housing part forms a pressure chamber element.
  • a particularly simple construction of the housing of the oscillating armature pump can thereby be achieved.
  • the pressure chamber of the The oscillating armature pump can be closed in a particularly efficient pressure-tight manner during an assembly process.
  • a “pressure chamber element” is to be understood in particular as an element which at least partially forms a wall for delimiting the pressure chamber of the oscillating armature pump.
  • the pressure chamber preferably forms a partial volume of the pump chamber which, at least in one operating state of the oscillating armature pump, is filled by the fluid to be conveyed under pressure.
  • At least one of the at least two interconnected housing parts is at least partially formed from a material that is transparent to a welding laser beam.
  • a welding laser beam is to be understood in particular as a laser beam which is intended to melt a material of the housing parts to form a material connection, i.e. the laser beam is in particular sufficiently energetic and focused.
  • the housing parts are connected to one another by directing a welding laser beam through a first of the housing parts onto a surface of a further one of the housing parts. This allows housing parts to be connected to one another in areas that are difficult to access and the oscillating armature pump can be constructed in a particularly flexible manner.
  • the Figure 1 shows a vibrating armature pump 10 for a household appliance.
  • the oscillating armature pump 10 is provided for pumping a liquid, for example water, under a pressure of at least 3 bar.
  • the oscillating armature pump 10 has five housing parts 11, 12, 13, 14, 15, which are each firmly connected to at least one of the other housing parts 11, 12, 13, 14, 15.
  • the housing parts 11, 12, 13, 14, 15 are formed from a weldable material.
  • the housing parts 11, 12, 13, 14, 15 are made of plastic in the present exemplary embodiment.
  • the housing parts 11, 12, 13, 14, 15 are formed from a thermoplastic material.
  • the oscillating armature pump 10 has three weld seams 16, 17, 18 which connect the housing parts 11, 12, 13, 14, 15 to one another in pairs in an assembled state.
  • the oscillating armature pump 10 comprises a magnetic coil 29 with a coil housing 30 and a piston 31.
  • the oscillating armature pump 10 also comprises a spring 26 acting on the piston 31.
  • the spring 26 is designed as a pump spring.
  • the spring 26 is designed as a helical compression spring.
  • the oscillating armature pump 10 has a pump chamber 19 in which the piston 31 is guided so as to be axially movable.
  • the pump chamber 19 has a pump chamber wall 23 which is designed as a piston guide.
  • the pump chamber 19 penetrates the coil housing 30 with the magnetic coil 29.
  • the magnetic coil 29 is provided to generate a magnetic field which partially penetrates the pump chamber 19.
  • the oscillating armature pump 10 comprises an iron circuit 32 which partially surrounds the magnetic coil 29.
  • the iron circuit 32 comprises a magnetically insulating gap 33 in the area of the pump chamber 19, which interrupts the iron circuit 32.
  • the iron circle 32 includes two pole shoe elements 34, 35, between the ends of which the
  • the piston 31 comprises an armature element 36, which consists entirely of a magnetizable material.
  • the armature element 36 In a rest position, i.e. at a pressure of 0 bar within the pump chamber 19 and with the magnet coil 29 switched off, the armature element 36 has a position in which it partially overlaps axially with the gap 33 interrupted by the iron circuit 32. If the magnet coil 29 is energized, a magnetic flux is established in the iron circuit 32 and the armature element 36, a magnetic resistance which counteracts this magnetic flux being determined in particular by a remaining gap width between the armature element 36 and the iron circuit 32. Since such a system strives to adopt a state in which the magnetic resistance is minimal, an actuating force acts on the armature element 36, which deflects the armature element 36 from its rest position against a force of the spring 26.
  • the magnetic coil 29 is energized with a pulse-shaped voltage, as a result of which a constantly changing magnetic field is established in the area of the pumping chamber 19.
  • the magnetic field which changes in the form of a pulse, in turn has the effect that the piston 31 is initially deflected from its rest position against the force of the spring 26 as the strength of the magnetic field increases. If the magnetic field is maximal, the piston 31 is also maximally deflected. As soon as a current through the magnetic coil 29 is reduced and thus the strength of the magnetic field drops again, the piston 31 is moved again in the direction of the rest position by the force of the spring 26.
  • the magnetic coil 29 is preferably preceded by a diode unit (not shown in more detail), as a result of which the magnetic coil 29 is only energized with a half-wave of an alternating voltage.
  • the magnetic coil 29 is provided for an alternating voltage of 240 V at 50 Hz.
  • the pump chamber 19 comprises an antechamber 37, a pressure chamber 38 and an outlet chamber 39.
  • the piston 31 comprises a piston valve 40 which is fluidically arranged between the antechamber 37 and the pressure chamber 38.
  • the piston valve 40 is arranged centrally in the oscillating armature pump 10 and centrally in the piston 31 in relation to a longitudinal axis 48 of the oscillating armature pump 10.
  • the piston valve 40 is designed in the form of a check valve, which has a passage direction from the antechamber 37 into the pressure chamber 38.
  • the piston valve 40 comprises a valve seat, a closure part 41 and a closing spring 42.
  • the closing spring 42 is provided to pull the closure part 41 onto the valve seat.
  • the piston 31, which is provided for conveying the fluid, comprises the armature element 36, an armature bearing element 43 and a pressure piston element 44 in which the piston valve 40 is arranged.
  • the pressure piston element 44 is formed in one piece with the armature bearing element 43.
  • the armature element 36 is formed separately from the armature bearing element 43 and separately from the pressure piston element 44.
  • the pressure piston element 44 and the armature bearing element 43 each have a delivery channel and a plurality of pressure compensation channels. The delivery channel of the pressure piston element 44 in which the piston valve 40 is arranged serves to connect the prechamber 37 with the pressure chamber 38.
  • the prechamber 37 has a front part and a rear part due to the arrangement of the anchor element 36, which are connected in parallel through the pressure equalization channels are.
  • the pressure piston element 44 forms the valve seat of the piston valve 40.
  • the plunger element 44 has an outer diameter.
  • the armature bearing element 43 has an outer diameter that is larger than the outer diameter of the pressure piston element 44.
  • the armature element 36 is designed in the form of a sleeve and has an inner diameter that corresponds to the outer diameter of the armature bearing element 43.
  • the armature bearing element 43 has a stop ring on the inlet side which limits a movement of the armature element 36 relative to the armature bearing element 43 and is provided to transmit a force from the armature element 36 to the armature bearing element 43.
  • the armature bearing element 43 is provided to support the spring 26 and to transmit a force of the spring 26 to the pressure piston element 44.
  • the pressure piston element 44 is provided to translate the force of the spring 26 into a pressure in the pressure chamber 38.
  • the Oscillating armature pump 10 comprises a bearing ring 45 for two sealing elements 46, 47.
  • a first of the sealing elements 46 is provided to seal the antechamber 37 with respect to the outlet chamber 39.
  • Another of the sealing elements 47 is provided to seal the antechamber 37 with respect to the pressure chamber 38.
  • the pressure piston element 44 penetrates the bearing ring 45.
  • the other of the sealing elements 47, together with the pressure piston element 44 forms a sliding seal.
  • the weld seams 16, 17, 18 of the oscillating armature pump 10 are designed as laser weld seams.
  • the oscillating armature pump 10 has a longitudinal axis 48 which is arranged parallel to a main flow direction of the fluid.
  • the weld seams 16, 17, 18 are each arranged in a plane perpendicular to the longitudinal axis 48.
  • the weld seams 16, 17, 18 run in a circumferential direction in relation to the longitudinal axis 48.
  • the weld seams 16, 17, 18 are designed to be closed.
  • the weld seams 16, 17, 18 are designed in the form of ring weld seams.
  • the pump chamber 19 is closed in a pressure-tight manner by the weld seams 16, 17, 18 on two opposite sides.
  • the oscillating armature pump 10 has a first pair of interconnected housing parts 11, 12, consisting of a radially outer housing part 11 and a radially inner housing part 12.
  • the oscillating armature pump 10 has a further pair of interconnected housing parts 13, 14, consisting of an outer one Housing part 13 and an inner housing part 14, as well as a third pair of interconnected housing parts 13, 15, consisting of an outer housing part 13 and an inner housing part 15.
  • the pairs of interconnected housing parts 11, 12, 13, 14, 15 each have a Overlap area 20, 21, 22, in which the housing parts 11, 12, 13, 14, 15 overlap in an axial direction.
  • the pairs each form a press fit in which the housing parts 11, 12, 13, 14, 15 are fixed by means of the weld 16, 17, 18.
  • the weld seams 16, 17, 18 each secure an axial relative position of the connected housing parts 11, 12, 13, 14, 15.
  • the housing parts 11, 12, 13, 14, 15 form the press fits in the overlapping areas 20, 21, 22.
  • the press fits are each formed by the inner housing part 12, 14, 15 and the outer housing part 11, 13.
  • the inner housing part 12, 14, 15 engages in the outer housing part 11, 13, respectively.
  • the outer housing part 11, 13 surrounds the inner housing part 12, 14, 15 in the area of the press fit which corresponds to the overlap area 20, 21, 22.
  • the weld seams 16, 17, 18 are each three-dimensional arranged radially between the inner housing part 12, 14, 15 and the outer housing part 11, 13.
  • the outer housing part 11 of the first pair of interconnected housing parts 11, 12 forms the pump chamber wall 23.
  • the inner housing part 12 of the pair forms a connection element 24.
  • the connection element 24 is provided for a fluid inlet.
  • the outer housing part 11 and the inner housing part 12 are connected to one another in an assembled state by means of a first of the weld seams 16.
  • the connection element 24 has a connection piece 49 with an inlet opening 50.
  • the inner housing part 12 also has a wall which supports the inner housing part 12 in the outer housing part 11.
  • the wall is connected to the pump chamber wall 23 of the outer housing part 12 by means of the weld 16.
  • the weld seam 16 is arranged in a radial direction between the wall and the pump chamber wall 23.
  • the weld seam 16 runs along a circumferential direction, based on an axis of the connection element 24, which coincides with the longitudinal axis 48 of the oscillating armature pump 10.
  • the weld 16 is designed to be closed and closes the pump chamber 19 in a pressure-tight manner with respect to the surroundings of the oscillating armature pump 10.
  • the inner housing part 12 delimits the pump chamber 19 on the inlet side in an axial direction.
  • the wall has an outer diameter which corresponds to an inner diameter of the outer housing part 11.
  • the two housing parts 11, 12 of the pair have an interference fit. The interference fit is provided to generate a pressure between the housing parts 11, 12 during a welding process for the assembly of the oscillating armature pump 10.
  • the housing part 12 is provided to support the spring 26, which is designed as a pump spring. In an assembled state, the spring 26 is stretched between the housing part 12 and the piston 31.
  • the weld seam 16 prevents a movement of the housing part 12 forming the connection element 24 with respect to the housing part 11 forming the pump chamber wall 23, with which it is connected by means of the weld seam 16 is connected.
  • the weld seam 16 defines a relative axial position of the housing parts 11, 12 connected by means of the weld seam 16.
  • the outer housing part 13 and the inner housing part 14 of the further pair each have a cylindrical basic shape.
  • the outer housing part 13 forms a further connection element 27 to an outlet for the fluid.
  • the outer housing part 13 of the further pair is formed in one piece with the outer housing part 11 of the first pair.
  • the outer housing part 13 of the further pair forms a further connection piece 51 with an outlet opening 52.
  • the inner housing part 14 of the further pair forms a pressure chamber element 28.
  • the housing parts 13, 14 of the further pair are connected to one another by means of a further weld 17.
  • the further weld seam 17 is arranged in a radial direction between the housing parts 13, 14.
  • the weld seam 17 runs along a circumferential direction in relation to an axis of the housing parts 13, 14 connected to one another, which axis coincides with the longitudinal axis 48 of the oscillating armature pump 10.
  • the weld seam 17 is designed to be closed and closes the pump chamber 19 pressure-tight against the surroundings of the oscillating armature pump 10. It is conceivable that the outer housing part 11 of the first pair and the outer housing part 13 of the further pair of interconnected housing parts 13, 14 are formed separately from one another and are connected to one another by means of a further weld seam.
  • the outer housing part 13 of the third pair of interconnected housing parts 13, 15 is formed in one piece with the outer housing part 13 of the further pair of interconnected housing parts 13, 14.
  • the inner housing part 15 of the third pair forms the bearing ring 45 described above.
  • the housing parts 13, 15 of the third pair are connected to one another by means of a third weld seam 18.
  • the third weld seam 18 is arranged in a radial direction between the housing parts 13, 15.
  • the weld seam 18 runs along a circumferential direction based on an axis of the housing parts 13, 15 connected to one another, which axis coincides with the longitudinal axis 48 of the oscillating armature pump 10. It is conceivable that the oscillating armature pump 10 has further weld seams for connecting elements.
  • the oscillating armature pump 10 comprises an outlet valve 53 which is arranged in the outlet chamber 39.
  • the outlet chamber 39 is formed by the further connection element 27.
  • the outlet valve 53 is fluidically arranged between the pressure chamber 38 of the outlet chamber 39 of the oscillating armature pump 10.
  • the outlet valve 53 is arranged centrally in the oscillating armature pump 10 and centrally in the outlet chamber 39 in relation to the longitudinal axis 48 of the oscillating armature pump 10.
  • the outlet chamber 39 is fluidically arranged between the pressure chamber 38 and the outlet opening 52.
  • the outlet valve 53 is designed as a check valve which has a flow direction from the pressure chamber 38 to the outlet chamber 39.
  • the pressure chamber element 28 has a circular opening which forms a valve seat for the outlet valve 53.
  • the outlet valve 53 comprises an axially movably mounted closure part 54 and a closing spring 55 which, in an assembled state, presses the closure part 54 against the valve seat.
  • the outer housing part 11 of the first pair and the outer housing part 13 of the further pair and the third pair of interconnected housing parts 11, 12, 13, 14, 15 are formed from a material that is transparent to a welding laser beam.
  • the respective outer housing parts 11, 13 are formed from a material which is provided for a transmission welding process.
  • To assemble the oscillating armature pump 10, the housing parts 11, 12 of the first pair, the housing parts 13, 14 of the further pair and the housing parts 13, 15 of the third pair are connected to one another by means of a weld 16, 17, 18 each.
  • the housing parts 11, 12, 13, 14, 15 are each welded to one another by means of a welding laser.
  • the housing parts 11, 12, 13, 14, 15 are welded to one another in a transmission welding process.
  • the housing parts 11, 12, 13, 14, 15 are welded to one another in a ring welding process.
  • a position of the spring seat 25 is first determined without the housing parts 11, 12 to be joined by means of a force-displacement measurement.
  • the inner housing part 12 is pushed into the outer housing part 13 of the first pair, ie the housing part 12 which forms the connection element 24 is pressed into the housing part 11 which forms the pump chamber wall 23.
  • a path determined from the measurement is used to precisely determine the position of the housing part 11.
  • the spring 26, which is designed as a pump spring, is pretensioned and a pretensioning of the spring 26 is established.
  • the housing parts 11, 12 are connected to one another by means of the welding laser.
  • a welding laser beam from the welding laser penetrates the outer housing part 11, which is transparent to the welding laser beam in the area of the weld seam 16.
  • the welding laser beam strikes a surface of the inner housing part 12 and heats the housing part 12 in the area of the weld 16. Heat is transferred to the outer housing part 11.
  • a material of the housing parts 11, 12 is melted in the area of the welding laser beam.
  • the welding laser beam is moved further relative to the housing parts 11, 12.
  • the melted material cools down and the housing parts 11, 12 bond with one another in a materially bonded manner.
  • Analogously to the welding process for connecting the first pair of housing parts 11, 12, the housing parts 13, 14 of the further pair and the housing parts 13, 15 of the third pair are welded to one another.

Description

Stand der TechnikState of the art

Die Erfindung betrifft eine Schwingankerpumpe für ein Haushaltsgerät und ein Verfahren zur Montage einer Schwingankerpumpe.The invention relates to a vibrating armature pump for a household appliance and a method for assembling a vibrating armature pump.

Es ist bereits eine Schwingankerpumpe mit zumindest zwei fest miteinander verbundenen Gehäuseteilen bekannt. Beispiele von bekannten Schwingankerpumpen sind in US 2010/284837 A1 und DE 31 09 090 A1 dargestellt. Diese Dokumente offenbaren jedoch keine Laserschweißnaht, die zwischen zwei Gehäuseteilen in einem Überlappbereich angeordnet ist. Darüber hinaus ist keiner der Gehäuseteile dieser Dokumente zumindest teilweise aus einem für einen Schweißlaserstrahl transparenten Material ausgebildet. EP 2 548 714 A1 offenbart ein Laserstrahl-Schweißverfahren, um Bauteile zu verbinden, wobei einer der Bauteile zumindest teilweise aus einem für einen Schweißlaserstrahl transparenten Material ausgebildet ist.A vibrating armature pump with at least two housing parts firmly connected to one another is already known. Examples of known oscillating armature pumps are in US 2010/284837 A1 and DE 31 09 090 A1 shown. However, these documents do not disclose a laser weld seam which is arranged between two housing parts in an overlapping area. In addition, none of the housing parts of these documents is at least partially made of a material that is transparent to a welding laser beam. EP 2 548 714 A1 discloses a laser beam welding method for joining components, one of the components being at least partially formed from a material transparent to a welding laser beam.

Die Aufgabe der Erfindung besteht insbesondere darin, eine Schwingankerpumpe mit verbesserten Eigenschaften hinsichtlich eines besonders effizienten Montageprozesses und das entsprechende Montageverfahren zu erreichen. Die Aufgabe wird erfindungsgemäß durch die Ansprüche 1 und 5 gelöst, während vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung den Unteransprüchen entnommen werden können.The object of the invention is in particular to achieve a vibrating armature pump with improved properties with regard to a particularly efficient assembly process and the corresponding assembly method. The object is achieved according to the invention by claims 1 and 5, while advantageous configurations and developments of the invention can be found in the subclaims.

Vorteile der ErfindungAdvantages of the invention

Die Erfindung geht aus von einer Schwingankerpumpe für ein Haushaltsgerät, mit zumindest zwei fest miteinander verbundenen Gehäuseteilen.The invention is based on a vibrating armature pump for a household appliance, with at least two housing parts firmly connected to one another.

Es wird vorgeschlagen, dass die Schwingankerpumpe zumindest eine Schweißnaht aufweist, welche die Gehäuseteile miteinander verbindet, wobei die zumindest eine Schweißnaht als eine Laserschweißnaht ausgebildet ist, wobei die zumindest zwei Gehäuseteile einen Presssitz ausbilden, in dem die Gehäuseteile mittels der zumindest einen Schweißnaht fixiert sind. Dadurch können die zu verbindenden Teile besonders präzise zueinander positioniert und besonders zuverlässig miteinander verbunden werden. Es kann besonders schnell eine besonders präzise und zuverlässige Schweißnaht bereitgestellt und eine thermische Belastung der Gehäuseteile begrenzt werden. Es lässt sich eine hohe Festigkeit und Dichtheit der Schweißnaht erreichen. Es kann eine besonders zuverlässige Schweißverbindung bereitgestellt werden. Es kann ein besonders effizienter Montageprozess erreicht werden und eine besonders langlebige Schwingankerpumpe bereitgestellt werden. Vorzugsweise ist die Schwingankerpumpe als eine Niederdruckschwingankerpume ausgebildet und dazu vorgesehen, einen Druck von 3 bar bereitzustellen. Es ist aber auch denkbar, dass die Schwingankerpumpe als eine Hochdruckschwingankerpumpe ausgebildet ist, d.h. sie ist dazu vorgesehen, einen Druck von zumindest 10 bar, vorzugsweise zumindest 15 bar, bereitzustellen. Vorzugsweise weist die Schwingankerpumpe eine Druckkammer auf, in welcher der Druck bereitgestellt wird. Bevorzugt ist die Schwingankerpumpe dazu vorgesehen, ein Fluid, beispielsweise Wasser gegen einen Druck von zumindest 3 bar zu fördern. Bevorzugt ist die Schwingankerpumpe für eine Kaffeemaschine vorgesehen. Unter einem "Gehäuseteil" soll in diesem Zusammenhang insbesondere ein Bauteil verstanden werden, das dazu vorgesehen ist, weitere Bauteile zu halten und/oder zu lagern. Erfindungsgemäß weisen die Gehäuseteile einen Überlappbereich auf, in dem die Schweißnaht angeordnet ist. Unter einer "Laserschweißnaht" soll in diesem Zusammenhang insbesondere eine mittels eines Schweißlasers hergestellte Schweißnaht, beispielsweise in einem Durchstrahlschweißverfahren, verstanden werden. Unter "vorgesehen" soll insbesondere speziell ausgelegt und/oder ausgestattet verstanden werden. Bevorzugt sind die Gehäuseteile zumindest in einem Bereich der Schweißnaht aus einem schweißbaren Kunststoff ausgebildet, beispielsweise einem Polyamid, wie Grivory HT1 V-FWA.It is proposed that the oscillating armature pump have at least one weld seam which connects the housing parts to one another, the at least one weld seam being designed as a laser weld seam, the at least two housing parts forming a press fit in which the housing parts are fixed by means of the at least one weld seam. As a result, the parts to be connected can be positioned particularly precisely with respect to one another and connected to one another particularly reliably. A particularly precise and reliable weld seam can be provided particularly quickly and thermal loading of the housing parts can be limited. A high strength and tightness of the weld seam can be achieved. A particularly reliable welded connection can be provided. A particularly efficient assembly process can be achieved and a particularly durable oscillating armature pump can be provided. The oscillating armature pump is preferably as designed a low-pressure oscillating armature pump and intended to provide a pressure of 3 bar. However, it is also conceivable that the oscillating armature pump is designed as a high-pressure oscillating armature pump, ie it is provided to provide a pressure of at least 10 bar, preferably at least 15 bar. The oscillating armature pump preferably has a pressure chamber in which the pressure is provided. The oscillating armature pump is preferably provided to convey a fluid, for example water, against a pressure of at least 3 bar. The oscillating armature pump is preferably provided for a coffee machine. In this context, a “housing part” is to be understood as meaning, in particular, a component that is provided to hold and / or store further components. According to the invention, the housing parts have an overlap area in which the weld seam is arranged. In this context, a “laser weld seam” is to be understood in particular as a weld seam produced by means of a welding laser, for example in a transmission welding process. “Provided” is to be understood in particular as specifically designed and / or equipped. The housing parts are preferably formed from a weldable plastic, for example a polyamide, such as Grivory HT1 V-FWA, at least in one area of the weld seam.

Ferner wird vorgeschlagen, dass die zumindest eine Schweißnaht geschlossen ausgebildet ist. Dadurch kann besonders wirkungsvoll eine fluiddichte Verbindung zwischen den Gehäuseteilen bereitgestellt werden. Unter "geschlossen" soll in diesem Zusammenhang insbesondere sowohl entlang eines Verlaufs der Schweißnaht ununterbrochen als auch geometrisch geschlossen, beispielsweise kreisförmig und/oder ringförmig und in einem geometrischen Sinne frei von einem End- und/oder Anfangspunkt verstanden werden.It is also proposed that the at least one weld seam is designed to be closed. As a result, a fluid-tight connection between the housing parts can be provided particularly effectively. In this context, “closed” should be understood to mean, in particular, both uninterrupted along a course of the weld seam and geometrically closed, for example circular and / or ring-shaped and, in a geometrical sense, free of an end and / or starting point.

In einer vorteilhaften Ausgestaltung weist die Schwingankerpumpe eine Pumpkammer auf, die von der zumindest einen Schweißnaht druckdicht verschlossen wird. Dadurch kann eine besonders zuverlässig dichte Schwingankerpumpe bereitgestellt und eine hohe Lebensdauer erreicht werden. Unter "druckdicht" soll in diesem Zusammenhang insbesondere dicht gegenüber einem unter Druck stehenden Fluid verstanden werden, wodurch die von dem Fluid erfüllte Pumpkammer insbesondere von einer fluidfreien Umgebung getrennt wird. Vorzugsweise ist das Fluid als eine Flüssigkeit, beispielsweise als Wasser, ausgebildet. Vorzugsweise ist die Schweißnaht dazu vorgesehen, einem Druck von mindestens 3 bar, bevorzugt einem Druck von mindestens 15 bar und besonders bevorzugt einem Druck von mindestens 20 bar standzuhalten.In an advantageous embodiment, the oscillating armature pump has a pump chamber which is closed in a pressure-tight manner by the at least one weld seam. As a result, a particularly reliably sealed oscillating armature pump can be provided and a long service life can be achieved. In this context, “pressure-tight” is to be understood in particular to be tight against a pressurized fluid, as a result of which the pumping chamber filled with the fluid is in particular separated from a fluid-free environment. The fluid is preferably designed as a liquid, for example as water. The weld seam is preferably provided for a To withstand a pressure of at least 3 bar, preferably a pressure of at least 15 bar and particularly preferably a pressure of at least 20 bar.

Erfindungsgemäß weisen die zumindest zwei Gehäuseteile einen Überlappbereich auf, in dem die zumindest eine Schweißnaht angeordnet ist. Dadurch kann ein Laserschweißprozess besonders einfach durchgeführt und eine besonders zuverlässige Verbindung bereitgestellt werden. Bevorzugt greifen die Gehäuseteile in dem Überlappbereich ineinander.According to the invention, the at least two housing parts have an overlap area in which the at least one weld seam is arranged. As a result, a laser welding process can be carried out in a particularly simple manner and a particularly reliable connection can be provided. The housing parts preferably interlock in the overlap area.

Erfindungsgemäß bildet eines der zumindest zwei miteinander verbundenen Gehäuseteile eine Pumpkammerwand aus und ein weiteres der miteinander verbundenen Gehäuseteile ist als ein Anschlusselement ausgebildet. Dadurch kann ein besonders einfacher Aufbau eines Gehäuses der Schwingankerpumpe erreicht werden. Die Pumpkammer kann in einem Montagevorgang besonders effizient druckdicht verschlossen werden. Unter einer "Pumpkammerwand" soll in diesem Zusammenhang insbesondere eine Materialfläche verstanden werden, welche die Pumpkammer begrenzt. Unter einem "Anschlusselement" soll insbesondere ein Bauteil verstanden werden, das einen Fluidanschluss aufweist, der dazu vorgesehen ist, Fluid insbesondere in die Pumpkammer zu leiten oder aus der Pumpkammer auszuleiten. Bevorzugt weist das Anschlusselement einen Stutzen auf.According to the invention, one of the at least two interconnected housing parts forms a pump chamber wall and another of the interconnected housing parts is configured as a connection element. A particularly simple construction of a housing of the oscillating armature pump can thereby be achieved. The pumping chamber can be closed in a particularly efficient pressure-tight manner in one assembly process. In this context, a “pumping chamber wall” is to be understood as meaning, in particular, a material surface which delimits the pumping chamber. A “connection element” is to be understood in particular as a component which has a fluid connection which is provided for the purpose of conveying fluid, in particular, into the pump chamber or out of the pump chamber. The connection element preferably has a connecting piece.

Erfindungsgemäß bildet eines der zumindest zwei miteinander verbundenen Gehäuseteile einen Federsitz für eine Feder aus. Dadurch kann eine Position des Federsitzes besonders präzise eingestellt und fixiert werden. Bevorzugt ist die Feder dazu vorgesehen, eine Kraft auf einen Kolben der Schwingankerpumpe auszuüben zu einer Bewegung des Kolbens und ist beispielsweise als eine Pumpfeder ausgebildet.According to the invention, one of the at least two interconnected housing parts forms a spring seat for a spring. As a result, a position of the spring seat can be set and fixed particularly precisely. The spring is preferably provided to exert a force on a piston of the oscillating armature pump in order to move the piston and is designed, for example, as a pump spring.

In vorteilhafter Weise legt die zumindest eine Schweißnaht eine Vorspannung der Feder fest. Dadurch kann eine Vorspannung der Feder besonders einfach und präzise festgelegt und fixiert werden. Es kann eine besonders effiziente Schwingankerpumpe bereitgestellt werden.Advantageously, the at least one weld seam defines a pretensioning of the spring. As a result, a pretensioning of the spring can be determined and fixed in a particularly simple and precise manner. A particularly efficient oscillating armature pump can be provided.

Erfindungsgemäß bildet eines der zumindest zwei miteinander verbundenen Gehäuseteile ein Anschlusselement aus und ein weiteres Gehäuseteil bildet ein Druckkammerelement aus. Dadurch kann ein besonders einfacher Aufbau des Gehäuses der Schwingankerpumpe erreicht werden. Die Druckkammer der Schwingankerpumpe kann bei einem Montagevorgang besonders effizient druckdicht verschlossen werden. Unter einem "Druckkammerelement" soll in diesem Zusammenhang insbesondere ein Element verstanden werden, das zumindest teilweise eine Wandung zur Begrenzung der Druckkammer der Schwingankerpumpe ausbildet. Vorzugsweise bildet die Druckkammer ein Teilvolumen der Pumpkammer, das zumindest in einem Betriebszustand der Schwingankerpumpe von dem zu fördernden Fluid unter Druck erfüllt ist.According to the invention, one of the at least two interconnected housing parts forms a connection element and a further housing part forms a pressure chamber element. A particularly simple construction of the housing of the oscillating armature pump can thereby be achieved. The pressure chamber of the The oscillating armature pump can be closed in a particularly efficient pressure-tight manner during an assembly process. In this context, a “pressure chamber element” is to be understood in particular as an element which at least partially forms a wall for delimiting the pressure chamber of the oscillating armature pump. The pressure chamber preferably forms a partial volume of the pump chamber which, at least in one operating state of the oscillating armature pump, is filled by the fluid to be conveyed under pressure.

Erfindungsgemäß ist zumindest eines der zumindest zwei miteinander verbundenen Gehäuseteile zumindest teilweise aus einem für einen Schweißlaserstrahl transparenten Material ausgebildet. Dadurch kann ein besonders effizienter und zuverlässiger Montageprozess erreicht werden. Unter "zumindest teilweise" soll in diesem Zusammenhang insbesondere verstanden werden, dass das Gehäuseteil zumindest in dem Bereich der Schweißnaht aus einem für den Schweißlaserstrahl transparenten Material ausgebildet ist. Unter einem "Schweißlaserstrahl" soll insbesondere ein Laserstrahl verstanden werden, der dazu vorgesehen ist, ein Material der Gehäuseteile zu einer stoffschlüssigen Verbindung aufzuschmelzen, d.h. der Laserstrahl ist insbesondere hinreichend energiereich und fokussiert.According to the invention, at least one of the at least two interconnected housing parts is at least partially formed from a material that is transparent to a welding laser beam. This enables a particularly efficient and reliable assembly process to be achieved. In this context, “at least partially” is to be understood in particular to mean that the housing part is made from a material that is transparent to the welding laser beam, at least in the area of the weld seam. A "welding laser beam" is to be understood in particular as a laser beam which is intended to melt a material of the housing parts to form a material connection, i.e. the laser beam is in particular sufficiently energetic and focused.

Ferner wird ein Verfahren zur Montage einer erfindungsgemäßen Schwingankerpumpe mit zumindest zwei Gehäuseteilen vorgeschlagen, bei dem die Gehäuseteile mittels einer Schweißnaht miteinander verbunden werden. Dadurch kann die Schwingankerpumpe besonders effizient montiert werden.Furthermore, a method for assembling an oscillating armature pump according to the invention with at least two housing parts is proposed, in which the housing parts are connected to one another by means of a weld seam. This means that the oscillating armature pump can be installed particularly efficiently.

Ferner wird vorgeschlagen, dass bei dem Verfahren die Gehäuseteile miteinander verbunden werden, indem ein Schweißlaserstrahl durch ein erstes der Gehäuseteile hindurch auf eine Oberfläche eines weiteren der Gehäuseteile geleitet wird. Dadurch können Gehäuseteile in schwer zugänglichen Bereichen miteinander verbunden werden und die Schwingankerpumpe kann besonders flexibel aufgebaut werden.It is further proposed that, in the method, the housing parts are connected to one another by directing a welding laser beam through a first of the housing parts onto a surface of a further one of the housing parts. This allows housing parts to be connected to one another in areas that are difficult to access and the oscillating armature pump can be constructed in a particularly flexible manner.

Zeichnungendrawings

Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In der einzigen Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt. Die Zeichnung, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination.Further advantages emerge from the following description of the drawings. In the single drawing, an embodiment of the invention is shown. The drawing, the description and the claims contain numerous features in combination.

Beschreibung der AusführungsbeispieleDescription of the exemplary embodiments

Die Figur 1 zeigt eine Schwingankerpumpe 10 für ein Haushaltsgerät. Die Schwingankerpumpe 10 ist zur Förderung einer Flüssigkeit, beispielsweise Wasser, unter einem Druck von zumindest 3 bar vorgesehen. Die Schwingankerpumpe 10 weist in dem vorliegenden Ausführungsbeispiel fünf Gehäuseteile 11, 12, 13, 14, 15 auf, die jeweils zumindest mit einem der anderen Gehäuseteile 11, 12, 13, 14, 15 fest verbunden sind. Die Gehäuseteile 11, 12, 13, 14, 15 sind aus einem schweißbaren Material ausgebildet. Die Gehäuseteile 11, 12, 13, 14, 15 sind in dem vorliegenden Ausführungsbeispiel aus Kunststoff ausgebildet. Die Gehäuseteile 11, 12, 13, 14, 15 sind aus einem thermoplastischen Material ausgebildet. Die Schwingankerpumpe 10 weist drei Schweißnähte 16, 17, 18 auf, welche die Gehäuseteile 11, 12, 13, 14, 15 in einem montierten Zustand paarweise miteinander verbinden.the Figure 1 shows a vibrating armature pump 10 for a household appliance. The oscillating armature pump 10 is provided for pumping a liquid, for example water, under a pressure of at least 3 bar. In the present exemplary embodiment, the oscillating armature pump 10 has five housing parts 11, 12, 13, 14, 15, which are each firmly connected to at least one of the other housing parts 11, 12, 13, 14, 15. The housing parts 11, 12, 13, 14, 15 are formed from a weldable material. The housing parts 11, 12, 13, 14, 15 are made of plastic in the present exemplary embodiment. The housing parts 11, 12, 13, 14, 15 are formed from a thermoplastic material. The oscillating armature pump 10 has three weld seams 16, 17, 18 which connect the housing parts 11, 12, 13, 14, 15 to one another in pairs in an assembled state.

Die Schwingankerpumpe 10 umfasst eine Magnetspule 29 mit einem Spulengehäuse 30 und einen Kolben 31. Weiter umfasst die Schwingankerpumpe 10 eine auf den Kolben 31 wirkende Feder 26. Die Feder 26 ist als eine Pumpfeder ausgebildet. Die Feder 26 ist als eine Schraubendruckfeder ausgebildet. Die Schwingankerpumpe 10 weist eine Pumpkammer 19 auf, in welcher der Kolben 31 axial beweglich geführt ist. Die Pumpkammer 19 weist eine Pumpkammerwand 23 auf, die als eine Kolbenführung ausgebildet ist. Die Pumpkammer 19 durchsetzt das Spulengehäuse 30 mit der Magnetspule 29. Die Magnetspule 29 ist dazu vorgesehen, ein Magnetfeld zu erzeugen, das teilweise die Pumpkammer 19 durchsetzt. Zur Lenkung des Magnetfeldes umfasst die Schwingankerpumpe 10 einen Eisenkreis 32, welcher die Magnetspule 29 teilweise umgibt. Der Eisenkreis 32 umfasst im Bereich der Pumpkammer 19 einen magnetisch isolierenden Spalt 33, welcher den Eisenkreis 32 unterbricht. Der Eisenkreis 32 umfasst zwei Polschuhelemente 34, 35, zwischen deren Enden der magnetisch isolierende Spalt 33 angeordnet ist.The oscillating armature pump 10 comprises a magnetic coil 29 with a coil housing 30 and a piston 31. The oscillating armature pump 10 also comprises a spring 26 acting on the piston 31. The spring 26 is designed as a pump spring. The spring 26 is designed as a helical compression spring. The oscillating armature pump 10 has a pump chamber 19 in which the piston 31 is guided so as to be axially movable. The pump chamber 19 has a pump chamber wall 23 which is designed as a piston guide. The pump chamber 19 penetrates the coil housing 30 with the magnetic coil 29. The magnetic coil 29 is provided to generate a magnetic field which partially penetrates the pump chamber 19. To steer the magnetic field, the oscillating armature pump 10 comprises an iron circuit 32 which partially surrounds the magnetic coil 29. The iron circuit 32 comprises a magnetically insulating gap 33 in the area of the pump chamber 19, which interrupts the iron circuit 32. The iron circle 32 includes two pole shoe elements 34, 35, between the ends of which the magnetically insulating gap 33 is arranged.

Der Kolben 31 umfasst ein Ankerelement 36, das vollständig aus einem magnetisierbaren Material besteht. In einer Ruhestellung, d.h. bei einem Druck von 0 bar innerhalb der Pumpkammer 19 und bei abgeschalteter Magnetspule 29, weist das Ankerelement 36 eine Position auf, bei der es teilweise mit dem Spalt 33, den der Eisenkreis 32 unterbricht, axial überlappt. Wird die Magnetspule 29 bestromt, stellt sich ein magnetischer Fluss in dem Eisenkreis 32 und dem Ankerelement 36 ein, wobei ein magnetischer Widerstand, welcher diesem magnetischen Fluss entgegenwirkt, insbesondere durch eine verbleibende Spaltbreite zwischen dem Ankerelement 36 und dem Eisenkreis 32 bestimmt ist. Da ein solches System bestrebt ist, einen Zustand einzunehmen, indem der magnetische Widerstand minimal ist, wirkt auf das Ankerelement 36 eine Betätigungskraft, welche das Ankerelement 36 aus seiner Ruheposition gegen eine Kraft der Feder 26 auslenkt.The piston 31 comprises an armature element 36, which consists entirely of a magnetizable material. In a rest position, i.e. at a pressure of 0 bar within the pump chamber 19 and with the magnet coil 29 switched off, the armature element 36 has a position in which it partially overlaps axially with the gap 33 interrupted by the iron circuit 32. If the magnet coil 29 is energized, a magnetic flux is established in the iron circuit 32 and the armature element 36, a magnetic resistance which counteracts this magnetic flux being determined in particular by a remaining gap width between the armature element 36 and the iron circuit 32. Since such a system strives to adopt a state in which the magnetic resistance is minimal, an actuating force acts on the armature element 36, which deflects the armature element 36 from its rest position against a force of the spring 26.

Zur Erzielung einer Pumpwirkung wird die Magnetspule 29 mit einer pulsförmigen Spannung bestromt, wodurch sich im Bereich der Pumpkammer 19 ein sich ständig veränderndes Magnetfeld einstellt. Das sich pulsförmig verändernde Magnetfeld wiederum bewirkt, dass der Kolben 31 mit ansteigender Stärke des Magnetfelds zunächst aus seiner Ruhestellung gegen die Kraft der Feder 26 ausgelenkt wird. Wird das Magnetfeld maximal, ist auch der Kolben 31 maximal ausgelenkt. Sobald ein Strom durch die Magnetspule 29 reduziert wird und damit die Stärke des Magnetfelds wieder abfällt, wird der Kolben 31 durch die Kraft der Feder 26 wieder in Richtung der Ruhestellung bewegt. Der Magnetspule 29 ist dabei vorzugsweise eine nicht näher dargestellte Diodeneinheit vorgeschaltet, wodurch die Magnetspule 29 lediglich mit einer Halbwelle einer Wechselspannung bestromt wird. In dem dargestellten Ausführungsbeispiel ist die Magnetspule 29 für eine Wechselspannung von 240 V bei 50 Hz vorgesehen.To achieve a pumping effect, the magnetic coil 29 is energized with a pulse-shaped voltage, as a result of which a constantly changing magnetic field is established in the area of the pumping chamber 19. The magnetic field, which changes in the form of a pulse, in turn has the effect that the piston 31 is initially deflected from its rest position against the force of the spring 26 as the strength of the magnetic field increases. If the magnetic field is maximal, the piston 31 is also maximally deflected. As soon as a current through the magnetic coil 29 is reduced and thus the strength of the magnetic field drops again, the piston 31 is moved again in the direction of the rest position by the force of the spring 26. The magnetic coil 29 is preferably preceded by a diode unit (not shown in more detail), as a result of which the magnetic coil 29 is only energized with a half-wave of an alternating voltage. In the illustrated embodiment, the magnetic coil 29 is provided for an alternating voltage of 240 V at 50 Hz.

Die Pumpkammer 19 umfasst bei montiertem Kolben 31 eine Vorkammer 37, eine Druckkammer 38 und eine Auslasskammer 39. Der Kolben 31 umfasst ein Kolbenventil 40, das strömungstechnisch zwischen der Vorkammer 37 und der Druckkammer 38 angeordnet ist. Das Kolbenventil 40 ist bezogen auf eine Längsachse 48 der Schwingankerpumpe 10 zentral in der Schwingankerpumpe 10 und zentral in dem Kolben 31 angeordnet. Das Kolbenventil 40 ist in Form eines Rückschlagventils ausgebildet, welches eine Durchlassrichtung von der Vorkammer 37 in die Druckkammer 38 aufweist. Das Kolbenventil 40 umfasst einen Ventilsitz, ein Verschlussteil 41 und eine Schließfeder 42. Die Schließfeder 42 ist dazu vorgesehen, das Verschlussteil 41 auf den Ventilsitz zu ziehen. In einem Füllhub, bei dem der Kolben 31 durch das Magnetfeld entgegen der Kraft der Feder 26 bewegt wird, strömt Fluid von der Vorkammer 37 durch das Kolbenventil 40 in die Druckkammer 38. In einem anschließenden Druckhub, bei dem der Kolben 31 durch die Kraft der Feder 26 bewegt wird, wird das Fluid aus der Druckkammer 38 herausgedrückt. Der Maximaldruck, der dabei auf das Fluid wirkt, hängt insbesondere von der Kraft der Feder 26 ab. Ein Weg, um den der Kolben 31 dabei bewegt wird, hängt von einer Ausgestaltung der Schwingankerpumpe 10 ab.When the piston 31 is mounted, the pump chamber 19 comprises an antechamber 37, a pressure chamber 38 and an outlet chamber 39. The piston 31 comprises a piston valve 40 which is fluidically arranged between the antechamber 37 and the pressure chamber 38. The piston valve 40 is arranged centrally in the oscillating armature pump 10 and centrally in the piston 31 in relation to a longitudinal axis 48 of the oscillating armature pump 10. The piston valve 40 is designed in the form of a check valve, which has a passage direction from the antechamber 37 into the pressure chamber 38. The piston valve 40 comprises a valve seat, a closure part 41 and a closing spring 42. The closing spring 42 is provided to pull the closure part 41 onto the valve seat. In a filling stroke in which the piston 31 is moved by the magnetic field against the force of the spring 26, fluid flows from the antechamber 37 through the piston valve 40 into the pressure chamber 38 Spring 26 is moved, the fluid is pushed out of the pressure chamber 38. The maximum pressure that acts on the fluid depends in particular on the force of the spring 26. A distance by which the piston 31 is moved depends on a configuration of the oscillating armature pump 10.

Der Kolben 31, der zur Förderung des Fluids vorgesehen ist, umfasst das Ankerelement 36, ein Ankerlagerelement 43 und ein Druckkolbenelement 44, in welchem das Kolbenventil 40 angeordnet ist. Das Druckkolbenelement 44 ist in dem vorliegenden Ausführungsbeispiel einstückig mit dem Ankerlagerelement 43 ausgebildet. Das Ankerelement 36 ist getrennt von dem Ankerlagerelement 43 und getrennt von dem Druckkolbenelement 44 ausgebildet. Das Druckkolbenelement 44 und das Ankerlagerelement 43 weisen jeweils einen Förderkanal und eine Mehrzahl von Druckausgleichskanälen auf. Der Förderkanal des Druckkolbenelementes 44 in dem das Kolbenventil 40 angeordnet ist, dient zur Verbindung der Vorkammer 37 mit der Druckkammer 38. Die Vorkammer 37 weist durch die Anordnung des Ankerelements 36 einen vorderen Teil und einen hinteren Teil auf, welche durch die Druckausgleichskanäle drucktechnisch parallel geschaltet sind. Das Druckkolbenelement 44 bildet den Ventilsitz des Kolbenventils 40 aus. Das Druckkolbenelement 44 weist einen Außendurchmesser auf. Das Ankerlagerelement 43 weist einen Außendurchmesser auf, der größer ist als der Außendurchmesser des Druckkolbenelements 44. Das Ankerelement 36 ist in Form einer Hülse ausgebildet und weist einen Innendurchmesser auf, der dem Außendurchmesser des Ankerlagerelements 43 entspricht. Das Ankerlagerelement 43 weist einlassseitig einen Anschlagring auf, der eine Bewegung des Ankerelements 36 relativ zu dem Ankerlagerelement 43 begrenzt, und dazu vorgesehen ist, eine Kraft von dem Ankerelement 36 auf das Ankerlagerelement 43 zu übertragen. Das Ankerlagerelement 43 ist dazu vorgesehen, die Feder 26 abzustützen und eine Kraft der Feder 26 auf das Druckkolbenelement 44 zu übertragen. Das Druckkolbenelement 44 ist dazu vorgesehen, die Kraft der Feder 26 in einen Druck in der Druckkammer 38 zu übersetzen. Die Schwingankerpumpe 10 umfasst einen Lagerring 45 für zwei Dichtelemente 46, 47. Ein erstes der Dichtelemente 46 ist zu einer Dichtung der Vorkammer 37 gegenüber der Auslasskammer 39 vorgesehen. Ein weiteres der Dichtelemente 47 ist zu einer Dichtung der Vorkammer 37 gegenüber der Druckkammer 38 vorgesehen. In einem montierten Zustand durchdringt das Druckkolbenelement 44 den Lagerring 45. Das weitere der Dichtelemente 47 bildet zusammen mit dem Druckkolbenelement 44 eine Gleitdichtung aus.The piston 31, which is provided for conveying the fluid, comprises the armature element 36, an armature bearing element 43 and a pressure piston element 44 in which the piston valve 40 is arranged. In the present exemplary embodiment, the pressure piston element 44 is formed in one piece with the armature bearing element 43. The armature element 36 is formed separately from the armature bearing element 43 and separately from the pressure piston element 44. The pressure piston element 44 and the armature bearing element 43 each have a delivery channel and a plurality of pressure compensation channels. The delivery channel of the pressure piston element 44 in which the piston valve 40 is arranged serves to connect the prechamber 37 with the pressure chamber 38. The prechamber 37 has a front part and a rear part due to the arrangement of the anchor element 36, which are connected in parallel through the pressure equalization channels are. The pressure piston element 44 forms the valve seat of the piston valve 40. The plunger element 44 has an outer diameter. The armature bearing element 43 has an outer diameter that is larger than the outer diameter of the pressure piston element 44. The armature element 36 is designed in the form of a sleeve and has an inner diameter that corresponds to the outer diameter of the armature bearing element 43. The armature bearing element 43 has a stop ring on the inlet side which limits a movement of the armature element 36 relative to the armature bearing element 43 and is provided to transmit a force from the armature element 36 to the armature bearing element 43. The armature bearing element 43 is provided to support the spring 26 and to transmit a force of the spring 26 to the pressure piston element 44. The pressure piston element 44 is provided to translate the force of the spring 26 into a pressure in the pressure chamber 38. the Oscillating armature pump 10 comprises a bearing ring 45 for two sealing elements 46, 47. A first of the sealing elements 46 is provided to seal the antechamber 37 with respect to the outlet chamber 39. Another of the sealing elements 47 is provided to seal the antechamber 37 with respect to the pressure chamber 38. In an assembled state, the pressure piston element 44 penetrates the bearing ring 45. The other of the sealing elements 47, together with the pressure piston element 44, forms a sliding seal.

Die Schweißnähte 16, 17, 18 der Schwingankerpumpe 10 sind als Laserschweißnähte ausgebildet. Die Schwingankerpumpe 10 weist eine Längsachse 48 auf, die parallel zu einer Hauptströmrichtung des Fluids angeordnet ist. Die Schweißnähte 16, 17, 18 sind jeweils in einer Ebene senkrecht zu der Längsachse 48 angeordnet. Die Schweißnähte 16, 17, 18 verlaufen bezogen auf die Längsachse 48 in einer Umlaufrichtung. Die Schweißnähte 16, 17, 18 sind geschlossen ausgebildet. Die Schweißnähte 16, 17, 18 sind in Form von Ringschweißnähten ausgebildet. Die Pumpkammer 19 wird von den Schweißnähten 16, 17, 18 an zwei sich gegenüberliegenden Seiten druckdicht verschlossen. Die Schwingankerpumpe 10 weist ein erstes Paar von miteinander verbundenen Gehäuseteilen 11, 12 auf, bestehend aus einem radial äußeren Gehäuseteil 11 und einem radial inneren Gehäuseteil 12. Die Schwingankerpumpe 10 weist ein weiteres Paar von miteinander verbundenen Gehäuseteilen 13, 14 auf, bestehend aus einem äußeren Gehäuseteil 13 und einem inneren Gehäuseteil 14, sowie ein drittes Paar von miteinander verbundenen Gehäuseteilen 13, 15, bestehend aus einem äußeren Gehäuseteil 13 und einem inneren Gehäuseteil 15. Die Paare von miteinander verbundenen Gehäuseteilen 11, 12, 13, 14, 15 weisen jeweils einen Überlappbereich 20, 21, 22 auf, in dem sich die Gehäuseteile 11, 12, 13, 14, 15 in einer axialen Richtung überlappen. Die Paare bilden jeweils einen Presssitz aus, in dem die Gehäuseteile 11, 12, 13, 14, 15 mittels der Schweißnaht 16, 17, 18 fixiert sind. Die Schweißnähte 16, 17, 18 sichern jeweils eine axiale relative Position der verbundenen Gehäuseteile 11, 12, 13, 14, 15. Die Gehäuseteile 11, 12, 13, 14, 15 bilden die Presssitze in den Überlappbereichen 20, 21, 22 aus. Die Presssitze werden jeweils von dem inneren Gehäuseteil 12, 14, 15 und dem äußeren Gehäuseteil 11, 13 ausgebildet. Das innere Gehäuseteil 12, 14, 15 greift jeweils in das äußere Gehäuseteil 11, 13 ein. Das äußere Gehäuseteil 11, 13 umgibt jeweils das innere Gehäuseteil 12, 14, 15 im Bereich des Presssitzes der dem Überlappbereich 20, 21, 22 entspricht. Die Schweißnähte 16, 17, 18 sind jeweils räumlich radial zwischen dem inneren Gehäuseteil 12, 14, 15 und dem äußeren Gehäuseteil 11, 13 angeordnet.The weld seams 16, 17, 18 of the oscillating armature pump 10 are designed as laser weld seams. The oscillating armature pump 10 has a longitudinal axis 48 which is arranged parallel to a main flow direction of the fluid. The weld seams 16, 17, 18 are each arranged in a plane perpendicular to the longitudinal axis 48. The weld seams 16, 17, 18 run in a circumferential direction in relation to the longitudinal axis 48. The weld seams 16, 17, 18 are designed to be closed. The weld seams 16, 17, 18 are designed in the form of ring weld seams. The pump chamber 19 is closed in a pressure-tight manner by the weld seams 16, 17, 18 on two opposite sides. The oscillating armature pump 10 has a first pair of interconnected housing parts 11, 12, consisting of a radially outer housing part 11 and a radially inner housing part 12. The oscillating armature pump 10 has a further pair of interconnected housing parts 13, 14, consisting of an outer one Housing part 13 and an inner housing part 14, as well as a third pair of interconnected housing parts 13, 15, consisting of an outer housing part 13 and an inner housing part 15. The pairs of interconnected housing parts 11, 12, 13, 14, 15 each have a Overlap area 20, 21, 22, in which the housing parts 11, 12, 13, 14, 15 overlap in an axial direction. The pairs each form a press fit in which the housing parts 11, 12, 13, 14, 15 are fixed by means of the weld 16, 17, 18. The weld seams 16, 17, 18 each secure an axial relative position of the connected housing parts 11, 12, 13, 14, 15. The housing parts 11, 12, 13, 14, 15 form the press fits in the overlapping areas 20, 21, 22. The press fits are each formed by the inner housing part 12, 14, 15 and the outer housing part 11, 13. The inner housing part 12, 14, 15 engages in the outer housing part 11, 13, respectively. The outer housing part 11, 13 surrounds the inner housing part 12, 14, 15 in the area of the press fit which corresponds to the overlap area 20, 21, 22. The weld seams 16, 17, 18 are each three-dimensional arranged radially between the inner housing part 12, 14, 15 and the outer housing part 11, 13.

Das äußere Gehäuseteil 11 des ersten Paares von miteinander verbundenen Gehäuseteilen 11, 12 bildet die Pumpkammerwand 23 aus. Das innere Gehäuseteil 12 des Paares bildet ein Anschlusselement 24 aus. Das Anschlusselement 24 ist zu einem Fluideinlass vorgesehen. Das äußere Gehäuseteil 11 und das innere Gehäuseteil 12 sind in einem montierten Zustand mittels einer ersten der Schweißnähte 16 miteinander verbunden. Das Anschlusselement 24 weist einen Anschlussstutzen 49 mit einer Einlassöffnung 50 auf. Das innere Gehäuseteil 12 weist ferner eine Wandung auf, die das innere Gehäuseteil 12 in dem äußeren Gehäuseteil 11 lagert. Die Wandung ist mittels der Schweißnaht 16 mit der Pumpkammerwand 23 des äußeren Gehäuseteils 12 verbunden. Die Schweißnaht 16 ist in einer radialen Richtung zwischen der Wandung und der Pumpkammerwand 23 angeordnet. Die Schweißnaht 16 verläuft entlang einer Umlaufrichtung, bezogen auf eine Achse des Anschlusselements 24, die mit der Längsachse 48 der Schwingankerpumpe 10 zusammenfällt. Die Schweißnaht 16 ist geschlossen ausgebildet und verschließt die Pumpkammer 19 druckdicht gegenüber einer Umgebung der Schwingankerpumpe 10. Das innere Gehäuseteil 12 begrenzt in einem montierten Zustand die Pumpkammer 19 einlassseitig in einer axialen Richtung. Die Wandung weist einen Außendurchmesser auf, der einem Innendurchmesser des äußeren Gehäuseteils 11 entspricht. Die beiden Gehäuseteile 11, 12 des Paares weisen eine Übermaßpassung auf. Die Übermaßpassung ist dazu vorgesehen, bei einem Schweißvorgang zu einer Montage der Schwingankerpumpe 10 einen Druck zwischen den Gehäuseteilen 11, 12 zu erzeugen.The outer housing part 11 of the first pair of interconnected housing parts 11, 12 forms the pump chamber wall 23. The inner housing part 12 of the pair forms a connection element 24. The connection element 24 is provided for a fluid inlet. The outer housing part 11 and the inner housing part 12 are connected to one another in an assembled state by means of a first of the weld seams 16. The connection element 24 has a connection piece 49 with an inlet opening 50. The inner housing part 12 also has a wall which supports the inner housing part 12 in the outer housing part 11. The wall is connected to the pump chamber wall 23 of the outer housing part 12 by means of the weld 16. The weld seam 16 is arranged in a radial direction between the wall and the pump chamber wall 23. The weld seam 16 runs along a circumferential direction, based on an axis of the connection element 24, which coincides with the longitudinal axis 48 of the oscillating armature pump 10. The weld 16 is designed to be closed and closes the pump chamber 19 in a pressure-tight manner with respect to the surroundings of the oscillating armature pump 10. In an assembled state, the inner housing part 12 delimits the pump chamber 19 on the inlet side in an axial direction. The wall has an outer diameter which corresponds to an inner diameter of the outer housing part 11. The two housing parts 11, 12 of the pair have an interference fit. The interference fit is provided to generate a pressure between the housing parts 11, 12 during a welding process for the assembly of the oscillating armature pump 10.

Das innere Gehäuseteil 12, welches das Anschlusselement 24 ausbildet, bildet einen Federsitz 25 für die Feder 26 aus. Das Gehäuseteil 12 ist dazu vorgesehen, die als eine Pumpfeder ausgebildete Feder 26 abzustützen. Die Feder 26 ist in einem montierten Zustand zwischen dem Gehäuseteil 12 und dem Kolben 31 gespannt. Die Schweißnaht 16, welche das Gehäuseteil 12 mit der Pumpkammerwand 23 verbindet, legt eine Vorspannung der Feder 26 fest. Die Schweißnaht 16 verhindert eine Bewegung des das Anschlusselement 24 ausbildenden Gehäuseteils 12 gegenüber dem die Pumpkammerwand 23 ausbildenden Gehäuseteil 11, mit dem es mittels der Schweißnaht 16 verbunden ist. Die Schweißnaht 16 legt eine relative axiale Position der mittels der Schweißnaht 16 verbundenen Gehäuseteile 11, 12 fest.The inner housing part 12, which forms the connection element 24, forms a spring seat 25 for the spring 26. The housing part 12 is provided to support the spring 26, which is designed as a pump spring. In an assembled state, the spring 26 is stretched between the housing part 12 and the piston 31. The weld 16, which connects the housing part 12 to the pump chamber wall 23, defines a pretensioning of the spring 26. The weld seam 16 prevents a movement of the housing part 12 forming the connection element 24 with respect to the housing part 11 forming the pump chamber wall 23, with which it is connected by means of the weld seam 16 is connected. The weld seam 16 defines a relative axial position of the housing parts 11, 12 connected by means of the weld seam 16.

Das äußere Gehäuseteil 13 und das innere Gehäuseteil 14 des weiteren Paares weisen jeweils eine zylindrische Grundform auf. Das äußere Gehäuseteil 13 bildet ein weiteres Anschlusselement 27 zu einem Auslass des Fluids aus. In dem vorliegenden Ausführungsbeispiel ist das äußere Gehäuseteil 13 des weiteren Paares einstückig mit dem äußeren Gehäuseteil 11 des ersten Paares ausgebildet. Das äußere Gehäuseteil 13 des weiteren Paares bildet einen weiteren Anschlussstutzen 51 mit einer Auslassöffnung 52 auf. Das innere Gehäuseteil 14 des weiteren Paares bildet ein Druckkammerelement 28 aus. Die Gehäuseteile 13, 14 des weiteren Paares sind mittels einer weiteren Schweißnaht 17 miteinander verbunden. Die weitere Schweißnaht 17 ist in einer radialen Richtung zwischen den Gehäuseteilen 13, 14 angeordnet. Die Schweißnaht 17 verläuft entlang einer Umlaufrichtung bezogen auf eine Achse der miteinander verbundenen Gehäuseteile 13, 14, die mit der Längsachse 48 der Schwingankerpumpe 10 zusammenfällt. Die Schweißnaht 17 ist geschlossen ausgebildet und verschließt die Pumpkammer 19 druckdicht gegen eine Umgebung der Schwingankerpumpe 10. Es ist denkbar, dass das äußere Gehäuseteil 11 des ersten Paares und das äußere Gehäuseteil 13 des weiteren Paares von miteinander verbundenen Gehäuseteilen 13, 14 getrennt voneinander ausgebildet und mittels einer weiteren Schweißnaht miteinander verbunden sind.The outer housing part 13 and the inner housing part 14 of the further pair each have a cylindrical basic shape. The outer housing part 13 forms a further connection element 27 to an outlet for the fluid. In the present exemplary embodiment, the outer housing part 13 of the further pair is formed in one piece with the outer housing part 11 of the first pair. The outer housing part 13 of the further pair forms a further connection piece 51 with an outlet opening 52. The inner housing part 14 of the further pair forms a pressure chamber element 28. The housing parts 13, 14 of the further pair are connected to one another by means of a further weld 17. The further weld seam 17 is arranged in a radial direction between the housing parts 13, 14. The weld seam 17 runs along a circumferential direction in relation to an axis of the housing parts 13, 14 connected to one another, which axis coincides with the longitudinal axis 48 of the oscillating armature pump 10. The weld seam 17 is designed to be closed and closes the pump chamber 19 pressure-tight against the surroundings of the oscillating armature pump 10. It is conceivable that the outer housing part 11 of the first pair and the outer housing part 13 of the further pair of interconnected housing parts 13, 14 are formed separately from one another and are connected to one another by means of a further weld seam.

Das äußere Gehäuseteil 13 des dritten Paares von miteinander verbundenen Gehäuseteilen 13, 15 ist einstückig mit dem äußeren Gehäuseteil 13 des weiteren Paares von miteinander verbundenen Gehäuseteilen 13, 14 ausgebildet. Das innere Gehäuseteil 15 des dritten Paares bildet den oben beschriebenen Lagerring 45 aus. Die Gehäuseteile 13, 15 des dritten Paares sind mittels einer dritten Schweißnaht 18 miteinander verbunden. Die dritte Schweißnaht 18 ist in einer radialen Richtung zwischen den Gehäuseteilen 13, 15 angeordnet. Die Schweißnaht 18 verläuft entlang einer Umlaufrichtung bezogen auf eine Achse der miteinander verbundenen Gehäuseteile 13, 15, die mit der Längsachse 48 der Schwingankerpumpe 10 zusammenfällt. Es ist denkbar, dass die Schwingankerpumpe 10 weitere Schweißnähte zur Verbindung von Elementen aufweist.The outer housing part 13 of the third pair of interconnected housing parts 13, 15 is formed in one piece with the outer housing part 13 of the further pair of interconnected housing parts 13, 14. The inner housing part 15 of the third pair forms the bearing ring 45 described above. The housing parts 13, 15 of the third pair are connected to one another by means of a third weld seam 18. The third weld seam 18 is arranged in a radial direction between the housing parts 13, 15. The weld seam 18 runs along a circumferential direction based on an axis of the housing parts 13, 15 connected to one another, which axis coincides with the longitudinal axis 48 of the oscillating armature pump 10. It is conceivable that the oscillating armature pump 10 has further weld seams for connecting elements.

Die Schwingankerpumpe 10 umfasst ein Auslassventil 53, das in der Auslasskammer 39 angeordnet ist. Die Auslasskammer 39 wird von dem weiteren Anschlusselement 27 ausgebildet. Das Auslassventil 53 ist strömungstechnisch zwischen der Druckkammer 38 der Auslasskammer 39 der Schwingankerpumpe 10 angeordnet. Das Auslassventil 53 ist bezogen auf die Längsachse 48 der Schwingankerpumpe 10 zentral in der Schwingankerpumpe 10 und zentral in der Auslasskammer 39 angeordnet. Die Auslasskammer 39 ist strömungstechnisch zwischen der Druckkammer 38 und der Auslassöffnung 52 angeordnet. Das Auslassventil 53 ist als ein Rückschlagventil ausgebildet, welches eine Durchlassrichtung von der Druckkammer 38 zu der Auslasskammer 39 aufweist. Das Druckkammerelement 28 weist eine kreisförmige Öffnung auf, die einen Ventilsitz für das Auslassventil 53 ausbildet. Das Auslassventil 53 umfasst ein axial beweglich gelagertes Verschlussteil 54 und eine Schließfeder 55, die in einem montierten Zustand das Verschlussteil 54 gegen den Ventilsitz drückt.The oscillating armature pump 10 comprises an outlet valve 53 which is arranged in the outlet chamber 39. The outlet chamber 39 is formed by the further connection element 27. The outlet valve 53 is fluidically arranged between the pressure chamber 38 of the outlet chamber 39 of the oscillating armature pump 10. The outlet valve 53 is arranged centrally in the oscillating armature pump 10 and centrally in the outlet chamber 39 in relation to the longitudinal axis 48 of the oscillating armature pump 10. The outlet chamber 39 is fluidically arranged between the pressure chamber 38 and the outlet opening 52. The outlet valve 53 is designed as a check valve which has a flow direction from the pressure chamber 38 to the outlet chamber 39. The pressure chamber element 28 has a circular opening which forms a valve seat for the outlet valve 53. The outlet valve 53 comprises an axially movably mounted closure part 54 and a closing spring 55 which, in an assembled state, presses the closure part 54 against the valve seat.

Das äußere Gehäuseteil 11 des ersten Paares und das äußere Gehäuseteil 13 des weiteren Paares und des dritten Paares von miteinander verbundenen Gehäuseteilen 11, 12, 13, 14, 15 sind aus einem für einen Schweißlaserstrahltransparenten Material ausgebildet. Die jeweils äußeren Gehäuseteile 11, 13 sind aus einem Material ausgebildet, das für ein Durchstrahlschweißverfahren vorgesehen ist. Zu einer Montage der Schwingankerpumpe 10 werden jeweils die Gehäuseteile 11, 12 des ersten Paares, die Gehäuseteile 13, 14 des weiteren Paares und die Gehäuseteile 13, 15 des dritten Paares mittels jeweils einer Schweißnaht 16, 17, 18 miteinander verbunden. Die Gehäuseteile 11, 12, 13, 14, 15 werden jeweils mittels eines Schweißlasers miteinander verschweißt. Die Gehäuseteile 11, 12, 13, 14, 15 werden in einem Durchstrahlschweißverfahren miteinander verschweißt. Die Gehäuseteile 11, 12, 13, 14, 15 werden in einem Ringschweißverfahren miteinander verschweißt. Eine Position des Federsitzes 25 wird zunächst ohne die zu fügenden Gehäuseteile 11, 12 mittels einer Kraft-Wegmessung ermittelt. Das innere Gehäuseteil 12 wird in das äußere Gehäuseteil 13 des ersten Paares geschoben, d.h. das Gehäuseteil 12 welches das Anschlusselement 24 ausbildet, wird in das Gehäuseteil 11 gepresst, welches die Pumpkammerwand 23 ausbildet. Ein aus der Messung bestimmter Weg dient zur genauen Bestimmung der Position des Gehäuseteils 11. Dabei wird die als Pumpfeder ausgebildete Feder 26 vorgespannt und eine Vorspannung der Feder 26 wird festgelegt.The outer housing part 11 of the first pair and the outer housing part 13 of the further pair and the third pair of interconnected housing parts 11, 12, 13, 14, 15 are formed from a material that is transparent to a welding laser beam. The respective outer housing parts 11, 13 are formed from a material which is provided for a transmission welding process. To assemble the oscillating armature pump 10, the housing parts 11, 12 of the first pair, the housing parts 13, 14 of the further pair and the housing parts 13, 15 of the third pair are connected to one another by means of a weld 16, 17, 18 each. The housing parts 11, 12, 13, 14, 15 are each welded to one another by means of a welding laser. The housing parts 11, 12, 13, 14, 15 are welded to one another in a transmission welding process. The housing parts 11, 12, 13, 14, 15 are welded to one another in a ring welding process. A position of the spring seat 25 is first determined without the housing parts 11, 12 to be joined by means of a force-displacement measurement. The inner housing part 12 is pushed into the outer housing part 13 of the first pair, ie the housing part 12 which forms the connection element 24 is pressed into the housing part 11 which forms the pump chamber wall 23. A path determined from the measurement is used to precisely determine the position of the housing part 11. The spring 26, which is designed as a pump spring, is pretensioned and a pretensioning of the spring 26 is established.

Die Gehäuseteile 11, 12 werden mittels des Schweißlasers miteinander verbunden. Ein Schweißlaserstrahl des Schweißlasers durchdringt das äußere Gehäuseteil 11, welches im Bereich der Schweißnaht 16 für den Schweißlaserstrahltransparent ist. Der Schweißlaserstrahl trifft auf eine Oberfläche des inneren Gehäuseteils 12 und erwärmt das Gehäuseteil 12 im Bereich der Schweißnaht 16. Eine Wärme überträgt sich auf das äußere Gehäuseteil 11. Ein Material der Gehäuseteile 11, 12 wird im Bereich des Schweißlaserstrahls aufgeschmolzen. Der Schweißlaserstrahl wird relativ zu den Gehäuseteilen 11, 12 weiterbewegt. Das aufgeschmolzene Material kühlt ab und die Gehäuseteile 11, 12 verbinden sich stoffschlüssig miteinander. Analog zu dem Schweißvorgang zur Verbindung des ersten Paares von Gehäuseteilen 11, 12 werden die Gehäuseteile 13, 14 des weiteren Paares und die Gehäuseteile 13, 15 des dritten Paares miteinander verschweißt.The housing parts 11, 12 are connected to one another by means of the welding laser. A welding laser beam from the welding laser penetrates the outer housing part 11, which is transparent to the welding laser beam in the area of the weld seam 16. The welding laser beam strikes a surface of the inner housing part 12 and heats the housing part 12 in the area of the weld 16. Heat is transferred to the outer housing part 11. A material of the housing parts 11, 12 is melted in the area of the welding laser beam. The welding laser beam is moved further relative to the housing parts 11, 12. The melted material cools down and the housing parts 11, 12 bond with one another in a materially bonded manner. Analogously to the welding process for connecting the first pair of housing parts 11, 12, the housing parts 13, 14 of the further pair and the housing parts 13, 15 of the third pair are welded to one another.

BezugszeichenReference number

1010
SchwingankerpumpeOscillating armature pump
1111
GehäuseteilHousing part
1212th
GehäuseteilHousing part
1313th
GehäuseteilHousing part
1414th
GehäuseteilHousing part
1515th
GehäuseteilHousing part
1616
SchweißnahtWeld
1717th
SchweißnahtWeld
1818th
SchweißnahtWeld
1919th
PumpkammerPumping chamber
2020th
ÜberlappbereichOverlap area
2121
ÜberlappbereichOverlap area
2222nd
ÜberlappbereichOverlap area
2323
PumpkammerwandPump chamber wall
2424
AnschlusselementConnection element
2525th
FedersitzSpring seat
2626th
Federfeather
2727
AnschlusselementConnection element
2828
DruckkammerelementPressure chamber element
2929
MagnetspuleSolenoid
3030th
SpulengehäuseBobbin case
3131
Kolbenpiston
3232
EisenkreisIron circle
3333
Spaltgap
3434
PolschuhelementPole piece
3535
PolschuhelementPole piece
3636
AnkerelementAnchor element
3737
VorkammerAntechamber
3838
DruckkammerPressure chamber
3939
AuslasskammerOutlet chamber
4040
KolbenventilPiston valve
4141
VerschlussteilLocking part
4242
SchließfederClosing spring
4343
AnkerlagerelementAnchor bearing element
4444
DruckkolbenelementPlunger element
4545
LagerringBearing ring
4646
DichtelementSealing element
4747
DichtelementSealing element
4848
LängsachseLongitudinal axis
4949
AnschlussstutzenConnection piece
5050
EinlassöffnungInlet opening
5151
AnschlussstutzenConnection piece
5252
AuslassöffnungOutlet opening
5353
Auslassventiloutlet valve
5454
VerschlussteilLocking part
5555
SchließfederClosing spring

Claims (5)

  1. Oscillating armature pump for a household appliance,
    with at least two housing parts (11, 12, 13, 14, 15), which are fixedly connected with each other, and with at least one welding seam (16, 17, 18) connecting the housing parts (11, 12, 13, 14, 15) with each other, wherein the at least one welding seam (16, 17, 18) is realised as a laser welding seam, wherein the at least two housing parts (11, 12, 13, 14, 15) form a press fit in which the housing parts (11, 12, 13, 14, 15) are fixated via the at least one welding seam (16, 17, 18),
    wherein
    a first pair of housing parts (11, 12), which are connected with each other, consist of a radially outer housing part (11) and a radially inner housing part (12), wherein the inner housing part (12) forms a spring seat (25) for a spring (26), wherein the at least one welding seam (16) defines a pretension of the spring (26), wherein the inner housing part (12) has a wall supporting the inner housing part (12) in the outer housing part (11), the wall being connected to a pump chamber wall (23) of the outer housing part (11) via the at least one welding seam (16), wherein the at least one welding seam (16) is arranged in a radial direction between the wall and the pump chamber wall (23)
    and wherein the inner housing part (12) of the pair forms a connection element (24) for a fluid inlet,
    wherein the first pair of connected housing parts (11, 12) has an overlap region (20), in which the at least one welding seam (16) is arranged,
    and wherein at least one of the two connected housing parts (11, 12) is implemented at least partially of a material that is transparent for a welding laser beam.
  2. Oscillating armature pump according to claim 1,
    wherein the at least one welding seam (16, 17, 18) is implemented so as to be closed.
  3. Oscillating armature pump according to claim 1 or 2,
    comprising a pump chamber (19), which is pressure-tightly closed by the at least one welding seam (16, 18).
  4. Oscillating armature pump according to one of the preceding claims,
    comprising a further pair of housing parts (13, 14), which are connected to each other and which consist of an outer housing part (13) and an inner housing part (14), wherein the outer housing part (13) forms a further connection element (27) for a fluid outlet, and the outer housing part (13) of the further pair is implemented integrally with the outer housing part (11) of the first pair.
  5. Method for assembling an oscillating armature pump according to one of the preceding claims with at least two housing parts (11, 12, 13, 14, 15),
    wherein the housing parts (11, 12, 13, 14, 15) are connected to each other via a welding seam (16, 17, 18), wherein the at least two housing parts (11, 12, 13, 14, 15) are connected to each other by conducting a laser welding beam through a first one of the housing parts (11, 13) onto a surface of a further one of the housing parts (12, 14, 15).
EP15777619.6A 2014-09-18 2015-09-18 Vibrating armature pump Active EP3194773B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014113508.3A DE102014113508A1 (en) 2014-09-18 2014-09-18 The vibration pump
PCT/EP2015/071393 WO2016042113A1 (en) 2014-09-18 2015-09-18 Vibrating armature pump

Publications (2)

Publication Number Publication Date
EP3194773A1 EP3194773A1 (en) 2017-07-26
EP3194773B1 true EP3194773B1 (en) 2021-08-04

Family

ID=54266530

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15777619.6A Active EP3194773B1 (en) 2014-09-18 2015-09-18 Vibrating armature pump

Country Status (3)

Country Link
EP (1) EP3194773B1 (en)
DE (1) DE102014113508A1 (en)
WO (1) WO2016042113A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800003069A1 (en) * 2018-02-27 2019-08-27 Elbi Int Spa Vibration pump with improved actuation

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2315842B2 (en) * 1973-03-30 1977-12-29 Fa. J. Eberspächer, 7300 Esslingen FUEL PISTON PUMP ACTUATED BY AN ELECTROMAGNET, IN PARTICULAR FOR FUEL COMBUSTIONS
IT1130947B (en) * 1980-03-10 1986-06-18 De Dionigi Manlio IMPROVEMENTS TO ALTERNATIVE ELECTROMAGNETIC PUMPS IN PARTICULAR FOR NON-VISCOUS FLUIDS
US4749343A (en) * 1986-08-08 1988-06-07 Facet Enterprises, Inc. High pressure fluid pump
DE4234746A1 (en) * 1992-10-15 1994-04-21 Braun Ag Pump for household appliances
DE9310414U1 (en) * 1993-07-13 1993-09-09 Prominent Dosiertechnik Gmbh Dosing pump, in particular for washing or washing aids in dishwashers
JP2001012636A (en) * 1999-06-29 2001-01-16 Aisan Ind Co Ltd Fuel injection device having a plurality of solenoids and a common cylinder
LU90784B1 (en) * 2001-05-29 2002-12-02 Delphi Tech Inc Process for transmission laser welding of plastic parts
ITUD20030162A1 (en) * 2003-07-30 2005-01-31 Invensys Controls Italy Srl ELECTROMAGNETIC PUMP WITH OSCILLATING CORE.
WO2006017778A1 (en) * 2004-08-05 2006-02-16 Siemens Vdo Automotive Corporation Deep pocket seat assembly in modular fuel injector having axial contact terminals and methods
DE102006021240B4 (en) * 2006-04-28 2008-01-31 Bühler Motor GmbH rotary pump
US8292601B2 (en) * 2009-05-08 2012-10-23 The Alfred E. Mann Foundation For Scientific Research Fluid transfer devices with resilient valve structures and ambulatory infusion devices including same
EP2548714B1 (en) * 2011-07-21 2013-09-11 EMS-Patent AG Laser welding method and parts made thereby
DE102012218012A1 (en) * 2012-10-02 2014-04-03 Alfmeier Präzision AG Baugruppen und Systemlösungen Housing with two plastic housing parts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3194773A1 (en) 2017-07-26
WO2016042113A1 (en) 2016-03-24
DE102014113508A1 (en) 2016-03-24

Similar Documents

Publication Publication Date Title
EP2278150B1 (en) Device for damping of pressure pulsations in a fluid system, especially in a fuel system of an internal combustion engine
DE69635840T2 (en) COMPACT ANCHOR ASSEMBLY OF AN INJECTION VALVE
EP1706661B1 (en) Electromagnetic valve, particularly for a braking system of a motor vehicle
WO2011029577A1 (en) Vibrating armature pump
EP3194773B1 (en) Vibrating armature pump
DE102005048765A1 (en) Oscillating anchor pump used in household appliances, e.g. coffee machines comprises a sliding surface formed as a sealing surface for sealing the cylinder of a pump housing during axial displacement of a plunger using a sealing element
DE4310984A1 (en) Electromagnetically operable hydraulic control valve
EP3022443B1 (en) Piston for a vibrating armature pump
EP3374625B1 (en) Electromagnetically actuatable intake valve for a high-pressure pump, and high-pressure pump
EP3137767B1 (en) Vibrating armature pump having flux-conducting element
EP3586696B1 (en) Beverage pump
EP2771217B1 (en) Solenoid valve and method for assembling a solenoid valve
EP3078854B1 (en) Oscillating anchor pump
WO2015022135A1 (en) Valve apparatus
DE202011050598U1 (en) liquid pump
EP3022442B1 (en) Piston for a vibrating armature pump
EP3615853B1 (en) Proportional spool valve for adjusting the displaced volume of a displacement pump, assembly method and system
DE102010015932A1 (en) Solenoid valve for flow control
DE102005045523A1 (en) High pressure radial pump piston for use in internal combustion engine, has groove base with diameter that is larger than diameter of inner drill hole, so that force-fit and form-fit connection is formed between groove base and piston
EP2820291A1 (en) Valve for metering in fluid
DE102019130714A1 (en) Control or switching valve for a coolant circuit of a motor vehicle
WO2013037614A2 (en) Hydraulic piston machine
DE102012104715A1 (en) Actuator device for hydraulic pumps and/or hydraulic motor device mounted in e.g. vehicle engine, has mechanical guide device that includes guide element which is arranged partially in non-magnetic region
DE102012218633A1 (en) Fluidically-operated suction valve for motor car, has fluidically operated actuation unit moved from valve seat to closing element, where operating force is generated on actuation unit at different fluid pressures

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170412

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190719

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210330

RIN1 Information on inventor provided before grant (corrected)

Inventor name: OTT, HUBERT

Inventor name: HELBLING, NORBERT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1417235

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015015033

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211104

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211206

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015015033

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220506

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210918

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210918

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211104

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1417235

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150918

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230919

Year of fee payment: 9

Ref country code: DE

Payment date: 20230919

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230929

Year of fee payment: 9