EP3184607B1 - Hydrotreatment or hydroconversion method with stripper and low-pressure disengager on the fractionating section - Google Patents

Hydrotreatment or hydroconversion method with stripper and low-pressure disengager on the fractionating section Download PDF

Info

Publication number
EP3184607B1
EP3184607B1 EP16306699.6A EP16306699A EP3184607B1 EP 3184607 B1 EP3184607 B1 EP 3184607B1 EP 16306699 A EP16306699 A EP 16306699A EP 3184607 B1 EP3184607 B1 EP 3184607B1
Authority
EP
European Patent Office
Prior art keywords
mpa
supplied
stripper
column
effluent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16306699.6A
Other languages
German (de)
French (fr)
Other versions
EP3184607A1 (en
Inventor
Odile LAJEUNESSE
Pierre-Yves ALSPEKTOR
Pâris PACKEU
Nicolas PUPAT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Axens SA
Original Assignee
Axens SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Axens SA filed Critical Axens SA
Publication of EP3184607A1 publication Critical patent/EP3184607A1/en
Application granted granted Critical
Publication of EP3184607B1 publication Critical patent/EP3184607B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/22Separation of effluents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G5/00Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1074Vacuum distillates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/207Acid gases, e.g. H2S, COS, SO2, HCN

Definitions

  • the invention relates to the field of hydrotreatment or hydroconversion processes.
  • Conventional processes for the hydrotreatment or hydroconversion of gas oils, vacuum distillates, atmospheric or vacuum residues generally comprise a fractionation section of the effluent of the reaction section which serves mainly two purposes, the elimination of H2S and light, and the main splitting of the products of the unit. Achieving these two objectives generates energy consumption and represents a significant investment and operating cost both in absolute terms and in relation to the entire process.
  • the patent US 3,733,260 discloses a gas oil hydrodesulphurization process comprising a hydrodesulfurization reaction section, a separation of the effluent of this section into a gaseous fraction and a first high temperature and high pressure liquid fraction, a partial condensation of said vapor phase into a gaseous fraction consisting essentially of hydrogen, and a second liquid fraction, stripping of the H 2 S and light hydrocarbons of the first and the second liquid fraction by means of the previously treated hydrogen, separation of the stripped hydrocarbons into a naphtha and a diesel fuel and a recycle of said naphtha in the condensation step.
  • This configuration requires generating a reflux for stripping, and has the disadvantage of dissipating a portion of the energy contained in the effluent of the reaction section in the top aircondenser stripper.
  • the optimum temperature required for the supply of the stripping being lower than the minimum temperature required for the downstream separation, it requires a heating of the load of this separation.
  • the patent US 3,337,1029 discloses a process for separating effluents from a hydrogen-containing hydrocarbon conversion reactor in which there is no stripping of H2S and hydrocarbons upstream of the main hydrocarbon separation in one naphtha, diesel and heavier compounds.
  • This last configuration has the disadvantage that the acid gases inevitably derived from the main separation operated at a pressure close to atmospheric pressure must, after removal of the H2S be compressed before being returned to a fuel gas network. a refinery.
  • the invention corrects these disadvantages by minimizing or even eliminating the separation head compressor while maximizing the energy efficiency of the process.
  • the figure 1 describes a process scheme according to the invention in which the stripper C-1 is supplied by the bottom fraction of the cold medium pressure separator balloon B-4, and the lightest fraction obtained after separation of the effluent from the section R-1 reaction, successively in the high pressure balloon B-1, then the medium pressure balloon B-3, then the low pressure balloon B-5.
  • the figure 2 discloses a process scheme according to the prior art in which there is no B-5 balloon or C-1 stripper.
  • the effluent from the reaction section R-1 is sent successively into the high-pressure balloon B-1, then the medium pressure balloon B-3, then directly into the main fractionation column C-2 with the bottom fraction from the balloon B-4.
  • the separation column C-1 operates under the following conditions: total pressure of between 0.6 and 2.0 MPa, preferably between 0.7 and 1.8 MPa.
  • the fractionation column C-2 operates under the following pressure conditions: total pressure of between 0.1 MPa and 0.4 MPa, preferably between 0.1 MPa and 0.3 MPa.
  • At least part of the top fraction from the fractionation column C-2 containing the residual acid gases is sent to a washing column C-5 operating at very low pressure, in order to remove at least a portion of the H 2 S, said portion of the overhead fraction then being used as a fuel in the furnace F-1 of the reaction section.
  • At least a portion of the overhead fraction from the fractionation column C-2 containing the residual acid gases is sent to the acid gas compressors of a catalytic cracking unit. fluidized bed (FCC).
  • FCC fluidized bed
  • the temperature of the hot high pressure separator tank B-1 is chosen so as not to require an oven on the charge of the main fractionation C2.
  • reaction section R-1 may comprise several reactors arranged in series or in parallel.
  • Each reactor of the reaction section comprises at least one catalyst bed.
  • the catalyst can be used in a fixed bed or in an expanded bed, or in a bubbling bed. In the case of a catalyst implemented in fixed bed, it is possible to have several catalyst beds in at least one reactor.
  • Any catalyst known to those skilled in the art can be used in the process according to the invention, for example a catalyst comprising at least one element selected from the elements of Group VIII of the periodic table (Groups 8, 9 and 10 of the new periodic classification), and possibly at least one element selected from Group VIB elements of the Periodic Table (Group 6 of the new Periodic Table).
  • a conventional hydroconversion catalyst comprising, on an amorphous support, at least one metal or metal compound having a hydro-dehydrogenating function.
  • This catalyst may be a catalyst comprising Group VIII metals, for example nickel and / or cobalt, most often in combination with at least one Group VIB metal, for example molybdenum and / or tungsten.
  • a catalyst comprising from 0.5 to 10% by weight of nickel (expressed in terms of nickel oxide NiO) and from 1 to 30% by weight of molybdenum, preferably from 5 to 20% by weight of molybdenum, may be used. (expressed in terms of MoO3 molybdenum oxide) on an amorphous mineral support.
  • the total content of metal oxides of groups VI and VIII in the catalyst is generally between 5 and 40% by weight and preferably between 7 and 30% by weight.
  • the weight ratio (expressed on the basis of the metal oxides) between the Group VI metal (or metals) and the Group VIII metal (or metals) is, in general, from about 20 to about 1, and most often about 10 to about 2.
  • the support is, for example, chosen from the group formed by alumina, silica, silica-aluminas, magnesia, clays and mixtures of at least two of these minerals.
  • This support may also contain other compounds and, for example, oxides chosen from boron oxide, zirconia, titanium oxide and phosphoric anhydride.
  • an alumina support is used, and preferably ⁇ or ⁇ alumina.
  • the catalyst may also contain a promoter element such as phosphorus and / or boron. This element may have been introduced into the matrix or preferably deposited on the support. Silicon may also be deposited on the support, alone or with phosphorus and / or boron.
  • a promoter element such as phosphorus and / or boron. This element may have been introduced into the matrix or preferably deposited on the support. Silicon may also be deposited on the support, alone or with phosphorus and / or boron.
  • the catalysts contain silicon deposited on a support such as alumina, optionally with phosphorus and / or boron deposited on the support, and also containing at least one metal of group VIII (Ni, Co ) and at least one Group VIB metal (Mo, W).
  • concentration of said element is usually less than about 20% by weight (based on the oxide base), and most often less than about 10%.
  • the concentration of boron trioxide (B2O3) is usually from about 0 to about 10% by weight.
  • Another catalyst is a silica-alumina comprising at least one Group VIII metal and at least one Group VIB metal.
  • Another type of catalyst that can be used in the process according to the invention is a catalyst containing at least one matrix, at least one Y zeolite, and at least one hydro-dehydrogenating metal.
  • the matrices, metals, additional elements previously described may also be included in the composition of this catalyst.
  • Certain compounds having a basic character are well known for significantly reducing the cracking activity of acidic catalysts such as silica-aluminas or zeolites.
  • acidic catalysts such as silica-aluminas or zeolites.
  • the separation column (stripper) C-1 aims to eliminate the gases from cracking (generally called acid gases), including H2S, from reactions of the reaction section.
  • This column C-1 can use any stripping gas such as for example a gas containing hydrogen or water vapor.
  • steam is used to carry out the stripping according to the invention.
  • the separation column C-1 (stripper) can be reboiled.
  • the pressure of this separation column C-1 is generally sufficiently high so that the acid gases from this separation, previously purified of the H2S they contain, can be reinjected into the fuel gas network of the site.
  • the total pressure is between 0.6 and 2.0 MPa, preferably between 0.7 and 1.8 MPa.
  • the fractionation column C-2 is preferably fed by means of any stripping gas, preferably steam.
  • the total pressure of the fractionation column C-2 is between 0.1 MPa and 0.4 MPa, preferably between 0.1 MPa and 0.3 MPa.
  • the overhead fraction of the C-2 fractionation column contains the residual acid gases that are compressed in the K-2 compressor before being sent to the acid gas treatment section generally using an amine scrubbing column. This fraction of acid gases after washing is then directed to the fuel gas network.
  • At least part of the overhead fraction from the fractionation column C-2 containing the residual acid gases is sent to a washing column C-5 operating at very low pressure, in order to eliminate at least one part of the H2S, said portion of the top fraction being used as a fuel in the furnace F-1 of the reaction section.
  • At least a part of the top fraction derived from the fractionation column C-2 containing the residual acid gases is sent to the acid gas compressors of a fluidized catalytic cracking unit (FCC). This then eliminates the acid gas compressor of the hydrodesulfurization unit.
  • FCC fluidized catalytic cracking unit
  • the hot high pressure separator balloon B-1 is generally operated at a slightly lower pressure, for example a lower pressure of 0.1 MPa to 1.0 MPa than that of the reactor R-1.
  • the temperature of the hot separator flask B-1 is generally between 200 ° C. and 450 ° C., preferably between 250 ° C. and 380 ° C. and very preferably between 260 ° C. and 360 ° C.
  • the temperature of the hot high pressure separator tank B-1 is chosen so as not to require an oven on the charge of the main fractionation.
  • the high-pressure cold separator balloon B-2 the charge of which is the gaseous flow coming from the hot separator balloon B-1, is operated at a pressure slightly lower than that of B-1, for example a lower pressure of 0, 1 MPa at 1.0 MPa than that of B-1.
  • the gaseous effluent from B-2 is optionally washed in column C-3, and then compressed in compressor K-1.
  • the temperature of the high-pressure cold separator tank B-2 is generally as low as possible considering the cooling means available on the site, so as to maximize the purity of the recycled hydrogen.
  • the liquid from the cold separator tank B-2 is expanded in a valve or a turbine, and directed into a cold medium pressure separator tank B-4.
  • the total pressure of the latter is preferably that required to efficiently recover the hydrogen included in the separated gaseous fraction in the flask. This recovery of hydrogen is preferably carried out in a pressure reversal adsorption unit.
  • the pressure of the flask B-4 is generally between 1.0 MPa and 3.5 MPa, preferably between 1.5 MPa and 3.5 MPa.
  • the liquid flow from the hot separator tank at high pressure B-1 is directed into a hot medium pressure separator drum B-3.
  • the pressure of said separator tank B-3 is chosen so as to feed the cold medium pressure separator tank B-4 with the separated gas stream into the hot high pressure separator tank B-3.
  • a portion of the liquid from B3 can be reinjected into B-2 to promote the dissolution of light hydrocarbons therein and maximize the hydrogen purity of the recycle gas.
  • the liquid flow from the hot medium pressure separator drum B-3 is expanded and directed to a hot low pressure separator drum B-5.
  • the pressure of said flask B-5 is chosen sufficiently high so that the gaseous effluent from B-5 can be directed to the separation column C-1.
  • the total pressure of the separator flask B-5 is typically from about 0.2 MPa to about 2.5 MPa, generally from 0.3 to 2.0 MPa, preferably from 0.4 to 1.8 MPa.
  • reaction zone R-1 is a hydrocracking zone, without this constituting a limitation to the present invention which relates to the installation of a separator (B-5) and stripper (C-1) assembly upstream of the main fractionation column C-2.
  • the filler is a cup with boiling points between 350 ° C and 530 ° C, a mixture of 70% by weight of heavy vacuum distillate and 30% by weight of heavy coker gas oil, having the following characteristics: Specific density 0.965 Sulfur content % weight 2.8 Nitrogen content ppm weight 5000
  • the load is fed via line 1 by the pump P-1.
  • the makeup hydrogen preferably in excess of the charge, is supplied via line 2 and compressor K-2 and then line 3, and mixed with charge 1 before being admitted to a charge-exchanger. effluent (E-1) via line 4.
  • the exchanger E-1 makes it possible to preheat the feedstock by means of the effluent from the hydrocracking reactor R-1. After this exchange, the charge is fed via line 5 into an oven F-1 to reach the temperature level necessary for the hydrocracking reaction, then the hot charge is sent via line 6 in the section d hydrocracking, constituted by at least one hydrocracking reactor R-1 comprising at least one hydrocracking catalyst.
  • the reaction section R-1 is composed of 2 reactors in series, of 3 catalyst beds each.
  • the first bed of the first reactor and composed of Axens HMC catalysts 868, HF858 and HR844.
  • the other beds consist of Axens HR844 catalyst.
  • the beds are operated approximately at 12.5 MPa and at temperatures between 350 ° C. and 370 ° C.
  • the hydrogen consumption in the reaction section is 2% relative to the fresh charge.
  • the effluent from the reaction section is then sent via line 10 to the exchanger E-1, then via line 11 to the high-pressure separator tank B-1. A gaseous fraction of the head is separated in this flask and recovered via line 12.
  • the liquid fraction is recovered at the bottom of the flask B-1 via the line 20.
  • Said gaseous fraction (12) comprises unreacted hydrogen, the H2S formed in the course of the reaction, as well as light hydrocarbons from the hydrocarbon conversion of the feedstock in the R-1 hydrocracking reaction section.
  • this fraction After cooling in an exchanger E-2 and an aerocondenser A-1, this fraction is fed, via line 13, into a cold separator tank at high pressure B-2 allowing both gas-liquid separation and settling. of the aqueous liquid phase.
  • the liquid hydrocarbon phase is, after expansion in the valve or the liquid turbine V-1, directed into a cold medium pressure separator tank B-4 via line 21.
  • the liquid effluent from the flask B-1 is, after expansion in the valve or the liquid turbine V-2, directed into a hot medium-pressure separator tank B-3 via the line 20.
  • a gaseous fraction is separated in this flask. and recovered via line 22.
  • the gaseous fraction comprises unreacted hydrogen, H 2 S, as well as, generally, light hydrocarbons derived from the conversion of the feed hydrocarbons into the reaction section R-1. .
  • the gaseous fraction from the high-pressure cold separator flask B-2 is sent via line 14 to an amine absorber or a C-3 scrubbing column for removing at least a portion of the H 2 S.
  • the gaseous fraction containing hydrogen is then recycled via lines 15 and 16 to the hydrocracking reactor, after compression using compressor K-1 and mixing with charge 1.
  • the hydrocarbon liquid effluent from the flask B-4 feeds the stripper C-1 via the lines 32 and 33, the valve or the liquid turbine V-5 and the exchanger E-3.
  • water vapor is preferentially added via lines 60 and 61 to the top effluent of balloons B-1 and / or B-3 to facilitate fractionation.
  • This water is separated in the balloons B-2 and B-4, and discharged after separation via the line 57.
  • the water separated in the balloon B-2 is sent via the line 56 and the valve V4 to the balloon B-4.
  • Line 58 makes it possible to evacuate a gaseous flow.
  • Stripper C-1 is operated at 0.9 MPa at the top of the column, 45 ° C. at reflux tank B-6 for a bottom temperature of 180 ° C.
  • a gaseous fraction is separated in the B-5 flask. This gaseous fraction feeds the stripper C-1 via the line 34.
  • the stripper C-1 is fed with stripping steam via the line 35 at a ratio of 7 kg / hr of steam for 1 standard m3 of bottoms product. .
  • a gaseous fraction (generally called acid gas) is recovered via line 36, and via line 37 a naphtha having a final boiling point, most often greater than 100 ° C., by a B-6 flask. and an E-6 exchanger.
  • the liquid recovered at the bottom of the stripper via line 39 is sent to the main fractionation column C-2, without it being necessary to heat it in an oven or exchanger.
  • the liquid fraction from the flask B-5 directly feeds the main fractionation C-2 via the line 38 without being the subject of an acid gas separation operation in a stripping column or a reboiled separation column.
  • the main fractionating column C-2 is operated at a low pressure of 0.29 MPa at the top of the column, at 45 ° C. at the reflux tank B-7 (after passing through an A-3 aerocondenser and a P-2 pump) for a bottom temperature of 330 ° C.
  • the heat required for separation is preferably provided by the temperature of the hot separator flask B-5, operated at 340 ° C. and 1.1 MPa.
  • This column C-2 is also supplied with stripping steam via line 40 at a ratio of 7 kg / hr of steam per 1 standard m3 of bottoms product.
  • the overhead fraction recovered via line 41 contains the residual acid gases that are compressed in the K-2 compressor prior to export to acid gas treatment (typically an amine wash or wash column) before being directed to a reactor. fuel gas network via line 42.
  • acid gas treatment typically an amine wash or wash column
  • the residual acid gases are sent via line 43 to an amine absorber or a C-5 washing column operating at very low pressure which makes it possible to eliminate at least a part of the H 2 S, before being used in a minority way as fuel in the furnace R-1 of the reaction section via line 44.
  • these residual acid gases are directed to the acid gas compressors of the catalytic cracking unit. in a fluidized bed via line 45.
  • the product obtained line 50 by the pump P-3 consists of naphtha cuts having a final boiling point, most often less than 200 ° C.
  • the intermediate fraction from the main fractionating column C-2 via the intermediate column C-4 (optional), possibly equipped with an E-7 reboiler, via the line 51 is cooled, for example, by means of a heat exchanger E-4 after passing through a pump P-5, then recovered via line 52. It is for example a diesel cut having a distillation temperature of 95% volume (NF EN ISO 3405 standard) less than 360 ° vs.
  • the heavy fraction from the main fractionation column via the lines 53 and 54 is also cooled after passing through a pump P-4 by means of the exchanger E-5.
  • the fraction thus obtained via line 55 is a vacuum gas oil having cutting points close to the initial charge.
  • fractionation column C-2 does not include intermediate fractionation C-4, and lines 51 and 52 are absent.
  • Table 1 compares a mild hydrocracking process according to the prior art, that is to say without stripper C-1 ( figure 2 ), with a mild hydrocracking process according to the invention, that is to say with a B-5 flask and a C-1 stripper ( figure 1 ).
  • the amount of acid gas at the top of the main low-pressure fractionating column (stream 41) to be compressed in the compressor K-2 is divided by 6 compared to the method according to the prior art. (107 Kg / h against 608 Kg / h).
  • the temperature at the low pressure hot-water separator tank B-5 is 340 ° C., which makes it possible to avoid putting an oven for heating the charge 38, drawn off at the bottom of the low-pressure balloon B-5, which feeds the column C-2.

Description

CONTEXTE DE L'INVENTIONBACKGROUND OF THE INVENTION

L'invention concerne le domaine des procédés d'hydrotraitement ou d'hydroconversion. Les procédés conventionnels d'hydrotraitement ou hydroconversion de gazoles, de distillats sous vide, de résidus atmosphérique ou sous vide comprennent généralement une section de fractionnement de l'effluent de la section réactionnelle réalisant principalement deux objectifs, l'élimination de l'H2S et des légers, et le fractionnement principal des produits de l'unité. La réalisation de ces deux objectifs engendre des consommations énergétiques et représente un investissement et un coût opératoire importants à la fois dans l'absolu et par rapport à l'ensemble du procédé.The invention relates to the field of hydrotreatment or hydroconversion processes. Conventional processes for the hydrotreatment or hydroconversion of gas oils, vacuum distillates, atmospheric or vacuum residues generally comprise a fractionation section of the effluent of the reaction section which serves mainly two purposes, the elimination of H2S and light, and the main splitting of the products of the unit. Achieving these two objectives generates energy consumption and represents a significant investment and operating cost both in absolute terms and in relation to the entire process.

ART ANTERIEUR :PRIOR ART:

Le brevet US 3,733,260 décrit un procédé d'hydrodésulfuration de gazoles comprenant une section réactionnelle d'hydrodésulfuration, une séparation de l'effluent de cette section en une fraction gazeuse et une première fraction liquide à haute température et haute pression, une condensation partielle de ladite phase vapeur en une fraction gazeuse comprenant essentiellement de l'hydrogène, et une seconde fraction liquide, un stripage de l'H2S et des hydrocarbures légers de la première et la seconde fraction liquide au moyen de l'hydrogène préalablement traité, une séparation des hydrocarbures strippés en un naphta et un gazole et un recyclage dudit naphta à l'étape de condensation.The patent US 3,733,260 discloses a gas oil hydrodesulphurization process comprising a hydrodesulfurization reaction section, a separation of the effluent of this section into a gaseous fraction and a first high temperature and high pressure liquid fraction, a partial condensation of said vapor phase into a gaseous fraction consisting essentially of hydrogen, and a second liquid fraction, stripping of the H 2 S and light hydrocarbons of the first and the second liquid fraction by means of the previously treated hydrogen, separation of the stripped hydrocarbons into a naphtha and a diesel fuel and a recycle of said naphtha in the condensation step.

Cette configuration, nécessite de générer un reflux pour le stripage, et présente l'inconvénient de dissiper une partie de l'énergie contenue dans l'effluent de la section réactionnelle dans l'aérocondenseur de tête du striper. De plus, la température optimale requise pour l'alimentation du stripage étant inférieure à la température minimum requise pour la séparation en aval, cela nécessite un chauffage de la charge de cette séparation.This configuration requires generating a reflux for stripping, and has the disadvantage of dissipating a portion of the energy contained in the effluent of the reaction section in the top aircondenser stripper. In addition, the optimum temperature required for the supply of the stripping being lower than the minimum temperature required for the downstream separation, it requires a heating of the load of this separation.

Le brevet US 3,371029 décrit un procédé de séparation d'effluents d'un réacteur de conversion d'hydrocarbures contenant de l'hydrogène dans lequel il n'y a pas de stripage de l'H2S et des hydrocarbures en amont de la séparation principale d'hydrocarbures en un naphta, un gazole et des composés plus lourds.The patent US 3,337,1029 discloses a process for separating effluents from a hydrogen-containing hydrocarbon conversion reactor in which there is no stripping of H2S and hydrocarbons upstream of the main hydrocarbon separation in one naphtha, diesel and heavier compounds.

Cette dernière configuration présente l'inconvénient que les gaz acides inévitablement issus de la séparation principale opérée à une pression proche de la pression atmosphérique, doivent, après élimination de l'H2S être comprimés avant d'être renvoyés vers un réseau de gaz combustible d'une raffinerie.This last configuration has the disadvantage that the acid gases inevitably derived from the main separation operated at a pressure close to atmospheric pressure must, after removal of the H2S be compressed before being returned to a fuel gas network. a refinery.

L'invention corrige ces inconvénients en minimisant, voire même en supprimant le compresseur de tête de séparation, tout en maximisant l'efficacité énergétique du procédé.The invention corrects these disadvantages by minimizing or even eliminating the separation head compressor while maximizing the energy efficiency of the process.

US 2005 / 0035028 divulgue un procédé d'hydrotraitement. US 2005/0035028 discloses a hydrotreatment process.

DESCRIPTION SOMMAIRE DES FIGURES : SUMMARY DESCRIPTION OF FIGURES :

  • Les figures 1 et 2 présentent la même numérotation pour un même équipement de l'installation.The figures 1 and 2 have the same numbering for the same equipment of the installation.

La figure 1 décrit un schéma de procédé selon l'invention dans lequel le stripeur C-1 est alimenté par la fraction de fond du ballon séparateur froid moyenne pression B-4, et la fraction la plus légère obtenue après séparation de l'effluent issu de la section réactionnelle R-1, successivement dans le ballon haute pression B-1, puis le ballon moyenne pression B-3, puis le ballon basse pression B-5.The figure 1 describes a process scheme according to the invention in which the stripper C-1 is supplied by the bottom fraction of the cold medium pressure separator balloon B-4, and the lightest fraction obtained after separation of the effluent from the section R-1 reaction, successively in the high pressure balloon B-1, then the medium pressure balloon B-3, then the low pressure balloon B-5.

Les fractions de fond du ballon B-5 et du stripeur C-1 alimentent la colonne de fractionnement principal C-2.Bottom fractions from flask B-5 and stripper C-1 feed the main fractionator C-2.

La figure 2 décrit un schéma de procédé selon l'art antérieur dans lequel il n'y a pas de ballon B-5 ni de stripeur C-1. L'effluent issu de la section réactionnelle R-1 est envoyé successivement dans le ballon haute pression B-1, puis le ballon moyenne pression B-3, puis directement dans la colonne de fractionnement principal C-2 avec la fraction de fond issue du ballon B-4.The figure 2 discloses a process scheme according to the prior art in which there is no B-5 balloon or C-1 stripper. The effluent from the reaction section R-1 is sent successively into the high-pressure balloon B-1, then the medium pressure balloon B-3, then directly into the main fractionation column C-2 with the bottom fraction from the balloon B-4.

DESCRIPTION SOMMAIRE DE L'INVENTION :SUMMARY DESCRIPTION OF THE INVENTION

L'invention est définie dans la revendication 1. Dans une variante l'installation comprend en outre :

  • un ballon séparateur chaud à moyenne pression B-3, alimenté par le flux liquide issu de B-1, et dont l'effluent liquide alimente le ballon B-5,
  • un ballon séparateur froid à moyenne pression B-4, alimenté par le flux liquide issu de B-2 et le flux gazeux issus de B-3, et dont l'effluent liquide constitue une partie de la charge du stripeur C-1.
The invention is defined in claim 1. In a variant, the installation furthermore comprises:
  • a hot-medium separator balloon B-3 fed by the liquid stream from B-1, and the liquid effluent of which feeds the balloon B-5,
  • a cold medium-pressure separator tank B-4 fed by the liquid stream from B-2 and the gas stream from B-3, and the liquid effluent of which forms part of the C-1 stripper charge.

Dans le procédé selon l'invention, la colonne de séparation C-1 fonctionne aux conditions suivantes : pression totale comprise entre 0,6 et 2,0 MPa, de préférence entre 0,7 et 1,8 MPa.In the process according to the invention, the separation column C-1 operates under the following conditions: total pressure of between 0.6 and 2.0 MPa, preferably between 0.7 and 1.8 MPa.

Dans le procédé selon l'invention, la colonne de fractionnement C-2 fonctionne aux conditions de pression suivantes : pression totale comprise entre 0,1MPa et 0,4 MPa, de préférence compris entre 0,1 MPa et 0,3 MPa.In the process according to the invention, the fractionation column C-2 operates under the following pressure conditions: total pressure of between 0.1 MPa and 0.4 MPa, preferably between 0.1 MPa and 0.3 MPa.

Selon une variante du procédé selon l'invention, au moins une partie de la fraction de tête issue de la colonne de fractionnement C-2 contenant les gaz acides résiduels, est envoyée vers une colonne de lavage C-5 opérant à très basse pression, afin d'éliminer au moins une partie de l'H2S, ladite partie de la fraction de tête étant ensuite utilisée en appoint comme combustible dans le four F-1 de la section réactionnelle.According to a variant of the process according to the invention, at least part of the top fraction from the fractionation column C-2 containing the residual acid gases is sent to a washing column C-5 operating at very low pressure, in order to remove at least a portion of the H 2 S, said portion of the overhead fraction then being used as a fuel in the furnace F-1 of the reaction section.

Selon une autre variante du procédé selon l'invention, au moins une partie de la fraction de tête issue de la colonne de fractionnement C-2 contenant les gaz acides résiduels, est envoyée vers les compresseurs de gaz acides d'une unité de craquage catalytique en lit fluidisé (FCC).According to another variant of the process according to the invention, at least a portion of the overhead fraction from the fractionation column C-2 containing the residual acid gases is sent to the acid gas compressors of a catalytic cracking unit. fluidized bed (FCC).

Enfin selon une autre variante du procédé selon l'invention, la température du ballon séparateur chaud haute pression B-1 est choisie de façon à ne pas nécessiter de four sur la charge du fractionnement principal C2.Finally, according to another variant of the process according to the invention, the temperature of the hot high pressure separator tank B-1 is chosen so as not to require an oven on the charge of the main fractionation C2.

DESCRIPTION DETAILLEE DE L'INVENTIONDETAILED DESCRIPTION OF THE INVENTION

La suite de la description fournit des informations complémentaires sur les conditions opératoires du procédé et les catalyseurs utilisés dans la section réactionnelle.The remainder of the description provides additional information on the operating conditions of the process and the catalysts used in the reaction section.

De manière générale dans le procédé utilisant l'installation selon l'invention, la section réactionnelle R-1 peut comporter plusieurs réacteurs disposés en série ou en parallèle.In general, in the process using the plant according to the invention, the reaction section R-1 may comprise several reactors arranged in series or in parallel.

Chaque réacteur de la section réactionnelle comprend au moins un lit de catalyseur. Le catalyseur peut être mis en oeuvre en lit fixe ou en lit expansé, ou encore en lit bouillonnant. Dans le cas d'un catalyseur mis en oeuvre en lit fixe, il est possible de disposer plusieurs lits de catalyseurs dans au moins un réacteur.Each reactor of the reaction section comprises at least one catalyst bed. The catalyst can be used in a fixed bed or in an expanded bed, or in a bubbling bed. In the case of a catalyst implemented in fixed bed, it is possible to have several catalyst beds in at least one reactor.

Tout catalyseur connu de l'homme du métier peut être utilisé dans le procédé selon l'invention, par exemple un catalyseur comprenant au moins un élément choisi parmi les éléments du Groupe VIII de la classification périodique (groupes 8, 9 et 10 de la nouvelle classification périodique), et éventuellement au moins un élément choisi parmi les éléments du Groupe VIB de la classification périodique (groupe 6 de la nouvelle classification périodique).Any catalyst known to those skilled in the art can be used in the process according to the invention, for example a catalyst comprising at least one element selected from the elements of Group VIII of the periodic table (Groups 8, 9 and 10 of the new periodic classification), and possibly at least one element selected from Group VIB elements of the Periodic Table (Group 6 of the new Periodic Table).

Les conditions opératoires de la section réactionnelle d'hydrotraitement ou d'hydroconversion R-1 sont généralement les suivantes :

  • La température est typiquement comprise entre environ 200 et environ 460 °C,
  • La pression totale est typiquement comprise entre environ 1 MPa et environ 20 MPa, généralement entre 2 et 20 MPa, de préférence entre 2,5 et 18 MPa, et de façon très préférée entre 3 et 18 MPa,
  • La vitesse spatiale horaire globale de charge liquide pour chaque étape catalytique est typiquement comprise entre environ 0,1 et environ 12, et préférentiellement entre environ 0,4 et environ 10 h-1 (la vitesse spatiale horaire étant définie comme le débit volumique de charge divisé par le volume de catalyseur),
  • La pureté de l'hydrogène recyclé utilisé dans le procédé selon l'invention est typiquement comprise entre 50 et 100% volume,
  • La quantité d'hydrogène recyclé par rapport à la charge liquide est typiquement comprise entre environ 50 et environ 2500 Nm3/m3.
The operating conditions of the R-1 hydrotreating or hydroconversion reaction section are generally as follows:
  • The temperature is typically between about 200 and about 460 ° C,
  • The total pressure is typically between about 1 MPa and about 20 MPa, generally between 2 and 20 MPa, preferably between 2.5 and 18 MPa, and very preferably between 3 and 18 MPa,
  • The overall hourly space velocity of liquid charge for each catalytic step is typically between about 0.1 and about 12, and preferably between about 0.4 and about 10 h -1 (the hourly space velocity being defined as the charge volume flow rate). divided by the volume of catalyst),
  • The purity of the recycled hydrogen used in the process according to the invention is typically between 50 and 100% by volume,
  • The amount of hydrogen recycled relative to the liquid feed is typically between about 50 and about 2500 Nm 3 / m 3 .

Pour la mise en oeuvre du procédé selon l'invention, on peut utiliser un catalyseur classique d'hydroconversion comprenant, sur un support amorphe, au moins un métal ou composé de métal ayant une fonction hydro-déshydrogénante. Ce catalyseur peut être un catalyseur comprenant des métaux du groupe VIII, par exemple du nickel et/ou du cobalt, le plus souvent en association avec au moins un métal du groupe VIB, par exemple du molybdène et/ou du tungstène.For carrying out the process according to the invention, it is possible to use a conventional hydroconversion catalyst comprising, on an amorphous support, at least one metal or metal compound having a hydro-dehydrogenating function. This catalyst may be a catalyst comprising Group VIII metals, for example nickel and / or cobalt, most often in combination with at least one Group VIB metal, for example molybdenum and / or tungsten.

On peut par exemple employer un catalyseur comprenant de 0,5 à 10 % poids de nickel (exprimé en terme d'oxyde de nickel NiO), et de 1 à 30 % poids de molybdène, de préférence de 5 à 20 % poids de molybdène (exprime en terme d'oxyde de molybdène MoO3) sur un support minéral amorphe.For example, a catalyst comprising from 0.5 to 10% by weight of nickel (expressed in terms of nickel oxide NiO) and from 1 to 30% by weight of molybdenum, preferably from 5 to 20% by weight of molybdenum, may be used. (expressed in terms of MoO3 molybdenum oxide) on an amorphous mineral support.

La teneur totale en oxydes de métaux des groupes VI et VIII dans le catalyseur est généralement comprise entre 5 et 40 % poids et préférentiellement entre 7 et 30 % poids. Le rapport pondéral (exprimé sur la base des oxydes métalliques) entre métal (ou métaux) du groupe VI et métal (ou métaux) du groupe VIII est, en général, d'environ 20 à environ 1, et le plus souvent d'environ 10 à environ 2.The total content of metal oxides of groups VI and VIII in the catalyst is generally between 5 and 40% by weight and preferably between 7 and 30% by weight. The weight ratio (expressed on the basis of the metal oxides) between the Group VI metal (or metals) and the Group VIII metal (or metals) is, in general, from about 20 to about 1, and most often about 10 to about 2.

Le support est, par exemple, choisi dans le groupe forme par l'alumine, la silice, les silices-alumines, la magnésie, les argiles et les mélanges d'au moins deux de ces minéraux.The support is, for example, chosen from the group formed by alumina, silica, silica-aluminas, magnesia, clays and mixtures of at least two of these minerals.

Ce support peut également renfermer d'autres composés et par exemple, des oxydes choisis parmi l'oxyde de bore, la zircone, l'oxyde de titane, l'anhydride phosphorique.This support may also contain other compounds and, for example, oxides chosen from boron oxide, zirconia, titanium oxide and phosphoric anhydride.

On utilise le plus souvent un support d'alumine et préférentiellement de l'alumine η ou γ.Most often, an alumina support is used, and preferably η or γ alumina.

Le catalyseur peut également contenir un élément promoteur tel que du phosphore et/ou du bore. Cet élément peut avoir été introduit dans la matrice ou de préférence avoir été déposé sur le support. Du silicium peut également être déposé sur le support, seul ou avec le phosphore et/ou le bore.The catalyst may also contain a promoter element such as phosphorus and / or boron. This element may have been introduced into the matrix or preferably deposited on the support. Silicon may also be deposited on the support, alone or with phosphorus and / or boron.

De manière préférée, les catalyseurs contiennent du silicium déposé sur un support tel que l'alumine, éventuellement avec du phosphore et/ou du bore déposé(s) sur le support, et contenant aussi au moins un métal du groupe VIII (Ni, Co) et au moins un métal du groupe VIB (Mo,W). La concentration en ledit élément est habituellement inferieure à environ 20 % poids (sur la base oxyde), et le plus souvent inférieure à environ 10 %.Preferably, the catalysts contain silicon deposited on a support such as alumina, optionally with phosphorus and / or boron deposited on the support, and also containing at least one metal of group VIII (Ni, Co ) and at least one Group VIB metal (Mo, W). The concentration of said element is usually less than about 20% by weight (based on the oxide base), and most often less than about 10%.

La concentration en trioxyde de bore (B2O3) est habituellement d'environ 0 à environ 10 % poids.The concentration of boron trioxide (B2O3) is usually from about 0 to about 10% by weight.

Un autre catalyseur est une silice-alumine comprenant au moins un métal du groupe VIII et au moins un métal du groupe VIB.Another catalyst is a silica-alumina comprising at least one Group VIII metal and at least one Group VIB metal.

Un autre type de catalyseur utilisable dans le procédé selon l'invention est un catalyseur contenant au moins une matrice, au moins une zéolithe Y, et au moins un métal hydro-déshydrogénant. Les matrices, métaux, éléments additionnels décrits précédemment peuvent également entrer dans la composition de ce catalyseur.Another type of catalyst that can be used in the process according to the invention is a catalyst containing at least one matrix, at least one Y zeolite, and at least one hydro-dehydrogenating metal. The matrices, metals, additional elements previously described may also be included in the composition of this catalyst.

Des zéolithes Y avantageuses dans le cadre du procédé selon l'invention, sont décrites dans les demandes de brevet WO00/71641 , EP-911 077 ainsi que US-4,738,940 et US-4,738,941 .Y zeolites which are advantageous in the context of the process according to the invention are described in the patent applications WO00 / 71641 , EP-911,077 as well as US 4738940 and US 4738941 .

Certains composés ayant un caractère basique, comme l'azote basique, sont bien connus pour réduire significativement l'activité craquante des catalyseurs acides tels que les silices-alumines ou les zéolithes, Plus le catalyseur présente un caractère acide prononcé (silice-alumine, voire zéolithe), plus la diminution de la concentration en composés basiques par dilution a un effet bénéfique sur la réaction d'hydrocraquage doux.Certain compounds having a basic character, such as basic nitrogen, are well known for significantly reducing the cracking activity of acidic catalysts such as silica-aluminas or zeolites. The more the catalyst has a pronounced acidic character (silica-alumina, or even zeolite), plus the decrease in the concentration of basic compounds by dilution has a beneficial effect on the mild hydrocracking reaction.

La colonne de séparation (stripeur) C-1, vise à éliminer les gaz issus du craquage (appelés généralement gaz acides), et notamment l'H2S, issus des réactions de la section réactionnelle. Cette colonne C-1 peut utiliser tout gaz de stripage tel que par exemple un gaz contenant de l'hydrogène ou de la vapeur d'eau. De préférence on utilise de la vapeur d'eau pour réaliser le stripage selon l'invention.The separation column (stripper) C-1, aims to eliminate the gases from cracking (generally called acid gases), including H2S, from reactions of the reaction section. This column C-1 can use any stripping gas such as for example a gas containing hydrogen or water vapor. Preferably, steam is used to carry out the stripping according to the invention.

Dans une variante de l'invention la colonne de séparation C-1 (stripeur) peut être rebouillie.In a variant of the invention, the separation column C-1 (stripper) can be reboiled.

La pression de cette colonne de séparation C-1 est en général suffisamment élevée pour que les gaz acides issus de de cette séparation, préalablement purifiés de l'H2S qu'ils contiennent, puisse être réinjectés dans le réseau de gaz combustible du site. La pression totale est comprise entre 0,6 et 2,0 MPa, de préférence entre 0,7 et 1,8 MPa.The pressure of this separation column C-1 is generally sufficiently high so that the acid gases from this separation, previously purified of the H2S they contain, can be reinjected into the fuel gas network of the site. The total pressure is between 0.6 and 2.0 MPa, preferably between 0.7 and 1.8 MPa.

La colonne fractionnement C-2 est de préférence alimentée au moyen de tout gaz de stripage, de préférence de la vapeur. La pression totale de la colonne de fractionnement C-2 est comprise entre 0,1MPa et 0,4 MPa, de préférence compris entre 0,1 MPa et 0,3 MPa.The fractionation column C-2 is preferably fed by means of any stripping gas, preferably steam. The total pressure of the fractionation column C-2 is between 0.1 MPa and 0.4 MPa, preferably between 0.1 MPa and 0.3 MPa.

La fraction de tête de la colonne de fractionnement C-2 contient les gaz acides résiduels qui sont comprimés dans le compresseur K-2 avant d'être envoyés vers la section de traitement des gaz acides utilisant généralement une colonne de lavage aux amines. Cette fraction de gaz acides après lavage est ensuite dirigée vers le réseau gaz combustible.The overhead fraction of the C-2 fractionation column contains the residual acid gases that are compressed in the K-2 compressor before being sent to the acid gas treatment section generally using an amine scrubbing column. This fraction of acid gases after washing is then directed to the fuel gas network.

Selon cette variante au moins une partie de la fraction de tête issue de la colonne de fractionnement C-2 contenant les gaz acides résiduels, est envoyée vers une colonne de lavage C-5 opérant à très basse pression, afin d'éliminer au moins une partie de l'H2S, ladite partie de la fraction de tête étant utilisée en appoint comme combustible dans le four F-1 de la section réactionnelle.According to this variant, at least part of the overhead fraction from the fractionation column C-2 containing the residual acid gases is sent to a washing column C-5 operating at very low pressure, in order to eliminate at least one part of the H2S, said portion of the top fraction being used as a fuel in the furnace F-1 of the reaction section.

Selon une autre variante de l'invention, particulièrement adaptée pour les unités d'hydrodésulfuration en vue de constituer la charge d'une unité de craquage catalytique, au moins une partie de la fraction de tête issue de la colonne de fractionnement C-2 contenant les gaz acides résiduels, est envoyée vers les compresseurs de gaz acides d'une unité de craquage catalytique en lit fluidisé (FCC). Ceci permet alors d'éliminer le compresseur de gaz acide de l'unité d'hydrodésulfuration.According to another variant of the invention, which is particularly suitable for hydrodesulfurization units in order to constitute the feedstock of a catalytic cracking unit, at least a part of the top fraction derived from the fractionation column C-2 containing the residual acid gases is sent to the acid gas compressors of a fluidized catalytic cracking unit (FCC). This then eliminates the acid gas compressor of the hydrodesulfurization unit.

Le ballon séparateur chaud à haute pression B-1 est généralement opéré à une pression légèrement inférieure, par exemple une pression plus basse de 0,1 MPa à 1,0 MPa que celle du réacteur R-1. La température du ballon séparateur chaud B-1 est généralement comprise entre 200°C et 450°C, de préférence entre 250°C et 380°C et de manière très préférée entre 260°C et 360°C.The hot high pressure separator balloon B-1 is generally operated at a slightly lower pressure, for example a lower pressure of 0.1 MPa to 1.0 MPa than that of the reactor R-1. The temperature of the hot separator flask B-1 is generally between 200 ° C. and 450 ° C., preferably between 250 ° C. and 380 ° C. and very preferably between 260 ° C. and 360 ° C.

Selon une variante préférée, la température du ballon séparateur chaud haute pression B-1 est choisie de façon à ne pas nécessiter de four sur la charge du fractionnement principalAccording to a preferred variant, the temperature of the hot high pressure separator tank B-1 is chosen so as not to require an oven on the charge of the main fractionation.

Le ballon séparateur froid à haute pression B-2, dont la charge est le flux gazeux issus du ballon séparateur chaud B-1, est opéré à une pression légèrement inférieure à celle de B-1, par exemple une pression plus basse de 0,1 MPa à 1,0 MPa que celle de B-1.The high-pressure cold separator balloon B-2, the charge of which is the gaseous flow coming from the hot separator balloon B-1, is operated at a pressure slightly lower than that of B-1, for example a lower pressure of 0, 1 MPa at 1.0 MPa than that of B-1.

L'effluent gazeux issus de B-2, appelé hydrogène recyclé, est éventuellement lavé dans la colonne C-3, puis comprimé dans le compresseur K-1.The gaseous effluent from B-2, called recycled hydrogen, is optionally washed in column C-3, and then compressed in compressor K-1.

La température du ballon séparateur froid à haute pression B-2 est généralement la plus basse possible compte tenu des moyens de refroidissement disponibles sur le site, ceci de façon à maximiser la pureté de l'hydrogène recyclé.The temperature of the high-pressure cold separator tank B-2 is generally as low as possible considering the cooling means available on the site, so as to maximize the purity of the recycled hydrogen.

Selon une variante de l'invention, le liquide issus du ballon séparateur froid B-2 est détendu dans une vanne ou une turbine, et dirigé dans un ballon séparateur froid à moyenne pression B-4. La pression totale de ce dernier est préférentiellement celle requise pour récupérer de façon efficace l'hydrogène compris dans la fraction gazeuse séparée dans le ballon. Cette récupération de l'hydrogène est de préférence réalisée dans une unité d'adsorption par inversion de pression.According to a variant of the invention, the liquid from the cold separator tank B-2 is expanded in a valve or a turbine, and directed into a cold medium pressure separator tank B-4. The total pressure of the latter is preferably that required to efficiently recover the hydrogen included in the separated gaseous fraction in the flask. This recovery of hydrogen is preferably carried out in a pressure reversal adsorption unit.

La pression du ballon B-4 est généralement comprise entre 1,0 MPa et 3,5 MPa, de préférence comprise entre 1,5 MPa et 3,5 MPa.The pressure of the flask B-4 is generally between 1.0 MPa and 3.5 MPa, preferably between 1.5 MPa and 3.5 MPa.

Toujours selon une variante de l'invention, le flux liquide issu du ballon séparateur chaud à haute pression B-1 est dirigé dans un ballon séparateur chaud à moyenne pression B-3. La pression dudit ballon séparateur B-3 est choisie de façon à pouvoir alimenter le ballon séparateur froid à moyenne pression B-4 avec le flux gazeux séparé dans le ballon séparateur chaud à haute pression B-3.Still according to a variant of the invention, the liquid flow from the hot separator tank at high pressure B-1 is directed into a hot medium pressure separator drum B-3. The pressure of said separator tank B-3 is chosen so as to feed the cold medium pressure separator tank B-4 with the separated gas stream into the hot high pressure separator tank B-3.

Selon une variante préférée, une partie du liquide issu de B3, peut être réinjecté dans B-2 afin de favoriser la dissolution des hydrocarbures légers dans ce dernier et maximiser la pureté en hydrogène du gaz recycle.According to a preferred variant, a portion of the liquid from B3 can be reinjected into B-2 to promote the dissolution of light hydrocarbons therein and maximize the hydrogen purity of the recycle gas.

De préférence, le flux liquide issu du ballon séparateur chaud à moyenne pression B-3 est détendu et dirigé vers un ballon séparateur chaud à basse pression B-5. La pression dudit ballon B-5 est choisie suffisamment élevée, afin que l'effluent gazeux issus de de B-5 puisse être dirigé vers la colonne de séparation C-1. La pression totale du ballon séparateur B-5 est typiquement comprise entre environ 0,2 MPa et environ 2,5 MPa, généralement entre 0,3 et 2,0 MPa, de préférence entre 0,4 et 1,8 MPa.Preferably, the liquid flow from the hot medium pressure separator drum B-3 is expanded and directed to a hot low pressure separator drum B-5. The pressure of said flask B-5 is chosen sufficiently high so that the gaseous effluent from B-5 can be directed to the separation column C-1. The total pressure of the separator flask B-5 is typically from about 0.2 MPa to about 2.5 MPa, generally from 0.3 to 2.0 MPa, preferably from 0.4 to 1.8 MPa.

L'invention diffère de l'art antérieur en ce que :

  • Contrairement à l'art antérieur selon la figure 2, dans lequel il n'y a pas de colonne de séparation en amont du fractionnement principal C-2, la fraction légère de l'effluent du réacteur R-1 fait l'objet dans le procédé selon l'invention d'une séparation visant à éliminer ces composés légers, et notamment l'H2S. Cette séparation est réalisée par le stripeur C-1. Cette séparation en amont de la colonne de fractionnement C-2 permet une réduction importante des gaz acides en tête de ladite colonne de fractionnement principal C-2, et une diminution de la puissance et de la taille, voire dans certains cas la suppression du compresseur de gaz rejetés (Off-Gas selon la terminologie anglo-saxonne).
  • La fraction la plus légère de l'effluent de la zone réactionnelle R-1 faisant l'objet du stripage dans la colonne C-1 placée en amont du fractionnement principal (colonne C-2), est éliminée par le flux de tête du stripeur C-1 et c'est seulement la fraction lourde de l'effluent du réacteur (flux 38 en sortie du ballon B-5, et flux de fond du stripeur C-1) qui est dirigée, après détentes éventuelles successives, vers le fractionnement principal C-2.
The invention differs from the prior art in that:
  • Unlike the prior art according to figure 2 , in which there is no separation column upstream of the main fractionation C-2, the light fraction of the effluent of the reactor R-1 is subjected in the process according to the invention to a separation aimed at to eliminate these light compounds, and in particular H2S. This separation is performed by the C-1 stripper. This separation upstream of the fractionation column C-2 allows a significant reduction of the acid gases at the top of said main fractionating column C-2, and a reduction of the power and the size, in some cases even the suppression of the compressor. of gas discharged (Off-Gas according to the English terminology).
  • The lightest fraction of the effluent from the stripping reaction zone R-1 in column C-1 placed upstream of the main fractionation (column C-2) is removed by the stripper head stream. C-1 and it is only the heavy fraction of the effluent from the reactor (stream 38 at the outlet of the balloon B-5, and bottom stream of the stripper C-1) which is directed, after successive possible detents, to the fractionation principal C-2.

La température au(x) ballon(s) séparateur(s) chaud(s) est choisie de façon apporter à la colonne de fractionnement C-2 la chaleur requise pour obtenir les produits fractionnés 50, 52 et 55. Selon l'invention, la température du ballon chaud haute pression B-1 peut être choisie de façon à ne pas nécessiter de four sur la charge du fractionnement principal.

  • De plus le fractionnement de l'effluent lourd de la section réactionnelle R-1 est intégralement réalisé dans la colonne de séparation C-2 à pression la plus basse. La séparation par distillation étant plus facile à réaliser à basse pression, l'efficacité énergétique du procédé sera améliorée, notamment grâce à une réduction des pertes d'énergies dans les aérocondenseurs de tête de colonnes.
The temperature at the hot separator (s) is chosen so as to supply the fractionation column C-2 with the heat required to obtain the fractionated products 50, 52 and 55. According to the invention, the temperature of the hot high pressure flask B-1 can be chosen so as not to require an oven on the charge of the main fractionation.
  • In addition, the fractionation of the heavy effluent from the reaction section R-1 is entirely carried out in the lower pressure separation column C-2. The separation by distillation being easier to achieve at low pressure, the energy efficiency of the process will be improved, in particular by reducing energy losses in column head aerocondensors.

DESCRIPTION D'UN MODE REALISATION DE L'INVENTIONDESCRIPTION OF A MODE EMBODYING THE INVENTION

La description qui suit est faite selon la figure 1 qui décrit un des modes de réalisation possible du procédé selon l'invention. La zone réactionnelle R-1 est une zone d'hydrocraquage, sans que cela constitue une limitation à la présente invention qui porte sur l'installation d'un ensemble ballon séparateur (B-5) et stripeur (C-1) en amont de la colonne de fractionnement principal C-2.The following description is made according to the figure 1 which describes one of the possible embodiments of the method according to the invention. The reaction zone R-1 is a hydrocracking zone, without this constituting a limitation to the present invention which relates to the installation of a separator (B-5) and stripper (C-1) assembly upstream of the main fractionation column C-2.

La charge est une coupe présentant des points d'ébullition compris entre 350°C et 530°C, mélange à 70% en masse de distillat sous vide lourd et à 30% en masse de gazole lourd de cokéfaction, ayant les caractéristiques suivantes : Densité spécifique 0,965 Teneur en Soufre % poids 2,8 Teneur en Azote ppm poids 5000 The filler is a cup with boiling points between 350 ° C and 530 ° C, a mixture of 70% by weight of heavy vacuum distillate and 30% by weight of heavy coker gas oil, having the following characteristics: Specific density 0.965 Sulfur content % weight 2.8 Nitrogen content ppm weight 5000

La charge, est alimentée via la ligne 1 par la pompe P-1. L'hydrogène d'appoint, de préférence en excès par rapport à la charge, est alimenté via la ligne 2 et le compresseur K-2 puis la ligne 3, et mélangé avec la charge 1 avant d'être admis dans un échangeur charge-effluent (E-1) via la ligne 4.The load, is fed via line 1 by the pump P-1. The makeup hydrogen, preferably in excess of the charge, is supplied via line 2 and compressor K-2 and then line 3, and mixed with charge 1 before being admitted to a charge-exchanger. effluent (E-1) via line 4.

L'échangeur E-1 permet de préchauffer la charge au moyen de l'effluent du réacteur d'hydrocraquage R-1. Après cet échange, la charge est amenée via la ligne 5 dans un four F-1 permettant d'atteindre le niveau de température nécessaire à la réaction d'hydrocraquage, puis la charge chaude est envoyée, via la ligne 6, dans la section d'hydrocraquage, constituée par au moins un réacteur d'hydrocraquage R-1 comprenant au moins un catalyseur d'hydrocraquage.The exchanger E-1 makes it possible to preheat the feedstock by means of the effluent from the hydrocracking reactor R-1. After this exchange, the charge is fed via line 5 into an oven F-1 to reach the temperature level necessary for the hydrocracking reaction, then the hot charge is sent via line 6 in the section d hydrocracking, constituted by at least one hydrocracking reactor R-1 comprising at least one hydrocracking catalyst.

La section réactionnelle R-1 est composée de 2 réacteurs en série, de 3 lits de catalyseur chacun. Le premier lit du premier réacteur et composé des catalyseurs Axens HMC 868, HF858 et HR844. Les autres lits sont constitués de catalyseur Axens HR844.The reaction section R-1 is composed of 2 reactors in series, of 3 catalyst beds each. The first bed of the first reactor and composed of Axens HMC catalysts 868, HF858 and HR844. The other beds consist of Axens HR844 catalyst.

Les lits sont opérés environ à opéré à 12,5MPa et à des températures comprises entre 350°C et 370°C. La consommation en hydrogène dans la section réactionnelle est de 2% par rapport à la charge fraiche.The beds are operated approximately at 12.5 MPa and at temperatures between 350 ° C. and 370 ° C. The hydrogen consumption in the reaction section is 2% relative to the fresh charge.

L'effluent de la section réactionnelle est envoyé ensuite via la ligne 10 vers l'échangeur E-1, puis via la ligne 11 vers le ballon séparateur chaud à haute pression B-1. Une fraction gazeuse de tête est séparée dans ce ballon et récupérée via la ligne 12.The effluent from the reaction section is then sent via line 10 to the exchanger E-1, then via line 11 to the high-pressure separator tank B-1. A gaseous fraction of the head is separated in this flask and recovered via line 12.

La fraction liquide est récupérée en fond du ballon B-1 via la ligne 20. Ladite fraction gazeuse (12) comprend de l'hydrogène n'ayant pas réagi, l'H2S formé au cours de la réaction, ainsi que des hydrocarbures légers issus de la conversion des hydrocarbures de la charge dans la section réactionnelle d'hydrocraquage R-1.The liquid fraction is recovered at the bottom of the flask B-1 via the line 20. Said gaseous fraction (12) comprises unreacted hydrogen, the H2S formed in the course of the reaction, as well as light hydrocarbons from the hydrocarbon conversion of the feedstock in the R-1 hydrocracking reaction section.

Après refroidissement dans un échangeur E-2 et un aérocondenseur A-1, cette fraction est amenée, via la ligne 13, dans un ballon séparateur froid à haute pression B-2 permettant à la fois de réaliser une séparation gaz-liquide et une décantation de la phase liquide aqueuse. La phase hydrocarbonée liquide est, après détente dans la vanne ou la turbine liquide V-1, dirigée dans un ballon séparateur froid à moyenne pression B-4 via la ligne 21.After cooling in an exchanger E-2 and an aerocondenser A-1, this fraction is fed, via line 13, into a cold separator tank at high pressure B-2 allowing both gas-liquid separation and settling. of the aqueous liquid phase. The liquid hydrocarbon phase is, after expansion in the valve or the liquid turbine V-1, directed into a cold medium pressure separator tank B-4 via line 21.

L'effluent liquide issu du ballon B-1 est, après détente dans la vanne ou la turbine liquide V-2, dirigé dans un ballon séparateur chaud à moyenne pression B-3 via la ligne 20. Une fraction gazeuse est séparée dans ce ballon et récupérée via la ligne 22. La fraction gazeuse comprend de l'hydrogène n'ayant pas réagi, de l'H2S, ainsi que, généralement, des hydrocarbures légers issus de la conversion des hydrocarbures de la charge dans la section réactionnelle R-1.The liquid effluent from the flask B-1 is, after expansion in the valve or the liquid turbine V-2, directed into a hot medium-pressure separator tank B-3 via the line 20. A gaseous fraction is separated in this flask. and recovered via line 22. The gaseous fraction comprises unreacted hydrogen, H 2 S, as well as, generally, light hydrocarbons derived from the conversion of the feed hydrocarbons into the reaction section R-1. .

Après refroidissement dans un aérocondenseur A-2, cette fraction est amenée, via la ligne 23, dans le ballon séparateur froid à moyenne pression B-4. Une fraction liquide est récupérée en fond, détendu dans la vanne ou la turbine liquide V-3 et dirigée via les lignes 30 et 31 vers le ballon séparateur à basse pression B-5.After cooling in an aerocondenser A-2, this fraction is fed via line 23 into the cold medium pressure separator drum B-4. A liquid fraction is recovered in the bottom, expanded in the valve or the liquid turbine V-3 and directed via lines 30 and 31 to the low-pressure separator tank B-5.

La fraction gazeuse issue du ballon séparateur froid à haute pression B-2 est envoyée via la ligne 14 vers un absorbeur aux amines ou une colonne de lavage C-3 permettant d'éliminer au moins une partie de l'H2S. La fraction gazeuse contenant de l'hydrogène est ensuite recyclée via les lignes 15 et 16 vers le réacteur d'hydrocraquage, après compression au moyen du compresseur K-1 et mélange avec la charge 1.The gaseous fraction from the high-pressure cold separator flask B-2 is sent via line 14 to an amine absorber or a C-3 scrubbing column for removing at least a portion of the H 2 S. The gaseous fraction containing hydrogen is then recycled via lines 15 and 16 to the hydrocracking reactor, after compression using compressor K-1 and mixing with charge 1.

L'effluent liquide hydrocarboné issu du ballon B-4 alimente le striper C-1 via les lignes 32 et 33, la vanne ou la turbine liquide V-5 et l'échangeur E-3.The hydrocarbon liquid effluent from the flask B-4 feeds the stripper C-1 via the lines 32 and 33, the valve or the liquid turbine V-5 and the exchanger E-3.

Selon une variante préférée, de la vapeur d'eau est préférentiellement ajoutée via les lignes 60 et 61 à l'effluent de tête des ballons B-1 et/ou B-3 pour faciliter le fractionnement. Cette eau est séparée dans les ballons B-2 et B-4, et évacuée après séparation via la ligne 57. L'eau séparée dans le ballon B-2 est envoyée via la ligne 56 et la vanne V4 au ballon B-4. La ligne 58 permet d'évacuer un flux gazeux.According to a preferred variant, water vapor is preferentially added via lines 60 and 61 to the top effluent of balloons B-1 and / or B-3 to facilitate fractionation. This water is separated in the balloons B-2 and B-4, and discharged after separation via the line 57. The water separated in the balloon B-2 is sent via the line 56 and the valve V4 to the balloon B-4. Line 58 makes it possible to evacuate a gaseous flow.

Le stripeur C-1 est opéré à 0,9 MPa en tête de colonne, 45°C au ballon de reflux B-6 pour une température de fond de 180°C.Stripper C-1 is operated at 0.9 MPa at the top of the column, 45 ° C. at reflux tank B-6 for a bottom temperature of 180 ° C.

Une fraction gazeuse est séparée dans le ballon B-5. Cette fraction gazeuse alimente le striper C-1 via la ligne 34. Le stripeur C-1 est alimenté par de la vapeur de stripage via la ligne 35 selon un ratio de 7kg/hr de vapeur pour 1 m3 standard de produit de fond de colonne. En tête du stripeur, on récupère une fraction gazeuse (généralement appelée gaz acide) via la ligne 36, et, via la ligne 37 un naphta présentant un point d'ébullition final le plus souvent supérieur à 100°C par un ballon B-6 et un échangeur E-6. Le liquide récupéré en fond de stripeur via la ligne 39 est envoyé à la colonne de fractionnement principal C-2, sans qu'il soit nécessaire de le réchauffer dans un four ou un échangeur.A gaseous fraction is separated in the B-5 flask. This gaseous fraction feeds the stripper C-1 via the line 34. The stripper C-1 is fed with stripping steam via the line 35 at a ratio of 7 kg / hr of steam for 1 standard m3 of bottoms product. . At the top of the stripper, a gaseous fraction (generally called acid gas) is recovered via line 36, and via line 37 a naphtha having a final boiling point, most often greater than 100 ° C., by a B-6 flask. and an E-6 exchanger. The liquid recovered at the bottom of the stripper via line 39 is sent to the main fractionation column C-2, without it being necessary to heat it in an oven or exchanger.

La fraction liquide issue du ballon B-5, alimente directement le fractionnement principal C-2 via la ligne 38 sans faire l'objet d'une opération de séparation des gaz acides dans une colonne de stripage ou une colonne de séparation rebouillie.The liquid fraction from the flask B-5 directly feeds the main fractionation C-2 via the line 38 without being the subject of an acid gas separation operation in a stripping column or a reboiled separation column.

La colonne de fractionnement principal C-2 est opérée à faible pression 0,29 MPa en tête de colonne, 45°C au ballon de reflux B-7 (après passage dans un aérocondenseur A-3 et une pompe P-2) pour une température de fond de 330°C. La chaleur nécessaire à la séparation est préférentiellement apportée par la température du ballon séparateur chaud B-5, opéré à 340°C et 1,1MPa. Cette colonne C-2 est également alimentée par de la vapeur de stripage via la ligne 40 selon un ratio de 7kg/hr de vapeur pour 1 m3 standard de produit de fond de colonne.The main fractionating column C-2 is operated at a low pressure of 0.29 MPa at the top of the column, at 45 ° C. at the reflux tank B-7 (after passing through an A-3 aerocondenser and a P-2 pump) for a bottom temperature of 330 ° C. The heat required for separation is preferably provided by the temperature of the hot separator flask B-5, operated at 340 ° C. and 1.1 MPa. This column C-2 is also supplied with stripping steam via line 40 at a ratio of 7 kg / hr of steam per 1 standard m3 of bottoms product.

La fraction de tête récupérée via la ligne 41 contient les gaz acides résiduels qui sont comprimés dans le compresseur K-2 avant export vers le traitement des gaz acides (généralement un lavage aux amines ou une colonne de lavage) avant d'être dirigés vers un réseau gaz combustible via la ligne 42.The overhead fraction recovered via line 41 contains the residual acid gases that are compressed in the K-2 compressor prior to export to acid gas treatment (typically an amine wash or wash column) before being directed to a reactor. fuel gas network via line 42.

Selon une variante de l'invention, les gaz acides résiduels sont envoyés via la ligne 43 vers un absorbeur aux amines ou une colonne de lavage C-5 opérant à très basse pression qui permet d'éliminer au moins une partie de l'H2S, avant d'être utilisée de façon minoritaire comme combustible dans le four R-1 de la section réactionnelle via la ligne 44.According to one variant of the invention, the residual acid gases are sent via line 43 to an amine absorber or a C-5 washing column operating at very low pressure which makes it possible to eliminate at least a part of the H 2 S, before being used in a minority way as fuel in the furnace R-1 of the reaction section via line 44.

Selon une autre variante de l'invention, particulièrement adaptée pour les unités d'hydrodésulfuration en vue de constituer la charge d'une unité de craquage catalytique, ces gaz acides résiduels sont dirigés vers les compresseurs de gaz acide de l'unité de craquage catalytique en lit fluidisé via la ligne 45.According to another variant of the invention, particularly suitable for hydrodesulphurization units for constituting the feedstock of a catalytic cracking unit, these residual acid gases are directed to the acid gas compressors of the catalytic cracking unit. in a fluidized bed via line 45.

Le produit obtenu ligne 50 par la pompe P-3 est constitué de coupes naphta présentant un point d'ébullition final le plus souvent inférieure à 200°C.The product obtained line 50 by the pump P-3 consists of naphtha cuts having a final boiling point, most often less than 200 ° C.

La fraction intermédiaire issue de la colonne de fractionnement principal C-2 via la colonne intermédiaire C-4 (optionnelle), éventuellement équipé d'un rebouilleur E-7, via la ligne 51 est refroidie, par exemple, au moyen d'un échangeur E-4 après passage par une pompe P-5, puis récupérée via la ligne 52. Il s'agit par exemple d'une coupe gazole présentant une température de distillation à 95% volume (norme NF EN ISO 3405) inférieure à 360°C.The intermediate fraction from the main fractionating column C-2 via the intermediate column C-4 (optional), possibly equipped with an E-7 reboiler, via the line 51 is cooled, for example, by means of a heat exchanger E-4 after passing through a pump P-5, then recovered via line 52. It is for example a diesel cut having a distillation temperature of 95% volume (NF EN ISO 3405 standard) less than 360 ° vs.

La fraction lourde issue de la colonne de fractionnement principal via les lignes 53 et 54 est également refroidie après passage par une pompe P-4 au moyen de l'échangeur E-5. La fraction ainsi obtenue via la ligne 55 est un gazole sous vide présentant des points de coupe voisins de la charge initiale.The heavy fraction from the main fractionation column via the lines 53 and 54 is also cooled after passing through a pump P-4 by means of the exchanger E-5. The fraction thus obtained via line 55 is a vacuum gas oil having cutting points close to the initial charge.

Selon un autre mode de fonctionnement, il est possible de récupérer via la ligne 50 une fraction allant du naphta au gazole léger, et via la ligne 55 une fraction gazole lourd complémentaire. Dans ce cas, la colonne de fractionnement C-2 ne comprend pas de fractionnement intermédiaire C-4, et les lignes 51 et 52 sont absentes.According to another mode of operation, it is possible to recover via line 50 a fraction ranging from naphtha to light gas oil, and via line 55 a complementary heavy gas oil fraction. In this case, fractionation column C-2 does not include intermediate fractionation C-4, and lines 51 and 52 are absent.

Selon une autre mode de fonctionnement de la colonne de fractionnement C-2, des soutirages latéraux d'une coupe kérosène et d'une coupe diesel sont possibles (non représentés sur la figure 1).According to another operating mode of the fractionation column C-2, lateral withdrawals of a kerosene cut and of a diesel cut are possible (not shown in FIG. figure 1 ).

EXEMPLE :EXAMPLE:

Le tableau 1 compare un procédé d'hydrocraquage doux selon l'art antérieur, c'est-à-dire sans stripeur C-1 (figure 2), avec un procédé d'hydrocraquage doux selon l'invention, c'est-à-dire avec ballon B-5 et stripeur C-1(figure1). Tableau 1 Art Antérieur (Figure 2) Selon l'invention (Figure 1) Débit massique (kg/hr) Gaz de tête Fractionnement principal (41) Gaz de tête Striper (36) Gaz de tête Fractionnement principal (41) Total gaz acides (36)+(41) H2 28 23 6 29 H2S 125 99 26 125 NH3 9 4 3 7 Méthane 51 41 11 52 Ethane 91 77 14 91 Propane 132 100 20 120 Isobutane 68 41 11 52 Normal butane 104 55 15 70 TOTAL 608 440 107 547 Table 1 compares a mild hydrocracking process according to the prior art, that is to say without stripper C-1 ( figure 2 ), with a mild hydrocracking process according to the invention, that is to say with a B-5 flask and a C-1 stripper ( figure 1 ). Table 1 Previous Art ( Figure 2 ) According to the invention ( Figure 1 ) Mass flow (kg / hr) Head gas Main splitting (41) Striper Head Gas (36) Head gas Main splitting (41) Total acid gas (36) + (41) H2 28 23 6 29 H2S 125 99 26 125 NH3 9 4 3 7 Methane 51 41 11 52 Ethane 91 77 14 91 Propane 132 100 20 120 isobutane 68 41 11 52 Normal butane 104 55 15 70 TOTAL 608 440 107 547

Dans le procédé selon l'invention, la quantité de gaz acide en tête de la colonne de fractionnement principal à basse pression (flux 41) devant être comprimé dans le compresseur K-2 est divisée par 6 par rapport au procédé selon l'art antérieur (107 Kg/h contre 608 Kg/h).In the process according to the invention, the amount of acid gas at the top of the main low-pressure fractionating column (stream 41) to be compressed in the compressor K-2 is divided by 6 compared to the method according to the prior art. (107 Kg / h against 608 Kg / h).

Dans le cas d'un hydrocraquage doux selon l'art antérieur (selon la figure 2), c'est la totalité de la fraction de fond du ballon séparateur chaud moyenne pression B3 et de la fraction de fond du ballon froid moyenne pression B-4 qui alimente la colonne de fractionnement C-2.In the case of a mild hydrocracking according to the prior art (according to the figure 2 ), it is the entire bottom fraction of the hot medium pressure separator balloon B3 and the bottom fraction of the medium pressure cold medium balloon B-4 which feeds the fractionation column C-2.

Dans le procédé selon l'invention (figure 1), la température au ballon séparateur chaud basse pression B-5 est de 340°C, ce qui permet d'éviter de mettre un four pour chauffer la charge 38, soutirée en fond du ballon basse pression B-5, qui alimente la colonne C-2.In the process according to the invention ( figure 1 ), the temperature at the low pressure hot-water separator tank B-5 is 340 ° C., which makes it possible to avoid putting an oven for heating the charge 38, drawn off at the bottom of the low-pressure balloon B-5, which feeds the column C-2.

Claims (5)

  1. A process for the hydrotreatment or hydroconversion of gas oils, vacuum distillates, atmospheric or vacuum residues, using a facility comprising at least:
    • a reaction section R-1,
    • a high pressure hot separator drum B-1, supplied with the effluent obtained from the reaction section R-1 and from which the bottom stream is supplied to the separator drum B-5,
    • a high pressure cold separator drum B-2, supplied with the overhead stream leaving the high pressure hot separator drum B-1 and from which the bottom stream is supplied to the stripper C-1,
    • a compression zone K for the gaseous effluent obtained from B-2, termed the recycled hydrogen,
    • a low pressure hot separator drum B-5, supplied with the liquid stream obtained from B-1, and from which the overhead gaseous effluent constitutes a portion of the feed for the stripper C-1, and from which the liquid effluent constitutes the first portion of the feed for the fractionation column C-2,
    • a separation column C-1 also termed a stripper supplied with the liquid stream obtained from B-2, and the gaseous stream obtained from B-5, from which the bottom product constitutes the other portion of the feed for the fractionation column C-2,
    • a principal fractionation column C-2, supplied with the bottom product from the stripper C-1 and with the liquid stream obtained from the bottom of B-5, and which separates the following cuts: naphtha light and heavy, diesel, kerosene and residue,
    • a furnace F-1 heating the feed for the reaction section R-1 and/or a portion of the hydrogen necessary for said reaction section,
    said separation column C-1 being operated under the following conditions: total pressure in the range 0.6 to 2.0 MPa, preferably in the range 0.7 to 1.8 MPa, and said fractionation column C-2 being operated under the following pressure conditions: total pressure in the range 0.1 MPa to 0.4 MPa, preferably in the range 0.1 MPa to 0.3 MPa.
  2. The process for the hydrotreatment or hydroconversion of gas oils, vacuum distillates, atmospheric or vacuum residues as claimed in claim 1, wherein the facility further comprises:
    • a medium pressure hot separator drum B-3, supplied with the liquid stream obtained from B-1, and from which the liquid effluent is supplied to the drum B-5,
    • a medium pressure cold separator drum B-4, supplied with the liquid stream obtained from B-2 and the gaseous stream obtained from B-3, and from which the liquid effluent constitutes a portion of the feed for the stripper C-1.
  3. The process for the hydrotreatment or hydroconversion of gas oils, vacuum distillates, atmospheric or vacuum residues as claimed in one of claims 1 to 2, in which at least a portion of the overhead fraction obtained from the fractionation column C-2 containing the residual acid gases is sent to a scrubbing column C-5 operated at very low pressure, in order to eliminate at least a portion of the H2S, said portion of the overhead fraction then being used by way of a makeup as a fuel in the furnace F-1 for the reaction section.
  4. The process for the hydrotreatment or hydroconversion of gas oils, vacuum distillates, atmospheric or vacuum residues as claimed in one of claims 1 to 2, in which at least a portion of the overhead fraction obtained from the fractionation column C-2 containing the residual acid gases is sent to the acid gas compressors of a fluid catalytic cracking unit (FCC).
  5. The process for the hydrotreatment or hydroconversion of gas oils, vacuum distillates, atmospheric or vacuum residues as claimed in one of claims 1 to 4, in which the temperature of the high pressure hot separator drum B-1 is selected in a manner such that a furnace is not required for the feed for the principal fractionation C-2.
EP16306699.6A 2015-12-23 2016-12-15 Hydrotreatment or hydroconversion method with stripper and low-pressure disengager on the fractionating section Active EP3184607B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1563173A FR3046176A1 (en) 2015-12-23 2015-12-23 HYDROPROCESSING OR HYDROCONVERSION PROCESS WITH STRIPER AND LOW PRESSURE SEPARATOR BALL ON THE FRACTION SECTION

Publications (2)

Publication Number Publication Date
EP3184607A1 EP3184607A1 (en) 2017-06-28
EP3184607B1 true EP3184607B1 (en) 2018-12-12

Family

ID=55752447

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16306699.6A Active EP3184607B1 (en) 2015-12-23 2016-12-15 Hydrotreatment or hydroconversion method with stripper and low-pressure disengager on the fractionating section

Country Status (6)

Country Link
US (1) US11028330B2 (en)
EP (1) EP3184607B1 (en)
CN (1) CN106906002B (en)
ES (1) ES2714797T3 (en)
FR (1) FR3046176A1 (en)
RU (1) RU2726528C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10767123B2 (en) 2017-12-22 2020-09-08 Axens Coil-wound heat exchanger for hydrotreatment or hydroconversion
US10815436B2 (en) 2017-12-22 2020-10-27 Axens Coil-wound heat exchanger for hydrotreatment or hydroconversion

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230392083A1 (en) * 2020-10-14 2023-12-07 Shell Oil Company Systems and processes for generating a reduced chloride stripped fluid from a hydroprocessing effluent
FR3126423A1 (en) 2021-08-26 2023-03-03 IFP Energies Nouvelles Process for the hydroconversion of hydrocarbon feedstocks

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3371029A (en) 1966-11-30 1968-02-27 Universal Oil Prod Co Mixed-phase conversion product separation process
US3733260A (en) * 1972-02-04 1973-05-15 Texaco Inc Hydrodesulfurization process
FR2561946B1 (en) 1984-03-30 1986-10-03 Pro Catalyse NEW HYDROCRACKING CATALYST FOR THE PRODUCTION OF MEDIUM DISTILLATES
FR2563445B1 (en) 1984-04-26 1986-08-14 Pro Catalyse Ste Fse Prod Cata NEW HYDROCRACKING CATALYST FOR THE PRODUCTION OF MEDIUM DISTILLATES
FR2769856B1 (en) 1997-10-20 1999-12-03 Inst Francais Du Petrole CATALYST AND METHOD FOR HYDROCRACKING HYDROCARBON CUT
US6387246B1 (en) 1999-05-19 2002-05-14 Institut Francais Du Petrole Catalyst that comprises a partially amorphous Y zeolite and its use in hydroconversion of hydrocarbon petroleum feedstocks
FR2830869B1 (en) * 2001-10-12 2004-07-09 Inst Francais Du Petrole HYDRODESULFURING METHOD COMPRISING A STRIPING SECTION AND A VACUUM FRACTION SECTION
FR2887556B1 (en) * 2005-06-28 2009-05-08 Inst Francais Du Petrole PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROISOMERIZATION AND HYDROCRACKING OF FISCHER-TROPSCH PROCESSES USING A MACROPORE CONTROLLED-CONTROLLED CONTOURED ALOPINE-SILICA DOPE CATALYST
US8231775B2 (en) * 2009-06-25 2012-07-31 Uop Llc Pitch composition
WO2011061576A1 (en) * 2009-11-20 2011-05-26 Total Raffinage Marketing Process for the production of hydrocarbon fluids having a low aromatic content
WO2011071705A2 (en) * 2009-12-11 2011-06-16 Uop Llc Process and apparatus for producing hydrocarbon fuel and composition
CN103608431B (en) * 2011-08-19 2016-01-06 环球油品公司 The method and apparatus of the hydrocarbon of hydrogenation processing is reclaimed with the stripper of two series connection
US8936716B2 (en) * 2011-08-19 2015-01-20 Uop Llc Process for recovering hydroprocessed hydrocarbons with two strippers in series
US8999152B2 (en) * 2013-03-15 2015-04-07 Uop Llc Process and apparatus for recovering and blending hydroprocessed hydrocarbons and composition
US10041008B2 (en) * 2014-02-26 2018-08-07 Uop Llc Process and apparatus for hydroprocessing with two product fractionators
US9809763B2 (en) * 2015-06-01 2017-11-07 Uop Llc Process and apparatus for recovering hydrotreated hydrocarbons with two strippers
WO2017003788A1 (en) * 2015-06-30 2017-01-05 Uop Llc Process and apparatus for selectively hydrogenating diolefins
US10781380B2 (en) * 2015-12-29 2020-09-22 Uop Llc Process and apparatus for recovering hydrogen from hydroprocessed hot flash liquid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10767123B2 (en) 2017-12-22 2020-09-08 Axens Coil-wound heat exchanger for hydrotreatment or hydroconversion
US10815436B2 (en) 2017-12-22 2020-10-27 Axens Coil-wound heat exchanger for hydrotreatment or hydroconversion

Also Published As

Publication number Publication date
US20170183574A1 (en) 2017-06-29
RU2016149662A3 (en) 2020-03-11
EP3184607A1 (en) 2017-06-28
ES2714797T3 (en) 2019-05-30
RU2016149662A (en) 2018-06-20
US11028330B2 (en) 2021-06-08
CN106906002A (en) 2017-06-30
CN106906002B (en) 2021-04-02
RU2726528C2 (en) 2020-07-14
FR3046176A1 (en) 2017-06-30

Similar Documents

Publication Publication Date Title
EP3339401B1 (en) Integrated facility and method for hydrotreatment and hydroconversion with common fractionation
EP2333031B1 (en) Process to produce high quality kerosine and diesel fuels and hydrogen coproduction from light saturated fractions
EP3184607B1 (en) Hydrotreatment or hydroconversion method with stripper and low-pressure disengager on the fractionating section
KR101324006B1 (en) Dual riser fcc reactor process with light and mixed light/heavy feeds
EP3018188B1 (en) Process for converting petroleum feedstocks comprising a stage of fixed-bed hydrotreatment, a stage of ebullating-bed hydrocracking, a stage of maturation and a stage of separation of the sediments for the production of fuel oils with a low sediment content
RU2495086C2 (en) Selective recycling of heavy gasoil for purpose of optimal integration of heavy crude oil and vacuum gas oil refining
JP6273202B2 (en) Hydrocracking with interstage steam stripping
EP3339400B1 (en) Method and device for hydrocracking with reduction of the aromatic polynuclear compounds
JP2020506270A (en) Integrated hydroprocessing and steam cracking process for the direct processing of crude oil to produce olefinic and aromatic petrochemicals
JP2014527100A5 (en)
EP3502214A1 (en) Coil heat exchanger for hydrotreatment or hydroconversion
WO2008017742A1 (en) Method and installation of crude oil treatment with conversion of asphaltenic residue
WO2019134811A1 (en) Two-step hydrocracking process comprising at least one high-pressure hot separation step
EP1436362B1 (en) Hydrodesulfurisation method comprising a stripping section and a vacuum fractionation section
CA2607252A1 (en) Method and installation for fixed bed conversion of heavy petroleum fractions with integrated production of middle distillates with a very low sulphur content
EP3502213A1 (en) Coil heat exchanger for hydrotreatment or hydroconversion
WO2020144097A1 (en) Two-stage hydrocracking process comprising a hydrogenation stage downstream of the second hydrocracking stage, for the production of middle distillates
WO2015078675A1 (en) Method for hydrotreating a diesel fuel in reactors in parallel with hydrogen recycling
EP4105300A1 (en) Hydrocracking method
WO2023241930A1 (en) Hydrocracking process with optimized management of the recycling for the production of naphtha
TW202408659A (en) Hydrocracking process with optimized management of the recycling for the production of naphtha
FR2983208A1 (en) PROCESS FOR PRODUCING MEDIUM DISTILLATE FROM A CONVENTIONAL HEAVY LOAD INCLUDING A SELECTIVE HYDROGENATION STEP FROM THE EXC FCC HCO CUT
EA038032B1 (en) Integrated hydroprocessing, steam pyrolysis and resid hydrocracking process for direct conversion of crude oil to produce olefinic and aromatic petrochemicals
FR3038904A1 (en) METHOD FOR REALIZING THE THERMAL BALANCE CLOSURE ON A CATALYTIC CRACKING UNIT OF NAPHTHA DITE NCC

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20180102

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20180213

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C10G 45/00 20060101AFI20180619BHEP

Ipc: C10G 47/00 20060101ALI20180619BHEP

Ipc: C10G 67/02 20060101ALI20180619BHEP

Ipc: C10G 49/22 20060101ALI20180619BHEP

INTG Intention to grant announced

Effective date: 20180702

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1075957

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016008135

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190312

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190312

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1075957

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181212

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2714797

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602016008135

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190412

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181215

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190412

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190702

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181215

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

26N No opposition filed

Effective date: 20190913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20191231

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181212

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161215

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230118

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231226

Year of fee payment: 8

Ref country code: FR

Payment date: 20231226

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240119

Year of fee payment: 8