EP3194641B1 - Revêtement nanostratifié ou gainage de nickel-chrome présentant une duretée élevée - Google Patents

Revêtement nanostratifié ou gainage de nickel-chrome présentant une duretée élevée Download PDF

Info

Publication number
EP3194641B1
EP3194641B1 EP15842267.5A EP15842267A EP3194641B1 EP 3194641 B1 EP3194641 B1 EP 3194641B1 EP 15842267 A EP15842267 A EP 15842267A EP 3194641 B1 EP3194641 B1 EP 3194641B1
Authority
EP
European Patent Office
Prior art keywords
nickel
mandrel
chromium
milliseconds
conductive substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15842267.5A
Other languages
German (de)
English (en)
Other versions
EP3194641B8 (fr
EP3194641A4 (fr
EP3194641A1 (fr
Inventor
Glenn Sklar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Modumetal Inc
Original Assignee
Modumetal Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Modumetal Inc filed Critical Modumetal Inc
Publication of EP3194641A1 publication Critical patent/EP3194641A1/fr
Publication of EP3194641A4 publication Critical patent/EP3194641A4/fr
Application granted granted Critical
Publication of EP3194641B1 publication Critical patent/EP3194641B1/fr
Publication of EP3194641B8 publication Critical patent/EP3194641B8/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/02Tubes; Rings; Hollow bodies
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/623Porosity of the layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance

Definitions

  • Electrodeposition is recognized as a low-cost method for forming a dense coating or cladding on a variety of conductive materials, including metals, alloys, conductive polymers and the like. Electrodeposition has also been successfully used to deposit nanolaminated coatings or claddings on non-conductive material such as non-conductive polymers by incorporating sufficient materials into the non-conductive polymer to render it sufficiently conductive or by treating the surface to render it conductive, for example by electroless deposition of nickel, copper, silver, cadmium etc. in a variety of engineering applications.
  • Electrodeposition has also been demonstrated as a viable means for producing laminated and nanolaminated coatings, claddings, materials and objects, in which the individual laminate layers may vary in the composition of the metal, ceramic, organic-metal composition, and/or microstructure features.
  • Laminated coatings or claddings and materials, and in particular nanolaminated metals are of interest for a variety of purposes, including structural, thermal, and corrosion resistance applications because of their unique toughness, fatigue resistance, thermal stability, wear, abrasion resistance and chemical properties. Characterization of Cr-Ni multilayers electroplated from a chromium (III) - nickel (II) bath using pulse current is disclosed e.g., in Huang et al., Scripta Mat. 2007, 57, 61-64 .
  • the present invention is directed to a process for forming a multilayered coating or cladding on a surface of a conductive substrate or mandrel by electrodeposition, the process comprising: (a) providing an electrolyte solution comprising a nickel salt and a chromium salt; (b) providing the conductive substrate or mandrel for electrodeposition; (c) contacting at least a portion of a surface of the conductive substrate or mandrel with the electrolyte solution; (d) depositing a seed layer of nickel and chromium on the conductive substrate or mandrel by passing a seed layer plating current through the conductive substrate or mandrel for a first time period ranging from about 1 minute to about 10 minutes, the seed layer comprising greater than about 90% nickel by weight; (e) depositing a first layer of a second nickel-chromium alloy by passing a first electric current through the conductive substrate or mandrel for a second time period ranging from about 50 milliseconds to about 500 milliseconds, the
  • the present disclosure is directed, among other things, to the production of NiCr nanolaminated materials having a high hardness.
  • the materials have a variety of uses including, but not limited to, the preparation of coatings or claddings that protect an underlying substrate, and which may also increase its strength.
  • hard NiCr coatings or claddings and materials are wear/abrasion resistant and find use as wear resistant coatings or claddings in tribological applications.
  • the hard NiCr coatings or claddings prevent damage to the underlying substrates. Where the NiCr materials are applied as a coating or cladding that is more noble then the underlying material upon which it is placed, it may function as a corrosion resistant barrier coating or cladding.
  • the present disclosure is directed to methods of producing laminate materials, and to coatings or claddings comprising layers each comprising nickel or nickel and chromium.
  • the materials, which are prepared by electrodeposition, have a Vickers hardness greater than about 750 without the addition of other elements or heat treatments.
  • the method may further comprise the step of separating said substrate or mandrel from the coating or cladding, where the coating or cladding forms an object comprised of the laminate material.
  • the high hardness coating or cladding produced by the process typically has alternating first and second layers.
  • the first layers are each from about 125 nm to about 175 nm thick, and comprise from about 5 % to about 35 % chromium by weight with the balance typically comprising nickel
  • the second layers are each from about 25 nm to about 75 nm thick, and comprise greater than about 90 % nickel by weight, with the balance typically comprising chromium.
  • the percentages of chromium and nickel percentages in the first and second layers may vary outside of the above ranges, and the first and second layers may each be thicker or thinner than the above first- and second-layer thicknesses.
  • Laminate or “laminated” as used herein refers to materials that comprise a series of layers, including nanolaminated materials.
  • Nanolaminate or “nanolaminated” as used herein refers to materials that comprise a series of layers less than 1 micron.
  • Electrodeposition has been demonstrated as a viable means for producing nanolaminated metal materials and coatings or claddings in which the individual laminate layers may vary in the composition or structure of the metal components.
  • electrodeposition permits the inclusion of other components, such as ceramic particles and organic-metal components.
  • Multi-laminate materials having layers with different compositions can be realized by moving a mandrel or substrate from one bath to another and electrodepositing a layer of the final material.
  • Each bath represents a different combination of parameters, which may be held constant or varied in a systematic manner.
  • laminated materials may be prepared by alternately electroplating a substrate or mandrel in two or more electrolyte baths of differing electrolyte composition and/or under differing plating conditions (e.g. , current density and mass transfer control).
  • laminated materials may be prepared using a single electrolyte bath by varying the electrodeposition parameters such as the voltage applied, the current density, mixing rate, substrate or mandrel movement ( e.g. , rotation) rate, and/or temperature. By varying those and/or other parameters, laminated materials having layers with differing metal content can be produced in a single bath.
  • Embodiments of the processes herein may additionally comprise a step of separating the substrate or mandrel from the coating or cladding.
  • Embodiments of the method may additionally comprise, prior to passing said first electric current, a step of dynamically manipulating, at the cathode diffusion layer, the concentration and speciation of chromium ions via applying a seed layer plating current through the substrate; and depositing a nickel-chromium alloy first layer having a surface roughness (arithmetical mean roughness or Ra) of less than 0.1 micrometer ( e.g. , less than 0.09, 0.08, 0.07, or 0.05 microns) and comprising from about 5 % to about 35 % chromium by weight ( e.g. , about 5 % to about 10 % , about 10 % to about 20 % , about 10 % to about 25 % , or about 20 % to about 35 % ).
  • a nickel-chromium alloy first layer having a surface roughness (arithmetical mean roughness or Ra) of less than 0.1 micrometer (e.g. , less than 0.09, 0.08, 0.07, or 0.05
  • step (f) includes contacting at least a portion of the substrate or mandrel having the first layer deposited on it with a second of said one or more electrolyte solutions (baths) prior to passing a second electric current through the substrate, to deposit a second layer comprising a nickel-chromium alloy on the surface.
  • the method may further comprise a step of separating the substrate or mandrel from the electroplated coating or cladding.
  • a step of separating the electroplated material from the substrate or mandrel is to be employed, the use of electrodes (mandrel), such as titanium electrodes (mandrel), that do not form tight bonds with the coating or cladding may be employed.
  • providing one or more electrolyte solutions comprises providing a single electrolyte solution comprising a nickel salt and a chromium salt.
  • the step of passing an electric current through the substrate or mandrel comprises alternately pulsing said electric current for predetermined durations between said first electrical current density and said second electrical current density, where the first electrical current density is effective to electrodeposit a first composition comprising an alloy of nickel and chromium, and the second electrical current density is effective to electrodeposit a second composition comprising nickel or a composition ( e.g. , an alloy) comprising nickel and chromium.
  • the process is repeated to produce a multilayered alloy having alternating first and second layers on at least a portion of the surface of the substrate or mandrel.
  • the electrolytes employed may be aqueous or non-aqueous. Where aqueous baths are employed they may benefit from the addition of one or more, two or more, or three or more complexing agents, which can be particularly useful in complexing chromium in the +3 valency.
  • the complexing agents that may be employed in aqueous baths are one or more of citric acid, ethylenediaminetetraacetic acid (EDTA), triethanolamine (TEA), ethylenediamine (En), formic acid, acetic acid, hydroxyacetic acid, malonic acid, or an alkali metal salt or ammonium salt of any thereof.
  • the electrolyte used in plating comprises a Cr +3 salt ( e.g. , a tri-chrome plating bath).
  • the electrolyte used in plating comprises either Cr +3 and one or more complexing agents selected from citric acid, formic acid, acetic acid, hydroxyacetic acid, malonic acid, or an alkali metal salt or ammonium salt of any thereof.
  • the electrolyte used in plating comprises either Cr +3 and one or more amine containing complexing agents selected from EDTA, TEA, En, or a salt of any thereof.
  • the temperature at which the electrodeposition process is conducted may alter the composition of the electrodeposit.
  • the electrodeposition process will typically be kept in the range of about 18° C to about 45° C ( e.g. , 18° C to about 35° C) for the deposition of both the first and second layers.
  • Both potentiostatic and galvanostatic control of the electrodeposition of the first and second layers is possible regardless of whether those layers are applied from different electrolyte baths or from a single bath.
  • a single electrolyte bath is employed and the first electrical current ranges from about 100 to about 300 mA/cm 2 for the deposition of the first layers, and the second electrical current ranges from about 20 to about 60 mA/cm 2 for the deposition of the second layers.
  • the first electrical current is applied to the substrate or mandrel for about 50 milliseconds to about 500 milliseconds
  • the second electrical current is applied to the substrate or mandrel for about 50 milliseconds to about 500 milliseconds.
  • the electrodeposition may employ periods of DC plating followed by periods of pulse plating.
  • plating of a nearly pure nickel layer may be conducted either by direct current or by pulse plating.
  • the first electrical current is applied to the substrate or mandrel in a pulse ranging from about 50 milliseconds to about 500 milliseconds at a current density of about 100 to about 300 mA/cm2
  • the second electrical current is applied to the substrate or mandrel in a pulse ranging from about 50 milliseconds to about 500 milliseconds at a current density from about 20 to about 60 mA/cm 2
  • the resulting coating or cladding has layers of substantially pure nickel alternated with layers of nickel and chromium.
  • a seed layer comprising greater than about 90% nickel by weight (e.g. , about 90.00 up to about 100, about 90 to about 92, about 92 to about 95, about 94 to about 98, about 95 up to about 100, about 96 to about 100, about 97.00 to about 99.99, about 98.00 to about 99.99, about 99.00 to about 99.99) is applied to the substrate or mandrel for a first time period ranging from about 1 minute to about 10 minutes . Where a strike layer is also applied, the strike layer is applied prior to the seed layer.
  • a strike layer particularly where the substrate is a polymer or plastic that has previously been rendered conductive by electroless plating or by chemical conversion of its surface, as in the case for zincate processing of aluminum, which is performed prior to the electroless or electrified deposition.
  • a strike layer it may be chosen from any of a number of metals including, but not limited to, copper, nickel, zinc, cadmium, platinum etc.
  • the strike layer is nickel or a nickel alloy from about 100 nm to about 1,000 nm or from about 250 nm to about 2,500 nm thick.
  • the metal composition deposited by the electroless plating may act as a strike layer.
  • the hard nanolaminate materials, such as coatings and claddings, produced by the processes described above will typically comprise alternating first and second layers in addition to a seed layer and any strike layer applied to the substrate.
  • the first layers each have a thickness independently selected from the following ranges: from about 25 nm to about 75 nm, from about 25 nm to about 50 nm, from about 35 nm to about 65 nm, from about 40 nm to about 60 nm, or from about 50 nm to about 75 nm.
  • the second layers each have a thickness independently selected from the following ranges: from about 75 nm to about 225 nm, from about 100 to about 200 nm, from about 125 nm to about 175 nm, from about 125 nm to about 150 nm, from about 135 nm to about 165 nm, from about 140 nm to about 160 nm, or from about 150 nm to about 175 nm.
  • First layers may typically comprise a percent of chromium by weight selected from one of the following ranges: from about 7 to about 32 % , from about 10 to about 30 % , from about 12 to about 28 % , from about 10 to about 32 % , from about 10 to about 18 % , from about 10 to about 16 % , from about 9 to about 17 % , from about 9 to about 19 % , from about 20 to about 32 % , from about 10 to about 20 % , from about 15 to about 30 % , from about 16 to about 25 % , and from about 18 to about 27 % .
  • the balance of first layers may be nickel, or may comprise nickel and one or more, two or more, three or more, or four or more additional elements selected independently for each second layer, e.g., from elements such as C, Co, Cu, Fe, In, Mn, Mo, P, Nb, Ni and W.
  • the balances of the first layers each independently comprise nickel and one or more, two or more, or three or more, elements selected independently for each layer from C, Co, Cr, Cu, Mo, P, Fe, Ti, and W ( e.g. , C, Co, Cr, Cu, Mo, P, Fe, and W, or alternatively, Co, Cr, Cu, Mo, Fe, and W).
  • Second layers may typically comprise a percent of nickel by weight in one of the following ranges: about 90.00 up to about 100 % , about 90 to about 92 % , about 92 to about 95 % , about 94 to about 98 % , about 96 up to about 100 % , about 97.00 to about 99.99 % , about 98.00 to about 99.99 % , and about 99.00 to about 99.99 % .
  • the balance of second layers may be chromium, or may be comprised of one or more, two or more, three or more, or four or more additional elements selected independently for each second layer, e.g., from elements such as C, Co, Cr, Cu, Fe, In, Mn, Nb, Sn, W, Mo, and P.
  • the balances of the second layers each independently comprise chromium and one or more additional elements selected independently for each layer, e.g. from elements such as C, Co, Cu, Fe, Ni, W, Mo and/or P.
  • additional elements selected independently for each layer, e.g. from elements such as C, Co, Cu, Fe, Ni, W, Mo and/or P.
  • any such additional element to be considered as being present it must be present in the electrodeposited material in a non-trivial amount, i.e. , not less than an amount selected from the following amounts: 0.005 % , 0.01 % , 0.05 % or 0.1 % by weight.
  • Laminated or nanolaminated materials including coatings and claddings prepared as described herein comprise two or more, three or more, four or more, six or more, eight or more, ten or more, twenty or more, forty or more, fifty or more, 100 or more, 200 or more, 500 or more or 1,000 or more alternating first and second layers.
  • the first and second layers are counted as pairs of first and second layers. Accordingly, two layers each having a first layer and a second layer, consists of a total of four laminate layers ( i.e. , each layer is counted separately).
  • the present disclosure is directed to hard NiCr materials, including hard NiCr coatings or claddings and electroformed NiCr objects, prepared by the methods described above.
  • Embodiments of the hard NiCr materials described herein have a number of properties that render them useful for both industrial and decorative purposes.
  • the coatings or claddings applied are self-leveling and, depending on the exact composition of the outermost layer, can be reflective to visible light.
  • the hard NiCr materials may serve as replacements for chrome finishes in a variety of applications where reflective metal surfaces are desired. Such applications include, but are not limited to, mirrors, automotive details such as bumpers or fenders, decorative finishes and the like.
  • the laminated NiCr coatings or claddings described herein have a surface roughness (arithmetical mean roughness or Ra) of less than 0.1 micrometer ( e.g. , 0.09, 0.08, 0.07, or 0.05 microns).
  • NiCr alloys are above the hardness observed for homogeneous electrodeposited NiCr compositions (alloys) that have not been heat treated and have the same thickness and average composition as the hard NiCr nanolaminate material.
  • Embodiments of the laminated NiCr materials disclosed herein have a Vickers hardness (microhardness) number as measured by ASTM E384-11e1 in a range selected from: 550-750, 550-600, 600-650, 650-700, 700-750, 750-1000, 1000-1100, 1100 to 1200, or 1200 or more; or, alternatively, a hardness number greater than 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, or more, without heat treatment.
  • the use of heat treatments in the presence of other elements such as B, P, or C in the first and second layers can increase the hardness of the coating or cladding.
  • the NiCr materials described herein comprise alternating first and second layers that consist essentially of nickel or a nickel-chromium alloy. Such materials have a Vickers microhardness as measured by ASTM E384-11e1 of 550-750, 550-600, 600-650, 650-700, 700-750, 750-800, 800-850, 850-900, 900-1000, 1000-1100, 1100 to 1200, or 1200 or more without heat treatment.
  • the NiCr materials described herein consist of alternating first and second layers that consist of nickel or a nickel-chromium alloy. Such materials have a Vickers microhardness as measured by ASTM E384-11e1 in a range selected from 550-750, 550-600, 600-650, 650-700, 700-750, 750-800, 800-850, 850-900, 900-1,000 or 1,000-1,100 without heat treatment.
  • embodiments of the laminated NiCr materials disclosed herein are useful as a means of providing resistance to abrasion, especially when they are employed as coatings or claddings.
  • a Taber Abraser equipped with CS-10 wheels and a 250 g load and operated at room temperature at the same speed for both samples e.g.
  • embodiments of the nanolaminate NiCr coatings or claddings disclosed herein that have not been heat treated display 5 % , 10 % , 20 % , 30 % or 40 % less loss of weight than homogeneous electrodeposited NiCr compositions (alloys) that have not been heat treated and have the same thickness and average composition as the hard NiCr nanolaminate material.
  • the laminated NiCr compositions display a higher abrasion resistance when subject to testing under ASTM D4060 than their homogeneous counterpart (e.g. , homogeneous electrodeposited counterpart having the average composition of the laminated NiCr composition).
  • NiCr generally acts as a barrier coating or cladding, being more electronegative (more noble) than substrates to which it will be applied, such as iron-based substrates.
  • NiCr coatings or claddings act by forming a barrier to oxygen and other agents (e.g. , water, acid, base, salts, and/or H 2 S) that can cause corrosive damage, including oxidative corrosion.
  • a barrier coating or cladding that is more noble than its underlying substrate is marred or scratched, or if coverage is not complete, the coatings or claddings will not work and may accelerate the progress of substrate corrosion at the substrate-coating or cladding interface, resulting in preferential attack of the substrate.
  • embodiments of the coatings or claddings prepared from the hard NiCr coatings or claddings described herein offer advantages over softer NiCr nanolaminate coatings or claddings as they are less likely to permit a scratch to reach the surface of a corrosion susceptible substrate.
  • Another advantage offered by some embodiments of the hard NiCr laminate coatings or claddings described herein are their fully dense structure, which lacks any significant pores or micro-cracks that extend from the surface of the coating or cladding to the substrate.
  • the first layer can be a nickel rich ductile layer that hinders the formation of continuous cracks from the coating or cladding surface to the substrate.
  • microcracks occur in the high chromium layers, they can be small and tightly spaced. The lack of pores and continuous microcracks more effectively prohibits corrosive agents from reaching the underlying substrate and renders the laminate NiCr coatings or claddings described herein more effective as barrier coatings or claddings to oxidative damage of a substrate than an equivalent thickness of electrodeposited chromium.
  • a process for forming a multilayered coating or cladding on a surface of a conductive substrate or mandrel by electrodeposition comprising: (a) providing an electrolyte solution comprising a nickel salt and a chromium salt; (b) providing the conductive substrate or mandrel for electrodeposition; (c) contacting at least a portion of a surface of the conductive substrate or mandrel with the electrolyte solution; (d) depositing a seed layer of nickel and chromium on the conductive substrate or mandrel by passing a seed layer plating current through the conductive substrate or mandrel for a first time period ranging from about 1 minute to about 10 minutes, the seed layer comprising greater than about 90 % nickel by weight; (e) depositing a first layer of a second nickel-chromium alloy by passing a first electric current through the conductive substrate or mandrel for a second time period ranging from about 50 milliseconds to about 500 milliseconds, the first

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Laminated Bodies (AREA)

Claims (14)

  1. Procédé de formation d'un revêtement ou d'un placage multicouche sur une surface d'un substrat ou mandrin conducteur par électrodéposition, le procédé comprenant :
    (a) la fourniture d'une solution d'électrolyte comprenant un sel de nickel et un sel de chrome ;
    (b) la fourniture du substrat ou mandrin conducteur pour électrodéposition ;
    (c) la mise en contact d'au moins une partie d'une surface du substrat ou mandrin conducteur avec la solution d'électrolyte ;
    (d) le dépôt d'une couche d'amorce de nickel et de chrome sur le substrat ou mandrin conducteur par passage d'un courant de placage de couche d'amorce à travers le substrat ou mandrin conducteur pendant une durée d'environ 1 minute à environ 10 minutes, la couche d'amorce comprenant plus d'environ 90 % de nickel en poids ;
    (e) le dépôt d'une première couche d'un deuxième alliage nickel-chrome par passage d'un premier courant électrique à travers le substrat ou mandrin conducteur pendant une deuxième durée dans la plage d'environ 50 millisecondes à environ 500 millisecondes, la première couche comprenant d'environ 5 % à environ 35 % de chrome en poids ;
    (f) le dépôt d'une deuxième couche de nickel et de chrome par passage d'un deuxième courant électrique à travers le substrat ou mandrin conducteur pendant une troisième durée dans la plage d'environ 50 millisecondes à environ 500 millisecondes, la deuxième couche comprenant plus d'environ 90 % de nickel en poids ;
    (g) la répétition des étapes (e) et (f) quatre fois ou plus, de façon à produire un revêtement ou placage multicouche comprenant la couche d'amorce et des premières couches et des deuxième couches alternées sur la surface du substrat ou mandrin conducteur ; et
    (h) facultativement, la séparation du mandrin du placage.
  2. Procédé selon la revendication 1, dans lequel le courant de placage de couche d'amorce a une densité dans la plage d'environ 20 à environ 60 mA/cm2.
  3. Procédé selon la revendication 1, dans lequel le courant de placage de couche d'amorce a une densité choisie dans le groupe constitué d'environ 20 mA/cm2, environ 25 mA/cm2, environ 30 mA/cm2, environ 35 mA/cm2, environ 40 mA/cm2, environ 45 mA/cm2, environ 50 mA/cm2, environ 55 mA/cm2, et environ 60 mA/cm2 ; et/ou dans lequel le premier courant électrique a une densité choisie dans le groupe constitué d'environ 160 mA/cm2, environ 180 mA/cm2, environ 200 mA/cm2, environ 220 mA/cm2, environ 240 mA/cm2, et environ 260 mA/cm2 ; ou dans lequel le deuxième courant électrique a une densité choisie dans le groupe constitué d'environ 20 mA/cm2, environ 25 mA/cm2, environ 30 mA/cm2, environ 35 mA/cm2, environ 40 mA/cm2, environ 45 mA/cm2, environ 50 mA/cm2, environ 55 mA/cm2 et environ 60 mA/cm2.
  4. Procédé selon l'une quelconque des revendications 1 à 3 dans lequel la couche d'amorce comprend d'environ 90,00 % à environ 99,99 % de nickel en poids.
  5. Procédé selon l'une quelconque des revendications 1,2 ou 4, dans lequel le premier courant électrique a une densité dans la plage d'environ 100 mA/cm2 à environ 300 mA/cm2.
  6. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel le deuxième courant électrique a une densité dans une plage d'environ 20 mA/cm2 à environ 60 mA/cm2.
  7. Procédé selon l'une quelconque des revendications 1 à 4, où les étapes (e) et (f) sont répétées plus de 50 fois.
  8. Procédé selon l'une quelconque des revendications 1 à 4, où les étapes (e) et (f) sont répétées d'environ 4 fois à 10 000 fois.
  9. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel deux ou plus des premières couches comprennent d'environ 7 % à environ 32 % de chrome en poids ; ou dans lequel deux ou plus des deuxièmes couches comprennent d'environ 90,00 % à environ 99,99 % de nickel en poids.
  10. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel chacune des premières couches comprend d'environ 5 % à environ 35 % de chrome en poids ; ou
    dans lequel chacune des deuxièmes couches comprennent d'environ 90,00 % à environ 99,99 % de nickel en poids.
  11. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel le substrat conducteur comprend un matériau polymère non conducteur et une couche d'amorce de métal conducteur.
  12. Procédé selon la revendication 1, dans lequel la solution d'électrolyte comprend le sel de nickel et/ou le sel de chrome à partir duquel du nickel et/ou du chrome peut être électrodéposé ;
    dans lequel le dépôt de la couche d'amorce de nickel et de chrome sur le substrat ou mandrin conducteur comprend le passage du courant de placage de couche d'amorce ayant une densité d'environ 30 mA/cm2 à environ 50 mA/cm2 à travers le substrat ou mandrin conducteur pendant une durée d'environ 1 minute à environ 5 minutes ;
    dans lequel le dépôt de la première couche de l'alliage nickel-chrome comprend le passage du premier courant électrique ayant une densité d'environ 100 mA/cm2 à environ 300 mA/cm2 à travers le substrat ou mandrin conducteur pendant une durée d'environ 200 millisecondes à environ 400 millisecondes ;
    dans lequel le dépôt de la deuxième couche de nickel et de chrome comprend le passage du deuxième courant électrique ayant une densité d'environ 30 mA/cm2 à environ 50 mA/cm2 à travers le substrat ou mandrin conducteur pendant une durée d'environ 200 millisecondes à environ 400 millisecondes ; et dans lequel les étapes (e) et (f) sont répétées 10 fois ou plus.
  13. Procédé selon la revendication 1, dans lequel la solution d'électrolyte comprend le sel de nickel et/ou le sel de chrome à partir duquel du nickel et/ou du chrome peut être électrodéposé ;
    dans lequel le dépôt de la couche d'amorce de nickel et de chrome sur le substrat ou mandrin conducteur comprend le passage du courant de placage de couche d'amorce ayant une densité d'environ 35 mA/cm2 à environ 45 mA/cm2 à travers le substrat ou mandrin conducteur pendant une durée d'environ 1 minute à environ 3 minutes ;
    dans lequel le dépôt de la première couche de l'alliage nickel-chrome comprend le passage du premier courant électrique ayant une densité d'environ 150 mA/cm2 à environ 260 mA/cm2 à travers le substrat ou mandrin conducteur pendant une durée d'environ 250 millisecondes à environ 350 millisecondes ;
    dans lequel le dépôt de la deuxième couche de nickel et de chrome comprend le passage du deuxième courant électrique ayant une densité d'environ 35 mA/cm2 à environ 45 mA/cm2 à travers le substrat ou mandrin conducteur pendant une durée d'environ 250 millisecondes à environ 350 millisecondes ; et dans lequel les étapes (e) et (f) sont répétées 10 fois ou plus.
  14. Procédé selon la revendication 12 ou 13, dans lequel deux ou plus des premières couches comprennent d'environ 12 % à 26 % de chrome en poids ; ou dans lequel deux ou plus des deuxièmes couches comprennent au moins 95 % de nickel en poids.
EP15842267.5A 2014-09-18 2015-09-18 Revêtement nanostratifié ou gainage de nickel-chrome présentant une duretée élevée Active EP3194641B8 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462052437P 2014-09-18 2014-09-18
PCT/US2015/050910 WO2016044708A1 (fr) 2014-09-18 2015-09-18 Revêtement nanostratifié ou gainage de nickel-chrome présentant une duretée élevée

Publications (4)

Publication Number Publication Date
EP3194641A1 EP3194641A1 (fr) 2017-07-26
EP3194641A4 EP3194641A4 (fr) 2018-05-09
EP3194641B1 true EP3194641B1 (fr) 2021-12-22
EP3194641B8 EP3194641B8 (fr) 2022-02-09

Family

ID=55533901

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15842267.5A Active EP3194641B8 (fr) 2014-09-18 2015-09-18 Revêtement nanostratifié ou gainage de nickel-chrome présentant une duretée élevée

Country Status (9)

Country Link
US (1) US20170191179A1 (fr)
EP (1) EP3194641B8 (fr)
CN (1) CN106795641B (fr)
AR (1) AR102341A1 (fr)
BR (1) BR112017005414A2 (fr)
CA (1) CA2961504C (fr)
EA (1) EA201790645A1 (fr)
SA (1) SA517381127B1 (fr)
WO (1) WO2016044708A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2381015B1 (fr) 2005-08-12 2019-01-16 Modumetal, Inc. Matériaux modulés de manière compositionnelle
EP2310557A2 (fr) 2008-07-07 2011-04-20 Modumetal, LLC Matériaux à propriété modulée et procédés de fabrication de ceux-ci
EA029168B1 (ru) 2009-06-08 2018-02-28 Модьюметал, Инк. Электроосажденное наноламинатное покрытие и оболочка для защиты от коррозии
WO2014145588A1 (fr) 2013-03-15 2014-09-18 Modumetal, Inc. Revêtement nanostratifié de chrome et de nickel ayant une dureté élevée
CA2905536C (fr) 2013-03-15 2023-03-07 Modumetal, Inc. Compositions electrodeposees et alliages nanostratifies pour des articles prepares par des procedes de fabrication additive
EP2971266A4 (fr) 2013-03-15 2017-03-01 Modumetal, Inc. Procédé et appareil d'application en continu de revêtements métalliques nanostratifiés
CA2905548C (fr) 2013-03-15 2022-04-26 Modumetal, Inc. Revetements nanostratifies
BR112017005464A2 (pt) 2014-09-18 2017-12-05 Modumetal Inc método e aparelho para aplicar continuamente revestimentos de metal nanolaminado
AR102068A1 (es) 2014-09-18 2017-02-01 Modumetal Inc Métodos de preparación de artículos por electrodeposición y procesos de fabricación aditiva
US11365488B2 (en) 2016-09-08 2022-06-21 Modumetal, Inc. Processes for providing laminated coatings on workpieces, and articles made therefrom
WO2018175975A1 (fr) 2017-03-24 2018-09-27 Modumetal, Inc. Plongeurs de levage dotés de revêtements déposés par électrodéposition, et systèmes et procédés de production de ceux-ci
EP3612669A1 (fr) 2017-04-21 2020-02-26 Modumetal, Inc. Articles tubulaires dotés de revêtements déposés par électrodéposition et systèmes et procédés de production desdits articles
CN112272717B (zh) 2018-04-27 2024-01-05 莫杜美拓有限公司 用于使用旋转生产具有纳米层压物涂层的多个制品的设备、系统和方法
CN109735891A (zh) * 2018-12-13 2019-05-10 江苏师范大学 一种用于提高微粒射流电沉积复合镀层力学性能的方法
US11247434B2 (en) * 2019-04-19 2022-02-15 Xtalic Corporation Articles including a nickel and chromium layer and methods of forming the same
FI129420B (en) 2020-04-23 2022-02-15 Savroc Ltd AQUATIC ELECTRIC COATING BATH

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4461680A (en) * 1983-12-30 1984-07-24 The United States Of America As Represented By The Secretary Of Commerce Process and bath for electroplating nickel-chromium alloys
US4975337A (en) * 1987-11-05 1990-12-04 Whyco Chromium Company, Inc. Multi-layer corrosion resistant coating for fasteners and method of making
US8152985B2 (en) * 2008-06-19 2012-04-10 Arlington Plating Company Method of chrome plating magnesium and magnesium alloys
EA029168B1 (ru) * 2009-06-08 2018-02-28 Модьюметал, Инк. Электроосажденное наноламинатное покрытие и оболочка для защиты от коррозии
WO2014145588A1 (fr) * 2013-03-15 2014-09-18 Modumetal, Inc. Revêtement nanostratifié de chrome et de nickel ayant une dureté élevée

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
AR102341A1 (es) 2017-02-22
CN106795641B (zh) 2019-11-05
CA2961504A1 (fr) 2016-03-24
EA201790645A1 (ru) 2017-08-31
BR112017005414A2 (pt) 2017-12-12
EP3194641B8 (fr) 2022-02-09
EP3194641A4 (fr) 2018-05-09
EP3194641A1 (fr) 2017-07-26
WO2016044708A1 (fr) 2016-03-24
SA517381127B1 (ar) 2022-03-27
CN106795641A (zh) 2017-05-31
US20170191179A1 (en) 2017-07-06
CA2961504C (fr) 2022-12-13

Similar Documents

Publication Publication Date Title
US11168408B2 (en) Nickel-chromium nanolaminate coating having high hardness
EP3194641B1 (fr) Revêtement nanostratifié ou gainage de nickel-chrome présentant une duretée élevée
JP6196285B2 (ja) ナノ積層黄銅合金の電気化学析出の材料および過程
US20180016694A1 (en) Low stress property modulated materials and methods of their preparation
US10544510B2 (en) Electrodeposited, nanolaminate coatings and claddings for corrosion protection
EA041805B1 (ru) Способ формирования многослойного покрытия или оболочки на поверхности электропроводящей подложки или матрицы посредством электроосаждения
Chen et al. Corrosion resistance of Zn–Ni/Ni and Ni/Zn–Ni compositionally modulated multilayer coating
EA041098B1 (ru) Способ формирования многослойного покрытия, покрытие, сформированное вышеуказанным способом, и многослойное покрытие
KR20080103238A (ko) 3가크롬도금층을 최외층으로 하며 니켈을 사용하지 않는장식용 다층도금피막의 구조와 그 도금방법
EA041587B1 (ru) Электроосажденные наноламинатные покрытия и оболочки для защиты от коррозии

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170413

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20180410

RIC1 Information provided on ipc code assigned before grant

Ipc: C25D 5/02 20060101AFI20180404BHEP

Ipc: C25D 5/14 20060101ALI20180404BHEP

Ipc: C25D 5/08 20060101ALI20180404BHEP

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1241424

Country of ref document: HK

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: C25D 3/56 20060101ALI20200818BHEP

Ipc: C25D 5/14 20060101ALI20200818BHEP

Ipc: C25D 5/18 20060101ALI20200818BHEP

Ipc: C25D 1/00 20060101AFI20200818BHEP

17Q First examination report despatched

Effective date: 20200901

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602015075974

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C25D0005020000

Ipc: C25D0001000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C25D 1/00 20060101AFI20210623BHEP

Ipc: C25D 3/56 20060101ALI20210623BHEP

Ipc: C25D 5/14 20060101ALI20210623BHEP

Ipc: C25D 5/18 20060101ALI20210623BHEP

Ipc: C25D 5/00 20060101ALI20210623BHEP

INTG Intention to grant announced

Effective date: 20210708

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

GRAT Correction requested after decision to grant or after decision to maintain patent in amended form

Free format text: ORIGINAL CODE: EPIDOSNCDEC

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MODUMETAL, INC.

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015075974

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B8

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1457141

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602015075974

Country of ref document: DE

Representative=s name: HOFFMANN - EITLE PATENT- UND RECHTSANWAELTE PA, DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220322

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211222

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1457141

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220322

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220422

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015075974

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220928

Year of fee payment: 8

26N No opposition filed

Effective date: 20220923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220926

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220918

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150918

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1241424

Country of ref document: HK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240304

Year of fee payment: 9