EP3187787B1 - Verfahren zur thermischen regulierung eines warmwassererzeugungssystems - Google Patents

Verfahren zur thermischen regulierung eines warmwassererzeugungssystems Download PDF

Info

Publication number
EP3187787B1
EP3187787B1 EP16206905.8A EP16206905A EP3187787B1 EP 3187787 B1 EP3187787 B1 EP 3187787B1 EP 16206905 A EP16206905 A EP 16206905A EP 3187787 B1 EP3187787 B1 EP 3187787B1
Authority
EP
European Patent Office
Prior art keywords
heat pump
performance coefficient
water
temperature
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16206905.8A
Other languages
English (en)
French (fr)
Other versions
EP3187787A1 (de
Inventor
Didier MIASIK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guillot Industrie SAS
Original Assignee
Guillot Industrie SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guillot Industrie SAS filed Critical Guillot Industrie SAS
Priority to PL16206905T priority Critical patent/PL3187787T3/pl
Publication of EP3187787A1 publication Critical patent/EP3187787A1/de
Application granted granted Critical
Publication of EP3187787B1 publication Critical patent/EP3187787B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/10Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system
    • F24D3/1091Mixing cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1072Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1081Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water counting of energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/04Gas or oil fired boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/32Heat sources or energy sources involving multiple heat sources in combination or as alternative heat sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/02Fluid distribution means
    • F24D2220/0221Mixing cylinders

Definitions

  • the subject of the invention is a method of thermal regulation of a water heating system intended to supply a room with hot water, and a hydraulic cylinder for a water heating system intended to supply a room with hot water.
  • a so-called hybrid type heating system comprises at least two types of thermal sources, namely an auxiliary fossil energy generator on the one hand and a heat pump on the other hand.
  • One and / or the other of the two thermal sources ensures (s) the heating of the water which, then, circulates preferably in a local heating network and / or in a heat exchanger connected to a tank d domestic hot water.
  • a method of thermal regulation of such a heating system provides for triggering the heat pump in a given range of outside temperatures.
  • An example of such a thermal regulation method is known from the document. EP 2,463,591 A1 .
  • the heat pump is modulated to operate at partial load to provide a flow at an intermediate temperature for which the coefficient of performance of the heat pump is effective depending on the price of electricity.
  • the heating of the water is carried out only by the auxiliary fossil fuel generator when the outside temperature becomes below a limit temperature, for example of the order of 2 ° C.
  • Such a known method is particularly ill-suited to more complex so-called collective heating systems, for which a plurality of heat pumps are connected to a plurality of back-up generators.
  • the object of the invention is to remedy the aforementioned drawbacks.
  • the real coefficient of performance is calculated as a function of an outside temperature, of a temperature characteristic of the heat pump and of the charge rate of the heat pump.
  • the method comprises a step of comparing the actual coefficient of performance with a threshold value, called the threshold coefficient of performance.
  • the method comprises a step of measuring the temperature of the water leaving the hydraulic cylinder, and a step of activating the auxiliary generator if, at a given time of operation of the heat pump, the outlet temperature is lower than the set temperature.
  • the method comprises a step of deactivating the heat pump if the actual coefficient of performance is less than the threshold coefficient of performance.
  • the method comprises a step of determining the real coefficient of performance at a given interval, regular or irregular, during the deactivation of the heat pump.
  • the method comprises a step of activating the heat pump when the actual coefficient of performance becomes again equal to the threshold coefficient of performance.
  • the method comprises a step of blocking activation of the booster generator for a given period, called blocking period.
  • the method comprises a step of determining the actual coefficient of performance of the heat pump at given times during the blocking period, a step of comparing the actual coefficient of performance with a threshold value, said threshold performance coefficient, and a step of activating the backup generator if the actual performance coefficient is less than the threshold performance coefficient.
  • the charge rate of the heat pump is modified so that increase the coefficient of performance to a maximum value.
  • the charge rate is modified from the heat pump so as to increase the charge rate to a maximum value.
  • the invention also relates to a hydraulic cylinder for a water heating system intended to supply hot water to a room, comprising a tapping shaped to supply water to a heat pump, a tapping shaped to receive water from said heat pump, a nozzle shaped to supply water to a backup fossil energy generator, a nozzle shaped to receive water from the auxiliary generator of fossil energy, a nozzle configured to supply water to a reservoir of hot water in the room, a shaped tap to receive water from the hot water tank of the room, a shaped tap to supply water to an air heating network in the room and a shaped tap to receive water from a local air heating network, the bottle comprising a temperature sensor in a bottom part of a bottle tank and a temperature sensor in a top part of the bottle tank, so that implement the regulation process described above.
  • a diameter of the bottle measures between two and five times more than a diameter of greater value among the diameters of the nozzles, called maximum diameter, and / or a distance between two nozzles measures between two times and six times more than the diameter of greatest value among diameters of the nozzles.
  • the invention also relates to a water heating system intended to supply a room with hot water, comprising at least one auxiliary fossil energy generator, at least one heat pump and a hydraulic decoupling bottle as described previously connected to each back-up generator and to each heat pump and a calculation unit to implement the regulation method as described above.
  • a supply water heating system for a hot water room is referenced 1 on the figure 1 , the room preferably being outside system 1.
  • the hot water is intended to supply a heating network by radiators and a heat exchanger for a storage tank for domestic hot water, as will be explained.
  • the heating system 1 is of the hybrid type, that is to say that the system 1 comprises at least two types of thermal sources, namely at least one auxiliary fossil energy generator 2 on the one hand, and d on the other hand, at least one heat pump 3.
  • the generator 2 is for example a gas or oil boiler.
  • the heat pump 3 is preferably of the variable compressor speed type, which allows a modulation of the power of the heat pump as a function of its charge rate. We are talking about an "inverter” type heat pump.
  • the heating system 1 also comprises a hydraulic decoupling bottle 4 connected to the generator 2 and to the heat pump 3.
  • the hydraulic decoupling bottle 4 is also connected to a network 5 for heating the air in the room by radiators and to a heat exchanger of a DHW storage tank 6 in the room.
  • the heat exchanger is either a coil or a plate exchanger.
  • the system comprises a single heat pump 3 and a single generator 2.
  • the invention is not limited to this embodiment and the system can comprise several heat pumps or generators connected in parallel on hydraulic cylinder tappings.
  • the hydraulic cylinder 4 comprises a water tank provided with a set of four pairs of tappings 7 to 11.
  • the first tap 7 of the first pair is shaped to receive water from the heat pump 3.
  • the tap 7 is also called the heat pump start tap.
  • the second tap 8 of the first pair is shaped to supply water to the heat pump 3.
  • the tap 8 is otherwise called a heat pump return tap.
  • the first connection 9 of the second pair is configured to receive water from the auxiliary generator 2.
  • the connection 9 is otherwise called the starting connection for the additional generator.
  • the second tap 10 of the second pair is shaped to supply water to the booster generator 2.
  • the tap 10 is otherwise called back booster generator booster.
  • the first tap 11 of the third pair is shaped to receive water from the network 5 of radiators.
  • the connection 11 is also called the return heating connection.
  • the second tap 12 of the third pair is shaped to supply water to the network 5 of radiators.
  • the tap 12 is otherwise called the heating flow tap.
  • the first connection 13 of the fourth pair is configured to receive water from the heat exchanger of the preparer 6.
  • the connection 13 is otherwise called the preparator outlet connection.
  • the second tap 14 of the fourth pair is shaped to supply water to the heat exchanger of the preparer 6.
  • the tap 14 is otherwise called the preparator inlet tap.
  • each of the circuits relating respectively to the backup generator 2, to the heat pump 3, to the heating network 5 and to the preparer 6, are fluidly independent of each other.
  • each pair of taps 7 to 14 is fluidly independent of the other pairs.
  • the hydraulic decoupling bottle 4 has an internal volume constituting a buffer zone, which makes it possible to decouple the water flows in each circuit.
  • the taps 7, 8 for the heat pump start and return, and the taps 11 and 13 for the heating and tank return are arranged in a first zone 15 of the hydraulic decoupling bottle 4.
  • the nozzles 9, 10 for the start and return of the auxiliary generator, and the nozzles 12 and 14 for the heating and preparator flow are placed in a second zone 16 of the hydraulic decoupling bottle 4.
  • the first zone 15 is in the lower part of the hydraulic decoupling bottle 4 while the second zone 16 is in the upper part of the hydraulic decoupling bottle 4.
  • the first zone 15 corresponds to lower water temperatures than the second zone 16.
  • temperature sensors are positioned in each tap 7 to 14, or in some taps among the taps 7 to 14, or at least one temperature sensor is positioned in the low zone 15 and another in the high zone 16.
  • the diameter of the bottle 4 measures between two and five times more than the diameter of greatest value among the diameters of the taps 7 to 14.
  • a distance between two consecutive nozzles measures between two and six times more than the diameter of greatest value among the diameters of the nozzles 7 to 14.
  • Tc a thermal regulation process 30 of the heating system 1 is triggered.
  • the set temperature Tc corresponds to a temperature which the water must reach in the upper zone 16 of the hydraulic decoupling bottle 4.
  • This temperature is called the bottle outlet temperature.
  • the regulation method 30 comprises a step 31 of activation of the heat pump 3 systematically following the triggering of the thermal regulation process 30. This step is referenced ACT on the figure 3 .
  • This step ensures that the heat pump 3 constitutes the priority thermal source for the heating system 1.
  • the method 30 also includes a step 32 of determining a coefficient of performance (COP) of the heat pump 3, called the actual coefficient of performance, and referenced DET, whether the compressor is operating or is stopped.
  • COP coefficient of performance
  • the actual coefficient of performance is calculated whether the heat pump is running or, on the contrary, stopped.
  • Step 32 of determining the real coefficient of performance is carried out at given times during a period of use of the heating system 1.
  • step 32 of determining the actual coefficient of performance comprises a succession of steps during which the coefficient of performance is determined at regular or irregular intervals.
  • the thermal regulation method 30 therefore provides a calculation of the coefficient of performance in real time of use of the heating system 1.
  • the actual coefficient of performance is calculated at a time interval of the order of 2 minutes.
  • the real coefficient of performance is defined as a ratio between a heat power generated by the heat pump 3 and an electric power consumed by the heat pump 3.
  • the regulation method 30 also comprises a step 33 of modulating a charge rate of the pump to heat 3 as a function of the measured value of the actual coefficient of performance and of a comparison of the temperature of water leaving the hydraulic cylinder with the set temperature, referenced MOD.
  • the charge rate is defined as a ratio between a heat load at partial load of the heat pump and a heat load at full load of the heat pump.
  • the charge rate is between 0% and 100%, the value 0% corresponding to the shutdown of the heat pump 3 and the value 100% at full load of the heat pump 3.
  • the real coefficient of performance is calculated as a function of an outside temperature T ext , a characteristic temperature of the heat pump 3 and the charge rate of the pump. heat 3.
  • the outside temperature T ext is measured by a temperature sensor, placed outside the heating system and the room.
  • the characteristic temperature of the heat pump is, for example, an outlet temperature T dep corresponding to the temperature of the water circulating in the heat pump outlet nozzle 7, or a temperature of the water in the nozzle pump return 8 to heat, called return temperature T ret heat pump.
  • the flow temperatures T dep and return T ret are measured by temperature sensors.
  • the real coefficient of performance depends on the outside temperature T ext , on the flow temperature or on the return and the charge rate of the heat pump, according to a polynomial, or according to a matrix.
  • the method 30 also includes a step 34 of comparing the actual coefficient of performance with a threshold value, called the threshold coefficient of performance. This step is referenced COMP.
  • the threshold coefficient of performance corresponds to an optimum operating speed limit for the heat pump 3.
  • the comparison step 34 is carried out after each calculation of real COP.
  • the threshold coefficient of performance may depend on the efficiency of the backup generator 2, by a limit value such that an energy bill linked to the operation of the heat pump 3 is equal to an energy bill linked to the operation of the backup generator 2, respective emissions of carbon dioxide from the heat pump 3 and the generator 2, or alternatively the respective primary energy consumption of the heat pump 3 and the generator 2.
  • the method 30 comprises a step 35 of deactivation of the heat pump 3 if the real coefficient of performance is lower than the threshold coefficient of performance, referenced DESACT.
  • the backup generator 2 is then activated.
  • the method 30 comprises a step 36 for measuring (MES) the temperature of the water leaving the hydraulic cylinder 4, and a step for activating the auxiliary generator if, at a given operating time of the heat pump, the outlet temperature is lower than the set temperature.
  • MES measuring
  • the operating time of the heat pump to activate the backup generator 2 is for example of the order of 5 minutes.
  • the two thermal sources that is to say the heat pump 3 and the auxiliary generator 2 simultaneously provide heating of the water for the taps 12 and 14 for the heating start and the preparator start.
  • the method 30 comprises a step 37 of determining (DET) the actual coefficient of performance at a given interval, regular or irregular, during the deactivation of the heat pump 3 preferably followed by a step of activating the heat pump 3 when the actual coefficient of performance becomes equal to the threshold coefficient of performance.
  • the method 30 advantageously comprises a blocking step 38 (BLO) of activation of the booster generator 2 for a given duration, called the blocking duration.
  • BLO blocking step 38
  • the blocking step 38 is active in summer or during periods when the room is not heated by the network of radiators.
  • the blocking time is for example of the order of 30 minutes.
  • the water is only heated by the heat pump 3, even if the temperature at the outlet of the bottle remains below the set temperature.
  • the step of modulating the charge rate comprises a step not illustrated of modifying the charge rate of the heat pump 3 so that the performance coefficient increases up to 'to a maximum value.
  • This step makes it possible to reduce the energy expenditure due to the heat pump 3.
  • the step of modulating the charge rate comprises a step not illustrated of modifying the charge rate of the heat pump 3 until reaching a maximum charge rate, for example of the order of 100% .
  • This step reduces the return on investment time of the heating system.
  • the regulation process is implemented by a computing unit.
  • the Figures 4 and 5 illustrate an evolution over time respectively of the charge rate Tx of the heat pump 3 (in percentage), according to a curve 41, of the flow temperature T dep , according to a curve 51, and of the water temperature in the heat pump return connection 8, that is to say the return temperature T ret heat pump, according to a curve 52.
  • the charge rate Tx decreases over time, following the calculation of the real performance coefficient in real time, which contributes in particular to a reduction in the difference between T dep and T ret and an increase in the performance coefficient.
  • the figure 6 illustrates an evolution in winter and over time respectively of the charge rate Tx of the heat pump 3, according to a curve 61, of a charge rate Txx (in percentage) of the generator make-up 2 along a curve 62, of the flow temperature T dep , according to a curve 63, and of the return temperature T ret , according to a curve 64.
  • the figure 7 illustrates an evolution in summer and over time respectively of the charge rate Tx of the heat pump 3, according to a curve 71, of a charge rate Txx of the auxiliary generator 2 according to a curve 72, of the temperature of flow T dep , according to a curve 73, and return temperature T ret , according to a curve 74.
  • the blocking step 38 is deactivated.
  • this delay in triggering the generator 2 requires that the heat pump 3 alone heat the water to the network 5 and the heat exchanger 6.
  • the regulation method 30 ensuring the calculation of the real coefficient of performance in real time during the operation of the heating system 1, optimal operation of the system 1 is obtained, since the real coefficient of performance is kept greater than or equal to the real coefficient of performance threshold, even if it means topping up with the backup generator 2 without stopping the heat pump 3.
  • the heating system 1 ensures, due in particular to the hydraulic decoupling bottle 4, autonomous operation of the circuits relating to the backup generator 2, the heat pump 3, the heating network 5 and the preparer 6, this which allows you to choose optimal operating conditions for each circuit.
  • the invention applies very particularly to the case where the heating system 1 comprises a plurality of back-up generators and a plurality of heat pumps; in this case, the room supplied by system 1 is a collective installation (as opposed to domestic).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Claims (14)

  1. Verfahren zum thermischen Regulieren eines Systems (1) zum Heizen von Wasser, welches dazu vorgesehen ist, eine Lokalität mit heißem Wasser zu versorgen, wobei das System zum Heizen einen Zusatzgenerator für fossile Energie (2), eine Wärmepumpe mit einem Kompressor mit variabler Geschwindigkeit (3) und eine Flasche zur hydraulischen Entkopplung (4) umfasst, welche mit dem Zusatzgenerator (2) und der Wärmepumpe (3) verbunden ist, wobei das Verfahren zum Regulieren umfasst:
    - einen Schritt eines systematischen Aktivierens der Wärmepumpe (3) nachfolgend auf einen Schritt eines Aktivierens des Systems zum Heizen (1), um die Temperatur des Wasser, welches aus der hydraulischen Flasche austritt, auf eine gegebene Temperatur zu regeln, genannt Solltemperatur,
    - einen Schritt eines Bestimmens eines Leistungskoeffizienten der Wärmepumpe zu gegebenen Zeiten während einer Betriebsdauer des Systems zum Heizen (1), genannt tatsächlicher Leistungskoeffizient, wenn der Kompressor arbeitet oder im Stillstand ist, und
    - einen Schritt eines Modulierens einer Lastrate der Wärmepumpe als Funktion des gemessenen Werts des tatsächlichen Leistungskoeffizienten und eines Vergleichens der Temperatur des aus der hydraulischen Flasche austretenden Wassers mit der Solltemperatur.
  2. Verfahren zum thermischen Regulieren nach Anspruch 1, wobei während des Schritts des Bestimmens des tatsächlichen Leistungskoeffizienten der tatsächliche Leistungskoeffizient als Funktion einer Außentemperatur, einer charakteristischen Temperatur der Wärmepumpe (3) und einer Lastrate der Wärmepumpe (3) berechnet wird.
  3. Verfahren zum thermischen Regulieren nach einem der Ansprüche 1 oder 2, umfassend einen Schritt eines Vergleichens des tatsächlichen Leistungskoeffizienten mit einem Schwellenwert, genannt Schwellen-Leistungskoeffizient.
  4. Verfahren zum thermischen Regulieren nach dem vorhergehenden Anspruch, umfassend einen Schritt eines Messens der Ausgangstemperatur des Wassers aus der hydraulischen Flasche (4) und eines Schritts eines Aktivierens des Zusatzgenerators, wenn zu einer gegebenen Betriebszeit der Wärmepumpe die Ausgangstemperatur kleiner als die Solltemperatur ist.
  5. Verfahren zum thermischen Regulieren nach einem der vorhergehenden Ansprüche, umfassend einen Schritt eines Deaktivierens der Wärmepumpe, wenn der tatsächliche Leistungskoeffizient kleiner als der Schwellen-Leistungskoeffizient ist.
  6. Verfahren zum thermischen Regulieren nach dem vorhergehenden Anspruch, umfassend einen Schritt eines Bestimmens des tatsächlichen Leistungskoeffizienten zu einem gegebenen regelmäßigen oder unregelmäßigen Intervall während der Deaktivierung der Wärmepumpe.
  7. Verfahren zum thermischen Regulieren nach dem vorhergehenden Anspruch, umfassend einen Schritt eines Aktivierens der Wärmepumpe, wenn der tatsächliche Leistungskoeffizient wieder gleich dem Schwellen-Leistungskoeffizienten wird.
  8. Verfahren zum thermischen Regulieren nach einem der vorhergehenden Ansprüche, umfassend einen Schritt eines Blockierens des Aktivierens des Zusatzgenerators während einer gegebenen Dauer, genannt Blockierungsdauer.
  9. Verfahren zum thermischen Regulieren nach dem vorhergehenden Anspruch, umfassend einen Schritt eines Bestimmens des tatsächlichen Leistungskoeffizienten der Wärmepumpe zu gegebenen Zeiten während der Blockierungsdauer, einen Schritt eines Vergleichens des tatsächlichen Leistungskoeffizienten mit einem Schwellenwert, genannt Schwellen-Leistungskoeffizient, und einen Schritt eines Aktivierens des Zusatzgenerators, wenn der tatsächliche Leistungskoeffizient kleiner als der Schwellen-Leistungskoeffizient ist.
  10. Verfahren zum thermischen Regulieren nach einem der Ansprüche 3 bis 9, wobei während des Schritts des Modulierens der Lastrate, wenn der Leistungskoeffizient größer oder gleich dem Schwellen-Leistungskoeffizient ist, die Lastrate der Wärmepumpe (3) derart modifiziert wird, dass der Leistungskoeffizient bis zu einem maximalen Wert erhöht wird.
  11. Verfahren zum thermischen Regulieren nach einem der Ansprüche 3 bis 9, wobei während des Schritts des Modulierens der Lastrate, wenn der Leistungskoeffizient größer oder gleich dem Schwellen-Leistungskoeffizient ist, die Lastrate der Wärmepumpe (3) derart modifiziert wird, dass die Lastrate bis zu einem maximalen Wert erhöht wird.
  12. Hydraulische Flasche für ein System zum Heizen von Wasser, welches dazu vorgesehen ist, eine Lokalität mit heißem Wasser zu versorgen, umfassend eine Abzweigung, welche dazu gebildet ist, eine Wärmepumpe mit Wasser zu versorgen, eine Abzweigung, welche dazu gebildet ist, Wasser von der Wärmepumpe zu erhalten, eine Abzweigung, welche dazu gebildet ist, einen Zusatzgenerator für fossile Energie mit Wasser zu versorgen, eine Abzweigung, welche dazu gebildet ist, das Wasser von dem Zusatzgenerator für fossile Energie zu empfangen, eine Abzweigung, welche dazu gebildet ist, ein Heißwasser-Reservoir der Lokalität mit Wasser zu versorgen, eine Abzweigung, welche dazu gebildet ist, Wasser von dem Heißwasser-Reservoir der Lokalität zu erhalten, eine Abzweigung, welche dazu gebildet ist, ein Netz zum Heizen von Luft der Lokalität mit Wasser zu versorgen, und eine Abzweigung, welche dazu gebildet ist, das Wasser von einem Netz zum Heizen von Luft der Lokalität zu erhalten, wobei die Flasche einen Temperatursensor in einem unteren Teil (15) eines Reservoirs der Flasche und einen Temperatursensor in einem oberen Teil (16) des Reservoirs der Flasche derart umfasst, dass das Verfahren zum Regulieren nach einem der vorhergehenden Ansprüche ausgeführt wird.
  13. Hydraulische Flasche nach dem vorhergehenden Anspruch, wobei ein Durchmesser der Flasche zwischen zweimal und fünfmal mehr als ein Durchmesser mit dem größten Wert aus den Durchmessern der Abzweigungen misst und/oder ein Abstand zwischen zwei Abzweigungen zwischen zweimal und sechsmal mehr als der Durchmesser mit dem größten Wert aus den Durchmessern der Abzweigungen misst.
  14. System zum Heizen von Wasser, welches dazu vorgesehen ist, eine Lokalität mit heißem Wasser zu versorgen, umfassend wenigstens einen Zusatzgenerator für fossile Energie, wenigstens eine Wärmepumpe und eine Flasche zur hydraulischen Entkopplung nach einem der Ansprüche 12 oder 13, welche mit dem wenigstens einen Zusatzgenerator und der wenigstens einen Wärmepumpe und einer Berechnungseinheit zum Durchführen des Verfahrens zum Regulieren nach einem der Ansprüche 1 bis 11 verbunden ist.
EP16206905.8A 2015-12-28 2016-12-26 Verfahren zur thermischen regulierung eines warmwassererzeugungssystems Active EP3187787B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16206905T PL3187787T3 (pl) 2015-12-28 2016-12-26 Sposób regulowania termicznego układu ogrzewania wody

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1563402A FR3046217B1 (fr) 2015-12-28 2015-12-28 Procede de regulation thermique d'un systeme de chauffage d'eau

Publications (2)

Publication Number Publication Date
EP3187787A1 EP3187787A1 (de) 2017-07-05
EP3187787B1 true EP3187787B1 (de) 2020-02-12

Family

ID=55451422

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16206905.8A Active EP3187787B1 (de) 2015-12-28 2016-12-26 Verfahren zur thermischen regulierung eines warmwassererzeugungssystems

Country Status (4)

Country Link
EP (1) EP3187787B1 (de)
ES (1) ES2789362T3 (de)
FR (1) FR3046217B1 (de)
PL (1) PL3187787T3 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800009760A1 (it) * 2018-10-24 2020-04-24 Adsum Srl Sistema e metodo per riscaldare un fluido tramite una pompa di calore e una caldaia
CZ32676U1 (cs) * 2018-10-25 2019-03-19 Almeva Ag Sdružený systém pro ohřev užitkové vody a otopného média pro domovní vytápění a/nebo pro chlazení otopného média pro domovního chlazení

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IES73226B2 (en) * 1995-08-29 1997-05-21 Monard Research & Dev Limited A manifold for connecting circuits of a central heating system
EP2159495B1 (de) * 2008-08-25 2017-11-15 Honeywell Technologies Sarl Heizsystem
ES2665566T3 (es) * 2010-12-08 2018-04-26 Daikin Europe N.V. Calefacción

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR3046217B1 (fr) 2017-12-22
ES2789362T3 (es) 2020-10-26
FR3046217A1 (fr) 2017-06-30
EP3187787A1 (de) 2017-07-05
PL3187787T3 (pl) 2020-09-21

Similar Documents

Publication Publication Date Title
EP3404334B1 (de) Energiespeicherverfahren und -anlage, die einen wasserboiler umfasst
EP3187787B1 (de) Verfahren zur thermischen regulierung eines warmwassererzeugungssystems
EP3117158B1 (de) Elektro-wassererwärmer mit einstellbarer leistung
FR3073932A1 (fr) Appareil de chauffage integrant une batterie et un onduleur pour injecter de l’energie de la batterie vers la source d’alimentation electrique
EP2535648B1 (de) Heizkörper für eine Zentralheizanlage, und einen solchen Heizkörper umfassende Zentralheizanlage
EP3117159B1 (de) Elektro-wassererwärmer mit einstellbarer leistung
FR3019882A1 (fr) Systeme de chauffe-eau a consommation energetique modulable
WO2015197622A1 (fr) Procédé de gestion de puissance dans une installation électrique et installation électrique
EP3545724B1 (de) Heizvorrichtung vom typ eines elektrischen heizkörpers mit einem spannungswandler
Ashok Kumar et al. Design and implementation of automatic water spraying system for solar photovoltaic module
EP3340004B1 (de) Verfahren zur bestimmung der entlastungsfähigkeit eines gebäudes durch ausnutzung der thermischen trägheit, entsprechendes entlastungsverfahren und system zur umsetzung dieser verfahren
EP2990904B1 (de) Verfahren zur steuerung des stromverbrauchs eines stromnetzes
CN111664573A (zh) 一种燃气热水器的防冻控制方法及装置
EP3671051A1 (de) Kontrollverfahren des rücklaufs der sanitärwasserzirkulation für warmwassererzeugungssystem
WO2015033047A1 (fr) Procédé de contrôle de la régulation électrique d'une installation électrique en fonction de consignes d'effacement
JP6141750B2 (ja) 熱電供給装置の制御方法および熱電供給システム
EP2770263A2 (de) Verfahren und Anlage zum Erwärmen von Wasser
EP3258187B1 (de) Verfahren zur änderung des energieverbrauchs eines geräts
FR3025296A1 (fr) Gestion de la relance d'un systeme de chauffage thermodynamique
EP2651673B1 (de) System und verfahren zur steuerung eines klimaanlagensystems für ein kraftfahrzeug
FR3035484A1 (fr) Systeme de production d'eau chaude
FR3088414A1 (fr) Procede de controle d'une puissance thermique a injecter dans un systeme de chauffage et systeme de chauffage mettant en œuvre ce procede
EP4113015A1 (de) Anlage zur warmwasserbereitung
EP4224073A1 (de) Verfahren zur steuerung des betriebs einer wärmepumpe
EP2224176B1 (de) Verbesserte Warmwasseranlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171121

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190829

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1232615

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016029464

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: VALIPAT S.A. C/O BOVARD SA NEUCHATEL, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200612

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2789362

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20201026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200705

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016029464

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1232615

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200212

26N No opposition filed

Effective date: 20201113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20221129

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231124

Year of fee payment: 8

Ref country code: LU

Payment date: 20231124

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231221

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231211

Year of fee payment: 8

Ref country code: FR

Payment date: 20231116

Year of fee payment: 8

Ref country code: DE

Payment date: 20231208

Year of fee payment: 8

Ref country code: CZ

Payment date: 20231122

Year of fee payment: 8

Ref country code: AT

Payment date: 20231120

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231127

Year of fee payment: 8

Ref country code: BE

Payment date: 20231212

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240108

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 8