EP3187787A1 - Method for thermal regulation of a water-heating system - Google Patents

Method for thermal regulation of a water-heating system Download PDF

Info

Publication number
EP3187787A1
EP3187787A1 EP16206905.8A EP16206905A EP3187787A1 EP 3187787 A1 EP3187787 A1 EP 3187787A1 EP 16206905 A EP16206905 A EP 16206905A EP 3187787 A1 EP3187787 A1 EP 3187787A1
Authority
EP
European Patent Office
Prior art keywords
performance
coefficient
heat pump
water
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16206905.8A
Other languages
German (de)
French (fr)
Other versions
EP3187787B1 (en
Inventor
Didier MIASIK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guillot Industrie SAS
Original Assignee
Guillot Industrie SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guillot Industrie SAS filed Critical Guillot Industrie SAS
Priority to PL16206905T priority Critical patent/PL3187787T3/en
Publication of EP3187787A1 publication Critical patent/EP3187787A1/en
Application granted granted Critical
Publication of EP3187787B1 publication Critical patent/EP3187787B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/10Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system
    • F24D3/1091Mixing cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1072Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1081Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water counting of energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/04Gas or oil fired boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/32Heat sources or energy sources involving multiple heat sources in combination or as alternative heat sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/02Fluid distribution means
    • F24D2220/0221Mixing cylinders

Definitions

  • the subject of the invention is a method of thermal regulation of a water heating system intended to supply a room with hot water.
  • a so-called hybrid heating system comprises at least two types of thermal sources, namely a fossil energy supplement generator on the one hand and a heat pump on the other hand.
  • One and / or the other of the two thermal sources ensures (s) the heating of the water, which then circulates preferably in a heating network of the room and / or in a heat exchanger connected to a storage tank. local hot water.
  • a method of thermal regulation of such a heating system provides for triggering the heat pump within a given range of outside temperatures.
  • the heating of the water is carried out only by the auxiliary generator with fossil energy when the outside temperature becomes lower than a limit temperature, for example of the order of 2 ° C.
  • Such a known method is particularly poorly suited to more complex so-called collective heating systems, for which a plurality of heat pumps are connected to a plurality of auxiliary generators.
  • the object of the invention is to overcome the aforementioned drawbacks.
  • the real coefficient of performance is calculated as a function of an outside temperature, a temperature characteristic of the heat pump and the charge rate of the heat pump.
  • the method comprises a step of comparing the actual coefficient of performance with a threshold value, called the threshold performance coefficient.
  • the method comprises a step of measuring the outlet temperature of the water out of the hydraulic bottle, and a step of activating the backup generator if, at a given time of operation of the heat pump, the outlet temperature is lower than the set temperature.
  • the method comprises a step of deactivating the heat pump if the real coefficient of performance is lower than the threshold performance coefficient.
  • the method comprises a step of determining the real coefficient of performance at a given interval, regular or irregular, during the deactivation of the heat pump.
  • the method comprises a step of activation of the heat pump when the real coefficient of performance becomes equal to the threshold performance coefficient.
  • the method comprises a step of blocking the activation of the backup generator for a given duration, called the blocking time.
  • the method comprises a step of determining the real coefficient of performance of the heat pump at given times during the blocking time, a step of comparing the actual coefficient of performance with a threshold value, said threshold performance coefficient, and a step of activating the backup generator if the real performance coefficient is lower than the threshold performance coefficient.
  • the charge rate of the heat pump is modified so that to increase the coefficient of performance to a maximum value.
  • the charge rate of the charge is modified. the heat pump so as to increase the charge rate to a maximum value.
  • the invention also relates to a hydraulic bottle for a water heating system for supplying hot water to a room, comprising a tapping shaped to supply water to a heat pump, a tapping shaped to receive water from said heat pump, a stitching shaped to supply water to a fossil-energy supplemental generator, a stitching shaped to receive water from the fossil-fuel booster generator, a stitching shaped to supply water to a tank of local hot water, a shaped nozzle receiving water from the hot water tank of the premises, a tapping shaped to supply water to an air heating network of the premises and a tapping shaped to receive water from an air heating network of the room, the bottle comprising a temperature sensor in a lower part of a tank of the bottle and a temperature sensor in an upper part of the tank of the bottle, so as to implement the regulation method described above.
  • a diameter of the bottle measures between two and five times more than one diameter of greater value among diameters of the taps, said maximum diameter, and / or a distance between two taps measured between two times and six times more than the diameter of greater value among diameters of the connections.
  • the invention also relates to a water heating system for supplying a local hot water, comprising at least one fossil energy supplement generator, at least one heat pump and a hydraulic decoupling cylinder as described previously connected to each booster generator and to each heat pump and a computing unit to implement the control method as described above.
  • a hot water supply heating system of a local hot water is referenced 1 on the figure 1 , the room preferably being outside the system 1.
  • the hot water is intended to supply a radiator heating network and a heat exchanger for a hot water storage tank, as will be explained.
  • the heating system 1 is of the hybrid type, that is to say that the system 1 comprises at least two types of thermal sources, namely at least one fossil energy supplement generator 2 on the one hand and, on the other hand, at least one heat pump 3.
  • the generator 2 is for example a gas or oil boiler.
  • the heat pump 3 is preferably of variable compressor speed type, which allows a power modulation of the heat pump according to its charge rate. We speak of heat pump type "inverter”.
  • the heating system 1 also comprises a hydraulic decoupling bottle 4 connected to the generator 2 and to the heat pump 3.
  • the hydraulic decoupling bottle 4 is also connected to a network 5 for heating the room air by radiators and to a heat exchanger of a domestic hot water storage tank 6 of the room.
  • the heat exchanger is either a coil or a plate heat exchanger.
  • the system comprises a single heat pump 3 and a single generator 2.
  • the invention is not limited to this embodiment and the system may comprise several heat pumps or generators connected in parallel. on tappings of the hydraulic cylinder.
  • the hydraulic bottle 4 comprises a water tank provided with a set of four pairs of taps 7 to 11.
  • the first tapping 7 of the first pair is shaped to receive water from the heat pump 3.
  • the tapping 7 is otherwise called heat pump start tapping.
  • the second tapping 8 of the first pair is shaped to supply water to the heat pump 3.
  • the tapping 8 is otherwise called heat pump return tapping.
  • the first tapping 9 of the second pair is shaped to receive water from the booster generator 2.
  • the tapping 9 is otherwise called auxiliary generator tapping.
  • the second tapping 10 of the second pair is shaped to supply water to the booster generator 2.
  • the tapping 10 is otherwise called backup generator return tapping.
  • the first tapping 11 of the third pair is shaped to receive water from the network 5 of radiators. Stitching 11 is otherwise called heating return stitching.
  • the second tapping 12 of the third pair is shaped to supply water to the network 5 of radiators.
  • Stitching 12 is otherwise called heating start stitching.
  • the first tapping 13 of the fourth pair is shaped to receive water from the heat exchanger of the preparer 6.
  • the tapping 13 is otherwise called preparator output tapping.
  • the second tapping 14 of the fourth pair is shaped to supply water to the heat exchanger of the preparer 6.
  • the tapping 14 is otherwise called preparator inlet tapping.
  • each of the circuits relating respectively to the booster generator 2, the heat pump 3, the heating network 5 and the preparer 6, are fluidly independent of each other.
  • each pair of taps 7 to 14 is fluidly independent of the other pairs.
  • the hydraulic decoupling bottle 4 has an internal volume constituting a buffer zone, which makes it possible to decouple the flow rates of water in each circuit.
  • outlets 7, 8 for starting and return heat pump, and the connections 11 and 13 return heating and preparer are arranged in a first zone 15 of the hydraulic decoupling bottle 4.
  • outlets 9, 10 for the start and return of the auxiliary generator, and the taps 12 and 14 for the heating and preparer flow are arranged in a second zone 16 of the hydraulic decoupling bottle 4.
  • the first zone 15 is at the bottom of the hydraulic decoupling bottle 4 while the second zone 16 is at the top of the hydraulic decoupling bottle 4.
  • the first zone 15 corresponds to lower water temperatures than the second zone 16.
  • temperature sensors are positioned in each tapping 7 to 14, or in some of the tappings 7 to 14, or at least one temperature sensor is positioned in the low zone 15 and another in the high zone 16.
  • the diameter of the bottle 4 is between two and five times greater than the diameter of greater value among the diameters of the connections 7 to 14.
  • a distance between two consecutive taps is between two and six times more than the largest diameter diameter among the diameters of the taps 7 to 14.
  • the set temperature Tc corresponds to a temperature to be reached by the water in the upper zone 16 of the hydraulic decoupling bottle 4.
  • This temperature is called the bottle outlet temperature.
  • control method 30 comprises a step 31 of activation of the heat pump 3 systematically following the triggering of the thermal regulation process 30. This step is referenced ACT on the figure 3 .
  • This step ensures that the heat pump 3 constitutes the priority thermal source of the heating system 1.
  • the method 30 also comprises a step 32 of determining a coefficient of performance (COP) of the heat pump 3, said real coefficient of performance, and referenced DET, that the compressor operates or is off.
  • COP coefficient of performance
  • the actual coefficient of performance is calculated whether the heat pump is running or, conversely, stopped.
  • the step 32 of determining the real coefficient of performance is performed at given times during a period of use of the heating system 1.
  • the step 32 of determining the real coefficient of performance comprises a succession of steps during which the coefficient of performance is determined at regular or irregular intervals.
  • the thermal control method 30 thus provides a calculation of the real-time performance coefficient of use of the heating system 1.
  • the actual coefficient of performance is calculated at a time interval of the order of 2 minutes.
  • the real coefficient of performance is defined as a ratio between a heat output generated by the heat pump 3 and an electric power consumed by the heat pump 3.
  • control method 30 also comprises a step 33 of modulating a charge rate of the pump to heat 3 as a function of the measured value of the real coefficient of performance and a comparison of the temperature of water leaving the hydraulic cylinder at the set temperature, referenced MOD.
  • the charge rate is defined as a ratio between a partial load heat capacity of the heat pump and a heat load capacity at full load of the heat pump.
  • the charging rate is between 0% and 100%, the value 0% corresponding to the shutdown of the heat pump 3 and the value 100% at the full load of the heat pump 3.
  • the real coefficient of performance is calculated according to an external temperature T ext , a temperature characteristic of the heat pump 3 and the rate of charge of the pump. heat 3.
  • the outside temperature T ext is measured by a temperature sensor disposed outside the heating system and the room.
  • the characteristic temperature of the heat pump is, for example, a flow temperature T dep corresponding to the temperature of the water circulating in the starting point 7 of the heat pump, ie a temperature of the water in the quill 8 of the return pump. heat, so-called return temperature T ret heat pump.
  • the starting temperatures T dep and return T ret are measured by temperature sensors.
  • the actual coefficient of performance depends on the external temperature T ext , the flow or return temperature and the heat pump charge rate, according to a polynomial, or a matrix.
  • the method also includes a step 34 of comparing the actual performance coefficient to a threshold value, called the threshold performance coefficient. This step is referenced COMP.
  • the threshold performance coefficient corresponds to an optimum operating limit of the heat pump 3.
  • the comparison step 34 is performed after each actual COP calculation.
  • the threshold performance coefficient may depend on the performance of the booster generator 2, a limit value such as an energy bill related to the operation of the heat pump 3 is equal to an energy bill related to the operation of the booster generator 2, respective emissions of carbon dioxide from the heat pump 3 and the generator 2, or the respective primary energy consumption of the heat pump 3 and the generator 2.
  • the method 30 comprises a step 35 of deactivating the heat pump 3 if the actual coefficient of performance is lower than the threshold performance coefficient, referenced DESACT.
  • the backup generator 2 is then activated.
  • the method 30 comprises a measurement step 36 (MES) of the outlet temperature of the water outside the hydraulic bottle 4, and a step of activating the backup generator if, at a given operating time of the heat pump, the outlet temperature is lower than the set temperature.
  • MES measurement step 36
  • the operating time of the heat pump to activate the booster generator 2 is for example of the order of 5 minutes.
  • the two heat sources that is to say the heat pump 3 and the booster generator 2 simultaneously provide the heating of the water for the connections 12 and 14 of the heating and preparatory start.
  • the method comprises a step 37 of determining (DET) the real coefficient of performance at a given interval, regular or irregular, during the deactivation of the heat pump 3 followed preferably by a step of activation of the heat pump 3 when the real performance coefficient becomes equal to the threshold coefficient of performance.
  • the method advantageously comprises a blocking stage 38 (BLO) for activating the booster generator 2 for a given duration, called the blocking duration.
  • BLO blocking stage 38
  • the blocking step 38 is active in the summer or in the off-heating period of the room by the radiator network.
  • the blocking time is for example of the order of 30 minutes.
  • the heating of the water is only provided by the heat pump 3, even if the temperature at the outlet of the bottle remains below the set temperature.
  • the step of modulating the charge rate comprises an unillustrated step of modifying the charge rate of the heat pump 3 so that the coefficient of performance increases until 'at a maximum value.
  • This step reduces the energy expenditure due to the heat pump 3.
  • the step of modulation of the charge rate comprises an unillustrated step of changing the charge rate of the heat pump 3 to reach a maximum charge rate, for example of the order of 100% .
  • This step reduces the return on investment time of the heating system.
  • the control method is implemented by a computing unit.
  • the Figures 4 and 5 illustrate a change over time respectively in the heat pump load ratio Tx (in percentage), according to a curve 41, the starting temperature T dep , according to a curve 51, and in the temperature of the water in nozzle 8 back heat pump, that is to say, the return temperature T ret heat pump, according to a curve 52.
  • the charge rate Tx decreases over time, following the calculation of the real coefficient of performance in real time, which notably contributes to a reduction in the difference between T dep and T ret and an increase in the coefficient of performance.
  • the figure 6 illustrates a change in winter and over time, respectively, in the load factor Tx of the heat pump 3, according to a curve 61, of a charge rate Txx (in percentage) of the generator 2 along a curve 62, the starting temperature T dep , along a curve 63, and the return temperature T ret , along a curve 64.
  • the figure 7 illustrates an evolution in summer and over time, respectively, of the charge rate Tx of the heat pump 3, according to a curve 71, of a charge rate Txx of the booster generator 2 according to a curve 72, the temperature of the starting T dep , according to a curve 73, and the return temperature T ret , according to a curve 74.
  • this timing of the triggering of the generator 2 requires that the heat pump 3 alone ensures the heating of the water to the network 5 and the heat exchanger 6.
  • the modulation rate Tx of the heat pump 3 becomes zero around 12:22 pm on the figure 6 and around 0:42 min on the figure 7 , indicating that the actual coefficient of performance falls below the threshold coefficient of performance.
  • control method 30 calculates the actual coefficient of performance in real time during the operation of the heating system 1, an optimal operation of the system 1 is obtained, since the real coefficient of performance is kept greater than or equal to the real coefficient of performance. threshold, even if you have to top up with the backup generator 2 without stopping the heat pump 3.
  • the heating system 1 ensures, especially because of the hydraulic decoupling bottle 4, autonomous operation of the circuits relating to the booster generator 2, to the heat pump 3, to the heating network 5 and to the preparer 6, which makes it possible to choose optimal operating conditions for each of the circuits.
  • the invention is particularly applicable to the case where the heating system 1 comprises a plurality of auxiliary generators and a plurality of heat pumps; in this case, the premises supplied by the system 1 is a collective installation (as opposed to domestic).

Abstract

L'invention a pour objet un procédé de régulation thermique d'un système de chauffage d'eau destinée à alimenter un local en eau chaude, ledit système de chauffage (1) comprenant un générateur d'appoint à énergie fossile (2), une pompe à chaleur (3) et une bouteille de découplage hydraulique (4) connectée audit générateur d'appoint (2) et à ladite pompe à chaleur (3), le procédé de régulation comprenant : - une étape de détermination d'un coefficient de performance de la pompe à chaleur à des temps donnés pendant une durée de fonctionnement du système de chauffage, dit coefficient de performance réel, et - une étape de modulation d'un taux de charge de la pompe à chaleur en fonction de la valeur mesurée du coefficient de performance réel.The subject of the invention is a method of thermal regulation of a water heating system intended to supply a local hot water, said heating system (1) comprising a fossil energy supplement generator (2), a heat pump (3) and a hydraulic decoupling bottle (4) connected to said booster generator (2) and to said heat pump (3), the control method comprising: a step of determining a coefficient of performance of the heat pump at given times during a running time of the heating system, said coefficient of real performance, and a step of modulating a charge rate of the heat pump as a function of the measured value of the real coefficient of performance.

Description

L'invention a pour objet un procédé de régulation thermique d'un système de chauffage d'eau destinée à alimenter un local en eau chaude.The subject of the invention is a method of thermal regulation of a water heating system intended to supply a room with hot water.

De façon connue, un système de chauffage dit de type hybride comprend au moins deux types de sources thermiques, à savoir un générateur d'appoint à énergie fossile d'une part et une pompe à chaleur d'autre part.In a known manner, a so-called hybrid heating system comprises at least two types of thermal sources, namely a fossil energy supplement generator on the one hand and a heat pump on the other hand.

L'une et/ou l'autre des deux sources thermiques assure(nt) le chauffage de l'eau qui, ensuite, circule de préférence dans un réseau de chauffage du local et/ou dans un échangeur de chaleur raccordé à un réservoir d'eau chaude sanitaire du local.One and / or the other of the two thermal sources ensures (s) the heating of the water, which then circulates preferably in a heating network of the room and / or in a heat exchanger connected to a storage tank. local hot water.

Un procédé de régulation thermique d'un tel système de chauffage prévoit de déclencher la pompe à chaleur dans une gamme donnée de températures extérieures.A method of thermal regulation of such a heating system provides for triggering the heat pump within a given range of outside temperatures.

En particulier, le chauffage de l'eau est effectué uniquement par le générateur d'appoint à énergie fossile quand la température extérieure devient inférieure à une température limite, par exemple de l'ordre de 2°C.In particular, the heating of the water is carried out only by the auxiliary generator with fossil energy when the outside temperature becomes lower than a limit temperature, for example of the order of 2 ° C.

Toutefois, un tel procédé connu ne permet pas d'optimiser pleinement le fonctionnement du système de chauffage pour en réduire sa facture énergétique, ni de réduire au maximum l'impact énergétique du système de chauffage sur son environnement.However, such a known method does not make it possible to fully optimize the operation of the heating system to reduce its energy bill, nor to minimize the energy impact of the heating system on its environment.

Un tel procédé connu est particulièrement mal adapté aux systèmes plus complexes de chauffage dits collectifs, pour lesquels une pluralité de pompes à chaleur sont connectées à une pluralité de générateurs d'appoint.Such a known method is particularly poorly suited to more complex so-called collective heating systems, for which a plurality of heat pumps are connected to a plurality of auxiliary generators.

Le but de l'invention est de remédier aux inconvénients précités.The object of the invention is to overcome the aforementioned drawbacks.

A cet effet, l'invention a pour objet un procédé de régulation thermique d'un système de chauffage d'eau destinée à alimenter un local en eau chaude, ledit système de chauffage comprenant un générateur d'appoint à énergie fossile, une pompe à chaleur à compresseur à vitesse variable et une bouteille de découplage hydraulique connectée audit générateur d'appoint et à ladite pompe à chaleur, le procédé de régulation comprenant :

  • une étape d'activation de la pompe à chaleur systématiquement consécutive à une étape d'activation du système de chauffage pour régler la température d'eau sortant de la bouteille hydraulique à une température donnée, dite température de consigne,
  • une étape de détermination d'un coefficient de performance de la pompe à chaleur à des temps donnés pendant une durée de fonctionnement de la pompe à chaleur, dit coefficient de performance réel, que le compresseur fonctionne ou soit en arrêt, et
  • une étape de modulation d'un taux de charge de la pompe à chaleur en fonction de la valeur mesurée du coefficient de performance et d'une comparaison de la température d'eau sortant de la bouteille hydraulique à la température de consigne.
For this purpose, the subject of the invention is a method of thermal regulation of a water heating system intended to supply a hot water room, said heating system comprising a fossil energy supplement generator, a heat pump variable speed compressor heat and a hydraulic decoupling bottle connected to said booster generator and said heat pump, the control method comprising:
  • a step of activation of the heat pump systematically following a heating system activation step to adjust the temperature of water leaving the hydraulic cylinder at a given temperature, called the set temperature,
  • a step of determining a coefficient of performance of the heat pump at given times during a running time of the heat pump, said real coefficient of performance, whether the compressor is running or is off, and
  • a step of modulating a charge rate of the heat pump as a function of the measured value of the coefficient of performance and a comparison of the temperature of water leaving the hydraulic cylinder at the set temperature.

Grâce au procédé selon la présente invention, il est possible d'optimiser la facture énergétique ainsi que l'impact sur l'environnement du système de chauffage, du fait du fonctionnement maitrisé du système de chauffage.With the method according to the present invention, it is possible to optimize the energy bill as well as the environmental impact of the heating system, because of the controlled operation of the heating system.

Selon une autre caractéristique de l'invention, au cours de l'étape de détermination du coefficient de performance réel, le coefficient de performance réel est calculé en fonction d'une température extérieure, d'une température caractéristique de la pompe à chaleur et du taux de charge de la pompe à chaleur.According to another characteristic of the invention, during the step of determining the real coefficient of performance, the real coefficient of performance is calculated as a function of an outside temperature, a temperature characteristic of the heat pump and the charge rate of the heat pump.

Selon une autre caractéristique de l'invention, le procédé comprend une étape de comparaison du coefficient de performance réel à une valeur seuil, dite coefficient de performance seuil.According to another characteristic of the invention, the method comprises a step of comparing the actual coefficient of performance with a threshold value, called the threshold performance coefficient.

Selon une autre caractéristique de l'invention, le procédé comprend une étape de mesure de la température de sortie de l'eau hors de la bouteille hydraulique, et une étape d'activation du générateur d'appoint si, à un temps donné de fonctionnement de la pompe à chaleur, la température de sortie est inférieure à la température de consigne.According to another characteristic of the invention, the method comprises a step of measuring the outlet temperature of the water out of the hydraulic bottle, and a step of activating the backup generator if, at a given time of operation of the heat pump, the outlet temperature is lower than the set temperature.

Selon une autre caractéristique de l'invention, le procédé comprend une étape de désactivation de la pompe à chaleur si le coefficient de performance réel est inférieur au coefficient de performance seuil.According to another characteristic of the invention, the method comprises a step of deactivating the heat pump if the real coefficient of performance is lower than the threshold performance coefficient.

Selon une autre caractéristique de l'invention, le procédé comprend une étape de détermination du coefficient de performance réel à intervalle donné, régulier ou irrégulier, pendant la désactivation de la pompe à chaleur.According to another characteristic of the invention, the method comprises a step of determining the real coefficient of performance at a given interval, regular or irregular, during the deactivation of the heat pump.

Selon une autre caractéristique de l'invention, le procédé comprend une étape d'activation de la pompe à chaleur quand le coefficient de performance réel redevient égal au coefficient de performance seuil.According to another characteristic of the invention, the method comprises a step of activation of the heat pump when the real coefficient of performance becomes equal to the threshold performance coefficient.

Selon une autre caractéristique de l'invention, le procédé comprend une étape de blocage d'activation du générateur d'appoint pendant une durée donnée, dite durée de blocage.According to another characteristic of the invention, the method comprises a step of blocking the activation of the backup generator for a given duration, called the blocking time.

Selon une autre caractéristique de l'invention, le procédé comprend une étape de détermination du coefficient de performance réel de la pompe à chaleur à des temps donnés pendant la durée de blocage, une étape de comparaison du coefficient de performance réel à une valeur seuil, dite coefficient de performance seuil, et une étape d'activation du générateur d'appoint si le coefficient de performance réel est inférieur au coefficient de performance seuil.According to another characteristic of the invention, the method comprises a step of determining the real coefficient of performance of the heat pump at given times during the blocking time, a step of comparing the actual coefficient of performance with a threshold value, said threshold performance coefficient, and a step of activating the backup generator if the real performance coefficient is lower than the threshold performance coefficient.

Selon une autre caractéristique de l'invention, au cours de l'étape de modulation du taux de charge, si le coefficient de performance est supérieur ou égal au coefficient de performance seuil, on modifie le taux de charge de la pompe à chaleur de sorte à augmenter le coefficient de performance jusqu'à une valeur maximale.According to another characteristic of the invention, during the step of modulating the charge rate, if the coefficient of performance is greater than or equal to the threshold performance coefficient, the charge rate of the heat pump is modified so that to increase the coefficient of performance to a maximum value.

Selon une autre caractéristique de l'invention, au cours de l'étape de modulation du taux de charge, si le coefficient de performance est supérieur ou égal au coefficient de performance seuil, on modifie le taux de charge de la pompe à chaleur de sorte à augmenter le taux de charge jusqu'à une valeur maximale.According to another characteristic of the invention, during the charge rate modulation step, if the coefficient of performance is greater than or equal to the threshold performance coefficient, the charge rate of the charge is modified. the heat pump so as to increase the charge rate to a maximum value.

L'invention a également pour objet une bouteille hydraulique pour un système de chauffage d'eau destinée à alimenter en eau chaude un local, comprenant un piquage conformé pour alimenter en eau une pompe à chaleur, un piquage conformé pour recevoir de l'eau de ladite pompe à chaleur, un piquage conformé pour alimenter en eau un générateur d'appoint à énergie fossile, un piquage conformé pour recevoir de l'eau du générateur d'appoint à énergie fossile, un piquage conformé pour alimenter en eau un réservoir d'eau chaude du local, un piquage conformé recevoir de l'eau du réservoir d'eau chaude du local, un piquage conformé pour alimenter en eau un réseau de chauffage d'air du local et un piquage conformé pour recevoir de l'eau d'un réseau de chauffage d'air du local, la bouteille comprenant un capteur de température dans une partie basse d'un réservoir de la bouteille et un capteur de température dans une partie haute du réservoir de la bouteille, de sorte à mettre en oeuvre le procédé de régulation décrit précédemment.The invention also relates to a hydraulic bottle for a water heating system for supplying hot water to a room, comprising a tapping shaped to supply water to a heat pump, a tapping shaped to receive water from said heat pump, a stitching shaped to supply water to a fossil-energy supplemental generator, a stitching shaped to receive water from the fossil-fuel booster generator, a stitching shaped to supply water to a tank of local hot water, a shaped nozzle receiving water from the hot water tank of the premises, a tapping shaped to supply water to an air heating network of the premises and a tapping shaped to receive water from an air heating network of the room, the bottle comprising a temperature sensor in a lower part of a tank of the bottle and a temperature sensor in an upper part of the tank of the bottle, so as to implement the regulation method described above.

Selon une autre caractéristique de l'invention, un diamètre de la bouteille mesure entre deux et cinq fois plus qu'un diamètre de plus grande valeur parmi des diamètres des piquages, dit diamètre maximal, et/ou une distance entre deux piquages mesure entre deux fois et six fois plus que le diamètre de plus grande valeur parmi des diamètres des piquages.According to another characteristic of the invention, a diameter of the bottle measures between two and five times more than one diameter of greater value among diameters of the taps, said maximum diameter, and / or a distance between two taps measured between two times and six times more than the diameter of greater value among diameters of the connections.

L'invention a également pour objet un système de chauffage d'eau destinée à alimenter un local en eau chaude, comprenant au moins un générateur d'appoint à énergie fossile, au moins une pompe à chaleur et une bouteille de découplage hydraulique telle que décrite précédemment connectée à chaque générateur d'appoint et à chaque pompe à chaleur et une unité de calcul pour mettre en oeuvre le procédé de régulation tel que décrit précédemment.The invention also relates to a water heating system for supplying a local hot water, comprising at least one fossil energy supplement generator, at least one heat pump and a hydraulic decoupling cylinder as described previously connected to each booster generator and to each heat pump and a computing unit to implement the control method as described above.

D'autres caractéristiques et avantages de l'invention apparaîtront encore à la lecture de la description qui va suivre. Celle-ci est purement illustrative et doit être lue en regard des dessins annexés sur lesquels :

  • la figure 1 est une vue schématique d'un système de chauffage d'eau destinée à alimenter un local en eau chaude ;
  • la figure 2 est une vue de détail d'une bouteille hydraulique du système de la figure 1 ;
  • la figure 3 est chronogramme d'un procédé selon la présente invention de régulation thermique du système de la figure 1 ; et
  • les figures 4, 5, 6 et 7 illustrent des résultats expérimentaux en temps réel de mise en oeuvre du procédé de régulation de la figure 3 au système de la figure 1.
Other features and advantages of the invention will become apparent on reading the description which follows. This is purely illustrative and should be read in conjunction with the attached drawings in which:
  • the figure 1 is a schematic view of a water heating system for supplying a local hot water;
  • the figure 2 is a detail view of a hydraulic bottle system of the figure 1 ;
  • the figure 3 is a timing diagram of a method according to the present invention of thermal regulation of the system of the figure 1 ; and
  • the Figures 4, 5 , 6 and 7 illustrate real-time experimental results of implementation of the control method of the figure 3 to the system of figure 1 .

Système de chauffage d'eauWater heating system

Un système de chauffage d'eau d'alimentation d'un local en eau chaude est référencé 1 sur la figure 1, le local étant de préférence extérieur au système 1.A hot water supply heating system of a local hot water is referenced 1 on the figure 1 , the room preferably being outside the system 1.

L'eau chaude est destinée à approvisionner un réseau de chauffage par radiateurs et un échangeur de chaleur pour un préparateur de stockage d'eau chaude sanitaire, comme il va être expliqué.The hot water is intended to supply a radiator heating network and a heat exchanger for a hot water storage tank, as will be explained.

Le système de chauffage 1 est de type hybride, c'est-à-dire que le système 1 comprend au moins deux types de sources thermiques, à savoir au moins un générateur d'appoint à énergie fossile 2 d'une part et, d'autre part, au moins une pompe à chaleur 3.The heating system 1 is of the hybrid type, that is to say that the system 1 comprises at least two types of thermal sources, namely at least one fossil energy supplement generator 2 on the one hand and, on the other hand, at least one heat pump 3.

Le générateur 2 est par exemple une chaudière à gaz ou à fioul.The generator 2 is for example a gas or oil boiler.

La pompe à chaleur 3 est de préférence de type à vitesse de compresseur variable, ce qui permet une modulation de puissance de la pompe à chaleur en fonction de son taux de charge. On parle de pompe à chaleur de type « inverter ».The heat pump 3 is preferably of variable compressor speed type, which allows a power modulation of the heat pump according to its charge rate. We speak of heat pump type "inverter".

Le système de chauffage 1 comprend également une bouteille de découplage hydraulique 4 connectée au générateur 2 et à la pompe à chaleur 3.The heating system 1 also comprises a hydraulic decoupling bottle 4 connected to the generator 2 and to the heat pump 3.

La bouteille de découplage hydraulique 4 est également connectée à un réseau 5 de chauffage de l'air du local par radiateurs et à un échangeur de chaleur d'un préparateur de stockage d'eau chaude sanitaire 6 du local.The hydraulic decoupling bottle 4 is also connected to a network 5 for heating the room air by radiators and to a heat exchanger of a domestic hot water storage tank 6 of the room.

L'échangeur de chaleur est soit un serpentin, soit un échangeur à plaques.The heat exchanger is either a coil or a plate heat exchanger.

Sur le mode de réalisation illustré, le système comprend une seule pompe à chaleur 3 et un seul générateur 2. Toutefois, l'invention ne se limite pas à ce mode de réalisation et le système peut comprendre plusieurs pompes à chaleur ou générateurs raccordés en parallèle sur des piquages de la bouteille hydraulique.In the illustrated embodiment, the system comprises a single heat pump 3 and a single generator 2. However, the invention is not limited to this embodiment and the system may comprise several heat pumps or generators connected in parallel. on tappings of the hydraulic cylinder.

Bouteille de découplage hydrauliqueHydraulic decoupling bottle

Comme visible sur les figures 1 et 2, la bouteille hydraulique 4 comprend un réservoir d'eau muni d'un ensemble de quatre paires de piquages 7 à 11.As visible on figures 1 and 2 , the hydraulic bottle 4 comprises a water tank provided with a set of four pairs of taps 7 to 11.

Le premier piquage 7 de la première paire est conformé pour recevoir de l'eau de la pompe à chaleur 3. Le piquage 7 est autrement appelé piquage de départ pompe à chaleur.The first tapping 7 of the first pair is shaped to receive water from the heat pump 3. The tapping 7 is otherwise called heat pump start tapping.

Le deuxième piquage 8 de la première paire est conformé pour alimenter en eau la pompe à chaleur 3. Le piquage 8 est autrement appelé piquage de retour pompe à chaleur.The second tapping 8 of the first pair is shaped to supply water to the heat pump 3. The tapping 8 is otherwise called heat pump return tapping.

Le premier piquage 9 de la deuxième paire est conformé pour recevoir de l'eau du générateur d'appoint 2. Le piquage 9 est autrement appelé piquage de départ générateur d'appoint.The first tapping 9 of the second pair is shaped to receive water from the booster generator 2. The tapping 9 is otherwise called auxiliary generator tapping.

Le deuxième piquage 10 de la deuxième paire est conformé pour alimenter en eau le générateur d'appoint 2. Le piquage 10 est autrement appelé piquage de retour générateur d'appoint.The second tapping 10 of the second pair is shaped to supply water to the booster generator 2. The tapping 10 is otherwise called backup generator return tapping.

Le premier piquage 11 de la troisième paire est conformé pour recevoir de l'eau du réseau 5 de radiateurs. Le piquage 11 est autrement appelé piquage de retour chauffage.The first tapping 11 of the third pair is shaped to receive water from the network 5 of radiators. Stitching 11 is otherwise called heating return stitching.

Le deuxième piquage 12 de la troisième paire est conformé pour alimenter en eau le réseau 5 de radiateurs. Le piquage 12 est autrement appelé piquage de départ chauffage.The second tapping 12 of the third pair is shaped to supply water to the network 5 of radiators. Stitching 12 is otherwise called heating start stitching.

Le premier piquage 13 de la quatrième paire est conformé pour recevoir de l'eau de l'échangeur de chaleur du préparateur 6. Le piquage 13 est autrement appelé piquage de sortie préparateur.The first tapping 13 of the fourth pair is shaped to receive water from the heat exchanger of the preparer 6. The tapping 13 is otherwise called preparator output tapping.

Le deuxième piquage 14 de la quatrième paire est conformé pour alimenter en eau l'échangeur de chaleur du préparateur 6. Le piquage 14 est autrement appelé piquage d'entrée préparateur.The second tapping 14 of the fourth pair is shaped to supply water to the heat exchanger of the preparer 6. The tapping 14 is otherwise called preparator inlet tapping.

Du fait de la bouteille de découplage hydraulique 4, chacun des circuits relatifs respectivement au générateur d'appoint 2, à la pompe à chaleur 3, au réseau de chauffage 5 et au préparateur 6, sont fluidiquement indépendants les uns des autres.Due to the hydraulic decoupling bottle 4, each of the circuits relating respectively to the booster generator 2, the heat pump 3, the heating network 5 and the preparer 6, are fluidly independent of each other.

En particulier, chaque paire des piquages 7 à 14 est indépendante fluidiquement des autres paires.In particular, each pair of taps 7 to 14 is fluidly independent of the other pairs.

La bouteille de découplage hydraulique 4 présente un volume interne constituant une zone tampon, ce qui permet de découpler les débits d'eau dans chaque circuit.The hydraulic decoupling bottle 4 has an internal volume constituting a buffer zone, which makes it possible to decouple the flow rates of water in each circuit.

Comme visible sur la figure 2, les piquages 7, 8 de départ et retour pompe à chaleur, et les piquages 11 et 13 de retour chauffage et préparateur sont disposés dans une première zone 15 de la bouteille de découplage hydraulique 4.As visible on the figure 2 , the outlets 7, 8 for starting and return heat pump, and the connections 11 and 13 return heating and preparer are arranged in a first zone 15 of the hydraulic decoupling bottle 4.

Les piquages 9, 10 de départ et retour générateur d'appoint, et les piquages 12 et 14 de départ chauffage et préparateur sont disposés dans une deuxième zone 16 de la bouteille de découplage hydraulique 4.The outlets 9, 10 for the start and return of the auxiliary generator, and the taps 12 and 14 for the heating and preparer flow are arranged in a second zone 16 of the hydraulic decoupling bottle 4.

Comme visible sur la figure 2, la première zone 15 est en partie basse de la bouteille de découplage hydraulique 4 tandis que la deuxième zone 16 est en partie haute de la bouteille de découplage hydraulique 4.As visible on the figure 2 the first zone 15 is at the bottom of the hydraulic decoupling bottle 4 while the second zone 16 is at the top of the hydraulic decoupling bottle 4.

La première zone 15 correspond à des températures d'eau plus faibles que la deuxième zone 16.The first zone 15 corresponds to lower water temperatures than the second zone 16.

Avantageusement, des capteurs de température sont positionnés dans chaque piquage 7 à 14, ou dans certains piquages parmi les piquages 7 à 14, ou au minimum, un capteur de température est positionné dans la zone basse 15 et un autre dans la zone haute 16.Advantageously, temperature sensors are positioned in each tapping 7 to 14, or in some of the tappings 7 to 14, or at least one temperature sensor is positioned in the low zone 15 and another in the high zone 16.

De préférence, le diamètre de la bouteille 4 mesure entre deux et cinq fois plus que le diamètre de plus grande valeur parmi les diamètres des piquages 7 à 14.Preferably, the diameter of the bottle 4 is between two and five times greater than the diameter of greater value among the diameters of the connections 7 to 14.

De préférence, une distance entre deux piquages consécutifs mesure entre deux fois et six fois plus que le diamètre de plus grande valeur parmi les diamètres des piquages 7 à 14.Preferably, a distance between two consecutive taps is between two and six times more than the largest diameter diameter among the diameters of the taps 7 to 14.

Ces dimensionnements assurent que la bouteille hydraulique 4 s'affranchisse de toute interférence de pompes relatives au circuit du générateur d'appoint 2, de la pompe à chaleur 3, du réseau de chauffage d'air 5 et du préparateur 6.These dimensions ensure that the hydraulic cylinder 4 is free from interference from pumps relating to the circuit of the booster generator 2, the heat pump 3, the air heating network 5 and the preparer 6.

Procédé de régulationRegulation process

Quand le système de chauffage est sollicité du fait d'un besoin thermique à une température souhaitée, dite température de consigne, Tc, un procédé de régulation thermique 30 du système de chauffage 1 se déclenche.When the heating system is requested because of a thermal need at a desired temperature, said set temperature, Tc, a thermal control method 30 of the heating system 1 is triggered.

La température de consigne Tc correspond à une température que doit atteindre l'eau dans la zone haute 16 de la bouteille de découplage hydraulique 4.The set temperature Tc corresponds to a temperature to be reached by the water in the upper zone 16 of the hydraulic decoupling bottle 4.

Cette température est appelée température de sortie de bouteille.This temperature is called the bottle outlet temperature.

Comme visible sur la figure 3, le procédé de régulation 30 comprend une étape 31 d'activation de la pompe à chaleur 3 systématiquement consécutive au déclenchement du procédé de régulation thermique 30. Cette étape est référencée ACT sur la figure 3.As visible on the figure 3 , the control method 30 comprises a step 31 of activation of the heat pump 3 systematically following the triggering of the thermal regulation process 30. This step is referenced ACT on the figure 3 .

Cette étape assure que la pompe à chaleur 3 constitue la source thermique prioritaire du système de chauffage 1.This step ensures that the heat pump 3 constitutes the priority thermal source of the heating system 1.

Le procédé 30 comprend également une étape 32 de détermination d'un coefficient de performance (COP) de la pompe à chaleur 3, dit coefficient de performance réel, et référencée DET, que le compresseur fonctionne ou soit en arrêt.The method 30 also comprises a step 32 of determining a coefficient of performance (COP) of the heat pump 3, said real coefficient of performance, and referenced DET, that the compressor operates or is off.

Ainsi, le coefficient de performance réel est calculé que la pompe à chaleur soit en marche ou au contraire à l'arrêt.Thus, the actual coefficient of performance is calculated whether the heat pump is running or, conversely, stopped.

L'étape 32 de détermination du coefficient de performance réel est effectuée à des temps donnés pendant une durée d'utilisation du système de chauffage 1.The step 32 of determining the real coefficient of performance is performed at given times during a period of use of the heating system 1.

En d'autres termes, l'étape 32 de détermination du coefficient de performance réel comprend une succession d'étapes au cours desquelles le coefficient de performance est déterminé à intervalles réguliers ou irréguliers.In other words, the step 32 of determining the real coefficient of performance comprises a succession of steps during which the coefficient of performance is determined at regular or irregular intervals.

Le procédé de régulation thermique 30 assure donc un calcul du coefficient de performance en temps réel d'utilisation du système de chauffage 1.The thermal control method 30 thus provides a calculation of the real-time performance coefficient of use of the heating system 1.

Par exemple, le coefficient de performance réel est calculé à un intervalle de temps de l'ordre de 2 minutes.For example, the actual coefficient of performance is calculated at a time interval of the order of 2 minutes.

Le coefficient de performance réel est défini comme un rapport entre une puissance calorifique générée par la pompe à chaleur 3 et une puissance électrique consommée par la pompe à chaleur 3.The real coefficient of performance is defined as a ratio between a heat output generated by the heat pump 3 and an electric power consumed by the heat pump 3.

Comme visible sur la figure 3, le procédé de régulation 30 comprend également une étape 33 de modulation d'un taux de charge de la pompe à chaleur 3 en fonction de la valeur mesurée du coefficient de performance réel et d'une comparaison de la température d'eau sortant de la bouteille hydraulique à la température de consigne, référencée MOD.As visible on the figure 3 , the control method 30 also comprises a step 33 of modulating a charge rate of the pump to heat 3 as a function of the measured value of the real coefficient of performance and a comparison of the temperature of water leaving the hydraulic cylinder at the set temperature, referenced MOD.

Le taux de charge est défini comme un rapport entre une puissance calorifique à charge partielle de la pompe à chaleur et une puissance calorifique à pleine charge de la pompe à chaleur.The charge rate is defined as a ratio between a partial load heat capacity of the heat pump and a heat load capacity at full load of the heat pump.

Le taux de charge est compris entre 0% et 100%, la valeur 0% correspondant à l'arrêt de la pompe à chaleur 3 et la valeur 100% à la pleine charge de la pompe à chaleur 3.The charging rate is between 0% and 100%, the value 0% corresponding to the shutdown of the heat pump 3 and the value 100% at the full load of the heat pump 3.

Dans le cas où la comparaison entre les températures donne pour résultat que la température d'eau sortant de la bouteille hydraulique est égale à la température de consigne, le taux de charge est maintenant constant, le besoin thermique étant satisfait.In the case where the comparison between the temperatures results in the water temperature leaving the hydraulic cylinder being equal to the set temperature, the charge rate is now constant, the thermal need being satisfied.

Au cours de l'étape de détermination du coefficient de performance réel, le coefficient de performance réel est calculé en fonction d'une température extérieure Text, d'une température caractéristique de la pompe à chaleur 3 et du taux de charge de la pompe à chaleur 3.During the step of determining the real coefficient of performance, the real coefficient of performance is calculated according to an external temperature T ext , a temperature characteristic of the heat pump 3 and the rate of charge of the pump. heat 3.

La température extérieure Text est mesurée par un capteur de température, disposé à l'extérieur du système de chauffage et du local.The outside temperature T ext is measured by a temperature sensor disposed outside the heating system and the room.

La température caractéristique de la pompe à chaleur est par exemple une température de départ Tdep correspondant à la température d'eau circulant dans le piquage 7 de départ pompe à chaleur, soit une température de l'eau dans le piquage 8 de retour pompe à chaleur, dite température de retour Tret pompe à chaleur.The characteristic temperature of the heat pump is, for example, a flow temperature T dep corresponding to the temperature of the water circulating in the starting point 7 of the heat pump, ie a temperature of the water in the quill 8 of the return pump. heat, so-called return temperature T ret heat pump.

Les températures de départ Tdep et retour Tret sont mesurées par des capteurs de température.The starting temperatures T dep and return T ret are measured by temperature sensors.

De préférence, le coefficient de performance réel dépend de la température extérieure Text, de la température de départ ou de retour et du taux de charge de la pompe à chaleur, selon un polynôme, ou selon une matrice.Preferably, the actual coefficient of performance depends on the external temperature T ext , the flow or return temperature and the heat pump charge rate, according to a polynomial, or a matrix.

Le procédé 30 comprend également une étape 34 de comparaison du coefficient de performance réel à une valeur seuil, appelée coefficient de performance seuil. Cette étape est référencée COMP.The method also includes a step 34 of comparing the actual performance coefficient to a threshold value, called the threshold performance coefficient. This step is referenced COMP.

Le coefficient de performance seuil correspond à un régime limite de fonctionnement optimal de la pompe à chaleur 3.The threshold performance coefficient corresponds to an optimum operating limit of the heat pump 3.

L'étape de comparaison 34 est effectuée après chaque calcul de COP réel.The comparison step 34 is performed after each actual COP calculation.

Le coefficient de performance seuil peut dépendre du rendement du générateur d'appoint 2, d'une valeur limite telle qu'une facture énergétique liée au fonctionnement de la pompe à chaleur 3 soit égale à une facture énergétique liée au fonctionnement du générateur d'appoint 2, des émissions respectives de dioxyde de carbone de la pompe à chaleur 3 et du générateur 2, ou encore des consommations d'énergies primaires respectives de la pompe à chaleur 3 et du générateur 2.The threshold performance coefficient may depend on the performance of the booster generator 2, a limit value such as an energy bill related to the operation of the heat pump 3 is equal to an energy bill related to the operation of the booster generator 2, respective emissions of carbon dioxide from the heat pump 3 and the generator 2, or the respective primary energy consumption of the heat pump 3 and the generator 2.

Comme visible sur la figure 3, le procédé 30 comprend une étape 35 de désactivation de la pompe à chaleur 3 si le coefficient de performance réel est inférieur au coefficient de performance seuil, référencée DESACT.As visible on the figure 3 the method 30 comprises a step 35 of deactivating the heat pump 3 if the actual coefficient of performance is lower than the threshold performance coefficient, referenced DESACT.

De préférence, dans ce cas, le générateur d'appoint 2 est alors activé.Preferably, in this case, the backup generator 2 is then activated.

Comme visible sur la figure 3, le procédé 30 comprend une étape 36 de mesure (MES) de la température de sortie de l'eau hors de la bouteille hydraulique 4, et une étape d'activation du générateur d'appoint si, à un temps donné de fonctionnement de la pompe à chaleur, la température de sortie est inférieure à la température de consigne.As visible on the figure 3 the method 30 comprises a measurement step 36 (MES) of the outlet temperature of the water outside the hydraulic bottle 4, and a step of activating the backup generator if, at a given operating time of the heat pump, the outlet temperature is lower than the set temperature.

Le temps de fonctionnement de la pompe à chaleur pour activer le générateur d'appoint 2 est par exemple de l'ordre de 5 minutes.The operating time of the heat pump to activate the booster generator 2 is for example of the order of 5 minutes.

Dans ce cas, les deux sources thermiques, c'est-à-dire la pompe à chaleur 3 et le générateur d'appoint 2 assurent simultanément le chauffage de l'eau pour les piquages 12 et 14 de départ chauffage et départ préparateur.In this case, the two heat sources, that is to say the heat pump 3 and the booster generator 2 simultaneously provide the heating of the water for the connections 12 and 14 of the heating and preparatory start.

Comme visible sur la figure 3, le procédé 30 comprend une étape 37 de détermination (DET) du coefficient de performance réel à intervalle donné, régulier ou irrégulier, pendant la désactivation de la pompe à chaleur 3 suivie de préférence d'une étape d'activation de la pompe à chaleur 3 quand le coefficient de performance réel redevient égal au coefficient de performance seuil.As visible on the figure 3 the method comprises a step 37 of determining (DET) the real coefficient of performance at a given interval, regular or irregular, during the deactivation of the heat pump 3 followed preferably by a step of activation of the heat pump 3 when the real performance coefficient becomes equal to the threshold coefficient of performance.

Comme visible sur la figure 3, le procédé 30 comprend avantageusement une étape 38 de blocage (BLO) d'activation du générateur d'appoint 2 pendant une durée donnée, dite durée de blocage.As visible on the figure 3 , the method advantageously comprises a blocking stage 38 (BLO) for activating the booster generator 2 for a given duration, called the blocking duration.

De préférence, l'étape de blocage 38 est active en été ou en période hors chauffage du local par le réseau de radiateurs.Preferably, the blocking step 38 is active in the summer or in the off-heating period of the room by the radiator network.

La durée de blocage est par exemple de l'ordre de 30 minutes.The blocking time is for example of the order of 30 minutes.

Dans ce cas, le chauffage de l'eau est uniquement assuré par la pompe à chaleur 3, même si la température en sortie de la bouteille reste inférieure à la température de consigne.In this case, the heating of the water is only provided by the heat pump 3, even if the temperature at the outlet of the bottle remains below the set temperature.

On peut prévoir également dans ce cas une étape de détermination du coefficient de performance réel de la pompe à chaleur 3 à des temps donnés pendant la durée de blocage suivi d'une étape de comparaison du coefficient de performance réel au coefficient de performance seuil, et une étape d'activation du générateur d'appoint si le coefficient de performance réel est inférieur au coefficient de performance seuil.In this case, it is also possible to envisage a step of determining the actual coefficient of performance of the heat pump 3 at given times during the blocking period followed by a step of comparing the actual coefficient of performance with the threshold performance coefficient, and a step of activating the backup generator if the real performance coefficient is lower than the threshold performance coefficient.

Avantageusement, si le coefficient de performance est supérieur au coefficient de performance seuil, l'étape de modulation du taux de charge comprend une étape non illustrée de modification du taux de charge de la pompe à chaleur 3 de sorte que le coefficient de performance augmente jusqu'à une valeur maximale.Advantageously, if the coefficient of performance is greater than the threshold coefficient of performance, the step of modulating the charge rate comprises an unillustrated step of modifying the charge rate of the heat pump 3 so that the coefficient of performance increases until 'at a maximum value.

Cette étape permet de réduire la dépense énergétique due à la pompe à chaleur 3.This step reduces the energy expenditure due to the heat pump 3.

Alternativement, si le coefficient de performance est supérieur au coefficient de performance seuil, l'étape de modulation du taux de charge comprend une étape non illustrée de modification du taux de charge de la pompe à chaleur 3 jusqu'à atteindre un taux de charge maximale, par exemple de l'ordre de 100%.Alternatively, if the coefficient of performance is greater than threshold performance coefficient, the step of modulation of the charge rate comprises an unillustrated step of changing the charge rate of the heat pump 3 to reach a maximum charge rate, for example of the order of 100% .

Cette étape permet de réduire le temps de retour sur investissement du système de chauffage.This step reduces the return on investment time of the heating system.

Le procédé de régulation est mis en oeuvre par une unité de calcul.The control method is implemented by a computing unit.

L'unité de calcul peut être un circuit comme par exemple :

  • un processeur apte à interpréter des instructions sous la forme de programme informatique, ou
  • une carte électronique dont les étapes du procédé de l'invention sont décrites dans le silicium, ou encore
  • une puce électronique programmable comme une puce FPGA (pour « Field-Programmable Gate Array » en anglais).
The computing unit can be a circuit such as for example:
  • a processor capable of interpreting instructions in the form of a computer program, or
  • an electronic card whose steps of the method of the invention are described in silicon, or
  • a programmable electronic chip such as an FPGA chip (for "Field-Programmable Gate Array").

Résultats expérimentauxExperimental results

Les figures 4 et 5 illustrent une évolution au cours du temps respectivement du taux de charge Tx de la pompe à chaleur 3 (en pourcentage), selon une courbe 41, de la température de départ Tdep , selon une courbe 51, et de la température de l'eau dans le piquage 8 de retour pompe à chaleur, c'est-à-dire la température de retour Tret pompe à chaleur, selon une courbe 52.The Figures 4 and 5 illustrate a change over time respectively in the heat pump load ratio Tx (in percentage), according to a curve 41, the starting temperature T dep , according to a curve 51, and in the temperature of the water in nozzle 8 back heat pump, that is to say, the return temperature T ret heat pump, according to a curve 52.

Comme visible sur les figures 4 et 5, le taux de charge Tx diminue au cours du temps, suite au calcul du coefficient de performance réel en temps réel, ce qui contribue notamment à une réduction d'écart entre Tdep et Tret et une augmentation du coefficient de performance.As visible on Figures 4 and 5 , the charge rate Tx decreases over time, following the calculation of the real coefficient of performance in real time, which notably contributes to a reduction in the difference between T dep and T ret and an increase in the coefficient of performance.

La figure 6 illustre une évolution en hiver et au cours du temps respectivement du taux de charge Tx de la pompe à chaleur 3, selon une courbe 61, d'un taux de charge Txx (en pourcentage) du générateur d'appoint 2 selon une courbe 62, de la température de départ Tdep , selon une courbe 63, et de la température de retour Tret, selon une courbe 64.The figure 6 illustrates a change in winter and over time, respectively, in the load factor Tx of the heat pump 3, according to a curve 61, of a charge rate Txx (in percentage) of the generator 2 along a curve 62, the starting temperature T dep , along a curve 63, and the return temperature T ret , along a curve 64.

La figure 7 illustre une évolution en été et au cours du temps respectivement du taux de charge Tx de la pompe à chaleur 3, selon une courbe 71, d'un taux de charge Txx du générateur d'appoint 2 selon une courbe 72, de la température de départ Tdep , selon une courbe 73, et de la température de retour Tret, selon une courbe 74.The figure 7 illustrates an evolution in summer and over time, respectively, of the charge rate Tx of the heat pump 3, according to a curve 71, of a charge rate Txx of the booster generator 2 according to a curve 72, the temperature of the starting T dep , according to a curve 73, and the return temperature T ret , according to a curve 74.

En hiver, l'étape 38 de blocage est désactivée.In winter, blocking step 38 is disabled.

En été au contraire, l'étape 38 de blocage est mise en place.In summer, on the other hand, blocking step 38 is put in place.

Comme déjà expliqué, cette temporisation du déclenchement du générateur 2 impose que la pompe à chaleur 3 assure seule le chauffage de l'eau vers le réseau 5 et l'échangeur de chaleur 6.As already explained, this timing of the triggering of the generator 2 requires that the heat pump 3 alone ensures the heating of the water to the network 5 and the heat exchanger 6.

Comme visible sur la figure 6, le générateur 2 et la pompe à chaleur 3 sont déclenchés en même temps en hiver, autour du temps t=12h2min.As visible on the figure 6 , the generator 2 and the heat pump 3 are triggered at the same time in winter, around the time t = 12h2min.

Comme visible sur la figure 7, seule la pompe à chaleur 3 se déclenche à t=0, tandis que le générateur d'appoint 2 se déclenche à un temps t de l'ordre de 29min.As visible on the figure 7 , only the heat pump 3 is triggered at t = 0, while the backup generator 2 is triggered at a time t of the order of 29min.

On note que le taux de modulation Tx de la pompe à chaleur 3 devient nul vers 12h22 sur la figure 6 et vers 0h42min sur la figure 7, indiquant là que le coefficient de performance réel devient inférieur au coefficient de performance seuil.It is noted that the modulation rate Tx of the heat pump 3 becomes zero around 12:22 pm on the figure 6 and around 0:42 min on the figure 7 , indicating that the actual coefficient of performance falls below the threshold coefficient of performance.

AvantagesAdvantages

Le procédé de régulation 30 assurant le calcul du coefficient de performance réel en temps réel lors du fonctionnement du système de chauffage 1, on obtient un fonctionnement optimal du système 1, puisque le coefficient de performance réel est maintenu supérieur ou égal au coefficient de performance réel seuil, quitte à faire un appoint avec le générateur d'appoint 2 sans arrêter pour autant la pompe à chaleur 3.Since the control method 30 calculates the actual coefficient of performance in real time during the operation of the heating system 1, an optimal operation of the system 1 is obtained, since the real coefficient of performance is kept greater than or equal to the real coefficient of performance. threshold, even if you have to top up with the backup generator 2 without stopping the heat pump 3.

Le système de chauffage 1 assure, du fait en particulier de la bouteille de découplage hydraulique 4, un fonctionnement autonome des circuits relatifs au générateur d'appoint 2, à la pompe à chaleur 3, au réseau de chauffage 5 et au préparateur 6, ce qui permet de choisir des conditions optimales de fonctionnement pour chacun des circuits.The heating system 1 ensures, especially because of the hydraulic decoupling bottle 4, autonomous operation of the circuits relating to the booster generator 2, to the heat pump 3, to the heating network 5 and to the preparer 6, which makes it possible to choose optimal operating conditions for each of the circuits.

L'invention s'applique tout particulièrement au cas où le système de chauffage 1 comprend une pluralité de générateurs d'appoint et une pluralité de pompes à chaleur ; dans ce cas, le local approvisionné par le système 1 est une installation collective (par opposition à domestique).The invention is particularly applicable to the case where the heating system 1 comprises a plurality of auxiliary generators and a plurality of heat pumps; in this case, the premises supplied by the system 1 is a collective installation (as opposed to domestic).

Claims (14)

Procédé de régulation thermique d'un système (1) de chauffage d'eau destinée à alimenter un local en eau chaude, ledit système de chauffage comprenant un générateur d'appoint à énergie fossile (2), une pompe à chaleur à compresseur à vitesse variable (3) et une bouteille de découplage hydraulique (4) connectée audit générateur d'appoint (2) et à ladite pompe à chaleur (3), le procédé de régulation comprenant : - une étape d'activation de la pompe à chaleur (3) systématiquement consécutive à une étape d'activation du système de chauffage (1) pour régler la température d'eau sortant de la bouteille hydraulique à une température donnée, dite température de consigne, - une étape de détermination d'un coefficient de performance de la pompe à chaleur à des temps donnés pendant une durée de fonctionnement du système de chauffage (1), dit coefficient de performance réel, que le compresseur fonctionne ou soit en arrêt, et - une étape de modulation d'un taux de charge de la pompe à chaleur en fonction de la valeur mesurée du coefficient de performance réel et d'une comparaison de la température d'eau sortant de la bouteille hydraulique à la température de consigne. Method of thermal regulation of a water heating system (1) for supplying a hot water room, said heating system comprising a fossil energy booster generator (2), a speed compressor heat pump variable (3) and a hydraulic decoupling bottle (4) connected to said booster generator (2) and to said heat pump (3), the control method comprising: a step of activation of the heat pump (3) systematically following an activation step of the heating system (1) to regulate the temperature of water leaving the hydraulic bottle at a given temperature, the so-called setpoint temperature , a step of determining a coefficient of performance of the heat pump at given times during a running time of the heating system (1), said real coefficient of performance, whether the compressor is running or is off, and a step of modulating a charge rate of the heat pump as a function of the measured value of the real coefficient of performance and of a comparison of the temperature of water leaving the hydraulic cylinder at the set temperature. Procédé de régulation thermique selon la revendication 1, dans lequel, au cours de l'étape de détermination du coefficient de performance réel, le coefficient de performance réel est calculé en fonction d'une température extérieure, d'une température caractéristique de la pompe à chaleur (3) et d'un taux de charge de la pompe à chaleur (3).A thermal control method according to claim 1, wherein, in the step of determining the actual coefficient of performance, the actual coefficient of performance is calculated as a function of an outside temperature, a temperature characteristic of the heat (3) and a charge rate of the heat pump (3). Procédé de régulation thermique selon l'une des revendications 1 ou 2, comprenant une étape de comparaison du coefficient de performance réel à une valeur seuil, dite coefficient de performance seuil.Thermal control method according to one of claims 1 or 2, comprising a step of comparing the actual coefficient of performance to a threshold value, said threshold performance coefficient. Procédé de régulation thermique selon la revendication précédente, comprenant une étape de mesure de la température de sortie de l'eau hors de la bouteille hydraulique (4), et une étape d'activation du générateur d'appoint si, à un temps donné de fonctionnement de la pompe à chaleur, la température de sortie est inférieure à la température de consigne.Thermal regulation method according to the preceding claim, comprising a step of measuring the outlet temperature of the water out of the hydraulic bottle (4), and a step of activating the generator if, at a given operating time of the heat pump, the outlet temperature is lower than the set temperature. Procédé de régulation thermique selon l'une quelconque des revendications précédentes, comprenant une étape de désactivation de la pompe à chaleur si le coefficient de performance réel est inférieur au coefficient de performance seuil.A thermal control method according to any one of the preceding claims, comprising a step of deactivating the heat pump if the actual coefficient of performance is lower than the threshold performance coefficient. Procédé de régulation thermique selon la revendication précédente, comprenant une étape de détermination du coefficient de performance réel à intervalle donné, régulier ou irrégulier, pendant la désactivation de la pompe à chaleur.Thermal control method according to the preceding claim, comprising a step of determining the real coefficient of performance at a given interval, regular or irregular, during the deactivation of the heat pump. Procédé de régulation thermique selon la revendication précédente, comprenant une étape d'activation de la pompe à chaleur quand le coefficient de performance réel redevient égal au coefficient de performance seuil.Thermal regulation method according to the preceding claim, comprising a step of activation of the heat pump when the real coefficient of performance becomes equal to the threshold performance coefficient. Procédé de régulation thermique selon l'une quelconque des revendications précédentes, comprenant une étape de blocage d'activation du générateur d'appoint pendant une durée donnée, dite durée de blocage.Thermal control method according to any one of the preceding claims, comprising a step of blocking activation of the backup generator for a given duration, called blocking time. Procédé de régulation thermique selon la revendication précédente, comprenant une étape de détermination du coefficient de performance réel de la pompe à chaleur à des temps donnés pendant la durée de blocage, une étape de comparaison du coefficient de performance réel à une valeur seuil, dite coefficient de performance seuil, et une étape d'activation du générateur d'appoint si le coefficient de performance réel est inférieur au coefficient de performance seuil.Thermal control method according to the preceding claim, comprising a step of determining the actual coefficient of performance of the heat pump at given times during the blocking time, a step of comparing the actual coefficient of performance with a threshold value, called coefficient threshold performance, and a step of activating the backup generator if the actual coefficient of performance is lower than the threshold performance coefficient. Procédé de régulation thermique selon l'une quelconque des revendications 3 à 9, dans lequel, au cours de l'étape de modulation du taux de charge, si le coefficient de performance est supérieur ou égal au coefficient de performance seuil, on modifie le taux de charge de la pompe à chaleur (3) de sorte à augmenter le coefficient de performance jusqu'à une valeur maximale.Thermal control method according to any one of claims 3 to 9, wherein, during the charge rate modulation step, if the coefficient of performance is greater than or equal to the threshold performance coefficient, the rate is changed. charging the heat pump (3) so as to increase the coefficient of performance to a maximum value. Procédé de régulation thermique selon l'une quelconque des revendications 3 à 9, dans lequel, au cours de l'étape de modulation du taux de charge, si le coefficient de performance est supérieur ou égal au coefficient de performance seuil, on modifie le taux de charge de la pompe à chaleur (3) de sorte à augmenter le taux de charge jusqu'à une valeur maximale.Thermal control method according to any one of claims 3 to 9, wherein, during the charge rate modulation step, if the coefficient of performance is greater than or equal to the threshold performance coefficient, the rate is changed. charging the heat pump (3) so as to increase the charging rate to a maximum value. Bouteille hydraulique pour un système de chauffage d'eau destinée à alimenter en eau chaude un local, comprenant un piquage conformé pour alimenter en eau une pompe à chaleur, un piquage conformé pour recevoir de l'eau de ladite pompe à chaleur, un piquage conformé pour alimenter en eau un générateur d'appoint à énergie fossile, un piquage conformé pour recevoir de l'eau du générateur d'appoint à énergie fossile, un piquage conformé pour alimenter en eau un réservoir d'eau chaude du local, un piquage conformé pour recevoir de l'eau du réservoir d'eau chaude du local, un piquage conformé pour alimenter en eau un réseau de chauffage d'air du local et un piquage conformé pour recevoir de l'eau d'un réseau de chauffage d'air du local, la bouteille comprenant un capteur de température dans une partie basse (15) d'un réservoir de la bouteille et un capteur de température dans une partie haute (16) du réservoir de la bouteille de sorte à mettre en oeuvre le procédé de régulation selon l'une des revendications précédentes.Hydraulic bottle for a water heating system for supplying hot water to a room, comprising a shaped tap for supplying water to a heat pump, a stitching shaped to receive water from said heat pump, a shaped stitching for supplying water to a fossil fuel booster generator, a tapping shaped to receive water from the fossil fuel booster generator, a tapping shaped to supply water to a hot water tank of the premises, a shaped tapping for receiving water from the hot water tank of the room, a tapping shaped to supply water to an air heating network of the premises and a tapping shaped to receive water from an air heating network of the room, the bottle comprising a temperature sensor in a lower part (15) of a tank of the bottle and a temperature sensor in an upper part (16) of the tank of the bottle so as to implement the die valve according to one of the preceding claims. Bouteille hydraulique selon la revendication précédente, dans laquelle un diamètre de la bouteille mesure entre deux et cinq fois plus qu'un diamètre de plus grande valeur parmi des diamètres des piquages, et/ou une distance entre deux piquages mesure entre deux fois et six fois plus que le diamètre de plus grande valeur parmi des diamètres des piquages.Hydraulic bottle according to the preceding claim, wherein a diameter of the bottle is between two and five times more than one diameter of greater value among the diameters of the connections, and / or a distance between two connections measured between two and six times more than the diameter of greater value among diameters of the connections. Système de chauffage d'eau destinée à alimenter un local en eau chaude, comprenant au moins un générateur d'appoint à énergie fossile, au moins une pompe à chaleur et une bouteille de découplage hydraulique selon l'une des revendications 12 ou 13 connectée audit au moins un générateur d'appoint et à ladite au moins une pompe à chaleur et une unité de calcul pour mettre en oeuvre le procédé de régulation selon l'une des revendications 1 à 11.Water heating system for supplying a hot water room, comprising at least one fossil fuel booster generator, at least one heat pump and a hydraulic decoupling bottle according to one of claims 12 or 13 connected to said at least one backup generator and said at least one heat pump and a calculation unit for implementing the control method according to one of claims 1 to 11.
EP16206905.8A 2015-12-28 2016-12-26 Method for thermal regulation of a water-heating system Active EP3187787B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16206905T PL3187787T3 (en) 2015-12-28 2016-12-26 Method for thermal regulation of a water-heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1563402A FR3046217B1 (en) 2015-12-28 2015-12-28 METHOD OF THERMALLY REGULATING A WATER HEATING SYSTEM

Publications (2)

Publication Number Publication Date
EP3187787A1 true EP3187787A1 (en) 2017-07-05
EP3187787B1 EP3187787B1 (en) 2020-02-12

Family

ID=55451422

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16206905.8A Active EP3187787B1 (en) 2015-12-28 2016-12-26 Method for thermal regulation of a water-heating system

Country Status (4)

Country Link
EP (1) EP3187787B1 (en)
ES (1) ES2789362T3 (en)
FR (1) FR3046217B1 (en)
PL (1) PL3187787T3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800009760A1 (en) * 2018-10-24 2020-04-24 Adsum Srl System and method for heating a fluid using a heat pump and a boiler
WO2020083409A1 (en) * 2018-10-25 2020-04-30 Almeva Ag Combined system for heating household water and medium for house heating and/or for cooling of heating medium for house cooling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008498A1 (en) * 1995-08-29 1997-03-06 Monard (Research & Development) Limited A manifold for connecting circuits of a central heating system
EP2159495A1 (en) * 2008-08-25 2010-03-03 Honeywell Technologies Sarl A controller for a temperature control system
EP2463591A1 (en) * 2010-12-08 2012-06-13 Daikin Europe N.V. Heating and method for controlling a heating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008498A1 (en) * 1995-08-29 1997-03-06 Monard (Research & Development) Limited A manifold for connecting circuits of a central heating system
EP2159495A1 (en) * 2008-08-25 2010-03-03 Honeywell Technologies Sarl A controller for a temperature control system
EP2463591A1 (en) * 2010-12-08 2012-06-13 Daikin Europe N.V. Heating and method for controlling a heating

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800009760A1 (en) * 2018-10-24 2020-04-24 Adsum Srl System and method for heating a fluid using a heat pump and a boiler
WO2020083409A1 (en) * 2018-10-25 2020-04-30 Almeva Ag Combined system for heating household water and medium for house heating and/or for cooling of heating medium for house cooling
AT17574U1 (en) * 2018-10-25 2022-07-15 Almeva Ag Combined system for heating domestic water and medium for building heating and/or for cooling heating medium for building cooling
EE01595U1 (en) * 2018-10-25 2023-02-15 Almeva Ag Combined system for heating household water and medium for house heating and/or for cooling of heating medium for house cooling

Also Published As

Publication number Publication date
ES2789362T3 (en) 2020-10-26
PL3187787T3 (en) 2020-09-21
FR3046217A1 (en) 2017-06-30
EP3187787B1 (en) 2020-02-12
FR3046217B1 (en) 2017-12-22

Similar Documents

Publication Publication Date Title
EP2397778B1 (en) Thermal installation
EP3404334B2 (en) Method and facility for energy storage using a water heater
FR2977656A1 (en) THERMAL EXCHANGE SYSTEM AND METHOD FOR CONTROLLING THERMAL POWER DEVELOPED BY SUCH THERMAL EXCHANGE SYSTEM
EP3187787B1 (en) Method for thermal regulation of a water-heating system
FR3073932A1 (en) HEATING APPARATUS INCORPORATING BATTERY AND INVERTER FOR INJECTING ENERGY FROM THE BATTERY TO THE POWER SUPPLY SOURCE
FR3058479A1 (en) METHOD AND SYSTEM FOR CONTROLLING MULTI-PUMPS EQUIPMENT
FR2999686A1 (en) AIR CONDITIONING SYSTEM USING DEEP SEA WATER
EP2395288B1 (en) Balancing valve
EP3161775A1 (en) Power management method in an electrical installation and an electrical installation
EP3340004B1 (en) Method for determining the load-shedding capability of a building using thermal inertia, associated load-shedding method and system using said methods
FR3003016A1 (en) FLOW AND TEMPERATURE CONTROL OF A HOT WATER CIRCULATOR
FR3010249A1 (en) METHOD FOR CONTROLLING THE ELECTRICAL REGULATION OF AN ELECTRICAL SYSTEM BASED ON ERASING INSTRUCTIONS.
FR2966564A1 (en) HOT WATER PRODUCTION FACILITY FOR COLLECTIVE HOUSING COMPRISING A COMMON AIR EXTRACTION FAN
EP2603742B1 (en) Device and method for temperature regulation in a building
EP3650762A1 (en) Method for controlling a thermal power to be injected in a heating system and heating system implementing said method
EP2770263A2 (en) Method and installation for heating water
EP3273170B1 (en) Installation for producing hot water with a thermodynamic circuit powered by photovoltaic cells
FR3007595A1 (en) METHOD FOR MANAGING AN ELECTRICAL CONSUMER BASED ON A MODEL OF TEMPERATURE
EP2651673B1 (en) System and method for controlling an air conditioning system for a motor vehicle
FR2966563A1 (en) System for producing domestic hot water in apartment building, has air extraction network common to individual housings, in which individual air extraction networks open, where common network is provided with common air exhaust fan
FR3115098A1 (en) Thermodynamic heater with optimized regulation
FR3039260A1 (en) METHOD FOR MANAGING A CONDENSATION AND CHADIER BOILER FOR IMPLEMENTING THE METHOD
FR3035484A1 (en) HOT WATER PRODUCTION SYSTEM
EP3660415A1 (en) Apparatus for thermal control of a building, associated installation and method
EP2990904B1 (en) Method for managing the power consumption of an electrical network

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171121

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190829

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1232615

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016029464

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: VALIPAT S.A. C/O BOVARD SA NEUCHATEL, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200612

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2789362

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20201026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200705

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016029464

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1232615

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200212

26N No opposition filed

Effective date: 20201113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20221129

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20221117

Year of fee payment: 7

Ref country code: BE

Payment date: 20221213

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230105

Year of fee payment: 7

Ref country code: CH

Payment date: 20221229

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231124

Year of fee payment: 8

Ref country code: LU

Payment date: 20231124

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231221

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231211

Year of fee payment: 8

Ref country code: FR

Payment date: 20231116

Year of fee payment: 8

Ref country code: DE

Payment date: 20231208

Year of fee payment: 8

Ref country code: CZ

Payment date: 20231122

Year of fee payment: 8

Ref country code: AT

Payment date: 20231120

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231127

Year of fee payment: 8

Ref country code: BE

Payment date: 20231212

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240108

Year of fee payment: 8