EP3170303B1 - Method for processing high-frequency movements in an optronic system, optronic system, computer program product and storage means - Google Patents

Method for processing high-frequency movements in an optronic system, optronic system, computer program product and storage means Download PDF

Info

Publication number
EP3170303B1
EP3170303B1 EP15738331.6A EP15738331A EP3170303B1 EP 3170303 B1 EP3170303 B1 EP 3170303B1 EP 15738331 A EP15738331 A EP 15738331A EP 3170303 B1 EP3170303 B1 EP 3170303B1
Authority
EP
European Patent Office
Prior art keywords
movement
image
frequency
values
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15738331.6A
Other languages
German (de)
French (fr)
Other versions
EP3170303A1 (en
Inventor
Georges-Olivier Reymond
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Electronics and Defense SAS
Original Assignee
Safran Electronics and Defense SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Electronics and Defense SAS filed Critical Safran Electronics and Defense SAS
Publication of EP3170303A1 publication Critical patent/EP3170303A1/en
Application granted granted Critical
Publication of EP3170303B1 publication Critical patent/EP3170303B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6811Motion detection based on the image signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation

Definitions

  • An optronic system such as a camera, binoculars, a telescope, a viewfinder, a gyro-stabilized ball (BGS) equipping an airborne observation system, generally uses image stabilization techniques. These image stabilization techniques make it possible to reduce motion blur in the images induced by more or less voluntary movements of the optronic system. Image stabilization techniques therefore make it possible to obtain an improvement in the images in terms of quality and precision.
  • Image stabilization techniques can use optical stabilization methods.
  • Optical stabilization methods consist in stabilizing an image acquisition by varying an optical path followed by a light beam representative of a scene towards a sensitive surface such as a film or a sensor.
  • Optical stabilization methods include, for example, lens stabilization methods and sensor stabilization methods.
  • Known methods of objective stabilization use floating lenses moving orthogonally with respect to an optical axis of the objective using electromagnets. Movements are detected by gyrometers detecting horizontal and vertical movements and can thus be compensated by controlling the position of the floating lenses using electromagnets.
  • the sensor stabilization methods are dedicated to digital devices. Each image requiring a longer or shorter acquisition time depending on light conditions, these methods consist of moving an image sensor during the acquisition time of an image so as to compensate for the movements of a digital device .
  • BGS generally use optical stabilization techniques such as lens stabilization where it is the lens and the sensor as a whole that are moved.
  • a movement sensor 106 implemented for example by a gyrometer, determines movements of the optronic system and transmits this information to a movement compensation device 107 modifying the position of the mobile element 102 so as to compensate for the movements of the optronic system 10.
  • the movement compensation device 107 is implemented for example by motors or by electromagnets.
  • the image sensor 104 produces images from the received light beam 100. The images are produced at a signal acquisition frequency (or image acquisition frequency) of the order of a few tens of Hertz and are transmitted in the direction of a display or a memory.
  • Image stabilization techniques make it possible to compensate for low frequency movements and medium frequency movements.
  • these image stabilization techniques are generally not very effective in compensating for high frequency movements.
  • high frequency movements are very fast movements that only high precision movement sensors are able to capture.
  • an optronic system is considered to be a rigid structure undergoing an overall movement when low and medium frequency movements are applied to this system.
  • this system is considered as a deformable structure, on which local micromovements are applied.
  • An application of conventional image stabilization techniques to the processing of high frequency movements could consist in introducing several high precision sensors into optronic system structures. However, this solution leads to an increase in the complexity and cost of manufacturing optronic systems.
  • the document US2003 / 0197787 A1 discloses a camera comprising an image sensor and an image stabilization system comprising a sensor for detecting movement of the camera.
  • the document US 5,218,442 discloses a camera comprising a film and an image stabilization system comprising a high frequency motion detection sensor. Unlike the present invention, these documents do not make use of a conversion matrix to determine values representative of the movement of the image being acquired by the image sensor.
  • the object of the invention is to solve the problems mentioned above.
  • the invention aims in particular to provide a simple and efficient method and device for processing high frequency movements undergone by an optronic system and an optronic system implementing this method and this device for processing high frequency movements.
  • the present invention relates to a method of processing high frequency movements in an optronic system as defined by claim 1.
  • Embodiments of this method are defined by claims 2 to 7.
  • the invention relates to an optronic system as defined by claim 8.
  • An embodiment of this system is defined by claim 9.
  • the invention relates to a computer program product as defined by claim 10.
  • the invention relates to storage means as defined by claim 11.
  • the Fig. 1B schematically represents an example of an optronic system 11 implementing a device and a processing method capable of processing the high frequency movements of the optronic system 11.
  • the optronic system 11 comprises elements identical to the optronic system 10 of the Fig. 1A , each identical element being represented by the same reference.
  • the optronic system 11 nevertheless comprises additional elements allowing the processing of high frequency movements.
  • the optronic system 11 comprises a device 108 making it possible to redirect a part of the light beam 100 towards a high frequency optical movement sensor 109.
  • the device 108 may for example be a semi-reflecting device.
  • the high-frequency motion sensor 109 may for example be a multi-element photodiode (“multi-element photodiode” in English terminology, which we call “ME photodiode” hereinafter), such as a two, four or four photodiode. eight quadrants, a position-sensing photodiode (“position-sensing photodiode” in English terminology) or a matrix sensor comprising very few pixels but operating at high frequency.
  • the high-frequency movement sensor 109 is able to supply values representative of a movement with a signal acquisition frequency of the order of a few KHz. It is assumed here that the image sensor and the high frequency motion sensor operate in similar and preferably identical light wavelength ranges, just as these two sensors have similar and preferably identical spectral responses in these ranges. of wavelengths.
  • the Fig. 3 schematically represents an ME photodiode.
  • ME photodiodes are devices commonly used for focusing in laser readers such as CD or DVD players or in satellites for slaving laser lines of sight.
  • An ME photodiode operates in most cases with a signal acquisition frequency of a few KHz.
  • An ME photodiode is generally circular in shape, as shown in Fig. 3 , or square.
  • An ME photodiode is made up of several quadrants.
  • the Fig. 3 represents a photodiode ME comprising four quadrants denoted A, B, C and D. Each quadrant comprises a sensor which we call mega-pixels hereinafter. Each mega-pixel produces a signal when struck by a light beam.
  • S A , S B , S C and S D the signals produced respectively by the mega-pixels of quadrants A, B, C and D.
  • a photodiode ME produces two signals ⁇ X and ⁇ Y.
  • the signals ⁇ X and ⁇ Y are representative of a movement in a scene corresponding to the light beam received by the photodiode ME.
  • ME photodiodes are commonly used in optronic systems for tracking an object in a scene.
  • the objects tracked are generally objects of known shapes, such as for example laser pointers generated by laser designators.
  • ME photodiodes have a barycenter corresponding to a reference position of a tracked object.
  • the barycenter of the photodiode ME corresponds to the reference 300.
  • the photodiode ME produces zero signals ⁇ X and ⁇ Y.
  • the signals ⁇ X and ⁇ Y becomes non-zero, which subsequently makes it possible to reset the optronic system on the tracked object.
  • the light beam 100 is transmitted simultaneously towards the image sensor 104 and the high frequency movement sensor 109, each sensor receiving a part of the light beam 100.
  • high frequency movements can affecting the acquisition of images by the image sensor 104 are detected and values representative of these movements can be measured by the high frequency motion sensor 109 with a signal acquisition frequency of the order of a few KHz.
  • the values representative of the movement measured by high-frequency movement sensors cannot, in general, be used directly by movement compensation devices because they depend on the content of the scene.
  • the values representative of the movement are transmitted to a processing device 110 determining the movement values that can be used by the movement compensation device 107.
  • These movement values that can be used by the movement compensation device 107 are representative of movements in the images acquired by the image sensor 104 and are measured in numbers of pixels. We will call these movements "pixel movements" hereafter.
  • pixel movements There is a direct relationship between pixel movements and movements of the optronic system.
  • the movements of an optronic system that interest us here are angular movements.
  • An optical system has a focal length f known by construction The distance focal length f is a parameter making it possible to make the link between pixel movement and angular movement.
  • the values representative of the pixel movements can therefore be used directly by the movement compensation device 107 to compensate for the movements of the optronic system.
  • the processing device 110 controls the motion compensation device 107 based on the values of the motion representative signals ⁇ X and ⁇ Y produced by the ME photodiode 109.
  • the high frequency motion sensor 109 is a photodiode ME, there is a relationship between the values of the signals ⁇ X and ⁇ Y and the values representative of the pixel movements.
  • the values of the pixel movements could just as easily be expressed in the form of polar coordinates comprising a direction of movement ⁇ and an amplitude of movement p.
  • the values representative of pixel movements are determined by the processing device 110, they are transmitted to the movement compensation device 107 so that it can compensate for these pixel movements.
  • the frequency of transmission of the values representative of the pixel movements to the motion compensation device 107 is equal to the signal acquisition frequency of the high-frequency motion sensor 109 (ie the signal acquisition frequency of the ME photodiode). In this way, the motion compensation device 107 can compensate for movements of high frequencies. Note that the motion compensation device 107 always receives information representative of low and medium frequency movements from the motion sensor 106. Thus, the motion compensation device 107 can compensate for low, medium and high movements. frequencies.
  • the Fig. 4 schematically represents an example of a method of processing high frequency movements of the optronic system 11 implemented by the processing device 110.
  • This method comprises obtaining by the processing device 110 at least one value of a representative signal of movements of the optronic system 11.
  • the processing device 110 obtains two values of a signal representative of pixel movements. As we have seen above, a pixel movement is representative of a movement of the optronic system.
  • the processing device 110 obtains values of the signals ⁇ X and ⁇ Y from the high frequency motion sensor 109.
  • the conversion matrix M (resp. M ') is assumed to be known by the processing device 110 during step 402. We will describe below in relation to the Fig. 5 a method for determining the conversion matrix M (resp. M ′) periodically implemented by the processing device 110.
  • the processing device 110 transmits the values representative of the pixel movements thus calculated to the movement compensation device 107 so that it can implement feedback in the optronic system to compensate for the calculated pixel movement.
  • the transmission of the values representative of the pixel movements follows the signal acquisition frequency of the photodiode ME.
  • the feedback can therefore be implemented at the signal acquisition frequency of the photodiode. High frequency feedback is therefore obtained.
  • the processing device 110 then waits for reception of new values of the signals ⁇ X and ⁇ Y from the high-frequency motion sensor 109.
  • the device for processing again implements step 401.
  • the method for determining values representative of pixel movements described in relation to the Fig. 4 requires knowledge of the conversion matrix M (resp. M ').
  • the conversion matrix M (resp. M ′ ) is generally a known constant matrix.
  • the invention addresses the case of uncalibrated optronic devices such as cameras or BGSs.
  • the conversion matrix M (resp. M ') changes over time and depends on the scene on which the photodiode ME is focused. It is then necessary to determine the conversion matrix M (resp. M ′) and to update this matrix again to take into account the changes in the scene on which the photodiode ME is focused.
  • the Fig. 5 illustrates an example of a method of determining the conversion matrix M (resp. M ') periodically implemented by the processing device 110.
  • the method of determining the conversion matrix M (resp. M ') is implemented by the processing device 110 during each acquisition of an image by the image sensor 104.
  • An image acquired by the image sensor 104 is called “original image” hereinafter.
  • an original image acquired by the image sensor 104 is obtained by the processing device 110.
  • the processing device 110 uses this original image as a reference image when determining the conversion matrix M (resp. M ' ) .
  • a step 501 the processing device 110 simulates the signals ⁇ X ref and ⁇ Y ref that the photodiode ME would provide if it were subjected to a light beam corresponding to the reference image according to a simulation method which we will explain below. .
  • a variable n is initialized to zero.
  • the processing device 110 applies movements of predetermined values to the reference image to obtain a set of displaced images and, for each displaced image, simulates the signals ⁇ X and ⁇ Y that the photodiode ME if it were subjected to a light beam corresponding to the displaced image.
  • a pixel movement of a predetermined value comprising a horizontal movement value ⁇ x s ( n ) and a vertical movement value ⁇ y s ( n ) (resp.
  • a movement direction value ⁇ s ( n) ) and a displacement amplitude value ⁇ s ( n ) in the case of a movement expressed in polar coordinates) is obtained by the processing device 110.
  • This predetermined movement value is obtained for example from a list of values of predetermined movements stored in a memory of the processing device 110.
  • a displaced image I (n) is created by displacing the pixels of the reference image by the value of the pixel movement ( ⁇ x s ( n ) , ⁇ y s ( n )) (resp. ( ⁇ s ( n ), ⁇ s ( n ))).
  • a step 505 the processing device implements a method of simulating the values of the signals ⁇ X s (n) and ⁇ Y s ( n ) that the photodiode ME would provide if it were subjected to a light beam corresponding to the displaced image I (n). This simulation process is explained below.
  • the processing device 110 determines the values of the signals S A , S B , S C and S D.
  • variable n is incremented by one unit.
  • variable n is compared with a constant N which we explain later.
  • the processing device 110 creates a new displaced image I (n) by returning to step 503.
  • a predetermined pixel movement value different from any other predetermined pixel movement value already used for measurements. displaced images I (n) created previously is then obtained by the processing device 110.
  • step 507 is followed by a step 508 during which the conversion matrix M is determined.
  • the constant N fixes the number of images I (n) necessary for the computation of the conversion matrix M (resp. M ').
  • the conversion matrix M (resp. M ') being a 2x2 matrix, it has four coefficients.
  • the coefficients of the conversion matrix M (resp. M ' ) form a set of four unknowns to be determined.
  • ⁇ x s not ⁇ y s not or ⁇ X s not ⁇ Y s not M ′ .
  • ⁇ s not ⁇ s not at ′ 11 at ′ 21 at ′ 12 at ′ 22 .
  • This relation therefore provides two equations for each image I (n). Knowing for each image I (n) the values of the signals ⁇ X s ( n ) and ⁇ Y s ( n ) and the values of the corresponding pixel movement ( ⁇ x s ( n ), ⁇ y s ( n )) (resp. ( ⁇ s ( n ) , ⁇ s ( n ))) , it is necessary and sufficient to have two images I (n) to be able to calculate the four coefficients of the conversion matrix M (resp. M ' ) . In theory, it is therefore sufficient to fix the constant N to the value two to determine the conversion matrix M (resp. M '). However, to avoid obtaining noisy values of the coefficient of the conversion matrix M (resp. M ′) , it is preferable to fix the constant N at a value greater than two.
  • the conversion matrix M (resp. M ′) is used by the processing device 110 during the step of determining pixel movements 402.
  • the method for determining the matrix M comprises during steps 501 and 505 a method for simulating the values of the signals ⁇ X ref and ⁇ Y ref and of the signals ⁇ X s ( n ) and ⁇ Y s ( n ) that the photodiode ME would provide if it were subjected to a light beam corresponding respectively to the reference image or to the displaced image I (n).
  • the processing device 110 implements correspond each dial of the photodiode ME with a set of pixels of the image Î .
  • a sum of the values of the pixels of the image Î corresponding to the dial is calculated.
  • the value of a signal S i ( i ⁇ ⁇ A , B , C , D ⁇ ) is then equal to the sum of the values of the pixels of the image Î calculated on the corresponding dial.
  • the Fig. 6 represents an example of the matching of pixels of an image Î comprising 100 pixels with a four quadrant photodiode.
  • the value of the signal S A is calculated as the sum of the values of the pixels p1 to p15 corresponding to the dial A.
  • a single motion compensation device is used to process the low and mid frequency movements perceived by the motion sensor 106 and the high frequency movements perceived by the high frequency motion sensor 109.
  • at least two motion compensation devices are used.
  • a first device processes the low and medium frequency movements perceived by the motion sensor 106 and a second device processes the high frequency movements perceived by the high frequency motion sensor 109.
  • the conversion matrix M (resp. M ' ) is periodically updated by the method for determining said matrix with a frequency lower than the image acquisition frequency of the image sensor 104
  • the frequency of implementation of the method for determining the conversion matrix M (resp. M ′) can also be adaptive, as a function for example of statistics on the evolution of the values of the signals ⁇ X and ⁇ Y.
  • the frequency can for example be increased when the statistics show that the optronic system is in a period of strong movements and decreased when the statistics show that the optronic system is in a period of weak movements.
  • a reference image resulting from a sub-pixel interpolation of the original image obtained by the image sensor 104 is used rather than the original image directly.
  • the sub-pixel interpolation used can be half, quarter or eighth pixel interpolation. In this way, movements of high frequencies of low amplitude can also be processed by the movement compensation device 107.
  • the sub-pixel interpolation can be adaptive as a function for example of statistics on the evolution of the values of the signals ⁇ X and ⁇ Y. Interpolation can be suppressed when statistics show that the optronic system is in a period of strong movements.
  • Half or quarter pixel interpolation can be used when statistics show that the optronic system is in a period of medium motion.
  • An eighth pixel interpolation can be used when statistics show the optronic system is in a period of weak motion.
  • the transmission frequency of the values representative of the pixel movements to the movement compensation device 107 is lower than the signal acquisition frequency of the high-frequency motion sensor 109 (ie the signal acquisition frequency of the ME photodiode) while remaining higher than the signal acquisition frequency of the image sensor 104.
  • the transmission frequency of the values representative of the pixel movements to the motion compensation device 107 can be set adaptively based on statistics on the signals ⁇ X and ⁇ Y. For example, when the statistics show that the signals ⁇ X and ⁇ Y vary little over time, the frequency of transmission of the values representative of the pixel movements to the motion compensation device 107 can be reduced. On the other hand, when the statistics show that the signals ⁇ X and ⁇ Y vary rapidly over time, the frequency of transmission of the values representative of the pixel movements to the motion compensation device 107 can be increased.
  • the images generated by the image sensor have only one component. These images can for example be grayscale images.
  • the images generated by the image sensor 104 are multi-component images such as RGB images.
  • each pixel of an image generated by the image sensor comprises three components.
  • the processing device 110 simulates the signal that the ME photodiode 109 would generate if it were subjected to a light signal corresponding to a given image.
  • the sum of the values of the pixels included in each dial of the photodiode is calculated.
  • the coefficients a , b and c depend both on spectral response characteristics of the image sensor 104 and of the ME photodiode 109.
  • the coefficients a, b and c are assumed to be known by construction.
  • the high frequency sensor 109 and the image sensor 104 have different spectral responses. It is important that the spectral responses of the two sensors are as close as possible and ideally that these spectral responses are identical. If, for example, there is a red zone in a scene and the image sensor 104 is not sensitive to this color, it is difficult to correctly simulate the signals produced by the ME 109 photodiode since the image obtained by the image sensor 104 does not contain this information.
  • a correction filter is inserted in front of the image sensor 104.
  • the function of the correction filter is to correct for differences in the spectral responses of the two sensors.
  • the spectral response of a sensor is represented by a quantum efficiency curve.
  • the corrective filter is adjusted so that the quantum efficiency curve of the image sensor 104 after filtering of the light beam 100 by the correcting filter is as close as possible to the quantum efficiency curve of the high frequency sensor 109.
  • the correcting filter can be implemented by a color filter used to obtain a coarse fit on which is added a stack of thin layers to obtain a fine fit of the filter.
  • the correction filter is placed in front of the ME 109 photodiode.
  • a correction filter is placed in front of the ME photodiode 109 and in front of the image sensor 104.
  • the ME photodiode is replaced by a position detecting photodiode.
  • a position-detecting photodiode provides the position of a barycenter of an image called a "photometric barycenter".
  • a movement of the image causes a movement of its barycenter which causes variations in a signal produced by the position detector photodiode.
  • the Fig. 2 schematically illustrates an example of the hardware architecture of the processing device 110.
  • the processing device 110 comprises, connected by a communication bus 1105: a processor or CPU (“Central Processing Unit” in English) 1100; a random access memory RAM (“Random Access Memory” in English) 1101; a ROM (“Read Only Memory”) 1102; a storage unit 1103 or a storage media reader, such as an SD ("Secure Digital”) card reader or USB (“Universal Serial Bus”) key reader or an HDD (“Hard Disk Drive ”in English); at least one interface 1104 making it possible to exchange data with other devices.
  • the interface 1104 allows for example the processing device 110 to receive signal values ⁇ X and ⁇ Y from the high frequency sensor 109 and original images from the image sensor 104.
  • Processor 1100 is capable of executing instructions loaded into RAM 1101 from ROM 1102, external memory (not shown), storage media, or a communications network. When processing device 110 is powered on, processor 1100 is able to read instructions from RAM 1101 and execute them. These instructions form a computer program causing the implementation, by the processor 1100, of all or part of the algorithms and steps described in relation to the processing device 110 and the Figs. 4 and 5 .
  • All or part of the algorithms and steps described above can thus be implemented in software form by executing a set of instructions by a programmable machine, such as a DSP (“Digital Signal Processor” in English) or a microcontroller, or be implemented in hardware form by a machine or dedicated component, such as an FPGA (“Field-Programmable Gate Array”) or an ASIC (“Application-Specific Integrated Circuit”).
  • a programmable machine such as a DSP (“Digital Signal Processor” in English) or a microcontroller
  • a machine or dedicated component such as an FPGA (“Field-Programmable Gate Array”) or an ASIC (“Application-Specific Integrated Circuit”).

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

La présente invention concerne un procédé et un dispositif de traitement de mouvements de hautes fréquences dans un système optronique et un système optronique mettant en œuvre ledit dispositif et ledit procédé.The present invention relates to a method and a device for processing high frequency movements in an optronic system and an optronic system implementing said device and said method.

Un système optronique tel qu'un appareil photographique, des jumelles, un télescope, un viseur, une boule gyrostabilisée (BGS) équipant un système d'observation aéroporté, met en général en œuvre des techniques de stabilisation d'images. Ces techniques de stabilisation d'images permettent de réduire des flous de bougé dans les images induits par des mouvements plus ou moins volontaires du système optronique. Les techniques de stabilisation d'images permettent donc d'obtenir une amélioration des images en termes de qualité et de précision.An optronic system such as a camera, binoculars, a telescope, a viewfinder, a gyro-stabilized ball (BGS) equipping an airborne observation system, generally uses image stabilization techniques. These image stabilization techniques make it possible to reduce motion blur in the images induced by more or less voluntary movements of the optronic system. Image stabilization techniques therefore make it possible to obtain an improvement in the images in terms of quality and precision.

Les techniques de stabilisation d'images peuvent utiliser des méthodes de stabilisation optique. Les méthodes de stabilisation optique consistent à stabiliser une acquisition d'image en faisant varier un chemin optique suivi par un faisceau lumineux représentatif d'une scène vers une surface sensible telle qu'une pellicule ou un capteur. Les méthodes de stabilisation optique comprennent par exemple, des méthodes de stabilisation d'objectif et des méthodes de stabilisation de capteur. Des méthodes connues de stabilisation d'objectif utilisent des lentilles flottantes se déplaçant orthogonalement par rapport à un axe optique de l'objectif à l'aide d'électroaimants. Des mouvements sont détectés par des gyromètres détectant des mouvements horizontaux et verticaux et peuvent ainsi être compensés en contrôlant la position des lentilles flottantes à l'aide des électroaimants. Les méthodes de stabilisation de capteur sont quant à elles dédiées aux appareils numériques. Chaque image nécessitant un temps d'acquisition plus ou moins long en fonction de conditions de luminosité, ces méthodes consistent à déplacer un capteur d'images pendant le temps d'acquisition d'une image de manière à compenser les mouvements d'un appareil numérique.Image stabilization techniques can use optical stabilization methods. Optical stabilization methods consist in stabilizing an image acquisition by varying an optical path followed by a light beam representative of a scene towards a sensitive surface such as a film or a sensor. Optical stabilization methods include, for example, lens stabilization methods and sensor stabilization methods. Known methods of objective stabilization use floating lenses moving orthogonally with respect to an optical axis of the objective using electromagnets. Movements are detected by gyrometers detecting horizontal and vertical movements and can thus be compensated by controlling the position of the floating lenses using electromagnets. The sensor stabilization methods are dedicated to digital devices. Each image requiring a longer or shorter acquisition time depending on light conditions, these methods consist of moving an image sensor during the acquisition time of an image so as to compensate for the movements of a digital device .

Les BGS utilisent en général des techniques de stabilisation optiques de type stabilisation d'objectif où ce sont l'objectif et le capteur dans leur ensemble qui sont déplacés.BGS generally use optical stabilization techniques such as lens stabilization where it is the lens and the sensor as a whole that are moved.

La Fig. 1A représente schématiquement un système optronique 10, tel que par exemple un appareil photo, constitué d'un élément optique comprenant par exemple deux groupes de lentilles, tels que les groupes de lentilles 101 et 103, un élément mobile 102 généralement mis en œuvre par une lentille flottante, un capteur d'images 104 tel qu'un capteur CCD (dispositif à charge couplée : « Charge-Coupled Device » en terminologie anglo-saxonne) ou CMOS (semiconducteur métal-oxyde complémentaire : «Complementary Metal-Oxide-Semiconductor » en terminologie anglo-saxonne). Les groupes de lentilles 101 et 103, l'élément mobile 102 et le capteur d'images 104 sont perpendiculaires à un axe optique 105. Les groupes de lentilles 101 et 103 et l'élément mobile 102 font converger un faisceau lumineux 100 vers le capteur d'images 104. Un capteur de mouvement 106, mis en œuvre par exemple par un gyromètre, détermine des mouvements du système optronique et transmet ces informations à un dispositif de compensation de mouvement 107 modifiant la position de l'élément mobile 102 de manière à compenser les mouvements du système optronique 10. Le dispositif de compensation de mouvement 107 est mis en œuvre par exemple par des moteurs ou par des électroaimants. Le capteur d'images 104 produit des images à partir du faisceau lumineux 100 reçu. Les images sont produites à une fréquence d'acquisition de signal (ou fréquence d'acquisition d'images) de l'ordre de quelques dizaines de Hertz et sont transmises en direction d'un afficheur ou d'une mémoire.The Fig. 1A schematically shows an optronic system 10, such as for example a camera, consisting of an optical element comprising for example two groups of lenses, such as the groups of lenses 101 and 103, a mobile element 102 generally implemented by a lens floating, an image sensor 104 such as a CCD (charge-coupled device: “Charge-Coupled Device”) or CMOS (complementary metal-oxide semiconductor: “Complementary Metal-Oxide-Semiconductor” in English Anglo-Saxon terminology). The lens groups 101 and 103, the movable element 102 and the image sensor 104 are perpendicular to an optical axis 105. The lens groups 101 and 103 and the movable element 102 converge a light beam 100 towards the sensor. images 104. A movement sensor 106, implemented for example by a gyrometer, determines movements of the optronic system and transmits this information to a movement compensation device 107 modifying the position of the mobile element 102 so as to compensate for the movements of the optronic system 10. The movement compensation device 107 is implemented for example by motors or by electromagnets. The image sensor 104 produces images from the received light beam 100. The images are produced at a signal acquisition frequency (or image acquisition frequency) of the order of a few tens of Hertz and are transmitted in the direction of a display or a memory.

Les techniques de stabilisation d'images, telles que celles employées dans les appareils photographique ou les BGS, permettent de compenser des mouvements de basses fréquences et des mouvements de moyennes fréquences. Par contre, ces techniques de stabilisation d'images sont en général peu efficaces pour compenser des mouvements de hautes fréquences. En effet, les mouvements de hautes fréquences sont des mouvements très rapides que seuls des capteurs de mouvements de haute précision sont aptes à capter. Par ailleurs, on considère qu'un système optronique est une structure rigide subissant un mouvement global lorsqu'on applique à ce système des mouvements de basses et moyennes fréquences. Par contre, lorsqu'on applique un mouvement de hautes fréquences à un système optronique, ce système est considéré comme une structure déformable, sur laquelle sont appliqués des micromouvements locaux. Une application des techniques classiques de stabilisation d'images au traitement des mouvements de hautes fréquences pourrait consister à introduire plusieurs capteurs de haute précision dans des structures de système optronique. Cette solution entraîne toutefois un accroissement de complexité et de coût de fabrication des systèmes optroniques.Image stabilization techniques, such as those used in cameras or BGS, make it possible to compensate for low frequency movements and medium frequency movements. On the other hand, these image stabilization techniques are generally not very effective in compensating for high frequency movements. Indeed, high frequency movements are very fast movements that only high precision movement sensors are able to capture. Furthermore, an optronic system is considered to be a rigid structure undergoing an overall movement when low and medium frequency movements are applied to this system. On the other hand, when a movement of high frequencies is applied to an optronic system, this system is considered as a deformable structure, on which local micromovements are applied. An application of conventional image stabilization techniques to the processing of high frequency movements could consist in introducing several high precision sensors into optronic system structures. However, this solution leads to an increase in the complexity and cost of manufacturing optronic systems.

Certains systèmes optroniques n'ayant pas pour objectif de délivrer des images de haute précision peuvent se permettre de ne pas traiter les mouvements de hautes fréquences. Pour ces systèmes, on considère qu'il est acceptable qu'après compensation des mouvements de basses et moyennes fréquences par les techniques de stabilisation d'images classiques, des mouvements de hautes fréquences résiduelles non compensés peuvent subsister et induire des problèmes de netteté dans les images.Some optronic systems that do not aim to deliver high precision images can afford not to process high frequency movements. For these systems, it is considered acceptable that after compensation for low and medium frequency movements by conventional image stabilization techniques, uncompensated residual high frequency movements may remain and induce sharpness problems in the images. images.

Le document US2003/0197787 A1 divulgue une caméra comprenant un capteur d'image et un système de stabilisation d'image comprenant un capteur de détection de mouvement de la caméra.The document US2003 / 0197787 A1 discloses a camera comprising an image sensor and an image stabilization system comprising a sensor for detecting movement of the camera.

Le document US 5,218,442 divulgue une caméra comprenant une pellicule et un système de stabilisation d'image comprenant un capteur de détection de mouvement à fréquence élevée. Contrairement à la présente invention, ces documents ne font pas l'usage de matrice de conversion pour déterminer des valeurs représentatives du mouvement de l'image en cours d'acquisition par le capteur d'images.The document US 5,218,442 discloses a camera comprising a film and an image stabilization system comprising a high frequency motion detection sensor. Unlike the present invention, these documents do not make use of a conversion matrix to determine values representative of the movement of the image being acquired by the image sensor.

La situation est très différente pour les systèmes optroniques demandant une haute précision tels qu'une BGS ou un appareil photographique équipé d'un téléobjectif. En effet, dans ce cas, une image de qualité médiocre pourrait provoquer une mauvaise interprétation du contenu de l'image.The situation is very different for optronic systems requiring high precision such as a BGS or a camera equipped with a telephoto lens. Indeed, in this case, an image of poor quality could cause a misinterpretation of the contents of the image.

L'invention a pour objectif de résoudre les problèmes mentionnés ci-dessus. L'invention vise notamment à proposer une méthode et un dispositif simple et efficace de traitement des mouvements de hautes fréquences subis par un système optronique et un système optronique mettant en œuvre cette méthode et ce dispositif de traitement des mouvements de hautes fréquences.The object of the invention is to solve the problems mentioned above. The invention aims in particular to provide a simple and efficient method and device for processing high frequency movements undergone by an optronic system and an optronic system implementing this method and this device for processing high frequency movements.

A cet effet, selon un premier aspect de la présente invention, la présente invention concerne un procédé de traitement de mouvements de hautes fréquences dans un système optronique tel que défini par la revendication 1. Des modes de réalisation de ce procédé sont définis par les revendications 2 à 7.To this end, according to a first aspect of the present invention, the present The invention relates to a method of processing high frequency movements in an optronic system as defined by claim 1. Embodiments of this method are defined by claims 2 to 7.

De cette manière, des mouvements très faibles peuvent être captés et compensés.In this way, very weak movements can be picked up and compensated.

Selon un deuxième aspect de l'invention, l'invention concerne un système optronique tel que défini par la revendication 8. Un mode de réalisation de ce système est défini par la revendication 9.According to a second aspect of the invention, the invention relates to an optronic system as defined by claim 8. An embodiment of this system is defined by claim 9.

Selon un troisième aspect de l'invention, l'invention concerne un produit programme d'ordinateur tel que défini par la revendication 10.According to a third aspect of the invention, the invention relates to a computer program product as defined by claim 10.

Selon un quatrième aspect de l'invention, l'invention concerne des moyens de stockage tels que définis par la revendication 11.According to a fourth aspect of the invention, the invention relates to storage means as defined by claim 11.

Les caractéristiques de l'invention mentionnées ci-dessus, ainsi que d'autres, apparaîtront plus clairement à la lecture de la description suivante d'un exemple de réalisation, ladite description étant faite en relation avec les dessins joints, parmi lesquels:

  • La Fig. 1A représente schématiquement un exemple de système optronique classique,
  • La Fig. 1B représente schématiquement un exemple de système optronique mettant en œuvre un dispositif et un procédé de traitement apte à traiter des mouvements de hautes fréquences du système optronique,
  • La Fig. 2 illustre schématiquement un exemple d'architecture matérielle d'un dispositif de traitement apte à traiter les mouvements de hautes fréquences du système optronique,
  • La Fig. 3 représente schématiquement une photodiode multi-éléments,
  • La Fig. 4 représente schématiquement un exemple de procédé de traitement de mouvements de hautes fréquences d'un système optronique mis en œuvre par le dispositif de traitement,
  • La Fig. 5 représente schématiquement un exemple de procédé de détermination d'une matrice de conversion utilisée dans le procédé de traitement de mouvements de hautes fréquences,
  • La Fig. 6 illustre une mise en correspondance de pixels d'une image avec des quadrants d'une photodiode multi-éléments utilisée dans le procédé de traitement de mouvements de hautes fréquences.
The characteristics of the invention mentioned above, as well as others, will emerge more clearly on reading the following description of an exemplary embodiment, said description being given in relation to the accompanying drawings, among which:
  • The Fig. 1A schematically represents an example of a classical optronic system,
  • The Fig. 1B schematically represents an example of an optronic system implementing a device and a processing method capable of processing high frequency movements of the optronic system,
  • The Fig. 2 schematically illustrates an example of the hardware architecture of a processing device capable of processing the high frequency movements of the optronic system,
  • The Fig. 3 schematically represents a multi-element photodiode,
  • The Fig. 4 schematically represents an example of a method for processing high frequency movements of an optronic system implemented by the processing device,
  • The Fig. 5 schematically represents an example of a method for determining a conversion matrix used in the method for processing high frequency movements,
  • The Fig. 6 illustrates a mapping of pixels of an image to quadrants of a multi-element photodiode used in the high frequency motion processing method.

La Fig. 1B représente schématiquement un exemple de système optronique 11 mettant en œuvre un dispositif et un procédé de traitement apte à traiter les mouvements de hautes fréquences du système optronique 11. Le système optronique 11 comprend des éléments identiques au système optronique 10 de la Fig. 1A, chaque élément identique étant représenté par une même référence. Le système optronique 11 comporte néanmoins des éléments supplémentaires permettant le traitement des mouvements de hautes fréquences. Le système optronique 11 comporte un dispositif 108 permettant de rediriger une partie du faisceau lumineux 100 vers un capteur de mouvement optique haute fréquence 109. Le dispositif 108 peut être par exemple un dispositif semi réfléchissant. Le capteur de mouvement haute fréquence 109 peut être par exemple une photodiode multi-éléments (« multi-element photodiode » en terminologie anglo-saxonne, que nous appelons « photodiode ME » par la suite), telle qu'une photodiode deux, quatre ou huit quadrants, une photodiode détectrice de position (« position-sensing photodiode » en terminologie anglo-saxonne) ou un capteur matriciel comportant très peu de pixels mais fonctionnant à haute fréquence. Le capteur de mouvement haute fréquence 109 est apte à fournir des valeurs représentatives d'un mouvement avec une fréquence d'acquisition de signal de l'ordre de quelques KHz. On suppose ici que le capteur d'images et le capteur de mouvement haute fréquence fonctionnent dans des gammes de longueurs d'onde lumineuse similaires et de préférence identiques, de même que ces deux capteurs possèdent des réponses spectrales similaires et de préférence identique dans ces gammes de longueurs d'onde.The Fig. 1B schematically represents an example of an optronic system 11 implementing a device and a processing method capable of processing the high frequency movements of the optronic system 11. The optronic system 11 comprises elements identical to the optronic system 10 of the Fig. 1A , each identical element being represented by the same reference. The optronic system 11 nevertheless comprises additional elements allowing the processing of high frequency movements. The optronic system 11 comprises a device 108 making it possible to redirect a part of the light beam 100 towards a high frequency optical movement sensor 109. The device 108 may for example be a semi-reflecting device. The high-frequency motion sensor 109 may for example be a multi-element photodiode (“multi-element photodiode” in English terminology, which we call “ME photodiode” hereinafter), such as a two, four or four photodiode. eight quadrants, a position-sensing photodiode (“position-sensing photodiode” in English terminology) or a matrix sensor comprising very few pixels but operating at high frequency. The high-frequency movement sensor 109 is able to supply values representative of a movement with a signal acquisition frequency of the order of a few KHz. It is assumed here that the image sensor and the high frequency motion sensor operate in similar and preferably identical light wavelength ranges, just as these two sensors have similar and preferably identical spectral responses in these ranges. of wavelengths.

La Fig. 3 représente schématiquement une photodiode ME. Les photodiodes ME sont des dispositifs couramment utilisés pour effectuer des mises au point dans des lecteurs laser tels que des lecteurs de CD ou de DVD ou dans des satellites pour asservir des lignes de visée laser. Une photodiode ME fonctionne dans la majorité des cas avec une fréquence d'acquisition de signal de quelques KHz. Une photodiode ME est en générale de forme circulaire, comme représentée en Fig. 3, ou carrée. Une photodiode ME est composée de plusieurs quadrants. La Fig. 3 représente une photodiode ME comportant quatre quadrants notés A, B, C et D. Chaque quadrant comprend un capteur que nous appelons méga-pixels par la suite. Chaque méga-pixel produit un signal lorsqu'il est touché par un faisceau lumineux. Nous notons SA, SB, SC et SD les signaux produits respectivement par les méga-pixels des quadrants A, B, C et D. Par ailleurs, une photodiode ME produit deux signaux ΔX et ΔY. Les signaux ΔX et ΔY sont représentatifs d'un mouvement dans une scène correspondant au faisceau lumineux reçu par la photodiode ME.The Fig. 3 schematically represents an ME photodiode. ME photodiodes are devices commonly used for focusing in laser readers such as CD or DVD players or in satellites for slaving laser lines of sight. An ME photodiode operates in most cases with a signal acquisition frequency of a few KHz. An ME photodiode is generally circular in shape, as shown in Fig. 3 , or square. An ME photodiode is made up of several quadrants. The Fig. 3 represents a photodiode ME comprising four quadrants denoted A, B, C and D. Each quadrant comprises a sensor which we call mega-pixels hereinafter. Each mega-pixel produces a signal when struck by a light beam. We denote by S A , S B , S C and S D the signals produced respectively by the mega-pixels of quadrants A, B, C and D. Furthermore, a photodiode ME produces two signals Δ X and Δ Y. The signals Δ X and Δ Y are representative of a movement in a scene corresponding to the light beam received by the photodiode ME.

Les valeurs des signaux ΔX et ΔY sont reliées aux valeurs des signaux SA, SB, SC et SD par les relations suivantes : Δ X = S A + S B S C + S D S A + S B + S C + S D ;

Figure imgb0001
Δ Y = S A + S B S C S D S A + S B + S C + S D ;
Figure imgb0002
The values of the signals Δ X and Δ Y are linked to the values of the signals S A , S B , S C and S D by the following relationships: Δ X = - S AT + S B - S VS + S D S AT + S B + S VS + S D ;
Figure imgb0001
Δ Y = S AT + S B - S VS - S D S AT + S B + S VS + S D ;
Figure imgb0002

Les photodiodes ME sont couramment utilisées dans des systèmes optroniques permettant le suivi d'un objet dans une scène. Les objets suivis sont en général des objets de formes connues, tels que par exemple des pointeurs laser générés par des désignateurs laser. Les photodiodes ME possèdent un barycentre correspondant à une position de référence d'un objet suivi. Dans la photodiode ME représentée schématiquement par la Fig. 3, le barycentre de la photodiode ME correspond à la référence 300. Tant qu'un objet suivi est positionné sur le barycentre de la photodiode ME, la photodiode ME produit des signaux ΔX et ΔY nuls. Dès que l'objet suivi s'écarte du barycentre de la photodiode ME, au moins un des signaux ΔX et ΔY devient non nul, ce qui permet par la suite de recaler le système optronique sur l'objet suivi.ME photodiodes are commonly used in optronic systems for tracking an object in a scene. The objects tracked are generally objects of known shapes, such as for example laser pointers generated by laser designators. ME photodiodes have a barycenter corresponding to a reference position of a tracked object. In the ME photodiode represented schematically by the Fig. 3 , the barycenter of the photodiode ME corresponds to the reference 300. As long as a tracked object is positioned on the barycenter of the photodiode ME, the photodiode ME produces zero signals Δ X and Δ Y. As soon as the tracked object moves away from the barycenter of the photodiode ME, at least one of the signals Δ X and Δ Y becomes non-zero, which subsequently makes it possible to reset the optronic system on the tracked object.

Dans le système optronique 11, le faisceau lumineux 100 est transmis simultanément en direction du capteur d'images 104 et du capteur de mouvement haute fréquence 109, chaque capteur recevant une partie du faisceau lumineux 100. De cette manière, des mouvements de hautes fréquences pouvant affecter l'acquisition d'images par le capteur d'images 104 sont détectés et des valeurs représentatives de ces mouvements peuvent être mesurées par le capteur de mouvement haute fréquence 109 avec une fréquence d'acquisition de signal de l'ordre de quelques KHz.In the optronic system 11, the light beam 100 is transmitted simultaneously towards the image sensor 104 and the high frequency movement sensor 109, each sensor receiving a part of the light beam 100. In this way, high frequency movements can affecting the acquisition of images by the image sensor 104 are detected and values representative of these movements can be measured by the high frequency motion sensor 109 with a signal acquisition frequency of the order of a few KHz.

Les valeurs représentatives du mouvement mesurées par des capteurs de mouvement hautes fréquences ne sont, en général, pas utilisables directement par des dispositifs de compensation de mouvement car elles dépendent du contenu de la scène. Dans le cas du système optronique 11, les valeurs représentatives du mouvement sont transmises à un dispositif de traitement 110 déterminant des valeurs de mouvement utilisables par le dispositif de compensation de mouvement 107. Ces valeurs de mouvement utilisables par le dispositif de compensation de mouvement 107 sont représentatives de mouvements dans les images acquises par le capteur d'images 104 et sont mesurées en nombres de pixels. Nous appelons par la suite ces mouvements « mouvements pixeliques ». Il existe une relation directe entre les mouvements pixeliques et les mouvements du système optronique. Les mouvements d'un système optronique qui nous intéressent ici sont des mouvements angulaires. Un système optique possède une distance focale f connue par construction La distance focale f est un paramètre permettant de faire le lien entre un mouvement pixelique et le mouvement angulaire.The values representative of the movement measured by high-frequency movement sensors cannot, in general, be used directly by movement compensation devices because they depend on the content of the scene. In the case of the optronic system 11, the values representative of the movement are transmitted to a processing device 110 determining the movement values that can be used by the movement compensation device 107. These movement values that can be used by the movement compensation device 107 are representative of movements in the images acquired by the image sensor 104 and are measured in numbers of pixels. We will call these movements "pixel movements" hereafter. There is a direct relationship between pixel movements and movements of the optronic system. The movements of an optronic system that interest us here are angular movements. An optical system has a focal length f known by construction The distance focal length f is a parameter making it possible to make the link between pixel movement and angular movement.

Les valeurs représentatives des mouvements pixeliques peuvent donc être utilisées directement par le dispositif de compensation de mouvement 107 pour compenser les mouvements du système optronique. De cette manière, le dispositif de traitement 110 contrôle le dispositif de compensation de mouvement 107 en se basant sur les valeurs des signaux représentatifs de mouvement ΔX et ΔY produits par la photodiode ME 109. Lorsque le capteur de mouvement haute fréquence 109 est une photodiode ME, il existe une relation entre les valeurs des signaux ΔX et ΔY et les valeurs représentatives des mouvements pixeliques.The values representative of the pixel movements can therefore be used directly by the movement compensation device 107 to compensate for the movements of the optronic system. In this way, the processing device 110 controls the motion compensation device 107 based on the values of the motion representative signals Δ X and Δ Y produced by the ME photodiode 109. When the high frequency motion sensor 109 is a photodiode ME, there is a relationship between the values of the signals Δ X and Δ Y and the values representative of the pixel movements.

Lorsque les valeurs représentatives des mouvements pixeliques sont exprimées sous la forme d'une valeur de mouvement horizontal Δx et d'une valeur de mouvement vertical Δy, la relation entre les signaux ΔX et ΔY et les valeurs représentatives des mouvements pixeliques est la suivante : Δ X Δ Y = M . Δ x Δ y

Figure imgb0003
M est une matrice de conversion carrée 2x2 dépendant d'un contenu de la scène visée.When the representative values of the pixel movements are expressed as a horizontal movement value Δ x and a vertical movement value Δy , the relationship between the signals Δ X and Δ Y and the values representative of the pixel movements is the next : Δ X Δ Y = M . Δ x Δ y
Figure imgb0003
where M is a 2x2 square conversion matrix depending on a content of the target scene.

Toutefois les valeurs des mouvements pixeliques pourraient tout aussi bien être exprimées sous la forme de coordonnées polaires comprenant une direction de mouvement θ et une amplitude de mouvement p. Dans ce cas la relation serait la suivante : Δ X Δ Y = M . ρ θ

Figure imgb0004
M' est une matrice de conversion carrée 2x2 qui dépend d'un contenu de la scène visée.However, the values of the pixel movements could just as easily be expressed in the form of polar coordinates comprising a direction of movement θ and an amplitude of movement p. In this case the relation would be as follows: Δ X Δ Y = M . ρ θ
Figure imgb0004
where M ' is a 2x2 square conversion matrix which depends on a content of the target scene.

Lorsque les valeurs représentatives de mouvements pixeliques sont déterminées par le dispositif de traitement 110, elles sont transmises au dispositif de compensation de mouvement 107 pour qu'il puisse compenser ces mouvements pixeliques. Dans un mode de réalisation, la fréquence de transmission des valeurs représentatives des mouvements pixeliques au dispositif de compensation de mouvement 107 est égale à la fréquence d'acquisition de signal du capteur de mouvement haute fréquence 109 (i.e. la fréquence d'acquisition de signal de la photodiode ME). De cette manière, le dispositif de compensation de mouvement 107 peut compenser des mouvements de hautes fréquences. On remarque que le dispositif de compensation de mouvement 107 reçoit toujours des informations représentatives de mouvements de basses et moyennes fréquences de la part du capteur de mouvement 106. Ainsi, le dispositif de compensation de mouvement 107 peut compenser des mouvements de basses, moyennes et hautes fréquences.When the values representative of pixel movements are determined by the processing device 110, they are transmitted to the movement compensation device 107 so that it can compensate for these pixel movements. In one embodiment, the frequency of transmission of the values representative of the pixel movements to the motion compensation device 107 is equal to the signal acquisition frequency of the high-frequency motion sensor 109 (ie the signal acquisition frequency of the ME photodiode). In this way, the motion compensation device 107 can compensate for movements of high frequencies. Note that the motion compensation device 107 always receives information representative of low and medium frequency movements from the motion sensor 106. Thus, the motion compensation device 107 can compensate for low, medium and high movements. frequencies.

La Fig. 4 représente schématiquement un exemple de procédé de traitement des mouvements de hautes fréquences du système optronique 11 mis en œuvre par le dispositif de traitement 110. Ce procédé comprend l'obtention par le dispositif de traitement 110 d'au moins une valeur d'un signal représentatif de mouvements du système optronique 11. Lorsque le capteur de mouvement hautes fréquences 109 est une photodiode ME, le dispositif de traitement 110 obtient deux valeurs d'un signal représentatif de mouvements pixeliques. Comme nous l'avons vu plus haut, un mouvement pixelique est représentatif d'un mouvement du système optronique. Dans une étape 401, le dispositif de traitement 110 obtient des valeurs des signaux ΔX et ΔY du capteur de mouvement hautes fréquences 109.The Fig. 4 schematically represents an example of a method of processing high frequency movements of the optronic system 11 implemented by the processing device 110. This method comprises obtaining by the processing device 110 at least one value of a representative signal of movements of the optronic system 11. When the high-frequency movement sensor 109 is a photodiode ME, the processing device 110 obtains two values of a signal representative of pixel movements. As we have seen above, a pixel movement is representative of a movement of the optronic system. In a step 401, the processing device 110 obtains values of the signals Δ X and Δ Y from the high frequency motion sensor 109.

Lors d'une étape 402, le dispositif de traitement 110 détermine les valeurs représentatives des mouvements pixeliques de la manière suivante : Δ x Δ y = M 1 . Δ X Δ Y

Figure imgb0005
M -1 est l'inverse de la matrice de conversion M.During a step 402, the processing device 110 determines the values representative of the pixel movements as follows: Δ x Δ y = M - 1 . Δ X Δ Y
Figure imgb0005
where M -1 is the inverse of the conversion matrix M.

Lorsque les valeurs représentatives des mouvements pixeliques sont exprimées en coordonnées polaires, la relation suivante s'applique : ρ θ = M 1 . Δ X Δ Y

Figure imgb0006
M' -1 est l'inverse de la matrice de conversion M'.When the representative values of pixel movements are expressed in polar coordinates, the following relation applies: ρ θ = M - 1 . Δ X Δ Y
Figure imgb0006
where M ' -1 is the inverse of the conversion matrix M '.

La matrice de conversion M (resp. M') est supposée connue par le dispositif de traitement 110 lors de l'étape 402. Nous décrivons par la suite en relation avec la Fig. 5 un procédé de détermination de la matrice de conversion M (resp. M') mis en œuvre périodiquement par le dispositif de traitement 110.The conversion matrix M (resp. M ') is assumed to be known by the processing device 110 during step 402. We will describe below in relation to the Fig. 5 a method for determining the conversion matrix M (resp. M ′) periodically implemented by the processing device 110.

Dans une étape 403, le dispositif de traitement 110 transmet les valeurs représentatives des mouvements pixeliques ainsi calculées au dispositif de compensation de mouvement 107 afin qu'il puisse mettre en œuvre une rétroaction dans le système optronique pour compenser le mouvement pixelique calculé. Dans ce mode de réalisation, la transmission des valeurs représentatives des mouvements pixeliques suit la fréquence d'acquisition de signal de la photodiode ME. La rétroaction peut donc être mise en œuvre à la fréquence d'acquisition de signal de la photodiode. On obtient donc une rétroaction haute fréquence.In a step 403, the processing device 110 transmits the values representative of the pixel movements thus calculated to the movement compensation device 107 so that it can implement feedback in the optronic system to compensate for the calculated pixel movement. In this embodiment, the transmission of the values representative of the pixel movements follows the signal acquisition frequency of the photodiode ME. The feedback can therefore be implemented at the signal acquisition frequency of the photodiode. High frequency feedback is therefore obtained.

Le dispositif de traitement 110 se met ensuite en attente de réception de nouvelles valeurs des signaux ΔX et ΔY de la part du capteur de mouvement haute fréquence 109. Lorsque de nouvelles valeurs des signaux ΔX et ΔY sont reçues, le dispositif de traitement met de nouveau en œuvre l'étape 401.The processing device 110 then waits for reception of new values of the signals Δ X and Δ Y from the high-frequency motion sensor 109. When new values of the signals Δ X and Δ Y are received, the device for processing again implements step 401.

Le procédé de détermination des valeurs représentatives des mouvements pixeliques décrit en relation avec la Fig. 4 nécessite la connaissance de la matrice de conversion M (resp. M'). Dans les dispositifs optroniques de suivi d'objet ou de mise au point, la matrice de conversion M (resp. M') est en général une matrice constante connue. L'invention adresse le cas des dispositifs optroniques non calibrés tels que les appareils photographiques ou les BGS. Dans ce cas, la matrice de conversion M (resp. M') évolue dans le temps et dépend de la scène sur laquelle est focalisée la photodiode ME. Il est alors nécessaire de déterminer la matrice de conversion M (resp. M') et de remettre à jour cette matrice pour prendre en compte les changements dans la scène sur laquelle est focalisée la photodiode ME.The method for determining values representative of pixel movements described in relation to the Fig. 4 requires knowledge of the conversion matrix M (resp. M '). In optronic devices for object tracking or focusing, the conversion matrix M (resp. M ′ ) is generally a known constant matrix. The invention addresses the case of uncalibrated optronic devices such as cameras or BGSs. In this case, the conversion matrix M (resp. M ') changes over time and depends on the scene on which the photodiode ME is focused. It is then necessary to determine the conversion matrix M (resp. M ′) and to update this matrix again to take into account the changes in the scene on which the photodiode ME is focused.

La Fig. 5 illustre un exemple de procédé de détermination de la matrice de conversion M (resp. M') mis en œuvre périodiquement par le dispositif de traitement 110. Dans un mode de réalisation, le procédé de détermination de la matrice de conversion M (resp. M') est mis en œuvre par le dispositif de traitement 110 lors de chaque acquisition d'une image par le capteur d'images 104. Une image acquise par le capteur d'images 104 est appelée « image originale » par la suite.The Fig. 5 illustrates an example of a method of determining the conversion matrix M (resp. M ') periodically implemented by the processing device 110. In one embodiment, the method of determining the conversion matrix M (resp. M ') is implemented by the processing device 110 during each acquisition of an image by the image sensor 104. An image acquired by the image sensor 104 is called “original image” hereinafter.

Dans une étape 500, une image originale acquise par le capteur d'images 104 est obtenue par le dispositif de traitement 110. Dans un mode de réalisation, le dispositif de traitement 110 utilise cette image originale comme image de référence lors de la détermination de la matrice de conversion M (resp. M'). In a step 500, an original image acquired by the image sensor 104 is obtained by the processing device 110. In one embodiment, the processing device 110 uses this original image as a reference image when determining the conversion matrix M (resp. M ' ) .

Dans une étape 501, le dispositif de traitement 110 simule les signaux ΔXref et ΔYref que fournirait la photodiode ME si elle était soumise à un faisceau lumineux correspondant à l'image de référence selon un procédé de simulation que nous expliquons par la suite.In a step 501, the processing device 110 simulates the signals ΔX ref and Δ Y ref that the photodiode ME would provide if it were subjected to a light beam corresponding to the reference image according to a simulation method which we will explain below. .

Dans une étape 502, une variable n est initialisée à zéro.In a step 502, a variable n is initialized to zero.

Lors des étapes 503 à 507, le dispositif de traitement 110 applique des mouvements de valeurs prédéterminées à l'image de référence pour obtenir un ensemble d'images déplacées et, pour chaque image déplacée, simule les signaux ΔX et ΔY que fournirait la photodiode ME si elle était soumise à un faisceau lumineux correspondant à l'image déplacée. Ces étapes sont détaillées par la suite.During steps 503 to 507, the processing device 110 applies movements of predetermined values to the reference image to obtain a set of displaced images and, for each displaced image, simulates the signals Δ X and Δ Y that the photodiode ME if it were subjected to a light beam corresponding to the displaced image. These steps are detailed below.

Lors de l'étape 503, un mouvement pixelique d'une valeur prédéterminée comprenant une valeur de mouvement horizontal Δxs (n) et une valeur de mouvement vertical Δys (n) (resp. une valeur de direction de mouvement θs (n) et une valeur d'amplitude de déplacement ρs (n) dans le cas d'un mouvement exprimé en coordonnées polaires) est obtenu par le dispositif de traitement 110. Cette valeur de mouvement prédéterminée est obtenue par exemple d'une liste de valeurs de mouvements prédéterminées stockée dans une mémoire du dispositif de traitement 110.During step 503, a pixel movement of a predetermined value comprising a horizontal movement value Δx s ( n ) and a vertical movement value Δy s ( n ) (resp. A movement direction value θ s ( n) ) and a displacement amplitude value ρ s ( n ) in the case of a movement expressed in polar coordinates) is obtained by the processing device 110. This predetermined movement value is obtained for example from a list of values of predetermined movements stored in a memory of the processing device 110.

Dans une étape 504, une image déplacée I(n) est créée en déplaçant les pixels de l'image de référence de la valeur du mouvement pixelique (Δxs (n),Δys (n)) (resp. (θ s(n),ρs (n))).In a step 504, a displaced image I (n) is created by displacing the pixels of the reference image by the value of the pixel movement ( Δx s ( n ) , Δy s ( n )) (resp. ( Θ s ( n ), ρ s ( n ))).

Dans une étape 505, le dispositif de traitement met en œuvre un procédé de simulation des valeurs des signaux ΔXs(n) et ΔYs (n) que fournirait la photodiode ME si elle était soumise à un faisceau lumineux correspondant à l'image déplacée I(n). Ce procédé de simulation est expliqué par la suite. Lors de cette étape, le dispositif de traitement 110 détermine les valeurs des signaux SA, SB, SC et SD. In a step 505, the processing device implements a method of simulating the values of the signals ΔX s (n) and ΔY s ( n ) that the photodiode ME would provide if it were subjected to a light beam corresponding to the displaced image I (n). This simulation process is explained below. During this step, the processing device 110 determines the values of the signals S A , S B , S C and S D.

Les valeurs des signaux ΔXs (n) et ΔYs (n) sont ensuite calculées de la manière suivante : Δ X s n = S A + S B S C + S D S A + S B + S C + S D Δ X ref ;

Figure imgb0007
Δ Y s n = S A + S B S C S D S A + S B + S C + S D Δ Y ref ;
Figure imgb0008
The values of the signals ΔX s ( n ) and ΔY s ( n ) are then calculated as follows: Δ X s not = - S AT + S B - S VS + S D S AT + S B + S VS + S D - Δ X ref ;
Figure imgb0007
Δ Y s not = S AT + S B - S VS - S D S AT + S B + S VS + S D - Δ Y ref ;
Figure imgb0008

Lors d'une étape 506, la variable n est incrémentée d'une unité. Lors d'une étape 507, la variable n est comparée à une constante N que nous expliquons par la suite. Lorsque la variable n est inférieure à N, le dispositif de traitement 110 crée une nouvelle image déplacée I(n) en retournant à l'étape 503. Une valeur de mouvement pixelique prédéterminée différente de toute autre valeur de mouvement pixelique prédéterminée déjà utilisée pour des images déplacées I(n) créées précédemment est alors obtenue par le dispositif de traitement 110.During a step 506, the variable n is incremented by one unit. During a step 507, the variable n is compared with a constant N which we explain later. When the variable n is less than N, the processing device 110 creates a new displaced image I (n) by returning to step 503. A predetermined pixel movement value different from any other predetermined pixel movement value already used for measurements. displaced images I (n) created previously is then obtained by the processing device 110.

Si la variable n est égale à la constante N, l'étape 507 est suivie d'une étape 508 au cours de laquelle la matrice de conversion M est déterminée.If the variable n is equal to the constant N, step 507 is followed by a step 508 during which the conversion matrix M is determined.

La constante N fixe le nombre d'images I(n) nécessaire au calcul de la matrice de conversion M (resp. M'). La matrice de conversion M (resp. M') étant une matrice 2x2, elle comporte quatre coefficients. Les coefficients de la matrice de conversion M (resp. M') forment un ensemble de quatre inconnues à déterminer. Pour chaque image déplacée I(n), la relation suivante s'applique: Δ X s n Δ Y s n = M . Δ x s n Δ y s n = a 11 a 21 a 12 a 22 . Δ x s n Δ y s n

Figure imgb0009
ou Δ X s n Δ Y s n = M . ρ s n θ s n = a 11 a 21 a 12 a 22 . ρ s n θ s n
Figure imgb0010
en coordonnées polaires.The constant N fixes the number of images I (n) necessary for the computation of the conversion matrix M (resp. M '). The conversion matrix M (resp. M ') being a 2x2 matrix, it has four coefficients. The coefficients of the conversion matrix M (resp. M ' ) form a set of four unknowns to be determined. For each displaced image I (n), the following relation applies: Δ X s not Δ Y s not = M . Δ x s not Δ y s not = at 11 at 21 at 12 at 22 . Δ x s not Δ y s not
Figure imgb0009
or Δ X s not Δ Y s not = M . ρ s not θ s not = at 11 at 21 at 12 at 22 . ρ s not θ s not
Figure imgb0010
in polar coordinates.

Cette relation fournit donc deux équations pour chaque image I(n). Connaissant pour chaque image I(n) les valeurs des signaux ΔXs (n) et ΔYs (n) et les valeurs du mouvement pixelique correspondant (Δxs (n), Δys (n)) (resp. (θs (n)s (n))), il est nécessaire et suffisant d'avoir deux images I(n) pour pouvoir calculer les quatre coefficients de la matrice de conversion M (resp. M'). En théorie, il suffit donc de fixer la constante N à la valeur deux pour déterminer la matrice de conversion M (resp. M'). Toutefois, pour éviter d'obtenir des valeurs de coefficient de la matrice de conversion M (resp. M') bruitées, il est préférable de fixer la constante N à une valeur supérieure à deux.This relation therefore provides two equations for each image I (n). Knowing for each image I (n) the values of the signals ΔX s ( n ) and ΔY s ( n ) and the values of the corresponding pixel movement ( Δx s ( n ), Δy s ( n )) (resp. ( Θ s ( n ) , ρ s ( n ))) , it is necessary and sufficient to have two images I (n) to be able to calculate the four coefficients of the conversion matrix M (resp. M ' ) . In theory, it is therefore sufficient to fix the constant N to the value two to determine the conversion matrix M (resp. M '). However, to avoid obtaining noisy values of the coefficient of the conversion matrix M (resp. M ′) , it is preferable to fix the constant N at a value greater than two.

On obtient alors un système de 2N (N>2) équations à quatre inconnues pouvant être résolu de manière classique par une régression linéaire au cours de l'étape 508.We then obtain a system of 2N ( N > 2) equations with four unknowns which can be solved in a conventional manner by a linear regression during step 508.

Dès sa détermination, la matrice de conversion M (resp. M') est utilisée par le dispositif de traitement 110 lors de l'étape de détermination de mouvements pixeliques 402.As soon as it is determined, the conversion matrix M (resp. M ′) is used by the processing device 110 during the step of determining pixel movements 402.

Comme nous l'avons vu plus haut, le procédé de détermination de la matrice M (resp. M') comprend lors des étapes 501 et 505 un procédé de simulation des valeurs des signaux ΔXref et ΔYref et des signaux ΔXs (n) et ΔYs (n) que fournirait la photodiode ME si elle était soumise à un faisceau lumineux correspondant respectivement à l'image de référence ou à l'image déplacée I(n). Soit une image pouvant être une image de référence ou une image déplacée I(n). Au cours de la mise en œuvre du procédé de simulation, le dispositif de traitement 110 met en correspondance chaque cadran de la photodiode ME avec un ensemble de pixels de l'image Î. Pour chaque cadran, une somme des valeurs des pixels de l'image Î correspondants au cadran est calculée. La valeur d'un signal Si (i ∈ {A,B,C,D}) est alors égale à la somme des valeurs des pixels de l'image Î calculée sur le cadran correspondant. La Fig. 6 représente un exemple de mise en correspondance de pixels d'une image Î comportant 100 pixels avec une photodiode quatre quadrants. Dans cet exemple, la valeur du signal SA est calculée comme la somme des valeurs des pixels p1 à p15 correspondant au cadran A.As we have seen above, the method for determining the matrix M (resp. M ' ) comprises during steps 501 and 505 a method for simulating the values of the signals ΔX ref and ΔY ref and of the signals ΔX s ( n ) and ΔY s ( n ) that the photodiode ME would provide if it were subjected to a light beam corresponding respectively to the reference image or to the displaced image I (n). Let be an image Î which can be a reference image or a displaced image I (n). During the implementation of the simulation method, the processing device 110 implements correspond each dial of the photodiode ME with a set of pixels of the image Î . For each dial, a sum of the values of the pixels of the image Î corresponding to the dial is calculated. The value of a signal S i ( i ∈ { A , B , C , D }) is then equal to the sum of the values of the pixels of the image Î calculated on the corresponding dial. The Fig. 6 represents an example of the matching of pixels of an image Î comprising 100 pixels with a four quadrant photodiode. In this example, the value of the signal S A is calculated as the sum of the values of the pixels p1 to p15 corresponding to the dial A.

Dans le mode de réalisation du système optronique 11 décrit en relation avec la Fig. 1B, un seul dispositif de compensation de mouvement est utilisé pour traiter les mouvements de basses et de moyennes fréquences perçus par le capteur de mouvement 106 et les mouvements de hautes fréquences perçus par le capteur de mouvement haute fréquence 109. Dans un autre mode de réalisation, au moins deux dispositifs de compensation de mouvement sont utilisés. Un premier dispositif traite les mouvements de basses et moyennes fréquences perçus par le capteur de mouvement 106 et un second dispositif traite les mouvements de hautes fréquences perçus par le capteur de mouvement haute fréquence 109.In the embodiment of the optronic system 11 described in relation to the Fig. 1B , a single motion compensation device is used to process the low and mid frequency movements perceived by the motion sensor 106 and the high frequency movements perceived by the high frequency motion sensor 109. In another embodiment, at least two motion compensation devices are used. A first device processes the low and medium frequency movements perceived by the motion sensor 106 and a second device processes the high frequency movements perceived by the high frequency motion sensor 109.

Dans un mode de réalisation, la matrice de conversion M (resp. M') est mise à jour périodiquement par le procédé de détermination de ladite matrice avec une fréquence plus faible que la fréquence d'acquisition d'images du capteur d'images 104. La fréquence de mise en œuvre du procédé de détermination de la matrice de conversion M (resp. M') peut être aussi adaptative, en fonction par exemple de statistiques sur l'évolution des valeurs des signaux ΔX et ΔY. La fréquence peut par exemple être augmentée lorsque les statistiques montrent que le système optronique est dans une période de forts mouvements et diminuée lorsque les statistiques montrent que le système optronique est dans une période de faibles mouvements.In one embodiment, the conversion matrix M (resp. M ' ) is periodically updated by the method for determining said matrix with a frequency lower than the image acquisition frequency of the image sensor 104 The frequency of implementation of the method for determining the conversion matrix M (resp. M ′) can also be adaptive, as a function for example of statistics on the evolution of the values of the signals Δ X and ΔY. The frequency can for example be increased when the statistics show that the optronic system is in a period of strong movements and decreased when the statistics show that the optronic system is in a period of weak movements.

Dans un mode de réalisation, lors de la création des images déplacées, on utilise une image de référence résultant d'une interpolation sub-pixelique de l'image originale obtenue par le capteur d'images 104 plutôt que directement l'image originale. L'interpolation sub-pixelique utilisée peut être une interpolation au demi, au quart ou au huitième de pixel. De cette manière, des mouvements de hautes fréquences de faible amplitude pourront aussi être traités par le dispositif de compensation de mouvement 107. L'interpolation sub-pixelique peut être adaptative en fonction par exemple de statistiques sur l'évolution des valeurs des signaux ΔX et ΔY. L'interpolation peut être supprimée lorsque les statistiques montrent que le système optronique est dans une période de forts mouvements. Une interpolation au demi ou au quart de pixel peut être utilisée lorsque les statistiques montrent que le système optronique est dans une période de mouvements moyens. Une interpolation au huitième de pixel peut être utilisée lorsque les statistiques montrent que le système optronique est dans une période de mouvements faibles.In one embodiment, when creating the displaced images, a reference image resulting from a sub-pixel interpolation of the original image obtained by the image sensor 104 is used rather than the original image directly. The sub-pixel interpolation used can be half, quarter or eighth pixel interpolation. In this way, movements of high frequencies of low amplitude can also be processed by the movement compensation device 107. The sub-pixel interpolation can be adaptive as a function for example of statistics on the evolution of the values of the signals ΔX and Δ Y. Interpolation can be suppressed when statistics show that the optronic system is in a period of strong movements. Half or quarter pixel interpolation can be used when statistics show that the optronic system is in a period of medium motion. An eighth pixel interpolation can be used when statistics show the optronic system is in a period of weak motion.

Dans un mode de réalisation, la fréquence de transmission des valeurs représentatives des mouvements pixeliques au dispositif de compensation de mouvement 107 est inférieure à la fréquence d'acquisition de signal du capteur de mouvement haute fréquence 109 (i.e. la fréquence d'acquisition de signal de la photodiode ME) tout en restant supérieure à la fréquence d'acquisition de signal du capteur d'images 104. La fréquence de transmission des valeurs représentatives des mouvements pixeliques au dispositif de compensation de mouvement 107 peut être fixée de manière adaptative en fonction de statistiques sur les signaux ΔX et ΔY. Par exemple, lorsque les statistiques montrent que les signaux ΔX et ΔY varient peu au cours du temps, la fréquence de transmission des valeurs représentatives des mouvements pixeliques au dispositif de compensation de mouvement 107 peut être réduite. Par contre, lorsque les statistiques montrent que les signaux ΔX et ΔY varient rapidement au cours du temps, la fréquence de transmission des valeurs représentatives des mouvements pixeliques au dispositif de compensation de mouvement 107 peut être augmentée.In one embodiment, the transmission frequency of the values representative of the pixel movements to the movement compensation device 107 is lower than the signal acquisition frequency of the high-frequency motion sensor 109 (ie the signal acquisition frequency of the ME photodiode) while remaining higher than the signal acquisition frequency of the image sensor 104. The transmission frequency of the values representative of the pixel movements to the motion compensation device 107 can be set adaptively based on statistics on the signals Δ X and Δ Y. For example, when the statistics show that the signals Δ X and Δ Y vary little over time, the frequency of transmission of the values representative of the pixel movements to the motion compensation device 107 can be reduced. On the other hand, when the statistics show that the signals Δ X and Δ Y vary rapidly over time, the frequency of transmission of the values representative of the pixel movements to the motion compensation device 107 can be increased.

Jusque là, nous avons supposé que les images générées par le capteur d'images n'avaient qu'une composante. Ces images peuvent par exemple être des images en niveau de gris.Until then, we have assumed that the images generated by the image sensor have only one component. These images can for example be grayscale images.

Dans un mode de réalisation, les images générées par le capteur d'images 104 sont des images multi-composantes telles que des images RGB. Dans ce cas, chaque pixel d'une image générée par le capteur d'images comprend trois composantes.In one embodiment, the images generated by the image sensor 104 are multi-component images such as RGB images. In this case, each pixel of an image generated by the image sensor comprises three components.

Lors des étapes 501 et 505, le dispositif de traitement 110 simule le signal que générerait la photodiode ME 109 si elle était soumise à un signal lumineux correspondant à une image donnée. Lors de ce calcul, la somme des valeurs des pixels compris dans chaque cadran de la photodiode est calculée. Dans le cas de pixels comprenant plusieurs composantes, la valeur d'un pixel est donnée par une combinaison linéaire des composantes. Par exemple, pour un pixel comprenant une composante rouge (R), une composante verte (G) et une composante B bleue (B), la valeur p du pixel utilisée dans la simulation est : p = a . R + b . G + c . B

Figure imgb0011
During steps 501 and 505, the processing device 110 simulates the signal that the ME photodiode 109 would generate if it were subjected to a light signal corresponding to a given image. During this calculation, the sum of the values of the pixels included in each dial of the photodiode is calculated. In the case of pixels comprising several components, the value of a pixel is given by a linear combination of the components. For example, for a pixel comprising a red component (R), a green component (G) and a blue B component (B), the pixel p- value used in the simulation is: p = at . R + b . G + vs . B
Figure imgb0011

Les coefficients a, b et c dépendent à la fois de caractéristiques de réponse spectrale du capteur d'images 104 et de la photodiode ME 109. Les coefficients a, b et c sont supposés connus par construction.The coefficients a , b and c depend both on spectral response characteristics of the image sensor 104 and of the ME photodiode 109. The coefficients a, b and c are assumed to be known by construction.

Dans un mode de réalisation, le capteur haute fréquence 109 et le capteur d'images 104 possèdent des réponses spectrales différentes. Il est important que les réponses spectrales des deux capteurs soient le plus proche possible et idéalement que ces réponses spectrales soient identiques. Si, par exemple, il y a une zone rouge dans une scène et que le capteur d'images 104 n'est pas sensible à cette couleur, il est difficile de simuler correctement les signaux produits par la photodiode ME 109 puisque l'image obtenue par le capteur d'images 104 ne contient pas cette information.In one embodiment, the high frequency sensor 109 and the image sensor 104 have different spectral responses. It is important that the spectral responses of the two sensors are as close as possible and ideally that these spectral responses are identical. If, for example, there is a red zone in a scene and the image sensor 104 is not sensitive to this color, it is difficult to correctly simulate the signals produced by the ME 109 photodiode since the image obtained by the image sensor 104 does not contain this information.

Afin de corriger cette situation, un filtre correcteur est inséré devant le capteur d'images 104. Le filtre correcteur a pour fonction de corriger des différences dans les réponses spectrales des deux capteurs. La réponse spectrale d'un capteur est représentée par une courbe d'efficacité quantique. Le filtre correcteur est ajusté de manière à ce que la courbe d'efficacité quantique du capteur d'images 104 après filtrage du faisceau lumineux 100 par le filtre correcteur soit le plus proche possible de la courbe d'efficacité quantique du capteur haute fréquence 109. Le filtre correcteur peut être mis en œuvre par un filtre coloré utilisé pour obtenir un ajustement grossier sur lequel est ajouté un empilement de couches minces pour obtenir un ajustement fin du filtre.In order to correct this situation, a correction filter is inserted in front of the image sensor 104. The function of the correction filter is to correct for differences in the spectral responses of the two sensors. The spectral response of a sensor is represented by a quantum efficiency curve. The corrective filter is adjusted so that the quantum efficiency curve of the image sensor 104 after filtering of the light beam 100 by the correcting filter is as close as possible to the quantum efficiency curve of the high frequency sensor 109. The correcting filter can be implemented by a color filter used to obtain a coarse fit on which is added a stack of thin layers to obtain a fine fit of the filter.

Dans un mode de réalisation, le filtre correcteur est placé devant la photodiode ME 109.In one embodiment, the correction filter is placed in front of the ME 109 photodiode.

Dans un mode de réalisation, un filtre correcteur est placé devant la photodiode ME 109 et devant le capteur d'images 104.In one embodiment, a correction filter is placed in front of the ME photodiode 109 and in front of the image sensor 104.

Dans un mode de réalisation, la photodiode ME est remplacée par une photodiode détectrice de position. Une photodiode détectrice de position fournit la position d'un barycentre d'une image appelé « barycentre photométrique ». Un mouvement de l'image provoque un mouvement de son barycentre ce qui provoque des variations d'un signal produit par la photodiode détectrice de position.In one embodiment, the ME photodiode is replaced by a position detecting photodiode. A position-detecting photodiode provides the position of a barycenter of an image called a "photometric barycenter". A movement of the image causes a movement of its barycenter which causes variations in a signal produced by the position detector photodiode.

Le procédé de traitement de mouvements de hautes fréquences décrit en relation avec la Fig. 4 et le procédé de détermination de la matrice de conversion M restent identiques. Toutefois les valeurs des signaux ΔX et ΔY calculés en simulation lors des étapes 501 et 505 sont des coordonnées du barycentre de l'image. Si une image contient Np pixels, chaque pixel ayant une valeur pi et des coordonnées (xi, yi ), alors les coordonnées du barycentre sont : Δ X = Σ p i x i / Σp i

Figure imgb0012
Δ Y = Σ p i y i / Σp i
Figure imgb0013
ou i est une variable variant de « 1 » à Np The method of processing high frequency movements described in relation to the Fig. 4 and the method for determining the conversion matrix M remain the same. However, the values of the signals ΔX and ΔY calculated in simulation during steps 501 and 505 are coordinates of the barycenter of the image. If an image contains N p pixels, each pixel having a value pi and coordinates ( x i , y i ) , then the coordinates of the barycenter are: Δ X = Σ p i x i / Σp i
Figure imgb0012
Δ Y = Σ p i y i / Σp i
Figure imgb0013
where i is a variable varying from "1" to N p

La Fig. 2 illustre schématiquement un exemple d'architecture matérielle du dispositif de traitement 110. Le dispositif de traitement 110 comporte, reliés par un bus de communication 1105 : un processeur ou CPU (« Central Processing Unit » en anglais) 1100; une mémoire vive RAM (« Random Access Memory » en anglais) 1101; une mémoire morte ROM (« Read Only Memory » en anglais) 1102; une unité de stockage 1103 ou un lecteur de support de stockage, tel qu'un lecteur de cartes SD (« Secure Digital » en anglais) ou de clés USB (« Universal Serial Bus » en anglais) ou un disque dur HDD (« Hard Disk Drive » en anglais); au moins une interface 1104 permettant d'échanger des données avec d'autres dispositifs. L'interface 1104 permet par exemple au dispositif de traitement 110 de recevoir des valeurs de signaux ΔX et ΔY de la part du capteur haute fréquence 109 et des images originales de la part du capteur d'images 104.The Fig. 2 schematically illustrates an example of the hardware architecture of the processing device 110. The processing device 110 comprises, connected by a communication bus 1105: a processor or CPU (“Central Processing Unit” in English) 1100; a random access memory RAM (“Random Access Memory” in English) 1101; a ROM (“Read Only Memory”) 1102; a storage unit 1103 or a storage media reader, such as an SD ("Secure Digital") card reader or USB ("Universal Serial Bus") key reader or an HDD ("Hard Disk Drive ”in English); at least one interface 1104 making it possible to exchange data with other devices. The interface 1104 allows for example the processing device 110 to receive signal values Δ X and Δ Y from the high frequency sensor 109 and original images from the image sensor 104.

Le processeur 1100 est capable d'exécuter des instructions chargées dans la RAM 1101 à partir de la ROM 1102, d'une mémoire externe (non représentée), d'un support de stockage, ou d'un réseau de communication. Lorsque le dispositif de traitement 110 est mis sous tension, le processeur 1100 est capable de lire de la RAM 1101 des instructions et de les exécuter. Ces instructions forment un programme d'ordinateur causant la mise en œuvre, par le processeur 1100, de tout ou partie des algorithmes et étapes décrits en relation avec le dispositif de traitement 110 et les Figs. 4 et 5.Processor 1100 is capable of executing instructions loaded into RAM 1101 from ROM 1102, external memory (not shown), storage media, or a communications network. When processing device 110 is powered on, processor 1100 is able to read instructions from RAM 1101 and execute them. These instructions form a computer program causing the implementation, by the processor 1100, of all or part of the algorithms and steps described in relation to the processing device 110 and the Figs. 4 and 5 .

Tout ou partie des algorithmes et étapes décrits précédemment peut ainsi être implémenté sous forme logicielle par exécution d'un ensemble d'instructions par une machine programmable, tel qu'un DSP (« Digital Signal Processor » en anglais) ou un microcontrôleur, ou être implémenté sous forme matérielle par une machine ou un composant dédié, tel qu'un FPGA (« Field-Programmable Gate Array » en anglais) ou un ASIC (« Application-Specific Integrated Circuit » en anglais).All or part of the algorithms and steps described above can thus be implemented in software form by executing a set of instructions by a programmable machine, such as a DSP (“Digital Signal Processor” in English) or a microcontroller, or be implemented in hardware form by a machine or dedicated component, such as an FPGA (“Field-Programmable Gate Array”) or an ASIC (“Application-Specific Integrated Circuit”).

Claims (11)

  1. Method for processing high-frequency movements in an optronic system comprising an image sensor (104) operating with a first signal-acquisition frequency, called the image frequency, each image obtained by the image sensor being representative of a scene, characterized in that the method comprises the following steps:
    obtaining (401) values of signals representative of a movement of said scene from a high-frequency movement sensor (109), the high-frequency movement sensor generating values of signals representative of movements in said scene with a second signal-acquisition frequency, called the movement frequency, higher than the image frequency;
    determining (402) values representative of a movement in an image being acquired by the image sensor from the values of the signals representative of the movement of said scene, the determination of the values representative of the movement in the image being acquired by the image sensor comprising a matrix operation between the values of the signals representative of the movement of said scene and a conversion matrix;
    transmitting (403) the values representative of the movement in the image being acquired by the image sensor that are thus determined to a movement-compensating device (107) in order that said movement-compensating device may provide a feedback in the optoelectronic system in order to compensate for the movement in the image being acquired by the image sensor, the feedback being provided in the optoelectronic system with a frequency lower than or equal to the movement frequency and consisting in modifying a position of a movable element (102) contributing to make a light beam (100) converge toward the image sensor (104), the image sensor (104) producing each image from said light beam (100);
    an inverse matrix of the conversion matrix being determined via a determining method comprising the following steps:
    - obtaining (500) a reference image from an original image acquired by the image sensor,
    - simulating (501) first values of the signals representative of a movement, these values corresponding to those obtained by the high-frequency movement sensor when the high-frequency movement sensor is subjected to a light beam corresponding to the reference image,
    - applying (504) movements of preset movement values to the reference image to obtain a set of displaced images,
    - for each displaced image of the set of displaced images, simulating (505) second values of the signals representative of a movement, these values corresponding to those obtained by the high-frequency movement sensor when the high-frequency movement sensor is subjected to a light beam corresponding to the displaced image,
    - determining (508) the inverse matrix of the conversion matrix on the basis of the first and second values of the signals representative of a movement, which values are obtained by the high-frequency movement sensor, and of the preset movement values.
  2. Method according to Claim 1, characterized in that the high-frequency movement sensor is a multi-element photodiode.
  3. Method according to Claim 1 or 2, characterized in that the conversion matrix is updated periodically at a frequency lower than or equal to the image frequency.
  4. Method according to Claim 1, 2 or 3, characterized in that, for each displaced reference image, the preset movement values comprise a horizontal-movement value and a vertical-movement value.
  5. Method according to Claim 1, 2 or 3, characterized in that, for each displaced reference image, the preset movement values comprise a movement-direction value and a movement-amplitude value.
  6. Method according to any one of the preceding claims, characterized in that the set of displaced reference images comprises at least two images.
  7. Method according to any one of the preceding claims, characterized in that the reference image results from an application of a sub-pixel interpolation to the original image obtained by the image sensor.
  8. Optronic system comprising an image sensor (104) operating with a first signal-acquisition frequency, each image obtained by the image sensor being representative of a scene, and a movement-compensating device (107), characterized in that the system comprises:
    a high-frequency movement sensor (109) that generates values of signals representative of movements in said scene with a second signal-acquisition frequency higher than the first signal-acquisition frequency; and
    a device (110) for processing high-frequency movements, said movement-processing device (110) comprising:
    means for obtaining (401) values of signals representative of a movement of said scene from said high-frequency movement sensor (109),
    means for determining (402) values representative of a movement in an image being acquired by the image sensor from the values of the signals representative of the movement of said scene, the means for determining the values representative of the movement in the image being acquired by the image sensor comprising a means for implementing a matrix operation between the values of the signals representative of the movement of said scene and a conversion matrix;
    means for transmitting (403) the values representative of the movement in the image being acquired by the image sensor that are thus determined to said movement-compensating device (107) in order that said movement-compensating device may provide a feedback in the optoelectronic system in order to compensate for the movement in the image being acquired by the image sensor, the feedback being provided in the optoelectronic system with a frequency lower than or equal to the movement frequency and consisting in modifying a position of a movable element (102) contributing to make a light beam (100) converge toward the image sensor (104), the image sensor (104) producing each image from said light beam (100) ;
    the device furthermore comprising means for determining an inverse matrix of the conversion matrix, comprising:
    - means for obtaining (500) a reference image from an original image acquired by the image sensor,
    - means for simulating (501) first values of the signals representative of a movement, these values corresponding to those obtained by the high-frequency movement sensor when the high-frequency movement sensor is subjected to a light beam corresponding to the reference image,
    - means for applying (504) movements of preset movement values to the reference image to obtain a set of displaced images,
    - means for simulating (505), for each displaced image of the set of displaced images, second values of the signals representative of a movement, these values corresponding to those obtained by the high-frequency movement sensor when the high-frequency movement sensor is subjected to a light beam corresponding to the displaced image, and,
    - means for determining (508) the inverse matrix of the conversion matrix on the basis of the first and second values of the signals representative of a movement, which values are obtained by the high-frequency movement sensor, and of the preset movement values.
  9. System according to Claim 8, wherein a corrective filter is inserted in front of the image sensor and/or in front of the high-frequency sensor in order to compensate for a difference between a spectral response of the image sensor and a spectral response of the high-frequency movement sensor.
  10. Computer-program product, characterized in that it contains instructions to implement, by means of a device (110) for processing high-frequency movements belonging to a system according to Claim 8, the method according to any one of Claims 1 to 7, when said program is executed by a processor of said device.
  11. Storing means, characterized in that they store a computer program containing instructions to implement, by means of a device (110) for processing high-frequency movements belonging to a system according to Claim 8, the method according to any one of Claims 1 to 7 when said program is executed by a processor of said device.
EP15738331.6A 2014-07-18 2015-07-15 Method for processing high-frequency movements in an optronic system, optronic system, computer program product and storage means Active EP3170303B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1456947A FR3023956B1 (en) 2014-07-18 2014-07-18 METHOD AND DEVICE FOR PROCESSING HIGH FREQUENCY MOVEMENTS IN AN OPTRONIC SYSTEM
PCT/EP2015/066135 WO2016008911A1 (en) 2014-07-18 2015-07-15 Method and device for processing high-frequency movements in an optronic system

Publications (2)

Publication Number Publication Date
EP3170303A1 EP3170303A1 (en) 2017-05-24
EP3170303B1 true EP3170303B1 (en) 2021-01-13

Family

ID=52358839

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15738331.6A Active EP3170303B1 (en) 2014-07-18 2015-07-15 Method for processing high-frequency movements in an optronic system, optronic system, computer program product and storage means

Country Status (6)

Country Link
US (1) US10003748B2 (en)
EP (1) EP3170303B1 (en)
CA (1) CA2955368C (en)
FR (1) FR3023956B1 (en)
IL (1) IL250055B (en)
WO (1) WO2016008911A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218442A (en) * 1989-12-21 1993-06-08 Minolta Camera Kabushiki Kaisha Camera with camera-shake detection apparatus
US6747691B1 (en) * 1997-09-09 2004-06-08 Minolta Co., Ltd. Apparatus capable of determining shake of the apparatus relative to an object
GB2447264A (en) * 2007-03-05 2008-09-10 Sensl Technologies Ltd Optical position sensitive detector
JP2011257503A (en) * 2010-06-07 2011-12-22 Sony Corp Image stabilizer, image stabilization method, and program
US8860824B2 (en) * 2010-08-06 2014-10-14 Honeywell International Inc. Motion blur modeling for image formation
US8913140B2 (en) * 2011-08-15 2014-12-16 Apple Inc. Rolling shutter reduction based on motion sensors
JP5412692B2 (en) * 2011-10-04 2014-02-12 株式会社モルフォ Image processing apparatus, image processing method, image processing program, and recording medium
WO2014068779A1 (en) * 2012-11-05 2014-05-08 株式会社モルフォ Image processing device, image processing method, image processing program, and storage medium
JP6151930B2 (en) * 2013-02-19 2017-06-21 キヤノン株式会社 Imaging apparatus and control method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR3023956A1 (en) 2016-01-22
CA2955368A1 (en) 2016-01-21
US10003748B2 (en) 2018-06-19
EP3170303A1 (en) 2017-05-24
IL250055A0 (en) 2017-03-30
US20170214854A1 (en) 2017-07-27
WO2016008911A1 (en) 2016-01-21
CA2955368C (en) 2018-02-27
FR3023956B1 (en) 2018-01-12
IL250055B (en) 2018-02-28

Similar Documents

Publication Publication Date Title
US20180324359A1 (en) Image processing for turbulence compensation
EP2465255B1 (en) Image-capture system and method with two operating modes
JP5709911B2 (en) Image processing method, image processing apparatus, image processing program, and imaging apparatus
EP2780763B1 (en) Method and system for capturing image sequences with compensation for variations in magnification
JP5468404B2 (en) Imaging apparatus and imaging method, and image processing method for the imaging apparatus
EP2536125B1 (en) Imaging device and method, and image processing method for imaging device
JP2009070384A (en) Video restoration device and method
US20090122150A1 (en) Imaging system with improved image quality and associated methods
JP2017208641A (en) Imaging device using compression sensing, imaging method, and imaging program
EP1168831B1 (en) Method for camera calibration
JP5390046B2 (en) Focus expansion optical system and EDoF imaging system
FR3055727B1 (en) METHOD AND DEVICE FOR CHARACTERIZING ABERRATIONS OF AN OPTICAL SYSTEM
JP2017208642A (en) Imaging device using compression sensing, imaging method, and imaging program
EP3170205B1 (en) Device for detecting movement
EP3170303B1 (en) Method for processing high-frequency movements in an optronic system, optronic system, computer program product and storage means
FR2922324A1 (en) WAVE FRONT MODIFICATION IMAGING SYSTEM AND METHOD OF INCREASING THE FIELD DEPTH OF AN IMAGING SYSTEM.
WO2017207563A1 (en) Drone designed for viewing a distant scene
KR102061087B1 (en) Method, apparatus and program stored in storage medium for focusing for video projector
JP2015109681A (en) Image processing method, image processing apparatus, image processing program, and imaging apparatus
EP3018625B1 (en) Method for calibrating a sight system
EP4174779A1 (en) Method for automatically calibrating extrinsic parameters of an array of optical cameras; associated computer program product, computer vision system and motor vehicle.
FR3148092A1 (en) Scan Engine Telemetry Failure Management
WO2015075085A1 (en) Method for estimating the movement of an object
FR3048786A1 (en) DYNAMIC ADJUSTMENT OF THE SHARPNESS OF AT LEAST ONE IMAGE PROJECTED ON AN OBJECT
FR2997258A1 (en) On-board system for use in aircraft to detect and measure objects e.g. stars, moving in space, has zone detecting luminous flow emitted by objects during zone integration time, where time is function of luminous intensity of objects

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190319

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201009

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015064725

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1355408

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210215

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1355408

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210113

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210113

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210513

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210413

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210513

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015064725

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

26N No opposition filed

Effective date: 20211014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210513

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210715

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602015064725

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H04N0005232000

Ipc: H04N0023600000

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240619

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240619

Year of fee payment: 10