EP3192966B1 - Rotor für eine axiale strömungsmaschine mit einem axial ausgerichteten wuchtflansch und verdichter - Google Patents

Rotor für eine axiale strömungsmaschine mit einem axial ausgerichteten wuchtflansch und verdichter Download PDF

Info

Publication number
EP3192966B1
EP3192966B1 EP16151268.6A EP16151268A EP3192966B1 EP 3192966 B1 EP3192966 B1 EP 3192966B1 EP 16151268 A EP16151268 A EP 16151268A EP 3192966 B1 EP3192966 B1 EP 3192966B1
Authority
EP
European Patent Office
Prior art keywords
rotor
flange
balancing
main body
base body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16151268.6A
Other languages
English (en)
French (fr)
Other versions
EP3192966A1 (de
Inventor
Thomas Binsteiner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Priority to EP16151268.6A priority Critical patent/EP3192966B1/de
Publication of EP3192966A1 publication Critical patent/EP3192966A1/de
Application granted granted Critical
Publication of EP3192966B1 publication Critical patent/EP3192966B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/027Arrangements for balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/001Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/321Application in turbines in gas turbines for a special turbine stage
    • F05D2220/3216Application in turbines in gas turbines for a special turbine stage for a special compressor stage
    • F05D2220/3219Application in turbines in gas turbines for a special turbine stage for a special compressor stage for the last stage of a compressor or a high pressure compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise

Definitions

  • the present invention relates to a rotor for a turbo machine according to the preamble of claim 1.
  • the present invention also relates to a compressor according to claim 10.
  • Rotors for turbo machines have to meet a wide range of requirements and boundary conditions.
  • individual rotor base bodies or rotor stages should be able to be balanced in order to be able to operate unbalance-free, low-wear and low-maintenance during operation.
  • the common balancing options include, for example, the assembly of individual balancing weights on rotor base bodies (or rotor disks).
  • areas in rotor drums i.e. in rotor inner areas of lined up rotor stages, can form in which bearing oil accumulations or other fluids collect due to their centrifugal force during operation of the rotor.
  • This accumulation of bearing oil can lead to undesirable effects if the rotor is stopped and started again in the meantime.
  • These effects include an escape of bearing oil (for example due to bearing seal leakage) or bearing oil mist into the main flow area of, for example, aircraft turbines and a subsequent unwanted or undesired transfer to so-called bleed air areas for cabin air entrances.
  • a rotor for a turbo machine with a first and a second rotor base body is known, the first rotor base body having a connecting flange and a radially aligned balancing flange.
  • the post-published European patent application EP 3 091 179 A1 describes a rotor assembly having a shaft-hub connection, the hub being connected to the downstream rotors. A balancing flange running in the axial direction is arranged on the hub.
  • EP 3 091 178 A1 relates to a rotor for a turbomachine with a first and a second Rotor base body, the first rotor base body having a connecting flange with a balancing flange arranged radially on the outside of the first connecting flange.
  • One object of the present invention is to propose a rotor for a turbomachine which has suitable balancing options taking into account the problems mentioned.
  • a further object of the present invention is to propose a compressor with a rotor according to the invention.
  • the object according to the invention is achieved by a rotor with the features of claim 1. It is also achieved by a compressor having the features of claim 10.
  • a rotor for a turbomachine comprising at least one first rotor base body with a first connecting flange for connecting the first rotor base body to a second rotor base body.
  • the first rotor base body is connected to at least one rotor blade and has an axially aligned balancing flange.
  • the first connecting flange is materially connected to the balancing flange and the balancing flange is arranged radially on the inside of the first connecting flange.
  • a compressor according to the invention of a turbo machine has at least one rotor according to the invention.
  • the compressor can be a high pressure compressor of an aircraft engine.
  • Exemplary embodiments according to the invention can have one or more of the features mentioned below.
  • the axial flow machine is an axial gas turbine, for example an aircraft gas turbine.
  • An axial flow machine can be referred to as an aircraft engine.
  • An aircraft engine can have a compressor with several Compressor stages and a turbine with multiple turbine stages include. Compressor stages and turbine stages can each have several rotor stages and several stator stages.
  • rotor can include one or more rotor stages which, when the turbo machine is used as intended, rotate about an axis of rotation or axis of rotation of the turbo machine.
  • a rotor or a rotor stage can be referred to as an impeller or comprise an impeller.
  • a rotor or a rotor stage can comprise several rotor blades and a rotor base body.
  • the rotor base body can be referred to as a rotor disk or rotor ring or comprise these.
  • a rotor can be installed and assembled in a turbo machine, in particular in an axial gas turbine.
  • the rotor blades of a rotor or an impeller can be positively connected by means of a releasable connection or integrally with the rotor base body.
  • An integral connection is in particular a material or material connection.
  • An integral connection can be produced using a generative manufacturing process.
  • a rotor base body with blades integrally connected to the rotor base body can be referred to as an integrally bladed rotor.
  • An integrally bladed rotor can be a so-called BLISK (Bladed Disk) or a BLING (Blade Ring).
  • the rotor base body can comprise rotor disks directed radially inward and / or axially oriented rotor arms.
  • the rotor disks directed radially inward can be referred to as extensions or T-shaped extensions of the rotor blades.
  • the rotor can be designed or prepared for direct or indirect connection to a shaft of the turbomachine.
  • rotor drum can include sections of at least two axially interconnected basic rotor bodies.
  • rotor arms can form a radial or cylindrical shape of the rotor drum.
  • a rotor drum can likewise be formed over more than two rotor base bodies and optionally over several rotor arms and rotor disks.
  • rotor interior and rotor exterior can designate the spaces inside and outside of rotor drums.
  • the rotor interior can thus be delimited radially outward essentially by one or more rotor arms.
  • the rotor interior can essentially be delimited by rotor disks.
  • the outer rotor space can be delimited radially inward essentially by one or more rotor arms.
  • the rotor outer space essentially comprises the main flow channel of the turbo machine. Between a rotor arm and the main flow channel, for example, stator inner rings, with or without inlet seals, can also be arranged.
  • the rotor interior and / or the rotor exterior can comprise several rotor stages.
  • Rotor base bodies arranged axially one behind the other can be connected to one another by means of rotor arms and / or rotor disks.
  • the connection is in particular form-fitting and / or force-fitting.
  • connecting flange can mean a component for, in particular form-fitting and / or force-fitting, connecting or flanging a rotor base body or a rotor stage to a further rotor base body or to a further rotor stage. In some embodiments according to the invention, this connection of the connecting flange does not have a screw connection for connecting to one another.
  • a positive connection of a connecting flange with, for example, a further connecting flange of an adjacent or axially adjoining basic rotor body can mean fitting into one another of radial and / or axial shoulders of the two connecting flanges.
  • a positive connection can have a fit between the two components.
  • a fit can be a clearance fit, a transition fit, or an interference fit. In the case of a press fit, an additional force fit can be added to the form fit.
  • balancing flange can be a shoulder, a web, an extension or the like in order to balance a component, in particular the component on which the balancing flange is fixed or of which the balancing flange is a section or to balance.
  • the balancing flange can be used additionally or exclusively for balancing other, in particular adjacent, components.
  • a balancing flange is not provided or designed for connection to a further component, that is to say not for flange-mounting to a further component.
  • the balancing flange is provided for receiving material for balancing.
  • a material uptake can be a punctiform or Area-shaped application, for example a material-locking application by means of welding, soldering or gluing mean.
  • the balancing flange is provided for removing material and for receiving material for balancing.
  • the first connecting flange is integrally connected to the balancing flange.
  • An integral connection can be a one-piece connection.
  • a one-piece connection can be produced, for example, by means of a casting process or by means of a generative manufacturing process.
  • a radially inner contour of the first rotor base body in the area of the first connecting flange and the balancing flange is designed for the flow of fluids into a radially outer rotor space, in particular due to centrifugal forces, i.e. in an operating state with a rotary movement of the rotor.
  • the fluid can also flow out of the rotor interior to the outside when the rotor or turbine is at a standstill, in particular after the rotor or turbine has been switched off. In the case of an aircraft turbine, this can lead to an oil smell in the cabin of the aircraft when the rotor is restarted or subsequently started.
  • Escaping oil can be blown out immediately after a start process via ejection bores.
  • the design of the contour does not have any cavities or storage areas for receiving fluid.
  • the radially inner contour of the first rotor base body can be referred to as the boundary or border of a rotor drum (see definition above).
  • a centrifugal force-induced outflow of fluids, in particular of bearing oils from rotor bearings arranged upstream and / or downstream of the rotor stages into the rotor outer space, can take place by means of radial bores or openings in the rotor drum.
  • the radial bore (or a plurality of radial bores) can be arranged at a largest possible radius or maximum radius within the rotor drum.
  • the radially inner contour of the first rotor base body in the area of the first connecting flange and the balancing flange does not have any cavities in which the fluid can collect or accumulate due to centrifugal forces.
  • the radially inner contour of the first rotor base body is im
  • the area of the first connecting flange and the balancing flange are designed to be barrier-free and flow-optimized.
  • the axially arranged balancing flange is arranged radially on the inside of the first connecting flange. In other embodiments, the axially arranged balancing flange can be arranged radially on the outside of the first connecting flange.
  • the balancing flange has at least one area for removing material for balancing the rotor.
  • the area for material removal can be on an axial end area, on a radial inner and / or outer area of the balancing flange.
  • the area for material removal can extend over the entire circumference of the balancing flange or only affect individual areas over the circumference. For example, smaller or larger areas can be removed by cutting (e.g. by means of milling).
  • the balancing flange can be shortened and removed axially at the end, over the entire circumference or only in individual circumferential segments, and / or further areas on the radially inner and / or outer side can be removed for balancing.
  • the ablated areas on the radially inner side of the balancing flange do not have any cavities that could hinder a possible outflow of fluids from the interior of the rotor.
  • the circumferential segments for material removal can extend, for example, over 5 degrees, 10 degrees, 15 degrees, 20 degrees or other angular ranges.
  • a radial gap is arranged between the balancing flange and the second rotor base body.
  • the radial gap can simplify balancing by removing material from the balancing flange.
  • the radial gap can simplify a form-fitting and / or force-fitting connection of the first connection flange to a second connection flange of the second rotor base body.
  • the balancing flange and the first connecting flange are made from one material.
  • the first rotor base body, the balancing flange and the first connecting flange are integrally connected to one another.
  • the first rotor base body has no balancing weights and / or screw passages for fixing balancing weights.
  • the first rotor base body has no shoulders or flanges directed radially inward for fixing balancing weights.
  • the first rotor base body, the balancing flange and the first connecting flange are made from one material.
  • a unit made from one material and comprising the first rotor base body, balancing flange and first connecting flange can be referred to as being in one piece.
  • oil accumulations for example bearing oil accumulations, in the interior of the rotor, that is to say inside the rotor drum, can advantageously be avoided or at least reduced.
  • the arrangement of the balancing flange enables only small cavities or no cavities at all, in which oil can collect, to be created in the rotor drum. This can at least reduce the possibility of contamination of cabin air by bearing oil when the rotor is used in an aircraft engine.
  • the balancing flange can advantageously be balanced as an individual part.
  • This balancing can be referred to as individual part balancing.
  • Individual part balancing enables balancing with an equivalent potential compared to alternative solutions according to the prior art, in which Individual balancing weights can be used, which are screwed on, flanged or shrunk on as additional parts by means of press fits.
  • a flange cavity can advantageously be reduced to zero or to approximately zero compared to connecting flanges with separate balancing weights.
  • the rotor according to the invention can be used in turbines and / or compressors. Due to the design of a first rotor base body with an integral balancing flange, the installation space and the weight of the rotor and thus of the turbomachine can advantageously be optimized. This can result in economic advantages, for example through lower kerosene consumption and / or a compact design.
  • Fig. 1 shows a rotor 100 according to the prior art with a first rotor base body 101, a flanged-on second rotor base body 103, riveted balancing weights 105 on the first rotor base body 101 and a stator 107 in a longitudinal sectional view.
  • the rotor 100 is flowed through in the axial direction a in the main flow direction 109.
  • a plurality of rotor blades 111 arranged over the circumference u are fixed to the first rotor base body 101.
  • the stator 107 Downstream (in the axial direction a) of the first rotor base body 101 and the rotor blades 111, the stator 107 is arranged, which is statically connected to the housing of the Turbo machine (in Fig. 1 not shown) is connected.
  • An inner ring 115 is arranged radially inward on the guide vanes 113 of the guide wheel 107 arranged over the circumference u. Further downstream after the stator 107, the rotor blades 117 connected to the second rotor base body 103 are shown.
  • the first rotor base body 101 has a connection flange 119 and one (or more fastening flanges 121 distributed over the circumference u) for fastening balancing weights 105.
  • the connecting flange 119 connects the first rotor base body 101 to the second rotor base body 103.
  • the second rotor base body 103 has a rotor arm 123, at the axial, upstream end of which a further connecting flange 125 is arranged.
  • the two connecting flanges 119, 125 are positive (the connecting flange 125 encloses or includes the connecting flange 119 on the axial and radial sides) and non-positive (the first rotor stage with the first rotor base body 101 and the rotor blades 111 is axially connected to the second rotor stage with the second rotor base body 103 and the rotor blades 117 clamped) connected to one another.
  • the rotor arm 123 has at least one radial bore 127. Further radial bores can be arranged over the circumference of the rotor arm 123.
  • fluids for example bearing oils from rotor bearings arranged axially upstream and / or downstream, are to be transported from the rotor drum space 129, which can also be referred to as the rotor interior, into the rotor exterior 131.
  • the rotor drum space 129 which can also be referred to as the rotor interior
  • these fluids are thrown outward through the bore 127 due to centrifugal forces.
  • the fluids can be transported further with the main flow from the rotor outer space 131.
  • the radial bore 127 can be referred to as an oil throw-off bore.
  • bearing oil can collect in so-called radial cavities 133 in the area of the fastening flange 121. This accumulated bearing oil can drip or flow off into the rotor outer space 129 and / or into housing cavities when the rotor 100 stops or comes to a standstill. When the turbine engine is started again or afterwards, this bearing oil is then sucked directly into the main flow channel by the flow. However, since the main flow is initially still low in this starting phase of the rotor 100, the bearing oil or When the turbo machine is used as an aircraft engine, at least parts of the bearing oil enter the so-called bleed air, which could enter the cabin air through radial openings in the housing. This could result in an oil smell in the cabin air, which could have further consequences and must be avoided at all costs.
  • FIG Fig. 2 A constructive avoidance of such cavities 133 is shown in FIG Fig. 2 illustrated and described by the rotor 100 according to the invention.
  • Fig. 2 shows a detailed section of a rotor 100 according to the invention with a connecting flange 119 for connecting a first rotor base body 101 to a further connecting flange 125 of a second rotor base body 103, as well as an axially aligned balancing flange 201.
  • the first rotor base body 101 has in comparison to Fig. 1 (State of the art) does not have a mounting flange with balancing weights.
  • the axial alignment of the balancing flange 201 By means of the axial alignment of the balancing flange 201, one or more radial cavity, like them in Fig. 1 should be avoided. This allows the effects mentioned as they are to Fig.
  • Balancing by means of the balancing flange 201 can be carried out by removing material at the axial end (in Fig. 2 at the right end) of the balancing flange 201.
  • the necessary point or position for balancing can be analyzed and localized using suitable and known methods. Material can then be removed at the appropriate points, for example at selected angular positions over the circumference of the balancing flange 201, and thus the component (of the first rotor base body 101 or the first rotor stage as a whole) can be balanced.
  • the radial gap 203 is for an outflow of fluids from the rotor interior (see Fig. 1 ) unproblematic, since a fluid, for example bearing oil, can easily flow off to a radial opening without being blocked or collected in a cavity. Furthermore, the radial gap 203 can simplify the form-fitting and / or force-fitting connection of the two connecting flanges 119, 125.
  • the first rotor base body 101 is designed in an integral construction together with the first connecting flange 119 and the axial balancing flange 201.
  • An integral construction means a material connection of these components, which are made in particular by means of the same material. With a generative process as a manufacturing option, different materials can also be used to manufacture an integral component. This can be advantageous, for example, to use an optimized material for removing material from the balancing flange 201.
  • the dividing line 205 can indicate a maximum possible axial material removal from the balancing flange 201. This can be necessary, for example, for the stability and component integrity of the first rotor base body 101.
  • a material removal on the balancing flange 201 can for example by means of cutting removal, z. B. by milling or drilling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die vorliegende Erfindung betrifft einen Rotor für eine Strömungsmaschine gemäß dem Oberbegriff des Anspruchs 1. Des Weiteren betrifft die vorliegende Erfindung einen Verdichter gemäß Anspruch 10.
  • Rotoren für Strömungsmaschinen müssen vielfältige Anforderungen und Randbedingungen erfüllen. Beispielsweise sollten einzelne Rotorgrundkörper oder Rotorstufen ausgewuchtet werden können, um im Betrieb unwuchtfrei, verschleißarm und wartungsarm betrieben werden zu können. Zu den gängigen Wuchtmöglichkeiten ist beispielsweise eine Montage von einzelnen Wuchtgewichten an Rotorgrundkörpern (oder Rotorscheiben) zu zählen. Bei diesen konstruktiven Lösungen können sich jedoch Bereiche in Rotortrommeln, also in Rotorinnenbereichen aneinandergereihter Rotorstufen, ausbilden, in denen sich Lagerölansammlungen oder andere Fluide durch deren Fliehkraft im Betrieb des Rotors ansammeln. Diese Lagerölansammlungen können bei einem zwischenzeitlichen Stoppen des Rotors und einem erneuten Starten zu unerwünschten Effekten führen. Zu diesen Effekten ist ein Austreten von Lageröl (beispielsweise aufgrund von Lagerdichtungs-Leckagen) oder Lagerölnebel in den Hauptströmungsbereich von beispielsweise Flugzeugturbinen und ein nachfolgendes ungewolltes bzw. unerwünschtes Weiterleiten in sogenannte Zapfluftbereichen für Kabinenluftzugängen zu zählen.
  • Aus der US-Patentschrift US 5 628 621 A ist ein Rotor für eine Strömungsmaschine mit einem ersten und einem zweiten Rotorgrundkörper bekannt, wobei der erste Rotorgrundkörper einen Verbindungsflansch und einen radial ausgerichteten Wuchtflansch aufweist. Die nachveröffentlichte europäische Patentanmeldung EP 3 091 179 A1 beschreibt eine Rotoranordnung mit einer Welle-Nabe-Verbindung, wobei die Nabe mit den stromabwärts angeordneten Rotoren verbunden ist. An der Nabe ist ein in axialer Richtung verlaufender Wuchtflansch angeordnet. Die ebenfalls nachveröffentlichte europäische Patentanmeldung EP 3 091 178 A1 betrifft einen Rotor für eine Strömungsmaschine mit einem ersten und zweiten Rotorgrundkörper, wobei der erste Rotorgrundkörper einen Verbindungsflansch mit einem radial außenseitig von dem ersten Verbindungsflansch angeordneten Wuchtflansch aufweist.
  • Eine Aufgabe der vorliegenden Erfindung ist es, einen Rotor für eine Strömungsmaschine vorzuschlagen, der unter Berücksichtigung der genannten Problematik geeignete Wuchtmöglichkeiten aufweist. Ferner ist es Aufgabe der vorliegenden Erfindung, einen Verdichter mit einem erfindungsgemäßen Rotor vorzuschlagen.
  • Die erfindungsgemäße Aufgabe wird durch einen Rotor mit den Merkmalen des Anspruchs 1 gelöst. Sie wird ferner durch einen Verdichter mit den Merkmalen des Anspruchs 10 gelöst.
  • Erfindungsgemäß wird somit ein Rotor für eine Strömungsmaschine vorgeschlagen, wobei der Rotor wenigstens einen ersten Rotorgrundkörper mit einem ersten Verbindungsflansch zum Verbinden des ersten Rotorgrundkörpers mit einem zweiten Rotorgrundkörper umfasst. Der erste Rotorgrundkörper ist mit wenigstens einer Laufschaufel verbunden und weist einen axial ausgerichteten Wuchtflansch auf. Der erste Verbindungsflansch ist stoffschlüssig mit dem Wuchtflansch verbunden und der Wuchtflansch ist radial innenseitig von dem ersten Verbindungsflansch angeordnet.
  • Ein erfindungsgemäßer Verdichter einer Strömungsmaschine weist wenigstens einen erfindungsgemäßen Rotor auf. Der Verdichter kann ein Hochdruckverdichter eines Flugtriebwerks sein.
  • Vorteilhafte Weiterentwicklungen der vorliegenden Erfindung sind jeweils Gegenstand von Unteransprüchen und Ausführungsformen.
  • Erfindungsgemäße beispielhafte Ausführungsformen können eines oder mehrere der im Folgenden genannten Merkmale aufweisen.
  • In bestimmten erfindungsgemäßen Ausführungsformen ist die axiale Strömungsmaschine eine axiale Gasturbine, beispielsweise eine Fluggasturbine. Eine axiale Strömungsmaschine kann als Flugtriebwerk bezeichnet werden. Ein Flugtriebwerk kann einen Verdichter mit mehreren Verdichterstufen und eine Turbine mit mehreren Turbinenstufen umfassen. Verdichterstufen und Turbinenstufen können jeweils mehrere Rotorstufen und mehrere Statorstufen aufweisen.
  • Der Begriff "Rotor", wie er hierin verwendet wird, kann eine oder mehrere Rotorstufen umfassen, die sich im bestimmungsgemäßen Gebrauch der Strömungsmaschine um eine Rotationsachse oder Drehachse der Strömungsmaschine drehen. Ein Rotor oder eine Rotorstufe kann als Laufrad bezeichnet werden oder ein Laufrad umfassen. Ein Rotor oder eine Rotorstufe kann mehrere Laufschaufeln und einen Rotorgrundkörper umfassen. Der Rotorgrundkörper kann als Rotorscheibe oder Rotorring bezeichnet werden oder diesen umfassen.
  • Ein Rotor kann in eine Strömungsmaschine, insbesondere in eine axiale Gasturbine, eingebaut und montiert werden.
  • Die Laufschaufeln eines Rotors oder eines Laufrads können formschlüssig mittels einer wieder lösbaren Verbindung oder integral mit dem Rotorgrundkörper verbunden sein. Eine integrale Verbindung ist insbesondere eine materialschlüssige oder stoffschlüssige Verbindung. Eine integrale Verbindung kann mittels eines generatives Herstellungsverfahrens gefertigt werden. Ein Rotorgrundkörper mit integral mit dem Rotorgrundkörper verbundenen Schaufeln kann als integral beschaufelter Rotor bezeichnet werden. Ein integral beschaufelter Rotor kann ein sogenannter BLISK (Bladed Disk) oder ein BLING (Blade Ring) sein.
  • Der Rotorgrundkörper kann nach radial innen gerichtete Rotorscheiben und/oder axial ausgerichtete Rotorarme umfassen. Die nach radial innen gerichteten Rotorscheiben können als Verlängerungen oder T-förmige Verlängerungen der Laufschaufeln bezeichnet werden.
  • Der Rotor kann zum direkten oder indirekten Verbinden mit einer Welle der Strömungsmaschine ausgestaltet oder vorbereitet sein.
  • Der Begriff "Rotortrommel", wie er hierin verwendet wird, kann Abschnitte von wenigstens zwei axial miteinander verbundenen Rotorgrundkörpern umfassen. Insbesondere Rotorarme können eine radiale oder zylinderförmige Form der Rotortrommel ausbilden. Eine Rotortrommel kann gleichfalls über mehr als zwei Rotorgrundkörper sowie optional über mehrere Rotorarme und Rotorscheiben ausgebildet sein.
  • Die Begriffe "Rotorinnenraum und Rotoraußenraum", wie sie hierin verwendet werden, können die Räume innerhalb und außerhalb von Rotortrommeln bezeichnen. Der Rotorinnenraum kann somit nach radial außen im Wesentlichen durch einen oder mehrere Rotorarme begrenzt sein. In axialer Richtung kann der Rotorinnenraum im Wesentlichen durch Rotorscheiben begrenzt werden. Der Rotoraußenraum kann nach radial innen im Wesentlichen durch einen oder mehrere Rotorarme begrenzt werden. Der Rotoraußenraum umfasst im Wesentlichen den Hauptdurchströmungskanal der Strömungsmaschine. Zwischen einem Rotorarm und dem Hauptdurchströmungskanal können weiterhin beispielsweise Leitradinnenringe, mit oder ohne Einlaufdichtungen, angeordnet sein. Der Rotorinnenraum und/oder der Rotoraußenraum kann mehrere Rotorstufen umfassen.
  • Axial hintereinander angeordnete Rotorgrundkörper können mittels Rotorarmen und/oder Rotorscheiben miteinander verbunden sein. Die Verbindung ist insbesondere formschlüssig und/oder kraftschlüssig.
  • Der Begriff "Verbindungsflansch", wie er hierin verwendet wird, kann ein Bauteil zum, insbesondere formschlüssigen und/oder kraftschlüssigen, Verbinden oder Anflanschen eines Rotorgrundkörpers oder einer Rotorstufe an einen weiteren Rotorgrundkörpers oder an eine weitere Rotorstufe bedeuten. In einigen erfindungsgemäßen Ausführungsformen weist diese Verbindung des Verbindungsflansches keine Verschraubung zum miteinander verbinden auf. Ein formschlüssiges Verbinden eines Verbindungsflansches mit beispielsweise einem weiteren Verbindungsflansch eines benachbarten oder sich axial anschließenden Rotorgrundgrundkörpers kann ein Ineinanderpassen von radialen und/oder axialen Absätzen der beiden Verbindungsflansche bedeuten. Ein formschlüssiges Verbinden kann eine Passung der beiden Bauteile aufweisen. Eine Passung kann eine Spielpassung, eine Übergangspassung oder eine Presspassung sein. Bei einer Presspassung kann ein zusätzlicher Kraftschluss zu dem Formschluss hinzutreten.
  • Der Begriff "Wuchtflansch", wie er hierin verwendet wird, kann ein Absatz, ein Steg, eine Verlängerung oder ähnliches sein, um ein Bauteil, insbesondere das Bauteil, an dem der Wuchtflansch fixiert ist oder von dem der Wuchtflansch ein Abschnitt ist, zu wuchten oder auszuwuchten. In einigen erfindungsgemäßen Ausführungsformen kann der Wuchtflansch zusätzlich oder ausschließlich zum Wuchten weiterer, insbesondere angrenzender Bauteile, verwendet werden. Insbesondere ist ein Wuchtflansch nicht zum Verbinden mit einem weiteren Bauteil, also nicht zum Anflanschen an ein weiteres Bauteil, vorgesehen oder ausgestaltet.
  • In manchen erfindungsgemäßen Ausführungsformen ist der Wuchtflansch zur Materialaufnahme zum Wuchten vorgesehen. Eine Materialaufnahme kann ein punktförmiges oder bereichsförmiges Auftragen, beispielsweise ein materialschlüssiges Auftragen mittels Schweißen, Löten oder Kleben, bedeuten.
  • In bestimmten erfindungsgemäßen Ausführungsformen ist der Wuchtflansch zur Materialentnahme und zur Materialaufnahme zum Wuchten vorgesehen.
  • In einigen erfindungsgemäßen Ausführungsformen ist der erste Verbindungsflansch integral mit dem Wuchtflansch verbunden. Eine integrale Verbindung kann eine einstückige Verbindung sein. Eine einstückige Verbindung kann beispielsweise mittels eines Gußverfahrens oder mittels eines generatives Fertigungsverfahrens hergestellt sein.
  • In bestimmten erfindungsgemäßen Ausführungsformen ist eine radial innere Kontur des ersten Rotorgrundkörpers im Bereich des ersten Verbindungsflansches und des Wuchtflansches zum, insbesondere fliehkraftbedingten, also in einem Betriebszustand mit einer Drehbewegung des Rotors, Abfließen von Fluiden in einen radial außen angeordneten Rotoraußenraum ausgestaltet. Das Fluid kann ebenso im Stillstand, insbesondere nach dem Abstellen des Rotors oder der Turbine, aus dem Rotorinnenraum nach außen fließen. Dies kann bei einem erneuten oder darauffolgenden Starten des Rotors im Fall einer Flugzeugturbine zu einem Ölgeruch in der Kabine des Flugzeugs führen. Austretendes Öl kann unmittelbar nach einem Startvorgang über Abschleuderbohrungen ausgeblasen werden. Die Ausgestaltung der Kontur weist insbesondere keine Kavitäten und Staubereiche zur Aufnahme von Fluid auf. Die radial innere Kontur des ersten Rotorgrundkörpers kann als Begrenzung oder Umrandung einer Rotortrommel (Definition siehe weiter oben) bezeichnet werden. Ein fliehkraftbedingtes Abfließen von Fluiden, insbesondere von Lagerölen von stromauf und/oder stromab der Rotorstufen angeordneten Rotorlagern in den Rotoraußenraum, kann mittels radialer Bohrungen oder Öffnungen in der Rotortrommel erfolgen. Die radiale Bohrung (oder mehrere radiale Bohrungen) kann an einem größtmöglichen Radius oder maximalen Radius innerhalb der Rotortrommel angeordnet sein. Dies kann ein vollständiges oder weitgehend vollständiges Abfließen von Fluiden aus dem Rotorinnenraum in den Rotoraußenraum ermöglichen. Insbesondere weist die radial innere Kontur des ersten Rotorgrundkörpers im Bereich des ersten Verbindungsflansches und des Wuchtflansches keine Kavitäten auf, in denen sich das Fluid fliehkraftbedingt sammeln oder anstauen kann. Mit anderen Worten ist die radial innere Kontur des ersten Rotorgrundkörpers im Bereich des ersten Verbindungsflansches und des Wuchtflansches barrierefrei und strömungsoptimiert ausgestaltet.
  • In gewissen erfindungsgemäßen Ausführungsformen ist der axial angeordnete Wuchtflansch radial innenseitig von dem ersten Verbindungsflansch angeordnet. In anderen Ausführungsformen kann der axial angeordnete Wuchtflansch radial außenseitig von dem ersten Verbindungsflansch angeordnet sein.
  • In einigen erfindungsgemäßen Ausführungsformen weist der Wuchtflansch wenigstens einen Bereich zur Materialentnahme zum Wuchten des Rotors auf. Der Bereich zur Materialentnahme kann an einem axialen Endbereich, an einem radialen inneren und/oder äußeren Bereich des Wuchtflansches sein. Der Bereich zur Materialentnahme kann sich über den gesamten Umfang des Wuchtflansches erstrecken oder nur einzelne Bereiche über dem Umfang betreffen. Beispielsweise können bereichsweise kleinere oder größere Bereiche spanend (z. B. mittels Fräsen) abgetragen werden. Es kann beispielsweise der Wuchtflansch axial endseitig, über dem gesamten Umfang oder nur in einzelnen Umfangssegmenten, verkürzt und abgetragen werden, und/oder weitere Bereiche an der radial inneren und/oder äußeren Seite zum Wuchten abgetragen werden. Insbesondere weisen die abgetragenen Bereiche auf der radial inneren Seite des Wuchtflansches keine Kavitäten auf, die einen möglichen Abfluss von Fluiden aus dem Rotorinnenraum behindern könnten. Die Umfangssegmente zum Materialabtrag können sich beispielsweise über 5 Grad, 10 Grad, 15 Grad, 20 Grad oder andere Winkelbereiche erstrecken.
  • In manchen erfindungsgemäßen Ausführungsformen ist im montierten Zustand des ersten mit dem zweiten Rotorgrundkörper zwischen dem Wuchtflansch und dem zweiten Rotorgrundkörper ein radialer Spalt angeordnet. Der radiale Spalt kann ein Wuchten mittels Materialabtrag an dem Wuchtflansch vereinfachen. Weiterhin kann der radiale Spalt ein formschlüssiges und/oder kraftschlüssiges Verbinden des ersten Verbindungsflansches mit einem zweiten Verbindungsflansch des zweiten Rotorgrundkörpers vereinfachen.
  • In bestimmten erfindungsgemäßen Ausführungsformen sind der Wuchtflansch und der erste Verbindungsflansch aus einem Material hergestellt.
  • In gewissen erfindungsgemäßen Ausführungsformen sind der erste Rotorgrundkörper, der Wuchtflansch und der erste Verbindungsflansch integral miteinander verbunden.
  • In einigen erfindungsgemäßen Ausführungsformen weist der erste Rotorgrundkörper keine Wuchtgewichte und/oder Schraubendurchlässe zum Fixieren von Wuchtgewichten auf. Insbesondere weist der erste Rotorgrundkörper im Bereich des ersten Verbindungsflansches keine nach radial innen ausgerichtete Absätze oder Flansche zum Fixieren von Wuchtgewichten auf.
  • In manchen erfindungsgemäßen Ausführungsformen sind der erste Rotorgrundkörper, der Wuchtflansch und der erste Verbindungsflansch aus einem Material hergestellt. Eine aus einem Material hergestellte Einheit aus erstem Rotorgrundkörper, Wuchtflansch und erstem Verbindungsflansch kann als einstückig bezeichnet werden.
  • Manche oder alle erfindungsgemäßen Ausführungsformen können einen, mehrere oder alle der oben und/oder im Folgenden genannten Vorteile aufweisen.
  • Mittels des erfindungsgemäßen Rotors können Ölansammlungen, beispielsweise Lagerölansammlungen, im Rotorinnenraum, also innerhalb der Rotortrommel, vorteilhaft vermieden oder zumindest verringert werden. Insbesondere ermöglicht es die Anordnung des Wuchtflansches, nur noch kleine oder überhaupt keine Kavitäten, in denen sich Öl ansammeln kann, in der Rotortrommel entstehen zu lassen. Dadurch kann die Möglichkeit, dass sich Kontaminationen von Kabinenluft durch Lageröl, bei einer Anwendung des Rotors in einem Flugtriebwerk, zumindest verringert werden.
  • Weiterhin können mittels des erfindungsgemäßen Rotors aufgrund des Vermeidens von Ölansammlungen innerhalb der Rotortrommel im Rotorinnenraum vorteilhaft Öl-Verkokungen verhindert oder zumindest verringert werden. Verkokungsrückstände könnten einen negativen Einfluss beispielsweise auf eine Unwucht des Rotors ausüben.
  • Der Wuchtflansch kann vorteilhaft als Einzelteil ausgewuchtet werden. Dieses Wuchten kann als Einzelteilwuchten bezeichnet werden. Ein Einzelteilwuchten ermöglicht ein Wuchten bei gleichwertigem Potential gegenüber alternativen Lösungen nach dem Stand der Technik, in dem Einzelwuchtgewichte verwendet werden können, die als Zusatzteile angeschraubt, angeflanscht oder mittels Presspassungen aufgeschrumpft werden.
  • Mittels des erfindungsgemäßen Rotors und dem axial ausgerichteten Wuchtflansch kann eine Flansch-Kavität gegenüber Verbindungsflanschen mit separaten Wuchtgewichten vorteilhaft auf Null oder auf annähernd Null reduziert werden.
  • Der erfindungsgemäße Rotor kann in Turbinen und/ oder Verdichtern eingesetzt werden. Durch die Bauform eines ersten Rotorgrundkörpers mit integralem Wuchtflansch kann der Bauraum und das Gewicht des Rotors und damit der Strömungsmaschine vorteilhaft optimiert werden. Dadurch können sich wirtschaftliche Vorteile ergeben, beispielsweise durch einen geringeren Kerosinverbrauch und/ oder eine kompakte Bauform.
  • Die vorliegende Erfindung wird im Folgenden anhand der beigefügten Zeichnungen, in welcher identische Bezugszeichen gleiche oder ähnliche Bauteile bezeichnen, exemplarisch erläutert. In den jeweils schematisch vereinfachten Figuren gilt:
  • Fig. 1
    zeigt einen Rotor nach dem Stand der Technik mit einem ersten Rotorgrundkörper, einem angeflanschten zweiten Rotorgrundkörper, angeschraubte Wuchtgewichte sowie ein Leitrad in Längsschnittdarstellung; und
    Fig. 2
    zeigt einen Detailausschnitt eines erfindungsgemäßen Rotors mit einem Verbindungsflansch zum Verbinden eines ersten Rotorgrundkörpers mit einem zweiten Rotorgrundkörper, sowie einen axial ausgerichteten Wuchtflansch.
  • Fig. 1 zeigt einen Rotor 100 nach dem Stand der Technik mit einem ersten Rotorgrundkörper 101, einem angeflanschten zweiten Rotorgrundkörper 103, angenietete Wuchtgewichte 105 an dem ersten Rotorgrundkörper 101 sowie ein Leitrad 107 in Längsschnittdarstellung.
  • Der Rotor 100 wird in Axialrichtung a in der Hauptdurchströmungsrichtung 109 durchströmt. An dem ersten Rotorgrundkörper 101 sind mehrere über dem Umfang u angeordnete Laufschaufeln 111 fixiert. Stromab (in Axialrichtung a) des ersten Rotorgrundkörpers 101 und der Laufschaufeln 111 ist das Leitrad 107 angeordnet, das statisch mit dem Gehäuse der Strömungsmaschine (in Fig. 1 nicht dargestellt) verbunden ist. Radial innen an den über dem Umfang u angeordneten Leitschaufeln 113 des Leitrads 107 ist ein Innenring 115 angeordnet. Weiter stromab nach dem Leitrad 107 sind die mit dem zweiten Rotorgrundkörper 103 verbundenen Laufschaufeln 117 dargestellt.
  • Der erste Rotorgrundkörper 101 weist einen Verbindungsflansch 119 und einen (oder mehrere über dem Umfang u verteilte) Befestigungsflansch 121 zum Befestigen von Wuchtgewichten 105 auf. Der Verbindungsflansch 119 verbindet den ersten Rotorgrundkörper 101 mit dem zweiten Rotorgrundkörper 103. Der zweite Rotorgrundkörper 103 weist einen Rotorarm 123 auf, an dessen axialen, stromauf gelegenen Ende ein weiterer Verbindungsflansch 125 angeordnet ist. Die beiden Verbindungsflansche 119, 125 sind formschlüssig (der Verbindungsflansch 125 umschließt oder umfasst den Verbindungsflansch 119 axial- und radialseitig) und kraftschlüssig (die erste Rotorstufe mit dem ersten Rotorgrundkörper 101 und den Laufschaufeln 111 wird axial mit der zweiten Rotorstufe mit dem zweiten Rotorgrundkörper 103 und den Laufschaufeln 117 verspannt) miteinander verbunden.
  • Weiterhin weist der Rotorarm 123 wenigstens eine radiale Bohrung 127 auf. Über dem Umfang des Rotorarms 123 können weitere radiale Bohrungen angeordnet sein. Mittels dieser radialen Bohrung 127 sollen Fluide, beispielsweise Lageröle aus axial stromauf und/oder stromab angeordneten Rotorlagern, aus dem Rotortrommelraum 129, der auch als Rotorinnenraum bezeichnet werden kann, in den Rotoraußenraum 131 transportiert werden. Bei einem sich drehenden Rotor 100 werden diese Fluide fliehkraftbedingt durch die Bohrung 127 nach außen geschleudert. Aus dem Rotoraußenraum 131 können die Fluide mit der Hauptdurchströmung weitertransportiert werden. Die radiale Bohrung 127 kann als Ölabschleuderbohrung bezeichnet werden.
  • In der Ausführungsform nach dem Stand der Technik in Fig. 1 kann sich jedoch Lageröl in sogenannten radialen Kavitäten 133 im Bereich des Befestigungsflansches 121 ansammeln. Dieses angesammelte Lageröl kann bei einem Anhalten oder Stillstand des Rotors 100 in den Rotoraußenraum 129 und/oder in Gehäusekavitäten tropfen oder abfließen. Bei einem erneuten bzw. anschließendem Start des Turbinentriebwerks wird dann dieses Lageröl unmittelbar durch die Strömung in den Hauptdurchströmungskanal gesaugt. Da jedoch in dieser Startphase des Rotors 100 die Hauptdurchströmung zunächst noch niedrig ist, könnte das Lageröl oder zumindest Teile des Lageröls bei einer Anwendung der Strömungsmaschine als Flugtriebwerk in die sogenannte Zapfluft gelangen, die durch radiale Öffnungen im Gehäuse in die Kabinenluft gelangen könnte. Dadurch könnte ein Ölgeruch in der Kabinenluft auftreten, der weitere Folgen nach sich ziehen könnte und unbedingt zu vermeiden ist.
  • Ein konstruktives Vermeiden derartiger Kavitäten 133 wird in Fig. 2 durch den erfindungsgemäßen Rotor 100 dargestellt und beschrieben.
  • Fig. 2 zeigt einen Detailausschnitt eines erfindungsgemäßen Rotors 100 mit einem Verbindungsflansch 119 zum Verbinden eines ersten Rotorgrundkörpers 101 mit einem weiteren Verbindungsflansch 125 eines zweiten Rotorgrundkörper 103, sowie einen axial ausgerichteten Wuchtflansch 201.
  • Der erste Rotorgrundkörper 101 weist im Vergleich zur Fig. 1 (Stand der Technik) keinen Befestigungsflansch mit Wuchtgewichten auf. Das Wuchten des ersten Rotorgrundkörpers 101, und gegebenenfalls der gesamten ersten Rotorstufe und weiterer benachbarter Bauteile des Rotors 100, erfolgt dagegen in dieser erfindungsgemäßen Ausführungsform mittels dem axial ausgerichteten Wuchtflansch 201. Mittels der axialen Ausrichtung des Wuchtflansches 201 kann eine, oder mehrere, radiale Kavität, wie sie in Fig. 1 beschrieben wurde, vermieden werden. Dadurch können die genannten Effekte, wie sie zur Fig. 1 beschrieben wurden (Ansammeln von Lageröl in den Kavitäten und einem möglichen nachfolgenden Einleiten von Teilen dieses Lageröls oder zumindest von Lagerölnebel in die Kabinenluft von Flugzeugen) vorteilhaft verhindert werden. Trotzdem kann das Wuchten in diesem Verbindungsbereich der beiden Verbindungsflansche 119, 125 durch den axial ausgerichteten Wuchtflansch 201 erfolgen.
  • Das Wuchten mittels des Wuchtflansches 201 kann durch einen Materialabtrag am axialen Ende (in Fig. 2 am rechten Ende) des Wuchtflansches 201 erfolgen. Mit geeigneten und bekannten Verfahren kann die notwendige Stelle oder Position zum Wuchten analysiert und lokalisiert werden. Anschließend kann an den entsprechenden Stellen, beispielsweise an ausgewählten Winkelpositionen über dem Umfang des Wuchtflansches 201 ein Materialabtrag und damit ein Auswuchten des Bauteils (des ersten Rotorgrundkörpers 101 oder der ersten Rotorstufe insgesamt) erfolgen.
  • Der radiale Spalt 203 ist für einen Abfluss von Fluiden aus dem Rotorinnenraum (siehe Fig. 1) unproblematisch, da ein Fluid, beispielsweise Lageröl, problemlos zu einer radialen Öffnung abfließen kann, ohne in einer Kavität blockiert oder gesammelt zu werden. Weiterhin kann der radiale Spalt 203 die formschlüssige und/oder kraftschlüssige Verbindung der beiden Verbindungsflansche 119, 125 vereinfachen.
  • Der erste Rotorgrundkörper 101 ist in einer integralen Bauweise zusammen mit dem ersten Verbindungsflansch 119 und dem axialen Wuchtflansch 201 ausgeführt. Eine integrale Bauweise bedeutet eine stoffschlüssige Verbindung dieser Bauteile, die insbesondere mittels dem gleichen Material ausgeführt sind. Bei einem generativen Verfahren als Fertigungsoption können gleichfalls unterschiedliche Materialien zur Herstellung eines integralen Bauteile verwendet werden. Dies kann vorteilhaft sein, um beispielsweise ein optimiertes Material zum Materialabtrag des Wuchtflansches 201 zu verwenden.
  • Die Trennungslinie 205 kann einen maximal möglichen axialen Materialabtrag des Wuchtflansches 201 anzeigen. Dies kann beispielsweise zur Stabilität und Bauteilintegrität des ersten Rotorgrundkörpers 101 notwendig sein.
  • Ein Materialabtrag am Wuchtflansch 201 kann beispielsweise mittels spanenden Abtrags, z. B. durch Fräsen oder Bohren, erfolgen.
  • Bezugszeichenliste
  • a
    axial; Axialrichtung
    r
    Radial; Radialrichtung
    u
    Umfangsrichtung
    100
    Rotor
    101
    erster Rotorgrundkörper
    103
    zweiter Rotorgrundkörper
    105
    Wuchtgewicht
    107
    Leitrad
    109
    Hauptdurchströmungsrichtung
    111
    Laufschaufel
    113
    Leitschaufel
    115
    Leitschaufel
    117
    Innenring
    119
    Verbindungsflansch
    121
    Befestigungsflansch
    123
    Rotorarm
    125
    weiterer Verbindungsflansch
    127
    radiale Bohrung
    129
    Rotortrommelraum; Rotorinnenraum
    131
    Rotoraußenraum
    133
    radiale Kavitäten
    200
    erfindungsgemäßer Rotor
    201
    Wuchtflansch
    203
    radialer Spalt
    205
    Trennungslinie

Claims (11)

  1. Rotor (100) für eine axiale Strömungsmaschine, umfassend wenigstens einen ersten Rotorgrundkörper (101), wobei der erste Rotorgrundkörper (101) einen ersten Verbindungsflansch (119) zum Verbinden des ersten Rotorgrundkörpers (101) mit einem zweiten Rotorgrundkörper (103) aufweist, wobei der erste Rotorgrundkörper (101) mit wenigstens einer Laufschaufel (111) verbunden ist und einen Wuchtflansch (201) aufweist, wobei der erste Verbindungsflansch (119) stoffschlüssig mit dem Wuchtflansch (201) verbunden ist und der Wuchtflansch (201) radial innenseitig von dem ersten Verbindungsflansch (119) angeordnet ist, dadurch gekennzeichnet, dass der Wuchtflansch axial ausgerichtet ist.
  2. Rotor (100) nach Anspruch 1, wobei eine radial innere Kontur des ersten Rotorgrundkörpers (101) im Bereich des ersten Verbindungsflansches (119) und des Wuchtflansches (201) zum, insbesondere fliehkraftbedingten, Abfließen von Fluiden in einen radial außen angeordneten Rotoraußenraum (131) ausgestaltet ist, wobei die Ausgestaltung insbesondere keine Kavitäten (133) und Staubereiche zur Aufnahme von Fluid aufweist.
  3. Rotor (100) nach einem der vorangegangenen Ansprüche, wobei der Wuchtflansch (201) wenigstens einen Bereich zur Materialentnahme zum Wuchten aufweist.
  4. Rotor (100) nach dem vorangegangenen Anspruch, wobei der Bereich zur Materialentnahme am axialen Endbereich des Wuchtflanschs (201) angeordnet ist.
  5. Rotor (100) nach dem vorangegangenen Anspruch, wobei im montierten Zustand des ersten (101) mit dem zweiten (103) Rotorgrundkörpers zwischen dem Wuchtflansch (201) und dem zweiten Rotorgrundkörper (103) ein radialer Spalt angeordnet ist.
  6. Rotor (100) nach einem der vorangegangenen Ansprüche, wobei der Wuchtflansch (201) und der erste Verbindungsflansch (101) aus einem Material hergestellt sind.
  7. Rotor (100) nach einem der vorangegangenen Ansprüche, wobei der erste Rotorgrundkörper (101), der Wuchtflansch (201) und der erste Verbindungsflansch (119) integral miteinander verbunden sind.
  8. Rotor (100) nach einem der vorangegangenen Ansprüche, wobei der erste Rotorgrundkörper (101) keine Wuchtgewichte (105) und/oder Schraubendurchlässe zum Fixieren von Wuchtgewichten (105) aufweist.
  9. Rotor (100) nach einem der vorangegangenen Ansprüche, wobei der erste Rotorgrundkörper (101), der Wuchtflansch (201) und der erste Verbindungsflansch (119) aus einem Material hergestellt sind.
  10. Verdichter einer axialen Strömungsmaschine, wobei der Verdichter wenigstens einen Rotor (100) nach einem der Ansprüche 1 bis 9 aufweist.
  11. Verdichter nach Anspruch 10, wobei der Verdichter ein Hochdruckverdichter eines Flugtriebwerks ist.
EP16151268.6A 2016-01-14 2016-01-14 Rotor für eine axiale strömungsmaschine mit einem axial ausgerichteten wuchtflansch und verdichter Active EP3192966B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16151268.6A EP3192966B1 (de) 2016-01-14 2016-01-14 Rotor für eine axiale strömungsmaschine mit einem axial ausgerichteten wuchtflansch und verdichter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16151268.6A EP3192966B1 (de) 2016-01-14 2016-01-14 Rotor für eine axiale strömungsmaschine mit einem axial ausgerichteten wuchtflansch und verdichter

Publications (2)

Publication Number Publication Date
EP3192966A1 EP3192966A1 (de) 2017-07-19
EP3192966B1 true EP3192966B1 (de) 2021-05-19

Family

ID=55129746

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16151268.6A Active EP3192966B1 (de) 2016-01-14 2016-01-14 Rotor für eine axiale strömungsmaschine mit einem axial ausgerichteten wuchtflansch und verdichter

Country Status (1)

Country Link
EP (1) EP3192966B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022101762A1 (de) 2022-01-26 2023-07-27 MTU Aero Engines AG Rotor mit einem Wuchtflansch, Rotoranordnung mit zumindest einem Rotor und Strömungsmaschine mit zumindest einem Rotor oder mit einer Rotoranordnung

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3096073B1 (fr) * 2019-05-13 2021-05-14 Safran Aero Boosters Tambour de rotor pour une turbomachine
FR3108360B1 (fr) * 2020-03-23 2023-04-14 Safran Aircraft Engines Procede et dispositif d’equilibrage d’une piece tournante pour une turbomachine d’aeronef
DE102021123173A1 (de) * 2021-09-07 2023-03-09 MTU Aero Engines AG Rotorscheibe mit gekrümmtem Rotorarm für eine Fluggasturbine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3091179A1 (de) * 2015-05-07 2016-11-09 MTU Aero Engines GmbH Rotoranordnung für eine strömungsmaschine und verdichter
EP3091178A1 (de) * 2015-05-07 2016-11-09 MTU Aero Engines GmbH Rotortrommel für eine strömungsmaschine und verdichter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4848182A (en) * 1987-09-08 1989-07-18 United Technologies Corporation Rotor balance system
US5628621A (en) * 1996-07-26 1997-05-13 General Electric Company Reinforced compressor rotor coupling
DE102004037608A1 (de) * 2004-08-03 2006-03-16 Rolls-Royce Deutschland Ltd & Co Kg Unwuchtkompensation von rotierenden Bauteilen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3091179A1 (de) * 2015-05-07 2016-11-09 MTU Aero Engines GmbH Rotoranordnung für eine strömungsmaschine und verdichter
EP3091178A1 (de) * 2015-05-07 2016-11-09 MTU Aero Engines GmbH Rotortrommel für eine strömungsmaschine und verdichter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022101762A1 (de) 2022-01-26 2023-07-27 MTU Aero Engines AG Rotor mit einem Wuchtflansch, Rotoranordnung mit zumindest einem Rotor und Strömungsmaschine mit zumindest einem Rotor oder mit einer Rotoranordnung
EP4219897A1 (de) 2022-01-26 2023-08-02 MTU Aero Engines AG Rotor mit einem wuchtflansch, rotoranordnung mit zumindest einem rotor und strömungsmaschine mit zumindest einem rotor oder mit einer rotoranordnung

Also Published As

Publication number Publication date
EP3192966A1 (de) 2017-07-19

Similar Documents

Publication Publication Date Title
EP3091177B1 (de) Rotor für eine strömungsmaschine und verdichter
EP3301256B1 (de) Rotorstufe für eine strömungsmaschine, rotortrommel und rotor
EP3091179B1 (de) Rotoranordnung für eine strömungsmaschine und verdichter
EP3091178A1 (de) Rotortrommel für eine strömungsmaschine und verdichter
DE60020477T2 (de) Kühlluftzufuhr durch die Verbindungsflansche eines Turbinenrotors
EP3192966B1 (de) Rotor für eine axiale strömungsmaschine mit einem axial ausgerichteten wuchtflansch und verdichter
EP2024608B1 (de) Turboverdichter in axialbauweise
EP1659293A2 (de) Strömungsmaschine
DE102008002867A1 (de) In Spannenrichtung geteilte verstellbare Leitschaufel und zugehöriges Verfahren
EP2108784A2 (de) Strömungsmaschine mit Fluid-Injektorbaugruppe
DE102011112250A1 (de) Hilfsgerätegetriebeeinrichtung für ein Triebwerk
EP2808556B1 (de) Strukturbaugruppe für eine Strömungsmaschine
CH708704A2 (de) Turbinenblisk mit Deckband und Verfahren zur Herstellung derselben.
EP1705339B1 (de) Rotorwelle, insbesondere für eine Gasturbine
WO2011124214A2 (de) Leitschaufel einer strömungsmaschine
EP1624192A1 (de) Verdichterschaufel für einen Verdichter und Verdichter
EP3056684B1 (de) Axial geteilter Innenring für eine Strömungsmaschine, Leitschaufelkranz und Flugtriebwerk
DE102009003480A1 (de) Dampfturbine und Verfahren zum Zusammenbau derselben
EP4219897A1 (de) Rotor mit einem wuchtflansch, rotoranordnung mit zumindest einem rotor und strömungsmaschine mit zumindest einem rotor oder mit einer rotoranordnung
EP3203030A1 (de) Rotor-stator-verbund für eine axiale strömungsmaschine und flugtriebwerk
EP2650520B1 (de) Fluggasturbine mit einem Entlastungskanal in einem Leitschaufelfußelement eines Nebenstromkanals
WO2020011471A1 (de) Radialturbomaschine und verfahren zum betrieb
EP2177770A2 (de) Verdichter für eine Gasturbine
EP2792855B1 (de) Inneres Lagergehäuse eines Abgasturboladers
EP3601739A1 (de) Turbolader für eine brennkraftmaschine sowie turbinengehäuse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180119

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180626

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 5/02 20060101AFI20200910BHEP

Ipc: F01D 11/00 20060101ALN20200910BHEP

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 5/02 20060101AFI20200916BHEP

Ipc: F01D 11/00 20060101ALN20200916BHEP

INTG Intention to grant announced

Effective date: 20201009

INTG Intention to grant announced

Effective date: 20201019

INTC Intention to grant announced (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 11/00 20060101ALN20201016BHEP

Ipc: F01D 5/02 20060101AFI20201016BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 11/00 20060101ALN20201027BHEP

Ipc: F01D 5/02 20060101AFI20201027BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 11/00 20060101ALN20201105BHEP

Ipc: F01D 5/02 20060101AFI20201105BHEP

INTG Intention to grant announced

Effective date: 20201208

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016013046

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1394125

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210819

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210820

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210919

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210819

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210920

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016013046

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210919

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220114

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1394125

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 9

Ref country code: GB

Payment date: 20240124

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240124

Year of fee payment: 9