EP3172264B1 - Novel polymers containing grafted bis(sulfonyl)imide sodium or lithium salts to the methods for the production thereof, and to the uses of same as electrolytes for batteries - Google Patents

Novel polymers containing grafted bis(sulfonyl)imide sodium or lithium salts to the methods for the production thereof, and to the uses of same as electrolytes for batteries Download PDF

Info

Publication number
EP3172264B1
EP3172264B1 EP15766891.4A EP15766891A EP3172264B1 EP 3172264 B1 EP3172264 B1 EP 3172264B1 EP 15766891 A EP15766891 A EP 15766891A EP 3172264 B1 EP3172264 B1 EP 3172264B1
Authority
EP
European Patent Office
Prior art keywords
percentage
polymer
varying
motif
trifluoromethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15766891.4A
Other languages
German (de)
French (fr)
Other versions
EP3172264A1 (en
Inventor
Jean-Roger Desmurs
CLINET Elisabet DUNACH
Philippe Knauth
Vincent MORIZUR
Sandra Olivero
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aix Marseille Universite
Centre National de la Recherche Scientifique CNRS
CDP Innovation SAS
Original Assignee
Aix Marseille Universite
Centre National de la Recherche Scientifique CNRS
CDP Innovation SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aix Marseille Universite, Centre National de la Recherche Scientifique CNRS, CDP Innovation SAS filed Critical Aix Marseille Universite
Publication of EP3172264A1 publication Critical patent/EP3172264A1/en
Application granted granted Critical
Publication of EP3172264B1 publication Critical patent/EP3172264B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/19Macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4056(I) or (II) containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4093Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group characterised by the process or apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0563Liquid materials, e.g. for Li-SOCl2 cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group
    • C08G2650/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group containing ketone groups, e.g. polyarylethylketones, PEEK or PEK
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to novel polymers containing lithium or sodium salts of grafted bis (sulfonyl) imides, their preparation processes and their uses as electrolyte in lithium or sodium batteries.
  • the subject of the present invention is novel polymer electrolytes obtained from commercially available polymers as well as novel lithium-polymer or sodium polymer type batteries.
  • Lead-acid batteries have been the most commonly used for many decades.
  • lead technology has several drawbacks related to the weight of the batteries, the toxicity of lead as well as the use of a corrosive liquid.
  • This has led to the development of alkaline batteries whose electrodes are either based on nickel and cadmium (nickel-cadmium batteries), or, more recently, based on nickel and metal hydrides (nickel-hydride batteries), or silver oxide base coupled with zinc, cadmium or iron. All these technologies use a solution of potash as electrolyte and have the major drawback of a relatively low specific energy density with regard to the needs associated with the development of portable equipment such as telephones and computers.
  • the weight of these batteries constitute a disadvantage for their use in electric vehicles.
  • the ionic conductor or electrolyte which separates the electrodes, is a key element.
  • its state, liquid, solid or gel affects the safety of the system and on the other hand, its conductivity determines the operating temperature range.
  • lithium batteries liquid electrolytes based on an organic solvent, such as dimethylenecarbonate or ethylenecarbonate, and a dissolved salt, such as lithium hexafluorophosphate LiPF 6 or lithium bis (trifloromethanesulfonyl) imide (CF 3 SO 2 ) 2 NLi, are commonly used.
  • organic solvent such as dimethylenecarbonate or ethylenecarbonate
  • a dissolved salt such as lithium hexafluorophosphate LiPF 6 or lithium bis (trifloromethanesulfonyl) imide (CF 3 SO 2 ) 2 NLi
  • LiPF 6 lithium hexafluorophosphate LiPF 6 or lithium bis (trifloromethanesulfonyl) imide (CF 3 SO 2 ) 2 NLi
  • the patent FR 2853320 describes electrolytes obtained by polymerization of polyorganosiloxanes with a photoinitiator in the presence of an electrolyte salt. Besides the fact that the anion is not immobilized and migrates into the electrolyte causing polarization phenomena at the electrodes, this technique requires catalysts of the iodonium type which are particularly toxic.
  • the document WO 99/61141 A1 describes a process for manufacturing crosslinked polymers for use in ion conducting membranes (ICM).
  • the process involves either (i) the crosslinking of a polymer having acid halide groups by reaction with a crosslinking agent which binds to at least two acid halide functions, or (ii) the crosslinking of a polymer. having amide groups by reaction with a crosslinking agent which binds to at least two amide functions.
  • the protic conductivity of these crosslinked membranes is typically between 0.02 to 0.06 S / cm at room temperature.
  • the document EP 0 574 791 A2 discloses a polymer electrolyte membrane based on a sulfonated aromatic polyether ketone.
  • the polymers are crosslinked and contain both sulfonamide functions and sulfonic functions.
  • the membranes obtained are used in fuel cells as protic membranes.
  • the document JP 2002 324 559 A describes sulfonylimides on a perfluorosulfonic or Nafion basis.
  • the polymers prepared are used in the field of fuel cells (protic and non-lithiated membranes), as humidity sensors or gas sensors. These fully perfluorinated polymers are excessively expensive.
  • these three documents involve a water treatment of the polymers which is detrimental for electrolytes for lithium batteries.
  • the group R is chosen from methyl, ethyl, propyl, cyclopropyl, butyl, 1-decyl, 1-dodecyl, 1-hexanedecyl, 1-octyldecyl, (7,7-dimethyl-2-oxobicyclo [2.2.1] heptan-1-yl) methyl, ((1R) -7,7-dimethyl-2-oxobicyclo [2.2.1] heptan-1-yl) methyl, (1S) - (7,7-dimethyl -2-oxobicyclo [2.2.1] heptan-1-yl) methyl, cyclohexylmethyl, trifluoromethyl, phenyl, tolyl, naphthyl, 4-trifluoromethylphenyl, 3,5-bis (trifluoromethyl) phenyl, 4-cyanophenyl, 1,1,2 , 2,2-pentafluoroethanyl, nonafluor
  • the invention further relates to electrolytes formed from the above polymers, for batteries, as well as to batteries comprising such electrolytes.
  • the aforementioned polymers according to the invention do not contain sulfonic units — SO 3 H. These units form acid functions whose strength, which is too limited, binds the cations and, in particular, the lithium ions, in an excessively large manner.
  • the bis (sulfonyl) imide units of the polymers according to the invention form acid functions whose strength, greater than that of the sulfonic units, binds the cations and, in particular, the lithium ions, to a lesser extent, thus facilitating their migration within of the electrolyte.
  • sulfonamides which can be used in the invention, we will cite methanesulfonamide, ethanesulfonamide, propanesulfonamide, butanesulfonamide, 1-decanesulfonamide, 1-dodecanesulfonamide, (7,7-dimethyl- 2-oxobicyclo [2.2.1] heptan-1-yl) methanesulfonamide, ((1R) -7,7-dimethyl-2-oxobicyclo [2.2.1] heptan-1-yl) methanesulfonamide, (1S) - ( 7,7-dimethyl-2-oxobicyclo [2.2.1] heptan-1-yl) methanesulfonamide, cyclohexylmethanesulfonamide,, benzenesulfonamide, toluenesulfonamide, naphthalenesulfonamides, trifluor
  • the lithiated or sodium bases are preferably chosen from lithium hydroxide, sodium hydroxide, lithium methoxide, sodium methoxide, lithium ethoxide, sodium ethoxide, lithium isopropoxide, sodium isopropoxide, lithium tert-butylate, sodium tert-butylate, lithium hydride, sodium hydride, n-butyllithium, n-butylsodium, s-butyllithium, lithium diisopropylamide, tert-butyllithium, methyllithium le phenyllithium, phenylsodium, benzyllithium, benzylsodium, lithium dimsylate, sodium dimesylate, lithium carbonate, sodium carbonate, lithium acetate, sodium acetate.
  • the preferred bases are those which do not form water during the reaction.
  • the solvents used for the condensation reaction of the sulfonamide of formula XXXIX with the chlorosulfonated polymers of formulas XXIV, XXV, XXVI, XVII, XXVIII, XIX, XXX, XXXI, XXXIII, XXXIV, XXXV, XXXVI, XXXVII and XXXVIII are polar aprotic solvents.
  • the preferred solvents are THF, methylTHF, dioxane, dichloromethane and dichloroethane, dimethylsulfoxide.
  • the R group of the sulfonyl halide (LV) will be chosen an alkyl group having from 1 to 10 linear or branched carbon atoms optionally substituted by a cycloalkyl or aryl unit; a cycloalkyl group; a perfluoro- or polyfluoroalkyl group optionally substituted by aromatic groups; an aryl or polyaryl group optionally substituted with alkyl, cycloalkyl, polyfluoro- or perfluoroalkyl chains, with alkoxy, nitrile or alkylsulfonyl functions, or with one or more fluorine atoms.
  • the halide is chosen from chlorides, bromides and fluorides of methyl, ethyl, propyl, cyclopropyl, butyl, 1-decyl, 1-dodecyl, 1-hexanedecyl, 1-octyldecyl, (7,7-dimethyl -2-oxobicyclo [2.2.1] heptan-1-yl) methyl, ((1R) -7,7-dimethyl-2-oxobicyclo [2.2.1] heptan-1-yl) methyl, (1S) - (7 , 7-dimethyl-2-oxobicyclo [2.2.1] heptan-1-yl) methyl, cyclohexylemethyl, trifluoromethyl, phenyl, tolyl, naphthyl, 4-trifluoromethylphenyl, 3,5-bis (trifluoromethyl) phenyl, trifluorophenyl, 4-cyanophenyl, 1,
  • the lithiated or sodium bases are preferably chosen from lithium hydroxide, sodium hydroxide, lithium methoxide, sodium methoxide, lithium ethoxide, sodium ethoxide, lithium isopropoxide, sodium isopropoxide, lithium tert-butylate, sodium tert-butylate, lithium hydride, sodium hydride, n-butyllithium, n-butylsodium, s-butyllithium, lithium diisopropylamide, tert-butyllithium, methyllithium, phenyllithium , phenylsodium, benzyllithium, benzylsodium, lithium dimsylate, sodium dimesylate, lithium carbonate, sodium carbonate, lithium acetate, sodium acetate.
  • the preferred bases are those which do not form water during the reaction.
  • the preferred solvents are dichloromethane, 1,2-dichloroethane, THF, methylTHF, diisopropyl ether, DMSO.
  • sulfonylation agents which can be used in the invention, we will mention 4-biphenylsulfonyl chloride, 4-chlorobenzenesulfonyl, methanesulfonyl chloride, ethanesulfonyl chloride, 3-fluorobenzenesulfonyl chloride, 4-fluorosulfonyl chloride, 4-butylbenzenesulfonyl chloride, 2- naphthalenesulfonyl, trifluoromethanesulfonyl chloride, 2,3,5,6-tetrafluorobenzenesulfonyl chloride, 4-fluorobenzenesulfonyl chloride, 3,5-difluorobenzenesulfonyl chloride, 2,3,4,5,6-pentafluorobenzenesulfonyl chloride , 4-cyanobenzenesulfonyl chloride, 4-nitrobenzen
  • anhydrous solvent preferably freshly distilled, and under an inert and anhydrous atmosphere.
  • anhydrous atmosphere is meant an atmosphere under a stream of nitrogen or argon.
  • the process developed by the Applicant uses inexpensive products and results in electrolytes compatible with market expectations and whose performance is greater than or equal to the best products.
  • the polymers of formulas I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV and XV were particularly film-forming which is a clear advantage for the intended application. They can be used to form films with a thickness between 10 ⁇ m and 200 ⁇ m, which have good mechanical strength. In practice, these films can be handled by an operator without being torn. It will be noted that polymers I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV and XV are not crosslinked in the films obtained. These polymers according to the invention are in fact sufficiently rigid to obtain mechanically strong films without crosslinking. The films are prepared in anhydrous solvents, preferably DMSO.
  • films of the polymers of formulas I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV and XV can be easily obtained by evaporation of a deposited polymer solution. on a surface of a material such as glass, teflon, plastic. Evaporation is carried out at a temperature between 20 and 80 ° C. Evaporation of the solvent is carried out by heating, by flushing with an inert gas or by placing under reduced pressure.
  • Films of polymers of formulas I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV and XV are very good electrolytes.
  • the conductivities obtained are between 10 -8 and 2 x 10 -3 S / cm in a solvent medium and without solvent.
  • the films of polymers of formulas I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV and XV are characterized by a very wide range of use at temperatures ranging from of 20 to 100 ° C. It will be noted that the polymers according to the invention do not have polyoxyethylene glycol units. Now, it is known that these units are a favorable factor for the conductivity of lithium ions, and it was not obvious that with polymers not containing polyoxyethylene glycol units, nor, moreover, necessarily, fluorine, Such high conductivities can be obtained.
  • Chlorosulfonic acid (3.24 g, 8 equivalents relative to the number of polymeric units of PEEK (XVI)) is introduced using a syringe (1.85 mL), taking care to handle under flow of 'nitrogen.
  • the reaction mixture is stirred at 20 ° C for 5 h. At the end of the reaction, the formation of a viscous orange compound is observed. The supernatant is removed, taking care to handle under a flow of nitrogen.
  • the thionyl chloride (12.29 g, 30 equivalents relative to the number of polymeric units of PEEK (XVI)) is then introduced using a syringe (7.50 mL), taking care to handle under flow nitrogen. Then N, N-dimethylformamide (0.76 g, 3 equivalents relative to the number of polymeric units of PEEK (XVI)) is added using a syringe (0.81 mL), taking care to handle under nitrogen flow. The reaction mixture is stirred again at 20 ° C for 5 h, then 40 mL of distilled THF is added. At the end of the reaction, an orange solution is observed.
  • the weight yield of PEEKSO 2 Cl (XXIV) polymer is 98% relative to the PEEK (XVI) used.
  • Chlorosulfonic acid (2.88 g, 8 equivalents relative to the number of polymeric units of PEES (XVIII)) is introduced using a syringe (1.64 mL), taking care to handle under flow of 'nitrogen.
  • the reaction mixture is stirred at 0 ° C for 5 h. At the end of the reaction, the formation of a brown viscous compound is observed. The supernatant is removed, taking care to handle under a flow of nitrogen.
  • the thionyl chloride (10.93 g, 30 equivalents relative to the number of polymeric units of PEES (XVIII)) is then introduced using a syringe (6.6 mL), taking care to handle under flow nitrogen.
  • N, N-dimethylformamide (0.76 g, 3 equivalents relative to the number of polymeric units of PEES (XVIII)) is added using a syringe (0.68 mL), taking care to handle under nitrogen flow.
  • the reaction mixture is stirred again at 20 ° C. for 5 h, then 15 ml of distilled CH 2 Cl 2 are added. At the end of the reaction, a brown solution is observed.
  • the brown solution is precipitated in propan-2-ol (250 mL), a white precipitate forms.
  • the solid is filtered off, then washed with 2 times 50 mL of propan-2-ol and 2 times 50 mL of acetonitrile, then dried overnight under vacuum (1.10 -2 mbar).
  • the weight yield of PEESSO 2 Cl (XXVI) polymer is 93% relative to the PEES (XVIII) engaged.
  • Chlorosulfonic acid (0.527 g, 2.1 equivalents relative to the number of polymeric units of PES (XIX)) is introduced using a syringe (0.30 mL) taking care to handle under flow of 'nitrogen.
  • the reaction mixture is stirred at 42 ° C for 18 h. At the end of the reaction, the formation of a yellow viscous compound is observed. The supernatant is removed, taking care to handle under a flow of nitrogen.
  • the thionyl chloride (2.03 g, 8 equivalents relative to the number of polymeric units of PES (XIX)) is then introduced using a syringe (1.24 mL), taking care to handle under flow nitrogen. Then the N, N-dimethylformamide (0.47 g, 3 equivalents relative to the number of polymeric units of PES (XIX)) is added using a syringe (0.50 mL), taking care to handle under nitrogen flow. The reaction mixture is stirred again at 20 ° C. for 5 h, then 15 ml of distilled CH 2 Cl 2 are added. At the end of the reaction, a yellow solution is not observed.
  • the yellow solution is precipitated in propan-2-ol (80 mL), a white precipitate forms.
  • the solid is filtered off, then washed with 2 times 20 mL of propan-2-ol and 3 times 20 mL of acetonitrile, then dried overnight under vacuum (1.10 -2 mbar).
  • the weight yield of PESSO 2 Cl (XXVII) polymer is 98% relative to the PES (XIX) used.
  • reaction mixture is filtered and the solid is washed with 2 times 10 ml of tetrahydrofuran.
  • the solvent of the filtrate is evaporated on a rotary evaporator, then the product obtained is dried overnight under vacuum (1.10 -2 mbar).
  • the weight yield of PEEKSO 2 NH 2 (XL) polymer is 96% relative to the PEEKSO 2 Cl (XXIV) polymer used.
  • PEESSO 2 Cl (XXVI) prepared according to Example 7 is prepared in 17 mL of distilled tetrahydrofuran and 3 mL of N, N- dimethylformamide so as to have a molar concentration of PEESSO 2 Cl (XXVI) of 0.035 M. All the solvents used during these syntheses were distilled, stored and withdrawn under a nitrogen atmosphere.
  • reaction mixture is precipitated in methanol, then after filtration, the solid obtained is washed with 2 times 10 mL of acetonitrile, then the product obtained is dried overnight under vacuum (1 ⁇ 10 -2 mbar).
  • the weight yield of PEESSO 2 NH 2 (XLII) polymer is 92% relative to the PEESSO 2 Cl (XXVI) polymer used.
  • reaction mixture is filtered and the solid is washed with 2 times 10 ml of tetrahydrofuran.
  • the solvent of the filtrate is evaporated on a rotary evaporator, then the product obtained is dried overnight under vacuum (1.10 -2 mbar).
  • the weight yield of PESSO 2 NH 2 (XLIII) is 98% relative to the PESSO 2 Cl (XXVII) used.
  • the PEEKSO 2 Cl (XXIV) solution prepared beforehand is then introduced using a syringe, taking care to handle under a flow of nitrogen.
  • the reaction is continued at 20 ° C for 1 hour. At the end of the reaction, a white precipitate is observed.
  • the 1 H NMR spectrum shows that there is a methylsulfonamide group relative to the dioxoaryl unit at 2.46 ppm.
  • the weight yield of PEEKSO 2 N - (Li + ) SO 2 CH 3 (Ia) is 97% relative to the PEEKSO 2 Cl (XXIV) used.
  • the reaction mixture is stirred at 20 ° C for 15 min.
  • the PEEKSO 2 Cl (XXIV) solution prepared beforehand is then introduced using a syringe, taking care to handle under a flow of nitrogen.
  • the reaction is continued at 20 ° C for 30 min. At the end of the reaction, a white precipitate is observed.
  • a solution of 0.200 g of PEESSO 2 Cl (XXVI) prepared according to Example 7 is prepared in 9 mL of distilled tetrahydrofuran and 1 mL of distilled N, N- dimethylformamide so as to have a molar concentration of PEESSO 2 Cl (XXVI) of 0.052 M. All the solvents used during these syntheses were distilled, stored and withdrawn under a nitrogen atmosphere.
  • the 1 H NMR spectrum carried out in DMSO-D6 ( 1 H NMR (200 MHz) ⁇ 8.05 - 7.78 (m, 4H), 7.44 (s, 1H), 7.33 - 6.90 ( m, 6H), 2.44 (s, 3H)) confirms the expected structure.
  • the 1 H NMR spectrum shows that there is a methylsulfonamide group relative to the dioxoaryl unit at 2.44 ppm.
  • the weight yield of PEESSO 2 N - (Li + ) SO 2 CH 3 (IIIa) is 97% relative to the PEESSO 2 Cl (XXVI) used.
  • the weight yield of PESSO 2 N - (Li + ) SO 2 CF 3 (IVa) is 83% relative to the PESSO 2 Cl (XXVII) used.
  • the 1 H NMR spectrum shows that there is a methylsulfonamide group relative to the dioxoaryl unit at 2.46 ppm.
  • the weight yield of PEEKSO 2 N - (Li + ) SO 2 CH 3 (Ia) is 35% relative to the PEEKSO 2 NH 2 (XL) used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polyethers (AREA)
  • Secondary Cells (AREA)

Description

La présente invention concerne de nouveaux polymères contenant des sels de lithium ou de sodium de bis(sulfonyl)imides greffés, leurs procédés de préparation et leurs emplois comme électrolyte dans les batteries au lithium ou au sodium.The present invention relates to novel polymers containing lithium or sodium salts of grafted bis (sulfonyl) imides, their preparation processes and their uses as electrolyte in lithium or sodium batteries.

Plus précisément, la présente invention a pour objet de nouveaux électrolytes polymères obtenus à partir de polymères commercialement disponibles ainsi que de nouvelles batteries de type lithium-polymères ou sodium polymères.More specifically, the subject of the present invention is novel polymer electrolytes obtained from commercially available polymers as well as novel lithium-polymer or sodium polymer type batteries.

Les batteries au plomb ont été les plus couramment utilisées pendant de nombreuses décennies. Cependant, la technologie au plomb a plusieurs inconvénients liés au poids des batteries, à la toxicité du plomb ainsi qu'à l'utilisation d'un liquide corrosif. Ceci a conduit au développement de batteries alcalines dont les électrodes sont soit à base de nickel et de cadmium (batteries nickel-cadmium), soit, plus récemment, à base de nickel et d'hydrures métalliques (batteries nickel-hydrure), soit à base d'oxyde d'argent couplé à du zinc, du cadmium ou du fer. Toutes ces technologies utilisent une solution de potasse comme électrolyte et présentent comme inconvénient majeur une densité d'énergie massique relativement faible au regard des besoins liés au développement des équipements portables comme les téléphones et les ordinateurs. De plus, le poids de ces batteries constitue un inconvénient pour leur utilisation dans les véhicules électriques.Lead-acid batteries have been the most commonly used for many decades. However, lead technology has several drawbacks related to the weight of the batteries, the toxicity of lead as well as the use of a corrosive liquid. This has led to the development of alkaline batteries whose electrodes are either based on nickel and cadmium (nickel-cadmium batteries), or, more recently, based on nickel and metal hydrides (nickel-hydride batteries), or silver oxide base coupled with zinc, cadmium or iron. All these technologies use a solution of potash as electrolyte and have the major drawback of a relatively low specific energy density with regard to the needs associated with the development of portable equipment such as telephones and computers. In addition, the weight of these batteries constitute a disadvantage for their use in electric vehicles.

Les fabricants ont par conséquent développé une nouvelle filière basée sur des batteries au lithium utilisant une électrode négative à base de carbone, dans laquelle le lithium s'insère, et un oxyde métallique, notamment de cobalt, à haut potentiel d'oxydation comme électrode positive. Le principe de fonctionnement est le suivant :
Au cours de la charge électrochimique de la batterie, les ions lithium traversent l'électrolyte qui est un conducteur ionique et isolant électronique et s'intercalent dans le matériau d'électrode négative généralement constituée par du graphite lors de la décharge de la batterie, c'est-à-dire en cours d'utilisation, c'est le phénomène inverse qui s'opère. Les ions lithium se désintercalent.
Manufacturers have therefore developed a new process based on lithium batteries using a carbon-based negative electrode, in which lithium is inserted, and a metal oxide, in particular of cobalt, with a high oxidation potential as a positive electrode. . The principle of operation is as follows:
During the electrochemical charge of the battery, the lithium ions pass through the electrolyte which is an ionic conductor and electronic insulator and become intercalated in the negative electrode material generally formed by graphite during the discharge of the battery, c 'that is to say in use, the reverse phenomenon takes place. Lithium ions de-intercalate.

Dans les batteries, le conducteur ionique ou électrolyte, qui sépare les électrodes, est un élément clé. D'une part, son état, liquide, solide ou gélifié affecte la sûreté du système et d'autre part, sa conductivité détermine la gamme de température de fonctionnement.In batteries, the ionic conductor or electrolyte, which separates the electrodes, is a key element. On the one hand, its state, liquid, solid or gel affects the safety of the system and on the other hand, its conductivity determines the operating temperature range.

Dans les batteries au lithium, les électrolytes liquides à base d'un solvant organique, tel que le diméthylènecarbonate ou l'éthylènecarbonate, et d'un sel dissous, comme l'hexafluorophosphate de lithium LiPF6 ou le bis(triflorométhanesulfonyl)imidure de lithium (CF3SO2)2NLi, sont couramment utilisés. Cependant, elles ne présentent pas les conditions optimales de sécurité liées à la manipulation d'un liquide corrosif et inflammable. De plus, ces systèmes présentent l'inconvénient de pouvoir former des dendrites lors des charges de la batterie ce qui peut provoquer un court circuit et la destruction de la batterie.In lithium batteries, liquid electrolytes based on an organic solvent, such as dimethylenecarbonate or ethylenecarbonate, and a dissolved salt, such as lithium hexafluorophosphate LiPF 6 or lithium bis (trifloromethanesulfonyl) imide (CF 3 SO 2 ) 2 NLi, are commonly used. However, they do not present the optimum safety conditions linked to the handling of a corrosive and flammable liquid. In addition, these systems have the drawback of being able to form dendrites during charges of the battery which can cause a short circuit and destruction of the battery.

Afin de pallier ces inconvénients majeurs, il a été développé une nouvelle technologie basée sur des électrolytes polymères solides à anode de lithium, d'où l'appellation de « batterie lithium-polymère ». Ainsi, le brevet FR 2853320 décrit des électrolytes obtenus par polymérisation de polyorganosiloxanes par un photo-amorceur en présence d'un sel électrolyte. Outre le fait que l'anion n'est pas immobilisé et migre dans l'électrolyte provoquant des phénomènes de polarisation aux électrodes, cette technique nécessite des catalyseurs du type iodonium qui sont particulièrement toxiques. Ainsi, Chung-Bo Tsai, Yan-Ru Chen, Wen-Hsien Ho, Kuo-Feng Chiu, Shih-Hsuan Su décrivent dans le brevet US 2012/0308899 A1 la sulfonation du PEEK en SPEEK et la préparation du sel de lithium correspondant. Cette technique simple ne permet pas d'avoir une délocalisation suffisante de la charge négative sur la fonction sulfonate et l'ion lithium est trop coordonné à la fonction sulfonate pour atteindre des conductivités très élevées. Plus récemment, une autre approche a été décrite par certains auteurs qui ont tenté d'immobiliser l'anion par polymérisation de monomères lesquels contenaient le sel de lithium servant d'éléctrolyte. Le brevet FR 2979630 et la publication de D. Gigmes et coll. dans Nature Materials, 12, 452-457 (2013 )décrivent la synthèse de polymères blocs contenant un électrolyte dont l'anion est fixé au polymère. Les conductivités indiquées sont les meilleures obtenues à cette date pour des batteries lithium-polymères. Dans la synthèse de ce type d'électrolytes, les monomères de départ ne sont pas commerciaux et doivent être préparés en plusieurs étapes. De plus, la technique de polymérisation pour préparer des polymères blocs est onéreuse comparée à d'autres techniques de polymérisation.In order to overcome these major drawbacks, a new technology has been developed based on solid polymer electrolytes with a lithium anode, hence the name “lithium-polymer battery”. Thus, the patent FR 2853320 describes electrolytes obtained by polymerization of polyorganosiloxanes with a photoinitiator in the presence of an electrolyte salt. Besides the fact that the anion is not immobilized and migrates into the electrolyte causing polarization phenomena at the electrodes, this technique requires catalysts of the iodonium type which are particularly toxic. Thus, Chung-Bo Tsai, Yan-Ru Chen, Wen-Hsien Ho, Kuo-Feng Chiu, Shih-Hsuan Su describe in the patent US 2012/0308899 A1 sulfonation of PEEK to SPEEK and preparation of the corresponding lithium salt. This simple technique does not make it possible to have sufficient delocalization of the negative charge on the sulfonate function and the lithium ion is too coordinated with the sulfonate function to achieve very high conductivities. More recently, another approach has been described by certain authors who have attempted to immobilize the anion by polymerization of monomers which contained the lithium salt serving as an electrolyte. The patent FR 2979630 and the publication of D. Gigmes et al. in Nature Materials, 12, 452-457 (2013 ) describe the synthesis of block polymers containing an electrolyte whose anion is attached to the polymer. The conductivities indicated are the best obtained at this date for lithium-polymer batteries. In the synthesis of this type of electrolytes, the starting monomers are not commercial and must be prepared in several steps. In addition, the polymerization technique for preparing block polymers is expensive compared to other polymerization techniques.

Le document WO 99/61141 A1 décrit un procédé de fabrication de polymères réticulés utilisables dans des membranes conductrices d'ions (ICM). Le procédé implique soit (i) la réticulation d'un polymère ayant des groupements halogénure d'acide par réaction avec un agent de réticulation qui se lie à au moins deux fonctions halogénure d'acide, soit (ii) la réticulation d'un polymère ayant des groupements amide par réaction avec un agent de réticulation qui se lie à au moins deux fonctions amide. La conductivité protique de ces membranes réticulées est typiquement comprise entre 0,02 à 0,06 S/cm à température ambiante. Le document EP 0 574 791 A2 divulgue une membrane électrolyte polymère à base d'un polyéther cétone aromatique sulfoné. Les polymères sont réticulés et contiennent à la fois des fonctions sulfonamides et des fonctions sulfoniques. Les membranes obtenues sont utilisées dans des piles à combustible comme membrane protiques. Le document JP 2002 324 559 A décrit des sulfonylimides sur une base perfluorosulfonique ou Nafion. Les polymères préparés sont utilisés dans le domaine des piles à combustible (membranes protiques et non-lithiées), comme capteurs d'humidité ou capteurs de gaz. Ces polymères totalement perfluorés sont excessivement chers. De plus, ces trois documents font intervenir un traitement à l'eau des polymères qui est préjudiciable pour des électrolytes pour des batteries au lithium.The document WO 99/61141 A1 describes a process for manufacturing crosslinked polymers for use in ion conducting membranes (ICM). The process involves either (i) the crosslinking of a polymer having acid halide groups by reaction with a crosslinking agent which binds to at least two acid halide functions, or (ii) the crosslinking of a polymer. having amide groups by reaction with a crosslinking agent which binds to at least two amide functions. The protic conductivity of these crosslinked membranes is typically between 0.02 to 0.06 S / cm at room temperature. The document EP 0 574 791 A2 discloses a polymer electrolyte membrane based on a sulfonated aromatic polyether ketone. The polymers are crosslinked and contain both sulfonamide functions and sulfonic functions. The membranes obtained are used in fuel cells as protic membranes. The document JP 2002 324 559 A describes sulfonylimides on a perfluorosulfonic or Nafion basis. The polymers prepared are used in the field of fuel cells (protic and non-lithiated membranes), as humidity sensors or gas sensors. These fully perfluorinated polymers are excessively expensive. In addition, these three documents involve a water treatment of the polymers which is detrimental for electrolytes for lithium batteries.

Pour dépasser ces inconvénients, la demanderesse a préféré s'orienter vers des polymères existants, moins onéreux.In order to overcome these drawbacks, the applicant preferred to focus on existing polymers, which are less expensive.

La présente invention concerne de nouveaux polymères de formules I , II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV et XV utilisés comme éléctrolytes pour batteries ou polymères conducteurs.

Figure imgb0001
Figure imgb0002
Figure imgb0003
Figure imgb0004
Figure imgb0005
Figure imgb0006
Figure imgb0007
Figure imgb0008
Figure imgb0009
Figure imgb0010
Figure imgb0011
Figure imgb0012
Figure imgb0013
Figure imgb0014
Figure imgb0015
dans lesquelles :

  • M représente un atome de lithium ou de sodium
  • R représente un groupement ou des groupements différents choisi(s) parmi :
    • un groupement alkyle ou cycloalkyle ayant de 1 à 30 atomes de carbone linéaire ou ramifié éventuellement substitué par un motif cycloalkyle, aryle, perfluoroalkyle, polyfluoroalkyle, mono ou polyéthoxylé ;
    • un groupement perfluoro- ou polyfluoroalkyle éventuellement substitué par des groupes aromatiques ;
    • un groupement aryle ou polyaryliques éventuellement substitué par des motifs alkyles, cycloalkyles, polyfluoro- ou perfluoroalkyles, par des fonctions nitriles, des fonctions alkyl- ou alkylsulfonyles, par des atomes de fluor ;
  • m représente le pourcentage d'unités polymériques ayant un motif oxoaryle ou dioxoaryle possédant un sel de bis(sulfonyl)imidure greffé. Ce pourcentage varie entre 50 et 100%, préférentiellement entre 90 et 100%,
  • n représente le pourcentage d'unités polymériques ayant aucun motif oxoaryle ou dioxoaryle fonctionnalisé par un motif bis(sulfonyl)imide. Ce pourcentage varie entre 0 et 50%, préférentiellement ente 0 et 10%,
  • p représente le nombre d'unités polymériques du polymère ; p varie de 40 à 300, préférentiellement entre 60 et 200.
The present invention relates to novel polymers of formulas I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV and XV used as electrolytes for batteries or conductive polymers.
Figure imgb0001
Figure imgb0002
Figure imgb0003
Figure imgb0004
Figure imgb0005
Figure imgb0006
Figure imgb0007
Figure imgb0008
Figure imgb0009
Figure imgb0010
Figure imgb0011
Figure imgb0012
Figure imgb0013
Figure imgb0014
Figure imgb0015
in which :
  • M represents a lithium or sodium atom
  • R represents a group or different groups chosen from:
    • an alkyl or cycloalkyl group having from 1 to 30 linear or branched carbon atoms optionally substituted by a cycloalkyl, aryl, perfluoroalkyl, polyfluoroalkyl, mono or polyethoxyl unit;
    • a perfluoro- or polyfluoroalkyl group optionally substituted by aromatic groups;
    • an aryl or polyaryl group optionally substituted by alkyl, cycloalkyl, polyfluoro- or perfluoroalkyl units, by nitrile functions, alkyl- or alkylsulfonyl functions, by fluorine atoms;
  • m represents the percentage of polymer units having an oxoaryl or dioxoaryl unit having a grafted bis (sulfonyl) imide salt. This percentage varies between 50 and 100%, preferably between 90 and 100%,
  • n represents the percentage of polymer units having no oxoaryl or dioxoaryl unit functionalized by a bis (sulfonyl) imide unit. This percentage varies between 0 and 50%, preferably between 0 and 10%,
  • p represents the number of polymer units of the polymer; p varies from 40 to 300, preferably between 60 and 200.

De manière préférentielle, on choisira les polymères de formules I , II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV et XV dans lesquelles

  • M représente un atome de lithium ou de sodium
  • R représente un groupement ou des groupements différents choisi(s) parmi :
    • un groupement alkyle ou cycloalkyle ayant de 1 à 10 atomes de carbone linéaire ou ramifié éventuellement substitué par un motif cycloalkyle, aryle, perfluoroalkyle, polyfluoroalkyle, mono ou polyéthoxylé ;
    • un groupement perfluoro- ou polyfluoroalkyle éventuellement substitué par des groupes aromatiques ;
    • un groupement aryle ou polyaryliques éventuellement substitués par des motifs alkyles, cycloalkyles, polyfluoro- ou perfluoroalkyles, par des fonctions nitriles, des fonctions alkyl- ou alkylsulfonyles, par des atomes de fluor ;
  • m représente le pourcentage d'unités polymériques ayant un motif oxoaryle ou dioxoaryle fonctionnalisé par un motif bis(sulfonyl)imide. Ce pourcentage varie entre 90 et 100%.
  • n représente le pourcentage d'unités polymériques ayant un motif oxoaryle ou dioxoaryle non fonctionnalisé par un motif bis(sulfonyl)imide. Ce pourcentage varie entre 0 et 10%.
  • p représente le nombre d'unités polymériques du polymère ; P varie de 40 à 300.
Preferably, the polymers of formulas I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV and XV in which
  • M represents a lithium or sodium atom
  • R represents a group or different groups chosen from:
    • an alkyl or cycloalkyl group having from 1 to 10 linear or branched carbon atoms optionally substituted by a cycloalkyl, aryl, perfluoroalkyl, polyfluoroalkyl, mono or polyethoxyl unit;
    • a perfluoro- or polyfluoroalkyl group optionally substituted by aromatic groups;
    • an aryl or polyaryl group optionally substituted by alkyl, cycloalkyl, polyfluoro- or perfluoroalkyl units, by nitrile functions, alkyl- or alkylsulfonyl functions, by fluorine atoms;
  • m represents the percentage of polymer units having an oxoaryl or dioxoaryl unit functionalized by a bis (sulfonyl) imide unit. This percentage varies between 90 and 100%.
  • n represents the percentage of polymer units having an oxoaryl or dioxoaryl unit not functionalized by a bis (sulfonyl) imide unit. This percentage varies between 0 and 10%.
  • p represents the number of polymer units of the polymer; P varies from 40 to 300.

De manière très préférentielle, on choira les polymères de formules I , II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV et XV selon la revendication 1 dans lesquelles

  • M représente un atome de lithium ou de sodium
  • R représente un groupement ou des groupements différents choisi(s) parmi :
    • un alkyle de 1 à 10 atomes de carbone comme les groupes méthyle, éthyle, propyle, butyle, pentyle, hexyle, cyclohexyle, éthylhexyle;
    • un groupe trifluorométhyle, pentafluoroéthyle, nonafluorobutyle, 1,1,2,2-tétrafluoroéthyle ;
    • un groupe aryle de type phényle, tolyle, naphtyle, trifluorométhylphényle, bis(trifluorométhyl)phényle, cyanophényle, alkylsulfonylphényle, arylsulfonylphényle, méthoxyphenyle, butoxyphényle, pentafluorophényle, alkylsulfonylphenyle, fluorophenyle ;
  • m représente le pourcentage d'unités polymériques ayant un motif oxoaryle ou dioxoaryle fonctionnalisé par un motif bis(sulfonyl)imide. Ce pourcentage varie entre 90 et 100%.
  • n représente le pourcentage d'unités polymériques ayant un motif oxoaryle ou dioxoaryle non fonctionnalisé par un motif bis(sulfonyl)imide. Ce pourcentage varie entre 0 et 10%.
  • p représente le nombre d'unités polymériques du polymère; p varie de 60 à 200.
Very preferably, the polymers of formulas I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV and XV according to claim 1 in which
  • M represents a lithium or sodium atom
  • R represents a group or different groups chosen from:
    • an alkyl of 1 to 10 carbon atoms such as methyl, ethyl, propyl, butyl, pentyl, hexyl, cyclohexyl, ethylhexyl groups;
    • a trifluoromethyl, pentafluoroethyl, nonafluorobutyl, 1,1,2,2-tetrafluoroethyl group;
    • an aryl group of phenyl, tolyl, naphthyl, trifluoromethylphenyl, bis (trifluoromethyl) phenyl, cyanophenyl, alkylsulfonylphenyl, arylsulfonylphenyl, methoxyphenyl, butoxyphenyl, pentafluorophenyl, alkylsulfonylphenyl, fluorophenyl type;
  • m represents the percentage of polymer units having an oxoaryl or dioxoaryl unit functionalized by a bis (sulfonyl) imide unit. This percentage varies between 90 and 100%.
  • n represents the percentage of polymer units having an oxoaryl or dioxoaryl unit not functionalized by a bis (sulfonyl) imide unit. This percentage varies between 0 and 10%.
  • p represents the number of polymer units of the polymer; p varies from 60 to 200.

A titre d'exemple, le groupe R est choisi parmi les groupes méthyle, éthyle, propyle, cyclopropyle, butyle, 1-décyle, 1-dodécyle, 1-hexanedécyl, 1-octyldécyle, (7,7-diméthyl-2-oxobicyclo[2.2.1]heptan-1-yl)méthyle, ((1R)-7,7-diméthyl-2-oxobicyclo[2.2.1]heptan-1-yl)méthyle, (1S)-(7,7-diméthyl-2-oxobicyclo[2.2.1]heptan-1-yl)méthyle, cyclohexylméthyle, trifluorométhyle, phényle, tolyle, naphtyle, 4-trifluorométhylphényle, 3,5-bis(trifluorométhyl)phényle, 4-cyanophényle, 1,1,2,2,2-pentafluoroéthanyle, nonafluorobutyle, pentaflurophényle, 2,3,5,6-tétrafluorophényle, 4-fluorophényle, 2,4-difluorophényle, 3,5-difluorophényle, 2,3,4,5,6-pentafluorophényle, 4-cyanophényle, 4-(trifluorométhyl)phényle, 3-(trifluorométhyl)phényle, 2-(trifluorométhyl)phényle, 4-méthylphényle, 1-naphtyle, 2-naphtyle, 3,5-difluorobenzyle, 4-fluorobenzyle, 3-trifluorométhylbenzyle, 4-trifluorométhylbenzyle, 2,5-diméthylbenzyle, 2-phényléthyle, 4-méthoxyphényle, 4-n-butylphényle, 4-t-butylphényle, 4-butoxyphényle, 2-fluoro-5-(trifluorométhyl)phényle, 4-éthylphényle.By way of example, the group R is chosen from methyl, ethyl, propyl, cyclopropyl, butyl, 1-decyl, 1-dodecyl, 1-hexanedecyl, 1-octyldecyl, (7,7-dimethyl-2-oxobicyclo [2.2.1] heptan-1-yl) methyl, ((1R) -7,7-dimethyl-2-oxobicyclo [2.2.1] heptan-1-yl) methyl, (1S) - (7,7-dimethyl -2-oxobicyclo [2.2.1] heptan-1-yl) methyl, cyclohexylmethyl, trifluoromethyl, phenyl, tolyl, naphthyl, 4-trifluoromethylphenyl, 3,5-bis (trifluoromethyl) phenyl, 4-cyanophenyl, 1,1,2 , 2,2-pentafluoroethanyl, nonafluorobutyl, pentaflurophenyl, 2,3,5,6-tetrafluorophenyl, 4-fluorophenyl, 2,4-difluorophenyl, 3,5-difluorophenyl, 2,3,4,5,6-pentafluorophenyl, 4 -cyanophenyl, 4- (trifluoromethyl) phenyl, 3- (trifluoromethyl) phenyl, 2- (trifluoromethyl) phenyl, 4-methylphenyl, 1-naphthyl, 2-naphthyl, 3,5-difluorobenzyl, 4-fluorobenzyl, 3-trifluoromethylbenzyl, 4-trifluoromethylbenzyl, 2,5-dimethylbenzyl, 2-phenylethyl, 4-methoxyphenyl, 4-n-butylphenyl, 4-t-butylphenyl, 4-butoxyphenyl, 2- fluoro-5- (trifluoromethyl) phenyl, 4-ethylphenyl.

L'invention concerne en outre des électrolytes formés des polymères précités, pour batteries, ainsi que des batteries comportant de tels électrolytes.The invention further relates to electrolytes formed from the above polymers, for batteries, as well as to batteries comprising such electrolytes.

On notera que les polymères précités selon l'invention ne comportent pas de motifs sulfoniques - SO3H. Ces motifs forment des fonctions acides dont la force, trop limitée, lie les cations et, notamment, les ions Lithium, de manière trop importante. Les motifs bis(sulfonyl)imides des polymères selon l'invention forment des fonctions acides dont la force, supérieure à celle des motifs sulfoniques, lie les cations et, notamment, les ions Lithium, de manière moins importante, facilitant ainsi leur migration au sein de l'electrolyte.It will be noted that the aforementioned polymers according to the invention do not contain sulfonic units — SO 3 H. These units form acid functions whose strength, which is too limited, binds the cations and, in particular, the lithium ions, in an excessively large manner. The bis (sulfonyl) imide units of the polymers according to the invention form acid functions whose strength, greater than that of the sulfonic units, binds the cations and, in particular, the lithium ions, to a lesser extent, thus facilitating their migration within of the electrolyte.

Selon une première variante, les polymères de formules I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV et XV peuvent être obtenus :

  1. 1) en réalisant dans une première étape la chlorosulfonation d'un polymère de formules XVI, XVII, XVIII, XIX, XX, XXI, XXII, XXIII par un mélange d'acide chlorosulfonique, de chlorure de thionyle et d'un formamide selon un mode opératoire optimisé.
    Figure imgb0016
    Figure imgb0017
    Figure imgb0018
    Figure imgb0019
    Figure imgb0020
    Figure imgb0021
    Figure imgb0022
    Figure imgb0023
    dans lesquelles
    • p représente le nombre d'unités polymériques du polymère; p varie de 40 à 300, préférentiellement entre 60 et 200.

    Pour obtenir les polymères de formules XXIV, XXV, XXVI, XVII, XXVIII, XIX, XXX, XXXI, XXXII, XXXIII, XXXIV, XXXV, XXXVI, XXXVII et XXXVIII
    Figure imgb0024
    Figure imgb0025
    Figure imgb0026
    Figure imgb0027
    Figure imgb0028
    Figure imgb0029
    Figure imgb0030
    Figure imgb0031
    Figure imgb0032
    Figure imgb0033
    Figure imgb0034
    Figure imgb0035
    Figure imgb0036
    Figure imgb0037
    Figure imgb0038
    Dans lesquelles :
    • m représente le pourcentage d'unités polymériques ayant un motif oxo aryle ou dioxoaryle fonctionnalisé par un groupement chlorosulfoné. Ce pourcentage varie entre 50 et 100%, préférentiellement entre 90 et 100%.
    • n représente le pourcentage d'unités polymériques ayant un motif dioxoaryle non fonctionnalisé par un groupement chlorosulfoné. Ce pourcentage varie entre 0 et 50%, préférentiellement entre 0 et 10%,
    • p représente le nombre d'unités polymériques du polymère; p varie de 40 à 300, préférentiellement entre 60 et 200.

    Les polymères de départ sont des produits commerciaux. Le polymère de formule XVI est connu commercialement sous le nom de poly(éther éther cétone) ou poly ether ether ketone ou PEEK
    Figure imgb0039
    le polymère XVII est connu commercialement sous le nom de poly(éther cétone cétone) ou poly ether ketone ketone ou PEKK
    Figure imgb0040
    le polymère XVIII est connu commercialement sous le nom de poly(ether ether sulfone) ou PEES
    Figure imgb0041
    le polymère XIX est connu commercialement sous le nom de poly(ether sulfone) ou PES
    Figure imgb0042
    le polymère XX fait partie de la famille des poly(arène éther cétone) et est connu commercialement sous le nom de poly(bisphénol A PAEK)
    Figure imgb0043
    le polymère XXI fait partie de la famille des poly(arène éther sulfone) et est connu commercialement sous le nom de poly(bisphénol A PAES)
    Figure imgb0044
    le polymère XXII est connu commercialement sous le nom de poly(éther cétone éther cétone cétone) ou poly(ether ketone ether ketone ketone) ou PEKEKK
    Figure imgb0045
    le polymère XXIII est connu commercialement sous le nom de poly(éther cétone) ou poly(ether ketone) ou PEK
    Figure imgb0046

    Cette liste de polymères n'est pas limitative puisqu'il existe un grand nombre d'autres polymères commercialement disponibles ou pas dans les familles des poly(aryl éther cétone), poly(aryl éther sulfone). Selon l'invention, les polymères préférés en raison de leur grande disponibilité sont le PEEK, le PEK, le PES, le PEKK et le PEKEKK.
    La chlorosulfonation est réalisée à une température comprise entre 0° et 80° C avec 1 à 10 équivalents d'acide chlorosulfonique, 1 à 30 équivalents de chlorure de thionyle, 1 à 10 équivalents d'un amide préférentiellement le N,N-diméthylformamide, avec ou sans solvant. Les solvants préférés selon l'invention sont le THF, le méthylTHF, le dichlorométhane, le dichloroéthane. La chlorosulfonation de certains polymères peut conduire à des mélanges de nombreux isomères. Cela est particulièrement vrai pour le polymère XXII ou PEKEKK. Les polymères chlorosulfonés XXXII, XXXIII, XXXIV, XXXV et XXXVI sont donnés à titre d'exemple. D'autres isomères peuvent être formés durant la chlorosulfonation.
  2. 2) dans une deuxième étape, on fait réagir sur les polymères de formules XXIV, XXV, XXVI, XVII, XXVIII, XIX, XXX, XXXI, XXXII, XXXIII, XXXIV, XXXV, XXXVI, XXXVII et XXXVIII avec un sulfonamide de formule XXXIX en milieu solvant.
    Figure imgb0047
    dans laquelle :
    • R représente un groupement ou des groupements différents choisi(s) parmi :
      • un groupement alkyle ou cycloalkyle ayant de 1 à 30 atomes de carbone linéaire ou ramifié éventuellement substitué par un motif cycloalkyle, aryle, perfluoroalkyle, polyfluoroalkyle, mono ou polyéthoxylé ;
      • un groupement perfluoro- ou polyfluoroalkyle éventuellement substitué par des groupes aromatiques ;
      • un groupement aryle ou polyaryliques éventuellement substitués par des motifs alkyles, cycloalkyles, polyfluoro- ou perfluoroalkyles, par des fonctions nitriles, des fonctions alkyl- ou alkylsulfonyles, par des atomes de fluor;
    • m représente le pourcentage d'unités polymériques ayant un motif oxoaryle ou dioxoaryle possédant un sel de bis(sulfonyl)imidure greffé. Ce pourcentage varie entre 50 et 100%, préférentiellement entre 90 et 100%,
en présence d'une base lithiée ou sodée.According to a first variant, the polymers of formulas I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV and XV can be obtained:
  1. 1) by carrying out in a first step the chlorosulfonation of a polymer of formulas XVI, XVII, XVIII, XIX, XX, XXI, XXII, XXIII by a mixture of chlorosulfonic acid, thionyl chloride and a formamide according to a optimized operating mode.
    Figure imgb0016
    Figure imgb0017
    Figure imgb0018
    Figure imgb0019
    Figure imgb0020
    Figure imgb0021
    Figure imgb0022
    Figure imgb0023
    in which
    • p represents the number of polymer units of the polymer; p varies from 40 to 300, preferably between 60 and 200.

    To obtain the polymers of formulas XXIV, XXV, XXVI, XVII, XXVIII, XIX, XXX, XXXI, XXXII, XXXIII, XXXIV, XXXV, XXXVI, XXXVII and XXXVIII
    Figure imgb0024
    Figure imgb0025
    Figure imgb0026
    Figure imgb0027
    Figure imgb0028
    Figure imgb0029
    Figure imgb0030
    Figure imgb0031
    Figure imgb0032
    Figure imgb0033
    Figure imgb0034
    Figure imgb0035
    Figure imgb0036
    Figure imgb0037
    Figure imgb0038
    In which :
    • m represents the percentage of polymer units having an oxo aryl or dioxoaryl unit functionalized with a chlorosulfonated group. This percentage varies between 50 and 100%, preferably between 90 and 100%.
    • n represents the percentage of polymer units having a dioxoaryl unit not functionalized by a chlorosulfonated group. This percentage varies between 0 and 50%, preferably between 0 and 10%,
    • p represents the number of polymer units of the polymer; p varies from 40 to 300, preferably between 60 and 200.

    The starting polymers are commercial products. The polymer of formula XVI is known commercially under the name of poly (ether ether ketone) or poly ether ether ketone or PEEK
    Figure imgb0039
    polymer XVII is known commercially under the name of poly (ether ketone ketone) or poly ether ketone ketone or PEKK
    Figure imgb0040
    polymer XVIII is known commercially under the name of poly (ether ether sulfone) or PEES
    Figure imgb0041
    the polymer XIX is known commercially under the name of poly (ether sulfone) or PES
    Figure imgb0042
    polymer XX is part of the poly (arene ether ketone) family and is known commercially under the name of poly (bisphenol A PAEK)
    Figure imgb0043
    polymer XXI is part of the poly (arene ether sulfone) family and is known commercially under the name of poly (bisphenol A PAES)
    Figure imgb0044
    polymer XXII is known commercially under the name of poly (ether ketone ether ketone ketone) or poly (ether ketone ether ketone ketone) or PEKEKK
    Figure imgb0045
    polymer XXIII is known commercially under the name of poly (ether ketone) or poly (ether ketone) or PEK
    Figure imgb0046

    This list of polymers is not limiting since there is a large number of other polymers commercially available or not in the families of poly (aryl ether ketone), poly (aryl ether sulfone). According to the invention, the preferred polymers because of their great availability are PEEK, PEK, PES, PEKK and PEKEKK.
    The chlorosulfonation is carried out at a temperature between 0 ° and 80 ° C with 1 to 10 equivalents of chlorosulfonic acid, 1 to 30 equivalents of thionyl chloride, 1 to 10 equivalents of an amide, preferably N, N-dimethylformamide, with or without solvent. The preferred solvents according to the invention are THF, methylTHF, dichloromethane, dichloroethane. Chlorosulfonation of certain polymers can lead to mixtures of many isomers. This is particularly true for polymer XXII or PEKEKK. The chlorosulfonated polymers XXXII, XXXIII, XXXIV, XXXV and XXXVI are given by way of example. Other isomers can be formed during chlorosulfonation.
  2. 2) in a second step, the polymers of formulas XXIV, XXV, XXVI, XVII, XXVIII, XIX, XXX, XXXI, XXXII, XXXIII, XXXIV, XXXV, XXXVI, XXXVII and XXXVIII are reacted with a sulfonamide of formula XXXIX in a solvent medium.
    Figure imgb0047
    in which :
    • R represents a group or different groups chosen from:
      • an alkyl or cycloalkyl group having from 1 to 30 linear or branched carbon atoms optionally substituted by a cycloalkyl, aryl, perfluoroalkyl, polyfluoroalkyl, mono or polyethoxyl unit;
      • a perfluoro- or polyfluoroalkyl group optionally substituted by aromatic groups;
      • an aryl or polyaryl group optionally substituted by alkyl, cycloalkyl, polyfluoro- or perfluoroalkyl units, by nitrile functions, alkyl- or alkylsulfonyl functions, by fluorine atoms;
    • m represents the percentage of polymer units having an oxoaryl or dioxoaryl unit having a grafted bis (sulfonyl) imide salt. This percentage varies between 50 and 100%, preferably between 90 and 100%,
in the presence of a lithiated or soda base.

A titre d'exemple non limitatif de sulfonamides pouvant être utilisés dans l'invention, nous citerons le méthanesulfonamide, l'éthanesulfonamide, le propanesulfonamide, le butanesulfonamide, le 1-decanesulfonamide, le 1-dodecanesulfonamide, le (7,7-diméthyl-2-oxobicyclo[2.2.1]heptan-1-yl)méthanesulfonamide, le ((1R)-7,7-diméthyl-2-oxobicyclo[2.2.1]heptan-1-yl)méthanesulfonamide, le (1S)-(7,7-diméthyl-2-oxobicyclo[2.2.1]heptan-1-yl)méthanesulfonamide, cyclohexylméthanesulfonamide, , le benzènesulfonamide, les toluènesulfonamide, les naphtalènesulfonamides, les trifluorobenzènesulfonamides, le 3,5-bis(trifluoro)benzenesulfonamide, le 2,5-bis(trifluorométhyl)benzènesulfonamide, 4-cyanobenzenesulfonamide 1,1,2,2,2-pentafluoroéthanesulfonamide, le nonafluorobutanesulfonamide, le pentafluorobenzènesulfonamide, 2,3,5,6-tétrafluorobenzènesulfonamide, 4-fluorobenzènesulfonamide, le 2,4-difluorobenzensulfonamide, 3,5-difluorobenzènesulfonamide, 2,3,4,5,6-pentafluorobenzènesulfonamide, 4-(trifluorométhyl)benzènesulfonamide, 3-(trifluorométhyl)benzènesulfonamide, 2-(trifluorométhyl)benzènesulfonamide, 4-methylbenzènesulfonamide, le 1-naphtalenesulfonamide, le 2-naphtalènesulfonamide, le 3,5-difluorophenylmethanesulfonamide, le 4-fluorophenylmethanesulfonamide, le 3-trifluorométhylphenylmethanesulfonamide, le 4-trifluorométhylphenylmethanesulfonamide, le 2,5-dimethylphenylmethanesulfonamide, le 2-phénylethanesulfonamide, le 4-méthoxybenzènesulfonamide, le 4-n-butylbenzènesulfonamide, le 4-t-butylbenzènesulfonamide, le 4-butoxybenzènesulfonamide, le 2-fluoro-5-(trifluoromethyl)benzènesulfonamide, le 4-éthylbenzènesulfonamide.By way of nonlimiting example of sulfonamides which can be used in the invention, we will cite methanesulfonamide, ethanesulfonamide, propanesulfonamide, butanesulfonamide, 1-decanesulfonamide, 1-dodecanesulfonamide, (7,7-dimethyl- 2-oxobicyclo [2.2.1] heptan-1-yl) methanesulfonamide, ((1R) -7,7-dimethyl-2-oxobicyclo [2.2.1] heptan-1-yl) methanesulfonamide, (1S) - ( 7,7-dimethyl-2-oxobicyclo [2.2.1] heptan-1-yl) methanesulfonamide, cyclohexylmethanesulfonamide,, benzenesulfonamide, toluenesulfonamide, naphthalenesulfonamides, trifluorobenzenesulfonamides, 3,5-bis (trifluoro) benzenesulfonamide, 3,5-bis (trifluoro) benzenesulfonamide , 5-bis (trifluoromethyl) benzenesulfonamide, 4-cyanobenzenesulfonamide 1,1,2,2,2-pentafluoroethanesulfonamide, nonafluorobutanesulfonamide, pentafluorobenzenesulfonamide, 2,3,5,6-tetrafluorobenzenesulfonamide, 4-fluorobenzenesulfonamide, 2,4-difluorobenzensulfonamide, 3,5-difluorobenzenesulfonamide, 2,3,4 , 5,6-pentafluorobenzenesulfonamide, 4- (trifluoromethyl) benzenesulfonamide, 3- (trifluoromethyl) benzenesulfonamide, 2- (trifluoromethyl) benzenesulfonamide, 4-methylbenzenesulfonamide, 1-naphthalenesulfonamide, 2-naphthalenesulfonulfonamide, 3,5-naphthalenesulfonophenamide, 3,5-meteifluhanamide 4-fluorophenylmethanesulfonamide, 3-trifluoromethylphenylmethanesulfonamide, 4-trifluoromethylphenylmethanesulfonamide, 2,5-dimethylphenylmethanesulfonamide, 2-phenylethanesulfonamide, 4-methoxybenzenesulfonamide, 4-n-toxybenzenesulfonamide, 4-n-butylbenzenesulfamide, 4-n-butylbenzenesulfamide, 4-n-butylbenzenesulfamide, 4-n-butylbenzenesulfamide, 4-n-butylbenzenesulfonamide, 4-n-butylbenzenesulfamide 2-fluoro-5- (trifluoromethyl) benzenesulfonamide, 4-ethylbenzenesulfonamide.

Les bases lithiées ou sodées sont choisies préférentiellement parmi la lithine, la soude, le méthylate de lithium, le méthylate de sodium, l'éthylate de lithium, l'éthylate de sodium, l'isopropylate de lithium, l'isopropylate de sodium, le tertiobutylate de lithium, le tertiobutylate de sodium, l'hydrure de lithium, l'hydrure de sodium, le n-butyllithium, le n-butylsodium, le s-butyllithium, le diisopropylamidure de lithium, le tert-butyllithium, le méthyllithium le phényllithium, le phénylsodium, le benzyllithium, le benzylsodium, le dimsylate de lithium, le dimesylate de sodium, le carbonate de lithium, le carbonate de sodium, l'acétate de lithium, l'acétate de sodium. Les bases préférées sont celles qui ne forment pas d'eau lors de la réaction.The lithiated or sodium bases are preferably chosen from lithium hydroxide, sodium hydroxide, lithium methoxide, sodium methoxide, lithium ethoxide, sodium ethoxide, lithium isopropoxide, sodium isopropoxide, lithium tert-butylate, sodium tert-butylate, lithium hydride, sodium hydride, n-butyllithium, n-butylsodium, s-butyllithium, lithium diisopropylamide, tert-butyllithium, methyllithium le phenyllithium, phenylsodium, benzyllithium, benzylsodium, lithium dimsylate, sodium dimesylate, lithium carbonate, sodium carbonate, lithium acetate, sodium acetate. The preferred bases are those which do not form water during the reaction.

Les solvants utilisés pour la réaction de condensation du sulfonamide de formule XXXIX avec les polymères chlorosulfonés de formules XXIV, XXV, XXVI, XVII, XXVIII, XIX, XXX, XXXI, XXXII, XXXIII, XXXIV, XXXV, XXXVI, XXXVII et XXXVIII sont des solvants aprotiques polaires. Les solvants préférés sont le THF, le méthylTHF, le dioxane, le dichlorométhane et le dichloroéthane, le diméthylsulfoxyde.The solvents used for the condensation reaction of the sulfonamide of formula XXXIX with the chlorosulfonated polymers of formulas XXIV, XXV, XXVI, XVII, XXVIII, XIX, XXX, XXXI, XXXII, XXXIII, XXXIV, XXXV, XXXVI, XXXVII and XXXVIII are polar aprotic solvents. The preferred solvents are THF, methylTHF, dioxane, dichloromethane and dichloroethane, dimethylsulfoxide.

Selon une seconde variante, les polymères de formules I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV et XV peuvent être obtenus :

  1. 1) en réalisant dans une première étape la chlorosulfonation d'un polymère de formules XVI, XVII, XVII, XIX, XX, XXI, XXII et XXIII par un mélange d'acide chlorosulfonique, de chlorure de thionyle et d'un formamide selon un mode opératoire optimisé.
    Figure imgb0048
    Figure imgb0049
    Figure imgb0050
    Figure imgb0051
    Figure imgb0052
    Figure imgb0053
    Figure imgb0054
    Figure imgb0055
    dans lesquelles
    • p représente le nombre d'unités polymériques du polymère; p varie de 40 à 300, préférentiellement entre 60 et 200,
    pour obtenir les polymères de formules XXIV, XXV, XXVI, XXVII, XXVIII, XXIX, XXX, XXXI, XXXII, XXXIII, XXXIV, XXXV, XXXVI, XXXVII et XXXVIII
    Figure imgb0056
    Figure imgb0057
    Figure imgb0058
    Figure imgb0059
    Figure imgb0060
    Figure imgb0061
    Figure imgb0062
    Figure imgb0063
    Figure imgb0064
    Figure imgb0065
    Figure imgb0066
    Figure imgb0067
    Figure imgb0068
    Figure imgb0069
    Figure imgb0070
    dans lesquelles :
    • m représente le pourcentage d'unités polymériques ayant un motif oxoaryle ou dioxoaryle fonctionnalisé par un groupement chlorosulfoné. Ce pourcentage varie entre 50 et 100%, préférentiellement entre 90 et 100%.
    • n représente le pourcentage d'unités polymériques ayant un motif dioxoaryle non fonctionnalisé par un groupement chlorosulfoné. Ce pourcentage varie entre 0 et 50%, préférentiellement entre 0 et 10%,
    • p représente le nombre d'unités polymériques du polymère; p varie de 40 à 300, préférentiellement entre 60 et 200.

    Les polymères de départ sont des produits commerciaux. Le polymère de formule XVI est connu commercialement sous le nom de poly(éther éther cétone) ou poly ether ether ketone ou PEEK
    Figure imgb0071
    le polymère XVII est connu commercialement sous le nom de poly(éther cétone cétone) ou poly ether ketone ketone ou PEKK
    Figure imgb0072
    le polymère XVIII est connu commercialement sous le nom de poly(ether ether sulfone) ou PEES
    Figure imgb0073
    le polymère XIX est connu commercialement sous le nom de poly(ether sulfone) ou PES
    Figure imgb0074
    le polymère XX fait partie de la famille des poly(arène éther cétone) et est connu commercialement sous le nom de poly(bisphénol A PAEK)
    Figure imgb0075
    le polymère XXI fait partie de la famille des poly(arène éther sulfone) et est connu commercialement sous le nom de poly(bisphénol A PAES)
    Figure imgb0076
    le polymère XXII est connu commercialement sous le nom de poly(éther cétone éther cétone cétone) ou poly(ether ketone ether ketone ketone) ou PEKEKK
    Figure imgb0077
    le polymère XXIII est connu commercialement sous le nom de poly(éther cétone) ou poly(ether ketone) ou PEK
    Figure imgb0078

    Cette liste de polymères n'est pas limitative puisqu'il existe un grand nombre d'autres polymères commercialement disponibles ou pas dans les familles des poly(aryl éther cétone), poly(aryl éther sulfone). Selon l'invention, les polymères préférés en raison de leur grande disponibilité sont le PEEK, le PEK, le PES, le PEKK et le PEKEKK.
    La chlorosulfonation est réalisée à une température comprise entre 0° et 80° C. Par rapport aux motifs oxoaryles ou dioxoryles à chlorosulfoner, on introduit avec 1 à 10 équivalents d'acide chlorosulfonique, 1 à 30 équivalents de chlorure de thionyle, 1 à 10 équivalents d'un amide préférentiellement le N,N-diméthylformamide, avec ou sans un solvant. Les solvants préférés selon l'invention sont le THF, le méthylTHF, le dichlorométhane, le dichloroéthane. La chlorosulfonation de certains polymères peut conduire à des mélanges de nombreux isomères. Cela est particulièrement vrai pour le polymère XXII ou PEKEKK. Les polymères chlorosulfonés XXXI, XXXII, XXXIII, XXXIV, XXXV et XXXVI sont donnés à titre d'exemple. D'autres isomères peuvent être formés durant la chlorosulfonation.
  2. 2) dans un deuxième étape, on fait réagir sur les polymères de formules XXIV, XXV, XXVI, XXVII, XXVIII, XIX, XXX, XXXI, XXXII, XXXIII, XXXIV, XXXV, XXXVI, XXXVII et XXXVIII en solution de l'ammoniac gaz ou une solution d'ammoniac pour obtenir les polymères de formules XL, XLI, XLII, XLIII, XLIV, XLV, XLVI, XLVII, XLVIII, XLIX, L, LI, LII, LIII et LIV,
    Figure imgb0079
    Figure imgb0080
    Figure imgb0081
    Figure imgb0082
    Figure imgb0083
    Figure imgb0084
    Figure imgb0085
    Figure imgb0086
    Figure imgb0087
    Figure imgb0088
    Figure imgb0089
    Figure imgb0090
    Figure imgb0091
    Figure imgb0092
    Figure imgb0093
    dans lesquelles :
    • m représente le pourcentage d'unités polymériques ayant un motif oxoaryle ou dioxoaryle fonctionnalisé possédant une fonction sulfonamide. Ce pourcentage varie entre 50 et 100%,
    • n représente le pourcentage d'unités polymériques ayant un motif oxoaryle ou dioxoaryle non fonctionnalisé par une fonction sulfonamide. Ce pourcentage varie entre 0 et 50%,
    • p représente le nombre d'unités polymériques du polymère; p varie de 40 à 300, préférentiellement entre 60 et 200.

    Pour réaliser cette réaction avec l'ammoniac, les polymères sont solubilisés dans un solvant tel qu'un éther, un halogénoalcane, un aromatique. L'ammoniac est introduit sous forme de gaz ou de solution dans un solvant de type éther, un halogénoalcane, un aromatique. Les solvants préférés sont le dichlorométhane, le 1,2-dichloroéthane, le THF, le méthylTHF, le diisopropyl éther, le diéthyl éther, l'anisole, le méthanol, le dioxane, l'isopropanol. L'amination des polymères avec l'ammoniac est réalisée à une température comprise entre -20 et 60 °C. Par rapport au nombre de fonction chlorosulfonyle du polymère de formules XXIV, XXV, XXVI, XVII, XXVIII, XIX, XXX, XXXI, XXXII, XXXIII, XXXIV, XXXV, XXXVI, XXXVII et XXXVIII, on introduit 2 à 12 équivalents d'ammoniac, préférentiellement 2 à 5 équivalents d'ammoniac. Les essais sont effectués à une température comprise entre -20°C et 60°C, de manière préférentielle entre 0 et 30 °C.
    Les polymères de formules XL, XLI, XLII, XLIII, XLIV, XLV, XLVI, XLVII, XLVIII, XLIX, L, LI, LII, LIII et LIV sont des intermédiaires nouveaux.
  3. 3) dans un troisième temps, on fait réagir sur les polymères de formules XL, XLI, XLII, XLIII, XLIV, XLV, XLVI, XLVII, XLVIII, XLIX, L, LI, LII, LIII et LIV, un halogénure de sulfonyle de formule LV,
    Figure imgb0094
    dans laquelle :
    • X représente un atome de fluor ou de chlore ou de brome ou un groupe trifluorométhanesulfonyle ou alkylsulfonyle ou arylsulfonyle;
    • R représente un groupement ou des groupements différents choisi(s) parmi :
      • un groupement alkyle ou cycloalkyle ayant de 1 à 30 atomes de carbone linéaire ou ramifié éventuellement substitué par un motif cycloalkyle, aryle, perfluoroalkyle, polyfluoroalkyle, mono ou polyéthoxylé ;
      • un groupement perfluoro- ou polyfluoroalkyle éventuellement substitué par des groupes aromatiques ;
      • un groupement aryle ou polyaryliques éventuellement substitués par des motifs alkyles, cycloalkyles, polyfluoro- ou perfluoroalkyles, par des fonctions nitriles, des fonctions alkyl- ou alkylsulfonyles, par des atomes de fluor ;
en présence d'une base lithiée ou sodée à une température comprise entre 0 et 80 °C, préférentiellement entre 20 et 60 °C en milieu solvant.According to a second variant, the polymers of formulas I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV and XV can be obtained:
  1. 1) by carrying out in a first step the chlorosulfonation of a polymer of formulas XVI, XVII, XVII, XIX, XX, XXI, XXII and XXIII with a mixture of chlorosulfonic acid, thionyl chloride and a formamide according to a optimized operating mode.
    Figure imgb0048
    Figure imgb0049
    Figure imgb0050
    Figure imgb0051
    Figure imgb0052
    Figure imgb0053
    Figure imgb0054
    Figure imgb0055
    in which
    • p represents the number of polymer units of the polymer; p varies from 40 to 300, preferably between 60 and 200,
    to obtain the polymers of formulas XXIV, XXV, XXVI, XXVII, XXVIII, XXIX, XXX, XXXI, XXXII, XXXIII, XXXIV, XXXV, XXXVI, XXXVII and XXXVIII
    Figure imgb0056
    Figure imgb0057
    Figure imgb0058
    Figure imgb0059
    Figure imgb0060
    Figure imgb0061
    Figure imgb0062
    Figure imgb0063
    Figure imgb0064
    Figure imgb0065
    Figure imgb0066
    Figure imgb0067
    Figure imgb0068
    Figure imgb0069
    Figure imgb0070
    in which :
    • m represents the percentage of polymer units having an oxoaryl or dioxoaryl unit functionalized with a chlorosulfonated group. This percentage varies between 50 and 100%, preferably between 90 and 100%.
    • n represents the percentage of polymer units having a dioxoaryl unit not functionalized by a chlorosulfonated group. This percentage varies between 0 and 50%, preferably between 0 and 10%,
    • p represents the number of polymer units of the polymer; p varies from 40 to 300, preferably between 60 and 200.

    The starting polymers are commercial products. The polymer of formula XVI is known commercially under the name of poly (ether ether ketone) or poly ether ether ketone or PEEK
    Figure imgb0071
    polymer XVII is known commercially under the name of poly (ether ketone ketone) or poly ether ketone ketone or PEKK
    Figure imgb0072
    polymer XVIII is known commercially under the name of poly (ether ether sulfone) or PEES
    Figure imgb0073
    the polymer XIX is known commercially under the name of poly (ether sulfone) or PES
    Figure imgb0074
    polymer XX is part of the poly (arene ether ketone) family and is known commercially under the name of poly (bisphenol A PAEK)
    Figure imgb0075
    polymer XXI is part of the poly (arene ether sulfone) family and is known commercially under the name of poly (bisphenol A PAES)
    Figure imgb0076
    polymer XXII is known commercially under the name of poly (ether ketone ether ketone ketone) or poly (ether ketone ether ketone ketone) or PEKEKK
    Figure imgb0077
    polymer XXIII is known commercially under the name of poly (ether ketone) or poly (ether ketone) or PEK
    Figure imgb0078

    This list of polymers is not limiting since there is a large number of other polymers commercially available or not in the families of poly (aryl ether ketone), poly (aryl ether sulfone). According to the invention, the preferred polymers because of their great availability are PEEK, PEK, PES, PEKK and PEKEKK.
    The chlorosulfonation is carried out at a temperature between 0 ° and 80 ° C. With respect to the oxoaryl or dioxoryl units to be chlorosulfonated, one introduces with 1 to 10 equivalents of chlorosulfonic acid, 1 to 30 equivalents of thionyl chloride, 1 to 10 equivalents of an amide, preferably N , N -dimethylformamide, with or without a solvent. The preferred solvents according to the invention are THF, methylTHF, dichloromethane, dichloroethane. Chlorosulfonation of certain polymers can lead to mixtures of many isomers. This is particularly true for polymer XXII or PEKEKK. The chlorosulfonated polymers XXXI, XXXII, XXXIII, XXXIV, XXXV and XXXVI are given by way of example. Other isomers can be formed during chlorosulfonation.
  2. 2) in a second step, the polymers of formulas XXIV, XXV, XXVI, XXVII, XXVIII, XIX, XXX, XXXI, XXXII, XXXIII, XXXIV, XXXV, XXXVI, XXXVII and XXXVIII in ammonia solution are reacted gas or an ammonia solution to obtain the polymers of formulas XL, XLI, XLII, XLIII, XLIV, XLV, XLVI, XLVII, XLVIII, XLIX, L, LI, LII, LIII and LIV,
    Figure imgb0079
    Figure imgb0080
    Figure imgb0081
    Figure imgb0082
    Figure imgb0083
    Figure imgb0084
    Figure imgb0085
    Figure imgb0086
    Figure imgb0087
    Figure imgb0088
    Figure imgb0089
    Figure imgb0090
    Figure imgb0091
    Figure imgb0092
    Figure imgb0093
    in which :
    • m represents the percentage of polymer units having a functionalized oxoaryl or dioxoaryl unit having a sulfonamide function. This percentage varies between 50 and 100%,
    • n represents the percentage of polymer units having an oxoaryl or dioxoaryl unit not functionalized by a sulfonamide function. This percentage varies between 0 and 50%,
    • p represents the number of polymer units of the polymer; p varies from 40 to 300, preferably between 60 and 200.

    To carry out this reaction with ammonia, the polymers are dissolved in a solvent such as an ether, a haloalkane or an aromatic. The ammonia is introduced in the form of a gas or of a solution in a solvent of the ether type, a haloalkane or an aromatic. The preferred solvents are dichloromethane, 1,2-dichloroethane, THF, methylTHF, diisopropyl ether, diethyl ether, anisole, methanol, dioxane, isopropanol. The amination of polymers with ammonia is carried out at a temperature between -20 and 60 ° C. Compared to the number of chlorosulfonyl functions of the polymer of formulas XXIV, XXV, XXVI, XVII, XXVIII, XIX, XXX, XXXI, XXXII, XXXIII, XXXIV, XXXV, XXXVI, XXXVII and XXXVIII, we introduce 2 to 12 equivalents of ammonia , preferably 2 to 5 equivalents of ammonia. The tests are carried out at a temperature between -20 ° C and 60 ° C, preferably between 0 and 30 ° C.
    The polymers of formulas XL, XLI, XLII, XLIII, XLIV, XLV, XLVI, XLVII, XLVIII, XLIX, L, LI, LII, LIII and LIV are new intermediates.
  3. 3) in a third step, one reacts on the polymers of formulas XL, XLI, XLII, XLIII, XLIV, XLV, XLVI, XLVII, XLVIII, XLIX, L, LI, LII, LIII and LIV, a sulfonyl halide of LV formula,
    Figure imgb0094
    in which :
    • X represents a fluorine or chlorine or bromine atom or a trifluoromethanesulfonyl or alkylsulfonyl or arylsulfonyl group;
    • R represents a group or different groups chosen from:
      • an alkyl or cycloalkyl group having from 1 to 30 linear or branched carbon atoms, optionally substituted by a cycloalkyl, aryl, perfluoroalkyl, polyfluoroalkyl, mono or polyethoxylated unit;
      • a perfluoro- or polyfluoroalkyl group optionally substituted by aromatic groups;
      • an aryl or polyaryl group optionally substituted by alkyl, cycloalkyl, polyfluoro- or perfluoroalkyl units, by nitrile functions, alkyl- or alkylsulfonyl functions, by fluorine atoms;
in the presence of a lithiated or soda base at a temperature between 0 and 80 ° C, preferably between 20 and 60 ° C in a solvent medium.

De manière préférentielle, on choisira comme groupement R de l'halogénure de sulfonyle (LV) un groupement alkyle ayant de 1 à 10 atomes de carbone linéaire ou ramifié éventuellement substitué par un motif cycloalkyle, aryle ; un groupement cycloalkyle ; un groupement perfluoro- ou polyfluoroalkyle éventuellement substitué par des groupes aromatiques ; un groupement aryle ou polyarylique éventuellement substitué par des chaînes alkyles, cycloalkyles, polyfluoro- ou perfluoroalkyles, par des fonctions alcoxy, nitriles, des fonctions alkylsulfonyle, par un ou des atomes de fluor.Preferably, the R group of the sulfonyl halide (LV) will be chosen an alkyl group having from 1 to 10 linear or branched carbon atoms optionally substituted by a cycloalkyl or aryl unit; a cycloalkyl group; a perfluoro- or polyfluoroalkyl group optionally substituted by aromatic groups; an aryl or polyaryl group optionally substituted with alkyl, cycloalkyl, polyfluoro- or perfluoroalkyl chains, with alkoxy, nitrile or alkylsulfonyl functions, or with one or more fluorine atoms.

De manière très préférentielle, l'halogénure est choisi parmi les chlorures, bromures et fluorures de méthyle, éthyle, propyle, cyclopropyle, butyle, 1-décyle, 1-dodécyle, 1-hexanedécyl, 1-octyldécyle, (7,7-diméthyl-2-oxobicyclo[2.2.1]heptan-1-yl)méthyle, ((1R)-7,7-diméthyl-2-oxobicyclo[2.2.1]heptan-1-yl)méthyle, (1S)-(7, 7-diméthyl-2-oxobicyclo [2.2.1]heptan-1-yl)méthyle, cyclohexyleméthyle, trifluorométhyle, phényle, tolyle, naphtyle, 4-trifluorométhylphényle, 3,5-bis(trifluorométhyl)phényle, trifluorophenyle, 4-cyanophényle, 1,1,2,2,2-pentafluoroéthanyle, nonafluorobutyle, pentaflurophényle, 2,3,5,6-tétrafluorophényle, 4-fluorophényle, 2,4-difluorophényle, 3,5-difluorophényle, 2,3,4,5,6-pentafluorophényle, 4-(trifluorométhyl)phényle, 3-(trifluorométhyl)phényle, 2-(trifluorométhyl)phényle, 4-méthylphényle, 1-naphtyle, le 2-naphtyle, 3,5-difluorobenzyle, 4-fluorobenzyle, 3-trifluorométhylbenzyle, 4-trifluorométhylbenzyle, 2,5-diméthylbenzyle, 2-phényléthyle, 4-méthoxyphényle, 4-n-butylphényle, 4-t-butylphényle, 4-butoxyphényle, 2-fluoro-5-(trifluorométhyl)phényle, 4-éthylphényleVery preferably, the halide is chosen from chlorides, bromides and fluorides of methyl, ethyl, propyl, cyclopropyl, butyl, 1-decyl, 1-dodecyl, 1-hexanedecyl, 1-octyldecyl, (7,7-dimethyl -2-oxobicyclo [2.2.1] heptan-1-yl) methyl, ((1R) -7,7-dimethyl-2-oxobicyclo [2.2.1] heptan-1-yl) methyl, (1S) - (7 , 7-dimethyl-2-oxobicyclo [2.2.1] heptan-1-yl) methyl, cyclohexylemethyl, trifluoromethyl, phenyl, tolyl, naphthyl, 4-trifluoromethylphenyl, 3,5-bis (trifluoromethyl) phenyl, trifluorophenyl, 4-cyanophenyl, 1,1,2,2,2-pentafluoroethanyl, nonafluorobutyl, pentaflurophenyl, 2,3,5,6-tetrafluorophenyl, 4- fluorophenyl, 2,4-difluorophenyl, 3,5-difluorophenyl, 2,3,4,5,6-pentafluorophenyl, 4- (trifluoromethyl) phenyl, 3- (trifluoromethyl) phenyl, 2- (trifluoromethyl) phenyl, 4-methylphenyl , 1-naphthyl, 2-naphthyl, 3,5-difluorobenzyl, 4-fluorobenzyl, 3-trifluoromethylbenzyl, 4-trifluoromethylbenzyl, 2,5-dimethylbenzyl, 2-phenylethyl, 4-methoxyphenyl, 4-n-butylphenyl, 4- t-butylphenyl, 4-butoxyphenyl, 2-fluoro-5- (trifluoromethyl) phenyl, 4-ethylphenyl

Les bases lithiées ou sodées sont choisies préférentiellement parmi la lithine, la soude, le méthylate de lithium, le méthylate de sodium, l'éthylate de lithium, l'éthylate de sodium, l'isopropylate de lithium, l'isopropylate de sodium, le tertiobutylate de lithium, le tertiobutylate de sodium, l'hydrure de lithium, l'hydrure de sodium, le n-butyllithium, le n-butylsodium, le s-butyllithium, le diisopropylamidure de lithium, le tert-butyllithium, le méthyllithium le phényllithium, le phénylsodium, le benzyllithium, le benzylsodium, le dimsylate de lithium, le dimesylate de sodium, le carbonate de lithium, le carbonate de sodium, l'acétate de lithium, l'acétate de sodium. Les bases préférées sont celles qui ne forment pas d'eau lors de la réaction.The lithiated or sodium bases are preferably chosen from lithium hydroxide, sodium hydroxide, lithium methoxide, sodium methoxide, lithium ethoxide, sodium ethoxide, lithium isopropoxide, sodium isopropoxide, lithium tert-butylate, sodium tert-butylate, lithium hydride, sodium hydride, n-butyllithium, n-butylsodium, s-butyllithium, lithium diisopropylamide, tert-butyllithium, methyllithium, phenyllithium , phenylsodium, benzyllithium, benzylsodium, lithium dimsylate, sodium dimesylate, lithium carbonate, sodium carbonate, lithium acetate, sodium acetate. The preferred bases are those which do not form water during the reaction.

Les solvants préférés sont le dichlorométhane, le 1,2-dichloroéthane, le THF, le méthylTHF, le diisopropyl éther, le DMSO.The preferred solvents are dichloromethane, 1,2-dichloroethane, THF, methylTHF, diisopropyl ether, DMSO.

A titre d'exemple non limitatif d'agents de sulfonylation pouvant être utilisés dans l'invention, nous citerons le chlorure de 4-biphénylsulfonyle, 4-chlorobenzènesulfonyle, le chlorure de méthanesulfonyle, le chlorure d'éthanesulfonyle, le chlorure de 3-fluorobenzènesulfonyle, le chlorure de 4-fluorosulfonyle, le chlorure de 4-butylbenzènesulfonyle, le chlorure de 2-naphtalènesulfonyle, le chlorure de trifluorométhanesulfonyle, le chlorure de 2,3,5,6-tétrafluorobenzènesulfonyle, le chlorure de 4-fluorobenzènesulfonyle, le chlorure de 3,5-difluorobenzènesulfonyle , le chlorure de 2,3,4,5,6-pentafluorobenzènesulfonyle, le chlorure de 4-cyanobenzènesulfonyle, le chlorure de 4-nitrobenzènesulfonyle, le chlorure de 4-(trifluorométhyl)benzènesulfonyle, le chlorure de 3-(trifluorométhyl)benzènesulfonyle, le chlorure de 2-(trifluorométhyl)benzènesulfonyle, le fluorure de trifluorométhanesulfonyle, le fluorure de pentaéthanesulfonyle, le fluorure de nonafluorobutanesulfonyle, le bromure de méthanesulfonyle, l'anhydride triflique, l'anhydride méthanesulfonique, le bromure de 4-méthylbenzènesulfonyle.By way of nonlimiting example of sulfonylation agents which can be used in the invention, we will mention 4-biphenylsulfonyl chloride, 4-chlorobenzenesulfonyl, methanesulfonyl chloride, ethanesulfonyl chloride, 3-fluorobenzenesulfonyl chloride, 4-fluorosulfonyl chloride, 4-butylbenzenesulfonyl chloride, 2- naphthalenesulfonyl, trifluoromethanesulfonyl chloride, 2,3,5,6-tetrafluorobenzenesulfonyl chloride, 4-fluorobenzenesulfonyl chloride, 3,5-difluorobenzenesulfonyl chloride, 2,3,4,5,6-pentafluorobenzenesulfonyl chloride , 4-cyanobenzenesulfonyl chloride, 4-nitrobenzenesulfonyl chloride, 4- (trifluoromethyl) benzenesulfonyl chloride, 3- (trifluoromethyl) benzenesulfonyl chloride, 2- (trifluoromethyl) benzenesulfonyl chloride, trifluoromethanesulfonyl chloride, trifluoromethanesulfonyl pentaethanesulfonyl fluoride, nonafluorobutanesulfonyl fluoride, methanesulfonyl bromide, triflic anhydride, methanesulfonic anhydride, 4-methylbenzene bromide sulfonyl.

Toutes les réactions sont réalisées préférentiellement avec des solvants anhydres, de préférence fraîchement distillés, et sous atmosphère inerte et anhydre. On entend par atmosphère anhydre une atmosphère sous courant d'azote ou d'argon.All the reactions are preferably carried out with anhydrous solvents, preferably freshly distilled, and under an inert and anhydrous atmosphere. By anhydrous atmosphere is meant an atmosphere under a stream of nitrogen or argon.

Le procédé développé par la demanderesse met en œuvre des produits peu onéreux et conduit à des électrolytes compatibles avec les attentes du marché et dont les performances sont supérieures ou égales aux meilleurs produits.The process developed by the Applicant uses inexpensive products and results in electrolytes compatible with market expectations and whose performance is greater than or equal to the best products.

De manière surprenante et inattendue, il a été constaté que les polymères de formules I , II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV et XV étaient particulièrement filmogènes ce qui est un net avantage pour l'application visée. Ils peuvent être utilisés pour former des films d'une épaisseur comprise entre 10 µm et 200 pm, qui présentent une bonne résistance mécanique. En pratique, ces films peuvent être manipulés par un opérateur sans être déchirés. On notera que les polymères I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV et XV ne sont pas réticulés dans les films obtenus. Ces polymères selon l'invention sont en effet suffisamment rigides pour l'obtention de films mécaniquement résistants sans réticulation. Les films sont préparés dans des solvants anhydres, de préférence le DMSO.Surprisingly and unexpectedly, it was found that the polymers of formulas I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV and XV were particularly film-forming which is a clear advantage for the intended application. They can be used to form films with a thickness between 10 μm and 200 μm, which have good mechanical strength. In practice, these films can be handled by an operator without being torn. It will be noted that polymers I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV and XV are not crosslinked in the films obtained. These polymers according to the invention are in fact sufficiently rigid to obtain mechanically strong films without crosslinking. The films are prepared in anhydrous solvents, preferably DMSO.

Ainsi, des films des polymères de formules I , II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV et XV peuvent être facilement obtenus par évaporation d'une solution de polymère déposée sur une surface d'un matériau tel que du verre, du téflon, du plastique. L'évaporation est réalisée à une température comprise entre 20 et 80°C. L'évaporation du solvant est réalisée par chauffage, par balayage d'un gaz inerte ou par mise sous pression réduite.Thus, films of the polymers of formulas I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV and XV can be easily obtained by evaporation of a deposited polymer solution. on a surface of a material such as glass, teflon, plastic. Evaporation is carried out at a temperature between 20 and 80 ° C. Evaporation of the solvent is carried out by heating, by flushing with an inert gas or by placing under reduced pressure.

Les films des polymères de formules I , II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV et XV sont de très bons électrolytes. Les conductivités obtenues sont comprises entre 10-8 et 2 x 10-3 S/cm en milieu solvant et sans solvant. Les films des polymères de formules I , II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV et XV se caractérisent par une très grande plage d'utilisation au niveau des températures allant de 20 à 100 °C. On notera que les polymères selon l'invention ne présentent pas de motifs polyoxyéthylèneglycol. Or, il est connu que ces motifs sont un facteur favorable à la conductivité des ions lithium, et il n'était pas évident, qu'avec des polymères ne contenant pas de motifs polyoxyéthylèneglycols, ni d'ailleurs, nécessairement, de fluor, des conductivités aussi importantes puissent être obtenues.Films of polymers of formulas I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV and XV are very good electrolytes. The conductivities obtained are between 10 -8 and 2 x 10 -3 S / cm in a solvent medium and without solvent. The films of polymers of formulas I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV and XV are characterized by a very wide range of use at temperatures ranging from of 20 to 100 ° C. It will be noted that the polymers according to the invention do not have polyoxyethylene glycol units. Now, it is known that these units are a favorable factor for the conductivity of lithium ions, and it was not obvious that with polymers not containing polyoxyethylene glycol units, nor, moreover, necessarily, fluorine, Such high conductivities can be obtained.

Les exemples figurant ci-après sont présentés à titre illustratif et non limitatif de l'objet de la présente invention.The examples appearing below are presented by way of illustration and without limitation of the subject of the present invention.

Exemple 1 - Chlorosulfonation du PEEK. Préparation du polymère XXIV Example 1 - Chlorosulfonation of PEEK. Preparation of polymer XXIV

Figure imgb0095
Figure imgb0095

Sous atmosphère d'azote, dans un réacteur en verre cylindrique, on pèse directement 1,0 g de PEEK (XVI), puis on ajoute 160 mL de dichlorométhane distillé de manière à avoir une concentration molaire en PEEK (XVI) de 0,022 M. Tous les solvants utilisés lors de ces synthèses ont été distillés, stockés et prélevés sous atmosphère d'azote.Under a nitrogen atmosphere, in a cylindrical glass reactor, 1.0 g of PEEK (XVI) is weighed directly, then 160 mL of distilled dichloromethane is added so as to have a molar concentration of PEEK (XVI) of 0.022 M. All the solvents used during these syntheses were distilled, stored and taken off under a nitrogen atmosphere.

L'acide chlorosulfonique (3,24 g, 8 équivalents par rapport au nombre d'unités polymériques du PEEK (XVI)) est introduit à l'aide d'une seringue (1,85 mL) en prenant soin de manipuler sous flux d'azote. Le mélange réactionnel est agité à 20 °C pendant 5 h. En fin de réaction, on observe la formation d'un composé visqueux orange. Le surnageant est éliminé en prenant soin de manipuler sous flux d'azote.Chlorosulfonic acid (3.24 g, 8 equivalents relative to the number of polymeric units of PEEK (XVI)) is introduced using a syringe (1.85 mL), taking care to handle under flow of 'nitrogen. The reaction mixture is stirred at 20 ° C for 5 h. At the end of the reaction, the formation of a viscous orange compound is observed. The supernatant is removed, taking care to handle under a flow of nitrogen.

On introduit ensuite le chlorure de thionyle (12,29 g, 30 équivalents par rapport au nombre d'unités polymériques du PEEK (XVI)) à l'aide d'une seringue (7,50 mL) en prenant soin de manipuler sous flux d'azote. Puis on ajoute le N,N-diméthylformamide (0,76 g, 3 équivalents par rapport au nombre d'unités polymériques du PEEK (XVI)) à l'aide d'une seringue (0,81 mL) en prenant soin de manipuler sous flux d'azote. Le mélange réactionnel est de nouveau agité à 20 °C pendant 5 h, puis on ajoute 40 mL de THF distillé. En fin de réaction, on observe une solution orange.The thionyl chloride (12.29 g, 30 equivalents relative to the number of polymeric units of PEEK (XVI)) is then introduced using a syringe (7.50 mL), taking care to handle under flow nitrogen. Then N, N-dimethylformamide (0.76 g, 3 equivalents relative to the number of polymeric units of PEEK (XVI)) is added using a syringe (0.81 mL), taking care to handle under nitrogen flow. The reaction mixture is stirred again at 20 ° C for 5 h, then 40 mL of distilled THF is added. At the end of the reaction, an orange solution is observed.

La solution orange est précipitée dans du propan-2-ol (250 mL), un précipité blanc se forme. Le solide est filtré, puis lavé avec 2 fois 50 mL de propan-2-ol et 2 fois 50 mL d'acétonitrile, puis séché pendant une nuit sous vide (1.10-2 mbar) .The orange solution is precipitated in propan-2-ol (250 mL), a white precipitate forms. The solid is filtered off, then washed with 2 times 50 mL of propan-2-ol and 2 times 50 mL of acetonitrile, then dried overnight under vacuum (1.10 -2 mbar).

Le spectre RMN 1H réalisé dans le DMSO-D6 (1H NMR (200 MHz) δ 7, 92 - 7, 69 (m, 4H), 7,50 (d, J = 2,7 Hz, 1H), 7,36 - 6,83 (m, 6H)) confirme la structure attendue. L'intégration du pic à 7,50 ppm en RMN 1H nous permet de connaître le taux de chlorosulfonation du PEEK (XVI). Le taux de chlorosulfonation des motifs di-oxoaryle est de 100%. The 1 H NMR spectrum carried out in DMSO-D6 ( 1 H NMR (200 MHz) δ 7, 92 - 7, 69 (m, 4H), 7.50 (d, J = 2.7 Hz, 1H), 7 , 36 - 6.83 (m, 6H)) confirms the expected structure. The integration of the peak at 7.50 ppm in 1 H NMR allows us to know the rate of chlorosulfonation of PEEK (XVI). The rate of chlorosulfonation of the di-oxoaryl units is 100%.

Le rendement pondéral en polymère PEEKSO2Cl (XXIV) est de 98% par rapport au PEEK (XVI) engagé.The weight yield of PEEKSO 2 Cl (XXIV) polymer is 98% relative to the PEEK (XVI) used.

Exemple 2-6 Préparation du polymère XXIV avec différent taux de fonctionnalisationExample 2-6 Preparation of polymer XXIV with different degree of functionalization

Selon le protocole décrit dans l'exemple 1 les polymères suivants ont été préparés :

Figure imgb0096
According to the protocol described in Example 1, the following polymers were prepared:
Figure imgb0096

Les différences avec le protocole décrit dans l'exemple 1 sont :

  • la masse de PEEK de départ
  • le temps de réaction de la première étape
    Figure imgb0097
The differences with the protocol described in Example 1 are:
  • the starting PEEK mass
  • the reaction time of the first step
    Figure imgb0097

Exemple 7 - Chlorosulfonation du PEES. Préparation du polymère XXVIExample 7 - Chlorosulfonation of PEES. Preparation of polymer XXVI

Figure imgb0098
Figure imgb0098

Sous atmosphère d'azote, dans un réacteur en verre cylindrique, on pèse directement 1,0 g de PEES (XVIII), puis on ajoute 160 mL de dichlorométhane distillé de manière à avoir une concentration molaire en PEES (XVIII) de 0,019 M. Tous les solvants utilisés lors de ces synthèses ont été distillés, stockés et prélevés sous atmosphère d'azote.Under a nitrogen atmosphere, in a cylindrical glass reactor, 1.0 g of PEES (XVIII) is weighed directly, then 160 mL of distilled dichloromethane is added so as to have a molar concentration of PEES (XVIII) of 0.019 M. All the solvents used during these syntheses were distilled, stored and taken off under a nitrogen atmosphere.

L'acide chlorosulfonique (2,88 g, 8 équivalents par rapport au nombre d'unités polymériques du PEES (XVIII)) est introduit à l'aide d'une seringue (1,64 mL) en prenant soin de manipuler sous flux d'azote. Le mélange réactionnel est agité à 0 °C pendant 5 h. En fin de réaction, on observe la formation d'un composé visqueux brun. Le surnageant est éliminé en prenant soin de manipuler sous flux d'azote.Chlorosulfonic acid (2.88 g, 8 equivalents relative to the number of polymeric units of PEES (XVIII)) is introduced using a syringe (1.64 mL), taking care to handle under flow of 'nitrogen. The reaction mixture is stirred at 0 ° C for 5 h. At the end of the reaction, the formation of a brown viscous compound is observed. The supernatant is removed, taking care to handle under a flow of nitrogen.

On introduit ensuite le chlorure de thionyle (10,93 g, 30 équivalents par rapport au nombre d'unités polymériques du PEES (XVIII)) à l'aide d'une seringue (6,6 mL) en prenant soin de manipuler sous flux d'azote. Puis on ajoute le N,N-diméthylformamide (0,76 g, 3 équivalents par rapport au nombre d'unités polymériques du PEES (XVIII)) à l'aide d'une seringue (0,68 mL) en prenant soin de manipuler sous flux d'azote. Le mélange réactionnel est de nouveau agité à 20 °C pendant 5 h, puis on ajoute 15 mL de CH2Cl2 distillé. En fin de réaction, on observe une solution brune.The thionyl chloride (10.93 g, 30 equivalents relative to the number of polymeric units of PEES (XVIII)) is then introduced using a syringe (6.6 mL), taking care to handle under flow nitrogen. Then N, N-dimethylformamide (0.76 g, 3 equivalents relative to the number of polymeric units of PEES (XVIII)) is added using a syringe (0.68 mL), taking care to handle under nitrogen flow. The reaction mixture is stirred again at 20 ° C. for 5 h, then 15 ml of distilled CH 2 Cl 2 are added. At the end of the reaction, a brown solution is observed.

La solution brune est précipitée dans du propan-2-ol (250 mL), un précipité blanc se forme. Le solide est filtré, puis lavé avec 2 fois 50 mL de propan-2-ol et 2 fois 50 mL d'acétonitrile, puis séché pendant une nuit sous vide (1.10-2 mbar) .The brown solution is precipitated in propan-2-ol (250 mL), a white precipitate forms. The solid is filtered off, then washed with 2 times 50 mL of propan-2-ol and 2 times 50 mL of acetonitrile, then dried overnight under vacuum (1.10 -2 mbar).

Le spectre RMN 1H réalisé dans le DMSO-D6 (1H NMR (200 MHz) δ 7,91 (ddd, J = 18,6, 8,8, 2,9 Hz, 4H), 7,44 (s, 1H), 7,18 (d, J = 7,2 Hz, 4H), 6,99 (d, J = 7,3 Hz, 2H) confirme la structure attendue. The 1 H NMR spectrum carried out in DMSO-D6 ( 1 H NMR (200 MHz) δ 7.91 (ddd, J = 18.6, 8.8, 2.9 Hz, 4H), 7.44 (s, 1H), 7.18 (d, J = 7.2Hz, 4H), 6.99 (d, J = 7.3Hz, 2H) confirms the expected structure.

L'intégration du pic à 7,44 ppm en RMN 1H nous permet de connaître le taux de chlorosulfonation du PEES (XVIII). Le taux de chlorosulfonation des motifs di-oxoaryle est de 100%.The integration of the peak at 7.44 ppm in 1 H NMR allows us to know the rate of chlorosulfonation of PEES (XVIII). The rate of chlorosulfonation of the di-oxoaryl units is 100%.

Le rendement pondéral en polymère PEESSO2Cl (XXVI) est de 93 % par rapport au PEES (XVIII) engagé.The weight yield of PEESSO 2 Cl (XXVI) polymer is 93% relative to the PEES (XVIII) engaged.

Exemple 8 - Chlorosulfonation du PES. Préparation du polymère XXVII Example 8 - Chlorosulfonation of PES. Preparation of polymer XXVII

Figure imgb0099
Figure imgb0099

Sous atmosphère d'azote, dans un réacteur en verre cylindrique, on pèse directement 0,5 g de PES (XIX), puis on ajoute 80 mL de dichlorométhane distillé de manière à avoir une concentration molaire en PES (XIX) de 0,027 M, après 1 h sous agitation à 20 °C, le PES (XIX) est solubilisé. Tous les solvants utilisés lors de ces synthèses ont été distillés, stockés et prélevés sous atmosphère d'azote.Under a nitrogen atmosphere, in a cylindrical glass reactor, 0.5 g of PES (XIX) is weighed directly, then 80 mL of distilled dichloromethane is added so as to have a molar concentration of PES (XIX) of 0.027 M, after 1 h under stirring at 20 ° C., the PES (XIX) is dissolved. All the solvents used during these syntheses were distilled, stored and taken off under a nitrogen atmosphere.

L'acide chlorosulfonique (0,527 g, 2,1 équivalents par rapport au nombre d'unités polymériques du PES (XIX)) est introduit à l'aide d'une seringue (0,30 mL) en prenant soin de manipuler sous flux d'azote. Le mélange réactionnel est agité à 42 °C pendant 18 h. En fin de réaction, on observe la formation d'un composé visqueux jaune. Le surnageant est éliminé en prenant soin de manipuler sous flux d'azote.Chlorosulfonic acid (0.527 g, 2.1 equivalents relative to the number of polymeric units of PES (XIX)) is introduced using a syringe (0.30 mL) taking care to handle under flow of 'nitrogen. The reaction mixture is stirred at 42 ° C for 18 h. At the end of the reaction, the formation of a yellow viscous compound is observed. The supernatant is removed, taking care to handle under a flow of nitrogen.

On introduit ensuite le chlorure de thionyle (2,03 g, 8 équivalents par rapport au nombre d'unités polymériques du PES (XIX)) à l'aide d'une seringue (1,24 mL) en prenant soin de manipuler sous flux d'azote. Puis on ajoute le N,N-diméthylformamide (0,47 g, 3 équivalents par rapport au nombre d'unités polymériques du PES (XIX)) à l'aide d'une seringue (0,50 mL) en prenant soin de manipuler sous flux d'azote. Le mélange réactionnel est de nouveau agité à 20 °C pendant 5 h, puis on ajoute 15 mL de CH2Cl2 distillé. En fin de réaction, on n'observe une solution jaune.The thionyl chloride (2.03 g, 8 equivalents relative to the number of polymeric units of PES (XIX)) is then introduced using a syringe (1.24 mL), taking care to handle under flow nitrogen. Then the N, N-dimethylformamide (0.47 g, 3 equivalents relative to the number of polymeric units of PES (XIX)) is added using a syringe (0.50 mL), taking care to handle under nitrogen flow. The reaction mixture is stirred again at 20 ° C. for 5 h, then 15 ml of distilled CH 2 Cl 2 are added. At the end of the reaction, a yellow solution is not observed.

La solution jaune est précipitée dans du propan-2-ol (80 mL), un précipité blanc se forme. Le solide est filtré, puis lavé avec 2 fois 20 mL de propan-2-ol et 3 fois 20 mL d'acétonitrile, puis séché pendant une nuit sous vide (1.10-2 mbar) .The yellow solution is precipitated in propan-2-ol (80 mL), a white precipitate forms. The solid is filtered off, then washed with 2 times 20 mL of propan-2-ol and 3 times 20 mL of acetonitrile, then dried overnight under vacuum (1.10 -2 mbar).

Le spectre RMN 1H réalisé dans DMSO-D6 (1H NMR (200 MHz) δ 8,29 (s, 1H), 7,92 (s, 3H), 7,19 (s, 3H)) confirme la structure attendue. L'intégration du pic à 8,29 ppm en RMN 1H nous permet de connaître le taux de chlorosulfonation du PES (XIX). Le taux de chlorosulfonation des motifs oxoaryle est de 100%. The 1 H NMR spectrum carried out in DMSO-D6 (1 H NMR (200 MHz) δ 8.29 (s, 1H), 7.92 (s, 3H), 7.19 (s, 3H)) confirms the expected structure. The integration of the peak at 8.29 ppm in 1 H NMR allows us to know the rate of chlorosulfonation of PES (XIX). The rate of chlorosulfonation of the oxoaryl units is 100%.

Le rendement pondéral en polymère PESSO2Cl (XXVII) est de 98% par rapport au PES (XIX) engagé.The weight yield of PESSO 2 Cl (XXVII) polymer is 98% relative to the PES (XIX) used.

Exemple 9 -Préparation du polymère XL : PEEKSO2NH2 Example 9 - Preparation of polymer XL : PEEKSO 2 NH 2

Figure imgb0100
Figure imgb0100

Sous atmosphère d'azote, on prépare une solution de 0,300 g de PEEKSO2Cl (XXIV) préparé selon l'exemple 1, dans 10 mL de tétrahydrofurane distillé de manière à avoir une concentration molaire en PEEKSO2Cl (XXIV) de 0,078 M. Tous les solvants utilisés lors de ces synthèses ont été distillés, stockés et prélevés sous atmosphère d'azote.Under a nitrogen atmosphere, a solution of 0.300 g of PEEKSO 2 Cl (XXIV) prepared according to Example 1 is prepared in 10 mL of distilled tetrahydrofuran so as to have a molar concentration of PEEKSO 2 Cl (XXIV) of 0.078 M All the solvents used during these syntheses were distilled, stored and taken off under a nitrogen atmosphere.

Cette solution est ajoutée lentement sur une solution d'ammoniac (4,2 mL, [C] = 0,5 M dans le THF, 2,1 équivalents par rapport au PEEKSO2Cl (XXIV)) dans 10 mL de tétrahydrofurane à 0 °C, puis retour à 20 °C. Le mélange réactionnel est agité à 20 °C pendant 1 h. En fin de réaction, on observe la formation d'un précipité blanc.This solution is added slowly over an ammonia solution (4.2 mL, [C] = 0.5 M in THF, 2.1 equivalents relative to PEEKSO 2 Cl (XXIV)) in 10 mL of tetrahydrofuran at 0 ° C, then return to 20 ° C. The reaction mixture is stirred at 20 ° C for 1 h. At the end of the reaction, the formation of a white precipitate is observed.

Le mélange réactionnel est filtré et le solide est lavé avec 2 fois 10 mL de tétrahydrofurane. Le solvant du filtrat est évaporé à l'évaporateur rotatif, puis le produit obtenu est séché pendant une nuit sous vide (1.10-2 mbar) .The reaction mixture is filtered and the solid is washed with 2 times 10 ml of tetrahydrofuran. The solvent of the filtrate is evaporated on a rotary evaporator, then the product obtained is dried overnight under vacuum (1.10 -2 mbar).

Le spectre RMN 1H réalisé dans le DMSO-D6 (1H NMR (200 MHz) δ 8,07 - 7,90 (m, 4H), 7,65 - 7,29 (m, 5H) , 7,29 - 7,13 (m, 4H)) confirme la structure attendue. The 1 H NMR spectrum carried out in DMSO-D6 ( 1 H NMR (200 MHz) δ 8.07 - 7.90 (m, 4H), 7.65 - 7.29 (m, 5H), 7.29 - 7.13 (m, 4H)) confirms the expected structure.

Le rendement pondéral en polymère PEEKSO2NH2 (XL) est de 96% par rapport au polymère PEEKSO2Cl (XXIV) engagé.The weight yield of PEEKSO 2 NH 2 (XL) polymer is 96% relative to the PEEKSO 2 Cl (XXIV) polymer used.

Exemple 10 -Préparation du polymère XLII : PEESSO2NH2 Example 10 - Preparation of polymer XLII: PEESSO 2 NH 2

Figure imgb0101
Figure imgb0101

Sous atmosphère d'azote, on prépare une solution de 0,300 g de PEESSO2Cl (XXVI) préparé selon l'exemple 7, dans 17 mL de tétrahydrofurane distillé et 3 mL de N,N-diméthylformamide de manière à avoir une concentration molaire en PEESSO2Cl (XXVI) de 0,035 M. Tous les solvants utilisés lors de ces synthèses ont été distillés, stockés et prélevés sous atmosphère d'azote.Under a nitrogen atmosphere, a solution of 0.300 g of PEESSO 2 Cl (XXVI) prepared according to Example 7 is prepared in 17 mL of distilled tetrahydrofuran and 3 mL of N, N- dimethylformamide so as to have a molar concentration of PEESSO 2 Cl (XXVI) of 0.035 M. All the solvents used during these syntheses were distilled, stored and withdrawn under a nitrogen atmosphere.

Cette solution est ajoutée lentement sur une solution d'ammoniac (8,7 mL, [C] = 0,5 M dans le THF, 3 équivalents par rapport au PEESSO2Cl (XXVI)) dans 10 mL de tétrahydrofurane à 0 °C, puis retour à 20 °C. Le mélange réactionnel est agité à 20 °C pendant 1 h. En fin de réaction, on observe une solution laiteuse.This solution is added slowly to a solution of ammonia (8.7 mL, [C] = 0.5 M in THF, 3 equivalents relative to PEESSO 2 Cl (XXVI)) in 10 mL of tetrahydrofuran at 0 ° C. , then return to 20 ° C. The reaction mixture is stirred at 20 ° C for 1 h. At the end of the reaction, a milky solution is observed.

Le mélange réactionnel est précipité dans le méthanol, puis après filtration, le solide obtenu est lavé avec 2 fois 10 mL d'acétonitrile, puis le produit obtenu est séché pendant une nuit sous vide (1.10-2 mbar).The reaction mixture is precipitated in methanol, then after filtration, the solid obtained is washed with 2 times 10 mL of acetonitrile, then the product obtained is dried overnight under vacuum (1 × 10 -2 mbar).

Le spectre RMN 1H réalisé dans le DMSO-D6 1H NMR (200 MHz) δ 7,98 (dd, J = 8,7, 4,2 Hz, 4H), 7,63 - 7,30 (m, 5H), 7,21 (dd, J = 8,4, 4,7 Hz, 4H) confirme la structure attendue.The 1H NMR spectrum carried out in DMSO-D6 1 H NMR (200 MHz) δ 7.98 (dd, J = 8.7, 4.2 Hz, 4H), 7.63 - 7.30 (m, 5H) , 7.21 (dd, J = 8.4, 4.7 Hz, 4H) confirms the expected structure.

Le rendement pondéral en polymère PEESSO2NH2 (XLII) est de 92 % par rapport au polymère PEESSO2Cl (XXVI) engagé.The weight yield of PEESSO 2 NH 2 (XLII) polymer is 92% relative to the PEESSO 2 Cl (XXVI) polymer used.

Exemple 11 -Préparation du polymère XLIII : PESSO2NH2 Example 11 - Preparation of polymer XLIII : PESSO 2 NH 2

Figure imgb0102
Figure imgb0102

Sous atmosphère d'azote, on prépare une solution de 0,300 g de PESSO2Cl (XXVII) préparé selon l'exemple 8, dans 10 mL de tétrahydrofurane distillé de manière à avoir une concentration molaire en PESSO2Cl (XXVII) de 0,091 M. Tous les solvants utilisés lors de ces synthèses ont été distillés, stockés et prélevés sous atmosphère d'azote.Under a nitrogen atmosphere, a solution of 0.300 g of PESSO 2 Cl (XXVII) prepared according to Example 8 is prepared in 10 mL of distilled tetrahydrofuran so as to have a molar concentration of PESSO 2 Cl (XXVII) of 0.091 M All the solvents used during these syntheses were distilled, stored and taken off under a nitrogen atmosphere.

Cette solution est ajoutée lentement sur une solution d'ammoniac (10 mL, [C] = 0,5 M dans le THF, 3 équivalents par rapport au PESSO2Cl (XXVII)) dans 10 mL de tétrahydrofurane à 0 °C, puis retour à 20 °C. Le mélange réactionnel est agité à 20 °C pendant 1 h. En fin de réaction, on observe la formation d'un précipité blanc.This solution is added slowly to a solution of ammonia (10 mL, [C] = 0.5 M in THF, 3 equivalents relative to PESSO 2 Cl (XXVII)) in 10 mL of tetrahydrofuran at 0 ° C, then return to 20 ° C. The reaction mixture is stirred at 20 ° C for 1 h. Finally reaction, the formation of a white precipitate is observed.

Le mélange réactionnel est filtré et le solide est lavé avec 2 fois 10 mL de tétrahydrofurane. Le solvant du filtrat est évaporé à l'évaporateur rotatif, puis le produit obtenu est séché pendant une nuit sous vide (1.10-2 mbar) .The reaction mixture is filtered and the solid is washed with 2 times 10 ml of tetrahydrofuran. The solvent of the filtrate is evaporated on a rotary evaporator, then the product obtained is dried overnight under vacuum (1.10 -2 mbar).

Le spectre RMN 1H réalisé dans le DMSO-D6 (1H NMR (200 MHz) δ 7,79 (s, 3H), 7,58 (s, 1H), 7,50 - 7,35 (m, 1H), 7,33 - 7,02 (m, 4H)) confirme la structure attendue.The 1H NMR spectrum carried out in DMSO-D6 ( 1 H NMR (200 MHz) δ 7.79 (s, 3H), 7.58 (s, 1H), 7.50 - 7.35 (m, 1H), 7.33 - 7.02 (m, 4H)) confirms the expected structure.

Le rendement pondéral en PESSO2NH2 (XLIII) est de 98% par rapport au PESSO2Cl (XXVII) engagé.The weight yield of PESSO 2 NH 2 (XLIII) is 98% relative to the PESSO 2 Cl (XXVII) used.

Exemple 12 -Préparation du polymère Ia avec R=CH3 et M=LiExample 12 - Preparation of polymer Ia with R = CH 3 and M = Li

Figure imgb0103
Figure imgb0103

Sous atmosphère d'azote, on prépare une solution de 0,200 g de PEEKSO2Cl (XXIV) préparé selon l'exemple 1, dans 10 mL de tétrahydrofurane distillé de manière à avoir une concentration molaire en PEEKSO2Cl (XXIV) de 0,052 M. Tous les solvants utilisés lors de ces synthèses ont été distillés, stockés et prélevés sous atmosphère d'azote.Under a nitrogen atmosphere, a solution of 0.200 g of PEEKSO 2 Cl (XXIV) prepared according to Example 1 is prepared in 10 mL of distilled tetrahydrofuran so as to have a molar concentration of PEEKSO 2 Cl (XXIV) of 0.052 M All the solvents used during these syntheses were distilled, stored and taken off under a nitrogen atmosphere.

Sous atmosphère d'azote, dans un réacteur en verre cylindrique, on introduit successivement 0,054 g de méthanesulfonamide (CH3SO2NH2 (XXXIX), 1,1 équivalents par rapport au nombre de motif SO2Cl), 10 mL de tétrahydrofurane distillé de manière à avoir une concentration molaire en CH3SO2NH2 (XXXIX) de 0,057 M et 0, 62 mL de n-BuLi ([C] = 2 M dans l'hexane, 2,4 équivalents par rapport au PEEKSO2Cl (XXIV)) à l'aide d'une seringue en prenant soin de manipuler sous flux d'azote. Le mélange réactionnel est agité à 20 °C pendant 15 min. On introduit ensuite la solution de PEEKSO2Cl (XXIV) préalablement préparé à l'aide d'une seringue en prenant soin de manipuler sous flux d'azote. La réaction se poursuit à 20°C pendant 1 h. En fin de réaction, on observe un précipité blanc.Under a nitrogen atmosphere, in a cylindrical glass reactor, 0.054 g of methanesulfonamide (CH 3 SO 2 NH 2 (XXXIX), 1.1 equivalents relative to the number of SO 2 Cl units), 10 mL of tetrahydrofuran are successively introduced distilled so as to have a molar concentration of CH 3 SO 2 NH 2 (XXXIX) of 0.057 M and 0.62 mL of n-BuLi ([C] = 2 M in hexane, 2.4 equivalents relative to PEEKSO 2 Cl (XXIV)) using a syringe, taking care to handle under flow of 'nitrogen. The reaction mixture is stirred at 20 ° C for 15 min. The PEEKSO 2 Cl (XXIV) solution prepared beforehand is then introduced using a syringe, taking care to handle under a flow of nitrogen. The reaction is continued at 20 ° C for 1 hour. At the end of the reaction, a white precipitate is observed.

Le solvant est évaporé. Le solide obtenu est lavé avec 3 fois 10 mL de tétrahydrofurane, puis le produit obtenu est séché pendant une nuit sous vide (1.10-2 mbar).The solvent is evaporated off. The solid obtained is washed with 3 times 10 mL of tetrahydrofuran, then the product obtained is dried overnight under vacuum (1 × 10 -2 mbar).

Le spectre RMN 1H réalisé dans le DMSO-D6 (1H NMR (200 MHz) δ 7,97 - 7,64 (m, 4H) , 7,50 (s, 1H), 7,34 - 6,91 (m, 6H), 2,46 (s, 3H)) confirme la structure attendue. The 1 H NMR spectrum carried out in DMSO-D6 ( 1 H NMR (200 MHz) δ 7.97 - 7.64 (m, 4H), 7.50 (s, 1H), 7.34 - 6.91 ( m, 6H), 2.46 (s, 3H)) confirms the expected structure.

Le spectre RMN du 1H montre qu'il y a un groupement méthylsulfonamide par rapport au motif dioxoaryle à 2,46 ppm. The 1 H NMR spectrum shows that there is a methylsulfonamide group relative to the dioxoaryl unit at 2.46 ppm.

Le rendement pondéral en PEEKSO2N-(Li+)SO2CH3 (Ia) est de 97% par rapport au PEEKSO2Cl (XXIV) engagé.The weight yield of PEEKSO 2 N - (Li + ) SO 2 CH 3 (Ia) is 97% relative to the PEEKSO 2 Cl (XXIV) used.

Exemples 13 à 16 - Préparation des polymères Ib - Ie avec différentes sulfonamides Examples 13 to 16 - Preparation of polymers Ib - Ie with different sulfonamides

Selon le protocole décrit dans l'exemple 12 les polymères suivants ont été préparés :

Figure imgb0104
Figure imgb0105
According to the protocol described in Example 12, the following polymers were prepared:
Figure imgb0104
Figure imgb0105

Exemple 17 - Préparation du polymère If : bi-fonctionnalisé (Méthode 1)Example 17 - Preparation of the polymer If: bi-functionalized (Method 1)

Figure imgb0106
Figure imgb0106

Sous atmosphère d'azote, on prépare une solution de 0,200 g de PEEKSO2Cl (XXIV) préparé selon l'exemple 1, dans 10 mL de tétrahydrofurane distillé de manière à avoir une concentration molaire en PEEKSO2Cl (XXIV) de 0,052 M. Tous les solvants utilisés lors de ces synthèses ont été distillés, stockés et prélevés sous atmosphère d'azote.Under a nitrogen atmosphere, a solution of 0.200 g of PEEKSO 2 Cl (XXIV) prepared according to Example 1 is prepared in 10 mL of distilled tetrahydrofuran so as to have a molar concentration of PEEKSO 2 Cl (XXIV) of 0.052 M All the solvents used during these syntheses were distilled, stored and taken off under a nitrogen atmosphere.

Sous atmosphère d'azote, dans un réacteur en verre cylindrique, on introduit successivement 0,0197 g de méthanesulfonamide (CH3SO2NH2 (XXXIX), 0,4 équivalents par rapport au nombre de motif SO2Cl), 0,0531 g de p-toluènesulfonamide (CH3PhSO2NH2 (XXXIX), 0,6 équivalents par rapport au nombre de motif SO2Cl), 10 mL de tétrahydrofurane distillé et 0, 62 mL de n-BuLi ([C] = 2 M dans l'hexane, 2,4 équivalents par rapport au PEEKSO2Cl (XXIV)) à l'aide d'une seringue en prenant soin de manipuler sous flux d'azote. Le mélange réactionnel est agité à 20 °C pendant 15 min. On introduit ensuite la solution de PEEKSO2Cl (XXIV) préalablement préparé à l'aide d'une seringue en prenant soin de manipuler sous flux d'azote. La réaction se poursuit à 20°C pendant 30 min. En fin de réaction, on observe un précipité blanc.Under a nitrogen atmosphere, in a cylindrical glass reactor, 0.0197 g of methanesulfonamide (CH 3 SO 2 NH 2 (XXXIX), 0.4 equivalents relative to the number of SO 2 Cl units), 0, is successively introduced, 0531 g of p-toluenesulfonamide (CH 3 PhSO 2 NH 2 (XXXIX), 0.6 equivalents based on the number of SO 2 Cl units), 10 mL of distilled tetrahydrofuran and 0.62 mL of n-BuLi ([C] = 2 M in hexane, 2.4 equivalents relative to PEEKSO 2 Cl (XXIV)) using a syringe, taking care to handle under a flow of nitrogen. The reaction mixture is stirred at 20 ° C for 15 min. The PEEKSO 2 Cl (XXIV) solution prepared beforehand is then introduced using a syringe, taking care to handle under a flow of nitrogen. The reaction is continued at 20 ° C for 30 min. At the end of the reaction, a white precipitate is observed.

Le solvant est évaporé. Le solide obtenu est lavé avec 3 fois 10 mL de tétrahydrofurane et 2 fois 20 mL CH3CN, puis le produit obtenu est séché pendant une nuit sous vide (1.10-2 mbar) .The solvent is evaporated off. The solid obtained is washed with 3 times 10 mL of tetrahydrofuran and 2 times 20 mL CH 3 CN, then the product obtained is dried overnight under vacuum (1.10 -2 mbar).

Le spectre RMN 1H réalisé dans le DMSO-D6 1H NMR (200 MHz) δ 7,91 - 7,66 (m, 4H), 7,57 - 7,41 (m, 2H) , 7,31 - 6,92 (m, 7H), 2,43 (s, 0,75H), 2,27 (s, 1,5H), nous permet de déduire la structure suivante :

Figure imgb0107
The 1 H NMR spectrum carried out in DMSO-D6 1 H NMR (200 MHz) δ 7.91 - 7.66 (m, 4H), 7.57 - 7.41 (m, 2H), 7.31 - 6 , 92 (m, 7H), 2.43 (s, 0.75H), 2.27 (s, 1.5H), allows us to deduce the following structure:
Figure imgb0107

Le rendement pondéral en PEEK (SO2Cl) 0,25n (SO2N- (Li+) SO2CH3) 0,25n (SO2N- (Li+) SO2PhCH3) 0,5n (If) est de 91% par rapport au PEEKSO2Cl (XXIV) engagé.The weight yield of PEEK (SO 2 Cl) 0.25n (SO 2 N - (Li + ) SO 2 CH 3 ) 0.25n (SO2N - (Li + ) SO 2 PhCH 3 ) 0.5n (If) is 91% compared to the PEEKSO 2 Cl (XXIV) engaged.

Exemple 18 - Préparation du polymère Ig : bi-fonctionnalisé (Méthode 2) Example 18 - Preparation of the Ig polymer : bi-functionalized (Method 2)

Figure imgb0108
Figure imgb0108
Figure imgb0109
Figure imgb0109

Sous atmosphère d'azote, on prépare une solution de 0,200 g de PEEKSO2Cl (XXIV) préparé selon l'exemple 1, dans 10 mL de tétrahydrofurane distillé de manière à avoir une concentration molaire en PEEKSO2Cl (XXIV) de 0,052 M. Tous les solvants utilisés lors de ces synthèses ont été distillés, stockés et prélevés sous atmosphère d'azote.Under a nitrogen atmosphere, a solution of 0.200 g of PEEKSO 2 Cl (XXIV) prepared according to Example 1 is prepared in 10 mL of distilled tetrahydrofuran so as to have a molar concentration of PEEKSO 2 Cl (XXIV) of 0.052 M All the solvents used during these syntheses were distilled, stored and taken off under a nitrogen atmosphere.

Sous atmosphère d'azote, dans un réacteur en verre cylindrique, on introduit successivement 0,0197 g de méthanesulfonamide (CH3SO2NH2 (XXXIX), 0,4 équivalents par rapport au nombre de motifs SO2Cl) et 10 mL de tétrahydrofurane distillé et 0, 26 mL de n-BuLi ([C] = 2 M dans l'hexane, 0,9 équivalents par rapport au PEEKSO2Cl (XXIV)) à l'aide d'une seringue en prenant soin de manipuler sous flux d'azote. Le mélange réactionnel est agité à 20 °C pendant 15 min. On introduit ensuite la solution de PEEKSO2Cl (XXIV) préalablement préparée à l'aide d'une seringue en prenant soin de manipuler sous flux d'azote. La réaction se poursuit à 20°C pendant 30 min.Under a nitrogen atmosphere, in a cylindrical glass reactor, 0.0197 g of methanesulfonamide (CH 3 SO 2 NH 2 (XXXIX), 0.4 equivalents relative to the number of SO 2 Cl units) and 10 mL of distilled tetrahydrofuran and 0.26 mL of n-BuLi ([C] = 2 M in l hexane, 0.9 equivalents relative to PEEKSO 2 Cl (XXIV)) using a syringe, taking care to handle under a flow of nitrogen. The reaction mixture is stirred at 20 ° C for 15 min. The PEEKSO 2 Cl (XXIV) solution prepared beforehand is then introduced using a syringe, taking care to handle under a flow of nitrogen. The reaction is continued at 20 ° C for 30 min.

On introduit ensuite successivement 0,0197 g de p-toluènesulfonamide (CH3PhSO2NH2 (XXXIX), 0,6 équivalents par rapport au nombre de motif SO2Cl) et 0, 36 mL de n-BuLi ([C] = 2 M dans l'hexane, 1,4 équivalents par rapport au PEEKSO2Cl (XXIV)) à l'aide d'une seringue en prenant soin de manipuler sous flux d'azote. Le mélange réactionnel est agité à 20 °C pendant 15 min. On introduit ensuite la solution de PEEKSO2Cl (XXIV) préalablement préparé à l'aide d'une seringue en prenant soin de manipuler sous flux d'azote. La réaction se poursuit à 20°C pendant 1 h. En fin de réaction, on observe un précipité blanc.Then introduced successively 0.0197 g of p-toluenesulfonamide (CH 3 PhSO 2 NH 2 (XXXIX), 0.6 equivalents relative to the number of SO 2 Cl units) and 0.36 mL of n-BuLi ([C] = 2 M in hexane, 1.4 equivalents relative to PEEKSO 2 Cl (XXIV)) using a syringe, taking care to handle under a flow of nitrogen. The reaction mixture is stirred at 20 ° C for 15 min. The PEEKSO 2 Cl (XXIV) solution prepared beforehand is then introduced using a syringe, taking care to handle under a flow of nitrogen. The reaction is continued at 20 ° C for 1 hour. At the end of the reaction, a white precipitate is observed.

Le solvant est évaporé. Le solide obtenu est lavé avec 3 fois 10 mL de tétrahydrofurane, puis le produit obtenu est séché pendant une nuit sous vide (1.10-2 mbar).The solvent is evaporated off. The solid obtained is washed with 3 times 10 mL of tetrahydrofuran, then the product obtained is dried overnight under vacuum (1 × 10 -2 mbar).

Le spectre RMN 1H réalisé dans le DMSO-D6 1H NMR (200 MHz) δ 7,91 - 7,69 (m, 4H), 7,60 - 7,43 (m, 2,2H), 7,31 - 6,95 (m, 7,2H), 2,44 (s, 1,2H), 2,27 (s, 1,8H) confirme la structure attendue.

Figure imgb0110
The 1 H NMR spectrum carried out in DMSO-D6 1 H NMR (200 MHz) δ 7.91 - 7.69 (m, 4H), 7.60 - 7.43 (m, 2.2H), 7.31 - 6.95 (m, 7.2H), 2.44 (s, 1.2H), 2.27 (s, 1.8H) confirms the expected structure.
Figure imgb0110

Le rendement pondéral en PEEK (SO2N- (Li+) SO2CH3) 0,4n (SO2N- (Li+) SO2PhCH3) 0,6n (Ig) est de 89 % par rapport au PEEKSO2Cl (XXIV) engagé.The weight yield of PEEK (SO 2 N - (Li + ) SO 2 CH 3 ) 0.4n (SO 2 N - (Li + ) SO 2 PhCH 3 ) 0.6n (Ig) is 89% compared to PEEKSO 2 Cl (XXIV) engaged.

Exemple 19 -Préparation du polymère IIIa avec R=CH3 et M=LiExample 19 - Preparation of polymer IIIa with R = CH 3 and M = Li

Figure imgb0111
Figure imgb0111

Sous atmosphère d'azote, on prépare une solution de 0,200 g de PEESSO2Cl (XXVI) préparé selon l'exemple 7, dans 9 mL de tétrahydrofurane distillé et 1 mL N,N-diméthylformamide distillé de manière à avoir une concentration molaire en PEESSO2Cl (XXVI) de 0,052 M. Tous les solvants utilisés lors de ces synthèses ont été distillés, stockés et prélevés sous atmosphère d'azote.Under a nitrogen atmosphere, a solution of 0.200 g of PEESSO 2 Cl (XXVI) prepared according to Example 7 is prepared in 9 mL of distilled tetrahydrofuran and 1 mL of distilled N, N- dimethylformamide so as to have a molar concentration of PEESSO 2 Cl (XXVI) of 0.052 M. All the solvents used during these syntheses were distilled, stored and withdrawn under a nitrogen atmosphere.

Sous atmosphère d'azote, dans un réacteur en verre cylindrique, on introduit successivement 0,045 g de méthanesulfonamide (CH3SO2NH2 (XXXIX), 1,1 équivalents par rapport au nombre de motif SO2Cl), 10 mL de tétrahydrofurane distillé de manière à avoir une concentration molaire en CH3SO2NH2 (XXXIX) de 0,0472 M et 0, 57 mL de n-BuLi ([C] = 2 M dans l'hexane, 2,4 équivalents par rapport au PEESSO2Cl (XXVI)) à l'aide d'une seringue en prenant soin de manipuler sous flux d'azote. Le mélange réactionnel est agité à 20 °C pendant 15 min. On introduit ensuite la solution de PEESSO2Cl (XXVI) préalablement préparée à l'aide d'une seringue en prenant soin de manipuler sous flux d'azote. La réaction se poursuit à 20°C pendant 1 h. En fin de réaction, on observe un précipité blanc.Under a nitrogen atmosphere, in a cylindrical glass reactor, 0.045 g of methanesulfonamide (CH 3 SO 2 NH 2 (XXXIX), 1.1 equivalents relative to the number of SO 2 Cl units), 10 mL of tetrahydrofuran are successively introduced distilled so as to have a molar concentration of CH 3 SO 2 NH 2 (XXXIX) of 0.0472 M and 0.57 mL of n-BuLi ([C] = 2 M in hexane, 2.4 equivalents relative to with PEESSO 2 Cl (XXVI)) using a syringe, taking care to handle under a flow of nitrogen. The reaction mixture is stirred at 20 ° C for 15 min. The solution of PEESSO 2 Cl (XXVI) prepared beforehand using a syringe is then introduced, taking care to handle under a flow of nitrogen. The reaction is continued at 20 ° C for 1 hour. At the end of the reaction, a white precipitate is observed.

Le solvant est évaporé. Le solide obtenu est lavé avec 3 fois 10 mL de tetrahydrofurane, puis séché pendant une nuit sous vide (1.10-2 mbar).The solvent is evaporated off. The solid obtained is washed with 3 times 10 mL of tetrahydrofuran, then dried overnight under vacuum (1.10 -2 mbar).

Le spectre RMN 1H réalisé dans le DMSO-D6 (1H NMR (200 MHz) δ 8, 05 - 7, 78 (m, 4H), 7,44 (s, 1H), 7,33 - 6,90 (m, 6H), 2,44 (s, 3H)) confirme la structure attendue. Le spectre RMN du 1H montre qu'il y a un groupement méthylsulfonamide par rapport au motif dioxoaryle à 2,44 ppm. The 1 H NMR spectrum carried out in DMSO-D6 ( 1 H NMR (200 MHz) δ 8.05 - 7.78 (m, 4H), 7.44 (s, 1H), 7.33 - 6.90 ( m, 6H), 2.44 (s, 3H)) confirms the expected structure. The 1 H NMR spectrum shows that there is a methylsulfonamide group relative to the dioxoaryl unit at 2.44 ppm.

Le rendement pondéral en PEESSO2N-(Li+) SO2CH3 (IIIa) est de 97% par rapport au PEESSO2Cl (XXVI) engagé.The weight yield of PEESSO 2 N - (Li + ) SO 2 CH 3 (IIIa) is 97% relative to the PEESSO 2 Cl (XXVI) used.

Exemples 20 - Préparation des polymères IIIa-b avec différentes sulfonamides Examples 20 - Preparation of polymers IIIa-b with different sulfonamides

Selon le protocole décrit dans l'exemple 19 les polymères suivants ont été préparés :

Figure imgb0112
Figure imgb0113
Figure imgb0114
According to the protocol described in Example 19, the following polymers were prepared:
Figure imgb0112
Figure imgb0113
Figure imgb0114

Sous atmosphère d'azote, on prépare une solution de 0,200 g de PESSO2Cl (XXVII) préparé selon l'exemple 8, dans 10 mL de tétrahydrofurane distillé de manière à avoir une concentration molaire en PESSO2Cl (XXVII) de 0,060 M. Tous les solvants utilisés lors de ces synthèses ont été distillés, stockés et prélevés sous atmosphère d'azote.Under a nitrogen atmosphere, a solution of 0.200 g of PESSO 2 Cl (XXVII) prepared according to Example 8 is prepared in 10 mL of distilled tetrahydrofuran so as to have a molar concentration of PESSO 2 Cl (XXVII) of 0.060 M All the solvents used during these syntheses were distilled, stored and taken off under a nitrogen atmosphere.

Sous atmosphère d'azote, dans un réacteur en verre cylindrique, on introduit successivement 0,099 g de méthanesulfonamide (CF3SO2NH2 (XXXIX), 1,1 équivalents par rapport au nombre de motif SO2Cl), 10 mL de tétrahydrofurane distillé de manière à avoir une concentration molaire en CH3SO2NH2 (XXXIX) de 0,066 M et 0, 72 mL de n-BuLi ([C] = 2 M dans l'hexane, 2,4 équivalents par rapport au PESSO2Cl (XXVII)) à l'aide d'une seringue en prenant soin de manipuler sous flux d'azote. Le mélange réactionnel est agité à 20 °C pendant 15 min. On introduit ensuite la solution de PESSO2Cl (XXVII) préalablement préparé à l'aide d'une seringue en prenant soin de manipuler sous flux d'azote. La réaction se poursuit à 20°C pendant 1 h. En fin de réaction, on observe un précipité blanc.Under a nitrogen atmosphere, in a cylindrical glass reactor, 0.099 g of methanesulfonamide (CF 3 SO 2 NH 2 (XXXIX), 1.1 equivalents relative to the number of SO 2 Cl units), 10 mL of tetrahydrofuran distilled so as to have a molar concentration of CH 3 SO 2 NH 2 (XXXIX) of 0.066 M and 0.72 mL of n -BuLi ([C] = 2 M in hexane, 2.4 equivalents with respect to PESSO 2 Cl (XXVII)) using a syringe, taking care to handle under a flow of nitrogen. The reaction mixture is stirred at 20 ° C for 15 min. The solution of PESSO 2 Cl (XXVII) prepared beforehand is then introduced using a syringe, taking care to handle under a flow of nitrogen. The reaction is continued at 20 ° C for 1 hour. At the end of the reaction, a white precipitate is observed.

Le solvant est évaporé. Le solide obtenu est lavé avec 3 fois 10 mL de tétrahydrofurane, puis obtenu est séché pendant une nuit sous vide (1.10-2 mbar).
Les spectres RMN 1H et du 19F réalisés dans le DMSO-D6 (1H NMR (200 MHz) δ 8,40 - 8,22 (m, 1H), 8,11 - 7,83 (m, 3H), 7,40 - 7,01 (m, 3H). 19F NMR (188 MHz) δ -77,81 (s) confirment la structure attendue.
Le spectre RMN du 19F montre un seul pic correspondant au trifluorométhylsulfonamide polymérique.
The solvent is evaporated off. The solid obtained is washed with 3 times 10 mL of tetrahydrofuran, then obtained is dried overnight under vacuum (1.10 -2 mbar).
The 1 H and 19 F NMR spectra carried out in DMSO-D6 ( 1 H NMR (200 MHz) δ 8.40 - 8.22 (m, 1H), 8.11 - 7.83 (m, 3H), 7.40 - 7.01 (m, 3H). 19 F NMR (188 MHz) δ -77.81 (s) confirm the expected structure.
The 19 F NMR spectrum shows a single peak corresponding to the polymeric trifluoromethylsulfonamide.

Le rendement pondéral en PESSO2N-(Li+)SO2CF3 (IVa) est de 83% par rapport au PESSO2Cl (XXVII) engagé.The weight yield of PESSO 2 N - (Li + ) SO 2 CF 3 (IVa) is 83% relative to the PESSO 2 Cl (XXVII) used.

Exemples 22 à 24 - Préparation des polymères IVb-d avec différentes sulfonamides Examples 22 to 24 - Preparation of polymers IVb-d with different sulfonamides

Selon le protocole décrit dans l'exemple 21 les polymères suivants ont été préparés :

Figure imgb0115
Figure imgb0116
According to the protocol described in Example 21, the following polymers were prepared:
Figure imgb0115
Figure imgb0116

Exemples 25 -Préparation alternative du polymère Ia avec R=CH3 et M=LiExamples 25 - Alternative preparation of polymer Ia with R = CH 3 and M = Li

Figure imgb0117
Figure imgb0117

Sous atmosphère d'azote, on prépare une solution de 0,200 g de PEEKSO2NH2 (XL) préparé selon l'exemple 9, dans 10 mL de tétrahydrofurane distillé de manière à avoir une concentration molaire en PEEKSO2NH2 (XL) de 0,057 M. Tous les solvants utilisés lors de ces synthèses ont été distillés, stockés et prélevés sous atmosphère d'azote. Après solubilisation du PEEKSO2NH2, on ajoute 0,68 mL de n-BuLi ([C] = 2 M dans l'hexane, 2,4 équivalents par rapport au PEEKSO2NH2 (XL)) à l'aide d'une seringue en prenant soin de manipuler sous flux d'azote. Après 15 min à température ambiante, on introduit 0,0783 g le chlorure de méthanesulfonyle (CH3SO2Cl (LV), 1,2 équivalent par rapport au nombre de motif SO2NH2). La réaction se poursuit à 20°C pendant 1 h. En fin de réaction, on observe un précipité blanc.Under a nitrogen atmosphere, a solution of 0.200 g of PEEKSO 2 NH 2 (XL) prepared according to Example 9 is prepared in 10 mL of distilled tetrahydrofuran so as to have a molar concentration of PEEKSO 2 NH 2 (XL) of 0.057 M. All the solvents used during these syntheses were distilled, stored and taken off under a nitrogen atmosphere. After solubilization of PEEKSO 2 NH 2 , 0.68 mL of n -BuLi ([C] = 2 M in hexane, 2.4 equivalents relative to PEEKSO 2 NH 2 (XL)) is added using d 'a syringe, taking care to handle under a flow of nitrogen. After 15 min at room temperature, 0.0783 g of methanesulfonyl chloride (CH 3 SO 2 Cl (LV), 1.2 equivalent relative to the number of SO 2 NH 2 units ) is introduced. The reaction is continued at 20 ° C for 1 hour. At the end of the reaction, a white precipitate is observed.

Le solvant est évaporé. Le solide obtenu est lavé avec 3 fois 10 mL de tétrahydrofurane, puis le produit obtenu est séché pendant une nuit sous vide (1.10-2 mbar).The solvent is evaporated off. The solid obtained is washed with 3 times 10 mL of tetrahydrofuran, then the product obtained is dried overnight under vacuum (1 × 10 -2 mbar).

Le spectre RMN 1H réalisé dans le DMSO-D6 (1H NMR (200 MHz) δ 7,97 - 7,64 (m, 4H) , 7,50 (s, 1H), 7,34 - 6,91 (m, 6H), 2,46 (s, 3H)) confirme la structure attendue. The 1 H NMR spectrum carried out in DMSO-D6 ( 1 H NMR (200 MHz) δ 7.97 - 7.64 (m, 4H), 7.50 (s, 1H), 7.34 - 6.91 ( m, 6H), 2.46 (s, 3H)) confirms the expected structure.

Le spectre RMN du 1H montre qu'il y a un groupement méthylsulfonamide par rapport au motif dioxoaryle à 2,46 ppm. The 1 H NMR spectrum shows that there is a methylsulfonamide group relative to the dioxoaryl unit at 2.46 ppm.

Le rendement pondéral en PEEKSO2N- (Li+) SO2CH3 (Ia) est de 35 % par rapport au PEEKSO2NH2 (XL) engagé.The weight yield of PEEKSO 2 N - (Li + ) SO 2 CH 3 (Ia) is 35% relative to the PEEKSO 2 NH 2 (XL) used.

Exemples 26-28 - Préparation de films de polymère Examples 26-28 - Preparation of polymer films

Sous atmosphère d'azote, dans un réacteur en verre cylindrique, on pèse directement 100 mg de polymère I, III ou IV, puis on ajoute 3 mL de diméthylesulfoxyde distillé. Tous les solvants utilisés lors de ces synthèses ont été distillés, stockés et prélevés sous atmosphère d'azote. Après solubilisation complète du polymère, la solution est introduite dans une boite de pétri de 5 cm de diamètre. La boite de pétri est déposée sur une plaque chauffante à 50 °C. Après une nuit, le solvant est totalement évaporé et on obtient un film cylindrique de 5 cm de diamètre d'une épaisseur de l'ordre de 100 µm. Ce film est un film transparent présente une résistance mécanique suffisante pour pouvoir être extrait de la boîte de Pétri au moyen d'une pince et manipulé par un opérateur sans déchirure.Under a nitrogen atmosphere, in a cylindrical glass reactor, 100 mg of polymer I, III or IV are weighed directly, then 3 ml of distilled dimethyl sulfoxide are added. All the solvents used during these syntheses were distilled, stored and taken off under a nitrogen atmosphere. After complete solubilization of the polymer, the solution is introduced into a petri dish 5 cm in diameter. The petri dish is placed on a hot plate at 50 ° C. After one night, the solvent is completely evaporated and a cylindrical film 5 cm in diameter with a thickness of the order of 100 μm is obtained. This film is a transparent film has sufficient mechanical strength to be able to be extracted from the Petri dish by means of forceps and handled by an operator without tearing.

Exemples 29 - Mesures de conductivités Examples 29 - Conductivity measurements

Les conductivités ioniques des polymères préparés dans les exemples 12-16 ont été déterminées par spectroscopie d'impédance. Les résultats obtenus avec le polymère décrit dans l'exemple 7 sont rapportés dans la figure 1 des dessins, qui montre l'évolution de la conductivité du polymère décrit dans l'exemple 7 en fonction de la température et comparaison avec un électrolyte polymère décrit dans la littérature (Nature Materials), ces résultats étant confrontés aux résultats obtenus dans la publication de D. Gigmes et coll. dans Nature Materials, 12, 452-457 (2013 ).The ionic conductivities of the polymers prepared in Examples 12-16 were determined by impedance spectroscopy. The results obtained with the polymer described in Example 7 are reported in figure 1 of the drawings, which shows the evolution of the conductivity of the polymer described in Example 7 as a function of the temperature and comparison with a polymer electrolyte described in the literature (Nature Materials), these results being compared with the results obtained in the publication of D. Gigmes et al. in Nature Materials, 12, 452-457 (2013 ).

On peut remarquer qu'à basse température (< 45 °C), les conductivités sont supérieures aux conductivités publiées dans le brevet FR 2979630 et la publication de D. Gigmes et coll. dans Nature Materials, 12, 452-457 (2013 ), même sans ajout de solvant. De plus, les conductivités obtenues en présence d'un solvant plastifiant, comme l'acétonitrile ou le diméthylecarbonate (DMC), sont du même ordre de grandeur voire supérieures aux résultats décrits dans le brevet FR 2979630 et la publication de D. Gigmes et coll. dans Nature Materials, 12, 452-457 (2013 ) sur toute la gamme de température étudiée.It can be noted that at low temperature (<45 ° C), the conductivities are higher than the conductivities published in the patent. FR 2979630 and the publication by D. Gigmes et al. in Nature Materials, 12, 452-457 (2013 ), even without adding solvent. In addition, the conductivities obtained in the presence of a plasticizing solvent, such as acetonitrile or dimethyl carbonate (DMC), are of the same order of magnitude or even greater than the results described in the patent. FR 2979630 and the publication by D. Gigmes et al. in Nature Materials, 12, 452-457 (2013 ) over the entire temperature range studied.

Claims (19)

  1. Polymers of the polyaryl ether ketone family or polyether sulfone polymers containing grafted bis(sulfonyl)imide lithium or sodium salts satisfying formulas I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV and XV
    Figure imgb0258
    Figure imgb0259
    Figure imgb0260
    Figure imgb0261
    Figure imgb0262
    Figure imgb0263
    Figure imgb0264
    Figure imgb0265
    Figure imgb0266
    Figure imgb0267
    Figure imgb0268
    Figure imgb0269
    Figure imgb0270
    Figure imgb0271
    Figure imgb0272
    wherein:
    - M represents a lithium or sodium atom
    - R represents a group or different groups chosen from:
    -- an alkyl or cycloalkyl group having 1 to 30 linear or branched carbon atoms optionally substituted by a cycloalkyl, aryl, perfluoroalkyl, polyfluoroalkyl, mono or polyethoxylated motif;
    -- a perfluoro- or polyfluoroalkyl group optionally substituted by aromatic groups;
    -- an aryl or polyaryl group optionally substituted by alkyl, cycloalkyl, polyfluoro- or perfluoroalkyl motifs, nitrile functions, alkyl or alkylsulfonyl functions, fluorine atoms;
    - m represents the percentage of polymer units having an oxoaryl or dioxoaryl motif having a grafted bis(sulfonyl)imidide salt, this percentage varying between 50 and 100%, more preferably varying between 90 and 100%,
    - n represents the percentage of polymer units having no oxoaryl or dioxoaryl motif functionalized by a bis(sulfonyl)imide motif, this percentage varying between 0 and 50%, more preferably varying between 0 and 10%,
    - p represents the number of polymer units of the polymer; p varying from 40 to 300.
  2. Polymers according to claim 1, characterized in that:
    - M represents a lithium or sodium atom;
    - R represents one or more different groups chosen from:
    -- an alkyl group with 1 to 10 carbon atoms such as the methyl, ethyl, propyl, butyl, pentyl, hexyl, cyclohexyl, ethylhexyl groups;
    -- a trifluoromethyl, pentafluoroethyl, nonafluorobutyl, 1,1,2,2-tetrafluoroethyl group;
    -- an aryl group of the phenyl, tolyl, naphthyl, trifluoromethylphenyl, bis(trifluoromethyl)phenyl, cyanophenyl, alkylsulfonylphenyl, arylsulfonylphenyl, methoxyphenyl, butoxyphenyl, pentafluorophenyl, alkylsulfonylphenyl, fluorophenyl type,
    - m represents the percentage of polymer units having an oxoaryl or dioxoaryl motif functionalized by a bis(sulfonyl)imide motif, this percentage varying between 90 and 100%;
    - n represents the percentage of polymer units having an oxoaryl or a dioxoaryl motif non-functionalized by a bis(sulfonyl)imide motif, this percentage varying between 0 and 10%;
    - p represents the number of polymer units of the polymer; p varying from 60 to 200.
  3. Polymers according to one of claims 1 to 2, characterized in that:
    - M represents a lithium or sodium atom,
    - R is a methyl, ethyl, propyl, cyclopropyl, butyl, 1-decyl, 1-dodecyl, 1-hexanedecyl, 1-octyldecyl, (7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl) methyl, ((1R)-7, 7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl) methyl, (1S) - (7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl) methyl, cyclohexylmethyl, trifluoromethyl, phenyl, tolyl, naphthyl, 4-trifluoromethylphenyl, 3,5-bis(trifluoromethyl)phenyl, 4-cyanophenyl, 1,1,2,2,2-pentafluoroethanyl, nonafluorobutyl, pentafluorophenyl, 2,3,5,6-tetrafluorophenyl, 4-fluorophenyl, 2,4-difluorophenyl, 3,5-difluorophenyl, 2,3,4,5,6-pentafluorophenyl, 4-cyanophenyl, 4-(trifluoromethyl)phenyl, 3-(trifluoromethyl)phenyl, 2-(trifluoromethyl)phenyl, 4-methylphenyl, 1-naphthyl, 2-naphthyl, 3,5-difluorobenzyl, 4-fluorobenzyl, 3-trifluoromethylbenzyl, 4-trifluoromethylbenzyl, 2,5-dimethylbenzyl, 2-phenylethyl, 4-methoxyphenyl, 4-n-butylphenyl, 4-t-butylphenyl, 4-butoxyphenyl, 2-fluoro-5-(trifluoromethyl)phenyl, or 4-ethylphenyl group;
    - m represents the percentage of polymer units having a dioxoaryl motif functionalized by a bis(sulfonyl)imide, this percentage varying between 90 and 100%;
    - n represents the percentage of polymer units having a dioxoaryl motif non-functionalized by a bis(sulfonyl)imide, this percentage varying between 0 and 10%;
    - p represents the number of polymer units of the polymer, p varying from 60 to 200.
  4. Method for synthesis of polymers according to one of claims 1 to 3, characterized in that:
    in a first step, the chlorosulfonation of a polymer of formulas XVI, XVII, XVIII, XIX, XX, XXI, XXII, XXIII by a mixture of chlorosulfonic acid, thionyl chloride and a formamide
    Figure imgb0273
    Figure imgb0274
    Figure imgb0275
    Figure imgb0276
    Figure imgb0277
    Figure imgb0278
    Figure imgb0279
    Figure imgb0280
    wherein:
    - p represents the number of polymer units of the polymer, p varying from 40 to 300, and preferably between 60 and 200,
    in order to obtain the polymers of formulas XXIV, XXV, XXVI, XVII, XXVIII, XIX, XXX, XXXI, XXXII, XXXIII, XXXIV, XXXV, XXXVI, XXXVII and XXXVIII
    Figure imgb0281
    Figure imgb0282
    Figure imgb0283
    Figure imgb0284
    Figure imgb0285
    Figure imgb0286
    Figure imgb0287
    Figure imgb0288
    Figure imgb0289
    Figure imgb0290
    Figure imgb0291
    Figure imgb0292
    Figure imgb0293
    Figure imgb0294
    Figure imgb0295
    wherein:
    - m represents the percentage of polymer units having an oxoaryl or dioxoaryl motif functionalized by a chlorosulfonated group, this percentage varying between 50 and 100%, more preferably varying between 90 and 100%,
    - n represents the percentage of polymer units having a dioxoaryl motif non-functionalized by a chlorosulfonated group, this percentage varying between 0 and 50%, more preferably varying between 0 and 10%,
    - p represents the number of polymer units of the polymer, p varying from 40 to 300, more preferably p varying between 60 and 200,
    in a second step, a reaction is produced on the polymers of formulas XXIV, XXV, XXVI, XVII, XXVIII, XIX, XXX, XXXI, XXXII, XXXIII, XXXIV, XXXV, XXXVI, XXXVII and XXXVIII with a sulfonamide of formula XXXIX in a solvent medium
    Figure imgb0296
    wherein
    - R represents a group or different groups chosen from:
    -- an alkyl or cycloalkyl group having 1 to 30 linear or branched carbon atoms, optionally substituted by a cycloalkyl, aryl, perfluoroalkyl, polyfluoroalkyl, mono or polyethoxyl motif;
    -- a perfluoro- or polyfluoroalkyl group optionally substituted by aromatic groups;
    -- an aryl or polyaryl group optionally substituted by alkyl, cycloalkyl, polyfluoro- or perfluoroalkyl motifs, by nitrile functions, by alkyl- or alkylsulfonyl functions, by fluorine atoms;
    - m represents the percentage of polymer units having an oxoaryl or dioxoaryl motif having a grafted bis(sulfonyl)imidide salt, this percentage varying between 50 and 100%,
    in the presence of a lithium or sodium base.
  5. Method according to claim 4, characterized in that the R group of the XXXIX sulfonamide is chosen from the methyl, ethyl, propyl, cyclopropyl, butyl, 1-decyl, 1-dodecyl, 1-hexanedecyl, 1-octyldecyl, (7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl) methyl, ((1R)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl) methyl, (1S) - (7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl) methyl, cyclohexylmethyl, trifluoromethyl, phenyl, tolyl, naphthyl, 4-trifluoromethylphenyl, 3,5-bis (trifluoromethyl) phenyl, 2,5-bis (trifluoromethyl) phenyl, 4-cyanophenyl, 1,1,2,2,2-pentafluoroethanyl, nonafluorobutyl, pentafluorophenyl, 2,3,5,6-tetrafluorophenyl, 4-fluorophenyl, 2,4-difluorophenyl, 3,5-difluorophenyl, 2,3,4,5,6-pentafluorophenyl, 4-cyanophenyl, 3-(trifluoromethyl) phenyl, 2-(trifluoromethyl) phenyl, 4-methylphenyl, 1-naphthyl, 2-naphthyl, 3,5-difluorobenzyl, 4-fluorobenzyl, 3-trifluoromethylbenzyl, 4-trifluoromethylbenzyl, 2,5-dimethylbenzyl, 2-phenylethyl, 4-methoxyphenyl, 4-n-butylphenyl, 4-t-butylphenyl, 4-butoxyphenyl, 2-fluoro-5-(trifluoromethyl) phenyl, or 4-ethylphenyl groups.
  6. Method for synthesis of polymers according to one of claims 1 to 3, characterized in that:
    in a first step, the chlorosulfonation of a polymer of formulas XVI, XVII, XVIII, XIX, XX, XXI, XXII and XXIII is performed, wherein:
    - p represents the number of polymer units of the polymer, p varying from 40 to 300,
    in order to obtain the chlorosulfonated polymers of formulas XXIV, XXV, XXVI, XVII, XXVIII, XIX, XXX, XXXI, XXXII, XXXIII, XXXIV, XXXV, XXXVI, XXXVII and XXXVIII, wherein:
    - m represents the percentage of polymer units having an oxoaryl or dioxoaryl motif functionalized by a chlorosulfonated group, this percentage varying between 50 and 100%,
    - n represents the percentage of polymer units having a dioxoaryl motif non-functionalized by a chlorosulfonated group, this percentage varying between 0 and 50%,
    - p represents the number of polymer units of the polymer, p varying from 40 to 300,
    in a second step, a reaction is produced on the polymers of formulas XXIV, XXV, XXVI, XVII, XXVIII, XIX, XXX, XXXI, XXXII, XXXIII, XXXIV, XXXV, XXXVI, XXXVII and XXXVIII in solution with ammonia gas or in an ammonia solution in order to obtain the polymers of formulas XL, XLI, XLII, XLIII, XLIV, XLV, XLVI, XLVII, XLVIII, XLIX, L, LI, LII, LIII and LIV,
    Figure imgb0297
    Figure imgb0298
    Figure imgb0299
    Figure imgb0300
    Figure imgb0301
    Figure imgb0302
    Figure imgb0303
    Figure imgb0304
    Figure imgb0305
    Figure imgb0306
    Figure imgb0307
    Figure imgb0308
    Figure imgb0309
    Figure imgb0310
    Figure imgb0311
    wherein:
    - m represents the percentage of polymer units having a functionalized oxoaryl or dioxoaryl motif having a sulfonamide function, this percentage varying between 50 and 100%,
    - n represents the percentage of polymer units having an oxoaryl or dioxoaryl motif non-functionalized by a sulfonamide function, this percentage varying between 0 and 50%,
    - p represents the number of polymer units of the polymer, p varying from 40 to 300,
    in a third step, a reaction is produced on the polymers of formula XL, XLI, XLII, XLIII, XLIV, XLV, XLVI, XLVII, XLVIII, XLIX, L, LI, LII, LIII and LIV with a sulfonyl halogenide of formula LV
    Figure imgb0312
    wherein
    - X represents a fluorine or chlorine or bromine atom or a trifluoromethanesulfonyl or alkylsulfonyl or arylsulfonyl group;
    - R represents a group or different groups chosen from:
    -- an alkyl group having 1 to 30 carbon atoms, more preferably having 1 to 10 carbon atoms, linear or branched, optionally substituted by a cycloalkyl, aryl, perfluoroalkyl, polyfluoroalkyl, mono or polyethoxyl motif; a cycloalkyl group having 1 to 30 linear or branched carbon atoms, optionally substituted by a cycloalkyl, aryl or perfluoralkyl motif, mono- or polyethoxylated;
    -- a perfluoro- or polyfluoroalkyl group optionally substituted by aromatic groups;
    -- an aryl or polyaryl group optionally substituted by alkyl, cycloalkyl, polyfluoro- or perfluoroalkyl motifs, by nitrile functions, by alkyl- or alkylsulfonyl functions, by fluorine atoms;
    in the presence of a lithium or sodium base at a temperature of between 0 and 80°C, preferably between 20 and 60°C in a solvent medium.
  7. Method according to claim 6, characterized in that the R group of the sulfonyl halogenide is a methyl, ethyl, propyl, cyclopropyl, butyl, 1-decyl, 1-dodecyl, 1-hexanedecyl, 1-octyldecyl, (7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl) methyl, ((1R)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl) methyl, (1S)-(7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl) methyl, cyclohexylmethyl, trifluoromethyl, phenyl, tolyl, naphthyl, 4-trifluoromethylphenyl, 3,5-bis (trifluoromethyl) phenyl, trifluorophenyl, 4-cyanophenyl, 1,1,2,2,2-pentafluoroethanyl, nonafluorobutyl, pentafluorophenyl, 2,3,5,6-tetrafluorophenyl, 4-fluorophenyl, 2,4-difluorophenyl, 3,5-difluorophenyl, 2,3,4,5,6-pentafluorophenyl, 4-(trifluoromethyl) phenyl, 3-(trifluoromethyl) phenyl, 2-(trifluoromethyl) phenyl, 4-methylphenyl, 1-naphthyl, 2-naphthyl, 3,5-difluorobenzyl, 4-fluorobenzyl, 3-trifluoromethylbenzyl, 4-trifluoromethylbenzyl, 2,5-dimethylbenzyl, 2-phenylethyl, 4-methoxyphenyl, 4-n-butylphenyl, 4-t-butylphenyl, 4-butoxyphenyl, 2-fluoro-5-(trifluoromethyl) phenyl, or 4-ethylphenyl group.
  8. Method according to one of claims 4 to 7, characterized in that the chlorosulfonation is performed at a temperature of between 0 and 80°C by a mixture of 1 to 10 equivalents of chlorosulfonic acid, 1 to 30 equivalents of thionyl chloride in the presence of 1 to 10 equivalents of an amide.
  9. Method according to one of claims 4 to 8, characterized in that the base is chosen from lithine, soda, lithium methylate, sodium methylate, lithium ethylate, sodium ethylate, lithium isopropylate, sodium isopropylate, lithium tertiobutylate, sodium tertiobutylate, lithium hydride, sodium hydride, n-butyllithium, n-butylsodium, s-butyllithium, lithium diisopropylamidure, tert-butyllithium, methyllithium, phenyllithium, phenylsodium, benzyllithium, benzylsodium, lithium dimsylate, sodium dimsylate, lithium carbonate, sodium carbonate, lithium acetate and sodium acetate, the preferred bases being those that do not form water during the reaction.
  10. Method according to one of claims 4 to 9, characterized in that the chlorosulfonation is performed in the presence of an amide, preferably N,N-dimethylformamide.
  11. Method according to one of claims 4 to 10, characterized in that the chlorosulfonation reaction is performed in a solvent, preferably THF, methyl THF, dichloromethane, dichloroethane or a mixture of solvents.
  12. Method according to one of claims 6 to 11, characterized in that the amination reaction of the chlorosulfonated polymers of formulas XXIV, XXV, XXVI, XVII, XXVIII, XIX, XXX, XXXI, XXXII, XXXIII, XXXIV, XXXV, XXXVI, XXXVII and XXXVIII, in order to form the sulfonamide polymers of formulas XL, XLI, XLII, XLIII, XLIV, XLV, XLVI, XLVII, XLVIII, XLIX, L, LI, LII, LIII and LIV is performed in a solvent medium with ammonia gas or an ammonia solution in a solvent such as THF, methyl THF, methanol, dioxane and isopropanol.
  13. Method according to one of claims 6 to 12, characterized in that the amination reaction of the polymers of formulas XXIV, XXV, XXVI, XVII, XXVIII, XIX, XXX, XXXI, XXXII, XXXIII, XXXIV, XXXV, XXXVI, XXXVII and XXXVIII with the sulfonamide of formula XXXIX is performed at a temperature of between -20°C and 60°C.
  14. Synthesis intermediates for the preparation of polymers according to one of claims 1 to 3, characterized in that the synthesis intermediates satisfy formulas XL, XLI, XLII, XLIII, XLIV, XLV, XLVI, XLVII, XLVIII, XLIX, L, LI, LII, LIII and LIV
    Figure imgb0313
    Figure imgb0314
    Figure imgb0315
    Figure imgb0316
    Figure imgb0317
    Figure imgb0318
    Figure imgb0319
    Figure imgb0320
    Figure imgb0321
    Figure imgb0322
    Figure imgb0323
    Figure imgb0324
    Figure imgb0325
    Figure imgb0326
    Figure imgb0327
    wherein:
    - m represents the percentage of polymer units having a functionalized oxoaryl or dioxoaryl motif having a sulfonamide function, this percentage varying between 50 and 100%, more preferably varying between 90 and 100%,
    - n represents the percentage of polymer units having an oxoaryl or dioxoaryl motif non-functionalized by a sulfonamide function, this percentage varying between 0 and 50%, more preferably varying between 0 and 10%,
    - p represents the number of polymer units of the polymer, p varying from 40 to 300, more preferably p varying between 60 and 200.
  15. Use of the polymers according to one of claims 1 to 3 in order to form films having a thickness of between 10 µm and 200 µm.
  16. Method for preparing films serving as electrolytes for batteries, characterized in that it is performed in a medium in the absence of traces of water and moisture by solubilizing one of the polymers according to one of claims 1 to 3 in an anhydrous solvent, depositing the polymer solution on a solid support and then evaporating the solvent, by heating at a temperature of between 20 and 100°C, by inert gas sweeping or by applying reduced pressure.
  17. Method according to claim 16 characterized in that the solvent is DMSO.
  18. Electrolytes for batteries, characterized in that they comprise polymer films according to one of claims 1 to 3, and in that they have a conductivity between 10-8 and 2 X 10-3 S/cm in a solvent medium and without solvent.
  19. Electrolytes for batteries, characterized in that they comprise polymer films according to one of claims 1 to 3 and are used in a temperature range of between 20 and 100°C.
EP15766891.4A 2014-07-23 2015-07-20 Novel polymers containing grafted bis(sulfonyl)imide sodium or lithium salts to the methods for the production thereof, and to the uses of same as electrolytes for batteries Active EP3172264B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1401710A FR3024146B1 (en) 2014-07-23 2014-07-23 NOVEL POLYMERS CONTAINING BIS (SULFONYL) GRAFTED LITHIUM OR SODIUM SALTS, PROCESSES FOR THEIR PREPARATION AND THEIR USE AS ELECTROLYTES FOR BATTERIES
PCT/FR2015/000154 WO2016012670A1 (en) 2014-07-23 2015-07-20 Novel polymers containing grafted bis(sulfonyl)imide sodium or lithium salts, to the methods for the production thereof, and to the uses of same as electrolytes for batteries.

Publications (2)

Publication Number Publication Date
EP3172264A1 EP3172264A1 (en) 2017-05-31
EP3172264B1 true EP3172264B1 (en) 2021-06-16

Family

ID=52102704

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15766891.4A Active EP3172264B1 (en) 2014-07-23 2015-07-20 Novel polymers containing grafted bis(sulfonyl)imide sodium or lithium salts to the methods for the production thereof, and to the uses of same as electrolytes for batteries

Country Status (7)

Country Link
US (1) US10141603B2 (en)
EP (1) EP3172264B1 (en)
JP (1) JP6895376B2 (en)
KR (1) KR102441687B1 (en)
CN (1) CN107001622B (en)
FR (1) FR3024146B1 (en)
WO (1) WO2016012670A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3024145B1 (en) * 2014-07-23 2018-03-16 Cdp Innovation NOVEL POLYMERS CONTAINING SULFONAMIDE LITHIUM OR SODIUM SALTS, PROCESSES FOR THEIR PREPARATION AND USES THEREOF AS ELECTROLYTES FOR BATTERIES
CA3046999A1 (en) * 2016-12-14 2018-06-21 Blue Solutions Canada Inc. Lithium metal battery containing electrolyte grafted with immobilized anions
CN107793564B (en) * 2017-10-20 2020-07-10 萨尔法(武汉)新能源科技有限公司 Low-Tg polyether all-solid-state single-ion conductive polymer and preparation method thereof
CN108091930B (en) * 2017-12-05 2019-10-25 厦门大学 Novel single-ion polymer electrolyte and the preparation method and application thereof
CN108152316B (en) * 2017-12-14 2019-12-31 中国日用化学工业研究院 Quality inspection method of glucoside sulfosuccinate product by taking maleic anhydride content and sulfonation rate as indexes
FR3113676B1 (en) * 2020-09-03 2023-06-16 Cdp Innovation POLYMERS CONTAINING REPEATING UNITS WITH SEVERAL METALLIC OR ORGANIC SULPHONATE MOTIFS, METHOD FOR PREPARING THEM AND USES THEREOF
CN113964376A (en) * 2021-10-18 2022-01-21 南京大学 Preparation and application of novel low eutectic agent
FR3134576A1 (en) 2022-04-19 2023-10-20 Arkema France Process for preparing a functionalized lithium salt
CN114934287B (en) * 2022-06-16 2023-08-29 浙江师范大学 Method for synthesizing fluoroalkyl substituted sulfonamide and polycyclic compounds by electrooxidation

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0574791B1 (en) 1992-06-13 1999-12-22 Aventis Research & Technologies GmbH & Co. KG Polymer electrolyte membrane and process for its manufacture
US6090895A (en) * 1998-05-22 2000-07-18 3M Innovative Properties Co., Crosslinked ion conductive membranes
JP3630306B2 (en) * 2001-02-23 2005-03-16 株式会社豊田中央研究所 Polyfunctionalized electrolyte, electrochemical device using the same, and method for producing polyfunctionalized electrolyte
TWI236486B (en) * 2001-10-10 2005-07-21 Mitsui Chemicals Inc Crosslinkable aromatic resin having protonic acid group, and ion conductive polymer membrane, binder and fuel cell using the resin
FR2853320B1 (en) 2003-04-03 2005-05-06 Rhodia Chimie Sa RETICULABLE COMPOSITION FOR BATTERY ELECTROLYTE
CA2523526A1 (en) * 2003-04-28 2004-11-11 Sumitomo Chemical Company Limited Aromatic-polyether-type ion-conductive ultrahigh molecular weight polymer, intermediate therefor, and processes for producing these
JP5412725B2 (en) * 2006-08-11 2014-02-12 東レ株式会社 POLYMER ELECTROLYTE MATERIAL, POLYMER ELECTROLYTE MOLDED BODY AND ITS MANUFACTURING METHOD, MEMBRANE ELECTRODE COMPOSITE AND SOLID POLYMER FUEL CELL
WO2011077742A1 (en) * 2009-12-25 2011-06-30 三井化学株式会社 Polarizing diffusion film, production method therefor, and liquid crystal display device comprising polarizing diffusion film
US20120308899A1 (en) 2011-02-16 2012-12-06 Taiwan Textile Research Institute Polymer-Based Solid Electrolytes and Preparation Methods Thereof
FR2979630B1 (en) 2011-09-05 2013-10-04 Univ Provence Aix Marseille 1 BLOCK COPOLYMERS HAVING A POLYANIONIC BASED ON ANION MONOMER TYPE TFSILI AS ELECTROLYTE BATTERY.
JP6069972B2 (en) * 2011-09-13 2017-02-01 東レ株式会社 Aromatic sulfonimide derivative, sulfonimide group-containing polymer, polymer electrolyte material using the same, polymer electrolyte molded article, and solid polymer fuel cell
CN102816287B (en) * 2012-08-29 2014-07-16 中国科学院宁波材料技术与工程研究所 Organic polymer gelator and preparation method and application thereof
CN105085847B (en) * 2014-05-23 2018-05-04 中国科学院宁波材料技术与工程研究所 A kind of sulfuryl amine aromatic polymer, its preparation method and application
FR3024145B1 (en) * 2014-07-23 2018-03-16 Cdp Innovation NOVEL POLYMERS CONTAINING SULFONAMIDE LITHIUM OR SODIUM SALTS, PROCESSES FOR THEIR PREPARATION AND USES THEREOF AS ELECTROLYTES FOR BATTERIES

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR102441687B1 (en) 2022-09-07
JP6895376B2 (en) 2021-06-30
FR3024146B1 (en) 2018-02-16
CN107001622B (en) 2020-01-07
KR20170065493A (en) 2017-06-13
WO2016012670A1 (en) 2016-01-28
CN107001622A (en) 2017-08-01
US20170179526A1 (en) 2017-06-22
US10141603B2 (en) 2018-11-27
FR3024146A1 (en) 2016-01-29
JP2017531729A (en) 2017-10-26
EP3172264A1 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
EP3172264B1 (en) Novel polymers containing grafted bis(sulfonyl)imide sodium or lithium salts to the methods for the production thereof, and to the uses of same as electrolytes for batteries
EP3172259B1 (en) Novel polymers containing sulphonamide sodium or lithium salts, production methods thereof and uses of same as electrolytes for batteries
WO2008009814A1 (en) Aromatic sulphonylimides, preparation thereof and use thereof as electrolyte.
WO2010023413A1 (en) Pentacyclic anion salt and use thereof as an electrolyte
EP2601243B1 (en) Triazine polymer that can be used as membrane in a fuel cell
JP2002505356A (en) Significantly fluorinated ionomer
WO1998029388A1 (en) Perfluorinated amide salts and their uses as ionic conducting materials
EP2601172B1 (en) Sulphur-containing and sulphone-containing aromatic perfluoroalkane monomer
JP5827014B2 (en) Electrode for electrochemical device, dye-sensitized solar cell electrolyte and carbon dioxide absorbing composition
EP2601700B1 (en) Triazine monomers and their use in the preparation of polymeric membranes in fuel cells
WO2012016780A1 (en) Aromatic perfluoroalkane monomer
EP3326229B1 (en) Process for preparing ionomers of unipolar cationic conductivity from difluoride ionic monomers
EP3649107B1 (en) Sulfonamide macromolecules useful as single-ion conducting polymer electrolyte
EP3689850B1 (en) Electrolytes for electrochemical generator
Uematsu et al. Synthesis of novel perfluorosulfonamide monomers and their application
WO2008009815A2 (en) Method for preparing aromatic sulfonates
FR2983479A1 (en) New sulfurated and sulfonated aromatic alkane compounds, useful to manufacture polymer membrane used in proton exchange membrane fuel cell, and electrochemical device extend from automotive industry to portable computers
FR2983480A1 (en) SULFUR AND FLUORINE AROMATIC ALKANE MONOMER

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180305

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201215

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015070451

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1402313

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210916

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1402313

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210616

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210917

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210916

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211018

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015070451

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

26N No opposition filed

Effective date: 20220317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210720

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230824

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230726

Year of fee payment: 9

Ref country code: DE

Payment date: 20230808

Year of fee payment: 9

Ref country code: BE

Payment date: 20230728

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616