EP3172331A1 - Procédé de production de molécules organiques à partir de biomasse fermentescible - Google Patents

Procédé de production de molécules organiques à partir de biomasse fermentescible

Info

Publication number
EP3172331A1
EP3172331A1 EP15756198.6A EP15756198A EP3172331A1 EP 3172331 A1 EP3172331 A1 EP 3172331A1 EP 15756198 A EP15756198 A EP 15756198A EP 3172331 A1 EP3172331 A1 EP 3172331A1
Authority
EP
European Patent Office
Prior art keywords
fermentation
fatty acids
volatile fatty
microorganisms
organic molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP15756198.6A
Other languages
German (de)
English (en)
Inventor
Régis NOUAILLE
Jérémy PESSIOT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Afyren SAS
Original Assignee
Afyren SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Afyren SAS filed Critical Afyren SAS
Publication of EP3172331A1 publication Critical patent/EP3172331A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F1/00Fertilisers made from animal corpses, or parts thereof
    • C05F1/005Fertilisers made from animal corpses, or parts thereof from meat-wastes or from other wastes of animal origin, e.g. skins, hair, hoofs, feathers, blood
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F1/00Fertilisers made from animal corpses, or parts thereof
    • C05F1/007Fertilisers made from animal corpses, or parts thereof from derived products of animal origin or their wastes, e.g. leather, dairy products
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F1/00Fertilisers made from animal corpses, or parts thereof
    • C05F1/02Apparatus for the manufacture
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F9/00Fertilisers from household or town refuse
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F9/00Fertilisers from household or town refuse
    • C05F9/02Apparatus for the manufacture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/107Apparatus for enzymology or microbiology with means for collecting fermentation gases, e.g. methane
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/20Degassing; Venting; Bubble traps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M43/00Combinations of bioreactors or fermenters with other apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M99/00Subject matter not otherwise provided for in other groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P39/00Processes involving microorganisms of different genera in the same process, simultaneously
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/023Methane
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/52Propionic acid; Butyric acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/54Acetic acid
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Definitions

  • the present invention relates to a method for producing molecules from fermentable biomass. This production is made from biomass to the production of molecules of interest and directly usable, similar to a production of molecules in a biorefinery.
  • the process comprises, inter alia, an anaerobic fermentation step.
  • fermentable biomass is meant here an organic substrate, preferably but not exclusively, non-food, obtained from waste, by-products and co-products formed from organic materials, that is to say biomass, resulting from human activities whether domestic, industrial, agricultural, forestry, aquaculture, agro-industrial or livestock.
  • organic substrate of manure, the organic fraction of household refuse, slaughterhouse co-products, cellulosic or lignocellulosic residues from agro-industry such as those resulting from the transformation.
  • sugar cane bagasse
  • sunflower or soy the organic substrate, preferably but not exclusively, non-food, obtained from waste, by-products and co-products formed from organic materials, that is to say biomass, resulting from human activities whether domestic, industrial, agricultural, forestry, aquaculture, agro-industrial or livestock.
  • organic substrate of manure, the organic fraction of household refuse, slaughterhouse co-products, cellulosic or lignocellulosic residues from agro-industry such as those resulting from
  • anaerobic fermentation is meant a fermentation carried out under anaerobic conditions by microorganisms, eukaryotic or prokaryotic, such as bacteria, fungi, algae or yeasts.
  • molecule means here, but not exclusively, so-called precursor molecules. These precursors subsequently allow the production of other molecules which have an energy and / or chemical interest higher than that of the precursors, it being understood that they are organic molecules. Examples of molecules having an energy and / or chemical interest are molecules having a carbon chain, such as acids, hydrocarbons, methane, esters, alcohols, amides or polymers.
  • microorganisms used in such processes are generally genetically modified microorganisms.
  • precursor molecules are subsequently transformed, by known chemical routes, into different usable molecules. The transformation into final molecules takes place later and independently of the production phase of these so-called precursor molecules.
  • US-A-6,043,392 discloses such a process for producing ketones by heat treatment of volatile fatty acid salts obtained by anaerobic fermentation. Part of the volatile fatty acids are also converted into hydrocarbons, aldehydes, alcohols. In addition to a limited number of end products obtained by such a process, it turns out that it is carried out in two distinct stages, namely the fermentation and then the treatment of the AGV salts. In other words, the process is not continuous. It is known that the production of volatile fatty acids carried out by anaerobic fermentation induces an acidification of the medium detrimental to microorganisms.
  • AGVs are extracted after a given fermentation time.
  • US-A-4,358,537 a process, in situ, for producing carbohydrates from a peat plot.
  • AGVs are not a sought-after product as a precursor.
  • US-A-2013/309 740 describes an anaerobic fermentation whose object is the production of methane, the AGV is a waste to be eliminated.
  • the invention aims more particularly at remedying these drawbacks by proposing a method making it possible to produce, in a regular and controlled manner, various so-called biobased molecules, that is to say molecules derived from biomass, in a biorefinery-type approach.
  • the subject of the invention is a process for producing organic molecules from fermentable biomass, comprising an anaerobic fermentation step, said fermentation producing so-called precursor fermentative metabolites, such as volatile fatty acids, these so-called precursor metabolites being transformed into final organic molecules by non-fermentative route, the process comprising at least one step of fermenting an organic substrate formed by fermentable biomass in a fermentation reactor to production as fermentative metabolites of fatty acids volatile compounds (AGV) having a carbon chain of 1 to 8 carbons, characterized in that it comprises at least the following stages: - a) extracting, between the beginning of production and the maximum production of said volatile fatty acids, at least a portion of the volatile fatty acids of the fermentation medium so that the production of fermentative metabolites by the microorganisms is not affected and introduce at least a portion of the liquid phase, containing microorganisms, resulting from the extraction in the fermentation reactor,
  • AUV fatty acids volatile compounds
  • step a) synthesizing organic molecules from fermentative metabolites produced in the fermentation reactor or volatile fatty acids extracted in step a),
  • the extraction step not only makes it possible to avoid the accumulation of volatile fatty acids in the medium, but also to preserve the microorganisms, the extraction being carried out under non-lethal conditions for all the microorganisms.
  • the extraction is biocompatible, that is to say that it does not interfere with or degrade the biological medium in which it is carried out.
  • the activity of the microorganisms is maintained at a high level, close to the initial level, throughout the fermentation cycle, most of the microorganisms not being inhibited by this extraction step.
  • such a method may comprise one or more of the following features:
  • step a a mixture of microorganisms from defined natural ecosystems is inoculated in the fermentation reactor.
  • Steps a) to c) are carried out continuously.
  • the residues from the process are suitable for use as an amendment, fertilizer or as a co-product such as methane.
  • the invention also relates to an installation for implementing a method according to one of the preceding characteristics, characterized in that it comprises at least:
  • a synthesis organ such as a chemical reactor or an electrolysis cell, capable of ensuring the synthesis of fermentative metabolites obtained during the fermentation into final organic molecules.
  • such an installation may include the following features:
  • FIG. 1 is a simplified diagram representative of the method that is the subject of the invention.
  • the substrate 1 used here is advantageously untreated, namely that it has undergone no physicochemical or enzymatic pretreatment.
  • the substrate 1 may have undergone mechanical treatment, for example grinding 2, facilitating the action of microorganisms on the substrate.
  • This is mainly constituted by biomass 3 resulting from human activities.
  • the substrate 1 has undergone a physicochemical or enzymatic pretreatment, although this mode is not a preferred embodiment.
  • the substrate 1 is used as supplied, provided that its fermentable power is preserved.
  • This fermentable power is characterized by the methanogenic potential of biomass, commonly referred to as the BMP (Biochemical Methane Potential). Controlled dehydration, as described in patent application FR1302119 filed by the applicant allows to maintain over a period of several months this fermentable power.
  • Some substrates also contain organic molecules, such as organic acids, which will not influence, or marginally, the fermentation process.
  • organic molecules such as organic acids, which will not influence, or marginally, the fermentation process.
  • these molecules can be found in the fermentation medium and participate, for example as a precursor, in the production of the final organic molecules.
  • nutrients and / or mineral compounds in order to increase bacterial growth and / or regulate the pH of the substrate and / or co-products promoting the production of AGVs or other molecules.
  • nutrients and / or mineral compounds in order to increase bacterial growth and / or regulate the pH of the substrate and / or co-products promoting the production of AGVs or other molecules.
  • the addition in a small amount, of NaOH, KOH, Ca (OH) 2 , K 2 HPO 3 , KH 2 PO 3, glycerol or vitamin or trace element solutions. This addition is represented by the arrow A.
  • the substrate is introduced into a fermentation reactor 4, known per se and dimensioned for the desired production, whether the latter is on a laboratory scale to carry out tests or on an industrial scale in the case of a production.
  • the fermentation reactor 4 or bioreactor has a volume ranging from a few liters to several hundred cubic meters, as needed.
  • Microorganisms are advantageously but not mandatory, previously introduced into the fermentation reactor 4, at least during startup, in an amount sufficient to initiate the fermentation. It is conceivable that the quantity of microorganisms introduced depends, among others, on the substrate. These microorganisms are inoculated in the form of a consortium, illustrated by the arrow M. By the term consortium, is meant a mixture or mixture of microorganisms, eukaryotic or prokaryotic, whether bacteria, yeasts, fungi or algae. These microorganisms M come mainly from natural ecosystems suitable for carrying out a fermentation under anaerobic conditions.
  • ecosystems the anaerobic zone of aquatic environments such as the anoxic zone of certain lakes, soils, marshes, sewage sludge, the rumen of ruminants or the intestine of termites.
  • anoxic zone of certain lakes, soils, marshes, sewage sludge, the rumen of ruminants or the intestine of termites can vary significantly. It turns out that this qualitative and quantitative diversity of microorganisms surprisingly provides a robustness and adaptability to the fermentation process to ensure optimal use of substrates, whatever the composition of the latter and this under conditions variable fermentation.
  • the substrate 1 is used as it is, that is to say, it is not sterilized or, more generally, it is not cleared of microorganisms that it contains beforehand. its introduction into the bioreactor, it turns out that these microorganisms endemic to the substrate 1 are, de facto, incorporated in the consortium M or at least associated with the latter in the bioreactor 4.
  • the fermentation 5 to produce volatile fatty acids has, according to the process of the invention, interesting characteristics such as being carried out in a non-sterile condition.
  • the consortium M of microorganisms makes it possible to optimally use the substrate 1, without adding products such as enzymes.
  • the fermentation 5 takes place under anaerobic conditions, more specifically when the redox potential is less than -300mV, advantageously between -550mV and -400mV, when the pH is less than 8, preferably between 4 and 7.
  • the fermentation 5 is advantageously limited to the production of fermentative metabolites called precursors, therefore volatile fatty acids or AGV.
  • the fermentation carried out according to the invention with the consortium M makes it possible, unlike fermentations with defined strains, to degrade not only the sugars (pentoses, hexoses or others) present in the substrate 1 but also the major part of the substrate 1 components such as proteins, nucleic acids, lipids, carboxylic acids.
  • the yield of such fermentation is particularly high, waste production being low.
  • the fermentation of complex molecules such as proteins is particularly interesting because it allows, inter alia, the production of isobutyric acid, 2-methyl butyric acid and isovaleric acid.
  • These branched volatile fatty acids are precursors with high potential for the production of branched molecules such as branched hydrocarbons which have advantages as a fuel.
  • the fermentation 5 produces, among the various compounds generated, precursors for a synthesis of bio-fuels and biomolecules of interest for chemistry.
  • this fermentation leads, in a first step, to the formation of volatile fatty acids having from one to eight carbons, mainly from two to four carbons such as acetic acid, propionic acid and butyric acid. .
  • Volatile fatty acids with a longer chain, thus greater than four carbons such as valeric and caproic, heptanoic or octanoic acids, are also obtained.
  • the metabolites produced in quantity during the fermentation are volatile fatty acids, predominantly of two to six carbons.
  • carboxylic acids with long carbon chains (C8 to C22) which will be fermented or transformed, during the subsequent chemical conversion steps, into hydrocarbons such as octane and kerosene.
  • carboxylic acids can be added, according to the arrow C, in their raw form or by means of substrates containing them as certain vegetable products which contain oils.
  • substrates containing them such as certain vegetable products which contain oils.
  • the fermentation can be carried out batchwise or batchwise, continuously batchwise or fed-batch or continuously in one or more fermentation reactors arranged in series.
  • Fermentation is performed using conventional fermentation techniques to generate anaerobic conditions. For this the use of a carbon dioxide atmosphere is preferred, although other gases such as nitrogen or argon may be considered to achieve anaerobic conditions.
  • the temperature in the fermentation reactor (s) 4 is between 20 and 60 ° C, preferably between 35 and 42 ° C.
  • the pH is less than 8, preferably between 4 and 7.
  • the redox potential is less than -300mV, advantageously between -550mV and -400mV.
  • the means for managing and maintaining the temperature and the pH are known per se.
  • the fermentation is maintained for a time sufficient to produce volatile fatty acids in the liquid phase, illustrated by reference 6.
  • the fermentation time varies, among others, depending on the substrate 1, the microorganisms M present, the initial concentration of AGV and fermentation conditions.
  • the fermentation period is between 1 and 7 days, preferably between 2 and 4 days.
  • the concentration of AGV 6 obtained in the fermentation medium at the end of this period is variable, but is generally of the order of 10 to 20 g / L, depending on the volatile fatty acids, it being understood that under certain conditions it can to be greater than 35 g / L for example close to 50 g / l.
  • the fermentation medium is at an acidic pH, which is generally between 4 and 6. It is conceivable that fermentation produces other compounds, in particular gases 7, such as dioxide. carbon, hydrogen or methane which, advantageously, are recovered and used in known manner, according to reference 8.
  • Carbon dioxide is, for example, reintroduced into the fermentation reactor 4 to participate in the maintenance of anaerobic conditions. Alternatively, it is used as a carbon source for the production of photosynthetic biomass. Other metabolites are produced, for example lactic acid, esters, alcohols. These funds can either be reintroduced into the bioreactor 4, to continue the fermentation 5, or be used for other applications, as is or after transformation.
  • the next step is extraction 9 of the volatile fatty acids 6 thus formed.
  • These by reactions known per se, will produce, in a next step 10, so-called biosourced molecules, according to the defined needs.
  • they form a substrate for a so-called secondary fermentation for produce volatile fatty acids with longer carbon chain.
  • This fermentation can be conducted in the same reactor, in the continuity of the first fermentation, or, alternatively, in another reactor.
  • mention may be made of the secondary fermentation by certain microorganisms such as Megasphaera edelsnii or Clostridium kluyveri, of acetic and butyric acids into caproic and caprylic acids. Such fermentation thus makes it possible to increase the amounts of certain AGV initially present in a limited amount.
  • the volatile fatty acids 6 produced in the liquid phase by the anaerobic fermentation and which are, at least in part, extracted are under conditions such that the extraction 9 does not affect, or at least marginal, the production of volatile fatty acids by the microorganisms present in the fermentation medium.
  • volatile fatty acids are extracted from the fermentation medium, de facto acidification of the medium is reduced by these acids.
  • the extraction method chosen is not lethal for all the microorganisms
  • the residual liquid phase 1 1, after extraction 9 also contains a certain amount of microorganisms. alive, so potentially active.
  • this liquid phase 1 1 there is a concentration of volatile fatty acids 6 lower than that of the fermentation medium, it is therefore possible to reinject it into the fermentation reactor 4.
  • the pH of the medium is raised, but the medium is also resuspended with microorganisms, ensuring the fermentation 5, by extraction 9 of the acidic compounds 6.
  • the extraction 9 is advantageously carried out in the liquid phase. It is conducted continuously or sequentially, for example with extraction every 12 hours. In all cases, the extraction of a part of the volatile fatty acids is carried out between the beginning of production and the maximum production of metabolites.
  • the extraction is carried out near the threshold of inhibition of microorganisms by volatile fatty acids. This threshold depends on, among other things, the substrate and the fermentation conditions.
  • the introduction of the liquid phase resulting from the extraction is carried out within a period which makes it possible to maintain a high level of production of the volatile fatty acids, that is to say close to the level at which the extraction has been made. .
  • the volatile fatty acids 6 are purified 12 and / or transformed, according to the step referenced 10, into other products, such as alkanes, alkenes, amides, amines, esters, polymers and the like. by techniques known per se such as distillation, electrosynthesis, esterification, amidation or polymerization.
  • a part of the volatile fatty acids 6 produced during the fermentation is not extracted but undergoes an electrosynthesis or electrolytic synthesis step.
  • hydrocarbons are produced, primarily from volatile fatty acids long carbon chain to acetate.
  • Electrosynthesis step 13 converts volatile fatty acids produced in large amounts of gaseous and liquid compounds via the known reactions of Kolbe and / or Hofer-Moest electrochemical decarboxylation. These two reactions occur simultaneously during the electrolysis synthesis but an adjustment is possible to favor one or the other of these reactions by modifying easily controllable parameters as described below. Various metabolites can be produced by playing on these parameters, which allows a flexible production of different molecules, both qualitatively and quantitatively.
  • Electrosynthesis 13 makes it possible to convert the volatile fatty acids directly into the fermentation medium. As a result, electrosynthesis is also a means of extracting volatile fatty acids from the fermentation medium. When other organic molecules such as carboxylic acids or alcohols are added to the volatile fatty acids, the range of hydrocarbons and products that can be formed increases.
  • the Applicant has found that the electrosynthesis step can be carried out in the fermentation medium, under mild reaction conditions, at ambient temperature and pressure, at 3V or more than 3V and at 1 mA / cm 2 or more. of 1 mA / cm 2 of current density at the anode, using, for example, platinum or carbon electrodes, for example graphite.
  • the pH of the aqueous phase containing the volatile fatty acids is between 2 and 1 1, preferably between 5.5 and 8.
  • the Kolbe reaction providing alkanes is favored, while under alkaline pH conditions it is the oxidative deprotonation of the Hofer-Moest reaction providing alkenes that is favored.
  • the AGVs thus carboxylic acids, with short and medium carbon chains must be in the form of carboxylates to be used. This is why a low pH will tend not only to reduce the concentration of volatile fatty acids in the form of anions but also the solubility of carboxylic acids or AGV medium carbon chain.
  • the pH can be adjusted, inter alia, with sodium hydroxide to maintain high carboxylate concentrations to be subjected to electrolysis. In general, there is no need to use organic solvents, the fermentation media being good electrolytes for the electrosynthesis step 13.
  • Organic solvents are necessary almost exclusively for the reagents poorly soluble in water, such as carboxylic acids or AGV with long carbon chains.
  • carboxylic acids or AGV with long carbon chains such as carboxylic acids or AGV with long carbon chains.
  • methanol, ethanol and isopropanol may be solvents of choice.
  • these carboxylic acids or AGV with long carbon chains can be easily separated and concentrated in order to undergo the electrolysis step in a second step and lead to high yields of electrolytic products.
  • the products formed respectively at the anode and at the cathode can be easily separated.
  • all the compounds obtained by electrosynthesis can be recovered in a single container and separated or transformed thereafter.
  • gaseous products 15 formed at the end of the electrosynthesis 13 such as hydrogen, carbon dioxide, alkanes, alkenes can be, by way of non-limiting example, compressed and separated by gas liquefaction. as previously indicated under reference 8.
  • the products 14 obtained at the end of this electrochemical conversion step are, among others, mixtures of hydrocarbons, hydrogen and carbon dioxide which contain no contaminant relative to, among others, , natural gas from the oil industry.
  • step 13 the non-transformed AGV residues 16 partially leave in step 6 to be extracted (step 9) and / or undergo a new electrosynthesis (step 13).
  • Part of the residues 16 is recycled to step 17, namely gasified, incinerated or converted.
  • Fermentative metabolites such as volatile fatty acids and residual substrates resulting from the different fermentation, extracting, or electrosynthesis stages, are methanized (step 17) to produce fertilizers and amendments, grouped under reference 18 and biogas.
  • This methanation step 17 is, according to an industrial ecology approach, also applied to a fraction of unfermented residues or substrates.
  • we produce energy and heat typically by cogeneration. This production of energy and heat is, at least in part, used to cover the energy requirements of the process.
  • the process of the invention makes it possible to produce, advantageously continuously, and with a high yield of the carbon-based molecules with a minimum loss of initial organic carbon.
  • Example 1 Discontinuous fermentation of slaughterhouse by-products in a non-sterile bioreactor mode
  • a 5L volume fermenter or bioreactor of useful volume containing an anaerobic culture medium 0.5 g / LK 2 HPO 4, 0.5 g / L KH 2 PO 4, 1.0 g / L MgSO 4, 0.1 g / L LCaCI2, 1 ml Hemin and 5 ml vitamin
  • anaerobic culture medium 0.5 g / LK 2 HPO 4, 0.5 g / L KH 2 PO 4, 1.0 g / L MgSO 4, 0.1 g / L LCaCI2, 1 ml Hemin and 5 ml vitamin
  • anaerobic culture medium 0.5 g / LK 2 HPO 4, 0.5 g / L KH 2 PO 4, 1.0 g / L MgSO 4, 0.1 g / L LCaCI2, 1 ml Hemin and 5 ml vitamin
  • a mixture of non-sterilized slaughterhouse waste blood, viscera, stercorals, meat waste, in ratio 1/1/1 / 2
  • Example 2 Semi-continuous fermentation of organic fractions of household waste bioreactor non-sterile mode.
  • Example 1 is repeated with the same culture medium but using a substrate composed of the fermentable fraction of the household waste at a concentration of 50 g / L dry matter instead of slaughterhouse waste.
  • extractions are carried out on the medium during fermentation.
  • the fermentation takes place over 2000 hours and several in situ extraction sequences are carried out in the bioreactor.
  • the extraction is of the liquid-liquid type, it being understood that the volatile fatty acids are always produced in the liquid phase and that the solvent used for this example is pentane.
  • the extraction can be carried out without irreversible constraints directly in the fermentation reactor 4. It is possible to carry out a continuous fermentation with the extraction of the metabolites. fermentation inhibitors, that is, by extracting the volatile fatty acids responsible for the acidosis of the medium as they are produced. Alternatively, these extraction operations may be performed in a second compartment, the latter compartment being able to be located in the bioreactor 4.
  • a solution of 1M sodium acetate was subjected to an electrolysis reaction using graphite electrodes with a current density of 100 mA / cm 2 .
  • the metabolites obtained in the gas phase are hydrogen (350 ml or 15 mmol), carbon dioxide (330 ml or 13.8 mmolC), methane (7 ml or 0.3 mmolC) and ethane ( 30 ml or 2.51 mmolC).
  • the metabolites obtained in the liquid phase are methyl acetate (66 mg or 0.9 mmol) and methanol (87 mg or 2.7 mmol).
  • the Cmol (Cmol.Product / Cmol.Substrate) balance of this reaction is 0.9 ⁇ 0.1.
  • the yields of hydrogen, carbon dioxide, ethane, methane, methyl acetate and methanol are respectively 473 ml / g of acetate, 446 ml / g of acetate, 41 ml / g of acetate, 10 ml / g acetate, 90 mg / g acetate and 1 18 mg / g acetate.
  • Example B
  • Example A is repeated but with 1M sodium propionate as the substrate. After 180 minutes, 56% of the initial propionate concentration was consumed. Hydrogen, methane, carbon dioxide, ethene and butane are obtained in the gas phase and ethanol and ethyl propionate are obtained in the liquid phase.
  • the amidation reaction is carried out in a reflux assembly from a mixture of a biosourced acetic acid solution and an ammonia solution under conditions stoichiometric.
  • the reaction mixture is heated at 80 ° C for 4 hours and then the excess reagents are distilled off.
  • the product of the reaction is recrystallized in order to obtain the biosourced acetamide.
  • the yield of the amidation reaction under these conditions is 63%.
  • Example C is repeated, but with a biosourced butyric acid solution and at a temperature of 90 ° C. After 5 hours and after crystallization of the biobased butyramide, the yield of the amidation reaction was 69%.
  • Example C is repeated with a mixture of biosourced volatile fatty acids (acetic acid, propionic acid, butyric acid, isobutyric acid, isovaleric acid, valeric acid, isocaproic acid, caproic acid, heptanoic acid, octanoic acid, etc.) derived from the extraction phase as described in the previous examples at a temperature of 85 ° C. After 6 hours, after removal of excess reagents by distillation and after recrystallization of the biosourced amides, the yield of the amidation reaction is 74%.
  • biosourced volatile fatty acids acetic acid, propionic acid, butyric acid, isobutyric acid, isovaleric acid, valeric acid, isocaproic acid, caproic acid, heptanoic acid, octanoic acid, etc.
  • the biosourced amides obtained are the amides corresponding to the biosourced carboxylic acids present in the mixture (acetamide, propanamide, isobutyramide, butyramide, isovaleramide, valeramide, isohexanamide, hexanamide, heptanamide and octanamide, etc.).
  • amidation reactions which make it possible to produce bio-sourced amides from biosourced volatile fatty acids can also be carried out with substituted amines in order to obtain secondary and tertiary amides.
  • Example F Esterification of a mixture of AGV
  • an equimolar mixture of biosourced volatile fatty acids obtained after fermentation and extraction (acetic acid, propionic acid, butyric acid, isobutyric acid, isovaleric acid, valeric acid, isocaproic acid, caproic acid, heptanoic acid, octanoic acid, phenyl acetic acid, phenyl propionic acid) (2 mL) ) and ethanol (1. 51 mL) is refluxed for 1 h15.
  • Sulfuric acid (54 ⁇ ) is initially added to the reaction medium as a catalyst.
  • phase chromatography gaseous ethyl esters corresponding to the acids present in the initial mixture that is to say in the example: ethyl acetate, ethyl propionate, ethyl isobutyrate, ethyl butyrate , ethyl isopentanoate, ethyl pentanoate, ethyl isohexanoate, ethyl hexanoate, ethyl heptanoate, ethyl octanoate, phenylacetate, ethyl and ethyl phenylpropionate.
  • a conversion yield of 69% of the carboxylic acids to esters is obtained.
  • fermentative metabolites such as AGV, namely according to Examples A to F and in a non-limiting manner, acetic, propionic, butyric, isobutyric, isovaleric, valeric, isocaproic, caproic, heptanoic, octanoic, phenyl acetic, phenylpropionic acid are easily used as precursors of final molecules of economic and energetic interest, it being understood that these metabolites are produced by fermentation.
  • the implementation of such a process involves not only the presence in the installation of at least one fermentation reactor but also at least one extraction member, adapted to implement the extraction step 9 and at the same time.
  • least one synthesis member adapted to implement the electrosynthesis step 13 or, alternatively, another chemical step.
  • Such an installation advantageously comprises storage members of the substrate 1 and / or products from the extraction and / or electrosynthesis and other chemical synthesis stages.
  • Management and control means such as temperature sensors, pH probes, are provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Fertilizers (AREA)

Abstract

Le procédé de production de molécules organiques à partir de biomasse fermentescible, comprend une étape de fermentation (5) anaérobie produisant des acides gras volatils (6), ces précurseurs étant transformés en molécules organiques finales par voie non fermentaire. Il comprend également au moins les étapes suivantes; a) extraire (9) au moins une partie des acides gras volatils du milieu de fermentation de sorte que la production de métabolites fermentaires par les microorganismes (M) n'est pas affectée et introduire une partie de la phase liquide (11) contenant des microorganismes issue de l'extraction (9), b) synthétiser (13) des molécules organiques à partir des métabolites fermentaires ou des acides gras volatils extraits à l'étape a), c) poursuivre les étapes a) à b) jusqu'à l'obtention, en quantité et en qualité, des molécules organiques finales. L'invention concerne également une installation de mise en œuvre du procédé.

Description

PROCÉDÉ DE PRODUCTION DE MOLÉCULES ORGANIQUES À PARTIR DE
BIOMASSE FERMENTESCIBLE
La présente invention concerne un procédé de production de molécules à partir de biomasse fermentescible. Cette production est réalisée à partir de biomasse jusqu'à la production de molécules présentant un intérêt et directement utilisables, de façon similaire à une production de molécules dans une bioraffinerie. Ici, le procédé comprend, entres autres, une étape de fermentation anaérobie.
Par biomasse fermentescible, on désigne ici un substrat organique, avantageusement mais non exclusivement, non alimentaire, obtenu à partir de déchets, sous-produits et coproduits formés de matières organiques, c'est-à-dire de la biomasse, issue des activités humaines, qu'elles soient domestiques, industrielles, agricoles, forestières, aquacoles, agro-industrielles ou issue de l'élevage. A titre d'exemple non limitatif, on peut citer comme substrat organique les fumiers, la fraction organique des ordures ménagères, les coproduits d'abattoir, des résidus cellulosiques ou ligno-cellulosiques provenant de l'agro-industrie tels ceux issus de la transformation de la canne à sucre (bagasse), du tournesol ou du soja.
Par fermentation anaérobie on entend une fermentation réalisée dans des conditions anaérobies par des microorganismes, eucaryotes ou procaryotes, tels que des bactéries, des champignons, des algues ou des levures.
Le terme molécule désigne ici, mais non exclusivement, des molécules dites précurseurs. Ces précurseurs permettent par la suite la production d'autres molécules qui présentent un intérêt énergétique et/ou chimique supérieur à celui des précurseurs, étant entendu qu'il s'agit de molécules organiques. On peut citer comme molécules ayant un intérêt énergétique et/ou chimique, par exemple, des molécules ayant une chaîne carbonée telles que des acides, des hydrocarbures, du méthane, des esters, des alcools, des amides ou des polymères.
Aujourd'hui, les molécules ayant un intérêt énergétique et chimique sont généralement issues de matières premières fossiles, telles les hydrocarbures. Leur production à partir de matières premières renouvelables, comme la biomasse, est donc une solution intéressante du point de vue économique et écologique. On connait ainsi des procédés de production d'un type donné de molécules à partir de substrat organique. On peut citer par exemple la production d'éthanol, qui est un composant important des biocarburants de première génération pour les véhicules, à partir de biomasse, essentiellement alimentaire telle que le maïs, le blé, la betterave ou la canne à sucre. De tels procédés, non seulement, ne produisent qu'un monotype de molécule valorisable mais une partie importante du carbone du substrat est transformée en coproduit de faible intérêt, comme le dioxyde de carbone. De plus, la récupération, par des moyens divers, des molécules ayant un intérêt conduit à la production d'une quantité importante de déchets, ce qui génère des problèmes environnementaux. Par ailleurs, les microorganismes utilisés dans de tels procédés sont généralement des microorganismes génétiquement modifiés. Pour remédier à cela on connait des procédés visant à produire, par fermentation de la biomasse généralement prétraitée ou alimentaire, des molécules dites précurseurs. Ces molécules sont par la suite transformées, par des voies chimiques connues, en différentes molécules utilisables. La transformation en molécules finales s'effectue postérieurement et indépendamment de la phase de production de ces molécules dites précurseurs.
US-A-6 043 392 décrit un tel procédé permettant de produire des cétones par un traitement thermique des sels d'acides gras volatils obtenus par fermentation anaérobie. Une partie des acides gras volatils est également convertie en hydrocarbures, en aldéhydes, en alcools. Outre un nombre limité de produits finaux obtenus par un tel procédé, il s'avère qu'il s'effectue en deux étapes distinctes, à savoir la fermentation puis le traitement des sels d'AGV. En d'autres termes, le procédé n'est pas continu. Il est connu que la production d'acides gras volatils effectuée par une fermentation anaérobie induit une acidification du milieu préjudiciable aux microorganismes. L'acidification du milieu induisant une inhibition des microorganismes, donc un ralentissement voir un arrêt de la fermentation, Il est nécessaire de travailler en discontinu. Pour cela, les AGV sont extraits après un temps de fermentation donné. On connait également par US-A-4 358 537 un procédé, in situ, de production de carbohydrates à partir d'une parcelle de tourbe. Ici, les AGV ne sont pas un produit recherché en tant que précurseur. De façon similaire, US-A-2013/309 740 décrit une fermentation anaérobie dont l'objet est la production de méthane, les AGV étant un déchet à éliminer. Ces procédés ne permettent donc pas une production rapide et en continue de molécules dites précurseurs, le rendement n'étant pas optimal.
Or, dans le cadre d'un procédé industriel de production de molécules par fermentation à partir de biomasse, il est important, pour garantir la productivité de l'installation, d'avoir un procédé dont le rendement et l'adaptabilité à la production de différentes molécules sont, non seulement, aussi élevés que possible mais surtout réguliers, maîtrisés tout en limitant la production de déchets et d'effluents à traiter ultérieurement. Ceci est d'autant plus important que les substrats organiques utilisés comme biomasse fermentescible sont principalement d'origine agricole, industrielle, domestique et/ou agro-alimentaire afin de garantir des volumes importants. De ce fait, on observe une grande variabilité, qualitative et quantitative, du substrat, cela en fonction de divers facteurs tels que le lieu ou la saison.
L'invention vise plus particulièrement à remédier à ces inconvénients en proposant un procédé permettant de produire de manière régulière et maîtrisée diverses molécules dites biosourcées, c'est-à-dire issues de la biomasse, cela dans une approche de type bioraffinerie.
A cet effet, l'invention a pour objet un procédé de production de molécules organiques à partir de biomasse fermentescible, comprenant une étape de fermentation anaérobie, ladite fermentation produisant des métabolites fermentaires dits précurseurs, tels des acides gras volatils, ces métabolites dits précurseurs étant transformés en molécules organiques finales par voie non fermentaire, le procédé comprenant au moins une étape consistant à conduire la fermentation d'un substrat organique formé par de la biomasse fermentescible dans un réacteur de fermentation jusqu'à la production comme métabolites fermentaires d'acides gras volatils (AGV) ayant une chaîne carbonée de 1 à 8 carbones, caractérisé en ce qu'il comprend au moins les étapes suivantes : - a) extraire, entre le début de production et le maximum de production desdits acides gras volatils, au moins une partie des acides gras volatils du milieu de fermentation de sorte que la production de métabolites fermentaires par les microorganismes n'est pas affectée et introduire au moins une partie de la phase liquide, contenant des microorganismes, issue de l'extraction dans le réacteur de fermentation,
- b) synthétiser des molécules organiques à partir des métabolites fermentaires produits dans le réacteur de fermentation ou des acides gras volatils extraits à l'étape a),
- c) poursuivre les étapes a) à b) jusqu'à l'obtention, en quantité et en qualité, des molécules organiques finales.
Un tel procédé permet de produire des métabolites fermentaires dits précurseurs, à savoir des acides gras volatils, en continu et en préservant la population de microorganismes présents dans le bioréacteur. En effet, l'étape d'extraction permet non seulement d'éviter l'accumulation d'acides gras volatils dans le milieu mais également de préserver les microorganismes, l'extraction étant effectuée dans des conditions non létales pour la totalité des microorganismes. En d'autres termes, l'extraction est biocompatible c'est-à-dire qu'elle n'interfère pas et ne dégrade pas le milieu biologique dans lequel elle est effectuée. De cette manière, on s'affranchit des problèmes liés à l'accumulation des précurseurs dans le réacteur de fermentation, par exemple de l'acidification du milieu de fermentation par accumulation des acides gras volatils produits qui sont nocifs pour les microorganismes. On maintient à un niveau élevé, proche du niveau initial, l'activité des microorganismes tout au long du cycle de fermentation, la plupart des microorganismes n'étant pas inhibée par cette étape d'extraction.
Selon des aspects avantageux mais non obligatoires de l'invention, un tel procédé peut comprendre une ou plusieurs des caractéristiques suivantes:
- avant l'étape a), on inocule dans le réacteur de fermentation un mélange de microorganismes provenant d'écosystèmes naturels définis.
- Les étapes a) à c) sont réalisées en continu. - Les résidus issus du procédé sont adaptés pour être utilisés comme amendement, fertilisants ou comme coproduit tel que le méthane.
L'invention concerne également une installation de mise en œuvre d'un procédé conforme à l'une des caractéristiques précédentes, caractérisée en ce qu'elle comprend au moins :
- un réacteur de fermentation,
- un organe d'extraction propre à assurer l'extraction des acides gras volatils contenus dans la phase liquide produite lors de la fermentation et
- un organe de synthèse, tel qu'un réacteur chimique ou une cellule d'électrolyse, propre à assurer la synthèse des métabolites fermentaires obtenus lors de la fermentation en molécules organiques finales.
Selon des aspects avantageux mais non obligatoires une telle installation peut comprendre les caractéristiques suivantes :
- Elle comprend au moins un organe de stockage du substrat.
L'invention sera mieux comprise et d'autres avantages de celle-ci apparaîtront plus clairement à la lecture de la description de plusieurs modes de réalisation de l'invention, donnée à titre d'exemple non limitatif et faite en référence aux dessins suivants dans lesquels:
- La figure 1 est un schéma simplifié représentatif du procédé objet de l'invention.
Les différentes étapes du procédé sont maintenant décrites en référence à plusieurs modes de réalisation, étant entendu que les étapes connues en soi ne sont pas détaillées. En particulier, il sera fait référence par la suite au diagramme de la figure 1 comme illustrant un mode avantageux de réalisation de l'invention. En particulier, le procédé est décrit dans le cas du régime permanent de la fermentation. En effet, les étapes relatives au démarrage de la fermentation sont connues en soi.
Tout d'abord le substrat 1 utilisé ici est, avantageusement, non traité, à savoir qu'il n'a subi aucun prétraitement physico-chimique ou enzymatique. En variante, le substrat 1 peut avoir subi un traitement mécanique, par exemple un broyage 2, facilitant l'action des microorganismes sur le substrat. Celui-ci est majoritairement constitué par de la biomasse 3 issue des activités humaines. A titre d'exemple non limitatif, on peut citer les déchets agricoles ou végétaux (paille, bagasse, drèche de maïs, herbes, bois, tonte) les déchets papetiers (carton, papier), les déchets agroalimentaires, les déchets d'abattoirs, la fraction organique des ordures ménagères, les effluents d'élevage (fumiers, lisiers, fientes), les algues, les déchets d'aquaculture, les déchets d'activité forestière ou les coproduits fermentescibles de l'industrie cosmétique. Dans un autre mode de réalisation, le substrat 1 a subi un prétraitement physico-chimique ou enzymatique, bien que ce mode ne soit pas un mode de réalisation préféré.
De manière préférée mais non limitative, le substrat 1 est utilisé tel qu'il est fourni, pour autant que son pouvoir fermentescible soit préservé. Ce pouvoir fermentescible est caractérisable par le potentiel méthanogène de la biomasse, couramment désigné par l'acronyme en langue anglaise BMP (Biochemical Méthane Potential). Une déshydratation contrôlée, telle que décrite dans la demande de brevet FR13021 19 déposée par la demanderesse permet de maintenir sur une période de plusieurs mois ce pouvoir fermentescible.
Certains substrats contiennent également des molécules organiques, telles des acides organiques, qui n'influeront pas, ou de façon marginale, sur le procédé de fermentation. En revanche, ces molécules peuvent se retrouver dans le milieu de fermentation et participer, par exemple au titre de précurseur, à la production des molécules organiques finales.
Avec certains types de substrat, il peut être avantageux d'incorporer des nutriments et/ou des composés minéraux afin d'augmenter la croissance bactérienne et/ou de réguler le pH du substrat et/ou des coproduits favorisant la production d'AGV ou d'autres molécules. A titre d'exemple, on peut citer l'ajout, en faible quantité, de NaOH, KOH, Ca(OH)2, K2HPO3, KH2PO3, de glycérol ou de solutions de vitamines ou d'oligoéléments. Cet ajout est représenté par la flèche A.
Le substrat est introduit dans un réacteur de fermentation 4, connu en soi et dimensionné pour la production souhaitée, que cette dernière soit à l'échelle du laboratoire pour effectuer des essais ou à l'échelle industrielle dans le cas d'une production. En d'autres termes, le réacteur de fermentation 4 ou bioréacteur a un volume variant de quelques litres à plusieurs centaines de mètres cubes, selon les besoins.
Des microorganismes sont, de manière avantageuse mais non obligatoire, introduits au préalable dans le réacteur de fermentation 4, au moins lors du démarrage, en quantité suffisante pour initier la fermentation. On conçoit que la quantité de microorganismes introduite dépend, entre autres, du substrat. Ces microorganismes sont inoculés sous forme d'un consortium, illustré par la flèche M. Par le terme consortium, on désigne un mélange ou mix de microorganismes, eucaryotes ou procaryotes, qu'il s'agisse de bactéries, levures, champignons ou algues. Ces microorganismes M proviennent essentiellement d'écosystèmes naturels propres à réaliser une fermentation dans des conditions anaérobies. A titre d'exemple non limitatif, on peut citer comme écosystèmes la zone anaérobie des milieux aquatiques comme la zone anoxique de certains lacs, les sols, les marais, les boues d'épuration, le rumen des ruminants ou l'intestin des termites. Il convient de garder à l'esprit que la distribution qualitative et quantitative des différents types et espèces de microorganismes dans le consortium M n'est pas connue précisément et surtout peut varier dans des proportions importantes. Il s'avère que cette diversité qualitative et quantitative des microorganismes apporte, de façon surprenante, une robustesse et une adaptabilité au procédé de fermentation permettant d'assurer une utilisation optimale des substrats, quel que soit la composition de ces derniers et cela dans des conditions de fermentation variables.
Par ailleurs, du fait que le substrat 1 est utilisé tel quel, c'est-à-dire qu'il n'est pas stérilisé ou, plus généralement, qu'il n'est pas débarrassé des microorganismes qu'il contient préalablement à son introduction dans le bioréacteur, il s'avère que ces microorganismes endémiques au substrat 1 sont, de facto, incorporés dans le consortium M ou du moins associés à ce dernier dans le bioréacteur 4.
On observe par ailleurs une fluctuation importante non seulement entre les différents consortia ayant la même provenance mais également au sein d'un même consortium lors de la fermentation. Les travaux des inventeurs (Pessiot et al. Fed-batch Anaerobic Valorization of Slaughterhouse By-products with Mesophilic Microbial Consortia Without Méthane Production. Applied Biochemistry and Biotechnology, 6 janvier 2012) ont montré que cette fluctuation est due à des vagues successives de population de microorganismes mais que ces populations sont, globalement, similaires en activité et en types de microorganismes, sur une période donnée. De ce fait, il y a une relative constante dans les produits de la fermentation, au moins qualitativement.
La fermentation 5 en vue de produire des acides gras volatils présente, selon le procédé de l'invention, des caractéristiques intéressantes comme le fait de se dérouler en condition non stérile. Le consortium M de microorganismes permet d'utiliser de façon optimale le substrat 1 , cela sans ajout de produits tels que des enzymes. Par ailleurs, la fermentation 5 a lieu en condition anaérobie, plus précisément lorsque le potentiel redox est inférieur à -300mV, avantageusement compris entre -550mV et -400mV, lorsque le pH est inférieur à 8, préférentiellement compris entre 4 et 7. Ainsi, la fermentation 5 est, avantageusement, limitée à la production de métabolites fermentaires dits précurseurs, donc d'acides gras volatils ou AGV. Il s'agit, en fait, de réaliser, dans un réacteur de fermentation 4, une réaction similaire au phénomène d'acidose que l'on rencontre chez les ruminants tout en limitant au maximum la production de méthane qui est, généralement, un des métabolites finaux obtenu à l'issue d'une telle fermentation anaérobie.
La fermentation 5 menée, selon l'invention, avec le consortium M permet, à la différence des fermentations avec des souches définies, de dégrader non seulement les sucres (pentoses, hexoses ou autres) présents dans le substrat 1 mais également la majeure partie des composants du substrat 1 tels que les protéines, les acides nucléiques, les lipides, des acides carboxyliques. Ainsi, le rendement d'une telle fermentation 5 est particulièrement élevé, la production de déchets étant faible. La fermentation de molécules complexes telles des protéines est particulièrement intéressante car elle permet, entre autres, la production d'acide isobutyrique, d'acide 2-méthyl butyrique et d'acide isovalérique. Ces acides gras volatils ramifiés sont des précurseurs à fort potentiel pour la production de molécules ramifiées comme des hydrocarbures ramifiés qui présentent des avantages en tant que carburant. En d'autres termes, la fermentation 5 produit, parmi les différents composés générés, des précurseurs pour une synthèse de bio-carburants et de biomolécules d'intérêt pour la chimie.
Plus précisément, cette fermentation 5 conduit, dans un premier temps, à la formation d'acides gras volatils ayant de un à huit carbones, principalement de deux à quatre carbones tels que l'acide acétique, l'acide propionique et l'acide butyrique. On obtient aussi des acides gras volatils à plus longue chaîne, donc supérieure à quatre carbones, tels que les acides valérique et caproïque, heptanoïque ou octanoïque. En poursuivant la fermentation et/ou en augmentant la quantité de microorganismes dans le bioréacteur 4, si besoin avec des microorganismes sélectionnés, il est possible de favoriser la production d'AGV à longue chaîne carbonée, donc supérieure à quatre carbones. En d'autres termes, les métabolites produits en quantité lors de la fermentation 5 sont des acides gras volatils majoritairement de deux à six carbones.
Il est à noter qu'il est également possible d'ajouter dans le réacteur de fermentation 4 des acides carboxyliques à longues chaînes carbonées (C8 à C22) qui seront fermentés ou transformés, lors des étapes ultérieures de transformation chimiques, en hydrocarbures comme l'octane et le kérosène. Ces acides carboxyliques peuvent être ajoutés, selon la flèche C, sous leur forme brute ou bien par le biais de substrats les contenant comme certains produits végétaux qui contiennent des huiles. A titre d'exemples non restrictifs, on peut citer les huiles de tournesol, de soja, de noix de coco, de palmiers à huile, de cacahuète ou de Jatropha. Ces acides carboxyliques ou ces huiles sont, avantageusement, incorporés au substrat 1 .
La fermentation 5 peut être conduite en mode discontinu ou batch, en continu-discontinu ou fed-batch ou encore en continu dans un seul ou dans plusieurs réacteurs de fermentation disposés en série.
La fermentation 5 est réalisée en utilisant des techniques de fermentation classiques pour générer des conditions anaérobies. Pour cela l'utilisation d'une atmosphère sous dioxyde de carbone est préférée, même si d'autre gaz comme l'azote ou l'argon peuvent être envisagés pour réaliser les conditions d'anaérobiose. La température au sein du ou des réacteur(s) de fermentation 4 est comprise entre 20 et 60 °C, préférentiellement entre 35 et 42 °C. Le pH es inférieur à 8, préférentiellement entre 4 et 7. Le potentiel redox est inférieur à -300mV, avantageusement compris entre -550mV et -400mV. Les moyens de gestion et de maintien de la température et du pH sont connus en soi. La fermentation 5 est maintenue un temps suffisant pour produire des acides gras volatils en phase liquide, illustré par la référence 6. Le temps de fermentation varie, entre autres, en fonction du substrat 1 , des microorganismes M présents, de la concentration initiale en AGV et des conditions de fermentation. Typiquement, la période de fermentation est comprise entre 1 et 7 jours, préférentiellement entre 2 et 4 jours. La concentration en AGV 6 obtenue dans le milieu de fermentation à l'issue de cette période est variable, mais est généralement de l'ordre de 10 à 20 g/L, selon les acides gras volatils, étant entendu que dans certaines conditions elle peut être supérieure à 35 g/L par exemple voisine de 50 g/L. A la fin de l'étape de fermentation, le milieu de fermentation est à un pH acide, qui est généralement compris entre 4 et 6. On conçoit que la fermentation 5 produit d'autres composés, en particulier des gaz 7, tels le dioxyde de carbone, l'hydrogène ou le méthane qui, avantageusement, sont récupérés et utilisés de manière connue, selon la référence 8.
Le dioxyde de carbone est, par exemple, réintroduit dans le réacteur de fermentation 4 afin de participer au maintien des conditions anaérobies. En variante, il est utilisé comme source de carbone pour la production de biomasse photosynthétique. D'autres métabolites sont produits, par exemple de l'acide lactique, des esters, des alcools. Ces deniers peuvent, soit être réintroduits dans le bioréacteur 4, pour poursuivre la fermentation 5, soit être utilisés pour d'autres applications, tels quels ou après transformation.
L'étape suivante est l'extraction 9 des acides gras volatils 6 ainsi formés. Ces derniers, par des réactions connues en soi, produiront, lors d'une étape suivante 10, des molécules dites biosourcées, selon les besoins définis. En variante, comme indiqué précédemment, ils forment un substrat pour une fermentation dite secondaire pour produire des acides gras volatils à plus longue chaîne carbonée. Cette fermentation peut être menée dans le même réacteur, dans la continuité de la première fermentation, ou, en variante, dans un autre réacteur. A titre d'exemple, on peut citer la fermentation secondaire, par certains microorganismes tels que Megasphaera edelsnii ou Clostridium kluyveri, des acides acétique et butyrique en acides caproïque et caprylique. Une telle fermentation permet ainsi d'augmenter les quantités en certains AGV présents initialement en quantité limitée.
Dans tous les cas, les acides gras volatils 6 produits en phase liquide par la fermentation 5 anaérobie et qui sont, au moins en partie, extraits le sont dans des conditions telles que l'extraction 9 n'affecte pas, ou du moins de manière marginale, la production d'acides gras volatils par les microorganismes présents dans le milieu de fermentation. Lorsque l'on extrait du milieu de fermentation des acides gras volatils, de facto on réduit l'acidification du milieu par ces acides.
De manière avantageuse, dans la mesure où la méthode d'extraction retenue n'est pas létale pour la totalité des microorganismes, il s'avère que la phase liquide résiduelle 1 1 , après l'extraction 9, contient également une certaine quantité de microorganismes vivants, donc potentiellement actifs. Comme dans cette phase liquide 1 1 il y a une concentration en acides gras volatils 6 inférieure à celle du milieu de fermentation, il est donc possible de la réinjecter dans le réacteur de fermentation 4. Ainsi, non seulement on dilue les acides gras volatils présents dans le milieu en cours de fermentation 5, on élève le pH du milieu mais on réensemence également le milieu avec des microorganismes, assurant la fermentation 5, cela par extraction 9 des composés acides 6.
Une telle solution permet d'optimiser le rendement de la fermentation 5 et de réaliser une fermentation en continue, cela en abaissant les temps de réaction et en limitant la production de déchet afin de tendre vers le zéro déchet.
L'extraction 9 est, avantageusement effectuée en phase liquide. Elle est conduite en continue ou de manière séquentielle, par exemple avec une extraction toutes les 12h heures. Dans tous les cas, l'extraction d'une partie des acides gras volatils est réalisée entre le début de production et le maximum de production des métabolites. Avantageusement, l'extraction est effectuée au voisinage du seuil d'inhibition des microorganismes par les acides gras volatils. Ce seuil est fonction, entre autres, du substrat et des conditions de fermentation. De même, l'introduction de la phase liquide issue de l'extraction est réalisée dans un délai permettant de maintenir un niveau élevé de production des acides gras volatils, c'est-à-dire proche du niveau auquel l'extraction a été faite.
Une fois extraits 9, les acides gras volatils 6 sont purifiés 12 et/ou transformés, selon l'étape référencée 10, en d'autres produits, tels que des alcanes, des alcènes, des amides, des aminés, des esters, des polymères par des techniques connues en soi comme la distillation, l'électrosynthèse, l'estérification, l'amidation ou la polymérisation.
De façon concomitante, en variante avantageuse, une partie des acides gras volatils 6 produits lors de la fermentation 5 n'est pas extraite mais subit une étape d'électrosynthèse 13 ou synthèse par électrolyse. On produit ainsi des hydrocarbures, prioritairement à partir des acides gras volatils à longue chaîne carbonée jusqu'à l'acétate.
L'étape d'électrosynthèse 13 permet de convertir des acides gras volatils 6 produits en de grandes quantités de composés 14 gazeux et liquides via les réactions, connues, de décarboxylation électrochimique de Kolbe et/ou d'Hofer-Moest. Ces deux réactions se produisent simultanément durant la synthèse par électrolyse mais un ajustement est possible pour favoriser l'une ou l'autre de ces réactions en modifiant des paramètres facilement contrôlables comme décrit plus loin. Divers métabolites peuvent être produits en jouant sur ces paramètres, ce qui permet une production flexible de différentes molécules, tant qualitativement que quantitativement.
L'électrosynthèse 13 permet de convertir les acides gras volatils directement dans le milieu de fermentation. De ce fait, l'électrosynthèse est également un moyen d'extraction des acides gras volatils du milieu de fermentation. Lorsque d'autres molécules organiques telles que des acides carboxyliques ou des alcools sont ajoutées aux acides gras volatils, l'éventail d'hydrocarbures et de produits pouvant être formés s'élargit.
Etonnamment, la demanderesse a constaté que l'étape d'électrosynthèse peut être réalisée dans le milieu de fermentation, dans des conditions de réaction douces, à température et à pression ambiantes, à 3V ou plus de 3V et à 1 mA/cm2 ou plus de 1 mA/cm2 de densité de courant à l'anode, en utilisant, par exemple, des électrodes de platine ou de carbone, comme par exemple le graphite.
Concernant les conditions d'électrosynthèse, le pH de la phase aqueuse contenant les acides gras volatils se situe entre 2 et 1 1 , préférentiellement entre 5,5 et 8. En conditions de pH acides ou neutres, la réaction de Kolbe fournissant des alcanes est favorisée, alors qu'en conditions de pH alcalines c'est la déprotonation oxydative de la réaction de Hofer-Moest fournissant des alcènes qui est favorisée.
Dans cette étape d'électrosynthèse 13, les AGV, donc des acides carboxyliques, à chaînes carbonées courtes et moyennes doivent être sous forme de carboxylates pour être utilisés. C'est pourquoi un pH faible tendra non seulement à diminuer la concentration en acides gras volatils sous forme d'anions mais également la solubilité des acides carboxyliques ou AGV à chaîne carbonée moyenne. Le pH peut être ajusté, entre autres, avec de la soude pour maintenir de fortes concentrations en carboxylates pour être soumis à l'électrolyse. En général, il n'y a pas besoin d'utiliser de solvants organiques, les milieux de fermentation étant de bons électrolytes pour l'étape d'électrosynthèse 13.
Des solvants organiques sont nécessaires quasi uniquement pour les réactifs peu solubles dans l'eau comme les acides carboxyliques ou AGV à longues chaînes carbonées. Dans ce dernier cas, le méthanol, l'éthanol et l'isopropanol peuvent être des solvants de choix. Alternativement, de par leur faible solubilité en solution aqueuse, ces acides carboxyliques ou AGV à longues chaînes carbonées peuvent être facilement séparés et concentrés afin de subir l'étape d'électrolyse dans un deuxième temps et aboutir à de forts rendements en produits électrolytiques. Dans la mesure où il est possible, en variante non obligatoire, d'utiliser une cellule d'électrolyse divisée, les produits formés respectivement à l'anode et à la cathode peuvent être facilement séparés.
Alternativement, tous les composés obtenus par électrosynthèse peuvent être récupérés dans un seul récipient et séparés ou transformés par la suite.
Une fois collectés, les produits gazeux 15 formés à l'issue de l'électrosynthèse 13 comme l'hydrogène, le dioxyde de carbone, les alcanes, les alcènes peuvent être, à titre d'exemple non limitatif, comprimés et séparés par liquéfaction gazeuse, comme indiqué précédemment sous la référence 8.
Dans un autre mode de réalisation, il est possible d'envisager l'utilisation de membranes semi-poreuses dans des cellules électrochimiques doubles pour séparer les deux électrodes. Aussi, les électrodes peuvent être placées très proches l'une de l'autre afin d'éviter les arcs électriques.
D'autre part, les produits 14 obtenus à l'issue de cette étape de conversion électrochimique sont, entre autres, des mélanges d'hydrocarbures, de l'hydrogène, du dioxyde de carbone qui ne contiennent pas de contaminant par rapport, entre autres, aux gaz naturels issus de l'industrie pétrolière.
En variante, afin d'augmenter les rendements de la synthèse par électrolyse, on utilise des techniques supplémentaires comme, par exemple, les ultrasons, les champs magnétiques, du courant alternatif.
A l'issue de l'électrosynthèse 13, les résidus 16 d'AGV non transformés repartent, pour partie, à l'étape 6 pour être extrait, (étape 9) et/ou subir une nouvelle électrosynthèse (étape 13). Une partie des résidus 16 est recyclé à l'étape 17, à savoir gazéifiée, incinérée ou transformée. Les métabolites fermentaires, tels que les acides gras volatils et les substrats résiduels issus des différentes étapes de fermentation 5, extraction 9 ou électrosynthèse 13 sont méthanisés (étape 17) pour produire des fertilisants et des amendements, regroupés sous la référence 18 et du biogaz 19. Cette étape de méthanisation 17 est, selon une approche d'écologie industrielle, également appliquée à une fraction 20 de résidus ou de substrats non fermentés. Ainsi, on produit de l'énergie et de la chaleur, typiquement par cogénération. Cette production d'énergie et de chaleur est, au moins en partie, utiliser pour couvrir les besoins énergétiques du procédé.
Ainsi, le procédé de l'invention permet de produire, avantageusement en continu, et avec un rendement élevé des molécules à base carbonée avec une perte minimale de carbone organique initial.
Les exemples suivants illustrent la mise en œuvre du procédé objet de l'invention avec différents substrats et conditions de fermentation.
Exemple 1 : Fermentation discontinue de coproduits d'abattoirs en bioréacteur en mode non stérile
Un réacteur de fermentation ou bioréacteur de 5L de volume utile contenant un milieu de culture anaérobie (0,5 g/L K2HP04, 0,5 g/L KH2P04, 1 ,0 g/L MgS04, 0,1 g/LCaCI2, 1 mIJL hémine et 5 mIJL de vitamines) à une concentration de 100 g/L d'un mélange de déchets d'abattoirs non stérilisés (sang, viscères, matières stercoraires, déchets de viandes, en ratio 1 /1/1/2) a été inoculé à une température de 38 °C sous agitation avec un consortium de microorganismes naturels provenant d'écosystèmes anaérobies comme la zone anoxique de lac hyper-oligotrophe, tel le lac Pavin. Pendant 1042 heures de fermentation, neuf opérations de fed-batch et 6 ajouts de substrats carnés (886 g de matières sèches au total) non stériles ont été réalisés. Durant cette fermentation, des suivis des métabolites en phase liquide et en phase gazeuse ont été réalisés. Les produits de fermentation de la phase liquide ont été suivis et analysés. En fin de fermentation, le milieu de fermentation contenait 16 g/L d'acides gras volatils totaux. Le rendement obtenu est de 0,38 g d'AGVs totaux / g de matière sèche ajoutée au réacteur. Cet exemple est à considérer comme un essai de référence, aucune extraction et/ou électrosynthèse synthèse chimique, à la différence du procédé de l'invention, n'ayant été réalisée.
Exemple 2 : Fermentation semi-continue de fractions organiques d'ordures ménagères en bioréacteur en mode non stérile.
On répète l'exemple 1 avec le même milieu de culture mais en utilisant un substrat composé de la fraction fermentescible des ordures ménagères à une concentration de 50 g/L de matière sèche en lieu et place des déchets d'abattoirs. De plus, et conformément au procédé de l'invention, des extractions sont menées sur le milieu au cours de la fermentation. Ici la fermentation se déroule sur plus de 2000 heures et plusieurs séquences d'extraction in situ sont réalisées dans le bioréacteur. L'extraction est de type liquide-liquide étant entendu que les acides gras volatils sont toujours produits en phase liquide et que le solvant mis en œuvre pour cet exemple est le pentane. Ces opérations ont permis d'une part de diminuer la concentration finale en acides gras totaux avec, par exemple, une extraction où la concentration dans le réacteur est passée de 26,8 g/L à 20,1 g/L d'AGVs totaux (23% de diminution), ce qui permet de réduire l'acidité du milieu et donc de préserver une activité optimale du consortium M de microorganismes. L'extraction permet également de récupérer des acides gras volatils qui ont été utilisés pour diverses synthèses chimiques à l'instar de la production d'esters et d'amides.
Ces opérations d'extraction in situ ont permis de montrer la biocompatibilité du procédé, autrement dit la récupération séquentielle de métabolites d'intérêt énergétique et chimique, tels que des acides gras volatils, à partir de biomasse via un procédé combinant des étapes de fermentation et d'extraction. Cette biocompatibilité est caractérisée par le nombre de microorganismes par ml présents dans le bioréacteur déterminé par la technique d'analyse de cytométrie en flux. Ces résultats sont, par exemple, entre des échantillons prélevés avant et après extraction in situ, de 2,3.108 à 8,0.107 microorganismes/ml, dans une série de mesures et de 2,9 à 2,3.108 microorganismes/ml pour une autre série de mesures. Ceci montre qu'il y a une diminution de la population de microorganismes présents dans le bioréacteur, suite à l'extraction des acides gras volatils, mais que cette diminution n'entraine pas de destruction massive des microorganismes. La population en microorganismes est suffisante, quantitativement et qualitativement, pour que les microorganismes soient actifs et qu'il n'y ait pas, ou très peu, de perte de l'activité fermentaire du consortium de microorganismes.
Dans un autre mode de réalisation, l'extraction peut être réalisée, sans contraintes irréversibles, directement dans le réacteur de fermentation 4. Il est possible d'effectuer une fermentation 5 en mode continu avec l'extraction 9 des métabolites inhibiteurs de fermentation, c'est-à-dire en extrayant les acides gras volatils responsables de l'acidose du milieu au fur et à mesure de leur production. En variante, ces opérations d'extraction peuvent être réalisées dans un second compartiment, ce dernier pouvant être situé dans le bioréacteur 4.
Les essais suivants illustrent l'étape d'électrosynthèse à partir d'acides gras volatils comme précurseurs, étant entendu qu'il est nécessaire d'utiliser ces acides gras volatils sous forme de carboxylate lors de ces réactions chimiques.
Exemple A :
Une solution d'acétate de sodium à 1 M a été soumise à une réaction d'électrolyse mettant en œuvre des électrodes en graphite avec une densité de courant de 100 mA/cm2.
Au bout de 180 minutes de réaction, 63% de la concentration initiale en acétate a été consommée. Les métabolites obtenus en phase gazeuse sont de l'hydrogène (350 ml soit 15 mmol), du dioxyde de carbone (330 ml soit 13,8 mmolC), du méthane (7 ml soit 0,3 mmolC) et de l'éthane (30 ml soit 2,51 mmolC). Les métabolites obtenus en phase liquide sont de l'acétate de méthyle (66 mg soit 0,9 mmol) et du méthanol (87 mg soit 2,7 mmol). Le bilan Cmol (Cmol.Produit/Cmol. Substrat) de cette réaction est de 0,9±0,1 . Les rendements en hydrogène, en dioxyde de carbone, en éthane, en méthane, en acétate de méthyle et en méthanol sont respectivement de 473 ml/g d'acétate, de 446 ml/g d'acétate, de 41 ml/g d'acétate, de 10 ml/g d'acétate, de 90 mg/g d'acétate et de 1 18 mg/g d'acétate. Exemple B :
On répète l'exemple A mais avec du propionate de sodium à 1 M comme substrat. Au bout de 180 minutes, 56% de la concentration initiale en propionate a été consommée. On obtient dans la phase gazeuse de l'hydrogène, du méthane, du dioxyde de carbone, de l'éthène et du butane et, dans la phase liquide, on obtient de l'éthanol et du propionate d'éthyle.
Des réactions d'amidation ont été également menées :
Exemple C : Amidation-acétate
La réaction d'amidation est réalisée dans un montage à reflux à partir d'un mélange d'une solution d'acide acétique biosourcée et une solution d'ammoniac dans des conditions stœchiométriques. Le mélange réactionnel est chauffé à 80 °C pendant 4 heures, puis les excédents de réactifs sont éliminés par distillation. Le produit de la réaction est recristallisé afin d'obtenir l'acétamide biosourcée. Le rendement de la réaction d'amidation dans ces conditions est de 63%.
Exemple D :Amidation- butyrate
On répète l'exemple C mais avec une solution d'acide butyrique biosourcée et à une température de 90 °C. Au bout de 5 heures et après lecristallisation du butyramide biosourcé, le rendement de la réaction d'amidation est de 69%.
Exemple E : Amidation- mélange d'AGV
On répète l'exemple C avec un mélange d'acides gras volatils biosourcés (acides acétique, propionique, butyrique, isobutyrique, isovalérique, valérique, isocaproïque, caproïque, heptanoïque, octanoïque...) issus de la phase d'extraction comme décrit dans les exemples précédents à une température de 85°C. Au bout de 6h, après élimination des excédents de réactifs par distillation et après recristallisation des amides biosourcées, le rendement de la réaction d'amidation est de 74%. Les amides biosourcés obtenues sont les amides correspondants aux acides carboxyliques biosourcés présents dans le mélange (acétamide, propanamide, isobutyramide, butyramide, isovaléramide, valéramide, isohexanamide, hexanamide, heptanamide et octanamide...).
Ces réactions d'amidation qui permettent de produire à partir d'acides gras volatils biosourcés des amides biosourcées peuvent être réalisées également avec des aminés substituées afin d'obtenir des amides secondaires et tertiaires.
Des réactions d'estérification ont été également menées.
Exemple F : Estérification d'un mélange d'AGV
Pour réaliser cette estérification, un mélange équimolaire d'acides gras volatils biosourcés obtenus après fermentation et extraction (acides acétique, propionique, butyrique, isobutyrique, isovalérique, valérique, isocaproïque, caproïque, heptanoïque, octanoïque, phenyl acétique, phenyl propionique) (2 mL) et d'éthanol (1 ,51 mL) est mis à reflux pendant 1 h15. De l'acide sulfurique (54μί) est ajouté initialement au milieu réactionnel en tant que catalyseur. En fin de réaction, on retrouve par chromatographie en phase gazeuse les esters éthyliques correspondant aux acides présents dans le mélange initial c'est-à-dire dans l'exemple: l'acétate d'éthyle, du propionate d'éthyle, de l'isobutyrate d'éthyle, du butyrate d'éthyle, de l'isopentanoate d'éthyle, du pentanoate d'éthyle, de l'isohexanoate d'éthyle, de l'hexanoate d'éthyle, de l'heptanoate d'éthyle, de l'octanoate d'éthyle, du phenylacetate d'éthyle et du phenylpropionate d'éthyle. Un rendement de conversion de 69% des acides carboxyliques en esters est obtenu.
Il est ainsi montré que les métabolites fermentaires tels que les AGV, à savoir selon les exemples A à F et de manière non limitative, les acides acétique, propionique, butyrique, isobutyrique, isovalérique, valérique, isocaproïque, caproïque, heptanoïque, octanoïque, phenyl acétique, phenyl propionique sont aisément utilisables comme précurseurs de molécules finales d'intérêt économique et énergétique, étant entendu que ces métabolites sont produits par une fermentation.
On a ainsi un procédé global dont les différentes étapes peuvent être effectuées en décalé. Par ce terme, on désigne des étapes qui peuvent être répétées à différents moments et/ou en différents lieux. En d'autres termes, le procédé présente une grande adaptabilité et une grande souplesse de production.
La mise en œuvre d'un tel procédé implique non seulement la présence dans l'installation d'au moins un réacteur de fermentation mais également au moins un organe d'extraction, adapté pour mettre en œuvre l'étape 9 d'extraction et au moins un organe de synthèse, adapté pour mettre en œuvre l'étape d'électrosynthèse 13 ou, en variante, une autre étape chimique. Ces organes sont connus en soi, leurs nombres et leurs dimensions étant adaptés au type de production.
Une telle installation comprend, avantageusement des organes de stockage du substrat 1 et/ou des produits issus des étapes d'extraction et/ou d'électrosynthèse et d'autres synthèses chimiques. Des moyens de gestion et de commande, tels que des capteurs de température, des sondes de pH, sont prévues.

Claims

REVENDICATIONS
1 . - Procédé de production de molécules organiques à partir de biomasse fermentescible, comprenant une étape de fermentation (5) anaérobie, ladite fermentation produisant des métabolites fermentaires dits précurseurs, tels des acides gras volatils (6), ces métabolites dits précurseurs étant transformés en molécules organiques finales par voie non fermentaire, le procédé comprenant au moins une étape consistant à conduire la fermentation d'un substrat organique (1 ) formé par de la biomasse (3) fermentescible dans un réacteur de fermentation (4) jusqu'à la production comme métabolites fermentaires d'acides gras volatils (AGV) ayant une chaîne carbonée de 1 à 8 carbones, caractérisé en ce qu'il comprend au moins les étapes suivantes :
- a) extraire (9), entre le début de production et le maximum de production desdits acides gras volatils (6), au moins une partie des acides gras volatils du milieu de fermentation de sorte que la production de métabolites fermentaires par les microorganismes (M) n'est pas affectée et introduire au moins une partie de la phase liquide (1 1 ), contenant des microorganismes (M), issue de l'extraction (9) dans le réacteur de fermentation (4),
- b) synthétiser (13) des molécules organiques à partir des métabolites fermentaires produits dans le réacteur de fermentation (4) ou des acides gras volatils extraits à l'étape a),
- c) poursuivre les étapes a) à b) jusqu'à l'obtention, en quantité et en qualité, des molécules organiques finales.
2. - Procédé selon la revendication 1 , caractérisé en ce qu'avant l'étape a), on inocule dans le réacteur de fermentation (4) un mélange (M) de microorganismes provenant d'écosystèmes naturels définis.
3. - Procédé selon l'une des revendications précédentes, caractérisé en ce que les étapes a) à c) sont réalisées en continu.
4. -Procédé selon l'une des revendications précédentes, caractérisé en ce que les résidus (16, 20) issus du procédé sont adaptés pour être utilisés comme amendement, fertilisants (18) ou comme coproduit (19) tel que le méthane.
5. - Installation de mise en œuvre d'un procédé conforme à l'une des revendications précédentes, caractérisée en ce qu'elle comprend au moins :
- un réacteur de fermentation (4),
- un organe d'extraction propre à assurer l'extraction (9) des acides gras volatils contenus dans la phase liquide produite lors de la fermentation et
- un organe de synthèse, tel qu'un réacteur chimique ou une cellule d'électrolyse, propre à assurer la synthèse des métabolites fermentaires obtenus lors de la fermentation en molécules organiques finales.
6. - Installation selon la revendication 5, caractérisée en ce qu'elle comprend au moins un organe de stockage du substrat (1 ).
EP15756198.6A 2014-07-25 2015-07-17 Procédé de production de molécules organiques à partir de biomasse fermentescible Pending EP3172331A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1457198A FR3024159B1 (fr) 2014-07-25 2014-07-25 Procede de production de molecules a partir de biomasse fermentescible
PCT/FR2015/051967 WO2016012701A1 (fr) 2014-07-25 2015-07-17 Procédé de production de molécules organiques à partir de biomasse fermentescible

Publications (1)

Publication Number Publication Date
EP3172331A1 true EP3172331A1 (fr) 2017-05-31

Family

ID=51726735

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15756198.6A Pending EP3172331A1 (fr) 2014-07-25 2015-07-17 Procédé de production de molécules organiques à partir de biomasse fermentescible

Country Status (10)

Country Link
US (1) US11059757B2 (fr)
EP (1) EP3172331A1 (fr)
CN (1) CN106536741A (fr)
AU (1) AU2015293776B2 (fr)
BR (1) BR112017001232B1 (fr)
CA (1) CA2955770C (fr)
FR (1) FR3024159B1 (fr)
MY (1) MY187272A (fr)
RU (1) RU2688413C2 (fr)
WO (1) WO2016012701A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3072971B1 (fr) 2017-10-26 2021-01-08 Veolia Environnement Ve Procede de fermentation acidogene pour la production d'acides organiques de 2 a au moins 5 atomes de carbone et installation correspondante
FR3074174B1 (fr) 2017-11-30 2020-02-07 Afyren Procede de valorisation de sels de potassium coproduits de procedes de fermentation
FR3075222B1 (fr) 2017-12-19 2022-03-11 Afyren Vinasse comme milieu de fermentation
FR3087449A1 (fr) 2018-10-19 2020-04-24 Afyren Procede de preparation de molecules organiques par fermentation anaerobie
FR3127229A1 (fr) * 2021-06-04 2023-03-24 Bio-Think Procédé de production d’esters d’acides gras volatils, lesdits esters étant utilisés comme solvant d’extraction
EP4202051A1 (fr) 2021-12-23 2023-06-28 Fundación Centro Gallego de Investigaciones del Agua Procédé et système d'obtention d'acides gras volatils de grande pureté
CN114634953B (zh) * 2022-02-14 2024-04-16 中国科学院广州能源研究所 一种有机垃圾处理方法及其能源化利用系统
CN114806858A (zh) * 2022-05-25 2022-07-29 清研环境科技股份有限公司 回收厌氧发酵体系中挥发性脂肪酸的装置及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1302119A (fr) 1960-09-28 1962-08-24 Nat Res Dev Systèmes compresseurs de largeur de bande vocale
US4358537A (en) * 1980-10-22 1982-11-09 Institute Of Gas Technology In situ biological beneficiation of peat in the production of hydrocarbon fuels
US5807722A (en) * 1992-10-30 1998-09-15 Bioengineering Resources, Inc. Biological production of acetic acid from waste gases with Clostridium ljungdahlii
US6043392A (en) * 1997-06-30 2000-03-28 Texas A&M University System Method for conversion of biomass to chemicals and fuels
RU2349556C1 (ru) * 2007-06-13 2009-03-20 Государственное образовательное учреждение высшего профессионального образования "Оренбургский государственный университет" Способ двухступенчатого анаэробного сбраживания органических отходов
ES2647771T3 (es) * 2011-06-09 2017-12-26 Integrated Biochem, Llc Fermentación en ecosistemas gestionados (FEG) con rumen y una fuente de nitrógeno
WO2013033772A1 (fr) * 2011-09-06 2013-03-14 Anaeco Limited Méthode de régulation de procédé
US20130309740A1 (en) * 2011-11-22 2013-11-21 Washington State University Research Foundation Two-Stage Anaerobic Digestion Systems Wherein One of the Stages Comprises a Two-Phase System

Also Published As

Publication number Publication date
WO2016012701A1 (fr) 2016-01-28
MY187272A (en) 2021-09-17
RU2688413C2 (ru) 2019-05-21
RU2017101975A (ru) 2018-08-27
BR112017001232A2 (pt) 2017-11-28
AU2015293776B2 (en) 2019-05-16
FR3024159A1 (fr) 2016-01-29
FR3024159B1 (fr) 2018-02-02
CA2955770A1 (fr) 2016-01-28
US20170158572A1 (en) 2017-06-08
AU2015293776A1 (en) 2017-02-16
BR112017001232B1 (pt) 2023-03-14
CA2955770C (fr) 2023-08-29
US11059757B2 (en) 2021-07-13
CN106536741A (zh) 2017-03-22
RU2017101975A3 (fr) 2018-12-24

Similar Documents

Publication Publication Date Title
CA2955770C (fr) Procede de production de molecules organiques a partir de biomasse fermentescible
US9663864B2 (en) Biological/electrolytic conversion of biomass to hydrocarbons
WO2016135396A1 (fr) Procede de production de polyhydroxyalcanoates a partir de precurseurs obtenus par fermentation anaerobie a partir de biomasse fermentescible
CA2991003C (fr) Procede d'extraction d'acides carboxyliques produits par fermentation anaerobie a partir de biomasse fermentescible
WO2012099603A1 (fr) Conversion biologique/électrolytique de biomasse en hydrocarbures
FR3033166A1 (fr) Procede de production d'acides amines a partir de precurseurs obtenus par fermentation anaerobie a partir de biomasse fermentescible
KR101244469B1 (ko) 미세조류 배양에 의한 바이오디젤 및 발효산물 생산 방법 및 장치
FR3004727A1 (fr) Procede de production d'hydrocarbures
CA2955767C (fr) Procede d'extraction de molecules produites par fermentation anaerobie a partir de biomasse fermentescible
Connelly Second-generation biofuel from high-efficiency algal-derived biocrude
CA2945507A1 (fr) Procede de production d'hydrogene a partir du glycerol
JPWO2019131502A1 (ja) 脂質の生産方法
EP3461902A1 (fr) Procédé d'hydrolyse enzymatique en alimentation séquentielle avec ajouts du substrat prétraité de plus en plus éspaces dans le temps
SIVASANKARAN et al. A comparative analysis on microbial production of primary alcohols using pretreated glycerol
Ritika et al. Algal Butanol Production: Recent Developments
Sivaramakrishnan et al. Development of Chlamydomonas sp. biorefinery for sustainable methyl ester and malic acid production
EP3011010A1 (fr) Procédé de production de lipides par des microorganismes, et utilisation desdits lipides

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210511

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS