EP3176795A1 - Solenoid assembly with anisotropic superconductor and method for its construction - Google Patents
Solenoid assembly with anisotropic superconductor and method for its construction Download PDFInfo
- Publication number
- EP3176795A1 EP3176795A1 EP16200176.2A EP16200176A EP3176795A1 EP 3176795 A1 EP3176795 A1 EP 3176795A1 EP 16200176 A EP16200176 A EP 16200176A EP 3176795 A1 EP3176795 A1 EP 3176795A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coil
- region
- turns
- symmetry
- edge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 74
- 238000000034 method Methods 0.000 title claims description 6
- 238000010276 construction Methods 0.000 title 1
- 239000000463 material Substances 0.000 claims abstract description 21
- 230000005291 magnetic effect Effects 0.000 claims description 58
- 238000004804 winding Methods 0.000 claims description 36
- 239000004020 conductor Substances 0.000 claims description 20
- 238000004904 shortening Methods 0.000 claims description 12
- 238000005457 optimization Methods 0.000 claims description 11
- 238000009826 distribution Methods 0.000 claims description 4
- 239000011888 foil Substances 0.000 claims description 2
- 230000001419 dependent effect Effects 0.000 claims 1
- 230000004907 flux Effects 0.000 description 6
- 101100390736 Danio rerio fign gene Proteins 0.000 description 4
- 101100390738 Mus musculus Fign gene Proteins 0.000 description 4
- 235000012771 pancakes Nutrition 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- 241001136792 Alle Species 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical group [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/06—Coils, e.g. winding, insulating, terminating or casing arrangements therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/04—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
- H01F41/048—Superconductive coils
Definitions
- Superconducting magnetic coils allow extremely energy-efficient generation of strong and temporally constant magnetic fields, since they can be operated without or at least with very low ohmic losses.
- the electrical current carrying capacity of a superconductor is given by its critical current I c . If the electrical current in the conductor exceeds the value of 1 c , then a phase transition to a normal conducting state takes place in which the current no longer flows without resistance.
- the current carrying capacity depends on the strength of the magnetic field to which it is exposed, but not on the direction of the magnetic field.
- the current carrying capacity is also influenced by the angle of the magnetic field to the conductor. This is the case, for example, for high-temperature superconductors (HTS) such as (RE) BCO or Bi-2223, whose underlying copper oxide structure has a two-dimensional character.
- HTS high-temperature superconductors
- RE high-temperature superconductors
- Bi-2223 whose underlying copper oxide structure has a two-dimensional character.
- a cylindrically symmetrical magnet wound from anisotropic superconductor whose current carrying capacity is more strongly suppressed in the radial direction by the field component generated by the coil than by that in the axial direction.
- layer-wound is meant that along the superconductor successive turns are wound mainly in layers along the axis of symmetry side by side, wherein one layer can be assigned a constant radius in each case. This is in contrast to so-called pancake coils, in which successive turns are wound mainly radially over each other.
- Reference [4] discloses an arrangement in which the number of turns at the axial coil ends is reduced.
- this known coil is an array of multiple double “pancake” coils and not a sheet wound solenoid coil of the type defined in the introduction.
- this arrangement is not intended to reduce the radial field component at the coil ends.
- Reference [5] discloses a superconducting magnet coil assembly having at least one section of superconducting tape conductor wound in a cylindrical winding chamber between two end flanges in a multi-layered, solenoid-like manner, characterized in that the section has an axial region of reduced current density or notch region having.
- Reference [6] describes a superconducting homogeneous high field magnetic coil in which the current density is reduced in the axial end region so that the forces acting on the windings can be kept small.
- the reference [7] discloses a superconducting magnet coil assembly including at least one section of superconducting tape conductor wound in a cylindrical winding chamber between two end flanges in a multi-layered, solenoid-like manner.
- notch reduced current density
- a coil geometry is known in which the inner diameter of the windings at the coil end is widened in order to reduce the influence of the vertical field component on the critical current density.
- the inner coil radius is axially varied, which is not particularly advantageous for various reasons and is diametrically opposite to the corresponding feature of a generic coil.
- co-winding of non-superconductive material in a cylindrically symmetric wound coil with respect to the axis of symmetry z is not even hinted at.
- the present invention is based on the object to modify a superconducting magnet coil assembly of the type defined above and a method for their design with particularly simple technical means so that the above-discussed limitations of such superconducting magnet coil assemblies, which typically occur at the axial ends of the coil , be significantly mitigated and the current carrying capacity of the coil is significantly increased.
- a superconducting magnet coil assembly of the type defined, which is characterized in that the coil is cylindrically symmetrical wound relative to the axis of symmetry, that the coil is designed in that the generated magnetic field has a field component B r perpendicular to the current direction and to the axis of symmetry whose maximum in the coil volume is at least 5% smaller than if, with the same operating field of the coil in the center of the working volume, the expansions of the fourth and fifth coil regions along the symmetry axis direction to the coil center, wherein the relative shortening of the expansions corresponds to the ratio of the first coil edge turn number to the maximum coil edge turn number in the fourth coil section and the ratio of the second coil edge turn number to the maximum coil edge turn number in the fifth coil section, with the number of turns of the anisotropic superconductor in the coil being equal the minimum of the superconducting current carrying capacity of the anisotropic superconductor in the coil is at least
- the current carrying capacity of coils wound from anisotropic superconductor is limited at the axial ends by the magnetic field component in the radial direction.
- the present invention proposes a superconducting magnet coil arrangement which makes it possible to attenuate this field component and to increase the current carrying capacity of the coil.
- the current carrying capacity of the superconductor at the axial coil ends is increased by weakening the radial component of the magnetic field. This is inventively achieved by lowering the number of turns in areas at the coil ends, wherein both the cross section and the type of superconductor used can remain unchanged.
- the smaller number of turns in the vicinity of the axial coil ends causes the radial magnetic flux to be distributed axially over a larger area and the radial component of the magnetic field locally becomes smaller. As a result, in turn, the current carrying capacity of the superconductor and consequently of the entire coil is increased there.
- An advantage of this arrangement according to the invention consists in the more uniform distribution of the current carrying capacity of the superconductor in the entire coil. This makes better use of the superconductor for current flow, and allows the coil to operate at a higher current. The required amount of superconducting material and thus the manufacturing costs are consequently lower than in comparable conventional arrangements. On the other hand, with the same amount of superconductor, a higher magnetic field can be generated in the coil center.
- the arrangement according to the invention is significantly more efficient due to the deliberate choice of the winding distribution in the coil.
- no additional bobbins are necessary for the realization of the arrangement, which saves space and material costs.
- the non-superconducting material co-wound with the superconductor material toward the edge serves as a filler and contributes to the mechanical stability of the winding package.
- the radially summed number of turns along the axis of symmetry z is reduced towards the edge in one or more discrete steps.
- the radial field component can be reduced in the coil ends and the current carrying capacity can be significantly increased.
- the radially accumulated number of turns along the symmetry axis z is reduced quasi-continuously towards the edge. This allows for even finer modeling of the radial field component along the axial coil ends and better current carrying capacity optimization.
- Embodiments of the invention are also particularly preferred in which the windings in the first radially limited rectangular coil region are wound from a single, uninterrupted superconductor piece, ie without so-called joints, which connect different conductor pieces to one another.
- the electrical resistance in the coil is kept very low.
- Joints between HTS superconductors usually have some electrical resistance and cause drift of the magnetic field when the coil is not supported by a power source.
- Joints, which are housed in the winding package of the coil can also worsen the field homogeneity in the working volume.
- the winding of a single conductor piece also has production advantages.
- the second coil region is wound with at least 20%, in particular with 40% to 60%, preferably with approximately 50% fewer conductor windings than an axially adjacent coil region of the same geometry.
- the magnetic field generated by the coil has a field component B r perpendicular to the current direction and the axis of symmetry z whose maximum in the coil volume at least 10%, preferably by up to 50% smaller is as if, with the same operating field of the coil in the center of the working volume, the expansions of the fourth and fifth coil sections were shortened along the direction of symmetry to the coil center, the relative shortening of the expansions corresponding to the ratio of first and second coil edge turns to maximum coil edge turns remaining number of turns of the anisotropic superconductor in the coil.
- inventions of the invention which are characterized in that the minimum of the superconducting current carrying capacity of the anisotropic superconductor in the coil at least 5%, in particular up to 30%, preferably up to 50% higher than when -bei same operating field of the coil in Center of the Hävolumens- the expansions of the fourth and fifth coil region along the direction of symmetry axis to the coil center would be shortened, the relative shortening of the expansions of the ratio of first and second Spulenrandwindungsiere to maximum Spulenrandwindungsiere corresponds to a constant number of turns of the anisotropic superconductor in the coil.
- the greater the current carrying capacity of the coil the larger magnetic fields can be generated, or the less superconducting material is needed to generate a given field strength in the working volume.
- the co-wound non-superconducting material comprises foil inserts. Films are particularly well placed between the superconducting windings and can be easily cut to the desired geometry.
- the reduction in the number of turns at the axial coil ends is accomplished in that no windings are wound on the coil edges over a plurality of layers lying directly above one another.
- the optimization regions may also protrude beyond the coil ends of the output coil, i.
- the optimized coil can be quite longer axially than the output coil.
- the exact winding distribution in the optimization regions may also be selected such that it is advantageous in terms of the forces in the winding package and / or winding technology.
- the advantage of this method is that it leads to a coil design which has an increased current carrying capacity and that the coil is required for operation at a given magnetic field strength a total lower superconductor amount than for the output coil.
- FIG. 1 schematically illustrates a first embodiment of the magnetic coil assembly according to the invention.
- the coil regions 1 to 5 can be defined within the rectangular coil cross-section, which satisfy the specific, inventive requirements, as will be described below.
- a first radially limited rectangular coil region 1 can be defined, which completely covers the coil cross-section radially in part and along the symmetry axis z and does not contain a fully wound winding layer.
- the first coil region 1 also contains two sub-regions, which characterize the reduction of the number of turns at one axial end of the first coil region: A second coil region 2, which covers the first coil region 1 along the axis of symmetry from 10% of its length from the coil edge, and a third coil region 3, which adjoins the second coil region 2 and covers the first coil region 1 along the symmetry axis to 40% of its length.
- the second and third regions 2, 3 are characterized in that the number of turns in the second coil region 2 is at least four and a half times smaller than that in the third coil region 3.
- the reduction of the number of turns at the axial coil ends leads in the magnetic coil arrangement according to the invention to a reduction of the maximum radial field component and consequently to an increase of the current carrying capacity, which are characterized by the comparison with a modified arrangement.
- a fourth coil region 4 and a fifth coil region 5 are defined, which cover the coil cross section radially completely and axially from each one of the two coil edges forth 10% along the axis of symmetry z.
- the fourth and the fifth coil region 4, 5 are shortened along the direction of symmetry to the center of the coil, so that no further turns would find more space given a constant superconductor quantity.
- the arrangement according to the invention is characterized in that its maximum radial field component is at least 5% smaller and its current carrying capacity is at least 3% greater than in the comparative arrangement.
- the first coil region 1 any non-fully wound layer (for example the radially innermost one).
- the third coil region 3 contained therein then contains 84 and thus 7 times (ie more than four and a half times) as many turns as the second coil region 2 with 12 turns.
- the comparison coil is obtained, which is listed in the following table: conventional inventively comparison magnetic field 4.7 T 4.7 T 4.7 T operating current 97.4 A 122.0 A 121.9 A superconductors length 1351 m 1019 m 1019 m Max. radial field 1.8T 1.0T 1.7 T ampacity 100.5 A 125.2 A 107.9 A power usage 97% 97% 113%
- the maximum radial field of the coil arrangement according to the invention is about 40% smaller than that of the comparison coil. Accordingly, the current carrying capacity is increased by 16%.
- the inventive coil calculated in the example can be operated at a higher current thanks to the increased current carrying capacity.
- the inventive coil calculated in the example can be operated at a higher current thanks to the increased current carrying capacity.
- FIGS. 2a to 2d show embodiments in which all windings in the first coil region are wound from a single uninterrupted superconductor piece.
- the continuous lines in the winding package of FIGS. 2a and 2c schematically represent the superconductor, and the dashed lines non-superconducting filler.
- FIGS. 2b and 2d are they FIGS. 2a and 2c corresponding coil areas 1 ', 1 "2', 2" 3 ', 3 " and 4 and 5, respectively, shown.
- the coil region 1 '( Fig. 2b ) includes, for example, the radially third-innermost, not fully wound layer.
- the coil area 1 "( Fig. 2d ) includes, for example, the three radially innermost, not fully wound layers.
- FIGS. 3a and 3b show an embodiment in which the reduction of the number of turns at the axial coil ends is achieved in that no turns are wound on the coil edges over several directly superimposed layers.
- the continuous lines in the winding package of FIG. 3a schematically represent the layer areas, which are wound with superconductor.
- FIG. 3b are those in the FIG. 3a corresponding coil regions 1 '"2'" 3 '" and 4 and 5 shown.
- coil regions 2 through 5 need not necessarily correspond to the boundaries between fully wound and non-fully wound regions in the coil.
- FIGS. 4a and 4b show in a comparison of the edge-side radial fields in a conventional and in a modified according to the invention magnetic coil assembly. Shown in each case are cylindrically symmetrical magnet coils (section through a plane containing the symmetry axis z) and the isofield lines of the radial component of the magnetic field. The outermost line equals 0.25 T, and with each line towards the maximum, the field increases by 0.25 T.
- a homogeneous coil number reference coil has the same inner and outer radius as the inventive arrangement, the coil length being selected along the axis of symmetry such that the same amount of conductor is wound as in the coil of the invention.
- the maximum radial field reaches a magnitude of approximately 1.75 T, whereas in the case of the present invention Arrangement at the same magnetic field strength in the center of the working volume is only about 1.0 T.
- the coil of the invention generates in its center a larger magnetic field than the conventional reference coil, since their current carrying capacity is greater than that of the reference coil.
- FIGS. 5a and 5b the field lines of each magnetic field generated in a cylindrically symmetrical magnetic coil arrangement according to the invention ( Fig. 5a ) or in an arrangement according to the prior art ( Fig. 5b ) is shown in a schematic section through a plane containing the symmetry axis z.
- the number of turns of the superconductor is reduced at the axial edge regions relative to the central region.
- the field lines represent the magnetic flux, their density corresponding to the magnetic field strength. Due to the stepwise reduced number of turns, the magnetic flux flowing around the coil ends is distributed over longer edge regions in the axial direction and is significantly thinned. The magnetic field strength thus has a relatively small component in the radial direction (arrows).
- Fig. 5b shows a cylindrically symmetric coil with homogeneous (full) current density according to the prior art with a constant number of turns along the axis of symmetry.
- the axial ends are shortened towards the middle of the coil, so that the total number of turns of the coil is the same.
- the known coil generates the same field strength in the center as the coil according to the invention.
- the magnetic flux concentrates at the axial coil edges.
- Fig. 5a shows in comparison to a coil according to the invention, in which the current density was reduced at the axial ends.
- the magnetic field strength which corresponds to the density of the field lines, is significantly reduced at the ends of the coil according to the invention.
- An essential advantage of the arrangement according to the invention is inter alia the more uniform distribution of the current carrying capacity of the superconductor in the entire coil. As a result, the superconductor is better utilized and the coil can be operated at a higher current. The required amount of superconductor and thus the material costs are lower or with the same amount of superconductor a higher magnetic field can be generated in the coil center.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Eine supraleitfähige Magnetspulenanordnung mit hohler Spule von konstantem Innenradius aus anisotropem Supraleitermaterial und rechteckigem Spulenquerschnitt aufweisend: einen ersten radial begrenzten rechteckigen Spulenbereich (1), welcher den Spulenquerschnitt axial vollständig überdeckt und keine in axialer Richtung vollgewickelte Lage enthält, einen zweiten Spulenbereich (2) innerhalb des ersten, welcher den ersten Spulenbereich radial vollständig und axial zu 10% überdeckt und einen axialen Spulenrand einschließt, einen dritten Spulenbereich (3) innerhalb des ersten, welcher den ersten Spulenbereich radial vollständig und axial zu 40% überdeckt und an den zweiten Spulenbereich anschließt, mit einer über viereinhalbmal größeren Windungsanzahl als im zweiten Spulenbereich, einen vierten und fünften Spulenbereich (4, 5), welche den Spulenquerschnitt radial vollständig sowie axial je zu 10% überdecken und je einen axialen Spulenrand einschließen mit einer ersten und zweiten Spulenrandwindungszahl, gegeben durch die Windungsanzahl im vierten bzw. fünften Spulenbereich und mit einer maximalen Spulenrandwindungszahl, gegeben durch den Quotienten aus der Querschnittfläche des vierten oder fünften Spulenbereichs und der Querschnittfläche des anisotropen Supraleiters, ist zylindersymmetrisch lagengewickelt mit einer radialen Feldkomponente B r , deren Maximum mindestens 5% kleiner ist als bei gleichem Betriebsfeld und axial zur Spulenmitte hin verkürztem vierten und fünften Spulenbereich. Dadurch wird die Stromtragfähigkeit der Spule erheblich erhöht.A superconducting magnet coil arrangement with hollow coil of constant inner radius of anisotropic superconductor material and rectangular coil cross-section comprising: a first radially limited rectangular coil region (1) which completely covers the coil cross-section axially and does not contain an axially fully wound layer, a second coil region (2) within the first, which covers the first coil region radially completely and axially to 10% and includes an axial coil edge, a third coil region (3) within the first, which covers the first coil region radially completely and axially to 40% and connects to the second coil region, with a four and a half times larger number of turns than in the second coil region, a fourth and fifth coil region (4, 5) which cover the coil cross section radially completely and axially each to 10% and each include an axial coil edge with a first and second Spulenrandwindungszahl, given by the number of turns in the fourth and fifth coil region and a maximum Coil edge turn number, given by the quotient of the cross-sectional area of the fourth or fifth coil area and the cross-sectional area of the anisotropic superconductor, is cylindrically symmetric layer wound with a radial field component B r whose maximum is at least 5% smaller than the same operating field and axially to the coil center shortened fourth and fifth coil area. As a result, the current carrying capacity of the coil is considerably increased.
Description
Die Erfindung betrifft eine supraleitfähige Magnetspulenanordnung mit einer hohlen Spule mit konstantem Innenradius zur Erzeugung eines Betriebsmagnetfeldes in einem Arbeitsvolumen um eine Symmetrieachse, wobei die Spule Wicklungen aus einem anisotropen Supraleiter umfasst, dessen supraleitende Stromtragfähigkeit in einem Magnetfeld senkrecht zur Stromrichtung im Leiter sowohl von der Feldamplitude als auch von der Feldrichtung innerhalb einer Ebene senkrecht zur Stromrichtung abhängt, und mit einer Schnittebene, welche die Symmetrieachse enthält und die Spule schneidet, wobei die Spule einen rechteckigen Spulenquerschnitt in der Schnittebene aufweist, der definiert ist durch einen radial inneren und radial äußeren sowie einen axial ersten und axial zweiten Spulenrand, definiert durch die Position einer radial innersten und einer radial äußersten Windung der Spule mit dem kleinsten bzw. größten Abstand zur Symmetrieachse, und durch die Position einer axial ersten und einer axial letzten Windung der Spule mit der kleinsten bzw. größten Koordinate entlang der Symmetrieachsenrichtung, und wobei die Spule aufweist:
- einen ersten radial begrenzten rechteckigen Spulenbereich, welcher den Spulenquerschnitt entlang der Symmetrieachsenrichtung vollständig überdeckt und keine in axialer Richtung vollgewickelte Lage enthält,
- einen zweiten radial begrenzten rechteckigen Spulenbereich innerhalb des ersten Spulenbereichs, welcher den ersten Spulenbereich radial vollständig und entlang der Symmetrieachsenrichtung zu 10% überdeckt und den axial ersten oder zweiten Spulenrand einschließt,
- einen dritten radial begrenzten rechteckigen Spulenbereich innerhalb des ersten Spulenbereichs, welcher den ersten Spulenbereich radial vollständig und entlang der Symmetrieachsenrichtung zu 40% überdeckt und an den zweiten Spulenbereich anschließt, wobei die Anzahl der Windungen des anisotropen Supraleiters im dritten Spulenbereich mehr als das Viereinhalbfache der Anzahl der Windungen des anisotropen Supraleiters im zweiten Spulenbereich beträgt, einen vierten und fünften rechteckigen Spulenbereich innerhalb des Spulenquerschnitts, welche den Spulenquerschnitt radial vollständig und entlang der Symmetrieachsenrichtung je zu 10 % überdecken und den axial ersten bzw. zweiten Spulenrand einschließen mit einer ersten und zweiten Spulenrandwindungszahl, gegeben durch die Anzahl Windungen des anisotropen Supraleiters im vierten bzw. im fünften Spulenbereich und mit einer maximalen Spulenrandwindungszahl, gegeben durch den Quotienten aus der Querschnittfläche des vierten oder fünften Spulenbereichs und der Querschnittfläche des anisotropen Supraleiters.
- a first radially limited rectangular coil region which completely covers the coil cross section along the direction of symmetry axis and does not contain an axially fully wound layer,
- a second radially limited rectangular coil region within the first coil region, which covers the first coil region radially completely and along the symmetry axis direction by 10% and encloses the axially first or second coil edge,
- a third radially limited rectangular coil region within the first coil region, which covers the first coil region radially completely and along the symmetry axis direction to 40% and connects to the second coil region, wherein the number of turns of the anisotropic Superconductor in the third coil region is more than four and a half times the number of turns of the anisotropic superconductor in the second coil region, a fourth and fifth rectangular coil region within the coil cross section, which cover the coil cross section radially completely and along the symmetry axis direction each to 10% and the axially first or second coil edge having a first and second coil edge turn number given by the number of turns of the anisotropic superconductor in the fourth and fifth coil regions and having a maximum coil edge turn number given by the quotient of the cross sectional area of the fourth or fifth coil region and the cross sectional area of the anisotropic superconductor.
Eine solche Magnetspulenanordnung ist bekannt aus Referenz [0]Such a magnet coil arrangement is known from reference [0].
Supraleitende Magnetspulen ermöglichen eine äußerst energieeffiziente Erzeugung von starken und zeitlich konstanten Magnetfeldern, da sie völlig ohne oder zumindest mit sehr geringen ohmschen Verlusten betrieben werden können.Superconducting magnetic coils allow extremely energy-efficient generation of strong and temporally constant magnetic fields, since they can be operated without or at least with very low ohmic losses.
Die elektrische Stromtragfähigkeit eines Supraleiters ist durch seinen kritischen Strom lc gegeben. Übersteigt der elektrische Strom im Leiter den Wert von lc, so findet ein Phasenübergang zu einem normalleitenden Zustand statt, in welchem der Strom nicht mehr widerstandslos fließt.The electrical current carrying capacity of a superconductor is given by its critical current I c . If the electrical current in the conductor exceeds the value of 1 c , then a phase transition to a normal conducting state takes place in which the current no longer flows without resistance.
In einem isotropen Supraleiter hängt die Stromtragfähigkeit von der Stärke des Magnetfeldes ab, welchem er ausgesetzt ist, nicht aber von der Richtung des Magnetfeldes. Bei einem anisotropen Supraleiter hingegen wird die Stromtragfähigkeit auch vom Winkel des Magnetfeldes zum Leiter beeinflusst. Dies ist beispielsweise bei Hochtemperatursupraleitern (HTS) wie (RE)BCO oder Bi-2223 der Fall, deren zugrunde liegende Kupferoxidstruktur einen zweidimensionalen Charakter hat. So ist der kritische Strom eines HTS-Bandleiters in einem Magnetfeld, welches senkrecht zur Bandebene steht, typischerweise niedriger als in einem Feld parallel zur Bandebene.In an isotropic superconductor, the current carrying capacity depends on the strength of the magnetic field to which it is exposed, but not on the direction of the magnetic field. In the case of an anisotropic superconductor, on the other hand, the current carrying capacity is also influenced by the angle of the magnetic field to the conductor. This is the case, for example, for high-temperature superconductors (HTS) such as (RE) BCO or Bi-2223, whose underlying copper oxide structure has a two-dimensional character. Thus, the critical current of an HTS ribbon conductor in a magnetic field which is perpendicular to the ribbon plane is typically lower than in a field parallel to the ribbon plane.
In einer aus HTS-Bandleiter gewickelten zylindersymmetrischen Magnetspule führt dies normalerweise dazu, dass die Stromtragfähigkeit der Spule an den axialen Enden limitiert ist, da dort die Radialkomponente des Magnetfeldes am größten ist.In a cylindrically symmetrical magnet coil wound from HTS ribbon conductor, this normally leads to the current carrying capacity of the coil being limited at the axial ends, since there the radial component of the magnetic field is greatest.
Im Folgenden betrachten wir eine aus anisotropem Supraleiter lagengewickelte zylindersymmetrische Magnetspule, deren Stromtragfähigkeit durch die von der Spule erzeugte Feldkomponente in radialer Richtung stärker unterdrückt ist als durch diejenige in axialer Richtung. Mit "lagengewickelt" ist gemeint, dass entlang des Supraleiters aufeinanderfolgende Windungen hauptsächlich lagenweise entlang der Symmetrieachse nebeneinander gewickelt sind, wobei einer Lage jeweils ein konstanter Radius zugeordnet werden kann. Diessteht im Gegensatz zu sogenannten Pancake-Spulen, bei denen aufeinanderfolgende Windungen hauptsächlich radial übereinander gewickelt sind.In the following, we consider a cylindrically symmetrical magnet wound from anisotropic superconductor whose current carrying capacity is more strongly suppressed in the radial direction by the field component generated by the coil than by that in the axial direction. By "layer-wound" is meant that along the superconductor successive turns are wound mainly in layers along the axis of symmetry side by side, wherein one layer can be assigned a constant radius in each case. This is in contrast to so-called pancake coils, in which successive turns are wound mainly radially over each other.
In den Referenzen [1] und [2] wird die Stromtragfähigkeit der Spule an den axialen Enden erhöht, indem für die entsprechenden Wicklungen ein Supraleiter mit höherer Stromtragfähigkeit (größerer Leiterquerschnitt, siehe Referenz [1] oder Supraleiterart mit höherer kritischer Stromdichte siehe Referenz [2]) verwendet wird. Ein Nachteil dieser Lösung liegt darin, dass in der Spule kein einheitlicher Supraleiter verwendet werden kann und dass die unterschiedlichen Leiterstücke für einen Betrieb in Serienschaltung gezwungenermaßen niederohmig verbunden werden müssen. Außerdem werden in den genannten Referenzen keine lagengewickelten Spulen betrachtet, sondern solche, die aus mehreren entlang der Achse axial positionierten Sektionen oder Pancakes bestehen.In References [1] and [2], the current carrying capacity of the coil at the axial ends is increased by providing a superconductor with higher current carrying capacity (larger conductor cross section, see reference [1]) for the corresponding windings. or superconductor with higher critical current density see Reference [2]) is used. A disadvantage of this solution is that in the coil no uniform superconductor can be used and that the different conductor pieces must be forced for low-impedance operation for series operation. In addition, in the cited references no sheet-wound coils are considered, but those consisting of several axially positioned sections or pancakes along the axis.
Eine weitere bekannte Möglichkeit, die Stromtragfähigkeit zu erhöhen, ist in Referenz [3] beschrieben: Ferromagnetische Flansche an den Spulenenden leiten den magnetischen Fluss um den Supraleiter herum und reduzieren dort die maximale Radialkomponente des Magnetfeldes. Die relativ schwache Magnetisierung von Ferromagneten schränkt die Effizienz dieser Methode jedoch deutlich ein.Another known way of increasing the current carrying capacity is described in reference [3]: ferromagnetic flanges at the coil ends conduct the magnetic flux around the superconductor and reduce there the maximum radial component of the magnetic field. However, the relatively weak magnetization of ferromagnets significantly limits the efficiency of this method.
In Referenz [4] ist eine Anordnung offenbart, bei welcher die Windungszahl an den axialen Spulenenden reduziert ist. Allerdings handelt es sich bei dieser bekannten Spule um eine Anordnung aus mehreren Doppel-"Pancake"-Spulen und nicht um eine lagengewickelte Solenoid-Spule der eingangs definierten Art. Außerdem wird mit dieser Anordnung nicht beabsichtigt, die radiale Feldkomponente an den Spulenenden zu verringern.Reference [4] discloses an arrangement in which the number of turns at the axial coil ends is reduced. However, this known coil is an array of multiple double "pancake" coils and not a sheet wound solenoid coil of the type defined in the introduction. In addition, this arrangement is not intended to reduce the radial field component at the coil ends.
Bei diesen Publikationen wurde zwar erkannt, dass durch Reduzieren des Radialfeldes am Rand einer HTS Spule das Betriebsfeld im Arbeitsvolumen erhöht werden kann, doch wurden als Lösung zur Reduktion des Radialfeldes jeweils Spulen unterschiedlicher Längen vorgeschlagen. Die Erhöhung der Betriebsfelder im Arbeitsvolumen aufgrund dieser Maßnahme ist jedoch gering. Zudem sind bei den bekannten Anordnungen notwendigerweise jeweils zusätzliche Wickelkörper erforderlich.While it has been recognized in these publications that by reducing the radial field at the edge of an HTS coil, the operating field in the working volume can be increased, but coils of different lengths have been proposed as the solution for reducing the radial field. However, the increase of the operating fields in the work volume due to this measure is small. In addition, each additional bobbin necessarily required in the known arrangements.
Referenz [5] offenbart eine supraleitfähige Magnetspulenanordnung mit mindestens einer Sektion aus supraleitfähigem Bandleiter, die in einer zylindrischen Wickelkammer zwischen zwei Endflanschen mehrlagig, solenoidartig durchgehend gewickelt ist, und die sich dadurch auszeichnet, dass die Sektion einen axialen Bereich reduzierter Stromdichte bzw. Notch-Bereich aufweist.Reference [5] discloses a superconducting magnet coil assembly having at least one section of superconducting tape conductor wound in a cylindrical winding chamber between two end flanges in a multi-layered, solenoid-like manner, characterized in that the section has an axial region of reduced current density or notch region having.
Referenz [6] beschreibt eine supraleitende homogene Hochfeldmagnetspule, bei der im axialen Endbereich die Stromdichte derart verringert ist, dass die auf die Windungen wirkenden Kräfte klein gehalten werden können.Reference [6] describes a superconducting homogeneous high field magnetic coil in which the current density is reduced in the axial end region so that the forces acting on the windings can be kept small.
Die Referenz [7] offenbart eine supraleitfähige Magnetspulenanordnung, die zumindest eine Sektion aus supraleitfähigem Bandleiter enthält, welche in einer zylindrischen Wickelkammer zwischen zwei Endflanschen mehrlagig, solenoidartig durchgehend gewickelt ist. Die bekannte Anordnung zeichnet sich dadurch aus, dass die Sektion einen axialen Bereich reduzierter Stromdichte (= "Notch"-Bereich) aufweist. Allerdings ist die Windungszahl an den Spulenrändern gegenüber dem Inneren dieses axialen Bereichs nicht reduziert, wodurch keine Reduktion des Radialfeldes erreicht wird.The reference [7] discloses a superconducting magnet coil assembly including at least one section of superconducting tape conductor wound in a cylindrical winding chamber between two end flanges in a multi-layered, solenoid-like manner. The known arrangement is characterized in that the section has an axial region of reduced current density (= "notch" region). However, the number of turns at the coil edges is not reduced with respect to the interior of this axial region, whereby no reduction of the radial field is achieved.
Aus Referenz [11] ist eine Spulengeometrie bekannt, bei welcher der Innendurchmesser der Wicklungen am Spulenende aufgeweitet wird, um den Einfluss der vertikalen Feldkomponente auf die kritische Stromdichte zu vermindern. Bei dieser Anordnung wird unter anderem der innere Spulenradius axial variiert, was aus verschiedenen Gründen nicht besonders vorteilhaft ist und dem entsprechenden Merkmal einer gattungsgemäßen Spule diametral entgegengesetzt ist. Außerdem ist ein Mitwickeln von nicht-supraleitendem Material in einer bezogen auf die Symmetrieachse z zylindersymmetrisch lagengewickelten Spule nicht einmal andeutungsweise offenbart.From reference [11], a coil geometry is known in which the inner diameter of the windings at the coil end is widened in order to reduce the influence of the vertical field component on the critical current density. In this arrangement, inter alia, the inner coil radius is axially varied, which is not particularly advantageous for various reasons and is diametrically opposite to the corresponding feature of a generic coil. Moreover, co-winding of non-superconductive material in a cylindrically symmetric wound coil with respect to the axis of symmetry z is not even hinted at.
Die bereits oben zitierte Referenz [0] schließlich beschreibt eine gattungsgemäße supraleitfähige Magnetspulenanordnung mit den eingangs definierten Merkmalen, handelt aber ausschließlich von Pancake-Spulen, nicht jedoch von auf die Symmetrieachse z zylindersymmetrisch lagengewickelten Spulen, wobei auch ein Mitwickeln von nicht-supraleitendem Material nicht offenbart ist.The already cited above reference [0] finally describes a generic superconducting magnet coil arrangement with the features defined above, but is exclusively of pancake coils, but not on the axis of symmetry z cylindrically symmetric wound coils, which also does not disclose co-winding of non-superconducting material is.
Der vorliegenden Erfindung liegt demgegenüber die Aufgabe zugrunde, eine supraleitfähige Magnetspulenanordnung der eingangs definierten Art sowie ein Verfahren zu deren Design mit besonders einfachen technischen Mitteln so zu modifizieren, dass die oben diskutierten Einschränkungen von derartigen supraleitfähigen Magnetspulenanordnungen, welche typischerweise an den axialen Enden der Spule auftreten, deutlich abgemildert werden und die Stromtragfähigkeit der Spule erheblich erhöht wird.The present invention is based on the object to modify a superconducting magnet coil assembly of the type defined above and a method for their design with particularly simple technical means so that the above-discussed limitations of such superconducting magnet coil assemblies, which typically occur at the axial ends of the coil , be significantly mitigated and the current carrying capacity of the coil is significantly increased.
Diese Aufgabe wird auf einfach zu realisierende, wirkungsvolle Weise mit ohne Weiteres zur Verfügung stehenden technischen Mitteln durch eine supraleitfähige Magnetspulenanordnung der eingangs definierten Art gelöst, welche sich dadurch auszeichnet, dass die Spule bezogen auf die Symmetrieachse zylindersymmetrisch lagengewickelt ist, dass die Spule derart ausgelegt ist, dass das erzeugte Magnetfeld eine Feldkomponente Br senkrecht zur Stromrichtung und zur Symmetrieachse aufweist, deren Maximum im Spulenvolumen mindestens um 5% kleiner ist als wenn, bei gleichem Betriebsfeld der Spule im Zentrum des Arbeitsvolumens, die Ausdehnungen des vierten und fünften Spulenbereichs entlang der Symmetrieachsenrichtung zur Spulenmitte hin verkürzt wären, wobei die relative Verkürzung der Ausdehnungen dem Verhältnis von erster Spulenrandwindungszahl zur maximalen Spulenrandwindungszahl im vierten Spulenbereich sowie dem Verhältnis von zweiter Spulenrandwindungszahl zur maximalen Spulenrandwindungszahl im fünften Spulenbereich entspricht, bei gleich bleibender Anzahl Windungen des anisotropen Supraleiters in der Spule, dass das Minimum der supraleitenden Stromtragfähigkeit des anisotropen Supraleiters in der Spule mindestens 3% höher ist als wenn, bei gleichem Betriebsfeld der Spule im Arbeitsvolumen, die Ausdehnungen des vierten und fünften Spulenbereichs entlang der Symmetrieachsenrichtung zur Spulenmitte hin verkürzt wären, wobei die relative Verkürzung der Ausdehnungen dem Verhältnis von erster Spulenrandwindungszahl zur maximalen Spulenrandwindungszahl im vierten Spulenbereich sowie dem Verhältnis von zweiter Spulenrandwindungszahl zur maximalen Spulenrandwindungszahl im fünften Spulenbereich entspricht, bei gleich bleibender Anzahl Windungen des anisotropen Supraleiters in der Spule, und dass im ersten Spulenbereich entlang der Symmetrieachse zum Rand hin zusammen mit dem Supraleitermaterial auch nicht-supraleitendes Material mitgewickelt ist.This object is achieved in an easy to implement, effective manner with readily available technical means by a superconducting magnet coil assembly of the type defined, which is characterized in that the coil is cylindrically symmetrical wound relative to the axis of symmetry, that the coil is designed in that the generated magnetic field has a field component B r perpendicular to the current direction and to the axis of symmetry whose maximum in the coil volume is at least 5% smaller than if, with the same operating field of the coil in the center of the working volume, the expansions of the fourth and fifth coil regions along the symmetry axis direction to the coil center, wherein the relative shortening of the expansions corresponds to the ratio of the first coil edge turn number to the maximum coil edge turn number in the fourth coil section and the ratio of the second coil edge turn number to the maximum coil edge turn number in the fifth coil section, with the number of turns of the anisotropic superconductor in the coil being equal the minimum of the superconducting current carrying capacity of the anisotropic superconductor in the coil is at least 3% higher than if, with the same operating field of the coil in the working volume, the expansions of the fourth and fifth coil region were shortened along the direction of symmetry to the center of the coil, the relative shortening of the expansions Ratio of the first coil edge turn number to the maximum coil edge turn number in the fourth coil area and the ratio of the second coil edge turn number to the maximum coil edge turn number in the fifth spool corresponds len range, with the same number of turns of the anisotropic superconductor in the coil, and that in the first coil region along the axis of symmetry to the edge along with the superconducting material and non-superconducting material is also co-wound.
Unter gewissen Umständen ist die Stromtragfähigkeit von Spulen, die aus anisotropem Supraleiter gewickelt sind, an den axialen Enden durch die Magnetfeldkomponente in radialer Richtung limitiert. Die vorliegende Erfindung schlägt eine supraleitfähige Magnetspulenanordnung vor, welche es ermöglicht, diese Feldkomponente abzuschwächen und die Stromtragfähigkeit der Spule zu erhöhen.In some circumstances, the current carrying capacity of coils wound from anisotropic superconductor is limited at the axial ends by the magnetic field component in the radial direction. The present invention proposes a superconducting magnet coil arrangement which makes it possible to attenuate this field component and to increase the current carrying capacity of the coil.
Die Stromtragfähigkeit des Supraleiters an den axialen Spulenenden wird erhöht, indem die radiale Komponente des Magnetfeldes abgeschwächt wird. Dies wird erfindungsgemäß durch eine Absenkung der Windungszahl in Bereichen an den Spulenenden erreicht, wobei sowohl der Querschnitt als auch die Art des verwendeten Supraleiters unverändert bleiben können.The current carrying capacity of the superconductor at the axial coil ends is increased by weakening the radial component of the magnetic field. This is inventively achieved by lowering the number of turns in areas at the coil ends, wherein both the cross section and the type of superconductor used can remain unchanged.
Die geringere Windungszahl in der Nähe der axialen Spulenenden führt dazu, dass der radiale magnetische Fluss axial über einen größeren Bereich verteilt wird und die Radialkomponente des Magnetfeldes lokal kleiner wird. Dadurch wiederum wird dort die Stromtragfähigkeit des Supraleiters und folglich der gesamten Spule erhöht.The smaller number of turns in the vicinity of the axial coil ends causes the radial magnetic flux to be distributed axially over a larger area and the radial component of the magnetic field locally becomes smaller. As a result, in turn, the current carrying capacity of the superconductor and consequently of the entire coil is increased there.
Ein Vorteil dieser erfindungsgemäßen Anordnung besteht in der gleichmäßigeren Verteilung der Stromtragfähigkeit des Supraleiters in der gesamten Spule. Dadurch wird der Supraleiter für den Stromfluss besser ausgenutzt, die Spule kann bei einem höheren Strom betrieben werden. Die benötigte Menge an Supraleitermaterial und somit die Herstellungskosten sind folglich geringer als bei vergleichbaren herkömmlichen Anordnungen. Andererseits kann mit derselben Supraleitermenge ein höheres Magnetfeld im Spulenzentrum erzeugt werden.An advantage of this arrangement according to the invention consists in the more uniform distribution of the current carrying capacity of the superconductor in the entire coil. This makes better use of the superconductor for current flow, and allows the coil to operate at a higher current. The required amount of superconducting material and thus the manufacturing costs are consequently lower than in comparable conventional arrangements. On the other hand, with the same amount of superconductor, a higher magnetic field can be generated in the coil center.
Im Gegensatz zu Anordnungen, bei welchen das Radialfeld passiv, also beispielsweise mit ferromagnetischen Elementen, beeinflusst wird, ist die erfindungsgemäße Anordnung durch die bewusste Wahl der Windungsverteilung in der Spule deutlich effizienter. Außerdem sind zur Realisierung der Anordnung keine zusätzlichen Wickelkörper notwendig, was räumlichen Platz und Materialkosten spart.In contrast to arrangements in which the radial field is influenced passively, that is, for example, with ferromagnetic elements, the arrangement according to the invention is significantly more efficient due to the deliberate choice of the winding distribution in the coil. In addition, no additional bobbins are necessary for the realization of the arrangement, which saves space and material costs.
Besonders vorteilhaft gegenüber dem Stand der Technik ist die Möglichkeit der Verwendung eines einheitlichen Supraleiters in der gesamten Spule. Sind nämlich verschiedene Supraleiter notwendig, z.B. aus unterschiedlichem supraleitenden Material oder verschiedener Geometrie, so müssen diese zwangsläufig untereinander verbunden sein, damit der elektrische Strom die Leiterstücke in Serie durchfließen kann. Das Verbinden verschiedener Supraleiter kann technisch sehr herausfordernd und aufwändig sein.Particularly advantageous over the prior art is the possibility of using a uniform superconductor in the entire coil. Namely, different superconductors are necessary, for example, from different superconducting material or different geometry, so they must be necessarily interconnected so that the electrical current can flow through the conductor pieces in series. The connection of different superconductors can be technically very challenging and expensive.
Das zusammen mit dem Supraleitermaterial zum Rand hin mitgewickelte nicht-supraleitende Material dient als Füllmaterial und trägt zur mechanischen Stabilität des Wickelpakets bei.The non-superconducting material co-wound with the superconductor material toward the edge serves as a filler and contributes to the mechanical stability of the winding package.
Bei einer ersten Klasse von Ausführungsformen der erfindungsgemäßen Magnetspulenanordnung ist im vierten und/oder im fünften Spulenbereich die radial aufsummierte Anzahl der Windungen entlang der Symmetrieachse z zum Rand hin in einer oder mehreren diskreten Stufen reduziert. Dadurch kann die Radialfeldkomponente in den Spulenenden reduziert und die Stromtragfähigkeit deutlich gesteigert werden.In a first class of embodiments of the magnetic coil arrangement according to the invention, in the fourth and / or fifth coil region, the radially summed number of turns along the axis of symmetry z is reduced towards the edge in one or more discrete steps. As a result, the radial field component can be reduced in the coil ends and the current carrying capacity can be significantly increased.
Bei einer dazu alternativen Klasse von Ausführungsformen ist im vierten und/oder im fünften Spulenbereich die radial aufsummierte Windungszahl entlang der Symmetrieachse z zum Rand hin quasi-kontinuierlich reduziert. Dies ermöglicht eine noch feinere Modellierung der Radialfeldkomponente entlang den axialen Spulenenden und eine bessere Optimierung der Stromtragfähigkeit.In an alternative class of embodiments, in the fourth and / or in the fifth coil region, the radially accumulated number of turns along the symmetry axis z is reduced quasi-continuously towards the edge. This allows for even finer modeling of the radial field component along the axial coil ends and better current carrying capacity optimization.
Besonders bevorzugt sind auch Ausführungsformen der Erfindung, bei denen die Wicklungen im ersten radial begrenzten rechteckigen Spulenbereich aus einem einzigen ununterbrochenen Supraleiterstück gewickelt sind, d.h. ohne sogenannte Joints, welche verschiedene Leiterstücke untereinander verbinden. Somit wird der elektrische Widerstand in der Spule sehr gering gehalten. Joints zwischen HTS-Supraleitern weisen normalerweise einen gewissen elektrischen Widerstand auf und führen zu einer Drift des Magnetfeldes, wenn die Spule nicht mit einer Stromquelle gestützt wird. Joints, welche im Wickelpaket der Spule untergebracht sind, können außerdem die Feldhomogenität im Arbeitsvolumen verschlechtern. Nicht zuletzt hat das Wickeln eines einzigen Leiterstücks auch produktionstechnische Vorteile.Embodiments of the invention are also particularly preferred in which the windings in the first radially limited rectangular coil region are wound from a single, uninterrupted superconductor piece, ie without so-called joints, which connect different conductor pieces to one another. Thus, the electrical resistance in the coil is kept very low. Joints between HTS superconductors usually have some electrical resistance and cause drift of the magnetic field when the coil is not supported by a power source. Joints, which are housed in the winding package of the coil, can also worsen the field homogeneity in the working volume. Not least, the winding of a single conductor piece also has production advantages.
Weitere vorteilhafte Ausführungsformen der erfindungsgemäßen Magnetspulenanordnung zeichnen sich dadurch aus, dass der zweite Spulenbereich mit mindestens 20%, insbesondere mit 40% bis 60%, vorzugsweise mit etwa 50% weniger Leiterwindungen gewickelt ist als ein axial anschließender Spulenbereich gleicher Geometrie. Durch eine Reduktion der Windungszahl in diesem Größenbereich ist die Radialfeldkomponente an den axialen Spulenenden besonders stark reduziert und die Stromtragfähigkeit der Spule deutlich erhöht.Further advantageous embodiments of the magnet coil arrangement according to the invention are characterized in that the second coil region is wound with at least 20%, in particular with 40% to 60%, preferably with approximately 50% fewer conductor windings than an axially adjacent coil region of the same geometry. By reducing the number of turns in this size range, the radial field component at the axial coil ends is particularly greatly reduced and the current carrying capacity of the coil is significantly increased.
Ganz besonders bevorzugt ist eine Klasse von Ausführungsformen der erfindungsgemäßen Spulenanordnung, bei denen das von der Spule erzeugte Magnetfeld eine Feldkomponente Br senkrecht zur Stromrichtung und zur Symmetrieachse z aufweist, deren Maximum im Spulenvolumen mindestens um 10%, vorzugsweise um bis zu 50%, kleiner ist, als wenn -bei gleichem Betriebsfeld der Spule im Zentrum des Arbeitsvolumens- die Ausdehnungen des vierten und fünften Spulenbereichs entlang der Symmetrieachsenrichtung zur Spulenmitte hin verkürzt wären, wobei die relative Verkürzung der Ausdehnungen dem Verhältnis von erster und zweiter Spulenrandwindungszahl zur maximalen Spulenrandwindungszahl entspricht bei gleich bleibender Anzahl Windungen des anisotropen Supraleiters in der Spule. Bei einer solch starken Reduktion der Radialkomponente Br ist die Erhöhung der Stromtragfähigkeit der Spule besonders lohnenswert.Very particular preference is given to a class of embodiments of the coil arrangement according to the invention, in which the magnetic field generated by the coil has a field component B r perpendicular to the current direction and the axis of symmetry z whose maximum in the coil volume at least 10%, preferably by up to 50% smaller is as if, with the same operating field of the coil in the center of the working volume, the expansions of the fourth and fifth coil sections were shortened along the direction of symmetry to the coil center, the relative shortening of the expansions corresponding to the ratio of first and second coil edge turns to maximum coil edge turns remaining number of turns of the anisotropic superconductor in the coil. With such a strong reduction of the radial component B r , increasing the current-carrying capacity of the coil is particularly worthwhile.
Vorteilhaft sind auch Ausführungsformen der Erfindung, die sich dadurch auszeichnen, dass das Minimum der supraleitenden Stromtragfähigkeit des anisotropen Supraleiters in der Spule mindestens 5%, insbesondere bis 30%, vorzugsweise bis zu 50% höher ist, als wenn -bei gleichem Betriebsfeld der Spule im Zentrum des Arbeitsvolumens- die Ausdehnungen des vierten und fünften Spulenbereichs entlang der Symmetrieachsenrichtung zur Spulenmitte hin verkürzt wären, wobei die relative Verkürzung der Ausdehnungen dem Verhältnis von erster und zweiter Spulenrandwindungszahl zur maximalen Spulenrandwindungszahl entspricht bei gleich bleibender Anzahl Windungen des anisotropen Supraleiters in der Spule. Je größer die Stromtragfähigkeit der Spule ist, umso größere Magnetfelder können erzeugt werden, bzw. umso weniger Supraleitermaterial wird zur Erzeugung einer gegebenen Feldstärke im Arbeitsvolumen benötigt.Also advantageous are embodiments of the invention, which are characterized in that the minimum of the superconducting current carrying capacity of the anisotropic superconductor in the coil at least 5%, in particular up to 30%, preferably up to 50% higher than when -bei same operating field of the coil in Center of the Arbeitsvolumens- the expansions of the fourth and fifth coil region along the direction of symmetry axis to the coil center would be shortened, the relative shortening of the expansions of the ratio of first and second Spulenrandwindungszahl to maximum Spulenrandwindungszahl corresponds to a constant number of turns of the anisotropic superconductor in the coil. The greater the current carrying capacity of the coil, the larger magnetic fields can be generated, or the less superconducting material is needed to generate a given field strength in the working volume.
Vorteilhafte Weiterbildungen dieser Ausführungsformen sind dadurch gekennzeichnet, dass das mitgewickelte nicht-supraleitende Material Folieneinlagen umfasst. Folien lassen sich besonders gut zwischen den supraleitenden Windungen unterbringen und können auf einfache Weise in der gewünschten Geometrie zugeschnitten werden.Advantageous developments of these embodiments are characterized in that the co-wound non-superconducting material comprises foil inserts. Films are particularly well placed between the superconducting windings and can be easily cut to the desired geometry.
In einer weiteren vorteilhaften Ausführungsform wird die Reduktion der Windungszahl an den axialen Spulenenden dadurch bewerkstelligt, dass an den Spulenrändern über mehrere direkt übereinanderliegende Lagen keine Windungen gewickelt werden.In a further advantageous embodiment, the reduction in the number of turns at the axial coil ends is accomplished in that no windings are wound on the coil edges over a plurality of layers lying directly above one another.
In den Rahmen der vorliegenden Erfindung fällt auch ein Verfahren zur Auslegung einer supraleitfähigen Magnetspulenanordnung der oben beschriebenen, erfindungsgemäßen Art, welches sich dadurch auszeichnet, dass eine aus anisotropem Supraleiter bezogen auf die Symmetrieachse zylindersymmetrisch gewickelte Spule, bei welcher im ersten Spulenbereich entlang der Symmetrieachse zum Rand hin zusammen mit dem Supraleitermaterial auch nicht-supraleitendes Material mitgewickelt wird, wobei die Stromtragfähigkeit der Spule, welche anfänglich an den axialen Enden durch die radiale Magnetfeldkomponente begrenzt wird, durch Verringerung der Windungszahl in den axialen Endbereichen derart optimiert wird, dass ihre supraleitende Stromtragfähigkeit erhöht wird. Bei der Optimierung wird die maximale radiale Magnetfeldkomponente reduziert, indem folgende Parameter variiert werden:
- die Größe der Optimierungsbereiche an den axialen Spulenenden, in welchen die Windungszahl verringert wird
- die Anzahl Windungen in den Optimierungsbereichen und
- die Verteilung der Windungen innerhalb der Optimierungsbereiche.
- the size of the optimization regions at the axial coil ends in which the number of turns is reduced
- the number of turns in the optimization areas and
- the distribution of turns within the optimization ranges.
Die Optimierungsbereiche können dabei auch über die Spulenenden der Ausgangsspule hinausragen, d.h. die optimierte Spule kann axial durchaus länger sein als die Ausgangsspule. Die genaue Windungsverteilung in den Optimierungsbereichen kann ferner so gewählt werden, dass sie in Bezug auf die Kräfte im Wickelpaket und/oder wickeltechnisch vorteilhaft ist.The optimization regions may also protrude beyond the coil ends of the output coil, i. The optimized coil can be quite longer axially than the output coil. The exact winding distribution in the optimization regions may also be selected such that it is advantageous in terms of the forces in the winding package and / or winding technology.
Der Vorteil dieses Verfahrens besteht darin, dass es zu einem Spulendesign führt, welches eine erhöhte Stromtragfähigkeit aufweist und dass die Spule für den Betrieb bei einer gegebenen Magnetfeldstärke eine insgesamt geringere Supraleitermenge benötigt wird als für die Ausgangsspule.The advantage of this method is that it leads to a coil design which has an increased current carrying capacity and that the coil is required for operation at a given magnetic field strength a total lower superconductor amount than for the output coil.
Die Erfindung ist in der Zeichnung dargestellt und wird anhand von Ausführungsbeispielen näher erläutert. Es zeigen:
- Fig. 1
- eine schematische Schnitt-Darstellung durch eine erste Ausführungsform der erfindungsgemäßen Magnetspulenanordnung in einer die Symmetrieachse z enthaltenden Ebene mit der relativen geometrischen Anordnung der fünf definierten Spulenbereiche in einer ersten Ausführungsform (aus Symmetriegründen ist nur eine Hälfte der Spule dargestellt);
- Fign. 2a-d
- schematische Schnittdarstellungen weiterer Ausführungsformen der erfindungsgemäßen Magnetspulenanordnung; wobei
Fig. 2a ,Fig.2c jeweils die Wickel-Anordnung undFig. 2b ,Fig.2d jeweils die zugehörigen die Spulenbereiche einer zweiten beziehungsweise dritten Ausführungsform zeigen; - Fign. 3a,b
- eine schematische Wickelanordnung (
Fig. 3a ) sowie die zugehörigen Spulenbereiche (Fig. 3b ) einer vierten Ausführungsform; - Fign. 4a,b
- einen schematischen Vergleich der randseitigen Radial-Felder bei einer herkömmlichen (
Fig. 4a ) und bei einer erfindungsgemäß modifizierten (Fig. 4b ) Magnetspulenanordnung; und - Fign. 5a,b
- einen schematischen Vergleich des Verlaufs der magnetischen Feldlinien bei einer erfindungsgemäßen (
Fig. 5a ) und bei einer herkömmlichen (Fig. 5b ) Magnetspulenanordnung nach dem Stand der Technik.
- Fig. 1
- a schematic sectional view through a first embodiment of the magnetic coil assembly according to the invention in a plane containing the symmetry axis z with the relative geometric arrangement of the five defined coil areas in one first embodiment (for symmetry reasons, only one half of the coil is shown);
- FIGS. 2a-d
- schematic sectional views of further embodiments of the magnetic coil assembly according to the invention; in which
Fig. 2a .Figure 2c each the winding arrangement andFig. 2b .Figure 2d each associated with the coil areas of a second and third embodiment, respectively; - FIGS. 3a, b
- a schematic winding arrangement (
Fig. 3a ) as well as the associated coil areas (Fig. 3b ) of a fourth embodiment; - FIGS. 4a, b
- a schematic comparison of the edge-side radial fields in a conventional (
Fig. 4a ) and in an inventively modified (Fig. 4b ) Magnetic coil assembly; and - FIGS. 5a, b
- a schematic comparison of the course of the magnetic field lines in an inventive (
Fig. 5a ) and in a conventional (Fig. 5b ) Magnetic coil arrangement according to the prior art.
Im Wickelpaket der Spule sind die Spulenbereiche 1 bis 5 innerhalb des rechteckigen Spulenquerschnitts definierbar, die den bestimmten, erfindungsgemäßen Anforderungen genügen, wie im Folgenden beschrieben wird.In the winding package of the coil, the
Die Windungszahl an den axialen Enden der Spule ist reduziert, daher ist mindestens eine Wickellage nicht mit Supraleiter vollgewickelt. Folglich lässt sich ein erster radial begrenzter rechteckiger Spulenbereich 1 definieren, welcher den Spulenquerschnitt radial teilweise und entlang der Symmetrieachse z vollständig überdeckt und keine vollgewickelte Wickellage enthält. Der erste Spulenbereich 1 enthält zudem zwei Unterbereiche, welche die Reduktion der Windungszahl an einem axialen Ende des ersten Spulenbereichs charakterisieren: Ein zweiter Spulenbereich 2, der vom Spulenrand her den ersten Spulenbereich 1 entlang der Symmetrieachse auf 10% seiner Länge überdeckt, und ein dritter Spulenbereich 3, der an den zweiten Spulenbereich 2 anschließt und den ersten Spulenbereich 1 entlang der Symmetrieachse auf 40% seiner Länge überdeckt. Der zweite und dritte Bereich 2, 3 sind dadurch ausgezeichnet, dass die Anzahl Windungen im zweiten Spulenbereich 2 mindestens viereinhalbmal kleiner ist als jene im dritten Spulenbereich 3.The number of turns at the axial ends of the coil is reduced, therefore at least one winding layer is not fully wound with superconductor. Consequently, a first radially limited
Die Reduktion der Windungszahl an den axialen Spulenenden führt in der erfindungsgemäßen Magnetspulenanordnung zu einer Reduktion der maximalen Radialfeldkomponente und infolgedessen zu einer Erhöhung der Stromtragfähigkeit, welche durch den Vergleich mit einer modifizierten Anordnung charakterisiert sind. Dazu werden ein vierter Spulenbereich 4 und ein fünfter Spulenbereich 5 definiert, welche den Spulenquerschnitt radial komplett und axial von je einem der beiden Spulenränder her 10% entlang der Symmetrieachse z überdecken. In der Vergleichsanordnung sind der vierte und der fünfte Spulenbereich 4, 5 entlang der Symmetrieachsenrichtung zur Spulenmitte hin verkürzt, sodass bei gleichbleibender Supraleitermenge keine weiteren Windungen mehr Platz finden würden. Die erfindungsgemäße Anordnung zeichnet sich nun dadurch aus, dass ihre maximale Radialfeldkomponente mindestens um 5% kleiner und ihre Stromtragfähigkeit um mindestens 3% größer ist als in der Vergleichsanordnung.The reduction of the number of turns at the axial coil ends leads in the magnetic coil arrangement according to the invention to a reduction of the maximum radial field component and consequently to an increase of the current carrying capacity, which are characterized by the comparison with a modified arrangement. For this purpose, a
Im folgenden Ausführungsbeispiel wird eine erfindungsgemäße Spulenanordnung beschrieben und mit einer herkömmlichen Spule mit folgenden Eigenschaften verglichen:
- Geometrie des anisotropen Supraleiters: 2 mm x 0.2 mm (Querschnitt)
- Radius des radial inneren Spulenrandes: 20 mm
- Radius des radial äußeren Spulenrandes: 36 mm
- Spulenlänge in axialer Richtung: 192 mm (96 Windungen pro Wickellage)
- Anzahl Wickellagen: 80; alle Lagen sind vollgewickelt.
- Geometry of the anisotropic superconductor: 2 mm x 0.2 mm (cross section)
- Radius of the radially inner coil edge: 20 mm
- Radius of the radially outer coil edge: 36 mm
- Coil length in the axial direction: 192 mm (96 turns per winding layer)
- Number of winding layers: 80; all layers are fully wound.
Die erfindungsgemäße Spulenanordnung ist aus demselben Supraleiter gewickelt und durch folgende Eigenschaften charakterisiert:
- Radius des radial inneren / äußeren Spulenrandes: 20 mm / 32.8 mm
- Spulenlänge 240 mm
- 64 Lagen alternierend vollgewickelt (120 Windungen) - nicht vollgewickelt (z.B. gemäß schematischer Darstellung
Fig. 2a ), wobei jede nicht vollgewickelte Lage beginnend vom einen Spulenrand entlang der Symmetrieachse wie folgt aufgebaut ist:- 48 mm ohne Windungen, 144 mm mit 72 Windungen, 48 mm ohne Windungen.
- Radius of the radially inner / outer coil edge: 20 mm / 32.8 mm
- Coil length 240 mm
- 64 layers alternately fully wound (120 turns) - not fully wound (eg according to schematic representation
Fig. 2a ), each non-fully wound layer starting from the one coil edge along the symmetry axis being constructed as follows:- 48 mm without turns, 144 mm with 72 turns, 48 mm without turns.
Zur Überprüfung der Eigenschaften der erfindungsgemäßen Spulenanordnung kann als erster Spulenbereich 1 eine beliebige nicht vollgewickelte Lage (z.B. die radial innerste) definiert werden. Der darin enthaltene dritte Spulenbereich 3 beinhaltet dann 84 und somit 7mal (also mehr als viereinhalbmal) so viele Windungen wie der zweite Spulenbereich 2 mit 12 Windungen. Weiter erhält man nach Verkürzung des vierten bzw. fünften Spulenbereichs 4,5 gemäß der Erfindungsbeschreibung die Vergleichsspule, welche in der folgenden Tabelle aufgeführt ist:
Das maximale Radialfeld der erfindungsgemäßen Spulenanordnung ist um rund 40% kleiner als dasjenige der Vergleichsspule. Entsprechend ist die Stromtragfähigkeit um 16% erhöht.The maximum radial field of the coil arrangement according to the invention is about 40% smaller than that of the comparison coil. Accordingly, the current carrying capacity is increased by 16%.
Im Vergleich zur herkömmlichen Spule kann die im Beispiel berechnete erfindungsgemäße Spule dank der erhöhten Stromtragfähigkeit bei einem höheren Strom betrieben werden. Für die Erzeugung desselben Feldes im Arbeitsvolumen (4.7 T) und bei gleicher Stromauslastung (Verhältnis Betriebsstrom zu Stromtragfähigkeit) reduziert sich die zum Wickeln benötigte Supraleitermenge um 25%.Compared to the conventional coil, the inventive coil calculated in the example can be operated at a higher current thanks to the increased current carrying capacity. For generating the same field in the working volume (4.7 T) and at the same current load (ratio of operating current to current carrying capacity) reduces the amount of superconductors required for winding by 25%.
Die
Der Spulenbereich 1' (
Der Spulenbereich 1" (
Die
Es ist zu beachten, dass die axialen Grenzen der Spulenbereiche 2 bis 5 nicht unbedingt den Grenzen zwischen vollgewickelten und nicht vollgewickelten Bereichen in der Spule entsprechen müssen.It should be noted that the axial limits of
Die
Bei der erfindungsgemäß modifizierten Anordnung in
Bei gleicher Stromauslastung, aber höherem Strom, erzeugt die erfindungsgemäße Spule in ihrem Zentrum ein größeres Magnetfeld als die herkömmliche Referenzspule, da ihre Stromtragfähigkeit größer ist als diejenige der Referenzspule.At the same current load, but higher current, the coil of the invention generates in its center a larger magnetic field than the conventional reference coil, since their current carrying capacity is greater than that of the reference coil.
In den
Bei der in
Ein wesentlicher Vorteil der erfindungsgemäßen Anordnung besteht unter anderem in der gleichmäßigeren Verteilung der Stromtragfähigkeit des Supraleiters in der gesamten Spule. Dadurch wird der Supraleiter besser ausgenutzt und die Spule kann bei einem höheren Strom betrieben werden. Die benötigte Supraleitermenge und damit die Materialkosten sind geringer bzw. mit derselben Supraleitermenge kann ein höheres Magnetfeld im Spulenzentrum erzeugt werden.An essential advantage of the arrangement according to the invention is inter alia the more uniform distribution of the current carrying capacity of the superconductor in the entire coil. As a result, the superconductor is better utilized and the coil can be operated at a higher current. The required amount of superconductor and thus the material costs are lower or with the same amount of superconductor a higher magnetic field can be generated in the coil center.
Besonders vorteilhaft gegenüber dem Stand der Technik ist die Verwendung eines einheitlichen Supraleitermaterials in der gesamten Spule.Particularly advantageous over the prior art is the use of a uniform superconducting material in the entire coil.
- 1; 1'; 1"; 1"'1; 1'; 1 "; 1" '
- erster radial begrenzter rechteckiger Spulenbereichfirst radially limited rectangular coil area
- 2; 2'; 2"; 2'"2; 2 '; 2 "; 2 '"
- zweiter radial begrenzter rechteckiger Spulenbereichsecond radially limited rectangular coil area
- 3; 3'; 3"; 3'"3; 3 '; 3 "; 3 '"
- dritter radial begrenzter rechteckiger Spulenbereichthird radially limited rectangular coil area
- 44
- vierter rechteckiger Spulenbereichfourth rectangular coil area
- 55
- fünfter rechteckiger Spulenbereichfifth rectangular coil area
- zz
- Symmetrieachse der MagnetspulenanordnungSymmetry axis of the magnet coil arrangement
Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften
- [0]
CHEN, X.Y., JIN, J.X.: Evaluation of Step-Shaped Solenoidal Coils for Current-Enhanced SMES Applications. IEEE Transactions an Applied Superconductivity, Vol. 24, 2014, No. 5, S. 1-4. IEEE Xplore [online]. D01: 10.1109/TASC.2014.2356572 - [1]
US-A 5,525,583 - [2]
US 2015/0213930 A1 - [3]
US-A 5,659,277 - [4]
US-A 5,581,220 - [5]
DE 102004043987 B3 - [6]
DE 39 23 456 C2 - [7]
DE 10 2004 043 988 B3 - [8] "
Factors determining the magnetic field generated by a solenoid made with a superconductor having current anisotropy", M. Däumling and R. Flükiger, (1995) Cryogenics, Vol. 35. pp. 867-870 - [9] "
Effects of conductor anisotropy on the design of BiSCCO sections of 25 T solenoids", H.W. Weijers et al. (2003), Supercond. Sci. Technol. Vol. 16, pp. 672-681 - [10] "
Radial magnetic field reduction to improve critical current of HTS solenoid", J. Kang et al, Physica. C., 2002, vol. 372-76 (3), pp. 1368-1372 - [11]
JPH06-5414A
- [0]
CHEN, XY, JIN, JX: Evaluation of Step-Shaped Solenoidal Coils for Current-Enhanced SMES Applications. IEEE Transactions on Applied Superconductivity, Vol. 24, 2014, no. 5, p. 1-4. IEEE Xplore [online]. D01: 10.1109 / TASC.2014.2356572 - [1]
US-A 5,525,583 - [2]
US 2015/0213930 A1 - [3]
US-A 5,659,277 - [4]
US-A 5,581,220 - [5]
DE 102004043987 B3 - [6]
DE 39 23 456 C2 - [7]
DE 10 2004 043 988 B3 - [8] "
Factors determining the magnetic field generated by a superconductor having current anisotropy ", M. Daumling and R. Flükiger, (1995) Cryogenics, Vol. 35. pp. 867-870 - [9] "
Effects of conductor anisotropy on the design of BiSCCO sections of 25 T solenoids ", HW Weijers et al. (2003), Supercond Sci., Technol., Vol. 16, pp. 672-681 - [10] "
Radical magnetic field reduction to improve critical current of HTS solenoid ", J. Kang et al., Physica., C., 2002, vol. 372-76 (3), pp. 1368-1372 - [11]
JPH06-5414A
Claims (14)
und wobei die Spule aufweist:
dass die Spule bezogen auf die Symmetrieachse (z) zylindersymmetrisch lagengewickelt ist,
dass die Spule derart ausgelegt ist, dass das erzeugte Magnetfeld eine Feldkomponente Br senkrecht zur Stromrichtung und zur Symmetrieachse (z) aufweist, deren Maximum im Spulenvolumen mindestens um 5% kleiner ist als wenn, bei gleichem Betriebsfeld der Spule im Zentrum des Arbeitsvolumens, die Ausdehnungen des vierten und fünften Spulenbereichs (4 bzw. 5) entlang der Symmetrieachsenrichtung zur Spulenmitte hin verkürzt wären, wobei die relative Verkürzung der Ausdehnungen dem Verhältnis von erster Spulenrandwindungszahl zur maximalen Spulenrandwindungszahl im vierten Spulenbereich (4) sowie dem Verhältnis von zweiter Spulenrandwindungszahl zur maximalen Spulenrandwindungszahl im fünften Spulenbereich (5) entspricht, bei gleich bleibender Anzahl Windungen des anisotropen Supraleiters in der Spule,
dass das Minimum der supraleitenden Stromtragfähigkeit des anisotropen Supraleiters in der Spule mindestens 3% höher ist als wenn, bei gleichem Betriebsfeld der Spule im Arbeitsvolumen, die Ausdehnungen des vierten und fünften Spulenbereichs (4 bzw. 5) entlang der Symmetrieachsenrichtung zur Spulenmitte hin verkürzt wären, wobei die relative Verkürzung der Ausdehnungen dem Verhältnis von erster Spulenrandwindungszahl zur maximalen Spulenrandwindungszahl im vierten Spulenbereich (4) sowie dem Verhältnis von zweiter Spulenrandwindungszahl zur maximalen Spulenrandwindungszahl im fünften Spulenbereich (5) entspricht, bei gleich bleibender Anzahl Windungen des anisotropen Supraleiters in der Spule,
und dass im ersten Spulenbereich (1; 1' 1"; 1"') entlang der Symmetrieachse (z) zum Rand hin zusammen mit dem Supraleitermaterial auch nicht-supraleitendes Material mitgewickelt ist.A superconducting magnet coil assembly having a hollow coil with a constant inner radius for generating an operating magnetic field in a working volume about an axis of symmetry (z), the coil comprising windings of an anisotropic superconductor whose superconducting current carrying capacity in a magnetic field perpendicular to the current direction in the conductor from both the field amplitude and is dependent on the field direction within a plane perpendicular to the current direction, and with a sectional plane containing the axis of symmetry (z) and intersecting the coil, the coil having a rectangular coil cross-section in the sectional plane defined by a radially inner and radially outer and an axially first and axially second coil edge, defined by the position of a radially innermost and a radially outermost turn of the coil with the smallest or largest distance to the axis of symmetry (z), and by the position of an axially first and an axially last wind the coil with the smallest or largest coordinate along the symmetry axis direction,
and wherein the coil comprises:
that the coil in relation to the axis of symmetry (z) is cylindrically symmetrical position wound,
in that the generated magnetic field has a field component B r perpendicular to the current direction and to the axis of symmetry (z) whose maximum in the coil volume is at least 5% smaller than if, with the same operating field of the coil in the center of the working volume Extentions of the fourth and fifth coil region (4 or 5) along the axis of symmetry to the coil center would be shortened, wherein the relative shortening of the expansions of the ratio of first coil edge turn number to maximum coil edge turn number in the fourth coil portion (4) and the ratio of second coil edge turn number to the maximum coil edge turn number in the fifth coil region (5) corresponds, with a constant number of turns of the anisotropic superconductor in the coil,
that the minimum of the superconducting current-carrying capacity of the anisotropic superconductor in the coil is at least 3% higher than when, for the same operating field of the coil in the working volume, the dimensions of the fourth and fifth coil section (4 or 5) would be shortened along the axial direction of symmetry to the coil towards the center, wherein the relative shortening of the extents is the ratio of the first coil edge turn number to the maximum coil edge turn number in the fourth coil area (4) and the ratio of the second coil edge turn number to the maximum coil edge turn number in the fifth coil area (5) corresponds, with the same number of turns of the anisotropic superconductor in the coil,
and that in the first coil region (1; 1 '1 ";1"') along the axis of symmetry (z) to the edge, non-superconducting material is also co-wound with the superconductor material.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015223991.8A DE102015223991A1 (en) | 2015-12-02 | 2015-12-02 | Magnetic coil arrangement with anisotropic superconductor and method for its design |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3176795A1 true EP3176795A1 (en) | 2017-06-07 |
EP3176795B1 EP3176795B1 (en) | 2022-01-26 |
Family
ID=57394404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16200176.2A Active EP3176795B1 (en) | 2015-12-02 | 2016-11-23 | Solenoid assembly with anisotropic superconductor |
Country Status (3)
Country | Link |
---|---|
US (1) | US10332665B2 (en) |
EP (1) | EP3176795B1 (en) |
DE (1) | DE102015223991A1 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6165411A (en) * | 1984-09-07 | 1986-04-04 | Mitsubishi Electric Corp | Superconductive device |
DE3923456C2 (en) | 1989-07-15 | 1992-12-24 | Bruker Analytische Messtechnik Gmbh, 7512 Rheinstetten, De | |
JPH065414A (en) | 1992-06-22 | 1994-01-14 | Toshiba Corp | Superconducting magnet |
US5525583A (en) | 1994-01-24 | 1996-06-11 | American Superconductor Corporation | Superconducting magnetic coil |
US5581220A (en) | 1994-10-13 | 1996-12-03 | American Superconductor Corporation | Variable profile superconducting magnetic coil |
US5659277A (en) | 1994-09-07 | 1997-08-19 | American Superconductor Corporation | Superconducting magnetic coil |
DE102004043988B3 (en) | 2004-09-11 | 2006-05-11 | Bruker Biospin Gmbh | Superconductive magnet coil arrangement |
DE102004043987B3 (en) | 2004-09-11 | 2006-05-11 | Bruker Biospin Gmbh | Superconductive magnet coil arrangement |
US20150213930A1 (en) | 2012-03-13 | 2015-07-30 | Massachusetts Institute Of Technology | No-Insulation Multi-Width Winding for High Temperature Superconducting Magnets |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2533225T3 (en) * | 2010-07-30 | 2015-04-08 | Babcock Noell Gmbh | High temperature superconducting magnetic system |
US20160351310A1 (en) * | 2013-05-29 | 2016-12-01 | Christopher Mark Rey | Low Temperature Superconductive and High Temperature Superconductive Amalgam Magnet |
GB2519811A (en) * | 2013-10-31 | 2015-05-06 | Siemens Plc | Superconducting magnet assembly |
-
2015
- 2015-12-02 DE DE102015223991.8A patent/DE102015223991A1/en not_active Ceased
-
2016
- 2016-11-23 EP EP16200176.2A patent/EP3176795B1/en active Active
- 2016-12-02 US US15/368,325 patent/US10332665B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6165411A (en) * | 1984-09-07 | 1986-04-04 | Mitsubishi Electric Corp | Superconductive device |
DE3923456C2 (en) | 1989-07-15 | 1992-12-24 | Bruker Analytische Messtechnik Gmbh, 7512 Rheinstetten, De | |
JPH065414A (en) | 1992-06-22 | 1994-01-14 | Toshiba Corp | Superconducting magnet |
US5525583A (en) | 1994-01-24 | 1996-06-11 | American Superconductor Corporation | Superconducting magnetic coil |
US5659277A (en) | 1994-09-07 | 1997-08-19 | American Superconductor Corporation | Superconducting magnetic coil |
US5581220A (en) | 1994-10-13 | 1996-12-03 | American Superconductor Corporation | Variable profile superconducting magnetic coil |
DE102004043988B3 (en) | 2004-09-11 | 2006-05-11 | Bruker Biospin Gmbh | Superconductive magnet coil arrangement |
DE102004043987B3 (en) | 2004-09-11 | 2006-05-11 | Bruker Biospin Gmbh | Superconductive magnet coil arrangement |
US20150213930A1 (en) | 2012-03-13 | 2015-07-30 | Massachusetts Institute Of Technology | No-Insulation Multi-Width Winding for High Temperature Superconducting Magnets |
Non-Patent Citations (5)
Title |
---|
CHEN XIAO Y ET AL: "Evaluation of Step-Shaped Solenoidal Coils for Current-Enhanced SMES Applications", IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, IEEE SERVICE CENTER, LOS ALAMITOS, CA, US, vol. 24, no. 5, 1 October 2014 (2014-10-01), pages 1 - 4, XP011560034, ISSN: 1051-8223, [retrieved on 20140925], DOI: 10.1109/TASC.2014.2356572 * |
CHEN, X.Y.; JIN, J.X.: "Evaluation of Step-Shaped Solenoidal Coils for Current-Enhanced SMES Applications", IEEE TRANSACTIONS AN APPLIED SUPERCONDUCTIVITY, vol. 24, no. 5, 2014, pages 1 - 4 |
H.W. WEIJERS ET AL.: "Effects of conductor anisotropy on the desiqn of BiSCCO sections of 25 T solenoids", SUPERCOND. SCI. TECHNOL., vol. 16, 2003, pages 672 - 681 |
J. KANG ET AL.: "Radial maqnetic field reduction to improve critical current of HTS solenoid", PHYSICA. C., vol. 372-76, no. 3, 2002, pages 1368 - 1372 |
M. DÄUMLING; R. FLÜKIGER: "Factors determininq the maqnetic field generated by a solenoid made with a superconductor having current anisotropy", CRYOGENICS, vol. 35, 1995, pages 867 - 870 |
Also Published As
Publication number | Publication date |
---|---|
EP3176795B1 (en) | 2022-01-26 |
US10332665B2 (en) | 2019-06-25 |
US20170162310A1 (en) | 2017-06-08 |
DE102015223991A1 (en) | 2017-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10260246B4 (en) | Coil arrangement with variable inductance | |
DE69517186T2 (en) | SUPRALINE MAGNETIC COIL | |
EP2717278A1 (en) | Inductive fault current limiter with split secondary coil assembly | |
DE102010042598A1 (en) | Superconductive magnetic resonance-magnet arrangement for use in magnetic resonance-magnet system, has slot dividing dual pancake coil into partial coils that are rotated and/or displaced with dual coil to produce spatial field pattern | |
DE3923456C2 (en) | ||
DE10157590A1 (en) | Winding for a transformer or a coil | |
EP3772071A1 (en) | Magnetic coil system with integrated joints, in particular hts lts joints, and associated magnet assembly | |
DE102022100647A1 (en) | Choke for a multi-wire system | |
EP3336568B1 (en) | Magnet assembly with superconducting closed hts shims | |
DE10260728B4 (en) | Method for calculating the conductor profile of a superconductor from the bobbin to the joint and associated devices | |
DE102010050828A1 (en) | Current-compensated choke with increased stray inductance | |
EP3399528B1 (en) | Superconductive solenoid assembly with multiple layer-wound strip-shaped superconductors | |
EP3252783A1 (en) | Magnet assembly with field shaping element for reducing the radial field components in the region of a hts section | |
DE3108161C2 (en) | Winding for a transformer or a choke | |
EP3176795B1 (en) | Solenoid assembly with anisotropic superconductor | |
DE2129997A1 (en) | Switchable superconductor | |
DE102009013318A1 (en) | Superconducting current limiter with magnetic field triggering | |
DE19719738B4 (en) | AC oxide superconductor cable and method of making an AC oxide superconductor ribbon wire and an AC oxide superconductor wire | |
DE1242265B (en) | Power cryotron | |
DE3531322C2 (en) | ||
DE102015208470A1 (en) | Electric coil device for current limitation | |
WO2020011625A1 (en) | Superconducting magnetic coil system | |
WO2014009009A1 (en) | Superconducting magnet array | |
DE3013347A1 (en) | ELECTROMAGNETIC DEVICE | |
EP3433882A1 (en) | Superconductor device for operating in an external magnetic field |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20171117 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BRUKER SWITZERLAND AG |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210216 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20211012 |
|
INTG | Intention to grant announced |
Effective date: 20211028 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1465916 Country of ref document: AT Kind code of ref document: T Effective date: 20220215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016014450 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220526 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220426 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220427 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220526 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502016014450 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20221027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20221130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221130 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1465916 Country of ref document: AT Kind code of ref document: T Effective date: 20221123 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231123 Year of fee payment: 8 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20231221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221123 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231124 Year of fee payment: 8 Ref country code: CH Payment date: 20231202 Year of fee payment: 8 Ref country code: DE Payment date: 20231120 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20161123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |