EP3169505B1 - Measuring device and method for measuring test objects - Google Patents

Measuring device and method for measuring test objects Download PDF

Info

Publication number
EP3169505B1
EP3169505B1 EP15747367.9A EP15747367A EP3169505B1 EP 3169505 B1 EP3169505 B1 EP 3169505B1 EP 15747367 A EP15747367 A EP 15747367A EP 3169505 B1 EP3169505 B1 EP 3169505B1
Authority
EP
European Patent Office
Prior art keywords
collimator
mirror
test object
radiation
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15747367.9A
Other languages
German (de)
French (fr)
Other versions
EP3169505A1 (en
Inventor
Dominik STICH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoex GmbH
Original Assignee
Inoex GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoex GmbH filed Critical Inoex GmbH
Publication of EP3169505A1 publication Critical patent/EP3169505A1/en
Application granted granted Critical
Publication of EP3169505B1 publication Critical patent/EP3169505B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/11Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels comprising two or more partially or fully enclosed cavities, e.g. honeycomb-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • B29C2948/92152Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92647Thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation

Definitions

  • the invention relates to a measuring device and a method for measuring test objects.
  • the test objects to be measured have, in particular at least in sections, at least one hollow-rectangular or hollow-cylindrical material layer.
  • Known measuring devices and methods for measuring test objects for tubes with a cylindrical or rectangular cross-section are generally based on X-ray or ultrasound technology.
  • Typical x-ray based wall thickness measuring systems use two x-ray sources and two line detectors.
  • several transmitter-receiver units are generally used, which are to be arranged concentrically around a cylindrical test object, so that the ultrasound is incident radially on the tube and generates several measurement points.
  • wall thickness measuring systems based on terahertz (THz) technology are becoming increasingly important.
  • THz radiation is electromagnetic radiation in the frequency range of 0.1 to 10 THz.
  • the invention has for its object to provide a measuring device that allows the measurement of test objects with at least one at least partially hollow rectangular or hollow cylindrical material layer in a simple and flexible manner.
  • the design of the measuring device is to be simplified, saves space and a component cost can be reduced.
  • the DE 10 2011 078 539 A1 describes a method and apparatus for extending the illumination of a test object illuminated by a microwave electromagnetic signal emitted by a transmitter antenna.
  • the microwave signal reflected by the test object is received by at least one receiving antenna.
  • reflector elements are arranged aligned with respect to the test object, so that the reflected from the reflector element and the test object microwave signals are received in a receiving antenna, in addition to this microwave rays coming from a transmitter antenna without reflection on the reflector element on the test object, are received and used.
  • the US 2011/0112795 A1 describes a light-converging lens having a plurality of lenses arranged side by side, in particular also as a square, and surrounding a light-receiving element.
  • the WO 95/07471 A1 describes an optical system for detecting the presence and position of at least one stationary or moving object.
  • embodiments are shown with orthogonal arrangement of two mirrors and two Kollimationslinsen.
  • the US 2010/0079754 A1 shows an apparatus for Raman spectroscopy, wherein light concentrators are provided for condensing light and furthermore mirrors.
  • the Ep 2 752 287 A1 describes a device for measuring extrusion products, in particular pipes by means of THz radiation in transmission.
  • the DE 198 52 335 A1 describes a device for error detection and / or wall thickness measurement in continuous bands or pipes made of plastic by means of ultrasonic signals. This object is achieved by a measuring device having the features of claim 1.
  • the measuring device or reflection measuring device serves to carry out reflection measurements on the test object to be measured.
  • the measuring device comprises a transmitter-receiver unit with a transmitter for emitting radiation in an xy plane from a beam spot and an associated receiver for detecting a radiation reflected at a test object.
  • a first collimator-focusing arrangement of the measuring device has collimator-focusing elements for converting the emitted radiation into collimated radiation and for focusing the reflected radiation into the beam spot, the collimator-focusing elements being arranged such that two adjacent collimator-focusing Enclose an angle of substantially 90 ° in the xy plane so that the collimator focus elements form a collimator focus square.
  • a common focus of the collimator-focusing elements lies in the xy-plane in the beam spot.
  • the measuring device further comprises an xy-plane test object receiving area for placing the test object and at least one mirror array having mirror elements for deflecting the collimated radiation and the reflected radiation between the collimator-focusing array and the test object receiving area.
  • the mirror elements are arranged such that two adjacent mirror elements in the xy plane enclose an angle of substantially 90 ° such that the mirror elements form a mirror rectangle, mirror surfaces of the mirror rectangle parallel to collimator Collimator Focusing Square Focusing Diagonals are. Furthermore, the measuring device has a control unit for evaluating the detected radiation.
  • collimator focusing elements are provided which form the collimator focusing square.
  • mirror elements are arranged in the x-y plane which form the mirror rectangle.
  • the mirror rectangle is designed as a mirror square.
  • the mirror surfaces of the mirror elements are preferably identical.
  • the mirror surfaces are formed from a material that acts in particular for THz radiation as a nearly ideal mirror.
  • a material is electrically conductive material, such as aluminum or steel. It is advantageous if a surface flatness of the mirror surfaces is higher than one tenth of the shortest wavelength of the THz radiation used.
  • the transmitter of the transceiver unit first emits radiation in the direction of the collimator-focusing elements of the collimator-focusing arrangement.
  • the emitted radiation is converted into collimated radiation by means of the collimator-focusing elements.
  • the collimated radiation is deflected by means of the mirror elements into the test object receiving area and impinges on the test object. From the test object, the radiation is reflected.
  • the test object is preferably arranged such that a central longitudinal axis of the test object runs perpendicular to the xy plane or parallel to a z direction.
  • the emitted collimated radiation is incident perpendicular to a surface of the specimen, whereby the reflected radiation preferably travels along the same ray path in the opposite direction back to the beam spot where it is detected.
  • the radiation reflected on the test object preferably has the same beam path, but in the opposite direction, as the incident radiation.
  • the reflected radiation is deflected by the mirror elements to the collimator-focusing arrangement, where it is focused into the beam spot.
  • the receiver detects the reflected radiation and passes the Measured values continue to the control unit, which evaluates the detected radiation or the measured values.
  • the measuring device has a comparatively simple structure, since the transmitter-receiver unit can be arranged at a distance from the test object receiving area in the x-y plane due to the mirror arrangement. It is also possible to position the transceiver unit in the z-direction at a distance from the x-y plane.
  • Both hollow-rectangular and hollow cylindrical test objects can be examined with the measuring device according to the invention. By pivoting or rotating the transmitter-receiver unit about a rotation axis passing through the steel point, a further peripheral region of the test object can be measured with only one transmitter-receiver unit. For example, it is possible to measure a thickness of at least one hollow-rectangular or hollow-cylindrical material layer over the entire circumference.
  • the test object is formed in particular from plastic and has a hollow-rectangular or hollow-cylindrical material layer or a plurality of hollow-rectangular or hollow-cylindrical material layers.
  • the test object can be extruded parallel to the z-direction and measured during the extrusion.
  • the measuring device allows in particular the measurement of test objects made of plastic.
  • the transmitter-receiver unit is preferably designed such that electromagnetic radiation with a frequency in the range from 0.01 THz to 50 THz, in particular from 0.05 THz to 20 THz, and in particular from 0.1 THz to 10 THz can be emitted or emitted . is detectable.
  • the measurement of the test object by means of the radiation or THz radiation is based on the measurement of a transit time difference of the radiation which is reflected at the boundary layers. boundary layers are the surfaces of the test object, such as a tube outer wall and a tube inner wall, and contiguous material layers within the test object.
  • the transmitter-receiver unit is in particular designed such that THz pulses can be emitted or detected.
  • the embodiment according to claim 3 leads to a simple construction of the measuring device.
  • the measuring device is again particularly simple.
  • the lenses may be converging lenses, by means of which the radiation emitted by the transmitter can be converted into collimated radiation.
  • a common focus of the lenses lies in the beam spot of the transmitter.
  • a lens diameter of the lenses preferably corresponds approximately to an edge length of the collimator-focusing square, depending on the lens shape.
  • the reflected beam can be focused on the beam spot in a simple manner by the lenses of the collimator-focusing arrangement.
  • the embodiment according to claim 5 leads to a simple construction of the measuring device.
  • the mirror arrangement is designed such that a first mirror element deflects the collimated radiation to a second mirror element, wherein the second mirror element deflects the radiation onto the educamony Scheme.
  • the second mirror element deflects the radiation reflected at the test object onto the first mirror element, wherein the first mirror element deflects the radiation onto the collimator-focusing arrangement.
  • a measuring device ensures in a structurally particularly simple way that the collimated radiation is deflected twice at the mirror arrangement.
  • the measurement of the test object over its entire circumference is made possible.
  • the fact that the transmitter-receiver unit is designed such that the emitted radiation is rotatable in an x-y plane around the beam point ensures that a defined test area can be scanned on the test object by each beam emitted at an emission angle.
  • a measuring device represents a structurally particularly simple design. A component expenditure of the measuring device is kept low.
  • a permanently stable and reliable connection of optical and electrical signals is ensured. It is advantageous if the transmitter and the receiver of the transceiver unit are immovably positioned outside the x-y plane.
  • the radiation emitted by the transmitter is along the z-direction, which is perpendicular to the x-y plane.
  • the emitted radiation can be deflected in the beam spot by the rotation mirror to the collimator-focusing arrangement.
  • the rotation axis of the rotation mirror is parallel to the z-direction. Preferably, it is achieved by the rotation mirror that the emitted radiation rotates through 360 °.
  • the provision of a rotational mirror achieves a stable and extremely space-saving design of the measuring device in the x-y plane.
  • a measuring device allows an arrangement of the transmitter and the receiver along the z-direction.
  • Such a measuring device ensures a simple and space-saving way Measurement of the test object.
  • the rotation mirror requires a comparatively small space requirement, so that the transceiver unit in the xy plane is extremely compact.
  • the z-direction or z-axis is perpendicular to the xy-plane. Accordingly, the rotation mirror is inclined by 45 ° to the xy plane for deflecting the emitted radiation.
  • a measuring device makes it possible to measure tubes with a circular-cylindrical cross-section in a particularly simple way over the entire circumference.
  • the second collimator-focusing arrangement serves to focus the collimated radiation into a common test object focus and to convert the reflected radiation into reflected collimated radiation.
  • the collimator-focusing elements of the collimator-focusing arrangement are designed such that they transform the collimated radiation so that it is incident perpendicular to a surface of the test object.
  • a measuring device allows in a structurally simple manner that the collimated radiation deflected by the mirror arrangement is incident perpendicularly on a surface of the test object.
  • a measuring device optimizes the course of the emitted and reflected radiation. Furthermore, the available space is optimally utilized.
  • the invention is further based on the object to provide a method which in a simple and flexible way, the measurement of test objects allows.
  • the method is intended to enable the measurement of test objects which, at least in sections, have at least one hollow-rectangular or hollow-cylindrical material layer.
  • the method according to the invention it is possible to determine both the layer and wall thicknesses of a pipe with a rectangular cross-section and the layer and wall thicknesses of a cylindrical tube.
  • the emitted radiation is incident perpendicular to the surface of the test object. Accordingly, in tubes of cylindrical cross section, each defined test area of the cross-sectional surface is scanned with radially incident, emitted radiation. In both design variants of the test object, only one transmitter-receiver unit is necessary in each case.
  • a method according to claim 17 ensures a full measurement of the test object.
  • Either the transmitter-receiver unit as a whole rotates in the beam spot about the rotation axis or a rotation mirror.
  • the rotation scans a defined test area on the test object through each beam emitted at an emission angle.
  • only a transmitter-receiver unit is necessary to scan the entire circumference of a rectangular or hollow cylindrical test object.
  • the mirror arrangement redirects the rotating, collimated radiation between the collimator focus assembly and the test object receiving area. This allows a measurement of the test object inline in the manufacturing process.
  • the test object itself is usually not pivotable about its central longitudinal axis or rotatable.
  • a measuring device ensures reliable and accurate measurement results.
  • the radiation emitted and deflected by the mirror arrangement is focused by a second collimator-focusing arrangement and directed onto the test object.
  • the focal point coincides with the test object focus or center.
  • a measuring device 1 For measuring a test object 2, a measuring device 1 has a transmitter-receiver unit 3, a first collimator-focusing arrangement 4, a mirror arrangement 5, a test object receiving area 6 and a control unit 7.
  • the measuring device 1 according to the Fig. 1 and Fig. 2 is used in particular for the measurement of test objects 2 with a rectangular cross-section.
  • the test object 2, which in Fig. 2 is shown, has a hollow-rectangular contour.
  • FIG. 1 and Fig. 2 For clarity, is in Fig. 1 and Fig. 2 no transmitter-receiver unit shown.
  • the measuring device 1 finds the transmitter-receiver unit 3 according to Fig. 7 Application.
  • the transceiver unit 3a according to FIG Fig. 8 apply in the measuring device 1, without the basic operation of the measuring device 1 changes.
  • FIGS. 7 and 8 show in detail possible embodiments of the transmitter-receiver unit 3 and 3a.
  • Both embodiments of the transceiver unit 3 and 3a each include a transmitter 9 for emitting radiation S in an xy plane E xy starting from a beam spot SP.
  • the emitted radiation is denoted by S from the transmitter 9 to the test object 2 below.
  • the radiation reflected on the test object 2 is subsequently designated by the test object 2 to a receiver 10 by R.
  • the receiver 10 is used to detect the reflected on the test object 2 Radiation R.
  • the detected radiation R is evaluated by means of the control unit 7.
  • the transmitter 9 and the receiver 10 are arranged in a z-direction at a distance from the xy plane E xy .
  • the transmitter 9 and the receiver 10 are arranged along a first z-axis Z 1 , which runs parallel to the z-direction through the beam spot SP.
  • the transmitter-receiver unit 3 is designed such that the emitted radiation R in the xy plane E xy is rotatable about the beam spot SP.
  • the transmitter-receiver unit 3 has a rotation mirror 11 which is rotatable about an axis of rotation 12 perpendicular to the xy plane E xy through the beam spot SP.
  • the axis of rotation 12 coincides with the first z-axis Z 1 .
  • the rotation mirror 11 is tilted by a tilt angle ⁇ ⁇ of 45 ° with respect to the xy plane E xy .
  • the rotational movement of the rotary mirror 11 about the axis of rotation 12 is advantageously a continuous rotational movement along a direction of rotation.
  • the direction of rotation is in Fig. 7 illustrated by the directional arrow 13.
  • the transmitter 9 and the receiver 10 are in the embodiment shown, the transmitter-receiver unit 3 according to Fig. 7 immovable.
  • the radiation S emitted by the transmitter 9 is focused from the z-direction coming by means of a focusing means 8 on the beam spot SP.
  • the rotation mirror 11 directs the radiation S coming from the z direction into the xy plane E xy , the radiation S rotating through the rotation mirror 11 through 360 ° about the rotation axis 12.
  • This structure of the transceiver unit 3 is easy to implement, stable and takes up little space, so that constructions with small maximum diameters of the test object 2 can be implemented.
  • the transmitter-receiver unit 3 is designed such that the electromagnetic radiation S, R having a frequency in the range of 0.01 THz to 50 THz, in particular from 0.05 THz to 20 THz, and in particular from 0.1 THz to 10 THz can be emitted or detected.
  • the radiation S is preferably emitted in pulsed form, that is to say generates THz pulses.
  • the transmitter-receiver unit 3a is in contrast to the transmitter-receiver unit 3 after Fig. 7 no rotation mirror provided.
  • the transmitter-receiver unit 3a is designed such that it is rotatable as a whole about the axis of rotation 12 in the beam spot SP.
  • the transmitter 9 and the receiver 10 are thus movable.
  • the rotational movement of the transmitter-receiver unit 3a about the axis of rotation 12 is advantageously a continuous rotational movement along the direction of rotation 13.
  • a rotary coupling for connecting optical and electrical signals to the transceiver unit 3a.
  • Both embodiments of the transmitter-receiver units 3, 3a can be used in the measuring device 1 according to the invention without the functioning of the measuring device 1 according to the invention changing.
  • the first collimator-focusing arrangement 4 comprises collimator-focusing elements 14, 15, 16, 17 for converting the emitted radiation S into collimated radiation S and for focusing the reflected radiation R into the beam spot SP.
  • the collimator-focusing elements 14, 15, 16, 17 are arranged such that in each case two adjacent collimator-focusing elements 14, 15, 16, 17 in the xy plane E xy include an angle ⁇ KF of 90 °, so the collimator focusing elements 14, 15, 16, 17 in the xy plane E xy a collimator-focusing square 18 form. Due to the square shape, the first collimator-focusing arrangement 4 comprises a first collimator-focusing diagonal 28 and a second collimator-focusing diagonal 29.
  • the collimator focusing elements 14, 15, 16, 17 are formed as lenses.
  • the collimator-focusing elements 14, 15, 16, 17 are therefore referred to as lenses.
  • the lenses 14, 15, 16, 17 are each arranged in the beam path between the beam spot SP and the mirror arrangement 5.
  • the incident emitted radiation S is collimated by means of the lenses 14, 15, 16, 17 in the xy-plane E xy .
  • beam paths can be emitted in each quadrant of the collimator-focusing square and can be collimated by the lenses 14, 15, 16, 17.
  • the lenses 14, 15, 16, 17 are identical in shape and size.
  • a common focus B 1 of the lenses in the xy plane E xy lies in the beam spot SP.
  • the lenses 14, 15, 16, 17 are formed as plano-convex converging lenses whose convex curvature is directed in each case in the direction beam spot SP.
  • the planar sides of the lenses 14, 15, 16, 17 form edges of the collimator-focusing square 18.
  • the lenses 14, 15, 16, 17 each have the numerical aperture 0.71.
  • a lens diameter of the lenses 14, 15, 16, 17 in the embodiment shown is 2f, where f a focal length of the lenses 14, 15, 16, 17.
  • the collimator focus square has 18 edge lengths of 2f.
  • the mirror arrangement 5 comprises four mirror elements 19, 20, 21, 22 for deflecting the emitted collimated radiation S and the reflected radiation R between the collimator-focusing arrangement 4 and the test object receiving area 6.
  • the test object receiving area 6 Arrangement of the test object 2 lies in the xy plane E xy .
  • the mirror elements 19, 20, 21, 22 are arranged such that two adjacent mirror elements 19, 20, 21, 22 enclose an angle ⁇ SE of 90 °, so that the mirror elements 19, 20, 21, 22 in FIG the xy plane E xy form a mirror rectangle 23.
  • the mirror rectangle 23 is formed as a mirror square, wherein the mirror elements 19, 20, 21, 22 are identical in shape and size.
  • the mirror rectangle 23 has edge lengths of 4 2 f ,
  • the mirror rectangle 23 surrounds the collimator focus square 18 in the xy plane E xy .
  • Mirror surfaces 24, 25, 26, 27 of the mirror elements 19, 20, 21, 22 are arranged parallel to the collimator-focusing diagonals 28, 29 of the collimator-focusing square 18.
  • the design of the mirror arrangement 5 allows each beam path of the collimated radiation S to be reflected twice.
  • the mirror arrangement 5 is designed such that a first of the mirror elements 19, 20, 21, 22 deflects the collimated radiation S onto a second of the mirror elements 19, 20, 21, 22, the second mirror unit Elements 19, 20, 21, 22 the radiation S deflects to the educamony Colour 6.
  • the mirror arrangement 5 is further embodied in such a way that the collimated radiation S impinges on the respective first and second mirror elements 19, 20, 21, 22 at an angle of incidence .alpha..sub.IN of substantially 45.degree. Through which mirror elements 19, 20, 21, 22 a deflection of the collimated radiation S takes place depends on which quadrant of the collimator-focusing square 18 the radiation S was emitted.
  • the second mirror surface 25 and the fourth mirror surface 27 are arranged parallel to each other and symmetrically with respect to the first collimator focusing diagonal 28.
  • the first mirror surface 24 and the third mirror surface 26 are arranged parallel to each other and symmetrically with respect to the second collimator focusing diagonal 29.
  • the first collimator focusing diagonal 28 also coincides with a side bisector 33 of the mirror square 23 formed as a mirror square.
  • a lens edge 30 formed by the first lens 14 and the second lens 15 adjoins the first mirror surface 24.
  • the measuring device 1 is designed in such a way that the collimated radiation S reaches the test object receiving region 6 after the reflections on the mirror arrangement 5.
  • the test object receiving area 6 extends in the xy plane E xy in the form of a test object receiving square 31.
  • An edge length of the test object receiving square 31 corresponds to the edge length of the collimator focusing square 18 and corresponds to twice the focal length f of the lenses 14, 15, 16, 17.
  • a first inspection object shot square diagonal 32 coincides with the same side bisector 33 of the mirror rectangle 23 as the first collimator focusing diagonal 28.
  • the inspection object receiving square 31 and the collimator focusing square 18 are along the Side bisecting 33 arranged adjacent to each other and fill them out exactly. This means a sum of the lengths of the first inspection object receiving square diagonal 32 and the first collimating focusing diagonal 28 corresponds to a length of the side bisector 33 of the mirror rectangle 23.
  • the test object 2 is arranged for measurement within the educassenarea square 31.
  • profile walls 34 of the hollow rectangular test object 2 are aligned parallel to the edges of the füraiseability-square 31. This allows the collimated radiation S to be incident perpendicular to the profile walls 34 and the reflected radiation R to travel along the same optical path in the opposite direction back to the beam spot SP, where it is detectable by the receiver 10.
  • the test object receiving square 31 represents a maximum detection range. If a profile cross section of a test object 2 is completely in the test object receiving square 31, all profile walls which run parallel to edges of the test object receiving square 31 can be tested in their entirety.
  • the entirety of the radiation generated by rotation and expiring successively from the beam spot SP can be subdivided into four beam bundles with an opening angle ao of 90 ° each.
  • Each bundle of rays is assigned a quadrant of the collimator-focusing square 18.
  • the divergent radiation emanating from the beam spot SP is collimated by means of the lenses 14, 15, 16, 17 of the first collimator-focusing arrangement 4. After the lenses 14, 15, 16, 17, all rays emitted in one quadrant of the collimator-focusing square 18 are parallel to one another. This results in four collimated beam paths.
  • each beam is reflected twice by the mirror arrangement 5.
  • the collimated radiation S impinges on the respective mirror element 19, 20, 21, 22 at the angle of incidence ⁇ IN of 45 °.
  • the radiation collimated by the third lens 16 impinges on the second mirror element 20 at the angle of incidence ⁇ IN of 45 °, where it is reflected by the second mirror surface 25 to the third mirror element 21, where the collimated radiation S again impinges at the angle of incidence ⁇ IN of 45 °.
  • the third mirror surface 26 forwards the collimated radiation S to the test object receiving region 6.
  • the collimated radiation S After the reflections, the collimated radiation S impinges perpendicular to the profile walls 34 of the test object 2.
  • the THz pulses from the transmitter-receiver unit 3 are thus radiated perpendicular to the test object 2.
  • an emission direction of the radiation S emanating from the beam spot SP is varied by rotation of the rotation mirror 11.
  • a rotation of the emitted radiation S in the direction of rotation 13 is shown.
  • the individual profile walls 34 of the test object 2 are checked one after the other.
  • a direction of movement of the radiation S runs counter to the direction of rotation 13, which is in particular Fig. 2 is apparent.
  • the test object 2 is to be arranged such that its central longitudinal axis 35 extends along a second z-axis Z 2 through the xy plane E xy in the test object receiving region 6 and an extrusion direction of the test object 2 is parallel to the z-axis.
  • the radiation R reflected on the test object 2 or the reflected THz pulses travel at least partially along the same beam paths back to the transceiver unit 3.
  • the reflected radiation R is reflected twice again by means of the mirror arrangement 5 and in the direction of the receiver 10 diverted.
  • the collimator-focusing arrangement 4 focuses the reflected radiation R at the common focus B 1 of the first collimator-focusing arrangement 4.
  • the receiver 10 detects the focused radiation R.
  • the structure of the receiver 10 is basically known. THz pulses are detected, for example, by optical sampling with femtosecond laser pulses.
  • the detected radiation R is evaluated by the control unit 7.
  • the hollow-rectangular test object 2 can be scanned in its entirety and measured, without any need for a rotation of the test object 2 about its central longitudinal axis 35 or a translational movement of the test object. This is particularly advantageous if a measurement of the test object 2 takes place during an extrusion process. A measurement of the test object 2 can therefore be done inline. A full measurement of the test object 2 can be achieved with only one transmitter-receiver unit 3.
  • a real beam propagation of the radiation S, R is shown.
  • the radiation S is emitted as described above by means of the transmitter-receiver unit 3.
  • the emitted radiation S has a beam divergence.
  • the radiation S, R has a divergence angle ⁇ R in the xy plane E xy . Due to the divergence angle ⁇ R , the radiation S which impinges on the lenses 14, 15, 16, 17 is adjustable and thus also a diameter of the collimated radiation S.
  • the collimated radiation S does not strike the test object 2 punctually in the case of a real beam propagation. but in a measuring range. The size of the measuring range depends on the divergence angle ⁇ R.
  • the radiation S or the respective THz pulse impinges perpendicularly on the profile walls 34 of the test object 2, and at the same points in time. This ensures that the reflected radiation R has a high signal quality and in particular the reflected THz pulses are not washed out and are attenuated in their amplitude.
  • FIG. 3 A second embodiment of the invention described.
  • the measuring device 1a is used in particular for measuring test objects 2a with a hollow-cylindrical cross-section.
  • Components of the measuring device 1a, which with parts of the first embodiment the measuring device 1 are identical, the same reference numerals.
  • the transmitter-receiver unit 3, the first collimator-focusing arrangement 4 and the mirror arrangement 5 of the measuring device 1a are identical to the measuring device 1.
  • the measuring device 1a comprises a second collimator-focusing arrangement 37 for Focusing the radiation S collimated by means of the first collimator-focusing arrangement 4 into a common test object focal point B 2 and for converting the reflected radiation R into reflected collimated radiation R.
  • the second collimator focusing arrangement 37 is arranged in the test object receiving area 6 concentrically with the test object focal point B 2 .
  • the second collimator-focusing arrangement 37 is formed identically to the first collimator-focusing arrangement 4 and comprises four collimator-focusing elements formed as plano-convex lenses 14a, 15a, 16a, 17a.
  • the lenses 14a, 15a, 16a, 17a of the second collimator focus assembly 37 also form a collimator focus square 18a.
  • the collimator focus square 18a includes a first collimator focus diagonal 28a and a second collimator focus diagonal 29a.
  • the second collimator focusing arrangement 37 is arranged in the test object receiving area 6 in such a way that the first collimator focusing diagonal 28a of the second collimator focusing arrangement 37 coincides with the side bisector 33 of the square mirror rectangle 23. Put simply, the second collimator-focusing arrangement 37 in the xy plane E xy is congruent with that associated with FIG Fig. 1 and Fig. 2 Test object receiving square 31 described formed.
  • a maximum detectable pipe diameter of the test object 2a is 2 (f-p) where p denotes a maximum thickness of the lenses 14a, 15a, 16a, 17a. Ideally, the lens thickness p is significantly smaller than the focal length f.
  • a real beam propagation of the radiation S, R in connection with the second embodiment of the measuring device 1a is shown.
  • the collimated THz radiation S is focused through the lenses 14a, 15a, 16a, 17a and directed to the test object 2a.
  • a focal point is not on the test object 2a but in the test object focal point B 2 .
  • every point of an incident hits Wavefront of a THz pulse at the same time and perpendicular to the concentric to the test object focus B 2 arranged test object 2a.
  • the THz radiation S is always ideally reflected independently of a pipe diameter.
  • a detection geometry is optimally designed for a geometry of the test object 2a.
  • the radiation S incident on the test object focal point B 2 and the radiation S emanating from the beam spot SP have the same divergence angle ⁇ R , the divergence angle ⁇ R being independent of a radiation direction.
  • Fig. 6 the measuring device 1a is shown, wherein emitted radiation S strikes an edge of the collimator-focusing square 18, at which the fourth lens 17 and the first lens 14 coincide to form the angle ⁇ KF of 90 °.
  • the considered radiation S thus impinges on two lenses 14, 17 and is split, so that partial radiations S1 and S2 are formed, which form two measuring ranges on the test object 2a.
  • Fig. 6 can be seen in this particular case, two nearly opposite areas of the test object 2a are scanned.
  • a measurement signal is thus composed of reflections in these two areas.
  • a superposition of the measurement signals provides information about the positioning of the test object 2a in the structure. If the reflections coincide, the test object 2a is centered.
  • each of the two signal components can be uniquely attributed to the reflection from a region.
  • a measuring device 1b according to the third embodiment differs from the measuring devices 1, 1a primarily by the design of a mirror assembly 39 from.
  • the mirror arrangement 39 is rectangular in shape as a mirror rectangle 40.
  • the mirror rectangle 40 comprises four mirror elements 41, 42, 43, 44, which together form the mirror rectangle 40.
  • the mirror arrangement 39 comprises a fifth mirror element 45, which is arranged within the mirror rectangle 40.
  • the mutually opposite mirror elements 41, 43 are identical in shape and size. Accordingly, the opposing mirror elements 42, 44 are identical in shape and size. However, the mirror elements 41, 43 differ in edge length from the mirror elements 42, 44.
  • the fifth mirror element 45 extends parallel to the mirror elements 42, 44 between them.
  • the radiation S between the first collimator focusing arrangement 4 and the inspection object receiving area 6 is reflected three times. In this case, a length of the beam path 10f.
  • first collimator-focusing arrangement 4 and test object receiving area 6 it is also conceivable in further alternative embodiments to provide more than two or three reflections between first collimator-focusing arrangement 4 and test object receiving area 6. Furthermore, it is also possible in principle for the first collimator-focusing arrangement 4 and / or the second collimator-focusing arrangement 37 to be designed as collimator-focusing polygons having more than four corners. However, a majority of test objects to be measured has edges that are perpendicular to each other. Therefore, in particular, the embodiments of the measuring device 1 and the measuring device 1b form preferred solutions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

Die Erfindung betrifft eine Messvorrichtung und ein Verfahren zur Vermessung von Prüfobjekten. Die zu vermessenden Prüfobjekte weisen insbesondere zumindest abschnittsweise mindestens eine hohlrechteckförmige oder hohlzylinderförmige Materialschicht auf.The invention relates to a measuring device and a method for measuring test objects. The test objects to be measured have, in particular at least in sections, at least one hollow-rectangular or hollow-cylindrical material layer.

Bekannte Messvorrichtungen und Verfahren zur Vermessung von Prüfobjekten für Rohre mit zylinderförmigem oder rechteckförmigem Querschnitt basieren in der Regel auf Röntgen- oder Ultraschalltechnik. Typische röntgenbasierte Wanddickenmesssysteme verwenden zwei Röntgenquellen und zwei Zeilendetektoren. Bei einer Vollprüfung von Wand- und Schichtdicken mittels Ultraschalltechnik werden in der Regel mehrere Sender-Empfänger-Einheiten verwendet, welche konzentrisch um ein zylinderförmiges Prüfobjekt anzuordnen sind, sodass der Ultraschall radial auf das Rohr einfällt und mehrere Messpunkte erzeugt. Neben den röntgen- und ultraschallbasierten Systemen gewinnen auf der Terahertz-(THz)-Technik basierende Wanddickenmesssysteme an Bedeutung. Unter THz-Strahlung versteht man elektromagnetische Strahlung im Frequenzbereich von 0,1 bis 10 THz.Known measuring devices and methods for measuring test objects for tubes with a cylindrical or rectangular cross-section are generally based on X-ray or ultrasound technology. Typical x-ray based wall thickness measuring systems use two x-ray sources and two line detectors. In a full examination of wall and layer thicknesses by means of ultrasound technology, several transmitter-receiver units are generally used, which are to be arranged concentrically around a cylindrical test object, so that the ultrasound is incident radially on the tube and generates several measurement points. In addition to the X-ray and ultrasound-based systems, wall thickness measuring systems based on terahertz (THz) technology are becoming increasingly important. THz radiation is electromagnetic radiation in the frequency range of 0.1 to 10 THz.

Der Erfindung liegt die Aufgabe zugrunde, eine Messvorrichtung zu schaffen, die in einfacher und flexibler Weise die Vermessung von Prüfobjekten mit mindestens einer zumindest abschnittsweise hohlrechteckförmiger oder hohlzylinderförmiger Materialschicht ermöglicht. Dabei soll insbesondere der konstruktive Aufbau der Messvorrichtung vereinfacht, Platz gespart und ein Bauteilaufwand reduziert werden.The invention has for its object to provide a measuring device that allows the measurement of test objects with at least one at least partially hollow rectangular or hollow cylindrical material layer in a simple and flexible manner. In particular, the design of the measuring device is to be simplified, saves space and a component cost can be reduced.

Die DE 10 2011 078 539 A1 beschreibt ein Verfahren und eine Vorrichtung zur Erweiterung der Ausleuchtung eines Prüfobjektes, das durch ein elektromagnetisches Mikrowellensignal, das von einer Senderantenne ausgestrahlt wird, beleuchtet wird. Das vom Prüfobjekt reflektierte Mikrowellensignal wird von mindestens einer Empfangsantenne empfangen. Hierbei sind Reflektorelemente zu Prüfobjekt hin ausgerichtet angeordnet, so dass die vom Reflektorelement und vom Prüfobjekt reflektierten Mikrowellensignale in einer Empfangsantenne empfangen werden, wobei zusätzlich hierzu Mikrowellenstrahlen, die von einer Senderantenne ohne Reflektion an dem Reflektorelement auf das Prüfobjekt treffen, empfangen und verwendet werden.The DE 10 2011 078 539 A1 describes a method and apparatus for extending the illumination of a test object illuminated by a microwave electromagnetic signal emitted by a transmitter antenna. The microwave signal reflected by the test object is received by at least one receiving antenna. In this case, reflector elements are arranged aligned with respect to the test object, so that the reflected from the reflector element and the test object microwave signals are received in a receiving antenna, in addition to this microwave rays coming from a transmitter antenna without reflection on the reflector element on the test object, are received and used.

Die US 2011/0112795 A1 beschreibt eine licht-bündelnde Linse mit einer Vielzahl von Linsen, die Seite an Seite, insbesondere auch als Quadrat, angeordnet sind und ein lichtempfangendes Element umgeben.The US 2011/0112795 A1 describes a light-converging lens having a plurality of lenses arranged side by side, in particular also as a square, and surrounding a light-receiving element.

Die WO 95/07471 A1 beschreibt ein optisches System zum Detektieren des Vorhandenseins und der Position von wenigstens einem stationären oder sich bewegenden Objekt. Hierbei sind Ausführungsformen gezeigt mit orthogonaler Anordnung von zwei Spiegeln und zwei Kollimationslinsen.The WO 95/07471 A1 describes an optical system for detecting the presence and position of at least one stationary or moving object. Here, embodiments are shown with orthogonal arrangement of two mirrors and two Kollimationslinsen.

Die US 2010/0079754 A1 zeigt eine Vorrichtung zu Raman-Spektroskopie, wobei Lichtkonzentratoren zum Bündeln von Licht sowie weiterhin Spiegel vorgesehen sind.The US 2010/0079754 A1 shows an apparatus for Raman spectroscopy, wherein light concentrators are provided for condensing light and furthermore mirrors.

Die Ep 2 752 287 A1 beschreibt eine Vorrichtung zum Vermessen von Extrusions-Produkten, insbesondere Rohren mittels THz-Strahlung in Transmission.The Ep 2 752 287 A1 describes a device for measuring extrusion products, in particular pipes by means of THz radiation in transmission.

Die DE 198 52 335 A1 beschreibt eine Einrichtung zur Fehlererfassung und/oder Wanddickenmessung bei durchlaufenden Bändern oder Rohren aus Kunststoff mittels Ultraschallsignalen.
Diese Aufgabe wird durch eine Messvorrichtung mit den Merkmalen des Anspruchs 1 gelöst. Die Messvorrichtung bzw. Reflexions- Messvorrichtung dient zur Durchführung von Reflexionsmessungen an dem zu vermessenden Prüfobjekt. Die Messvorrichtung umfasst eine Sender-Empfänger-Einheit mit einem Sender zum Emittieren von Strahlung in einer x-y-Ebene ausgehend von einem Strahlpunkt und einem zugehörigen Empfänger zum detektieren einer an einem Prüfobjekt reflektierten Strahlung. Eine erste Kollimator-Fokussier-Anordnung der Messvorrichtung hat Kollimator-Fokussier-Elemente zur Umformung der emittierten Strahlung in kollimierte Strahlung und zur Fokussierung der reflektierten Strahlung in den Strahlpunkt, wobei die Kollimator-Fokussier-Elemente derart angeordnet sind, dass zwei benachbarte Kollimator-Fokussier-Elemente in der x-y-Ebene einen Winkel von im Wesentlichen 90° einschließen, sodass die Kollimator-Fokussier-Elemente ein Kollimator-Fokussier-Quadrat bilden. Ein gemeinsamer Brennpunkt der Kollimator-Fokussier-Elemente liegt in der x-y-Ebene im Strahlpunkt. Die Messvorrichtung umfasst ferner einen in der x-y-Ebene liegenden Prüfobjektaufnahmebereich zur Anordnung des Prüfobjekts und mindestens eine Spiegel-Anordnung mit Spiegel- Elementen zum Umlenken der kollimierten Strahlung und der reflektierten Strahlung zwischen der Kollimator-Fokussier-Anordnung und dem Prüfobjektaufnahmebereich. Die Spiegel-Elemente sind derart angeordnet, dass zwei benachbarte Spiegel-Elemente in der x-y-Ebene einen Winkel vom im Wesentlichen 90° einschließen, sodass die Spiegel-Elemente ein Spiegel- Rechteck bilden, wobei Spiegel-Flächen des Spiegel-Rechtecks parallel zu Kollimator-Fokussier-Diagonalen des Kollimator-Fokussier-Quadrats sind. Ferner hat die Messvorrichtung eine Steuereinheit zur Auswertung der detektierten Strahlung.
The DE 198 52 335 A1 describes a device for error detection and / or wall thickness measurement in continuous bands or pipes made of plastic by means of ultrasonic signals.
This object is achieved by a measuring device having the features of claim 1. The measuring device or reflection measuring device serves to carry out reflection measurements on the test object to be measured. The measuring device comprises a transmitter-receiver unit with a transmitter for emitting radiation in an xy plane from a beam spot and an associated receiver for detecting a radiation reflected at a test object. A first collimator-focusing arrangement of the measuring device has collimator-focusing elements for converting the emitted radiation into collimated radiation and for focusing the reflected radiation into the beam spot, the collimator-focusing elements being arranged such that two adjacent collimator-focusing Enclose an angle of substantially 90 ° in the xy plane so that the collimator focus elements form a collimator focus square. A common focus of the collimator-focusing elements lies in the xy-plane in the beam spot. The measuring device further comprises an xy-plane test object receiving area for placing the test object and at least one mirror array having mirror elements for deflecting the collimated radiation and the reflected radiation between the collimator-focusing array and the test object receiving area. The mirror elements are arranged such that two adjacent mirror elements in the xy plane enclose an angle of substantially 90 ° such that the mirror elements form a mirror rectangle, mirror surfaces of the mirror rectangle parallel to collimator Collimator Focusing Square Focusing Diagonals are. Furthermore, the measuring device has a control unit for evaluating the detected radiation.

Vorzugsweise sind vier Kollimator-Fokussier-Elemente vorgesehen, die das Kollimator-Fokussier-Quadrat bilden. Vorteilhafterweise sind vier Spiegel-Elemente in der x-y-Ebene angeordnet, die das Spiegel-Rechteck bilden. Vorteilhafterweise ist das Spiegel-Rechteck als Spiegel-Quadrat ausgebildet. Die Spiegel-Flächen der Spiegel-Elemente sind vorzugsweise identisch ausgebildet. Dabei sind die Spiegelflächen aus einem Material gebildet, das insbesondere für THz-Strahlung als nahezu idealer Spiegel wirkt. Als Material eignet sich elektrisch leitfähiges Material, wie beispielsweise Aluminium oder Stahl. Es ist von Vorteil wenn eine Oberflächenebenheit der Spiegel-Flächen höher als ein Zehntel der kürzesten Wellenlänge der verwendeten THz-Strahlung ist.Preferably, four collimator focusing elements are provided which form the collimator focusing square. Advantageously, four mirror elements are arranged in the x-y plane which form the mirror rectangle. Advantageously, the mirror rectangle is designed as a mirror square. The mirror surfaces of the mirror elements are preferably identical. In this case, the mirror surfaces are formed from a material that acts in particular for THz radiation as a nearly ideal mirror. As a material is electrically conductive material, such as aluminum or steel. It is advantageous if a surface flatness of the mirror surfaces is higher than one tenth of the shortest wavelength of the THz radiation used.

Zum Vermessen des Prüfobjekts wird von dem Sender der Senderempfänger-Einheit zunächst Strahlung in Richtung der Kollimator-Fokussier-Elemente der Kollimator-Fokussier-Anordnung emittiert. Die emittierte Strahlung wird mittels der Kollimator-Fokussier-Elemente in kollimierte Strahlung umgeformt. Die kollimierte Strahlung wird mittels der Spiegel-Elemente in den Prüfobjektaufnahmebereich umgelenkt und trifft auf dem Prüfobjekt auf. Von dem Prüfobjekt wird die Strahlung reflektiert. Das Prüfobjekt ist vorzugsweise derart angeordnet, dass eine Mittellängsachse des Prüfobjekts senkrecht zur x-y-Ebene bzw. parallel zu einer z-Richtung verläuft. Die emittierte kollimierte Strahlung trifft senkrecht auf eine Oberfläche des Prüfobjekts, wodurch die reflektierte Strahlung vorzugsweise entlang des selben Strahlengangs in entgegengesetzte Richtung zurück zum Strahlpunkt läuft, wo sie detektiert wird. Die am Prüfobjekt reflektierte Strahlung weist vorzugsweise den selben Strahlengang, jedoch in entgegengesetzter Richtung auf, wie die einfallende Strahlung. Die reflektierte Strahlung wird von den Spiegel-Elementen zu der Kollimator-Fokussier-Anordnung umgelenkt, wo sie in den Strahlpunkt fokussiert wird. Der Empfänger detektiert die reflektierte Strahlung und leitet die Messwerte an die Steuereinheit weiter, welche die detektierte Strahlung bzw. die Messwerte auswertet.For measuring the test object, the transmitter of the transceiver unit first emits radiation in the direction of the collimator-focusing elements of the collimator-focusing arrangement. The emitted radiation is converted into collimated radiation by means of the collimator-focusing elements. The collimated radiation is deflected by means of the mirror elements into the test object receiving area and impinges on the test object. From the test object, the radiation is reflected. The test object is preferably arranged such that a central longitudinal axis of the test object runs perpendicular to the xy plane or parallel to a z direction. The emitted collimated radiation is incident perpendicular to a surface of the specimen, whereby the reflected radiation preferably travels along the same ray path in the opposite direction back to the beam spot where it is detected. The radiation reflected on the test object preferably has the same beam path, but in the opposite direction, as the incident radiation. The reflected radiation is deflected by the mirror elements to the collimator-focusing arrangement, where it is focused into the beam spot. The receiver detects the reflected radiation and passes the Measured values continue to the control unit, which evaluates the detected radiation or the measured values.

Die erfindungsgemäße Messvorrichtung ist vergleichsweise einfach aufgebaut, da die Sender-Empfänger-Einheit aufgrund der Spiegel-Anordnung in der x-y-Ebene beabstandet zum Prüfobjektaufnahmebereich anordenbar ist. Es ist auch möglich, die Sender-Empfänger-Einheit in der z-Richtung beabstandet zu der x-y-Ebene zu positionieren. Mit der erfindungsgemäßen Messvorrichtung können sowohl hohlrechteckförmige als auch hohlzylinderförmige Prüfobjekte untersucht werden. Durch ein Verschwenken bzw. Drehen der Sender-Empfänger-Einheit um eine durch den Stahlpunkt gehende Rotationsachse ist ein weiter Umfangsbereich des Prüfobjekts mit nur einer Sender-Empfänger-Einheit vermessbar. Beispielsweise ist die Vermessung einer Dicke mindestens einer hohlrechteckfömigen oder hohlzylinderförmigen Materialschicht über den gesamten Umfang möglich.The measuring device according to the invention has a comparatively simple structure, since the transmitter-receiver unit can be arranged at a distance from the test object receiving area in the x-y plane due to the mirror arrangement. It is also possible to position the transceiver unit in the z-direction at a distance from the x-y plane. Both hollow-rectangular and hollow cylindrical test objects can be examined with the measuring device according to the invention. By pivoting or rotating the transmitter-receiver unit about a rotation axis passing through the steel point, a further peripheral region of the test object can be measured with only one transmitter-receiver unit. For example, it is possible to measure a thickness of at least one hollow-rectangular or hollow-cylindrical material layer over the entire circumference.

Das Prüfobjekt ist insbesondere aus Kunststoff ausgebildet und weist eine hohlrechteckförmige oder hohlzylinderförmige Materialschicht bzw. mehrere hohlrechteckförmige oder hohlzylinderförmige Materialschichten auf. Das Prüfobjekt kann parallel zur z-Richtung extrudiert und während der Extrusion vermessen werden.The test object is formed in particular from plastic and has a hollow-rectangular or hollow-cylindrical material layer or a plurality of hollow-rectangular or hollow-cylindrical material layers. The test object can be extruded parallel to the z-direction and measured during the extrusion.

Die Messvorrichtung ermöglicht insbesondere die Vermessung von Prüfobjekten aus Kunststoff. Die Sender-Empfänger-Einheit ist vorzugsweise derart ausgebildet, dass elektromagnetische Strahlung mit einer Frequenz im Bereich von 0,01 THz bis 50 THz, insbesondere von 0,05 THz bis 20 THz, und insbesondere von 0,1 THz bis 10 THz emittierbar bzw. detektierbar ist. Die Vermessung des Prüfobjekts mittels der Strahlung bzw. THz-Strahlung basiert auf der Messung einer Laufzeitdifferenz der Strahlung, die an den Grenzschichten reflektiert wird. Grenzschichten sind die Oberflächen des Prüfobjekts, beispielsweise eine Rohraußenwand und eine Rohrinnenwand, und aneinander grenzende Materialschichten innerhalb des Prüfobjekts. Die Sender-Empfänger-Einheit ist insbesondere derart ausgebildet, dass THz-Pulse emittierbar bzw. detektierbar sind.The measuring device allows in particular the measurement of test objects made of plastic. The transmitter-receiver unit is preferably designed such that electromagnetic radiation with a frequency in the range from 0.01 THz to 50 THz, in particular from 0.05 THz to 20 THz, and in particular from 0.1 THz to 10 THz can be emitted or emitted . is detectable. The measurement of the test object by means of the radiation or THz radiation is based on the measurement of a transit time difference of the radiation which is reflected at the boundary layers. boundary layers are the surfaces of the test object, such as a tube outer wall and a tube inner wall, and contiguous material layers within the test object. The transmitter-receiver unit is in particular designed such that THz pulses can be emitted or detected.

Die Ausgestaltung gemäß Anspruch 3 führt zu einem einfachen Aufbau der Messvorrichtung.The embodiment according to claim 3 leads to a simple construction of the measuring device.

Die Messvorrichtung gemäß Anspruch 4 ist wieder besonders einfach aufgebaut. Bei den Linsen kann es sich um Sammellinsen handeln, mittels welchen die vom Sender emittierte Strahlung in kollimierte Strahlung überführbar ist. Ein gemeinsamer Brennpunkt der Linsen liegt im Strahlpunkt des Senders. Ein Linsendurchmesser der Linsen entspricht vorzugsweise je nach Linsenform in etwa einer Kantenlänge des Kollimator-Fokussier-Quadrats. Ferner ist der reflektierte Strahl durch die Linsen der Kollimator-Fokussier-Anordnung auf einfache Art und Weise auf den Strahlpunkt fokussierbar.The measuring device according to claim 4 is again particularly simple. The lenses may be converging lenses, by means of which the radiation emitted by the transmitter can be converted into collimated radiation. A common focus of the lenses lies in the beam spot of the transmitter. A lens diameter of the lenses preferably corresponds approximately to an edge length of the collimator-focusing square, depending on the lens shape. Furthermore, the reflected beam can be focused on the beam spot in a simple manner by the lenses of the collimator-focusing arrangement.

Die Ausgestaltung gemäß Anspruch 5 führt zu einem einfachen Aufbau der Messvorrichtung.The embodiment according to claim 5 leads to a simple construction of the measuring device.

Gemäß Anspruch 6 ist die Spiegel-Anordnung derart ausgebildet, dass ein erstes Spiegel-Element die kollimierte Strahlung auf ein zweites Spiegel-Element umlenkt, wobei das zweite Spiegel-Element die Strahlung auf den Prüfobjektaufnahmebereich umlenkt. Umgekehrt gilt analog, dass das zweite Spiegel-Element die am Prüfobjekt reflektierte Strahlung auf das erste Spiegel-Element umlenkt, wobei das erste Spiegel-Element die Strahlung auf die Kollimator-Fokussier-Anordnung umlenkt.According to claim 6, the mirror arrangement is designed such that a first mirror element deflects the collimated radiation to a second mirror element, wherein the second mirror element deflects the radiation onto the Prüfobjektaufnahmebereich. Conversely, analogously, the second mirror element deflects the radiation reflected at the test object onto the first mirror element, wherein the first mirror element deflects the radiation onto the collimator-focusing arrangement.

Eine Messvorrichtung nach Anspruch 7 gewährleistet auf konstruktiv besonders einfache Art und Weise, dass die kollimierte Strahlung zweifach an der Spiegel-Anordnung umgelenkt wird.A measuring device according to claim 7 ensures in a structurally particularly simple way that the collimated radiation is deflected twice at the mirror arrangement.

Durch eine Messvorrichtung gemäß Anspruch 8 wird die Vermessung des Prüfobjekts über dessen gesamten Umfang ermöglicht. Dadurch, dass die Sender-Empfänger-Einheit derart ausgebildet ist, dass die emittierte Strahlung in eine x-y-Ebene um den Strahlpunkt rotierbar ist, wird gewährleistet, dass durch jeden unter einem Emissions-Winkel emittierten Strahl ein definierter Prüfbereich auf dem Prüfobjekt abtastbar ist.By a measuring device according to claim 8, the measurement of the test object over its entire circumference is made possible. The fact that the transmitter-receiver unit is designed such that the emitted radiation is rotatable in an x-y plane around the beam point ensures that a defined test area can be scanned on the test object by each beam emitted at an emission angle.

Eine Messvorrichtung nach Anspruch 9 stellt eine konstruktiv besonders einfache Gestaltung dar. Ein Bauteilaufwand der Messvorrichtung wird gering gehalten.A measuring device according to claim 9 represents a structurally particularly simple design. A component expenditure of the measuring device is kept low.

Durch eine Messvorrichtung nach Anspruch 10 wird eine dauerhaft stabile und zuverlässige Verbindung von optischen und elektrischen Signalen gewährleistet. Es ist vorteilhaft, wenn der Sender und der Empfänger der Sender-Empfänger-Einheit unbeweglich außerhalb der x-y-Ebene positioniert sind. Die vom Sender emittierte Strahlung verläuft entlang der z-Richtung, die senkrecht zur x-y-Ebene verläuft. Die emittierte Strahlung ist im Strahlpunkt durch den Rotations-Spiegel zur Kollimator-Fokussier-Anordnung umlenkbar. Die Rotationsachse des Rotations-Spiegels ist parallel zur z-Richtung. Vorzugsweise wird durch den Rotations-Spiegel erreicht, dass die emittierte Strahlung um 360° rotiert. Durch das Vorsehen eines Rotations-Spiegels wird ein stabiler und äußerst platzsparender Aufbau der Messvorrichtung in der x-y-Ebene erreicht.By a measuring device according to claim 10, a permanently stable and reliable connection of optical and electrical signals is ensured. It is advantageous if the transmitter and the receiver of the transceiver unit are immovably positioned outside the x-y plane. The radiation emitted by the transmitter is along the z-direction, which is perpendicular to the x-y plane. The emitted radiation can be deflected in the beam spot by the rotation mirror to the collimator-focusing arrangement. The rotation axis of the rotation mirror is parallel to the z-direction. Preferably, it is achieved by the rotation mirror that the emitted radiation rotates through 360 °. The provision of a rotational mirror achieves a stable and extremely space-saving design of the measuring device in the x-y plane.

Eine Messvorrichtung nach Anspruch 11 ermöglicht eine Anordnung des Senders und des Empfängers entlang der z-Richtung. Eine solche Messvorrichtung gewährleistet in einfacher und platzsparender Weise eine Vermessung des Prüfobjekts. Dadurch, dass der Sender und der Empfänger entlang der z-Richtung, also senkrecht beabstandet von der x-y-Ebene angeordnet sind, wird die von der Kollimator-Fokussier-Anordnung und der Spiegel-Anordnung begrenzte Fläche nicht unnötigerweise von dem Sender und dem Empfänger beeinträchtigt. Der Rotations-Spiegel benötigt einen vergleichsweise geringen Platzbedarf, sodass die Sender-Empfänger-Einheit in der x-y-Ebene äußerst kompakt aufgebaut ist. Die z-Richtung bzw. z-Achse verläuft senkrecht zu der x-y-Ebene. Entsprechend ist der Rotations-Spiegel zur Umlenkung der emittierten Strahlung um 45° zu der x-y-Ebene geneigt.A measuring device according to claim 11 allows an arrangement of the transmitter and the receiver along the z-direction. Such a measuring device ensures a simple and space-saving way Measurement of the test object. The fact that the transmitter and the receiver are arranged along the z-direction, ie perpendicularly spaced from the xy plane, the area bounded by the collimator-focusing arrangement and the mirror arrangement is not unnecessarily affected by the transmitter and the receiver , The rotation mirror requires a comparatively small space requirement, so that the transceiver unit in the xy plane is extremely compact. The z-direction or z-axis is perpendicular to the xy-plane. Accordingly, the rotation mirror is inclined by 45 ° to the xy plane for deflecting the emitted radiation.

Eine Messvorrichtung nach Anspruch 12 ermöglicht, dass auch Rohre mit kreiszylindrischen Querschnitt auf besonders einfache Art und Weise über den gesamten Umfang vermessen werden können. Die zweite Kollimator-Fokussier-Anordnung dient zur Fokussierung der kollimierten Strahlung in einen gemeinsamen Prüfobjekt-Brennpunkt und zur Umformung der reflektierten Strahlung in reflektierte kollimierte Strahlung. Die Kollimator-Fokussier-Elemente der Kollimator-Fokussier-Anordnung sind derart gestaltet, dass sie die kollimierte Strahlung so umformen, dass diese senkrecht auf eine Oberfläche des Prüfobjekts einfällt.A measuring device according to claim 12 makes it possible to measure tubes with a circular-cylindrical cross-section in a particularly simple way over the entire circumference. The second collimator-focusing arrangement serves to focus the collimated radiation into a common test object focus and to convert the reflected radiation into reflected collimated radiation. The collimator-focusing elements of the collimator-focusing arrangement are designed such that they transform the collimated radiation so that it is incident perpendicular to a surface of the test object.

Eine Messvorrichtung nach Anspruch 13 ermöglicht auf konstruktiv einfache Art und Weise, dass die von der Spiegel-Anordnung umgelenkte kollimierte Strahlung senkrecht auf eine Oberfläche des Prüfobjekts einfällt.A measuring device according to claim 13 allows in a structurally simple manner that the collimated radiation deflected by the mirror arrangement is incident perpendicularly on a surface of the test object.

Eine Messvorrichtung nach Anspruch 14 optimiert den Verlauf der emittierten und reflektierten Strahlung. Ferner wird der zur Verfügung stehende Raum optimal ausgenutzt.A measuring device according to claim 14 optimizes the course of the emitted and reflected radiation. Furthermore, the available space is optimally utilized.

Der Erfindung liegt ferner die Aufgabe zugrunde, ein Verfahren zu schaffen, das in einfacher und flexibler Weise die Vermessung von Prüfobjekten ermöglicht. Das Verfahren soll insbesondere die Vermessung von Prüfobjekten ermöglichen, die zumindest abschnittsweise mindestens eine hohlrechteckförmige oder hohlzylinderförmige Materialschicht aufweisen.The invention is further based on the object to provide a method which in a simple and flexible way, the measurement of test objects allows. In particular, the method is intended to enable the measurement of test objects which, at least in sections, have at least one hollow-rectangular or hollow-cylindrical material layer.

Diese Aufgabe wird weiterhin durch ein Verfahren mit den Merkmalen des unabhängigen Anspruchs 16 gelöst. Die Vorteile des erfindungsgemäßen Verfahrens entsprechen den bereits beschriebenen Vorteilen der erfindungsgemäßen Messvorrichtung. Das erfindungsgemäße Verfahren kann insbesondere auch mit den Merkmalen der Vorrichtungs-Ansprüche, d.h. insbesondere auch Ansprüche 1 bis 15 weitergebildet werden. Entsprechend kann die Messvorrichtung gemäß den Ansprüchen 1 bis 15 durch die Merkmale der Verfahrensansprüche, d.h. insbesondere Ansprüche 16 bis 19, weitergebildet werden. Hierbei ermöglichen die Vorrichtung und das Verfahren insbesondere auch eine Schichtdicken- und Wanddicken-Vermessung von Kunststoff-Objekten wie Rohren, insbesondere durch Laufzeitmessung.This object is further achieved by a method having the features of independent claim 16. The advantages of the method according to the invention correspond to the already described advantages of the measuring device according to the invention. In particular, the method according to the invention can also be combined with the features of the device claims, i. in particular, claims 1 to 15 are further developed. Accordingly, the measuring device according to claims 1 to 15 can be characterized by the features of the method claims, i. in particular claims 16 to 19, further developed. In this case, the device and the method allow, in particular, also a layer thickness and wall thickness measurement of plastic objects such as pipes, in particular by transit time measurement.

Mit dem erfindungsgemäßen Verfahren ist es möglich, sowohl die Schicht- und Wanddicken eines Rohres mit rechteckigem Querschnitt als auch die Schicht- und Wanddicken eines zylinderförmigen Rohres zu bestimmen. Bei rechteckigen Rohren fällt die emittierte Strahlung senkrecht zur Oberfläche des Prüfobjekts ein. Entsprechend wird bei Rohren mit zylindrischem Querschnitt jeder definierte Prüfbereich der Querschnittsoberfläche mit radial einfallender emittierter Strahlung abgetastet. In beiden Gestaltungsvarianten des Prüfobjekts ist jeweils nur eine Sender-Empfänger-Einheit notwendig.With the method according to the invention, it is possible to determine both the layer and wall thicknesses of a pipe with a rectangular cross-section and the layer and wall thicknesses of a cylindrical tube. In rectangular tubes, the emitted radiation is incident perpendicular to the surface of the test object. Accordingly, in tubes of cylindrical cross section, each defined test area of the cross-sectional surface is scanned with radially incident, emitted radiation. In both design variants of the test object, only one transmitter-receiver unit is necessary in each case.

Ein Verfahren nach Anspruch 17 gewährleistet eine vollumfängliche Vermessung des Prüfobjekts. Entweder die Sender-Empfänger-Einheit als Ganzes rotiert im Strahlpunkt um die Rotationsachse oder ein Rotations-Spiegel. Durch die Rotation wird durch jeden unter einem Emissions-Winkel emittierten Strahl ein definierter Prüfbereich auf dem Prüfobjekt abgetastet. Hierdurch ist nur eine Sender-Empfänger-Einheit notwenig, um den gesamten Umfang eines rechteckförmigen oder hohlzylinderförmigen Prüfobjekts abzutasten. Die Spiegel-Anordnung lenkt die rotierende, kollimierte Strahlung zwischen der Kollimator-Fokussier-Anordnung und dem Prüfobjektaufnahmebereich um. Hierdurch wird eine Vermessung des Prüfobjekts inline im Herstellungsprozess ermöglicht. Im Herstellungsprozess ist das Prüfobjekt selbst in der Regel nicht um seine Mittellängsachse verschwenkbar bzw. drehbar.A method according to claim 17 ensures a full measurement of the test object. Either the transmitter-receiver unit as a whole rotates in the beam spot about the rotation axis or a rotation mirror. The rotation scans a defined test area on the test object through each beam emitted at an emission angle. As a result, only a transmitter-receiver unit is necessary to scan the entire circumference of a rectangular or hollow cylindrical test object. The mirror arrangement redirects the rotating, collimated radiation between the collimator focus assembly and the test object receiving area. This allows a measurement of the test object inline in the manufacturing process. In the manufacturing process, the test object itself is usually not pivotable about its central longitudinal axis or rotatable.

Eine Messvorrichtung nach Anspruch 18 gewährleistet zuverlässige und genaue Messergebnisse.A measuring device according to claim 18 ensures reliable and accurate measurement results.

Für den Fall, dass mittels dem erfindungsgemäßen Verfahren Prüfobjekte in Form eines zylindrischen Rohres geprüft werden sollen, wird die emittierte und von der Spiegel-Anordnung umgelenkte Strahlung durch eine zweite Kollimator-Fokussier-Anordnung fokussiert und auf das Prüfobjekt gerichtet. Der Fokuspunkt fällt mit dem Prüfobjekt-Brennpunkt bzw. - Mittelpunkt zusammen. So ist möglich, dass jeder Punkt der einfallenden Wellenfront eines Strahlen-Pulses zeitgleich und senkrecht auf das konzentrisch zum Prüfobjekt-Brennpunkt angeordnete und parallel zur z-Richtung extrudierte Prüfobjekt trifft. Hierdurch wird die Strahlung immer unabhängig von einem Durchmesser des Prüfobjekts ideal reflektiert. Dadurch, dass die Strahlung radial bzw. senkrecht auf die Oberfläche der Prüfobjekte trifft, wird eine hohe Messgenauigkeit erzielt.In the event that test objects in the form of a cylindrical tube are to be tested by means of the method according to the invention, the radiation emitted and deflected by the mirror arrangement is focused by a second collimator-focusing arrangement and directed onto the test object. The focal point coincides with the test object focus or center. Thus, it is possible for each point of the incident wavefront of a beam pulse to hit simultaneously and perpendicularly to the test object arranged concentrically with the test object focal point and extruded parallel to the z direction. As a result, the radiation is always ideally reflected regardless of a diameter of the test object. Due to the fact that the radiation impinges radially or perpendicularly on the surface of the test objects, a high measuring accuracy is achieved.

Weitere Merkmale, Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung mehrerer Ausführungsbeispiele. Es zeigen:

Fig. 1
eine Draufsicht auf eine Messvorrichtung zur Vermessung eines Prüfobjekts gemäß einem ersten Ausführungsbeispiel,
Fig. 2
eine Ansicht der Messvorrichtung gemäß Fig. 1, wobei in einem Prüfobjektaufnahmebereich ein Prüfobjekt mit hohlrechteckförmigem Querschnitt angeordnet ist,
Fig. 3
eine Draufsicht auf eine Messvorrichtung zur Vermessung eines Prüfobjekts gemäß einem zweiten Ausführungsbeispiel,
Fig.4
eine auf Fig. 2 basierende Ansicht der ersten Ausführungsvariante der Messvorrichtung, wobei eine reale Strahlausbreitung dargestellt ist,
Fig. 5
eine auf Fig. 3 basierende Darstellung der zweiten Ausführungsvariante der Messvorrichtung, wobei eine reale Strahlenausbreitung dargestellt ist,
Fig. 6
eine Ansicht der zweiten Ausführungsvariante der Messvorrichtung gemäß Fig. 3 und Fig. 5, wobei eine Aufspaltung und Ausbreitung eines divergenten Strahls gezeigt ist,
Fig. 7
eine erste Ausführungsvariante einer Sender-Empfänger-Einheit einer der Messvorrichtungen der Fig. 1 bis Fig. 6,
Fig. 8
eine zweite Ausführungsvariante einer Sender-Empfänger-Einheit einer der Messvorrichtungen der Fig. 1 bis Fig. 6, und
Fig. 9
eine Draufsicht auf eine Messvorrichtung zur Vermessung eines Prüfobjekts gemäß einem dritten Ausführungsbeispiel.
Further features, advantages and details of the invention will become apparent from the following description of several embodiments. Show it:
Fig. 1
a top view of a measuring device for measuring a test object according to a first embodiment,
Fig. 2
a view of the measuring device according to Fig. 1 in which a test object with a hollow-rectangular cross-section is arranged in a test object receiving area,
Fig. 3
a top view of a measuring device for measuring a test object according to a second embodiment,
Figure 4
one on Fig. 2 based view of the first embodiment of the measuring device, wherein a real beam propagation is shown,
Fig. 5
one on Fig. 3 based representation of the second embodiment of the measuring device, wherein a real beam propagation is shown,
Fig. 6
a view of the second embodiment of the measuring device according to Fig. 3 and Fig. 5 showing a splitting and spreading of a divergent beam,
Fig. 7
a first embodiment of a transmitter-receiver unit of one of the measuring devices of Fig. 1 to Fig. 6 .
Fig. 8
a second embodiment of a transmitter-receiver unit of the measuring devices of Fig. 1 to Fig. 6 , and
Fig. 9
a plan view of a measuring device for measuring a test object according to a third embodiment.

Nachfolgend ist anhand Fig. 1 und Fig. 2 ein erstes Ausführungsbeispiel der Erfindung beschrieben. Eine Messvorrichtung 1 weist zur Vermessung eines Prüfobjekts 2 eine Sender-Empfänger-Einheit 3, eine erste Kollimator-Fokussier-Anordnung 4, eine Spiegel-Anordnung 5, einen Prüfobjektaufnahmebereich 6 und eine Steuereinheit 7 auf.The following is based on Fig. 1 and Fig. 2 a first embodiment of the invention described. For measuring a test object 2, a measuring device 1 has a transmitter-receiver unit 3, a first collimator-focusing arrangement 4, a mirror arrangement 5, a test object receiving area 6 and a control unit 7.

Die Messvorrichtung 1 nach den Fig. 1 und Fig. 2 dient insbesondere zur Vermessung von Prüfobjekten 2 mit rechteckförmigem Querschnitt. Das Prüfobjekt 2, welches in Fig. 2 dargestellt ist, weist eine hohlrechteckförmige Kontur auf.The measuring device 1 according to the Fig. 1 and Fig. 2 is used in particular for the measurement of test objects 2 with a rectangular cross-section. The test object 2, which in Fig. 2 is shown, has a hollow-rectangular contour.

Aus Gründen der Übersichtlichkeit ist in Fig. 1 und Fig. 2 keine Sender-Empfänger-Einheit dargestellt. In der gezeigten Ausführungsvariante gemäß Fig. 1 und Fig. 2 der Messvorrichtung 1 findet die Sender-Empfänger-Einheit 3 gemäß Fig. 7 Anwendung. Es ist alternativ auch möglich, die Sender-Empfänger-Einheit 3a gemäß Fig. 8 in der Messvorrichtung 1 anzuwenden, ohne dass sich die grundsätzliche Funktionsweise der Messvorrichtung 1 ändert. Fig. 7 und Fig. 8 zeigen im Detail mögliche Ausführungsvarianten der Sender-Empfänger-Einheit 3 bzw. 3a.For clarity, is in Fig. 1 and Fig. 2 no transmitter-receiver unit shown. In the embodiment shown according to Fig. 1 and Fig. 2 the measuring device 1 finds the transmitter-receiver unit 3 according to Fig. 7 Application. Alternatively, it is also possible to use the transceiver unit 3a according to FIG Fig. 8 apply in the measuring device 1, without the basic operation of the measuring device 1 changes. FIGS. 7 and 8 show in detail possible embodiments of the transmitter-receiver unit 3 and 3a.

Beide Ausführungsvarianten der Sender-Empfänger-Einheit 3 bzw. 3a umfassen jeweils einen Sender 9 zum emittieren von Strahlung S in einer x-y-Ebene Exy ausgehend von einem Strahlpunkt SP. Die emittierte Strahlung wird von dem Sender 9 bis zu dem Prüfobjekt 2 nachfolgend mit S bezeichnet. Die an dem Prüfobjekt 2 reflektierte Strahlung wird nachfolgend von dem Prüfobjekt 2 bis zu einem Empfänger 10 mit R bezeichnet. Der Empfänger 10 dient zum Detektieren der an dem Prüfobjekt 2 reflektierten Strahlung R. Zur Vermessung des Prüfobjekts 2 wird mittels der Steuereinheit 7 die detektierte Strahlung R ausgewertet.Both embodiments of the transceiver unit 3 and 3a each include a transmitter 9 for emitting radiation S in an xy plane E xy starting from a beam spot SP. The emitted radiation is denoted by S from the transmitter 9 to the test object 2 below. The radiation reflected on the test object 2 is subsequently designated by the test object 2 to a receiver 10 by R. The receiver 10 is used to detect the reflected on the test object 2 Radiation R. To measure the test object 2, the detected radiation R is evaluated by means of the control unit 7.

Bei der Ausführungsvariante der Sender-Empfänger-Einheit 3 gemäß Fig. 7 sind der Sender 9 und der Empfänger 10 in einer z-Richtung beabstandet zu der x-y-Ebene Exy angeordnet. Der Sender 9 und der Empfänger 10 sind entlang einer ersten z-Achse Z1 angeordnet, die parallel zu der z-Richtung durch den Strahlpunkt SP verläuft. Die Sender-Empfänger-Einheit 3 ist derart ausgebildet, dass die emittierte Strahlung R in der x-y-Ebene Exy um den Strahlpunkt SP rotierbar ist. Zu diesem Zweck weist die Sender-Empfänger-Einheit 3 einen Rotations-Spiegel 11 auf, der um eine senkrecht zur x-y-Ebene Exy durch den Strahlpunkt SP verlaufende Rotationsachse 12 rotierbar ist. Die Rotationsachse 12 fällt mit der ersten z-Achse Z1 zusammen. Der Rotations-Spiegel 11 ist um einen Kipp-Winkel ακ von 45° gegen die x-y-Ebene Exy gekippt. Bei der Rotationsbewegung des Rotationsspiegels 11 um die Rotationsachse 12 handelt es sich vorteilhafterweise um eine kontinuierliche Drehbewegung entlang einer Drehrichtung. Die Drehrichtung ist in Fig. 7 durch den Richtungspfeil 13 veranschaulicht.In the embodiment of the transmitter-receiver unit 3 according to Fig. 7 For example, the transmitter 9 and the receiver 10 are arranged in a z-direction at a distance from the xy plane E xy . The transmitter 9 and the receiver 10 are arranged along a first z-axis Z 1 , which runs parallel to the z-direction through the beam spot SP. The transmitter-receiver unit 3 is designed such that the emitted radiation R in the xy plane E xy is rotatable about the beam spot SP. For this purpose, the transmitter-receiver unit 3 has a rotation mirror 11 which is rotatable about an axis of rotation 12 perpendicular to the xy plane E xy through the beam spot SP. The axis of rotation 12 coincides with the first z-axis Z 1 . The rotation mirror 11 is tilted by a tilt angle α κ of 45 ° with respect to the xy plane E xy . The rotational movement of the rotary mirror 11 about the axis of rotation 12 is advantageously a continuous rotational movement along a direction of rotation. The direction of rotation is in Fig. 7 illustrated by the directional arrow 13.

Der Sender 9 und der Empfänger 10 sind in der gezeigten Ausführungsvariante der Sender-Empfänger-Einheit 3 gemäß Fig. 7 unbeweglich angeordnet. Die vom Sender 9 emittierte Strahlung S wird aus z-Richtung kommend mittels eines Fokussier-Mittels 8 auf den Strahlpunkt SP fokussiert. Der Rotations-Spiegel 11 lenkt die Strahlung S aus der z-Richtung kommend in die x-y-Ebene Exy, wobei die Strahlung S durch den Rotations-Spiegel 11 um 360° um die Rotationsachse 12 rotiert. Dieser Aufbau der Sender-Empfänger-Einheit 3 ist einfach umzusetzen, stabil und nimmt wenig Platz ein, sodass auch Aufbauten mit kleinen maximalen Durchmessern des Prüfobjekts 2 umsetzbar sind. Zur Vermessung des Prüfobjekts 2 ist die Sender-Empfänger-Einheit 3 derart ausgebildet, dass die elektromagnetische Strahlung S, R mit einer Frequenz im Bereich von 0,01 THz bis 50 THz, insbesondere von 0,05 THz bis 20 THz, und insbesondere von 0,1 THz bis 10 THz emittierbar bzw. detektierbar ist. Vorzugsweise wird die Strahlung S pulsförmig emittiert, also THz-Pulse erzeugt.The transmitter 9 and the receiver 10 are in the embodiment shown, the transmitter-receiver unit 3 according to Fig. 7 immovable. The radiation S emitted by the transmitter 9 is focused from the z-direction coming by means of a focusing means 8 on the beam spot SP. The rotation mirror 11 directs the radiation S coming from the z direction into the xy plane E xy , the radiation S rotating through the rotation mirror 11 through 360 ° about the rotation axis 12. This structure of the transceiver unit 3 is easy to implement, stable and takes up little space, so that constructions with small maximum diameters of the test object 2 can be implemented. For measuring the test object 2, the transmitter-receiver unit 3 is designed such that the electromagnetic radiation S, R having a frequency in the range of 0.01 THz to 50 THz, in particular from 0.05 THz to 20 THz, and in particular from 0.1 THz to 10 THz can be emitted or detected. The radiation S is preferably emitted in pulsed form, that is to say generates THz pulses.

Gemäß der alternativen Ausführungsvariante der Sender-Empfänger-Einheit 3a gemäß Fig. 8 ist im Unterschied zur Sender-Empfänger-Einheit 3 nach Fig. 7 kein Rotations-Spiegel vorgesehen. Die Sender-Empfänger-Einheit 3a ist derart gestaltet, dass sie im Strahlpunkt SP als Ganzes um die Rotationsachse 12 rotierbar ist. Der Sender 9 und der Empfänger 10 sind also beweglich. Bei der Rotationsbewegung der Sender-Empfänger-Einheit 3a um die Rotationsachse 12 handelt es sich vorteilhafterweise um eine kontinuierliche Drehbewegung entlang der Drehrichtung 13. Zur Verbindung optischer und elektrischer Signale zu der Sender-Empfänger-Einheit 3a ist eine nicht dargestellte Drehkupplung vorgesehen.According to the alternative embodiment of the transmitter-receiver unit 3a according to Fig. 8 is in contrast to the transmitter-receiver unit 3 after Fig. 7 no rotation mirror provided. The transmitter-receiver unit 3a is designed such that it is rotatable as a whole about the axis of rotation 12 in the beam spot SP. The transmitter 9 and the receiver 10 are thus movable. The rotational movement of the transmitter-receiver unit 3a about the axis of rotation 12 is advantageously a continuous rotational movement along the direction of rotation 13. For connecting optical and electrical signals to the transceiver unit 3a, a rotary coupling, not shown, is provided.

Beide Ausführungsvarianten der Sender-Empfänger-Einheiten 3, 3a sind in der erfindungsgemäßen Messvorrichtung 1 verwendbar, ohne dass sich die erfindungsgemäße Funktionsweise der Messvorrichtung 1 ändert.Both embodiments of the transmitter-receiver units 3, 3a can be used in the measuring device 1 according to the invention without the functioning of the measuring device 1 according to the invention changing.

Die erste Kollimator-Fokussier-Anordnung 4 umfasst Kollimator-Fokussier-Elemente 14, 15, 16, 17 zur Umformung der emittierten Strahlung S in kollimierte Strahlung S und zur Fokussierung der reflektierten Strahlung R in den Strahlpunkt SP. In der gezeigten Ausführungsvariante der Messvorrichtung 1 nach den Fig. 1 und Fig. 2 sind vier Kollimator-Fokussier-Elemente 14, 15, 16, 17 vorgesehen. Die Kollimator-Fokussier-Elemente 14, 15, 16, 17 sind derart angeordnet, dass jeweils zwei benachbarte Kollimator-Fokussier-Elemente 14, 15, 16, 17 in der x-y-Ebene Exy einen Winkel αKF von 90° einschließen, sodass die Kollimator-Fokussier-Elemente 14, 15, 16, 17 in der x-y-Ebene Exy ein Kollimator-Fokussier-Quadrat 18 bilden. Durch die quadratische Gestalt umfasst die erste Kollimator-Fokussier-Anordnung 4 eine erste Kollimator-Fokussier-Diagonale 28 und eine zweite Kollimator-Fokussier-Diagonale 29.The first collimator-focusing arrangement 4 comprises collimator-focusing elements 14, 15, 16, 17 for converting the emitted radiation S into collimated radiation S and for focusing the reflected radiation R into the beam spot SP. In the embodiment of the measuring device 1 according to FIGS Fig. 1 and Fig. 2 four collimator focusing elements 14, 15, 16, 17 are provided. The collimator-focusing elements 14, 15, 16, 17 are arranged such that in each case two adjacent collimator-focusing elements 14, 15, 16, 17 in the xy plane E xy include an angle α KF of 90 °, so the collimator focusing elements 14, 15, 16, 17 in the xy plane E xy a collimator-focusing square 18 form. Due to the square shape, the first collimator-focusing arrangement 4 comprises a first collimator-focusing diagonal 28 and a second collimator-focusing diagonal 29.

Die Kollimator-Fokussier-Elemente 14, 15, 16, 17 sind als Linsen ausgebildet. Der Einfachheit halber werden in Bezug auf die Messvorrichtung 1 die Kollimator-Fokussier-Elemente 14, 15, 16, 17 daher als Linsen bezeichnet.The collimator focusing elements 14, 15, 16, 17 are formed as lenses. For the sake of simplicity, with regard to the measuring device 1, the collimator-focusing elements 14, 15, 16, 17 are therefore referred to as lenses.

Die Linsen 14, 15, 16, 17 sind jeweils im Strahlengang zwischen dem Strahlpunkt SP und der Spiegel-Anordnung 5 angeordnet. Die einfallende emittierte Strahlung S wird mittels der Linsen 14, 15, 16, 17 in der x-y-Ebene Exy kollimiert. Konkret bedeutet dies, dass die in einem Quadranten des Kollimator-Fokussier-Quadrats 18 ausgesandten Strahlengänge nach den Linsen 14, 15, 16, 17 parallel zueinander verlaufen. Durch die Rotation der emittierten Strahlung S in der x-y-Ebene Exy um die Rotationsachse 12 sind in jedem Quadranten des Kollimator-Fokussier-Quadrats 18 Strahlengänge ausstrahlbar und durch die Linsen 14, 15, 16, 17 kollimierbar.The lenses 14, 15, 16, 17 are each arranged in the beam path between the beam spot SP and the mirror arrangement 5. The incident emitted radiation S is collimated by means of the lenses 14, 15, 16, 17 in the xy-plane E xy . In concrete terms, this means that the beam paths emitted in one quadrant of the collimator-focusing square 18 run parallel to one another after the lenses 14, 15, 16, 17. As a result of the rotation of the emitted radiation S in the xy plane E xy about the axis of rotation 12, beam paths can be emitted in each quadrant of the collimator-focusing square and can be collimated by the lenses 14, 15, 16, 17.

Die Linsen 14, 15, 16, 17 sind in Form und Größe identisch ausgebildet. Ein gemeinsamer Brennpunkt B1 der Linsen in der x-y-Ebene Exy liegt im Strahlpunkt SP. Hierzu sind die Linsen 14, 15, 16, 17 als plankonvexe Sammellinsen ausgebildet, deren konvexe Wölbung jeweils in Richtung Strahlpunkt SP gerichtet ist. Die planen Seiten der Linsen 14, 15, 16, 17 bilden Kanten des Kollimator-Fokussier-Quadrats 18.The lenses 14, 15, 16, 17 are identical in shape and size. A common focus B 1 of the lenses in the xy plane E xy lies in the beam spot SP. For this purpose, the lenses 14, 15, 16, 17 are formed as plano-convex converging lenses whose convex curvature is directed in each case in the direction beam spot SP. The planar sides of the lenses 14, 15, 16, 17 form edges of the collimator-focusing square 18.

In der gezeigten Ausführungsvariante haben die Linsen 14, 15, 16, 17 jeweils die numerische Apertur 0,71. Ein Linsendurchmesser der Linsen 14, 15, 16, 17 beträgt in der gezeigten Ausführungsvariante 2f, wobei f eine Brennweite der Linsen 14, 15, 16, 17 bezeichnet. Folglich hat das Kollimator-Fokussier-Quadrat 18 Kantenlängen von 2f.In the embodiment shown, the lenses 14, 15, 16, 17 each have the numerical aperture 0.71. A lens diameter of the lenses 14, 15, 16, 17 in the embodiment shown is 2f, where f a focal length of the lenses 14, 15, 16, 17. Thus, the collimator focus square has 18 edge lengths of 2f.

Die Spiegel-Anordnung 5 umfasst in der gezeigten Ausführungsvariante vier Spiegel-Elemente 19, 20, 21, 22 zum Umlenken der emittierten kollimierten Strahlung S und der reflektierten Strahlung R zwischen der Kollimator-Fokussier-Anordnung 4 und dem Prüfobjektaufnahmebereich 6. Der Prüfobjektaufnahmebereich 6 zur Anordnung des Prüfobjekts 2 liegt in der x-y-Ebene Exy. Die Spiegel-Elemente 19, 20, 21, 22 sind derart angeordnet, dass zwei benachbarte Spiegel-Elemente 19, 20, 21, 22 einen Winkel αSE von 90° einschließen, sodass die Spiegel-Elemente 19, 20, 21, 22 in der x-y-Ebene Exy ein Spiegel-Rechteck 23 bilden. In der Ausführungsvariante der Messvorrichtung 1 nach den Fig. 1 und Fig. 2 ist das Spiegel-Rechteck 23 als Spiegel-Quadrat ausgebildet, wobei die Spiegel-Elemente 19, 20, 21, 22 in Form und Größe identisch ausgebildet sind. In der gezeigten Ausführungsvariante hat das Spiegel-Rechteck 23 Kantenlängen von 4 2 f .

Figure imgb0001
In the variant embodiment shown, the mirror arrangement 5 comprises four mirror elements 19, 20, 21, 22 for deflecting the emitted collimated radiation S and the reflected radiation R between the collimator-focusing arrangement 4 and the test object receiving area 6. The test object receiving area 6 Arrangement of the test object 2 lies in the xy plane E xy . The mirror elements 19, 20, 21, 22 are arranged such that two adjacent mirror elements 19, 20, 21, 22 enclose an angle α SE of 90 °, so that the mirror elements 19, 20, 21, 22 in FIG the xy plane E xy form a mirror rectangle 23. In the embodiment of the measuring device 1 according to the Fig. 1 and Fig. 2 the mirror rectangle 23 is formed as a mirror square, wherein the mirror elements 19, 20, 21, 22 are identical in shape and size. In the embodiment shown, the mirror rectangle 23 has edge lengths of 4 2 f ,
Figure imgb0001

Wie aus Fig. 1 und Fig. 2 ersichtlich umgibt das Spiegel-Rechteck 23 das Kollimator-Fokussier-Quadrat 18 in der x-y-Ebene Exy. Spiegel-Flächen 24, 25, 26, 27 der Spiegel-Elemente 19, 20, 21, 22 sind dabei parallel zu den Kollimator-Fokussier-Diagonalen 28, 29 des Kollimator-Fokussier-Quadrats 18 angeordnet.How out Fig. 1 and Fig. 2 Clearly, the mirror rectangle 23 surrounds the collimator focus square 18 in the xy plane E xy . Mirror surfaces 24, 25, 26, 27 of the mirror elements 19, 20, 21, 22 are arranged parallel to the collimator-focusing diagonals 28, 29 of the collimator-focusing square 18.

Nach Kollimation der emittierten Strahlung S durch die Kollimator-Fokussier-Anordnung 4 wird es durch die Gestaltung der Spiegel-Anordnung 5 ermöglicht, dass jeder Strahlengang der kollimierten Strahlung S zweifach reflektiert wird. Hierzu ist die Spiegel-Anordnung 5 derart ausgebildet, dass ein erstes der Spiegel-Elemente 19, 20, 21, 22 die kollimierte Strahlung S auf ein zweites der Spiegel-Elemente 19, 20, 21, 22 umlenkt, wobei das zweite der Spiegel-Elemente 19, 20, 21, 22 die Strahlung S auf den Prüfobjektaufnahmebereich 6 umlenkt. Die Spiegel-Anordnung 5 ist ferner derart ausgebildet, dass die kollimierte Strahlung S jeweils unter einem Einfalls-Winkel αEIN von im Wesentlichen 45° auf das jeweils erste und zweite der Spiegel-Elemente 19, 20, 21, 22 auftrifft. Durch welche Spiegel-Elemente 19, 20, 21, 22 eine Umlenkung der kollimierten Strahlung S stattfindet, hängt davon ab, in welchem Quadranten des Kollimator-Fokussier-Quadrats 18 die Strahlung S emittiert wurde.After collimation of the emitted radiation S by the collimator-focusing arrangement 4, the design of the mirror arrangement 5 allows each beam path of the collimated radiation S to be reflected twice. For this purpose, the mirror arrangement 5 is designed such that a first of the mirror elements 19, 20, 21, 22 deflects the collimated radiation S onto a second of the mirror elements 19, 20, 21, 22, the second mirror unit Elements 19, 20, 21, 22 the radiation S deflects to the Prüfobjektaufnahmebereich 6. The mirror arrangement 5 is further embodied in such a way that the collimated radiation S impinges on the respective first and second mirror elements 19, 20, 21, 22 at an angle of incidence .alpha..sub.IN of substantially 45.degree. Through which mirror elements 19, 20, 21, 22 a deflection of the collimated radiation S takes place depends on which quadrant of the collimator-focusing square 18 the radiation S was emitted.

In der Ausführungsvariante nach Fig. 1 und Fig. 2 sind die zweite Spiegel-Fläche 25 und die vierte Spiegel-Fläche 27 parallel zueinander und symmetrisch bezüglich der ersten Kollimator-Fokussier-Diagonalen 28 angeordnet. Entsprechend sind die erste Spiegel-Fläche 24 und die dritte Spiegel-Fläche 26 parallel zueinander und symmetrisch bezüglich der zweiten Kollimator-Fokussier-Diagonalen 29 angeordnet. Die erste Kollimator-Fokussier-Diagonale 28 fällt ferner mit einer Seitenhalbierenden 33 des als Spiegel-Quadrats ausgebildeten Spiegel-Rechtecks 23 zusammen. Ferner grenzt eine durch die erste Linse 14 und die zweite Linse 15 gebildete Linsenkante 30 an der ersten Spiegel-Fläche 24 an.In the embodiment according to Fig. 1 and Fig. 2 For example, the second mirror surface 25 and the fourth mirror surface 27 are arranged parallel to each other and symmetrically with respect to the first collimator focusing diagonal 28. Accordingly, the first mirror surface 24 and the third mirror surface 26 are arranged parallel to each other and symmetrically with respect to the second collimator focusing diagonal 29. The first collimator focusing diagonal 28 also coincides with a side bisector 33 of the mirror square 23 formed as a mirror square. Furthermore, a lens edge 30 formed by the first lens 14 and the second lens 15 adjoins the first mirror surface 24.

Die Messvorrichtung 1 ist derart gestaltet, dass die kollimierte Strahlung S nach den Reflexionen an der Spiegel-Anordnung 5 zum Prüfobjektaufnahmebereich 6 gelangt. Der Prüfobjektaufnahmebereich 6 erstreckt sich in der x-y-Ebene Exy in der Form eines Prüfobjektaufnahme-Quadrats 31. Eine Kantenlänge des Prüfobjektaufnahme-Quadrats 31 entspricht der Kantenlänge des Kollimator-Fokussier-Quadrats 18 und entspricht der doppelten Brennweite f der Linsen 14, 15, 16, 17. Eine erste Prüfobjektaufnahme-Quadrat-Diagonale 32 fällt mit der selben Seitenhalbierenden 33 des Spiegel-Rechtecks 23 zusammen wie die erste Kollimator-Fokussier-Diagonale 28. Das Prüfobjektaufnahme-Quadrat 31 und das Kollimator-Fokussier-Quadrat 18 sind entlang der Seitenhalbierenden 33 benachbart zueinander angeordnet und füllen diese genau aus. Das heißt eine Summe der Längen der ersten Prüfobjektaufnahme-Quadrat-Diagonalen 32 und der ersten Kollimator-Fokussier-Diagonalen 28 entspricht einer Länge der Seitenhalbierenden 33 des Spiegel-Rechtecks 23.The measuring device 1 is designed in such a way that the collimated radiation S reaches the test object receiving region 6 after the reflections on the mirror arrangement 5. The test object receiving area 6 extends in the xy plane E xy in the form of a test object receiving square 31. An edge length of the test object receiving square 31 corresponds to the edge length of the collimator focusing square 18 and corresponds to twice the focal length f of the lenses 14, 15, 16, 17. A first inspection object shot square diagonal 32 coincides with the same side bisector 33 of the mirror rectangle 23 as the first collimator focusing diagonal 28. The inspection object receiving square 31 and the collimator focusing square 18 are along the Side bisecting 33 arranged adjacent to each other and fill them out exactly. This means a sum of the lengths of the first inspection object receiving square diagonal 32 and the first collimating focusing diagonal 28 corresponds to a length of the side bisector 33 of the mirror rectangle 23.

Wie in Fig. 2 veranschaulicht, ist das Prüfobjekt 2 zur Vermessung innerhalb des Prüfobjektaufnahme-Quadrats 31 angeordnet. Zu detektierende Profilwände 34 des hohlrechteckförmigen Prüfobjekts 2 sind dabei parallel zu den Kanten des Prüfobjektaufnahme-Quadrats 31 ausgerichtet. So wird ermöglicht, dass die kollimierte Strahlung S senkrecht zu den Profilwänden 34 einfällt und die reflektierte Strahlung R entlang der selben Strahlengänge in entgegengesetzte Richtung zurück zum Strahlpunkt SP läuft, wo sie durch den Empfänger 10 detektierbar ist. Das Prüfobjektaufnahme-Quadrat 31 stellt einen maximalen Detektionsbereich dar. Liegt ein Profilquerschnitt eines Prüfobjekts 2 komplett im Prüfobjektaufnahme-Quadrat 31 sind alle Profilwände, welche parallel zu Kanten des Prüfobjektaufnahme-Quadrats 31 verlaufen, in vollem Umfang prüfbar.As in Fig. 2 illustrates, the test object 2 is arranged for measurement within the Prüfobjektaufnahme square 31. To be detected profile walls 34 of the hollow rectangular test object 2 are aligned parallel to the edges of the Prüfobjektaufnahme-square 31. This allows the collimated radiation S to be incident perpendicular to the profile walls 34 and the reflected radiation R to travel along the same optical path in the opposite direction back to the beam spot SP, where it is detectable by the receiver 10. The test object receiving square 31 represents a maximum detection range. If a profile cross section of a test object 2 is completely in the test object receiving square 31, all profile walls which run parallel to edges of the test object receiving square 31 can be tested in their entirety.

Die Funktionsweise der Messvorrichtung 1 ist wie folgt:

  • Der Sender 9 emittiert Strahlung S in Form von THz-Pulsen. Die Erzeugung von THz-Pulsen ist grundsätzlich bekannt. THz-Pulse werden beispielsweise optisch mittels Femtosekunden-Laserpulsen und photoleitenden Schaltern erzeugt. Wie vorab unter Bezug auf Fig. 7 beschrieben, wird die Strahlung S in der z-Richtung emittiert und auf den Rotations-Spiegel 11 fokussiert.
The operation of the measuring device 1 is as follows:
  • The transmitter 9 emits radiation S in the form of THz pulses. The generation of THz pulses is basically known. THz pulses are generated, for example, optically by means of femtosecond laser pulses and photoconductive switches. As in advance with reference to Fig. 7 described, the radiation S is emitted in the z-direction and focused on the rotation mirror 11.

Durch Rotation des Rotations-Spiegels 11 um die Rotationsachse 12 wird erreicht, dass die emittierte Strahlung S in der x-y-Ebene Exy um den Strahlpunkt SP rotiert. Jeder unter einem bestimmten Emissions-Winkel αE emittierte Strahl tastet einen definierten Prüfbereich auf dem Prüfobjekt 2 ab. Exemplarisch sind in Fig. 1 und Fig. 2 mit durchgezogenen Linien ideale Strahlen eingezeichnet. Auf eine reale Strahlausbreitung wird später in Bezug auf Fig. 4, Fig. 5 und Fig. 6 eingegangen.By rotation of the rotational mirror 11 about the axis of rotation 12 it is achieved that the emitted radiation S in the xy plane E xy rotates about the beam spot SP. Each beam emitted at a certain emission angle α E scans a defined test area on the test object 2. Exemplary are in Fig. 1 and Fig. 2 with solid lines ideal rays drawn. On a real ray propagation will be later with respect to Fig. 4 . Fig. 5 and Fig. 6 received.

Die Gesamtheit der durch Rotation erzeugten und nacheinander vom Strahlpunkt SP auslaufenden Strahlung lässt sich in vier Strahlenbündel mit einem Öffnungswinkel ao von je 90° unterteilen. Jedem Strahlenbündel ist dabei ein Quadrant des Kollimator-Fokussier-Quadrat 18 zuordenbar.The entirety of the radiation generated by rotation and expiring successively from the beam spot SP can be subdivided into four beam bundles with an opening angle ao of 90 ° each. Each bundle of rays is assigned a quadrant of the collimator-focusing square 18.

In einem ersten Schritt wird die vom Strahlpunkt SP auslaufende divergente Strahlung mittels der Linsen 14, 15, 16, 17 der ersten Kollimator-Fokussier-Anordnung 4 kollimiert. Nach den Linsen 14, 15, 16, 17 verlaufen alle in einem Quadranten des Kollimator-Fokussier-Quadrats 18 ausgesandten Strahlen parallel zueinander. So entstehen vier kollimierte Strahlengänge.In a first step, the divergent radiation emanating from the beam spot SP is collimated by means of the lenses 14, 15, 16, 17 of the first collimator-focusing arrangement 4. After the lenses 14, 15, 16, 17, all rays emitted in one quadrant of the collimator-focusing square 18 are parallel to one another. This results in four collimated beam paths.

Nach Kollimation durch die Kollimator-Fokussier-Anordnung 4 wird jeder Strahl zweifach durch die Spiegel-Anordnung 5 reflektiert. Die kollimierte Strahlung S trifft jeweils unter dem Einfall-Winkel αEIN von 45° auf das jeweilige Spiegel-Element 19, 20, 21, 22 auf.After collimation by the collimator-focusing arrangement 4, each beam is reflected twice by the mirror arrangement 5. The collimated radiation S impinges on the respective mirror element 19, 20, 21, 22 at the angle of incidence α IN of 45 °.

Beispielhaft trifft die durch die dritte Linse 16 kollimierte Strahlung unter dem Einfall-Winkel αEIN von 45° auf das zweite Spiegel-Element 20 auf und wird dort durch die zweite Spiegel-Fläche 25 zum dritten Spiegel-Element 21 reflektiert, wo die kollimierte Strahlung S wiederum unter dem Einfall-Winkel αEIN von 45° auftrifft. Die dritte Spiegel-Fläche 26 leitet die kollimierte Strahlung S zum Prüfobjektaufnahmebereich 6 weiter.By way of example, the radiation collimated by the third lens 16 impinges on the second mirror element 20 at the angle of incidence α IN of 45 °, where it is reflected by the second mirror surface 25 to the third mirror element 21, where the collimated radiation S again impinges at the angle of incidence αIN of 45 °. The third mirror surface 26 forwards the collimated radiation S to the test object receiving region 6.

Nach den Reflexionen trifft die kollimierte Strahlung S senkrecht auf die Profilwände 34 des Prüfobjekts 2. Durch die Gestaltung der Messvorrichtung 1 werden die THz-Pulse von der Sender-Empfänger-Einheit 3 somit senkrecht auf das Prüfobjekt 2 eingestrahlt.After the reflections, the collimated radiation S impinges perpendicular to the profile walls 34 of the test object 2. By the design of the measuring device 1, the THz pulses from the transmitter-receiver unit 3 are thus radiated perpendicular to the test object 2.

Wie zuvor beschrieben, wird eine Abstrahlrichtung der vom Strahlpunkt SP ausgehenden Strahlung S durch Rotation des Rotationsspiegels 11 variiert. In Fig. 1 und Fig. 2 ist eine Rotation der emittierten Strahlung S in Drehrichtung 13 dargestellt. Nacheinander stellen sich so verschiedene Strahlengänge ein, wobei die Profilwände 34 des Prüfobjekts 2 in Drehrichtung 13 um den Strahlpunkt SP nacheinander vollständig abgetastet werden. Die einzelnen Profilwände 34 des Prüfobjekts 2 werden nacheinander geprüft. Entlang der jeweiligen Profilwand 34 verläuft eine Bewegungsrichtung der Strahlung S jedoch entgegen der Drehrichtung 13, was insbesondere aus Fig. 2 ersichtlich ist.As described above, an emission direction of the radiation S emanating from the beam spot SP is varied by rotation of the rotation mirror 11. In Fig. 1 and Fig. 2 a rotation of the emitted radiation S in the direction of rotation 13 is shown. One after the other, so different beam paths, wherein the profile walls 34 of the test object 2 in the direction of rotation 13 are scanned sequentially completely around the beam spot SP. The individual profile walls 34 of the test object 2 are checked one after the other. Along the respective profile wall 34, however, a direction of movement of the radiation S runs counter to the direction of rotation 13, which is in particular Fig. 2 is apparent.

Das Prüfobjekt 2 ist derart anzuordnen, dass dessen Mittellängsachse 35 entlang einer zweiten z-Achse Z2 durch die x-y-Ebene Exy im Prüfobjektaufnahmebereich 6 verläuft und eine Extrusionsrichtung des Prüfobjekts 2 parallel zur z-Achse ist.The test object 2 is to be arranged such that its central longitudinal axis 35 extends along a second z-axis Z 2 through the xy plane E xy in the test object receiving region 6 and an extrusion direction of the test object 2 is parallel to the z-axis.

Die am Prüfobjekt 2 reflektierte Strahlung R bzw. die reflektierten THz-Pulse laufen zumindest teilweise entlang der gleichen Strahlengänge zurück zu der Sender-Empfänger-Einheit 3. Die reflektierte Strahlung R wird mittels der Spiegel-Anordnung 5 wieder zweimal reflektiert und in Richtung des Empfängers 10 umgelenkt. Die Kollimator-Fokussier-Anordnung 4 fokussiert die reflektierte Strahlung R im gemeinsamen Brennpunkt B1 der ersten Kollimator-Fokussier-Anordnung 4. Der Empfänger 10 detektiert die fokussierte Strahlung R. Der Aufbau des Empfängers 10 ist grundsätzlich bekannt. THz-Pulse werden beispielsweise durch optisches Abtasten (Sampling) mit Femtosekunden-Laserpulsen detektiert. Die detektierte Strahlung R wird durch die Steuereinheit 7 ausgewertet.The radiation R reflected on the test object 2 or the reflected THz pulses travel at least partially along the same beam paths back to the transceiver unit 3. The reflected radiation R is reflected twice again by means of the mirror arrangement 5 and in the direction of the receiver 10 diverted. The collimator-focusing arrangement 4 focuses the reflected radiation R at the common focus B 1 of the first collimator-focusing arrangement 4. The receiver 10 detects the focused radiation R. The structure of the receiver 10 is basically known. THz pulses are detected, for example, by optical sampling with femtosecond laser pulses. The detected radiation R is evaluated by the control unit 7.

Durch die erfindungsgemäße Messvorrichtung 1 ist das hohlrechteckförmige Prüfobjekt 2 in vollem Umfang abtastbar und vermessbar, ohne dass eine Drehung des Prüfobjekts 2 um dessen Mittellängsachse 35 oder eine Translationsbewegung des Prüfobjekts notwendig sind. Dies ist besonders vorteilhaft, wenn eine Vermessung des Prüfobjekts 2 während eines Extrusionsprozesses erfolgt. Eine Vermessung des Prüfobjekts 2 kann daher inline erfolgen. Eine vollumfängliche Messung des Prüfobjekts 2 ist mit nur einer Sender-Empfänger-Einheit 3 erreichbar.By means of the measuring device 1 according to the invention, the hollow-rectangular test object 2 can be scanned in its entirety and measured, without any need for a rotation of the test object 2 about its central longitudinal axis 35 or a translational movement of the test object. This is particularly advantageous if a measurement of the test object 2 takes place during an extrusion process. A measurement of the test object 2 can therefore be done inline. A full measurement of the test object 2 can be achieved with only one transmitter-receiver unit 3.

In Fig. 4 ist ferner eine reale Strahlausbreitung der Strahlung S, R eingezeichnet. Die Strahlung S wird dabei wie vorab beschrieben mittels der Sender-Empfänger-Einheit 3 emittiert. Die emittierte Strahlung S weist eine Strahldivergenz auf. Die Strahlung S, R weist einen Divergenzwinkel ΔαR in der x-y-Ebene Exy auf. Durch den Divergenzwinkel ΔαR ist die Strahlung S, die auf die Linsen 14, 15, 16, 17 trifft, einstellbar und somit auch ein Durchmesser der kollimierten Strahlung S. Die kollimierte Strahlung S trifft bei einer realen Strahlausbreitung nicht punktförmig auf das Prüfobjekt 2, sondern in einem Messbereich. Die Größe des Messbereichs hängt von dem Divergenzwinkel ΔαR ab. Trotz der divergenten Strahlausbreitung trifft die Strahlung S bzw. der jeweilige THz-Puls senkrecht auf die Profilwände 34 des Prüfobjekts 2, und zu den zu gleichen Zeitpunkten. Hierdurch wird gewährleistet, dass die reflektierte Strahlung R eine hohe Signalqualität aufweist und insbesondere die reflektierten THz-Pulse nicht verwaschen und in ihrer Amplitude abgeschwächt sind.In Fig. 4 Furthermore, a real beam propagation of the radiation S, R is shown. The radiation S is emitted as described above by means of the transmitter-receiver unit 3. The emitted radiation S has a beam divergence. The radiation S, R has a divergence angle Δα R in the xy plane E xy . Due to the divergence angle Δα R , the radiation S which impinges on the lenses 14, 15, 16, 17 is adjustable and thus also a diameter of the collimated radiation S. The collimated radiation S does not strike the test object 2 punctually in the case of a real beam propagation. but in a measuring range. The size of the measuring range depends on the divergence angle Δα R. Despite the divergent beam propagation, the radiation S or the respective THz pulse impinges perpendicularly on the profile walls 34 of the test object 2, and at the same points in time. This ensures that the reflected radiation R has a high signal quality and in particular the reflected THz pulses are not washed out and are attenuated in their amplitude.

Nachfolgend ist anhand Fig. 3 ein zweites Ausführungsbeispiel der Erfindung beschrieben. Im Unterschied zur Messvorrichtung 1 der ersten Ausführungsvariante dient die Messvorrichtung 1a insbesondere zur Vermessung von Prüfobjekten 2a mit hohlzylinderförmigem Querschnitt. Bauteile der Messvorrichtung 1a, welche mit Teilen der ersten Ausführungsvariante der Messvorrichtung 1 identisch sind, erhalten die selben Bezugszeichen.The following is based on Fig. 3 A second embodiment of the invention described. In contrast to the measuring device 1 of the first embodiment variant, the measuring device 1a is used in particular for measuring test objects 2a with a hollow-cylindrical cross-section. Components of the measuring device 1a, which with parts of the first embodiment the measuring device 1 are identical, the same reference numerals.

Die Sender-Empfänger-Einheit 3, die erste Kollimator-Fokussier-Anordnung 4 und die Spiegel-Anordnung 5 der Messvorrichtung 1a sind identisch ausgebildet zur Messvorrichtung 1. Im Unterschied zum ersten Ausführungsbeispiel umfasst die Messvorrichtung 1a eine zweite Kollimator-Fokussier-Anordnung 37 zur Fokussierung der mittels der ersten Kollimator-Fokussier-Anordnung 4 kollimierten Strahlung S in einen gemeinsamen Prüfobjekt-Brennpunkt B2 und zur Umformung der reflektierten Strahlung R in reflektierte kollimierte Strahlung R.The transmitter-receiver unit 3, the first collimator-focusing arrangement 4 and the mirror arrangement 5 of the measuring device 1a are identical to the measuring device 1. In contrast to the first embodiment, the measuring device 1a comprises a second collimator-focusing arrangement 37 for Focusing the radiation S collimated by means of the first collimator-focusing arrangement 4 into a common test object focal point B 2 and for converting the reflected radiation R into reflected collimated radiation R.

Die zweite Kollimator-Fokussier-Anordnung 37 ist im Prüfobjektaufnahmebereich 6 konzentrisch zum Prüfobjekt-Brennpunkt B2 angeordnet. Die zweite Kollimator-Fokussier-Anordnung 37 ist identisch zur ersten Kollimator-Fokussier-Anordnung 4 ausgebildet und umfasst entsprechend vier als plankonvexe Linsen 14a, 15a, 16a, 17a ausgebildete Kollimator-Fokussier-Elemente. Entsprechend bilden auch die Linsen 14a, 15a, 16a, 17a der zweiten Kollimator-Fokussier-Anordnung 37 ein Kollimator-Fokussier-Quadrat 18a. Das Kollimator-Fokussier-Quadrat 18a umfasst eine erste Kollimator-Fokussier-Diagonale 28a und eine zweite Kollimator-Fokussier-Diagonale 29a. Die zweite Kollimator-Fokussier-Anordnung 37 ist derart im Prüfobjektaufnahmebereich 6 angeordnet, dass die erste Kollimator-Fokussier-Diagonale 28a der zweiten Kollimator-Fokussier-Anordnung 37 mit der Seitenhalbierenden 33 des als Quadrat ausgebildeten Spiegel-Rechtecks 23 zusammenfällt. Vereinfacht gesagt, ist die zweite Kollimator-Fokussier-Anordnung 37 in der x-y-Ebene Exy deckungsgleich mit dem in Zusammenhang mit den Fig. 1 und Fig. 2 beschriebenen Prüfobjektaufnahme-Quadrat 31 ausgebildet.The second collimator focusing arrangement 37 is arranged in the test object receiving area 6 concentrically with the test object focal point B 2 . The second collimator-focusing arrangement 37 is formed identically to the first collimator-focusing arrangement 4 and comprises four collimator-focusing elements formed as plano-convex lenses 14a, 15a, 16a, 17a. Similarly, the lenses 14a, 15a, 16a, 17a of the second collimator focus assembly 37 also form a collimator focus square 18a. The collimator focus square 18a includes a first collimator focus diagonal 28a and a second collimator focus diagonal 29a. The second collimator focusing arrangement 37 is arranged in the test object receiving area 6 in such a way that the first collimator focusing diagonal 28a of the second collimator focusing arrangement 37 coincides with the side bisector 33 of the square mirror rectangle 23. Put simply, the second collimator-focusing arrangement 37 in the xy plane E xy is congruent with that associated with FIG Fig. 1 and Fig. 2 Test object receiving square 31 described formed.

Die Funktionsweise der Messvorrichtung 1a ist wie folgt:

  • Nach Bereitstellung der Messvorrichtung 1a wird das hohlzylinderförmige, als Rohr ausgebildete Prüfobjekt 2a derart im Prüfobjektaufnahmebereich 6 angeordnet, dass eine Mittellängsachse 35a durch den Prüfobjekt-Brennpunkt B2 läuft und eine Extrusionsrichtung des Prüfobjekts 2a parallel zur z-Achse ist bzw. senkrecht zur x-y-Ebene Exy. Anschließend wird wie vorab im Zusammenhang mit Fig. 1 und Fig. 2 beschrieben, rotierende THz-Strahlung S durch den Sender 9 emittiert und durch die erste Kollimator-Fokussier-Anordnung 4 kollimiert. Anschließend wird mittels der Spiegel-Anordnung 5 die kollimierte Strahlung S zum Prüfobjektaufnahmebereich 6 umgelenkt. Die senkrecht auf die Linsen 14a, 15a, 16a, 17a einfallende Strahlung S wird durch die zweite Kollimator-Fokussier-Anordnung 37 auf den Prüfobjekt-Brennpunkt B2 fokussiert. Dies hat zur Folge, dass die THz-Strahlung S senkrecht zur Oberfläche des hohlzylinderförmigen Prüfobjekts 2a, also radial zur selbigen einfällt. Dies ermöglicht, dass die reflektierte Strahlung R entlang der gleichen Strahlengänge in entgegengesetzter Richtung zurück zum Strahlpunkt SP läuft, wo sie durch den Empfänger 10 detektiert wird.
The operation of the measuring device 1a is as follows:
  • After provision of the measuring device 1a, the hollow cylindrical test object 2a designed as a tube is arranged in the test object receiving region 6 such that a central longitudinal axis 35a passes through the test object focal point B 2 and an extrusion direction of the test object 2a is parallel to the z axis or perpendicular to the xy axis. Level E xy . Subsequently, as related in advance Fig. 1 and Fig. 2 described rotating THz radiation S emitted by the transmitter 9 and collimated by the first collimator-focusing arrangement 4. Subsequently, by means of the mirror arrangement 5, the collimated radiation S is deflected to the test object receiving area 6. The radiation S incident perpendicular to the lenses 14a, 15a, 16a, 17a is focused by the second collimator-focusing arrangement 37 onto the test object focal point B 2 . This has the consequence that the THz radiation S perpendicular to the surface of the hollow cylindrical test object 2a, that is incident radially to the same. This allows the reflected radiation R to travel along the same beam path in the opposite direction back to the beam spot SP where it is detected by the receiver 10.

In der gezeigten Ausführungsvariante der Messvorrichtung 1a beträgt ein maximaler detektierbarer Rohrdurchmesser des Prüfobjekts 2a 2(f-p) wobei p eine maximale Dicke der Linsen 14a, 15a, 16a, 17a beschreibt. Idealerweise ist die Linsendicke p deutlich kleiner als die Brennweite f.In the embodiment of the measuring device 1a shown, a maximum detectable pipe diameter of the test object 2a is 2 (f-p) where p denotes a maximum thickness of the lenses 14a, 15a, 16a, 17a. Ideally, the lens thickness p is significantly smaller than the focal length f.

In Fig. 5 und Fig. 6 ist ferner eine reale Strahlausbreitung der Strahlung S, R im Zusammenhang mit der zweiten Ausführungsvariante der Messvorrichtung 1a gezeigt. Wie erläutert, wird im Rahmen der Vermessung des hohlzylinderförmigen Prüfobjekts 2a die kollimierte THz-Strahlung S durch die Linsen 14a, 15a, 16a, 17a fokussiert und auf das Prüfobjekt 2a gerichtet. Ein Fokuspunkt liegt jedoch nicht auf dem Prüfobjekt 2a sondern im Prüfobjekt-Brennpunkt B2. Hierdurch trifft jeder Punkt einer einfallenden Wellenfront eines THz-Pulses zeitgleich und senkrecht auf das konzentrisch zum Prüfobjekt-Brennpunkt B2 angeordnete Prüfobjekt 2a. Hierdurch wird die THz-Strahlung S unabhängig von einem Rohrdurchmesser immer ideal reflektiert. Somit ist eine Detektionsgeometrie optimal auf eine Geometrie des Prüfobjekts 2a ausgelegt. Die auf dem Prüfobjekt-Brennpunkt B2 einfallende Strahlung S und die vom Strahlpunkt SP ausgehende Strahlung S weisen den gleichen Divergenzwinkel ΔαR auf, wobei der Divergenzwinkel ΔαR unabhängig von einer Abstrahlungsrichtung ist.In Fig. 5 and Fig. 6 Furthermore, a real beam propagation of the radiation S, R in connection with the second embodiment of the measuring device 1a is shown. As explained, as part of the measurement of the hollow cylindrical test object 2a, the collimated THz radiation S is focused through the lenses 14a, 15a, 16a, 17a and directed to the test object 2a. However, a focal point is not on the test object 2a but in the test object focal point B 2 . As a result, every point of an incident hits Wavefront of a THz pulse at the same time and perpendicular to the concentric to the test object focus B 2 arranged test object 2a. As a result, the THz radiation S is always ideally reflected independently of a pipe diameter. Thus, a detection geometry is optimally designed for a geometry of the test object 2a. The radiation S incident on the test object focal point B 2 and the radiation S emanating from the beam spot SP have the same divergence angle Δα R , the divergence angle Δα R being independent of a radiation direction.

In Fig. 6 ist die Messvorrichtung 1a gezeigt, wobei emittierte Strahlung S auf eine Kante des Kollimator-Fokussier-Quadrats 18 trifft, an der die vierte Linse 17 und die erste Linse 14 unter Bildung des Winkels αKF von 90° zusammenfallen. Die betrachtete Strahlung S trifft also auf zwei Linsen 14, 17 und wird aufgespalten, sodass Teilstrahlungen S1 bzw. S2 gebildet werden, welche zwei Messbereiche auf dem Prüfobjekt 2a ausbilden. Wie Fig. 6 zu entnehmen, werden in diesem speziellen Fall zwei nahezu gegenüberliegende Bereiche des Prüfobjekts 2a abgetastet. Ein Messsignal setzt sich so aus Reflexionen in diesen beiden Bereichen zusammen. Eine Überlagerung der Messsignale gibt Aufschluss über die Positionierung des Prüfobjekts 2a im Aufbau. Fallen die Reflexionen zusammen, so ist das Prüfobjekt 2a zentriert. Fallen die Reflexionen nicht zusammen, ist einer der Messbereiche näher an einer der Linsen 14a, 15a, 16a, 17a. Da der THz-Strahl S die Ecke des Kollimator-Fokussier-Quadrats 18 überstreicht, ändert sich das Verhältnis der Stärke der beiden Reflexionen in aufeinanderfolgenden Messungen. Somit kann jede der beiden Signalkomponenten eindeutig auf die Reflexion von einem Bereich zurückgeführt werden.In Fig. 6 the measuring device 1a is shown, wherein emitted radiation S strikes an edge of the collimator-focusing square 18, at which the fourth lens 17 and the first lens 14 coincide to form the angle α KF of 90 °. The considered radiation S thus impinges on two lenses 14, 17 and is split, so that partial radiations S1 and S2 are formed, which form two measuring ranges on the test object 2a. As Fig. 6 can be seen in this particular case, two nearly opposite areas of the test object 2a are scanned. A measurement signal is thus composed of reflections in these two areas. A superposition of the measurement signals provides information about the positioning of the test object 2a in the structure. If the reflections coincide, the test object 2a is centered. If the reflections do not coincide, one of the measuring ranges is closer to one of the lenses 14a, 15a, 16a, 17a. As the THz beam S passes over the corner of the collimator focus square 18, the ratio of the strength of the two reflections changes in successive measurements. Thus, each of the two signal components can be uniquely attributed to the reflection from a region.

Nachfolgend ist anhand Fig. 9 ein drittes Ausführungsbeispiel der Erfindung beschrieben. Eine Messvorrichtung 1b gemäß der dritten Ausführungsvariante weicht von den Messvorrichtungen 1, 1a in erster Linie durch die Gestaltung einer Spiegelanordnung 39 ab. Die Spiegel-Anordnung 39 ist rechteckförmig als Spiegel-Rechteck 40 ausgebildet. Das Spiegel-Rechteck 40 umfasst vier Spiegel-Elemente 41, 42, 43, 44, welche zusammen das Spiegel-Rechteck 40 bilden. Zusätzlich umfasst die Spiegel-Anordnung 39 ein fünftes Spiegel-Element 45, welcher innerhalb des Spiegel-Rechtecks 40 angeordnet ist. Die einander gegenüberliegenden Spiegel-Elemente 41, 43 sind in Form und Größe identisch ausgebildet. Entsprechend sind die einander gegenüberliegenden Spiegel-Elemente 42, 44 in Form und Größe identisch ausgebildet. Die Spiegel-Elemente 41, 43 unterscheiden sich jedoch hinsichtlich einer Kantenlänge von den Spiegel-Elemente 42, 44. Das fünfte Spiegel-Element 45 verläuft jeweils parallel zu den Spiegel-Elementen 42, 44 zwischen denselbigen. Bei dem Aufbau gemäß Fig. 9 wird die Strahlung S zwischen der ersten Kollimator-Fokussier-Anordnung 4 und dem Prüfobjektaufnahmebereich 6 dreimal reflektiert. Dabei beträgt eine Länge des Strahlengangs 10f. Hinsichtlich des weiteren Aufbaus und der weiteren Funktionsweise wird auf das erste Ausführungsbeispiel verwiesen.The following is based on Fig. 9 A third embodiment of the invention described. A measuring device 1b according to the third embodiment differs from the measuring devices 1, 1a primarily by the design of a mirror assembly 39 from. The mirror arrangement 39 is rectangular in shape as a mirror rectangle 40. The mirror rectangle 40 comprises four mirror elements 41, 42, 43, 44, which together form the mirror rectangle 40. In addition, the mirror arrangement 39 comprises a fifth mirror element 45, which is arranged within the mirror rectangle 40. The mutually opposite mirror elements 41, 43 are identical in shape and size. Accordingly, the opposing mirror elements 42, 44 are identical in shape and size. However, the mirror elements 41, 43 differ in edge length from the mirror elements 42, 44. The fifth mirror element 45 extends parallel to the mirror elements 42, 44 between them. In the structure according to Fig. 9 For example, the radiation S between the first collimator focusing arrangement 4 and the inspection object receiving area 6 is reflected three times. In this case, a length of the beam path 10f. With regard to the further structure and further operation, reference is made to the first embodiment.

Grundsätzlich ist es in weiteren alternativen Ausführungsvarianten auch vorstellbar, mehr als zwei oder drei Reflexionen zwischen erster Kollimator-Fokussier-Anordnung 4 und Prüfobjektaufnahmebereich 6 vorzusehen. Ferner ist es prinzipiell auch möglich, dass die erste Kollimator-Fokussier-Anordnung 4 und/oder die zweite Kollimator-Fokussier-Anordnung 37 als Kollimator-Fokussier-Polygone mit mehr als vier Ecken ausgeführt sind. Ein Großteil von zu vermessenden Prüfobjekten weist jedoch Kanten auf, welche rechtwinklig zueinander sind. Daher bilden insbesondere die Ausführungsvarianten der Messvorrichtung 1 und der Messvorrichtung 1b bevorzugte Lösungen.In principle, it is also conceivable in further alternative embodiments to provide more than two or three reflections between first collimator-focusing arrangement 4 and test object receiving area 6. Furthermore, it is also possible in principle for the first collimator-focusing arrangement 4 and / or the second collimator-focusing arrangement 37 to be designed as collimator-focusing polygons having more than four corners. However, a majority of test objects to be measured has edges that are perpendicular to each other. Therefore, in particular, the embodiments of the measuring device 1 and the measuring device 1b form preferred solutions.

Claims (19)

  1. Measuring device for measuring test objects having
    - a transmitter-receiver unit (3; 3a) having
    - a transmitter (9) for emitting terahertz radiation (S) in an x-y plane (Exy) starting from a beam point (SP) and
    - an associated receiver (10) for detecting terahertz radiation (R) reflected at a test object (2; 2a),
    - a first collimator-focussing arrangement (4)
    - having collimator-focussing elements (14, 15, 16, 17) for transforming the emitted terahertz radiation (S) into collimated radiation and for focussing the reflected terahertz radiation (R) onto the beam point (SP),
    - wherein the collimator-focussing elements (14, 15, 16, 17) are arranged in such a way that two adjacent collimator-focussing elements (14, 15, 16, 17) enclose an angle (αKF) of 90° in the x-y plane (Exy), so that the collimator-focussing elements (14, 15, 16, 17) form a collimator-focussing square (18),
    - wherein a common focal point (B1) of the collimator-focussing elements (14, 15, 16, 17) in the x-y plane (Exy) lies in the beam point (SP),
    - a test object receiving area (6) lying in the x-y plane (Exy) for positioning the test object (2; 2a),
    - at least one mirror arrangement (5; 39)
    - having mirror elements (19, 20, 21, 22; 41, 42, 43, 44) for deflecting the collimated terahertz radiation (S) and the reflected terahertz radiation (R) between the collimator-focussing arrangement (4) and the test object receiving area (6),
    - wherein the mirror elements (19, 20, 21, 22; 41, 42, 43, 44) are arranged in such a way that in each case two mirror elements (19, 20, 21, 22; 41, 42, 43, 44) enclose an angle (αSE) of 90° in the x-y plane (Exy), so that the mirror elements (19, 20, 21, 22; 41, 42, 43, 44) form a mirror rectangle (23; 40),
    - wherein mirror surfaces (24, 25, 26, 27) of the mirror rectangle (23; 40) are parallel to one of the collimator-focussing diagonals (28, 29) of the collimator-focussing square (18),
    - wherein the collimator-focussing elements (14, 15, 16, 17) lie within the mirror rectangle (23; 40), and
    - a control unit (7) for evaluating the detected terahertz radiation (R).
  2. Measuring device according to Claim 1, characterised in that two adjacent collimator-focussing elements (14, 15, 16, 17) are perpendicular to one another in the x-y plane (Exy) and, in addition, two adjacent mirror elements (19, 20, 21, 22; 41, 42, 43, 44) are perpendicular to one another in the x-y plane (Exy).
  3. Measuring device according to Claim 1 or 2, characterised in that the collimator-focussing elements (14, 15, 16, 17) are formed identically, in particular in shape and/or size.
  4. Measuring device according to any one of the preceding claims, characterised in that the collimator-focussing elements (14, 15, 16, 17) are formed as lenses.
  5. Measuring device according to any one of the preceding claims, characterised in that the mirror elements (19, 20, 21, 22) are formed identically, in particular in shape and/or size.
  6. Measuring device according to any one of the preceding claims, characterised in that the mirror arrangement (5; 39) is formed in such a way that a first mirror element (19, 20, 21, 22; 41, 42, 43, 44) deflects the collimated radiation (S) onto a second mirror element (19, 20, 21, 22; 41, 42, 43, 44), wherein the second mirror element (19, 20, 21, 22; 41, 42, 43, 44) deflects the radiation (S) onto the test object receiving area (6).
  7. Measuring device according to Claim 6, characterised in that the mirror arrangement (5; 39) is formed in such a way that the collimated radiation (S) impinges on the first mirror element (19, 20, 21, 22; 41, 42, 43, 44) and the second mirror element (19, 20, 21, 22; 41, 42, 43, 44) at an angle of incidence (αEIN) of 45° in each case.
  8. Measuring device according to any one of the preceding claims, characterised in that the transmitter-receiver unit (3; 3a) is formed in such a way that the emitted radiation (S) can be rotated about the beam point (SP) in the x-y plane (Exy).
  9. Measuring device according to Claim 8, characterised in that the transmitter-receiver unit (3; 31) is designed in such a way that it can be arranged rotatably about a rotational axis (12) in the beam point (SP).
  10. Measuring device according to Claim 8, characterised in that the transmitter-receiver unit (3; 3a) has a rotational mirror (11) which can be rotated about a rotational axis (12) running perpendicular to the x-y plane (Exy) through the beam point (SP).
  11. Measuring device according to Claim 10, characterised in that the rotational mirror (11) is tilted about a tilt angle (αK) of 45° against the x-y plane (Exy).
  12. Measuring device according to any one of the preceding claims, characterised in that a second collimator-focussing arrangement (37) is arranged in the test object receiving area (6) concentrically to a test object focal point (B2).
  13. Measuring device according to Claim 12, characterised in that the first collimator-focussing arrangement (4) and the second collimator-focussing arrangement (37) are formed identically.
  14. Measuring device according to Claim 12 or 13, characterised in that a respective collimator-focussing diagonal (28; 32) of the first collimator-focussing arrangement (4) and of the second collimator-focussing arrangement (37) coincides with a median line (33) of the mirror rectangle (23).
  15. Measuring device according to any one of the preceding claims, characterised in that the control unit (6) is designed to measure the test object by means of the terahertz radiation based on the measurement of a delay time of the terahertz radiation which is reflected at boundary layers, e.g. pipe outer wall, pipe inner wall and abutting material layers within the test object (2).
  16. Method for measuring test objects (2, 2a), comprising the steps:
    - providing a measuring device (1; 1a; 1b) according to at least one of Claims 1 to 14,
    - positioning a test object (2; 2a) in such a way that its central longitudinal axis (35; 35a) runs through the x-y plane (Exy) in the test object receiving area (6),
    - emitting terahertz radiation by means of the transmitter (9),
    - collimating the emitted terahertz radiation (S) to transform the emitted terahertz radiation (S) into collimated terahertz radiation by means of the first collimator-focussing arrangement (4),
    - deflecting the collimated terahertz radiation (S) by means of the mirror arrangement (5; 39) to the test object receiving area (6),
    - reflecting the collimated terahertz radiation (S) at the test object (2; 2a),
    - deflecting the reflected terahertz radiation (R) by means of the mirror arrangement (5; 39) in the direction of the receiver (10),
    - focussing the reflected terahertz radiation (R) by means of the first collimator-focussing arrangement (4) in the common focal point (B1) of the collimator-focussing elements (14, 15, 16, 17),
    - detecting the focussed terahertz radiation (R) by means of the receiver (10) and
    - evaluating the detected terahertz radiation (R).
  17. Method according to Claim 16, characterised in that the emitted terahertz radiation (S) rotates about the beam point (SP).
  18. Method according to Claim 16 or 17, characterised in that the emitted terahertz radiation (S) and the reflected terahertz radiation (R) at least partly have the same beam path.
  19. Method according to any one of Claims 16 or 18, characterised in that a test object (2) consisting of plastic is measured by measuring a delay time of the terahertz radiation which is reflected at boundary layers, in particular at surfaces of the test object (2), e.g. of a pipe outer wall and/or pipe inner wall and/or abutting material layers within the test object (2).
EP15747367.9A 2014-07-18 2015-06-03 Measuring device and method for measuring test objects Active EP3169505B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014214046.3A DE102014214046B3 (en) 2014-07-18 2014-07-18 Measuring device and method for measuring test objects
PCT/DE2015/100221 WO2016008470A1 (en) 2014-07-18 2015-06-03 Measuring device and method for measuring test objects

Publications (2)

Publication Number Publication Date
EP3169505A1 EP3169505A1 (en) 2017-05-24
EP3169505B1 true EP3169505B1 (en) 2018-04-25

Family

ID=53783534

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15747367.9A Active EP3169505B1 (en) 2014-07-18 2015-06-03 Measuring device and method for measuring test objects

Country Status (3)

Country Link
EP (1) EP3169505B1 (en)
DE (1) DE102014214046B3 (en)
WO (1) WO2016008470A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024154070A1 (en) * 2023-01-18 2024-07-25 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Measuring device and positioning device and method for relative positioning of the measuring device with a thz device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015122205B4 (en) 2015-12-18 2022-11-03 Inoex Gmbh Terahertz measurement method and terahertz measurement device for determining a layer thickness or a distance of a measurement object
DE102016109087A1 (en) * 2016-05-18 2017-11-23 Inoex Gmbh Method for controlling and controlling pipe extrusion plants
DE102018122965B4 (en) 2018-09-19 2021-10-14 INOEX GmbH Innovationen und Ausrüstungen für die Extrusionstechnik THz measuring device and THz measuring method for the determination of defects in objects to be measured
CN109683191B (en) * 2018-11-26 2023-07-21 山东航天电子技术研究所 Testing method of X-ray collimator
DE102018131370A1 (en) * 2018-12-07 2020-06-10 INOEX GmbH Innovationen und Ausrüstungen für die Extrusionstechnik Measuring system and method for measuring a measurement object, in particular a plastic profile
DE102021125111A1 (en) 2021-09-28 2023-03-30 CiTEX Holding GmbH THz measuring device and THz measuring method for measuring a conveyed test object

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2198858B (en) * 1984-03-02 1989-05-24 British Aerospace Surveillance apparatus
WO1995007471A1 (en) * 1993-09-07 1995-03-16 Laserscore, Inc. Method and apparatus for detecting the presence and location of an object in a field
ATE260458T1 (en) * 1997-11-19 2004-03-15 Inoex Gmbh DEVICE FOR DEFECT DETECTION AND/OR WALL THICKNESS MEASUREMENT OF CONTINUOUS BELTS OR PLASTIC PIPES WITH ULTRASONIC SIGNALS
US8054461B2 (en) * 2008-09-30 2011-11-08 Hewlett-Packard Development Company, L.P. Systems for performing Raman spectroscopy
JP2011099816A (en) * 2009-11-09 2011-05-19 Sony Corp Condenser lens and three-dimensional distance measuring device
DE102011078539A1 (en) * 2011-06-08 2012-12-13 Rohde & Schwarz Gmbh & Co. Kg Method and device for expanding the illumination of a test object
GB201300016D0 (en) * 2013-01-02 2013-02-13 Proton Products Ltd Measurement of industrial products manufactured by extrusion techniques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024154070A1 (en) * 2023-01-18 2024-07-25 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Measuring device and positioning device and method for relative positioning of the measuring device with a thz device

Also Published As

Publication number Publication date
WO2016008470A1 (en) 2016-01-21
DE102014214046B3 (en) 2015-10-01
EP3169505A1 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
EP3169505B1 (en) Measuring device and method for measuring test objects
EP3071927B1 (en) Measuring device and method for measuring test objects
EP3265748B1 (en) Device and method for measuring the wall thickness of a tube
EP3443297B1 (en) Terahertz measuring apparatus for measuring test object and a terahertz measurement method
EP3704442B1 (en) Terahertz measuring method and terahertz measuring device for measuring pipes
DE202006012038U1 (en) Optical distance measuring device
DE10051302C2 (en) Laser distance measuring device for close and long range with special receiver
DE10341548A1 (en) Optoelectronic detection device
WO2015027994A1 (en) Measuring device for reflection measurements of test objects and method for measuring radiation reflected on test objects
EP3161410B1 (en) Measuring device and method of measuring objects to be controlled
DE2129110C3 (en) Method for checking metallic weld seams for freedom from defects by means of ultrasound
EP3827215B1 (en) Apparatus for determining the diameter and/or the outer contour of a strand-shaped object
WO2024068294A1 (en) Measuring method for euv reflectometry, and euv reflectometer
DE69317702T2 (en) Optical angle measuring arrangement
EP3349042B1 (en) Surveillance sensor and floor-bound vehicle
WO2021224254A1 (en) Testing device for an active optical sensor
DE202016008433U1 (en) Terahertz measuring device for measuring test objects using terahertz radiation
DE3408106C2 (en)
DE10143755C1 (en) Ultrasonic testing of defects close to surface in workpiece involves measuring offset between point at which ultrasonic beam reaches surface and point at which it leaves surface
DE102010037403B4 (en) Arrangement for measuring bending
DE3219388C2 (en) Optical-electrical measuring device for measuring the position and / or the dimensions of objects
EP4446695A1 (en) Thz measuring method and thz measuring device for measuring a strand
DE102022123851A1 (en) Radar for measuring a distance to a measurement object using the transit time principle
DE202020101894U1 (en) Photoelectric sensor with cover
DE102019002757A1 (en) OPTICAL MEASURING DEVICE, OPTICAL MEASURING SYSTEM AND OPTICAL MEASURING METHOD

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20180116

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 992409

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015004048

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180425

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502015004048

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B29C0047920000

Ipc: B29C0048920000

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180726

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015004048

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180603

26N No opposition filed

Effective date: 20190128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180603

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180425

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150603

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180825

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 992409

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200603

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240802

Year of fee payment: 10