EP3179276B1 - Methods and devices for validating the synchnonization between a geolocalizing receptor and an emitting satellite - Google Patents

Methods and devices for validating the synchnonization between a geolocalizing receptor and an emitting satellite Download PDF

Info

Publication number
EP3179276B1
EP3179276B1 EP16203456.5A EP16203456A EP3179276B1 EP 3179276 B1 EP3179276 B1 EP 3179276B1 EP 16203456 A EP16203456 A EP 16203456A EP 3179276 B1 EP3179276 B1 EP 3179276B1
Authority
EP
European Patent Office
Prior art keywords
satellite
ephemerid
word
transmitting
words
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16203456.5A
Other languages
German (de)
French (fr)
Other versions
EP3179276A1 (en
Inventor
Stéphane Rollet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP3179276A1 publication Critical patent/EP3179276A1/en
Application granted granted Critical
Publication of EP3179276B1 publication Critical patent/EP3179276B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/21Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/243Demodulation of navigation message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • H04B1/70751Synchronisation aspects with code phase acquisition using partial detection
    • H04B1/70752Partial correlation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • H04B1/70755Setting of lock conditions, e.g. threshold
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/709Correlator structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/7073Direct sequence modulation synchronisation

Definitions

  • the present invention relates to a method for validating synchronization between a geolocation receiver and a transmitting satellite during an acquisition phase of a navigation signal originating from this satellite, and an associated geolocation receiver.
  • the invention also relates to a method for validating synchronization between a geolocation receiver and a transmitting satellite during an acquisition phase of an augmentation signal comprising geolocation correction and integrity data for a predetermined satellite geolocation, and an associated geolocation receiver.
  • the invention lies in the field of satellite geolocation systems, known by the acronym GNSS (for “ Global Navigation Satellite System”).
  • GNSS Global Navigation Satellite System
  • a GNSS system is composed of a plurality of satellites, or constellation of satellites, allowing a portable geolocation receiver to determine positioning information, in a terrestrial frame, also called position, speed and time information ( TVP).
  • TVP position, speed and time information
  • the satellites of such a GNSS system are capable of transmitting radio signals comprising in particular navigation information.
  • Each navigation item of information generally includes data relating to the time of transmission by the satellite of the corresponding signal and to the current position of the satellite.
  • the data relating to the current position of the satellite generally contain the almanac giving a rough position of the satellite and the ephemeris giving the exact current position of the satellite.
  • the navigation information is carried by a carrier wave and modulated by a spreading code specific to each satellite.
  • the signals are transmitted by the satellites using a spread spectrum technique.
  • the geolocation receiver also called a GNSS receiver, is able to receive the signals transmitted by the satellites and to extract the navigation information therefrom in order in particular to determine the distance to the transmitting satellite having transmitted the corresponding signal. This distance, also called pseudo-distance, is determined by analyzing the propagation time of the corresponding signal.
  • the receiver implements digital processing of the navigation information coming from at least three different satellites.
  • the receiver needs navigation information from at least four different satellites.
  • the receiver implements two phases processing the signals originating from this satellite.
  • the receiver During an initial phase, called in the state of the art, acquisition phase, the receiver generates a local signal containing in particular a local spreading code presenting the image of the spreading code of the satellite.
  • the local signal is not synchronized with the received signal. This means in particular that the local signal is offset in carrier frequency from the received signal by a value called the Doppler value, and that the spreading code of the received signal is delayed from the local spreading code by a value called the value delay.
  • the receiver performs a search for a peak of the correlations between the local signal and the received signal by trying different Doppler and delay values.
  • the receiver determines the Doppler and delay values corresponding to this peak and from these values, launches a following phase, called in the state of the art, tracking phase.
  • the receiver regularly updates the Doppler and delay values, and extracts the navigation information from the signal transmitted by the satellite using in particular the local spreading code and the Doppler and determined delay.
  • the receiver At the end of the acquisition phase, it is considered that the receiver has synchronized with the transmitting satellite or even has "hooked" to this satellite, thanks to the detection of the correlation peak.
  • the receiver synchronizes its local signal corresponding to the satellite sought on the signal received from another satellite, which leads to an erroneous distance measurement, and therefore potentially to a false positioning.
  • cross-correlation error arises when satellites transmit short periodic code GNSS signals, for example GPS L1 signals C/A (acronym for “coarse acquisition”), corresponding to a frequency of 1575.42 MHz, SBAS L1 C/A and GALILEO L1 BC.
  • SBAS system a spatial augmentation system
  • One method used conventionally, consists in checking the consistency between the position of the satellite calculated from the ephemeris contained in the navigation information and that calculated from the decoded almanacs.
  • the almanacs contain the identifiers of all the transmitting satellites of the constellation, unlike the ephemeris. The inconsistency between these values therefore means a false synchronization.
  • the ephemeris data of a satellite make it possible to estimate the position of this satellite with an accuracy of a few meters, but are transmitted only by the satellite itself and have a validity period limited to a few hours.
  • the almanac data for the entire constellation of satellites make it possible to estimate the position of each of the satellites roughly, to within a few hundred kilometers, but are transmitted by all the satellites of the constellation and have a duration of valid for several days.
  • the aeronautical standard RTCA Radio Technical Commission for Aeronautics
  • DO-229 “Minimum Operational Performance Standards for Global Positioning System » imposes a complete decoding of the ephemeris data sets received twice and a comparison with the decoded almanac data for all the satellites.
  • Ephemeris data is retransmitted periodically, and renewed at a given frequency, for example every two hours for GPS satellites.
  • the ephemeris words are transmitted in subframes of the transmitted signal, the transmission of all the words of an ephemeris requiring a plurality of subframes.
  • the classic method of validating the absence of cross-correlation takes a relatively long time, which is 48 seconds to 60 seconds for the GPS system and several minutes for the SBAS system.
  • the object of the present invention is to remedy this drawback.
  • the invention proposes a method for validating synchronization between a geolocation receiver with a transmitting satellite during a phase of acquisition of a navigation signal from this satellite according to claim 1 .
  • the invention makes it possible to validate the synchronization of the receiver with a transmitter satellite from only part of the ephemeris words received, and consequently to considerably reduce the time for confirming the absence or presence of false synchronization.
  • the synchronization validation method according to the invention may also have one or more of the characteristics of dependent claims 2 to 8, taken independently or in combination according to all the technically possible combinations.
  • the invention relates to a geolocation receiver implementing synchronization with a transmitting satellite during a phase of acquisition of a navigation signal originating from this satellite according to claim 9.
  • FIG 1 illustrates a geolocation system 1 suitable for implementing the invention, in the context of the navigation aid for a mobile carrier 2, which is in the example of the figure 1 an aircraft.
  • the invention is not limited to this embodiment, and applies more generally to the geolocation of any mobile carrier.
  • the mobile carrier 2 is equipped with a geolocation receiver 12, or GNSS receiver, capable of receiving radio navigation signals from a plurality of transmitter satellites 4, 6, 8, forming part of a constellation of satellites of a GNSS geolocation system.
  • a geolocation receiver 12 or GNSS receiver
  • it is a constellation of GPS system satellites.
  • it is a constellation of satellites of the GALILEO system, or of any other GNSS system.
  • the mobile carrier 2 is capable of receiving radio signals from a GNSS geolocation system, capable of transmitting in predefined frequency bands.
  • Each of the satellites transmits radio navigation signals, also comprising ephemeris data consisting of a plurality of ephemeris words, making it possible to calculate a position of the transmitter satellite in a given terrestrial reference frame, with a given precision, for example a precision a few meters. Additionally, the ephemeris data contains information about the internal clock of the transmitting satellite.
  • the satellites are capable of transmitting signals on several transmission frequencies, the transmitted signals having an associated periodic code.
  • the GPS L1 C/A signals are transmitted at a frequency of 1575.42 MHz with a periodic spreading code of 1023 chips.
  • C/A codes are accessible to everyone and widely used in radio navigation applications.
  • These satellites are also capable of transmitting on other frequencies, for example 1227.60 MHz (L2 signals) or 1176.45 MHz (L5 signals).
  • ephemeris data can be transmitted in L5 signals, with a periodic code of 10230 chips, allowing much greater immunity to cross-correlation than L1 signals.
  • correction and integrity data of one or more satellites 10 of a constellation of geostationary satellites according to the spatial precision augmentation system using geostationary satellites, called SBAS (for "satellite- based augmentation system”), which are also transmitted in these radio signals transmitted in the same predefined frequency bands.
  • SBAS for "satellite- based augmentation system”
  • Receiver 12 has multiple receive channels for receiving spatial precision augmentation signals from multiple satellites.
  • the GNSS receiver 12 comprises in particular a calculation device, comprising one or more calculation processors 14, capable of executing calculations and computer program code instructions when they are powered up.
  • the calculation device also comprises one or more storage memories 16, capable of storing executable code instructions allowing the implementation of programs comprising code instructions capable of implementing the methods according to the invention.
  • the computing device is a computer.
  • the calculation device is an electronic device of the programmable logic circuit type, for example one or more electronic cards based on FPGA or ASIC.
  • almanac data and ephemeris data relating to each of the satellites 4, 6, 8, 10 considered are stored in memory 16.
  • FIG. 2 is a block diagram of the main steps of a synchronization validation method according to a first embodiment of the invention, implemented by a GNSS receiver 12.
  • This first embodiment applies in particular with the GPS system, in the context of a re-acquisition of a navigation signal for a given satellite Si of the constellation, after a loss or masking of the previously acquired navigation signal, on an associated channel.
  • An ephemeris is made up of ephemeris data or words, each ephemeris word having an associated rank. For example, in a GPS system, there are 20 ephemeris words defined, with ranks (or indices) ranging from 1 to 20. We note m(i) the ephemeris word of rank i. The ephemeris word m(i) transmitted by a given satellite at a given instant has an associated value.
  • GPS signals are transmitted periodically and consist of pages, each page consisting of sub-frames, each sub-frame consisting of a given number of words, each word being coded on a given number of bits, transmitted at a frequency given.
  • the words are protected by a protection code or error detection code, for example a parity, making it possible to easily detect any losses or errors at the transmission level.
  • the ephemeris words of given ranks are distributed in various subframes of the GPS signals.
  • the method comprises a first preliminary step 20 of obtaining a non-detection probability value P nd , a parameter defined by an operator or as a function of security constraints of a targeted application.
  • a step 22 of obtaining and storing probabilities is implemented so that at a given instant, an ephemeris word of the same rank is identical for two distinct satellites Si and Sj.
  • X(i) be the event associated with the fact that the word m(i) is identical in the ephemerides transmitted by two or more distinct satellites.
  • an estimate of the probability P ( X ( i )) of each event X(i) is recovered, as well as of the set of probabilities P ⁇ I ⁇ AT X I , A ⁇ ⁇ GPS , Pnd , the events X(i) not being independent.
  • this estimate is made from databases archiving the existing ephemerides for the constellation considered.
  • the calculation of the probabilities is preferably done by a computer other than the geolocation receiver 12, and the values of the calculated probabilities are supplied to the receiver and stored by the latter.
  • the a priori estimation of the probabilities can be redone at any time to take into account any evolution of the GNSS system considered.
  • Steps 20 and 22 are repeated, if necessary, for several given probabilities of non-detection P nd .
  • the sets A of ranks of ephemeris words are stored, for example in the form of tables or any other suitable form.
  • the sets of indices A determined for a given probability of non-detection have different cardinals as a function of estimated probabilities P(x(i)), the probability of non-detection also depending on the ranks of the indices received .
  • the values are received by the receiver via another communication channel, for example by GSM radio communication or by communication via the Internet network.
  • stored ephemeris word values have been received beforehand from the transmitter satellite Si and validated by a conventional validation method, for example the method of validation with respect to previously stored almanac data.
  • stored ephemeris word values have been transmitted by the satellite Si by a frequency other than the radionavigation signal to be processed, for example by the L5 signals, for which the risk of cross-correlation is very low.
  • a navigation signal Sig is received on the channel considered, and associated ephemeris words are extracted from this signal.
  • the signal Sig is considered to have been received from a transmitter satellite Sj following the signal acquisition phase comprising synchronization by correlation.
  • ephemeris words are called received words, and they are denoted: M I r k , k ⁇ 1 , ... , NOT .
  • the purpose of the method is to validate or not the synchronization with the signal Sj, in other words to validate, with an associated probability of non-detection, if the ephemerides received with the signal Sig are emitted by the signal Sj or if they are likely to be emitted by another satellite Si of the constellation.
  • step 26 of receiving and extracting ephemeris words received is followed by a step 28 of checking the parity of each ephemeris word received.
  • step 28 is followed by step 26 mentioned above.
  • step 28 is followed by a step 30 of comparing each of the received ephemeris words extracted M I r k with the ephemeris word of the same rank memorized M I m k , for the satellite Sj previously identified in the navigation signal acquisition step.
  • the ephemeris words received are extracted from the sub-frames received progressively and processed, the purpose of which is to reduce the total synchronization validation time with the satellite Sj.
  • step 28 a subset of ephemeris words received is processed in step 28, this subset possibly being limited to a single ephemeris word.
  • the result of the comparison is stored and accumulated with the previous results at processing step 32.
  • the rank k of the ephemeris word received and validated by the comparison is stored, and it is checked whether k belongs to one of the sets A of ranks of ephemeris words stored for reach the given non-detection probability P nd .
  • the probability of non-detection P nd is a parameter which is for example entered by an operator and supplied as input to the method or which is imposed by an application using the geolocation receiver.
  • P nd is 10 -3 or 10 -4 for usual applications.
  • step 34 it is checked whether one of the sets A of rows of ephemeris words has been completed, in other words whether it has been received and validated by comparison with the ephemeris words stored every words of a set A, thus ensuring that these words are sent by the transmitter satellite Sj considered with a probability of non-detection lower than P nd .
  • step 36 the validation of the synchronization with the transmitting satellite Sj is validated for the navigation signal Sig received.
  • the algorithm ends (step 36).
  • step 34 is followed by step 26 of reception and extraction of ephemeris words previously described.
  • the receiver compares the decoded ephemeris to the almanacs to ensure the presence or absence of cross-correlation.
  • synchronization validation or confirmation of the absence of cross-correlation, takes 0.6 seconds in the best case, in which the first word of ephemeris received and processed is distinctive, and can take up to a maximum of 17.4 seconds.
  • this first embodiment described above applies for constellations of satellites other than the GPS constellation, provided that sufficient data is available to obtain an estimation of the probabilities of the events X(i) a priori .
  • This second embodiment differs from the first embodiment because it does not require an a priori estimation of the probabilities that two ephemeris words transmitted at the same time by two distinct transmitting satellites are identical.
  • the GNSS receiver simultaneously receives and processes several reception channels, each reception channel being associated with a transmitting satellite during the navigation signal acquisition phase.
  • the processed navigation signal Sig is a sufficiently strong signal to generate a cross-correlation on a current reception channel, and that it is also received in the acquisition phase on another channel of the GNSS receiver.
  • a first step 40 is implemented on all the reception channels, to extract and store the ephemeris words received, each channel being associated with a transmission satellite.
  • This step is implemented following the prior acquisition of the navigation signal for each channel and comprises, for each reception channel, a first sub-step 42 of extracting and checking the parity of each ephemeris word received and a substep 44 of storing the ephemeris words whose parity has been checked, in relation to the reception channel processed.
  • ephemeris words are stored: M I m k , k ⁇ 1 , ... , NOT where N is the number of ephemeris words (equal to 20 for the GPS system), and for which the parity has been checked, in order to avoid the subsequent use of erroneous ephemeris words.
  • step 44 is implemented for a given processed channel, called the current channel, associated with a transmitter satellite Si, called the current satellite, for which synchronization validation, we obtain the received word whose parity has been checked M I r p at step 46.
  • the rank word corresponding to step 48 denoted M I m p .
  • Ephemeris words M I r p And M I m p are compared at step 50.
  • the ephemeris word received M I r p is compared, during the comparison step 50, with all the ephemeris words of the same rank and validated received on the other reception channels, denoted M I r p , I ⁇ I .
  • the results of the comparison are processed during a processing step 52.
  • a validity counter, C valid is incremented in step 54, this counter being initialized to 0 at each new implementation of the synchronization validation method.
  • An invalidity counter, C invalid is incremented at step 54, this counter being initialized to 0 at each new implementation of the synchronization validation method.
  • validity counters C valid and invalidity counters C invalid are only incremented for words of distinct ranks. Thus, a word of the same rank received again cannot contribute to incrementing a non-zero counter.
  • step 56 It is then checked in a step 56 whether the validity counter or, if applicable, the invalidity counter, has reached a number of ephemeris words to be taken into consideration Nt.
  • This number Nt depends on the values of the probability of non-detection P nd and of the probability of false alarm P fa of a cross-correlation.
  • step 56 is followed by step 46 previously described for processing a next ephemeris word for the channel associated with the transmitter satellite Si.
  • the number Nt of ephemeris words to be taken into account is, in one embodiment, equal to 1.
  • the associated non-detection probability and false alarm probability can be calculated.
  • the probability of non-detection there is a risk of non-detection if a word is decoded incorrectly.
  • the probability of non-detection due to such an error is dependent on the word error rate, also called WER for “word error rate”, which depends on the signal-to-noise ratio of the signal received, falsely considered valid.
  • the probability of false alarm which is the probability of false detection of a cross-correlation phenomenon, is calculated, according to one embodiment, with respect to the renewal of the ephemeris sent with respect to the ephemeris stored by the same satellite, renewal which is carried out with a given frequency, for example 2 hours.
  • Nt of ephemeris words to be taken into consideration is determined differently depending on whether the processing knows that the ephemeris sent have changed or not with respect to the stored ephemeris.
  • One of the ephemeris words makes it possible to date it. If it is received and equal to that of the stored ephemeris, Nt will be determined on an assumption of no change, if it is not yet received or if it is received different from that of the stored ephemeris , Nt will be determined on a change assumption.
  • the probability of false alarm is calculated according to the probability of decoding error WER, parity error (2 - 6 ) and equality of the decoded word with respect to one of the words of the same rank decoded on one of the other satellites (1-(1-2 -24 ) N vs -1 ).
  • Y(i) be the event associated with the fact that the words m ( i ) of two ephemeris tables transmitted successively by the same satellite are identical.
  • A being the set of ranks (or indices) of the ephemeris words received verifying the invalidation criterion, and Nc the number of transmitting satellites received.
  • the event probabilities Y(i) are estimated a priori, on another computer, solely to determine the value Nt stored by the receiver as a function of Nc.
  • the determination of probabilities P ⁇ I ⁇ AT Y I is done in the same way as to determine the probabilities P ⁇ I ⁇ AT X I : this estimate is made from databases archiving the existing ephemerides for the constellation considered.
  • a priori estimates of the probabilities can be used.
  • the GALILEO L1 BC signals have a periodic code of 4092 elements, but do not however allow sufficient robustness to guarantee the absence of cross-correlation.
  • the method described above applies with the ephemeris data of the GALILEO system, taking into account the specific arrangement of the I/NAV navigation messages and the protection code which is a CRC code (for "redundancy check cyclic”), applied to a plurality of transmitted ephemeris words.
  • the protection code which is a CRC code (for "redundancy check cyclic”)
  • the ephemeris word of rank 4 in the GALILEO system carries the identifier of the transmitting satellite, therefore error-free decoding of this ephemeris word makes it possible to identify the transmitting satellite.
  • ephemeris words are transmitted cyclically, so it is possible to have to wait up to 30 seconds to decode the rank 4 ephemeris word.
  • the method of the invention described above applies, and in particular the second embodiment which does not require a priori calculation of probabilities associated with the ephemeris words transmitted by the different satellites of the constellation.
  • the use of a single ephemeris word to validate or invalidate the presence of a cross-correlation provides a high level of integrity, which limits the validation time from 2 seconds minimum to 18 seconds maximum.
  • the invention also applies to the case of augmentation signals, for example SBAS, comprising geolocation correction and integrity data for a predetermined satellite geolocation system, in the case receivers adapted to receive several SBAS signals on several reception channels, and therefore are liable to undergo the phenomenon of erroneous synchronization on a transmitting SBAS satellite, due to cross-correlation.
  • SBAS augmentation signals
  • the invention also applies to the case of augmentation signals, for example SBAS, comprising geolocation correction and integrity data for a predetermined satellite geolocation system, in the case receivers adapted to receive several SBAS signals on several reception channels, and therefore are liable to undergo the phenomenon of erroneous synchronization on a transmitting SBAS satellite, due to cross-correlation.
  • Each reception channel is associated with a transmitting SBAS satellite.
  • SBAS signals are sent by service providers, who generally own several satellites. For example, we know the service providers EGNOS ® for Europe and WAAS ® for the United States, GAGAN ® for India, MSAS ® for Japan.
  • Each service provider's satellites send ephemeris, but only at lower time frequencies than geolocation satellites.
  • each service provider broadcasts almanacs of the satellites in its constellation.
  • FIG. 4 is a block diagram of the main steps implemented in the third embodiment of the method for validating synchronization with a transmitter satellite Sj of an SBAS-type spatial augmentation system, implemented by a receiver capable of receiving SBAS type signals on several reception channels.
  • the method of the invention is suitable for this scenario, in which the sending of ephemerides is grouped and sent at low frequency (for example every 120 seconds for SBAS).
  • each word regardless of type, consists of 250 bits and is protected by a 24-bit CRC protection code.
  • a first step 60 the almanacs of the various service providers are received and stored.
  • This step 60 is implemented by any appropriate means of communication, for example by using another communication channel—GSM, Internet or another appropriate communication channel.
  • GSM Global System for Mobile communications
  • Step 60 is followed by a step 62 of receiving SBAS signals after acquisition or re-acquisition on each of the reception channels processed, and of extracting a current word received having an associated type, then by a step 64 verification of the CRC code of the word received.
  • step 64 is followed by the previous step 62 of reception and extraction of a new word received.
  • the word received is stored in relation to the associated channel in order to then carry out comparisons between words received.
  • step 66 if the word received corresponds to the reception of the ephemeris word, then step 66 is followed by step 70 described below, otherwise, the word received on the current reception channel is compared to the received words of the same type on the other reception channels.
  • the step 70 which corresponds to the reception of the ephemeris word consists of the comparison of the ephemeris with the almanac data previously stored for the current service provider.
  • step 66 if the current word received, originating from the current reception channel, called the first channel, is identical to a word received from a second channel, and the type of the word is different from the type 0 in the SBAS system where type 0 words have fixed content, then step 66 is followed by step 68.
  • step 68 it is checked whether the first channel and the second channel are both associated with satellites of the same service provider, called the current service provider.
  • step 68 is followed by step 62.
  • Step 68 is followed by step 74 described below.
  • the invalidity counter, C invalid is initialized to 0 at each new implementation of the synchronization validation method.
  • step 66 If in step 66 the current word received, from the current reception channel, called the first channel, is different from all the words of the same type received from all the other channels, then the signal is considered valid and therefore not tainted by a cross-correlation.
  • a validity counter C valid is incremented in step 72, this counter being initialized to 0 at each new implementation of the synchronization validation method.
  • Step 72 is followed by a step 74 of comparing the validity counter or, where applicable, the invalidity counter, with a number of words received to be taken into account Nr.
  • Nr depends on the values of the probability of non-detection P nd and of the probability of false alarm P fa of a cross-correlation.
  • the synchronization validation process for the signal received by the spatial augmentation system on the current channel ends.
  • step 74 is followed by step 62 previously described for processing a next received word.
  • the number Nr of words received to be taken into account is, in one embodiment, equal to 1.
  • the probability of non-detection there is a risk of non-detection if a word is decoded incorrectly.
  • the probability of non-detection due to such an error is dependent on the word error rate, also called WER for “word error rate”, which depends on the signal-to-noise ratio of the signal received, falsely considered valid.
  • the false alarm probability which is the probability of false detection of a cross-correlation phenomenon, is calculated, according to one embodiment, by: P ⁇ a ⁇ 2 ⁇ 218 ⁇ 2 ⁇ 10 ⁇ 66
  • the validation or invalidation of the synchronization with a transmitting satellite is accelerated thanks to the use of received words received for the same transmitting satellite previously identified in the acquisition phase, and, if applicable, for other transmitter satellites of the constellation which are received by the geolocation receiver considered.

Description

La présente invention concerne un procédé de validation de synchronisation entre un récepteur de géolocalisation et un satellite émetteur lors d'une phase d'acquisition d'un signal de navigation issu de ce satellite, et un récepteur de géolocalisation associé.The present invention relates to a method for validating synchronization between a geolocation receiver and a transmitting satellite during an acquisition phase of a navigation signal originating from this satellite, and an associated geolocation receiver.

L'invention concerne également un procédé de validation de synchronisation entre un récepteur de géolocalisation et un satellite émetteur lors d'une phase d'acquisition d'un signal d'augmentation comprenant des données de correction et d'intégrité de géolocalisation pour un système de géolocalisation par satellite prédéterminé, et un récepteur de géolocalisation associé.The invention also relates to a method for validating synchronization between a geolocation receiver and a transmitting satellite during an acquisition phase of an augmentation signal comprising geolocation correction and integrity data for a predetermined satellite geolocation, and an associated geolocation receiver.

L'invention se situe dans le domaine des systèmes de géolocalisation par satellite, connus sous l'acronyme GNSS (pour « Global Navigation Satellite System »). The invention lies in the field of satellite geolocation systems, known by the acronym GNSS (for “ Global Navigation Satellite System”).

De manière générale, un système GNSS est composé d'une pluralité de satellites, ou constellation de satellites, permettant à un récepteur de géolocalisation portable de déterminer des informations de positionnement, dans un repère terrestre, également appelées informations de position, vitesse et temps (PVT).In general, a GNSS system is composed of a plurality of satellites, or constellation of satellites, allowing a portable geolocation receiver to determine positioning information, in a terrestrial frame, also called position, speed and time information ( TVP).

Il existe actuellement plusieurs systèmes GNSS parmi lesquels on peut notamment citer le système GPS, le système GLONASS ou encore le système GALILEO dont la mise en service est prévue prochainement.There are currently several GNSS systems among which mention may be made in particular of the GPS system, the GLONASS system or even the GALILEO system, the commissioning of which is planned shortly.

Les satellites d'un tel système GNSS sont aptes à émettre des signaux radioélectriques comprenant notamment des informations de navigation.The satellites of such a GNSS system are capable of transmitting radio signals comprising in particular navigation information.

Chaque information de navigation comprend généralement des données relatives au temps d'émission par le satellite du signal correspondant et à la position courante du satellite. En particulier, les données relatives à la position courante du satellite contiennent généralement l'almanach donnant une position grossière du satellite et les éphémérides donnant la position courante exacte du satellite.Each navigation item of information generally includes data relating to the time of transmission by the satellite of the corresponding signal and to the current position of the satellite. In particular, the data relating to the current position of the satellite generally contain the almanac giving a rough position of the satellite and the ephemeris giving the exact current position of the satellite.

L'information de navigation est portée par une onde porteuse et modulée par un code d'étalement propre à chaque satellite. Ainsi, les signaux sont émis par les satellites en utilisant une technique d'étalement de spectre.The navigation information is carried by a carrier wave and modulated by a spreading code specific to each satellite. Thus, the signals are transmitted by the satellites using a spread spectrum technique.

Le récepteur de géolocalisation appelé également récepteur GNSS, est apte à recevoir les signaux émis par les satellites et à en extraire l'information de navigation pour notamment déterminer la distance jusqu'au satellite émetteur ayant émis le signal correspondant. Cette distance, appelée également pseudo-distance, est déterminée en analysant le temps de propagation du signal correspondant.The geolocation receiver, also called a GNSS receiver, is able to receive the signals transmitted by the satellites and to extract the navigation information therefrom in order in particular to determine the distance to the transmitting satellite having transmitted the corresponding signal. This distance, also called pseudo-distance, is determined by analyzing the propagation time of the corresponding signal.

Pour déterminer les informations de positionnement PVT, le récepteur met en oeuvre un traitement numérique des informations de navigation issues d'au moins trois satellites différents.To determine the PVT positioning information, the receiver implements digital processing of the navigation information coming from at least three different satellites.

En pratique, pour avoir une position plus précise, le récepteur a besoin d'informations de navigation issues d'au moins quatre satellites différents.In practice, to have a more precise position, the receiver needs navigation information from at least four different satellites.

Plus précisément, pour acquérir l'information de navigation d'un satellite donné, le récepteur met en oeuvre deux phases traitant les signaux issus de ce satellite.More precisely, to acquire the navigation information of a given satellite, the receiver implements two phases processing the signals originating from this satellite.

Lors d'une phase initiale, appelée dans l'état de l'art, phase d'acquisition, le récepteur génère un signal local contenant notamment un code d'étalement local présentant l'image du code d'étalement du satellite.During an initial phase, called in the state of the art, acquisition phase, the receiver generates a local signal containing in particular a local spreading code presenting the image of the spreading code of the satellite.

Comme initialement le récepteur ne connait pas sa position, le signal local n'est pas synchronisé avec le signal reçu. Ceci signifie en particulier que le signal local est décalé en fréquence de porteuse du signal reçu d'une valeur appelée valeur de Doppler, et que le code d'étalement du signal reçu est retardé du code d'étalement local d'une valeur appelée valeur de retard.As initially the receiver does not know its position, the local signal is not synchronized with the received signal. This means in particular that the local signal is offset in carrier frequency from the received signal by a value called the Doppler value, and that the spreading code of the received signal is delayed from the local spreading code by a value called the value delay.

Puis, le récepteur effectue une recherche d'un pic des corrélations entre le signal local et le signal reçu en essayant différentes valeurs de Doppler et de retard.Then, the receiver performs a search for a peak of the correlations between the local signal and the received signal by trying different Doppler and delay values.

Lorsqu'un pic est détecté, le récepteur détermine les valeurs de Doppler et de retard correspondant à ce pic et à partir de ces valeurs, lance une phase suivante, appelée dans l'état de l'art, phase de poursuite.When a peak is detected, the receiver determines the Doppler and delay values corresponding to this peak and from these values, launches a following phase, called in the state of the art, tracking phase.

Lors de la phase de poursuite, le récepteur met à jour régulièrement les valeurs de Doppler et de retard, et extrait l'information de navigation du signal émis par le satellite en utilisant notamment le code d'étalement local et les valeurs de Doppler et de retard déterminées.During the tracking phase, the receiver regularly updates the Doppler and delay values, and extracts the navigation information from the signal transmitted by the satellite using in particular the local spreading code and the Doppler and determined delay.

À l'issue de la phase d'acquisition, il est considéré que le récepteur s'est synchronisé avec le satellite émetteur ou encore s'est « accroché » à ce satellite, grâce à la détection du pic de corrélation.At the end of the acquisition phase, it is considered that the receiver has synchronized with the transmitting satellite or even has "hooked" to this satellite, thanks to the detection of the correlation peak.

Il arrive parfois que le récepteur synchronise son signal local correspondant au satellite recherché sur le signal reçu d'un autre satellite, ce qui conduit à une mesure de distance erronée, et donc potentiellement à un positionnement faux.It sometimes happens that the receiver synchronizes its local signal corresponding to the satellite sought on the signal received from another satellite, which leads to an erroneous distance measurement, and therefore potentially to a false positioning.

Dans ce cas, il s'agit d'une fausse synchronisation ou d'un faux « accrochage », qu'on appelle également corrélation croisée. Dans ce cas, le calcul des informations de positionnement du récepteur est faussé.In this case, it is a false synchronization or a false "hang-up", which is also called cross-correlation. In this case, the calculation of the positioning information of the receiver is distorted.

En particulier, l'erreur de corrélation croisée se présente lorsque les satellites émettent des signaux GNSS à code périodique court, par exemple les signaux GPS L1 C/A (acronyme de « coarse acquisition), correspondant à une fréquence de 1 575,42 MHz, SBAS L1 C/A et GALILEO L1 BC.In particular, cross-correlation error arises when satellites transmit short periodic code GNSS signals, for example GPS L1 signals C/A (acronym for “coarse acquisition”), corresponding to a frequency of 1575.42 MHz, SBAS L1 C/A and GALILEO L1 BC.

Un phénomène analogue se présente également lorsque le signal reçu provient d'un satellite émetteur d'informations de correction de position, dans un système d'augmentation spatiale, appelé système SBAS.A similar phenomenon also occurs when the signal received comes from a satellite transmitting position correction information, in a spatial augmentation system, called the SBAS system.

Il existe dans l'état de l'art différentes méthodes permettant d'éviter une telle fausse synchronisation ou corrélation croisée.There exist in the state of the art various methods making it possible to avoid such false synchronization or cross-correlation.

Les documents US2015/009065 A1 , US2012/134392 A1 et JP H11 118900 A décrivent des méthodes de détection de corrélation croisée.The documents US2015/009065 A1 , US2012/134392 A1 And JP H11 118900 A describe cross-correlation detection methods.

Une méthode, utilisée de manière conventionnelle, consiste à vérifier la cohérence entre la position du satellite calculée à partir des éphémérides contenues dans l'information de navigation et celle calculée à partir des almanachs décodés. Les almanachs contiennent les identifiants de l'ensemble des satellites émetteurs de la constellation, contrairement aux éphémérides. L'incohérence entre ces valeurs signifie donc une fausse synchronisation.One method, used conventionally, consists in checking the consistency between the position of the satellite calculated from the ephemeris contained in the navigation information and that calculated from the decoded almanacs. The almanacs contain the identifiers of all the transmitting satellites of the constellation, unlike the ephemeris. The inconsistency between these values therefore means a false synchronization.

En effet, les données d'éphémérides d'un satellite permettent d'estimer avec une précision de quelques mètres la position de ce satellite, mais ne sont transmises que par le satellite lui-même et ont une durée de validité limitée à quelques heures.Indeed, the ephemeris data of a satellite make it possible to estimate the position of this satellite with an accuracy of a few meters, but are transmitted only by the satellite itself and have a validity period limited to a few hours.

Les données d'almanachs pour l'ensemble de la constellation de satellites permettent d'estimer la position de chacun des satellites grossièrement, à quelques centaines de kilomètres près, mais sont transmises par l'ensemble des satellites de la constellation et ont une durée de validité de plusieurs jours.The almanac data for the entire constellation of satellites make it possible to estimate the position of each of the satellites roughly, to within a few hundred kilometers, but are transmitted by all the satellites of the constellation and have a duration of valid for several days.

Ainsi, si la différence entre la position calculée à partir des éphémérides et la position calculée à partir des almanachs est supérieure à la distance moyenne entre satellites émetteurs, on estime qu'il y a une erreur, donc une corrélation croisée.Thus, if the difference between the position calculated from the ephemeris and the position calculated from the almanacs is greater than the average distance between transmitting satellites, it is estimated that there is an error, therefore a cross correlation.

Afin d'éviter une fausse détection de corrélation croisée et de garantir l'intégrité des informations de positionnement calculées par un récepteur GNSS, le standard aéronautique RTCA (« Radio Technical Commission for Aeronautics) DO-229 « Minimum Operational Performance Standards for Global Positionning System » impose un décodage complet de l'ensembles des données d'éphémérides reçues deux fois et une comparaison avec les données d'almanach décodées pour l'ensemble des satellites.In order to avoid false cross-correlation detection and to guarantee the integrity of the positioning information calculated by a GNSS receiver, the aeronautical standard RTCA (Radio Technical Commission for Aeronautics) DO-229 “Minimum Operational Performance Standards for Global Positioning System » imposes a complete decoding of the ephemeris data sets received twice and a comparison with the decoded almanac data for all the satellites.

Pour un satellite émetteur donné, un ensemble complet de données d'éphéméride est formé d'un nombre donné de mots d'éphéméride, chacun ayant un rang associé et codant des informations relatives au satellite émetteur, ces informations permettant de calculer la position du satellite émetteur. Les données d'éphémérides sont retransmises périodiquement, et renouvelées à une fréquence donnée, par exemple toutes les deux heures pour les satellites GPS.For a given transmitter satellite, a complete set of ephemeris data is formed of a given number of ephemeris words, each having an associated rank and encoding information relating to the transmitter satellite, this information making it possible to calculate the position of the satellite transmitter. Ephemeris data is retransmitted periodically, and renewed at a given frequency, for example every two hours for GPS satellites.

Les mots d'éphémérides sont transmis dans des sous-trames du signal émis, la transmission de la totalité des mots d'une éphéméride nécessitant une pluralité de sous-trames.The ephemeris words are transmitted in subframes of the transmitted signal, the transmission of all the words of an ephemeris requiring a plurality of subframes.

Ainsi, la méthode classique de validation d'absence de corrélation croisée prend un temps relativement long, qui est de 48 secondes à 60 secondes pour le système GPS et de plusieurs minutes pour le système SBAS.Thus, the classic method of validating the absence of cross-correlation takes a relatively long time, which is 48 seconds to 60 seconds for the GPS system and several minutes for the SBAS system.

La présente invention a pour but de remédier à cet inconvénient.The object of the present invention is to remedy this drawback.

A cet effet, selon un premier aspect, l'invention propose un procédé de validation de synchronisation entre un récepteur de géolocalisation avec un satellite émetteur lors d'une phase d'acquisition d'un signal de navigation issu de ce satellite selon la revendication 1.To this end, according to a first aspect, the invention proposes a method for validating synchronization between a geolocation receiver with a transmitting satellite during a phase of acquisition of a navigation signal from this satellite according to claim 1 .

Avantageusement, l'invention permet de valider la synchronisation du récepteur avec un satellite émetteur à partir d'une partie des mots d'éphémérides reçus uniquement, et par conséquent de réduire considérablement le temps de confirmation d'absence ou de présence de fausse synchronisation.Advantageously, the invention makes it possible to validate the synchronization of the receiver with a transmitter satellite from only part of the ephemeris words received, and consequently to considerably reduce the time for confirming the absence or presence of false synchronization.

Le procédé de validation de synchronisation selon l'invention peut également présenter une ou plusieurs des caractéristiques des revendications dépendantes 2 à 8, prises indépendamment ou en combinaison selon toutes les combinaisons techniquement possibles.The synchronization validation method according to the invention may also have one or more of the characteristics of dependent claims 2 to 8, taken independently or in combination according to all the technically possible combinations.

Selon un autre aspect, l'invention concerne un récepteur de géolocalisation mettant en oeuvre une synchronisation avec un satellite émetteur lors d'une phase d'acquisition d'un signal de navigation issu de ce satellite selon la revendication 9.According to another aspect, the invention relates to a geolocation receiver implementing synchronization with a transmitting satellite during a phase of acquisition of a navigation signal originating from this satellite according to claim 9.

D'autres caractéristiques et avantages de l'invention ressortiront de la description qui en est donnée ci-dessous, à titre indicatif et nullement limitatif, en référence aux figures annexées, parmi lesquelles :

  • la figure 1 est une illustration schématique d'un système de géolocalisation ;
  • la figure 2 est un synoptique des principales étapes d'un procédé de validation de synchronisation selon un premier mode réalisation de l'invention ;
  • la figure 3 est un synoptique des principales étapes d'un procédé de validation de synchronisation selon un deuxième mode réalisation de l'invention ;
  • la figure 4 est un synoptique des principales étapes d'un procédé de validation de synchronisation selon un troisième mode réalisation de l'invention.
Other characteristics and advantages of the invention will emerge from the description given below, by way of indication and in no way limiting, with reference to the appended figures, among which:
  • there figure 1 is a schematic illustration of a geolocation system;
  • there figure 2 is a block diagram of the main steps of a synchronization validation method according to a first embodiment of the invention;
  • there picture 3 is a block diagram of the main steps of a synchronization validation method according to a second embodiment of the invention;
  • there figure 4 is a block diagram of the main steps of a synchronization validation method according to a third embodiment of the invention.

La figure 1 illustre un système de géolocalisation 1 adapté à mettre en oeuvre l'invention, dans le contexte de l'aide à la navigation d'un porteur mobile 2, qui est dans l'exemple de la figure 1 un aéronef.There figure 1 illustrates a geolocation system 1 suitable for implementing the invention, in the context of the navigation aid for a mobile carrier 2, which is in the example of the figure 1 an aircraft.

Bien entendu, l'invention ne se limite pas à ce mode de réalisation, et s'applique plus généralement pour la géolocalisation de tout porteur mobile.Of course, the invention is not limited to this embodiment, and applies more generally to the geolocation of any mobile carrier.

Le porteur mobile 2 est équipé d'un récepteur de géolocalisation 12, ou récepteur GNSS, apte à recevoir des signaux radioélectriques de navigation en provenance d'une pluralité de satellites émetteurs 4, 6, 8, faisant partie d'une constellation de satellites d'un système de géolocalisation GNSS.The mobile carrier 2 is equipped with a geolocation receiver 12, or GNSS receiver, capable of receiving radio navigation signals from a plurality of transmitter satellites 4, 6, 8, forming part of a constellation of satellites of a GNSS geolocation system.

Dans un premier mode de réalisation, il s'agit d'une constellation de satellites du système GPS.In a first embodiment, it is a constellation of GPS system satellites.

En variante, il s'agit d'une constellation de satellites du système GALILEO, ou de tout autre système GNSS.As a variant, it is a constellation of satellites of the GALILEO system, or of any other GNSS system.

De manière générale, le porteur mobile 2 est apte à recevoir des signaux radioélectriques en provenance d'un système de géolocalisation GNSS, susceptible d'émettre dans des bandes de fréquences prédéfinies.In general, the mobile carrier 2 is capable of receiving radio signals from a GNSS geolocation system, capable of transmitting in predefined frequency bands.

Chacun des satellites transmet des signaux de radionavigation, comprenant également des données d'éphéméride constituées d'une pluralité de mots d'éphéméride, permettant de calculer une position du satellite émetteur dans un référentiel terrestre donné, avec une précision donnée, par exemple une précision de quelques mètres. De plus, les données d'éphéméride contiennent des informations sur l'horloge interne du satellite émetteur.Each of the satellites transmits radio navigation signals, also comprising ephemeris data consisting of a plurality of ephemeris words, making it possible to calculate a position of the transmitter satellite in a given terrestrial reference frame, with a given precision, for example a precision a few meters. Additionally, the ephemeris data contains information about the internal clock of the transmitting satellite.

De manière connue, les satellites sont susceptibles d'émettre des signaux sur plusieurs fréquences d'émission, les signaux émis ayant un code périodique associé.In known manner, the satellites are capable of transmitting signals on several transmission frequencies, the transmitted signals having an associated periodic code.

Par exemple, dans le cas du système GPS, les signaux GPS L1 C/A sont émis à une fréquence de 1 575,42 MHz avec un code périodique d'étalement de 1023 éléments. Les codes C/A sont accessibles à tous et largement utilisés dans les applications de radionavigation.For example, in the case of the GPS system, the GPS L1 C/A signals are transmitted at a frequency of 1575.42 MHz with a periodic spreading code of 1023 chips. C/A codes are accessible to everyone and widely used in radio navigation applications.

Ces satellites sont également susceptibles d'émettre sur d'autres fréquences, par exemple 1 227,60 MHz (signaux L2) ou 1176.45 MHz (signaux L5).These satellites are also capable of transmitting on other frequencies, for example 1227.60 MHz (L2 signals) or 1176.45 MHz (L5 signals).

Notamment, des données d'éphémérides peuvent être émises dans des signaux L5, avec un code périodique de 10230 éléments, permettant une bien plus grande immunité aux corrélations croisées que les signaux L1.In particular, ephemeris data can be transmitted in L5 signals, with a periodic code of 10230 chips, allowing much greater immunity to cross-correlation than L1 signals.

De plus, en variante, des données de correction et d'intégrité d'un ou plusieurs satellites 10 d'une constellation de satellites géostationnaires, selon le système d'augmentation de précision spatiale utilisant des satellites géostationnaires, appelé SBAS (pour « satellite-based augmentation system »), qui sont également transmises dans ces signaux radioélectriques émis dans les mêmes bandes de fréquence prédéfinies.In addition, as a variant, correction and integrity data of one or more satellites 10 of a constellation of geostationary satellites, according to the spatial precision augmentation system using geostationary satellites, called SBAS (for "satellite- based augmentation system”), which are also transmitted in these radio signals transmitted in the same predefined frequency bands.

Le récepteur 12 comporte plusieurs canaux de réception pour la réception de signaux d'augmentation de précision spatiale en provenance de plusieurs satellites.Receiver 12 has multiple receive channels for receiving spatial precision augmentation signals from multiple satellites.

Le récepteur GNSS 12 comporte notamment un dispositif de calcul, comportant un ou plusieurs processeurs de calcul 14, aptes à exécuter des calculs et des instructions de code de programme d'ordinateurs lorsqu'ils sont mis sous tension. Le dispositif de calcul comprend également une ou des mémoires de stockage 16, aptes à stocker des instructions de code exécutable permettant la mise en oeuvre de programmes comportant des instructions de code aptes à mettre en oeuvre les procédés selon l'invention.The GNSS receiver 12 comprises in particular a calculation device, comprising one or more calculation processors 14, capable of executing calculations and computer program code instructions when they are powered up. The calculation device also comprises one or more storage memories 16, capable of storing executable code instructions allowing the implementation of programs comprising code instructions capable of implementing the methods according to the invention.

Dans un mode de réalisation, le dispositif de calcul est un ordinateur.In one embodiment, the computing device is a computer.

En variante, le dispositif de calcul est un dispositif électronique de type circuit logique programmable, par exemple une ou plusieurs des cartes électroniques à base de FPGA ou ASIC.As a variant, the calculation device is an electronic device of the programmable logic circuit type, for example one or more electronic cards based on FPGA or ASIC.

Notamment, des données d'almanachs et des données d'éphémérides relatives à chacun des satellites 4, 6, 8, 10 considérés sont mémorisées dans la mémoire 16.In particular, almanac data and ephemeris data relating to each of the satellites 4, 6, 8, 10 considered are stored in memory 16.

Le processeur de calcul 14 met en oeuvre des modules de mise en oeuvre d'un test de validation de synchronisation pour chaque satellite émetteur identifié, non représentés sur la figure, comprenant :

  • un module d'extraction de mots d'éphéméride du signal de navigation associé au satellite identifié dans la phase d'acquisition, au fur et à mesure de la réception dudit signal de navigation,
  • un module de comparaison d'au moins une partie desdits mots d'éphéméride extraits à au moins un mot d'éphéméride de même rang mémorisé pour ledit satellite identifié et/ou pour au moins un autre des satellites émetteurs, et
  • un module de validation ou non de la synchronisation avec ledit satellite émetteur identifié, en fonction du résultat de la comparaison, dès que les comparaisons effectuées permettent d'atteindre une probabilité de fausse alarme et/ou une probabilité de non-détection prédéterminée.
The calculation processor 14 implements modules for implementing a synchronization validation test for each identified transmitter satellite, not shown in the figure, comprising:
  • a module for extracting ephemeris words from the navigation signal associated with the satellite identified in the acquisition phase, as said navigation signal is received,
  • a module for comparing at least a part of said ephemeris words extracted with at least one ephemeris word of the same rank stored for said identified satellite and/or for at least one other of the transmitting satellites, and
  • a module for validating or not the synchronization with said identified transmitter satellite, depending on the result of the comparison, as soon as the comparisons made make it possible to reach a probability of false alarm and/or a predetermined probability of non-detection.

En outre, le processeur de calcul 14 met en oeuvre des modules de mise en oeuvre d'un test de validation pour chaque satellite 10 émetteur d'un signal d'augmentation comprenant des données de correction et d'intégrité de géolocalisation, comprenant :

  • un module d'extraction de mots reçus du signal d'augmentation associé au satellite identifié dans la phase d'acquisition, au fur et à mesure de la réception dudit signal,
  • un module de comparaison d'un mot reçu à au moins un mot reçu de même type reçu pour au moins un autre des satellites émetteurs,
et, un module de validation ou non de la synchronisation avec ledit satellite émetteur identifié, en fonction du résultat de la comparaison, dès que les comparaisons effectuées permettent d'atteindre une probabilité de fausse alarme et/ou une probabilité de non-détection prédéterminée.In addition, the calculation processor 14 implements modules for implementing a validation test for each satellite 10 transmitting a signal augmentation including geolocation correction and integrity data, including:
  • a module for extracting words received from the augmentation signal associated with the satellite identified in the acquisition phase, as said signal is received,
  • a module for comparing a received word with at least one received word of the same type received for at least one other of the transmitting satellites,
and, a module for validating or not synchronization with said identified transmitter satellite, depending on the result of the comparison, as soon as the comparisons made make it possible to reach a probability of false alarm and/or a predetermined probability of non-detection.

La figure 2 est un synoptique des principales étapes d'un procédé de validation de synchronisation selon un premier mode de réalisation de l'invention, mis en oeuvre par un récepteur GNSS 12.There picture 2 is a block diagram of the main steps of a synchronization validation method according to a first embodiment of the invention, implemented by a GNSS receiver 12.

Ce premier mode de réalisation s'applique en particulier avec le système GPS, dans le cadre d'une ré-acquisition de signal de navigation pour un satellite Si donné de la constellation, après une perte ou un masquage du signal de navigation préalablement acquis, sur un canal associé.This first embodiment applies in particular with the GPS system, in the context of a re-acquisition of a navigation signal for a given satellite Si of the constellation, after a loss or masking of the previously acquired navigation signal, on an associated channel.

On suppose dans ce mode de réalisation qu'on dispose d'éphémérides contrôlées et mémorisées dans la mémoire 16 pour le satellite Si, ou, en d'autres termes, d'éphémérides valides et non obsolètes.It is assumed in this embodiment that one has ephemeris checked and stored in the memory 16 for the satellite Si, or, in other words, valid and non-obsolete ephemeris.

Une éphéméride est constituée de données ou mots d'éphéméride, chaque mot d'éphéméride ayant un rang associé. Par exemple, dans un système GPS, il y a 20 mots d'éphéméride définis, de rangs (ou indices) allant de 1 à 20. On note m(i) le mot d'éphéméride de rang i. Le mot d'éphéméride m(i) transmis par un satellite donné à un instant donné a une valeur associée.An ephemeris is made up of ephemeris data or words, each ephemeris word having an associated rank. For example, in a GPS system, there are 20 ephemeris words defined, with ranks (or indices) ranging from 1 to 20. We note m(i) the ephemeris word of rank i. The ephemeris word m(i) transmitted by a given satellite at a given instant has an associated value.

Les signaux GPS sont émis périodiquement et sont constitués de pages, chaque page étant constituée de sous-trames, chaque sous-trame étant constituée d'un nombre donné de mots, chaque mot étant codé sur un nombre donné de bits, émis à une fréquence donnée. Les mots sont protégés par un code de protection ou code de détection d'erreur, par exemple une parité, permettant de détecter facilement d'éventuelles pertes ou erreur au niveau de la transmission.GPS signals are transmitted periodically and consist of pages, each page consisting of sub-frames, each sub-frame consisting of a given number of words, each word being coded on a given number of bits, transmitted at a frequency given. The words are protected by a protection code or error detection code, for example a parity, making it possible to easily detect any losses or errors at the transmission level.

Les mots d'éphéméride de rangs donnés sont répartis dans diverses sous-trames des signaux GPS.The ephemeris words of given ranks are distributed in various subframes of the GPS signals.

Dans ce premier mode de réalisation, le procédé comporte une première étape préalable 20 d'obtention d'une valeur de probabilité de non-détection Pnd, paramètre défini par un opérateur ou en fonction de contraintes de sécurité d'une application visée.In this first embodiment, the method comprises a first preliminary step 20 of obtaining a non-detection probability value P nd , a parameter defined by an operator or as a function of security constraints of a targeted application.

Ensuite on met en oeuvre une étape 22 d'obtention et de mémorisation de probabilités pour qu'à un instant donné, un mot d'éphéméride de même rang soit identique pour deux satellites Si et Sj distincts.Next, a step 22 of obtaining and storing probabilities is implemented so that at a given instant, an ephemeris word of the same rank is identical for two distinct satellites Si and Sj.

Soit X(i) l'événement associé au fait que le mot m(i) soit identique dans les éphémérides transmises par deux ou plus de satellites distincts.Let X(i) be the event associated with the fact that the word m(i) is identical in the ephemerides transmitted by two or more distinct satellites.

On dénombre autant d'événements X(i) que de mots d'éphémérides distincts.There are as many events X(i) as there are distinct ephemeris words.

Dans l'étape préalable 20, on récupère une estimation de la probabilité P(X(i)) de chaque événement X(i), ainsi que de l'ensemble des probabilités P i A X i

Figure imgb0001
, A∈ Ω GPS,Pnd , les événements X(i) n'étant pas indépendants.In the preliminary step 20, an estimate of the probability P ( X ( i )) of each event X(i) is recovered, as well as of the set of probabilities P I AT X I
Figure imgb0001
, A ∈ Ω GPS , Pnd , the events X(i) not being independent.

De préférence, cette estimation est effectuée à partir de bases de données archivant les éphémérides existantes pour la constellation considérée.Preferably, this estimate is made from databases archiving the existing ephemerides for the constellation considered.

Le calcul des probabilités est fait de préférence par un ordinateur autre que le récepteur de géolocalisation 12, et les valeurs des probabilités calculées sont fournies au récepteur et mémorisées par celui-ci.The calculation of the probabilities is preferably done by a computer other than the geolocation receiver 12, and the values of the calculated probabilities are supplied to the receiver and stored by the latter.

L'estimation a priori des probabilités peut être refaite à tout moment pour prendre en compte toute évolution du système GNSS considéré.The a priori estimation of the probabilities can be redone at any time to take into account any evolution of the GNSS system considered.

Pour le système GPS, dont l'éphéméride est constituée de 20 mots distincts, des calculs sur un long historique d'éphémérides mémorisées ont montré que les probabilités des événements X(i) sont différentes pour des mots d'éphémérides différents.For the GPS system, whose ephemeris is made up of 20 distinct words, calculations on a long history of stored ephemerides have shown that the probabilities of the events X(i) are different for words of different ephemeris.

De plus, on estime a priori, par estimation des probabilités conjointes, l'ensemble Ω Pnd des ensembles A de mots d'éphémérides, désignés par leurs rangs respectifs, pour le système GNSS considéré, permettant d'assurer avec une probabilité de non détection Pnd de valeur donnée, que ces mots ne peuvent pas provenir de multiples satellites.In addition, we estimate a priori, by estimation of the joint probabilities, the set Ω Pnd of sets A of ephemeris words, designated by their respective ranks, for the GNSS system considered, making it possible to ensure with a probability of non-detection P nd of given value, that these words cannot come from multiple satellites.

Mathématiquement on écrit : Ω Pnd = A / A 1 , , N , P i A X i < P nd

Figure imgb0002
Mathematically we write: Ω pnd = AT / AT 1 , , NOT , P I AT X I < P n/a
Figure imgb0002

Par exemple, les probabilités estimées sont les suivantes pour les deux premiers mots d'éphémérides, m(1) et m(2) : P(X(1)) = 2,8×10-2 et P(X(3))=8,2×10-3 , et pour l'ensemble A = {1,3} la probabilité estimée est de P i A X i = 9,5 × 10 4

Figure imgb0003
For example, the estimated probabilities are as follows for the first two ephemeris words, m(1) and m(2): P ( X (1)) = 2.8×10 -2 and P ( X (3) )=8.2×10 -3 , and for the set A = {1.3} the estimated probability is P I AT X I = 9.5 × 10 4
Figure imgb0003

Les étapes 20 et 22 sont répétées, le cas échéant, pour plusieurs probabilités de non-détection Pnd données.Steps 20 and 22 are repeated, if necessary, for several given probabilities of non-detection P nd .

Pour chacune des valeurs de Pnd données, les ensembles A de rangs de mots d'éphémérides sont mémorisés, par exemple sous forme de tables ou toute autre forme adaptée.For each of the values of P nd given, the sets A of ranks of ephemeris words are stored, for example in the form of tables or any other suitable form.

Il est à noter que les ensembles d'indices A déterminés pour une probabilité de non-détection donné ont des cardinaux différents en fonction de probabilités P(x(i)) estimées, la probabilité de non-détection dépendant également des rangs des indices reçus. Ainsi, par exemple pour le système GPS et une probabilité de non-détection de 10-4, des ensembles de un, deux ou trois mots d'éphémérides forment l'ensemble Ω Pnd = A / A 1 , , N , P i A X i < P nd .

Figure imgb0004
It should be noted that the sets of indices A determined for a given probability of non-detection have different cardinals as a function of estimated probabilities P(x(i)), the probability of non-detection also depending on the ranks of the indices received . Thus, for example for the GPS system and a non-detection probability of 10 -4 , sets of one, two or three ephemeris words form the set Ω pnd = AT / AT 1 , , NOT , P I AT X I < P n/a .
Figure imgb0004

Pour chaque satellite Si considéré, des valeurs de mots d'éphémérides contrôlés et validés sont mémorisés lors de l'étape 24.For each satellite Si considered, values of ephemeris words checked and validated are stored during step 24.

Dans un mode de réalisation, les valeurs sont reçues par le récepteur via un autre canal de communication, par exemple par une communication radio GSM ou par une communication via le réseau Internet.In one embodiment, the values are received by the receiver via another communication channel, for example by GSM radio communication or by communication via the Internet network.

En variante, des valeurs de mots d'éphémérides mémorisées ont été reçues préalablement du satellite émetteur Si et validées par une méthode de validation classique, par exemple la méthode de validation par rapport aux données d'almanachs préalablement mémorisées.As a variant, stored ephemeris word values have been received beforehand from the transmitter satellite Si and validated by a conventional validation method, for example the method of validation with respect to previously stored almanac data.

Selon une autre variante, des valeurs de mots d'éphémérides mémorisées ont été transmises par le satellite Si par une autre fréquence que le signal de radionavigation à traiter, par exemple par les signaux L5, pour lesquels le risque de corrélation croisée est très faible.According to another variant, stored ephemeris word values have been transmitted by the satellite Si by a frequency other than the radionavigation signal to be processed, for example by the L5 signals, for which the risk of cross-correlation is very low.

On note les mots d'éphémérides mémorisés pour un satellite Si : M i m k , k 1 , , N

Figure imgb0005
, k indiquant le rang correspondant, i l'indice du satellite associé et N étant le nombre de mots d'éphémérides du système GNSS, par exemple N=20 pour le GPS.We denote the ephemeris words stored for a satellite Si: M I m k , k 1 , , NOT
Figure imgb0005
, k indicating the corresponding rank, i the index of the associated satellite and N being the number of ephemeris words of the GNSS system, for example N=20 for the GPS.

Lors d'une étape 26, un signal de navigation Sig est reçu sur le canal considéré, et des mots d'éphémérides associés sont extraits de ce signal.During a step 26, a navigation signal Sig is received on the channel considered, and associated ephemeris words are extracted from this signal.

Le signal Sig est considéré comme étant reçu d'un satellite émetteur Sj suite à la phase d'acquisition de signal comportant une synchronisation par corrélation.The signal Sig is considered to have been received from a transmitter satellite Sj following the signal acquisition phase comprising synchronization by correlation.

On appelle ces mots d'éphémérides mots reçus, et ils sont notés : M j r k , k 1 , , N

Figure imgb0006
.These ephemeris words are called received words, and they are denoted: M I r k , k 1 , , NOT
Figure imgb0006
.

Le procédé a pour objectif de valider ou non la synchronisation avec le signal Sj, en d'autres termes de valider, avec une probabilité de non-détection associée, si les éphémérides reçues avec le signal Sig sont émises par le signal Sj ou si elles sont susceptibles d'être émises par un autre satellite Si de la constellation.The purpose of the method is to validate or not the synchronization with the signal Sj, in other words to validate, with an associated probability of non-detection, if the ephemerides received with the signal Sig are emitted by the signal Sj or if they are likely to be emitted by another satellite Si of the constellation.

Pour ce faire, l'étape 26 de réception et d'extraction de mots d'éphémérides reçus est suivie d'une étape 28 de vérification de la parité de chaque mot d'éphéméride reçu.To do this, step 26 of receiving and extracting ephemeris words received is followed by a step 28 of checking the parity of each ephemeris word received.

En effet, comme expliqué ci-dessus, il s'agit d'un mécanisme de protection ayant pour objectif de détecter d'éventuelles erreurs de transmission et donc d'éviter l'utilisation de mots d'éphémérides erronés.Indeed, as explained above, it is a protection mechanism having the objective of detecting possible transmission errors and therefore of avoiding the use of erroneous ephemeris words.

Plus généralement, une vérification du code de protection du mot reçu est appliquée.More generally, a verification of the protection code of the word received is applied.

En cas de vérification négative, l'étape 28 est suivie de l'étape 26 précitée.In the event of negative verification, step 28 is followed by step 26 mentioned above.

En cas de vérification positive, l'étape 28 est suivie d'une étape 30 de comparaison de chacun des mots d'éphéméride reçus extraits M j r k

Figure imgb0007
avec le mot d'éphéméride de même rang mémorisé M j m k
Figure imgb0008
, pour le satellite Sj identifié préalablement dans l'étape d'acquisition de signal de navigation.In case of positive verification, step 28 is followed by a step 30 of comparing each of the received ephemeris words extracted M I r k
Figure imgb0007
with the ephemeris word of the same rank memorized M I m k
Figure imgb0008
, for the satellite Sj previously identified in the navigation signal acquisition step.

Il est à noter que les mots d'éphémérides reçus sont extraits des sous-trames reçues au fur et à mesure et traités, ce qui a pour objet de diminuer le temps total de validation de la synchronisation avec le satellite Sj.It should be noted that the ephemeris words received are extracted from the sub-frames received progressively and processed, the purpose of which is to reduce the total synchronization validation time with the satellite Sj.

Ainsi, un sous-ensemble de mots d'éphéméride reçus est traité à l'étape 28, ce sous-ensemble pouvant être limité à un seul mot d'éphéméride.Thus, a subset of ephemeris words received is processed in step 28, this subset possibly being limited to a single ephemeris word.

Si M j r k = M j m k

Figure imgb0009
, la valeur du mot reçu est bien égale à la valeur du mot mémorisé de même rang k, pour le satellite Sj. Comme expliqué ci-dessus, on dispose dans ce cas d'une estimation de la probabilité pour que le mot d'éphéméride reçu M j r k
Figure imgb0010
provienne d'un autre satellite que le satellite Sj.Whether M I r k = M I m k
Figure imgb0009
, the value of the received word is indeed equal to the value of the stored word of the same rank k, for the satellite Sj. As explained above, in this case we have an estimate of the probability that the ephemeris word received M I r k
Figure imgb0010
comes from a satellite other than satellite Sj.

Le résultat de la comparaison est mémorisé et cumulé avec les résultats précédents à l'étape de traitement 32.The result of the comparison is stored and accumulated with the previous results at processing step 32.

Dans un mode de réalisation de l'étape de traitement 32, on mémorise le rang k du mot d'éphéméride reçu et validé par la comparaison, et on vérifie si k appartient à un des ensembles A de rangs de mots d'éphémérides mémorisés pour atteindre la probabilité de non-détection Pnd donnée.In one embodiment of the processing step 32, the rank k of the ephemeris word received and validated by the comparison is stored, and it is checked whether k belongs to one of the sets A of ranks of ephemeris words stored for reach the given non-detection probability P nd .

La probabilité de non-détection Pnd est un paramètre qui est par exemple renseigné par un opérateur et fourni en entrée du procédé ou qui est imposé par une application utilisant le récepteur de géolocalisation.The probability of non-detection P nd is a parameter which is for example entered by an operator and supplied as input to the method or which is imposed by an application using the geolocation receiver.

Par exemple, Pnd est de 10-3 ou de 10-4 pour des applications usuelles.For example, P nd is 10 -3 or 10 -4 for usual applications.

A l'étape 34 suivant l'étape 32 on vérifie si un des ensembles A de rangs de mots d'éphémérides a été complété, en d'autres termes si on a reçu et validé par comparaison avec les mots d'éphémérides mémorisés tous les mots d'un ensemble A, assurant ainsi que ces mots sont envoyés par le satellite émetteur Sj considéré avec une probabilité de non-détection inférieure à Pnd.In step 34 following step 32, it is checked whether one of the sets A of rows of ephemeris words has been completed, in other words whether it has been received and validated by comparison with the ephemeris words stored every words of a set A, thus ensuring that these words are sent by the transmitter satellite Sj considered with a probability of non-detection lower than P nd .

En cas de réponse positive, la validation de la synchronisation avec le satellite émetteur Sj est validée pour le signal de navigation Sig reçu. L'algorithme prend fin (étape 36).En cas de réponse négative, l'étape 34 est suivie de l'étape 26 de réception est d'extraction de mots d'éphéméride précédemment décrite.In the event of a positive response, the validation of the synchronization with the transmitting satellite Sj is validated for the navigation signal Sig received. The algorithm ends (step 36). In the event of a negative response, step 34 is followed by step 26 of reception and extraction of ephemeris words previously described.

En cas de réponse négative, lorsque tous les mots de l'éphéméride GPS sont reçus, le récepteur compare les éphémérides décodés aux almanachs pour s'assurer de la présence ou non de corrélation croisée.In the event of a negative response, when all the words of the GPS ephemeris are received, the receiver compares the decoded ephemeris to the almanacs to ensure the presence or absence of cross-correlation.

Ainsi, dans le cas général d'absence de corrélation croisée et d'absence de changement des éphémérides pendant le coupure de réception du signal, la validation de la synchronisation est très rapide. Dans les cas particuliers, de faible occurrence, de changement d'éphéméride pendant la coupure ou de corrélation croisée, la vérification de tous les mots de l'éphéméride GPS est effectuée.Thus, in the general case of absence of cross-correlation and absence of change of the ephemerides during the signal reception break, the validation of the synchronization is very fast. In the particular cases, of low occurrence, of change of ephemeris during the cut or of cross-correlation, the verification of all the words of the GPS ephemeris is carried out.

Avantageusement, si les premiers mots d'éphéméride reçus et traités lors de l'application de ce premier moment de réalisation sont validés et suffisamment distinctifs en termes de probabilités, la validation de la synchronisation est très rapide.Advantageously, if the first ephemeris words received and processed during the application of this first moment of realization are validated and sufficiently distinctive in terms of probabilities, validation of the synchronization is very fast.

Par exemple, avec une probabilité de non-détection Pnd=10-4, la validation de synchronisation, ou confirmation d'absence de corrélation croisée, prend 0,6 secondes dans le cas le plus favorable, dans lequel le premier mot d'éphéméride reçu et traité est distinctif, et peut prendre jusqu'à maximum 17,4 secondes.For example, with a probability of non-detection P nd =10 -4 , synchronization validation, or confirmation of the absence of cross-correlation, takes 0.6 seconds in the best case, in which the first word of ephemeris received and processed is distinctive, and can take up to a maximum of 17.4 seconds.

En tous cas, la validation est bien plus rapide que lorsqu'on applique la validation classique et systématique.In any case, validation is much faster than when classical and systematic validation is applied.

Il est à noter que ce premier mode de réalisation décrit ci-dessus s'applique pour d'autres constellations de satellites que la constellation GPS, à condition de disposer de données suffisantes pour obtenir une estimation des probabilités des événements X(i) a priori.It should be noted that this first embodiment described above applies for constellations of satellites other than the GPS constellation, provided that sufficient data is available to obtain an estimation of the probabilities of the events X(i) a priori .

Un deuxième mode de réalisation du procédé de validation de synchronisation avec un satellite émetteur Sj, mis en oeuvre par un récepteur GNSS 12, est décrit en référence à la figure 3.A second embodiment of the synchronization validation method with a transmitter satellite Sj, implemented by a GNSS receiver 12, is described with reference to the picture 3 .

Ce deuxième mode de réalisation diffère du premier mode de réalisation car il ne nécessite pas d'estimation a priori des probabilités que deux mots d'éphémérides transmis en même temps par deux satellites émetteurs distincts soient identiques.This second embodiment differs from the first embodiment because it does not require an a priori estimation of the probabilities that two ephemeris words transmitted at the same time by two distinct transmitting satellites are identical.

De manière connue, le récepteur GNSS reçoit et traite simultanément plusieurs canaux de réception, chaque canal de réception étant associé à un satellite émetteur lors de la phase d'acquisition des signaux de navigation.In known manner, the GNSS receiver simultaneously receives and processes several reception channels, each reception channel being associated with a transmitting satellite during the navigation signal acquisition phase.

Dans ce deuxième mode de réalisation, on suppose que le signal de navigation Sig traité est un signal suffisamment fort pour générer une corrélation croisée sur un canal de réception courant, et qu'il est également reçu en phase d'acquisition sur un autre canal du récepteur GNSS.In this second embodiment, it is assumed that the processed navigation signal Sig is a sufficiently strong signal to generate a cross-correlation on a current reception channel, and that it is also received in the acquisition phase on another channel of the GNSS receiver.

Dans ce deuxième mode de réalisation, une première étape 40 est mise en oeuvre sur tous les canaux de réception, pour extraire et mémoriser les mots d'éphémérides reçus, chaque canal étant associé à un satellite d'émission.In this second embodiment, a first step 40 is implemented on all the reception channels, to extract and store the ephemeris words received, each channel being associated with a transmission satellite.

Cette étape est mise en oeuvre suite à l'acquisition préalable de signal de navigation pour chaque canal et comporte, pour chaque canal de réception, une première sous-étape 42 d'extraction et de vérification de la parité de chaque mot d'éphéméride reçu et une sous étape 44 de mémorisation des mots d'éphéméride dont la parité a été vérifiée, en relation avec le canal de réception traité.This step is implemented following the prior acquisition of the navigation signal for each channel and comprises, for each reception channel, a first sub-step 42 of extracting and checking the parity of each ephemeris word received and a substep 44 of storing the ephemeris words whose parity has been checked, in relation to the reception channel processed.

Ainsi, pour chaque canal de réception associé à un satellite émetteur d'indice I, l ∈ {1,..., NC } où Nc désigne le nombre de canaux de réception, on mémorise des mots d'éphéméride : M l m k , k 1 , , N

Figure imgb0011
où N est le nombre de mots d'éphéméride (égal à 20 pour le système GPS), et pour lesquels la parité a été vérifiée, afin d'éviter l'utilisation ultérieure de mots d'éphéméride erronés.Thus, for each reception channel associated with a transmitter satellite of index I, l ∈ {1,..., N C } where Nc denotes the number of reception channels, ephemeris words are stored: M I m k , k 1 , , NOT
Figure imgb0011
where N is the number of ephemeris words (equal to 20 for the GPS system), and for which the parity has been checked, in order to avoid the subsequent use of erroneous ephemeris words.

Sensiblement en parallèle, et au fur et à mesure de la réception, lorsque l'étape 44 est mise en oeuvre pour un canal traité donné, appelé canal courant, associé à un satellite émetteur Si, dit satellite courant, pour lequel on met en oeuvre la validation de synchronisation, on obtient le mot reçu dont la parité a été vérifiée M i r p

Figure imgb0012
à l'étape 46.Substantially in parallel, and as reception progresses, when step 44 is implemented for a given processed channel, called the current channel, associated with a transmitter satellite Si, called the current satellite, for which synchronization validation, we obtain the received word whose parity has been checked M I r p
Figure imgb0012
at step 46.

On extrait ensuite d'un ensemble de mots d'éphéméride mémorisés associés au satellite émetteur Si le mot de rang correspondant à l'étape 48, noté M i m p

Figure imgb0013
.From a set of stored ephemeris words associated with the transmitting satellite Si, the rank word corresponding to step 48, denoted M I m p
Figure imgb0013
.

Les mots d'éphéméride M i r p

Figure imgb0014
et M i m p
Figure imgb0015
sont comparés à l'étape 50.Ephemeris words M I r p
Figure imgb0014
And M I m p
Figure imgb0015
are compared at step 50.

De plus, le mot d'éphéméride reçu M i r p

Figure imgb0016
est comparé, lors de l'étape de comparaison 50, à tous les mots d'éphémérides de même rang et validés reçus sur les autres canaux de réception, notés M j r p , j i
Figure imgb0017
.Moreover, the ephemeris word received M I r p
Figure imgb0016
is compared, during the comparison step 50, with all the ephemeris words of the same rank and validated received on the other reception channels, denoted M I r p , I I
Figure imgb0017
.

Les résultats de la comparaison sont traités lors d'une étape de traitement 52.The results of the comparison are processed during a processing step 52.

Si les mots d'éphéméride M i r p

Figure imgb0018
et M i m p
Figure imgb0019
sont identiques, et que le mot d'éphéméride M i r p
Figure imgb0020
est différent de tous les mots reçus de même rang M j r p , j i
Figure imgb0021
, sur un canal de réception différent, alors la synchronisation est validée pour ce mot, donc considérée comme non entachée de corrélation croisée.If the ephemeris words M I r p
Figure imgb0018
And M I m p
Figure imgb0019
are identical, and that the ephemeris word M I r p
Figure imgb0020
is different from all received words of the same rank M I r p , I I
Figure imgb0021
, on a different reception channel, then the synchronization is validated for this word, therefore considered as not vitiated by cross-correlation.

Un compteur de validité, Cvalid est incrémenté à l'étape 54, ce compteur étant initialisé à 0 à chaque nouvelle mise en oeuvre du procédé de validation de synchronisation.A validity counter, C valid is incremented in step 54, this counter being initialized to 0 at each new implementation of the synchronization validation method.

Si les mots d'éphéméride M i r p

Figure imgb0022
et M i m p
Figure imgb0023
sont différents, et que le mot d'éphéméride M i r p
Figure imgb0024
a la même valeur qu'un ou plusieurs des mots reçus de même rang M j r p , j i
Figure imgb0025
, sur un canal de réception différent, alors la synchronisation est invalidée pour ce mot, donc considérée comme entachée de corrélation croisée.If the ephemeris words M I r p
Figure imgb0022
And M I m p
Figure imgb0023
are different, and that the ephemeris word M I r p
Figure imgb0024
has the same value as one or more of the received words of the same rank M I r p , I I
Figure imgb0025
, on a different reception channel, then the synchronization is invalidated for this word, therefore considered as vitiated by cross-correlation.

Un compteur d'invalidité, Cinvalid, est incrémenté à l'étape 54, ce compteur étant initialisé à 0 à chaque nouvelle mise en oeuvre du procédé de validation de synchronisation.An invalidity counter, C invalid , is incremented at step 54, this counter being initialized to 0 at each new implementation of the synchronization validation method.

Il est à noter que les compteurs de validité Cvalid et d'invalidité Cinvalid ne sont incrémentés que pour des mots de rangs distincts. Ainsi, un mot de même rang reçu à nouveau ne peut pas contribuer à incrémenter un compteur non nul.It should be noted that the validity counters C valid and invalidity counters C invalid are only incremented for words of distinct ranks. Thus, a word of the same rank received again cannot contribute to incrementing a non-zero counter.

Il est ensuite vérifié à une étape 56 si le compteur de validité ou, le cas échéant, le compteur d'invalidité, a atteint un nombre de mots d'éphéméride à prendre en considération Nt.It is then checked in a step 56 whether the validity counter or, if applicable, the invalidity counter, has reached a number of ephemeris words to be taken into consideration Nt.

Ce nombre Nt dépend des valeurs de la probabilité de non-détection Pnd et de la probabilité de fausse alarme Pfa d'une corrélation croisée.This number Nt depends on the values of the probability of non-detection P nd and of the probability of false alarm P fa of a cross-correlation.

Lorsque le nombre Nt est atteint, le procédé de validation de synchronisation pour le signal de navigation reçu sur le canal courant prend fin.When the number Nt is reached, the synchronization validation process for the navigation signal received on the current channel ends.

Si le nombre Nt n'est pas atteint, l'étape 56 est suivie de l'étape 46 précédemment décrite pour traitement d'un mot d'éphéméride suivant pour le canal associé au satellite émetteur Si.If the number Nt is not reached, step 56 is followed by step 46 previously described for processing a next ephemeris word for the channel associated with the transmitter satellite Si.

Si la validation de la synchronisation est négative, avantageusement, la ré-acquisition de la synchronisation peut être relancée sans attendre, ce qui permet d'améliorer la radionavigation.If the validation of the synchronization is negative, advantageously, the re-acquisition of the synchronization can be restarted without waiting, which makes it possible to improve the radionavigation.

Le nombre Nt de mots d'éphémérides à prendre en compte est, dans un mode de réalisation, égal à 1.The number Nt of ephemeris words to be taken into account is, in one embodiment, equal to 1.

Pour un mot d'éphéméride reçu donné, on peut calculer la probabilité de non-détection et la probabilité de fausse alarme associées.For a given received ephemeris word, the associated non-detection probability and false alarm probability can be calculated.

En ce qui concerne la probabilité de non-détection, il y a un risque de non détection si un mot est mal décodé. La probabilité de non-détection due à une telle erreur est dépendante du taux d'erreur mot, également appelé WER pour « word error rate », qui dépend du rapport signal à bruit du signal reçu, faussement considéré valide.Regarding the probability of non-detection, there is a risk of non-detection if a word is decoded incorrectly. The probability of non-detection due to such an error is dependent on the word error rate, also called WER for “word error rate”, which depends on the signal-to-noise ratio of the signal received, falsely considered valid.

Pour un mot GPS codé sur 24 bits et protégé par 6 bits de parité, on a : Pnd <WER×2 -6×2-24 , où 2-6 est la probabilité d'erreur pour un mot protégé par 6 bits de parité et 2-24 est la probabilité que le mot reçu soit égal à un mot reçu pour un autre satellite.For a GPS word coded on 24 bits and protected by 6 parity bits, we have: P nd < WER ×2 - 6 ×2 -24 , where 2 -6 is the error probability for a word protected by 6 bits of parity and 2 -24 is the probability that the word received is equal to a word received for another satellite.

La probabilité de fausse alarme, qui est la probabilité de fausse détection d'un phénomène de corrélation croisée, est calculée, selon un mode de réalisation, par rapport au renouvellement des éphémérides envoyées par rapport aux éphémérides mémorisées par un même satellite, renouvellement qui est effectué avec une fréquence donnée, par exemple de 2 heures.The probability of false alarm, which is the probability of false detection of a cross-correlation phenomenon, is calculated, according to one embodiment, with respect to the renewal of the ephemeris sent with respect to the ephemeris stored by the same satellite, renewal which is carried out with a given frequency, for example 2 hours.

Le nombre Nt de mots d'éphéméride à prendre en considération est déterminé différemment selon le fait que le traitement sache que les éphémérides envoyées ont changé ou non par rapport aux éphémérides mémorisées. L'un des mots d'éphéméride permet de le dater. S'il est reçu et égal de celui de l'éphéméride mémorisée, Nt sera déterminé sur une hypothèse d'absence de changement, s'il n'est pas encore reçu ou s'il est reçu différent de celui de l'éphéméride mémorisé, Nt sera déterminé sur une hypothèse de changement.The number Nt of ephemeris words to be taken into consideration is determined differently depending on whether the processing knows that the ephemeris sent have changed or not with respect to the stored ephemeris. One of the ephemeris words makes it possible to date it. If it is received and equal to that of the stored ephemeris, Nt will be determined on an assumption of no change, if it is not yet received or if it is received different from that of the stored ephemeris , Nt will be determined on a change assumption.

En effet, si les éphémérides envoyées n'ont pas changé par rapport aux éphémérides mémorisées pour un satellite émetteur donné, la probabilité de fausse alarme est calculée en fonction de la probabilité d'erreur de décodage WER, d'erreur de parité (2-6) et d'égalité du mot décodé par rapport à l'un des mots de même rang décodé sur l'un des autres satellites (1-(1-2-24) N c-1).Indeed, if the sent ephemerides have not changed compared to the stored ephemeris for a given transmitter satellite, the probability of false alarm is calculated according to the probability of decoding error WER, parity error (2 - 6 ) and equality of the decoded word with respect to one of the words of the same rank decoded on one of the other satellites (1-(1-2 -24 ) N vs -1 ).

Si le récepteur reçoit Nc satellites, on a : P ƒa < WER × 2 6 × 1 1 2 24 N c 1

Figure imgb0026
If the receiver receives Nc satellites, we have: P ƒa < WER × 2 6 × 1 1 2 24 NOT vs 1
Figure imgb0026

Pour Nc=10, on a une probabilité de fausse alarme largement inférieure à 10-8.For Nc=10, there is a probability of false alarm well below 10 -8 .

Si les éphémérides envoyées ont changé par rapport aux éphémérides mémorisées pour un satellite émetteur donné, le risque de fausse alarme est supérieur.If the ephemeris sent has changed from the ephemeris stored for a given transmitter satellite, the risk of a false alarm is greater.

Soit Y(i) l'événement associé au fait que les mots m(i) de deux tables d'éphémérides émises successivement par un même satellite soient identiques.Let Y(i) be the event associated with the fact that the words m ( i ) of two ephemeris tables transmitted successively by the same satellite are identical.

On a alors : P ƒa = P i A Y i 1 1 P i A X i N c N c P i A Y i P i A X i

Figure imgb0027
We then have: P ƒa = P I AT Y I 1 1 P I AT X I NOT vs NOT vs P I AT Y I P I AT X I
Figure imgb0027

A étant l'ensemble des rangs (ou indices) des mots d'éphémérides reçus vérifiant le critère d'invalidation, et Nc le nombre de satellites émetteurs reçus.A being the set of ranks (or indices) of the ephemeris words received verifying the invalidation criterion, and Nc the number of transmitting satellites received.

Par exemple, si on souhaite une probabilité de fausse alarme Pfa <10-3, et que Nc=10, on utilise les ensembles d'indices A qui fournissent une estimation a priori de probabilité associée de 10-4, comme expliqué ci-dessus par rapport au premier mode de réalisation.For example, if we want a false alarm probability P fa <10 -3 , and Nc=10, we use the sets of indices A which provide an a priori estimate of the associated probability of 10 -4 , as explained below. above compared to the first embodiment.

Les probabilités des événements Y(i) sont estimées a priori, sur un autre calculateur, uniquement pour déterminer la valeur Nt mémorisée par le récepteur en fonction de Nc. La détermination des probabilités P i A Y i

Figure imgb0028
se fait de la même manière que pour déterminer les probabilités P i A X i
Figure imgb0029
: cette estimation est effectuée à partir de bases de données archivant les éphémérides existantes pour la constellation considérée.The event probabilities Y(i) are estimated a priori, on another computer, solely to determine the value Nt stored by the receiver as a function of Nc. The determination of probabilities P I AT Y I
Figure imgb0028
is done in the same way as to determine the probabilities P I AT X I
Figure imgb0029
: this estimate is made from databases archiving the existing ephemerides for the constellation considered.

Comme dans le premier mode de réalisation décrit ci-dessus, on peut utiliser des estimations a priori des probabilités.As in the first embodiment described above, a priori estimates of the probabilities can be used.

Il est à noter que dans ce cas de figure, le nombre Nt de mots d'éphéméride à prendre en considération pour une probabilité de fausse alarme donnée dépend également des rangs des indices reçus, des ensembles de un, deux ou trois mots d'éphémérides, faisant partie de l'ensemble défini e à l'équation (Eq 1) ci-dessus : Ω Pnd = A / A 1 , , N , P i A X i < P nd .

Figure imgb0030
It should be noted that in this case, the number Nt of ephemeris words to be taken into consideration for a given probability of false alarm also depends on the ranks of the indices received, sets of one, two or three ephemeris words , being part of the set e defined in equation (Eq 1) above: Ω pnd = AT / AT 1 , , NOT , P I AT X I < P n/a .
Figure imgb0030

En variante, si on ne dispose pas d'une estimation a priori des probabilités, il suffit, lors du renouvellement des éphémérides envoyées par un satellite, de considérer l'ensemble des mots d'éphéméride reçus. Dans cette variante, aucune estimation a priori de probabilité n'est nécessaire.As a variant, if an a priori estimate of the probabilities is not available, it suffices, when renewing the ephemeris sent by a satellite, to consider all the ephemeris words received. In this variant, no a priori estimation of probability is necessary.

Le procédé proposé ci-dessus s'applique néanmoins et permet d'accélérer considérablement la validation de la synchronisation pendant toute la phase de fonctionnement avec un même ensemble de données d'éphémérides.The method proposed above nevertheless applies and makes it possible to considerably accelerate the validation of the synchronization throughout the operating phase with the same set of ephemeris data.

Le procédé proposé dans ce deuxième mode de réalisation ci-dessus s'applique de manière analogue pour les signaux de radionavigation GALILEO L1 BC.The method proposed in this second embodiment above applies analogously to the GALILEO L1 BC radionavigation signals.

Les signaux GALILEO L1 BC ont un code périodique de 4092 éléments, mais ne permettent cependant pas suffisamment de robustesse pour garantir l'absence de corrélations croisées.The GALILEO L1 BC signals have a periodic code of 4092 elements, but do not however allow sufficient robustness to guarantee the absence of cross-correlation.

Le procédé décrit ci-dessus s'applique avec les données d'éphéméride du système GALILEO, en tenant compte de l'agencement spécifique des messages de navigation I/NAV et du code de protection qui est un code CRC (pour « contrôle de redondance cyclique »), appliqué sur un pluralité de mots d'éphémérides transmis.The method described above applies with the ephemeris data of the GALILEO system, taking into account the specific arrangement of the I/NAV navigation messages and the protection code which is a CRC code (for "redundancy check cyclic”), applied to a plurality of transmitted ephemeris words.

Il est à noter que le mot d'éphéméride de rang 4 dans le système GALILEO porte l'identifiant du satellite émetteur, donc un décodage sans erreur de ce mot d'éphéméride permet d'identifier le satellite émetteur.It should be noted that the ephemeris word of rank 4 in the GALILEO system carries the identifier of the transmitting satellite, therefore error-free decoding of this ephemeris word makes it possible to identify the transmitting satellite.

Cependant, les mots d'éphémérides sont transmis de manière cyclique, donc, il est possible d'avoir à attendre un temps pouvant aller jusqu'à 30 secondes pour décoder le mot d'éphéméride de rang 4.However, ephemeris words are transmitted cyclically, so it is possible to have to wait up to 30 seconds to decode the rank 4 ephemeris word.

Si une validation de synchronisation plus rapide est souhaitée, le procédé de l'invention décrit ci-dessus s'applique, et en particulier le deuxième mode de réalisation qui ne nécessite pas de calcul a priori de probabilités associées aux mots d'éphémérides émis par les différents satellites de la constellation.If faster synchronization validation is desired, the method of the invention described above applies, and in particular the second embodiment which does not require a priori calculation of probabilities associated with the ephemeris words transmitted by the different satellites of the constellation.

Les calculs de probabilité de non-détection Pnd et de fausse alarme Pfa sont adaptés au cas de figure du système GALILEO.The calculations of probability of non-detection P nd and of false alarm P fa are adapted to the case of the GALILEO system.

Par exemple, pour un mot d'éphéméride protégé par un code CRC de 24 bits, et codé sur 110 bits on a : P nd < WER × 2 24 × 2 110 4 10 41

Figure imgb0031
For example, for an ephemeris word protected by a 24-bit CRC code, and coded on 110 bits, we have: P n/a < WER × 2 24 × 2 110 4 10 41
Figure imgb0031

Avantageusement, l'utilisation d'un seul mot d'éphéméride pour valider ou invalider la présence d'une corrélation croisée apporte un fort niveau d'intégrité, ce qui limite le temps de validation de 2 secondes minimum à 18 secondes maximum.Advantageously, the use of a single ephemeris word to validate or invalidate the presence of a cross-correlation provides a high level of integrity, which limits the validation time from 2 seconds minimum to 18 seconds maximum.

Selon un troisième mode de réalisation, l'invention s'applique également pour le cas des signaux d'augmentation, par exemple SBAS, comprenant des données de correction et d'intégrité de géolocalisation pour un système de géolocalisation par satellite prédéterminé, dans le cas des récepteurs adaptés à recevoir plusieurs signaux SBAS sur plusieurs canaux de réception, et donc sont susceptibles de subir le phénomène de synchronisation erronée sur un satellite SBAS émetteur, due à une corrélation croisée.According to a third embodiment, the invention also applies to the case of augmentation signals, for example SBAS, comprising geolocation correction and integrity data for a predetermined satellite geolocation system, in the case receivers adapted to receive several SBAS signals on several reception channels, and therefore are liable to undergo the phenomenon of erroneous synchronization on a transmitting SBAS satellite, due to cross-correlation.

Chaque canal de réception est associé à un satellite SBAS émetteur.Each reception channel is associated with a transmitting SBAS satellite.

Les signaux SBAS sont envoyés par des fournisseurs de services (en anglais « services providers »), qui possèdent en général plusieurs satellites. Par exemple, on connaît les fournisseurs de services EGNOS ® pour l'Europe et WAAS® pour les Etats-Unis, GAGAN ® pour l'Inde, MSAS® pour le Japon.SBAS signals are sent by service providers, who generally own several satellites. For example, we know the service providers EGNOS ® for Europe and WAAS ® for the United States, GAGAN ® for India, MSAS ® for Japan.

Les satellites de chaque fournisseur de service envoient des éphémérides, mais seulement à des fréquences temporelles plus basses que les satellites de géolocalisation.Each service provider's satellites send ephemeris, but only at lower time frequencies than geolocation satellites.

De plus, chaque fournisseur de services émet des almanachs des satellites de sa constellation.In addition, each service provider broadcasts almanacs of the satellites in its constellation.

La figure 4 est un synoptique des principales étapes mises en oeuvre dans le troisième mode de réalisation du procédé de validation de synchronisation avec un satellite émetteur Sj d'un système d'augmentation spatiale de type SBAS, mis en oeuvre par un récepteur apte à recevoir des signaux de type SBAS sur plusieurs canaux de réception.There figure 4 is a block diagram of the main steps implemented in the third embodiment of the method for validating synchronization with a transmitter satellite Sj of an SBAS-type spatial augmentation system, implemented by a receiver capable of receiving SBAS type signals on several reception channels.

Le procédé de l'invention est adapté à ce cas de figure, dans lequel l'envoi d'éphémérides est groupé et envoyé à faible fréquence (par exemple toutes les 120 secondes pour SBAS).The method of the invention is suitable for this scenario, in which the sending of ephemerides is grouped and sent at low frequency (for example every 120 seconds for SBAS).

Dans le système SBAS, chaque mot, sans distinction de type, est constitué de 250 bits et est protégé par un code de protection CRC de 24 bits.In the SBAS system, each word, regardless of type, consists of 250 bits and is protected by a 24-bit CRC protection code.

Lors d'une première étape 60, les almanachs des divers fournisseurs de service sont reçus et mémorisés.During a first step 60, the almanacs of the various service providers are received and stored.

Cette étape 60 est mise en oeuvre par tout moyen de communication approprié, par exemple par utilisation d'un autre canal de communication - GSM, Internet ou un autre canal de communication approprié.This step 60 is implemented by any appropriate means of communication, for example by using another communication channel—GSM, Internet or another appropriate communication channel.

L'étape 60 est suivie d'une étape 62 de réception de signaux SBAS après acquisition ou ré-acquisition sur chacun des canaux de réception traités, et d'extraction d'un mot reçu courant ayant un type associé, puis d'une étape 64 de vérification du code CRC du mot reçu.Step 60 is followed by a step 62 of receiving SBAS signals after acquisition or re-acquisition on each of the reception channels processed, and of extracting a current word received having an associated type, then by a step 64 verification of the CRC code of the word received.

En cas de vérification négative à l'étape 64, donc s'il y a une possible erreur de réception sur le mot reçu, l'étape 64 est suivie de l'étape 62 précédente de réception et extraction d'un nouveau mot reçu.In case of negative verification at step 64, therefore if there is a possible reception error on the word received, step 64 is followed by the previous step 62 of reception and extraction of a new word received.

En cas de vérification positive à l'étape 64, le mot reçu est mémorisé en relation avec le canal associé pour effectuer ensuite des comparaisons entre mots reçus.In the event of positive verification at step 64, the word received is stored in relation to the associated channel in order to then carry out comparisons between words received.

Lors de l'étape de traitement 66, si le mot reçu correspond à la réception du mot éphéméride, alors l'étape 66 est suivie de l'étape 70 décrite ci-après, sinon, le mot reçu sur le canal de réception courant est comparé aux mots reçus de même type sur les autres canaux de réception.During processing step 66, if the word received corresponds to the reception of the ephemeris word, then step 66 is followed by step 70 described below, otherwise, the word received on the current reception channel is compared to the received words of the same type on the other reception channels.

L'étape 70 qui correspond à la réception du mot d'éphéméride consiste en la comparaison des éphémérides avec les données d'almanach préalablement mémorisées pour le fournisseur de services courant.The step 70 which corresponds to the reception of the ephemeris word consists of the comparison of the ephemeris with the almanac data previously stored for the current service provider.

La comparaison permettra alors de révéler l'existence d'une corrélation croisée.The comparison will then reveal the existence of a cross-correlation.

En cas de comparaison positive à l'étape 66, donc si le mot reçu courant, issu du canal de réception courant, dit premier canal, est identique à un mot reçu d'un deuxième canal, et que le type du mot est différent du type 0 dans le système SBAS où les mots de type 0 ont un contenu fixe, alors l'étape 66 est suivie d'une étape 68.In the event of a positive comparison in step 66, therefore if the current word received, originating from the current reception channel, called the first channel, is identical to a word received from a second channel, and the type of the word is different from the type 0 in the SBAS system where type 0 words have fixed content, then step 66 is followed by step 68.

A l'étape 68 il est vérifié si le premier canal et le deuxième canal sont tous deux associés à des satellites d'un même fournisseur de services, dit fournisseur de services courant.In step 68 it is checked whether the first channel and the second channel are both associated with satellites of the same service provider, called the current service provider.

En cas de réponse positive, l'étape 68 est suivie de l'étape 62.If yes, step 68 is followed by step 62.

En cas de réponse négative à l'étape 68, donc si le premier canal et le deuxième canal sont associés à des satellites de fournisseurs de services différents, un compteur d'invalidité Cinvalid est incrémenté. L'étape 68 est suivie de l'étape 74 décrite ci-après.In the event of a negative response at step 68, therefore if the first channel and the second channel are associated with satellites of different service providers, an invalidity counter C invalid is incremented. Step 68 is followed by step 74 described below.

Comme dans le deuxième mode de réalisation, le compteur d'invalidité, Cinvalid, est initialisé à 0 à chaque nouvelle mise en oeuvre du procédé de validation de synchronisation.As in the second embodiment, the invalidity counter, C invalid , is initialized to 0 at each new implementation of the synchronization validation method.

Si à l'étape 66 le mot reçu courant, issu du canal de réception courant, dit premier canal, est différent des tous les mots de même type reçus des tous les autres canaux, alors le signal est considéré valide et donc non entaché par une corrélation croisée.If in step 66 the current word received, from the current reception channel, called the first channel, is different from all the words of the same type received from all the other channels, then the signal is considered valid and therefore not tainted by a cross-correlation.

Un compteur de validité Cvalid est incrémenté à l'étape 72, ce compteur étant initialisé à 0 à chaque nouvelle mise en oeuvre du procédé de validation de synchronisation.A validity counter C valid is incremented in step 72, this counter being initialized to 0 at each new implementation of the synchronization validation method.

L'étape 72 est suivie d'une étape 74 de comparaison du compteur de validité ou, le cas échéant, du compteur d'invalidité, a un nombre de mots reçus à prendre en compte Nr.Step 72 is followed by a step 74 of comparing the validity counter or, where applicable, the invalidity counter, with a number of words received to be taken into account Nr.

Ce nombre Nr dépend des valeurs de la probabilité de non-détection Pnd et de la probabilité de fausse alarme Pfa d'une corrélation croisée.This number Nr depends on the values of the probability of non-detection P nd and of the probability of false alarm P fa of a cross-correlation.

Lorsque le nombre Nr est atteint, le procédé de validation de synchronisation pour le signal reçu par le système d'augmentation spatiale sur le canal courant prend fin.When the number Nr is reached, the synchronization validation process for the signal received by the spatial augmentation system on the current channel ends.

Si le nombre Nr n'est pas atteint, l'étape 74 est suivie de l'étape 62 précédemment décrite pour traitement d'un mot reçu suivant.If the number Nr is not reached, step 74 is followed by step 62 previously described for processing a next received word.

Le nombre Nr de mots reçus à prendre en compte est, dans un mode de réalisation, égal à 1.The number Nr of words received to be taken into account is, in one embodiment, equal to 1.

Pour un mot reçu donné, on peut calculer la probabilité de non-détection et la probabilité de fausse alarme d'une corrélation croisée associées.For a given word received, it is possible to calculate the probability of non-detection and the probability of false alarm of an associated cross-correlation.

En ce qui concerne la probabilité de non-détection, il y a un risque de non détection si un mot est mal décodé. La probabilité de non-détection due à une telle erreur est dépendante du taux d'erreur mot, également appelé WER pour « word error rate », qui dépend du rapport signal à bruit du signal reçu, faussement considéré valide.Regarding the probability of non-detection, there is a risk of non-detection if a word is decoded incorrectly. The probability of non-detection due to such an error is dependent on the word error rate, also called WER for “word error rate”, which depends on the signal-to-noise ratio of the signal received, falsely considered valid.

Pour un mot SBAS codé sur 250 bits et protégé par un CRC de 24 bits, on a : Pnd < WER×(1-(1-2-24)120)<<7·10-6. L'utilisation d'un seul mot reçu pour confirmer l'absence de corrélation croisée apporte un fort niveau d'intégrité.For an SBAS word coded on 250 bits and protected by a 24-bit CRC, we have: P nd < WER ×(1-(1-2 -24 ) 120 )<<7 10 -6 . The use of a single received word to confirm the absence of cross-correlation provides a high level of integrity.

Il y a un risque de fausse alarme si deux mots émis par deux satellites de fournisseurs de services différents sont identiques.There is a risk of false alarm if two words transmitted by two satellites from different service providers are identical.

La probabilité de fausse alarme, qui est la probabilité de fausse détection d'un phénomène de corrélation croisée, est calculée, selon un mode de réalisation par : P ƒa < 2 218 < 2 10 66

Figure imgb0032
The false alarm probability, which is the probability of false detection of a cross-correlation phenomenon, is calculated, according to one embodiment, by: P ƒa < 2 218 < 2 10 66
Figure imgb0032

L'utilisation d'un seul mot pour confirmer la présence de corrélation croisée apporte un faible risque de fausse alarme.Using a single word to confirm the presence of cross-correlation brings a low risk of false alarm.

Avantageusement, dans tous les modes de réalisation décrits, la validation ou invalidation de la synchronisation avec un satellite émetteur est accélérée grâce à l'utilisation de mots reçus reçus pour le même satellite émetteur préalablement identifié dans la phase d'acquisition, et, le cas échéant, pour d'autres satellites émetteurs de la constellation qui sont reçus par la récepteur de géolocalisation considéré.Advantageously, in all the embodiments described, the validation or invalidation of the synchronization with a transmitting satellite is accelerated thanks to the use of received words received for the same transmitting satellite previously identified in the acquisition phase, and, if applicable, for other transmitter satellites of the constellation which are received by the geolocation receiver considered.

Dans le cas des systèmes d'augmentation spatiale, il s'agit de mots reçus sans distinction de type, alors que pour les systèmes de radionavigation GNSS, il s'agit de mots d'éphémérides.In the case of spatial augmentation systems, these are words received without distinction of type, whereas for GNSS radionavigation systems, these are ephemeris words.

Claims (9)

  1. A method for validating the synchronization between a geolocation receiver and a transmitting satellite during a phase for acquiring a navigation signal from this satellite,
    said receiver being able to receive a composite radio signal including a plurality of navigation signals each transmitted by a transmitting satellite that is part of a satellite constellation, and to implement a phase for acquiring a navigation signal for each of the transmitting satellites, in which the receiver determines a satellite transmitting a corresponding navigation signal in a synchronization step,
    each transmitting satellite further transmitting sets of ephemerids made up of a plurality of words, each having an associated rank, encoding information relative to said transmitting satellite and making it possible to compute the position of said transmitting satellite in a given plane of reference, the method being implemented by said receiver,
    wherein the method comprises :
    for each identified transmitting satellite, performing a validation test, comprising:
    - extracting (26, 42) ephemerid words from the navigation signal associated with the transmitting satellite identified in the acquisition phase, as said navigation signal is received,
    - comparing (30, 50) at least part of said extracted ephemerid words to at least one stored ephemerid word with the same rank for said identified transmitting satellite and/or for at least one of the other transmitting satellites, and
    based on the result of the comparison,
    verifying a synchronization validation condition (32-34, 52-56) validating the synchronization with said identified transmitting satellite, with a predetermined false alarm probability and/or non-detection probability,
    the false alarm designating a false detection of a cross-correlation,
    the non-detection designating a non-detection of cross-correlation, the probability of non-detection being estimated as a function of
    the probability that at least one ephemerid word of same rank is identical in the ephemerids transmitted for two or more distinct satellites, or
    the probability that said ephemerid word received by said transmitting satellite is identical to a word received for another satellite, and
    in case of positive verification, stop the validation test,
    in case of negative verification, return to the extracting step.
  2. The method according to claim 1, characterized in that it comprises, after the extraction step, a step for verifying (28, 44) a protection code associated with one or several of said extracted ephemerid words, and wherein the comparison (30, 50) is done on the extracted ephemerid words for which the verification is positive.
  3. The method according to one of claims 1 or 2, characterized in that it comprises a prior step for estimating (20, 22) a probability, for each ephemerid word of the set of ephemerids, that an ephemerid word, having an associated rank and transmitted by a given transmitting satellite, has a same value as a transmitted ephemerid word with the same rank transmitted by another satellite in the satellite constellation.
  4. The method according to claim 3, characterized in that it further comprising computing (22) sets of ranks of ephemerid words, each said set of ranks including ephemerid word ranks allowing validation of the associated transmitting satellite with a corresponding non-detection probability, and storing (22) at least one set of computed ephemerid rank sets corresponding to a predetermined non-detection probability.
  5. The method according to claim 4, characterized in that it comprises, in case of positive comparison of a received ephemerid word with an ephemerid word previously validated and stored for said transmitting satellite, a validation (34) based on whether the rank of said received ephemerid word belongs to at least one of said computed sets of ephemerid ranks.
  6. The method according to one of claim 1 or 2, characterized in that it further comprises comparing (50) an extracted ephemerid word with a stored ephemerid word having the same rank for said identified transmitting satellite, and with an ephemerid word of the same rank received for each of the plurality of other transmitting satellites.
  7. The method according to claim 6, characterized in that it :
    - if the extracted ephemerid word is identical to the stored ephemerid word having the same rank for said identified transmitting satellite, and different from each of the ephemerid words having the same rank received for another transmitting satellite, a validity counter is incremented (54), or
    - if the extracted ephemerid word is different from the stored ephemerid word having the same rank for said identified satellite, and identical to at least one of the words having the same rank received for another transmitting satellite, an invalidity counter is incremented (54).
  8. The method according to claim 7, wherein a validation or invalidation of the synchronization is done based on the comparison (56) of the validity counter or invalidity counter to a number of comparisons to be taken into consideration, said number of comparisons to be taken into consideration depending on the predetermined false alarm probability and/or non-detection probability.
  9. A geolocation receiver performing a synchronization and a transmitting satellite during a phase for acquiring a navigation signal from this satellite, said receiver being able to receive a composite radio signal including a plurality of navigation signals each transmitted by a transmitting satellite that is part of a satellite constellation, and to implement a phase for acquiring a navigation signal for each of the transmitting satellites, in which the receiver determines a satellite transmitting a corresponding navigation signal in a synchronization step,
    each transmitting satellite further transmitting sets of ephemerids made up of a plurality of words, each having an associated rank, encoding information relative to said transmitting satellite and making it possible to compute the position of said transmitting satellite in a given plane of reference,
    wherein the receiver comprises
    modules for performing a validation test for each identified transmitting satellite, comprising:
    - a module for extracting ephemerid words from the navigation signal associated with the transmitting satellite identified in the acquisition phase, as said navigation signal is received.
    - a module for comparing at least part of said extracted ephemerid words to at least one stored ephemerid word with the same rank for said identified transmitting satellite and/or for at least one of the other transmitting satellites, and
    - a module for validating or not validating the synchronization with said identified transmitting satellite,
    implementing, based on the result of the comparison, verifying a synchronization validation condition validating the synchronization with said identified transmitting satellite, with a predetermined false alarm probability and/or non-detection probability,
    the false alarm designating a false detection of a cross-correlation,
    the non-detection designating a non-detection of cross-correlation, the probability of non-detection being estimated as a function of
    the probability that at least one ephemerid word of same rank is identical in the ephemerids transmitted for two or more distinct satellites, or
    the probability that said ephemerid word received by said transmitting satellite is identical to a word received for another satellite, and
    the receiver being configured :
    in case of positive verification, for stopping the validation test,
    in case of negative verification, for extracting ephemerid words from the navigation signal associated with the transmitting satellite identified in the acquisition phase, as said navigation signal is received.
EP16203456.5A 2015-12-11 2016-12-12 Methods and devices for validating the synchnonization between a geolocalizing receptor and an emitting satellite Active EP3179276B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1502575A FR3045167B1 (en) 2015-12-11 2015-12-11 METHODS AND DEVICES FOR SYNCHRONIZATION VALIDATION BETWEEN A GEOLOCATION RECEIVER AND A TRANSMITTER SATELLITE

Publications (2)

Publication Number Publication Date
EP3179276A1 EP3179276A1 (en) 2017-06-14
EP3179276B1 true EP3179276B1 (en) 2023-07-05

Family

ID=55862824

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16203456.5A Active EP3179276B1 (en) 2015-12-11 2016-12-12 Methods and devices for validating the synchnonization between a geolocalizing receptor and an emitting satellite

Country Status (3)

Country Link
US (1) US10466364B2 (en)
EP (1) EP3179276B1 (en)
FR (1) FR3045167B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3026495B1 (en) * 2014-09-25 2019-05-31 Thales METHOD AND DEVICE FOR INTEGRITY VERIFICATION OF POSITION INFORMATION OBTAINED BY AT LEAST TWO SATELLITE GEOLOCATION DEVICES
FR3071688B1 (en) * 2017-09-22 2019-09-27 Thales METHOD FOR SYNCRONIZING A DEVICE ASSEMBLY, COMPUTER PROGRAM, AND SYNCRONIZATION SYSTEM THEREOF
CN110907957B (en) * 2019-10-23 2022-04-01 深圳华大北斗科技股份有限公司 Signal demodulation method, signal demodulation device, computer equipment and storage medium
US11681052B2 (en) 2020-01-07 2023-06-20 All. Space Networks Limited Non-cooperative position, navigation, and timing extraction from VSAT communications signals using multi-beam phased array antenna

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144691A (en) * 1997-09-30 2000-11-07 Nokia Mobile Phones Limited Method and apparatus for synchronizing to a direct sequence spread spectrum signal
JP3694395B2 (en) * 1997-10-09 2005-09-14 松下電器産業株式会社 GPS receiver and receiving method
US6363049B1 (en) * 1998-03-25 2002-03-26 Sony Corporation Adaptive acquisition system for CDMA and spread spectrum systems compensating for frequency offset and noise
WO2002016960A1 (en) * 2000-08-24 2002-02-28 Sirf Technology, Inc. Apparatus for reducing auto-correlation or cross-correlation in weak cdma signals
FR2859025B1 (en) * 2003-08-22 2006-04-21 Cit Alcatel METHOD FOR VALIDATING THE DETECTION OF A CORRELATION PIC BY A POSITIONING SYSTEM RECEIVER BY SATELLITE
FI20055314A0 (en) * 2005-06-15 2005-06-15 Nokia Corp Simultaneous detection of transmission parameters and spreading factors in a CDMA communication system
US7746961B2 (en) * 2006-04-11 2010-06-29 Telefonaktiebolaget L M Ericsson (Publ) Efficient detection of predetermined sequences
US7636060B2 (en) * 2007-01-05 2009-12-22 Mediatek Inc. Method and apparatus for collecting subframes of satellite navigation data
JP5678609B2 (en) * 2010-11-26 2015-03-04 セイコーエプソン株式会社 Cross correlation determination method and cross correlation determination device
CN104237912A (en) * 2013-06-14 2014-12-24 凹凸电子(武汉)有限公司 Navigation bit synchronization method and method for detecting navigation bit synchronization
IN2013CH03050A (en) * 2013-07-08 2015-09-04 Accord Software & Systems Pvt Ltd

Also Published As

Publication number Publication date
US10466364B2 (en) 2019-11-05
US20170170866A1 (en) 2017-06-15
EP3179276A1 (en) 2017-06-14
FR3045167A1 (en) 2017-06-16
FR3045167B1 (en) 2018-01-26

Similar Documents

Publication Publication Date Title
EP3505968B1 (en) Method for monitoring the integrity of the estimate of the position of a mobile carrier in a satellite positioning measurement system
EP2693232B1 (en) Method for monitoring the integrity of radio-navigation stations in a satellite augmentation system
EP3179276B1 (en) Methods and devices for validating the synchnonization between a geolocalizing receptor and an emitting satellite
EP1804071A1 (en) Method for optimising positioning data processing where there are several satellite positioning constellations
EP1914561B1 (en) Method of satellite location of a vehicle and guarantee of integrity with selection of a subgroup of satellites
EP2998765B1 (en) System for excluding a failure of a satellite in a gnss system
CA2726929A1 (en) Method for protecting a radio navigation receiver user against aberrant pseudo-range measurements
CA2257350C (en) Satellite signal receiver with speed computing integrity control
EP2333582B1 (en) Method for detecting fraud in the transmission of position information by a mobile device
FR2903499A1 (en) INTEGRITY MESSAGE GENERATING DEVICE SIGNALING NOMINAL, DEGRADED OR INACCURATE SURVEILLANCE STATIONS OF SATELLITE NAVIGATION SYSTEMS
EP2963438A1 (en) Location of an emergency beacon
EP2869083B1 (en) Method for checking the integrity of satellite measurements
FR2964751A1 (en) METHOD FOR CORRECTING POSITION ESTIMATION BY SELECTING PSEUDO-DISTANCE MEASUREMENTS
EP1697757B1 (en) Method of updating the clock bias between a bts station of a gsm network and the satellites of a gps system
EP2012138A1 (en) Method and system for checking the integrity of the measurements in a navigation system
EP2442137B1 (en) System for increasing the availability and performance of a satellite geopositioning system
EP3374800B1 (en) Method for detecting parasitic movements during static alignment of an inertial measurement unit, and associated detection device
CA2257349C (en) Satellite signal receiver with integrity control and exclusion of defective axes
EP1560037A2 (en) Method of factorisation of pseudorange dating in an assisted GNSS system
CN111971938B (en) GNSS receiver for receiving GNSS signals from satellites and LLR calculation method thereof
FR2953941A1 (en) SYSTEM AND METHOD FOR GEO-LOCATION BY HYBRIDIZATION OF A SATELLITE NAVIGATION SYSTEM AND A DATA COLLECTION SYSTEM
FR3137972A1 (en) MAC method for monitoring, with common bias compensation, the integrity of a point positioning process using virtual beacons
WO2024074780A1 (en) Method for monitoring the integrity of a plurality of pseudorange measurements acquired by a navigation system
CN114280645A (en) GNSS navigation message checking method and system
EP4307010A1 (en) Mac method for monitoring, with common bias compensation, the integrity of a point positioning method by virtual beacons

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171114

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200622

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230215

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230425

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1585357

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016080774

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230705

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1585357

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231006

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231221

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231106

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231005

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231105

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231006

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231220

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705