EP3165936B1 - Method and device for removing signal interference - Google Patents

Method and device for removing signal interference Download PDF

Info

Publication number
EP3165936B1
EP3165936B1 EP15192818.1A EP15192818A EP3165936B1 EP 3165936 B1 EP3165936 B1 EP 3165936B1 EP 15192818 A EP15192818 A EP 15192818A EP 3165936 B1 EP3165936 B1 EP 3165936B1
Authority
EP
European Patent Office
Prior art keywords
signal
receiving
switching
radio
monitoring receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15192818.1A
Other languages
German (de)
French (fr)
Other versions
EP3165936A1 (en
Inventor
Philipp Strobel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohde and Schwarz GmbH and Co KG
Original Assignee
Rohde and Schwarz GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohde and Schwarz GmbH and Co KG filed Critical Rohde and Schwarz GmbH and Co KG
Priority to EP15192818.1A priority Critical patent/EP3165936B1/en
Publication of EP3165936A1 publication Critical patent/EP3165936A1/en
Application granted granted Critical
Publication of EP3165936B1 publication Critical patent/EP3165936B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0822Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection according to predefined selection scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/12Frequency diversity

Definitions

  • the invention relates to a method and a device for eliminating signal interference and, in particular, to a monitoring receiver in which signal interference in a received signal is eliminated.
  • a switch is made between different receiving antennas and / or receiving frequencies in order to carry out certain measurements. For example, by switching between different receiving antennas, a frequency channel located on a receiving frequency can be monitored and, at the same time, a radio signal source can be targeted in parallel on this receiving frequency. Furthermore, by periodically switching between two reception frequencies, two frequency channels can be monitored and / or measured / classified at the same time. Switching between the receiving antennas and / or receiving frequencies can, however, lead to signal interference within the received signal, i.e. the audio information contained in the received radio signals is disturbed, whereby it is usually disturbed in such a way that it is unusable for further evaluation.
  • the EP 1 111 802 A1 shows an apparatus for reducing impulse noise in an audio signal.
  • this object is achieved by a monitoring receiver having the features specified in claim 1.
  • the invention also provides a method for eliminating signal interference with the features specified in claim 7.
  • Fig. 1 shows an exemplary embodiment of a surveillance receiver 1.
  • the surveillance receiver 1 receives at least one radio signal through at least one receiving antenna.
  • the in Fig. 1 The illustrated embodiment, the monitoring receiver 1 has at least one receiving antenna 2, which is connected to a switching unit 3.
  • the in Fig. 1 In the illustrated embodiment, N receiving antennas 2 - i are connected to the switching unit 3. Through the switching unit 3 of the monitoring receiver 1 can be switched periodically between different receiving antennas and / or receiving frequencies to generate a received signal.
  • the in Fig. 1 In the illustrated embodiment, the periodic switching of the receiving antennas 2-i and / or the receiving frequencies is controlled by a sequence controller 4 of the monitoring receiver 1.
  • the signal interference within the received signal caused by the periodic switching is replaced in the monitoring receiver 1 according to the invention by an audio signal sequence ASS, which is calculated by a calculation unit 5 of the monitoring receiver 1 from the demodulated radio signal.
  • the audio signal sequence ASS is interpolated from the demodulated radio signal.
  • the radio signal is demodulated by a demodulation unit 6 to obtain an audio signal AS transported by the radio signal.
  • Such an audio signal is exemplified in the signal diagram in FIG Fig. 2 shown.
  • the audio signal has a signal interference between times t A and t B , which is caused by switching between different receiving antennas and / or receiving frequencies.
  • Signal interference caused by the periodic switching is replaced in the monitoring receiver 1 according to the invention by an audio signal sequence ASS, which is calculated by the calculation unit 5 of the monitoring receiver 1 from the demodulated radio signal.
  • the calculated audio signal sequence ASS is shown.
  • the audio signal AS generated by the demodulation unit 6, including the periodically occurring signal interference contained therein, is temporarily stored in a signal memory 7.
  • the cached audio signal AS can have several signal disturbances, as shown in Fig. 2 are included. Due to the periodic switching process, the distance between the signal disturbances is within the buffered Signal essentially constant.
  • the switching process is controlled by the sequence control 4.
  • the switching times t A , t B and the duration of the signal disturbance T ST ⁇ R of the calculation unit 5 are known.
  • the calculation unit 5 can also be connected to the sequence control 4, as in FIG Fig. 1 indicated by the dashed line.
  • the sequence controller 4 can report the switching times t A , t B to the computation unit 5.
  • the calculation unit 5 calculates the audio signal sequence ASS, a signal interference contained in the buffered audio signal AS being automatically replaced by the calculated audio signal sequence ASS by means of a replacement unit 8 of the monitoring receiver 1.
  • the output signal of the replacement unit 8 is the audio signal AS 'which has been cleared of signal interference, as shown in FIG Fig. 1 is shown.
  • the demodulation unit 6, the signal memory 7, the calculation unit 5 and the replacement unit 8 are integrated in the monitoring receiver. In an alternative embodiment, the demodulation unit 6, the signal memory 7, the calculation unit 5 and the replacement unit 8 are wholly or partially located on an external computer.
  • the calculation unit 5 of the monitoring receiver 1 calculates the audio signal sequence ASS replacing a signal interference from audio signal sections of the received signal temporarily stored in the signal memory 7. These audio signal sections are preferably immediately before or after the signal disturbance that occurs.
  • Fig. 2 shows a first audio signal section ASA1 in the audio signal AS, which is immediately before the occurring signal interference. Also shows Fig. 2 a second audio signal section ASA2, which is immediately after the occurring signal interference.
  • the calculation unit 2 interpolates the replacing audio signal sequence ASS from audio signal sections ASA of the demodulated radio signal.
  • the interpolation is preferably carried out on the basis of an audio signal section ASA1, which lies immediately before the signal interference, and on the basis of a second audio signal section ASA2, which lies immediately after the signal interference that has occurred.
  • audio signal sections can also be used which all lie before the signal interference.
  • audio signal sections can also be used which are all behind the signal interference.
  • the calculation unit 5 knows the position of the signal interference between the two switching times t A , t B ex ante due to the measurement application of the monitoring receiver 1.
  • the switching times t A , t B of the calculation unit 5 are reported by the sequence control 4 via a line or a bus.
  • a signal interference that occurs is detected or recognized by a detector integrated in the monitoring receiver 1. Especially when level peaks occur in the signal, as exemplified in Fig. 2 are shown, such a detector can detect occurring signal interference within the audio signal AS.
  • the calculation unit 5 uses a specific interpolation method for this purpose.
  • the interpolation method used is an interpolation method, which is autoregressive modulation begins.
  • An alternative interpolation method which can be used by the calculation unit 5 comprises a linear prediction or linear prediction.
  • the calculation unit 5 uses spectral interpolation, interleaving concealment or incremental subspace learning to interpolate the audio signal sequence ASS.
  • the calculation unit 5 can switch between different interpolation methods depending on the application.
  • the illustrated units can be integrated in an internal or external arithmetic unit.
  • the switching unit 3 of the surveillance receiver 1 periodically switches over different receiving antennas 2-i at the same receiving frequency in order to locate a radio signal source.
  • the received radio signal is demodulated by the demodulation unit 6 of the monitoring receiver 1 in order to obtain the audio signal AS transported by the radio signal.
  • the signal interference within the demodulated radio signal caused by the periodic switching of the receiving antennas 2-i are replaced by an audio signal sequence ASS, which is automatically calculated by the calculation unit 5 of the monitoring receiver 1 from the received radio signal.
  • the switching unit 3 of the surveillance receiver 1 switches periodically between different reception frequencies and / or reception frequency ranges for listening and / or for measuring or classifying different transmission channels and / or for signal search.
  • the radio signals received from the various reception frequencies are demodulated by the demodulation unit 6 of the monitoring receiver 1 in order to obtain the audio signals AS transported by the radio signals.
  • the signal interference caused by the periodic switching between the reception frequencies within the demodulated radio signals are replaced by an audio signal sequence ASS, which is calculated by the calculation unit 5 of the monitoring receiver 1 from the received and demodulated corresponding radio signal.
  • the switching unit 3 of the monitoring receiver 1 is preferably switched periodically between different receiving antennas 2-i in order to locate a radio signal source on a specific reception frequency, in parallel to this for interception and / or for measuring or classifying different transmission signals and / or for signal search between different reception frequencies and / or receiving frequency ranges is switched periodically.
  • the monitoring receiver 1 according to the invention In the monitoring receiver 1 according to the invention, disturbed signal parts are thus replaced on the basis of known audio interpolation methods.
  • the monitoring receiver 1 according to the invention is a radio direction finder.
  • Fig. 4 shows an embodiment of the monitoring receiver 1 according to the invention, which is designed as a radio direction finder.
  • the monitoring receiver 1 has a reference receiving antenna 2-0 and several further receiving antennas 2-1 to 2-6, as in FIG Fig. 4 shown.
  • a first switching element 3-1 switches at a relatively high switching speed between the various receiving antennas 2-1, 2-2, 2-3, 2-4, 2-5, 2-6 in a rotating manner. In this way, signals that are relatively short in time can also be targeted.
  • the radio signal received from the receiving antenna array is fed to a switching element 3-2, which is also controlled by the sequence controller 4 will.
  • the sequence control 4 switches a further switching element 3-3 in synchronism with the second switching element 3-2, as in FIG Fig. 4 shown.
  • the switching element 3-2 forms a signal demultiplexer and the switching element 3-3 a multiplexer, the output signal of which is fed to a signal adder 9.
  • Phase shifters 10-1, 10-2, 10-3, 10-4 are provided between the demultiplexer 3-2 and the multiplexer 3-3 ° phase shift.
  • the phase-shifted signal arrives at the signal adder 9, which sums the radio signal received by the reference antenna 2-0 with the phase-shifted received signal.
  • the receiver 11 of the monitoring receiver 1 extracts the baseband signal from the received signal, which is transferred by a digital-to-analog converter 12 to a digital signal processor DSP 13, which measures the amplitude.
  • the digital signal processor 13 can determine or calculate the phase angle ⁇ between the received signal and the reference signal from the four amplitude values of the phase-shifted signals A1, A2, A3, A4.
  • the digital signal processor 13 can calculate the direction of incidence of the received signal (bearing result) from the phase angles ⁇ for each receiving antenna 2-i.
  • the switching units 3-1, 3-2, 3-3 form a switching unit 3 in the monitoring receiver 1, in which switching takes place periodically between different receiving antennas 2-i.
  • the signal disturbances that occur in the process are not affected by the in Fig. 4 illustrated monitoring receiver 1 according to the invention is automatically eliminated.
  • the digital signal processor DSP 13 preferably has a calculation unit 5 which interpolates an audio signal sequence ASS from the demodulated radio signal.
  • the signal disturbances within the received signal caused by the periodic switching of the switching units 3-i are each replaced by an audio signal sequence ASS, which is calculated by the calculation unit 5 within the digital signal processor 13 from the demodulated radio signal.
  • the digital signal processor 13 has a signal memory 7 and a replacement unit 8, as shown in FIG Fig. 1 are shown.
  • the in Fig. 4 The monitoring receiver 1 shown offers the advantage that a signal source can be targeted at a certain reception frequency f1 in order to be able to listen to a radio signal at this frequency f1 by means of a receiver at the same time.
  • the single-channel radio direction finder monitoring receiver according to the invention as shown in Fig. 4 is shown, can therefore at the same time bearing a radio signal and at the same time gain the sound information contained therein without interference.
  • the Figures 5 , 6th show signal diagrams to illustrate different embodiment variants of the method according to the invention for eliminating signal interference. How to get in Fig. 5 can recognize, the switching operations required for direction finding cause signal interference in the audio signal.
  • the signal interference occurs as in Fig. 5 shown, periodically and have a substantially constant time length.
  • the signal disturbances caused by the direction finding (DF) are, as in Fig. 5 shown, each replaced by audio signal sequences ASS1, ASS2, which are calculated by the calculation unit 5, in particular by interpolation, preferably in real time and replace the occurring signal interference sections to complete the audio signal. This makes it possible to listen to the audio signal AS largely without interference during the direction finding process.
  • Fig. 5 shows a variant in which a switch is made between different receiving antennas.
  • Fig. 6 shows a signal diagram to clarify a further embodiment variant, in which a periodic switch is made between different reception frequencies for generating a reception signal.
  • a distinction is made between two frequency channels or Reception frequencies f1, f2 switched.
  • a part of the audio signal is temporarily stored for each frequency channel or reception frequency and the gaps in the audio signal streams that occur as a result of the switching process are closed by means of interpolation.
  • the in Fig. 6 The illustrated embodiment can be monitored on a first reception frequency f1 and at the same time in parallel on a second reception frequency f2.
  • this can be operated in different operating modes.
  • a first operating mode monitoring is carried out in parallel on a receiving frequency and a radio signal source is targeted.
  • the monitoring receiver 1 can listen to two different reception frequencies f1, f2 at the same time.
  • the monitoring receiver 1 can locate a radio signal source on a first frequency f1 and at the same time listen to a radio signal on a different receiving frequency.
  • the monitoring receiver 1 can also be used to measure or classify various transmission channels. It is also possible for the monitoring receiver 1 according to the invention to periodically switch between different reception frequencies and / or reception frequency ranges for signal search. The signal interference caused by switching is automatically eliminated.
  • the monitoring receiver 1 can be integrated in a portable device.
  • the signal processing of the audio signal to eliminate signal interference caused by switching processes is preferably carried out in real time during operation of the monitoring receiver 1. In one possible embodiment, it is possible to switch automatically or manually between different calculation or interpolation methods for eliminating the signal interference become.
  • the calculation unit 5 of the monitoring receiver 1 is preferably integrated in a digital signal processor DSP 13. In a further possible embodiment, the calculation unit 5 has one or more signal processors that carry out a signal processing method in real time, the periodically occurring signal interference within a received signal being replaced by audio signal sequences ASS that are received from at least one receiving antenna and transported by the radio signal Audio signal can be interpolated.
  • the signal processing algorithm can be configured via a configuration interface of the monitoring receiver 1.
  • the surveillance receiver 1 according to the invention is also suitable for listening in on a receiving frequency while at the same time a signal is being measured or classified on a different receiving frequency.
  • the monitoring receiver 1 according to the invention can also be used for listening in on a receiving frequency and for simultaneously searching for signals on a different frequency range.
  • the monitoring receiver 1 or monitoring receiver is used in a radio system that does not operate cooperatively, ie the monitoring receiver 1 is able to process any signal at any receiving frequency.
  • the surveillance receiver 1 according to the invention can be used in many ways. It can be used, for example, for parallel direction finding or location and listening to radio channels, for example a radio device.
  • the monitoring receiver 1 can be used for direction finding (Direction Finding DF) or direction finding in traffic control systems for sea and aviation with the possibility of listening and recording at the same time. Furthermore, a parallel bearing and audio recording of different channels is possible. Furthermore, the monitoring receiver 1 according to the invention offers the possibility of listening to and / or recording two completely independent frequency channels within the frequency spectrum at the same time and / or to measure / classify. With the method according to the invention, radio direction finders or monitoring receivers can locate a radio signal with a single radio receiving channel and at the same time obtain the sound content contained therein without signal interference. Furthermore, radio receiving devices with a single radio receiving channel on two independently selectable receiving frequency channels or receiving frequencies can obtain the sound information without signal interference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Beseitigung von Signalstörungen und insbesondere einen Überwachungsempfänger, bei dem Signalstörungen eines Empfangssignals beseitigt werden.The invention relates to a method and a device for eliminating signal interference and, in particular, to a monitoring receiver in which signal interference in a received signal is eliminated.

Bei Funkempfangsvorrichtungen wird zur Durchführung bestimmter Messungen zwischen verschiedenen Empfangsantennen und/oder Empfangsfrequenzen umgeschaltet. So kann beispielsweise durch Umschalten zwischen verschiedenen Empfangsantennen ein auf einer Empfangsfrequenz gelegener Frequenzkanal abgehört werden und gleichzeitig parallel auf dieser Empfangsfrequenz eine Funksignalquelle angepeilt werden. Weiterhin können durch periodisches Umschalten zwischen zwei Empfangsfrequenzen zwei Frequenzkanäle gleichzeitig abgehört und/oder vermessen/klassifiziert werden. Durch das Umschalten zwischen den Empfangsantennen und/oder Empfangsfrequenzen kann es jedoch zu Signalstörungen innerhalb des Empfangssignals kommen, d.h. die in den empfangenen Funksignalen enthaltenen Toninformationen werden gestört, wobei sie in der Regel derart gestört werden, dass sie für die weitere Auswertung unbrauchbar sind.In radio receiving devices, a switch is made between different receiving antennas and / or receiving frequencies in order to carry out certain measurements. For example, by switching between different receiving antennas, a frequency channel located on a receiving frequency can be monitored and, at the same time, a radio signal source can be targeted in parallel on this receiving frequency. Furthermore, by periodically switching between two reception frequencies, two frequency channels can be monitored and / or measured / classified at the same time. Switching between the receiving antennas and / or receiving frequencies can, however, lead to signal interference within the received signal, i.e. the audio information contained in the received radio signals is disturbed, whereby it is usually disturbed in such a way that it is unusable for further evaluation.

Die EP 1 111 802 A1 zeigt eine Vorrichtung zum Reduzieren von Impulsstörungen in einem Audio-Signal.the EP 1 111 802 A1 shows an apparatus for reducing impulse noise in an audio signal.

Es ist eine Aufgabe der vorliegenden Erfindung, eine Vorrichtung und ein Verfahren zum Beseitigen von Signalstörungen zu schaffen.It is an object of the present invention to provide an apparatus and a method for eliminating signal interference.

Diese Aufgabe wird erfindungsgemäß durch einen Überwachungsempfänger mit den in Patentanspruch 1 angegebenen Merkmalen gelöst.According to the invention, this object is achieved by a monitoring receiver having the features specified in claim 1.

Die Erfindung schafft ferner ein Verfahren zum Beseitigen von Signalstörungen mit den in Patentanspruch 7 angegebenen Merkmalen.The invention also provides a method for eliminating signal interference with the features specified in claim 7.

Im Weiteren werden mögliche Ausführungsformen des erfindungsgemäßen Überwachungsempfängers und des erfindungsgemäßen Verfahrens zum Beseitigen von Signalstörungen unter Bezugnahme auf die beigefügten Figuren näher erläutert.In the following, possible embodiments of the monitoring receiver according to the invention and the method according to the invention for eliminating signal interference are explained in more detail with reference to the accompanying figures.

Es zeigen:

Fig. 1
ein Blockschaltbild zur Darstellung eines möglichen Ausführungsbeispiels eines erfindungsgemäßen Überwachungsempfängers;
Figuren 2, 3
Signaldiagramme zur Erläuterung der Funktionsweise eines erfindungsgemäßen Überwachungsempfängers;
Fig. 4
ein Blockschaltbild zur Darstellung eines weiteren Ausführungsbeispiels eines erfindungsgemäßen Überwachungsempfängers;
Figuren 5, 6
Signaldiagramme zur Darstellung unterschiedlicher Ausführungsformen der erfindungsgemäßen Vorrichtung und des erfindungsgemäßen Verfahrens zum Beseitigen von Signalstörungen.
Show it:
Fig. 1
a block diagram to illustrate a possible embodiment of a monitoring receiver according to the invention;
Figures 2, 3
Signal diagrams to explain the mode of operation of a monitoring receiver according to the invention;
Fig. 4
a block diagram to illustrate a further embodiment of a monitoring receiver according to the invention;
Figures 5, 6
Signal diagrams to illustrate different embodiments of the device according to the invention and the method according to the invention for eliminating signal interference.

Fig. 1 zeigt ein exemplarisches Ausführungsbeispiels eines Überwachungsempfängers 1. Der Überwachungsempfänger 1 empfängt mindestens ein Funksignal durch mindestens eine Empfangsantenne. Bei dem in Fig. 1 dargestellten Ausführungsbeispiel verfügt der Überwachungsempfänger 1 über mindestens eine Empfangsantenne 2, die an eine Schalteinheit 3 angeschlossen ist. Bei dem in Fig. 1 dargestellten Ausführungsbeispiel sind N Empfangsantennen 2-i mit der Schalteinheit 3 verbunden. Durch die Schalteinheit 3 des Überwachungsempfängers 1 kann zwischen verschiedenen Empfangsantennen und/oder Empfangsfrequenzen zum Erzeugen eines Empfangssignals periodisch umgeschaltet werden. Bei dem in Fig. 1 dargestellten Ausführungsbeispiel wird das periodische Umschalten der Empfangsantennen 2-i und/oder der Empfangsfrequenzen durch eine Ablaufsteuerung 4 des Überwachungsempfängers 1 gesteuert. Die durch das periodische Umschalten hervorgerufenen Signalstörungen innerhalb des Empfangssignals werden bei dem erfindungsgemäßen Überwachungsempfänger 1 jeweils durch eine Audiosignalsequenz ASS ersetzt, die durch eine Berechnungseinheit 5 des Überwachungsempfängers 1 aus dem demodulierten Funksignal berechnet wird. Bei einer möglichen Ausführungsform wird die Audiosignalsequenz ASS aus dem demodulierten Funksignal interpoliert. Bei dem in Fig. 1 dargestellten Ausführungsbeispiel wird das Funksignal durch eine Demodulationseinheit 6 zur Gewinnung eines durch das Funksignal transportierten Audiosignals AS demoduliert. Ein derartiges Audiosignal ist beispielhaft in dem Signaldiagramm der Fig. 2 dargestellt. Das Audiosignal weist zwischen den Zeitpunkten tA und tB eine Signalstörung auf, die durch das Umschalten zwischen verschiedenen Empfangsantennen und/oder Empfangsfrequenzen hervorgerufen wird. Durch das periodische Umschalten hervorgerufene Signalstörungen werden bei dem erfindungsgemäßen Überwachungsempfänger 1 jeweils durch eine Audiosignalsequenz ASS ersetzt, die durch die Berechnungseinheit 5 des Überwachungsempfängers 1 aus dem demodulierten Funksignal berechnet wird. In Fig. 3 ist die berechnete Audiosignalsequenz ASS dargestellt. Fig. 1 shows an exemplary embodiment of a surveillance receiver 1. The surveillance receiver 1 receives at least one radio signal through at least one receiving antenna. The in Fig. 1 The illustrated embodiment, the monitoring receiver 1 has at least one receiving antenna 2, which is connected to a switching unit 3. The in Fig. 1 In the illustrated embodiment, N receiving antennas 2 - i are connected to the switching unit 3. Through the switching unit 3 of the monitoring receiver 1 can be switched periodically between different receiving antennas and / or receiving frequencies to generate a received signal. The in Fig. 1 In the illustrated embodiment, the periodic switching of the receiving antennas 2-i and / or the receiving frequencies is controlled by a sequence controller 4 of the monitoring receiver 1. The signal interference within the received signal caused by the periodic switching is replaced in the monitoring receiver 1 according to the invention by an audio signal sequence ASS, which is calculated by a calculation unit 5 of the monitoring receiver 1 from the demodulated radio signal. In one possible embodiment, the audio signal sequence ASS is interpolated from the demodulated radio signal. The in Fig. 1 illustrated embodiment, the radio signal is demodulated by a demodulation unit 6 to obtain an audio signal AS transported by the radio signal. Such an audio signal is exemplified in the signal diagram in FIG Fig. 2 shown. The audio signal has a signal interference between times t A and t B , which is caused by switching between different receiving antennas and / or receiving frequencies. Signal interference caused by the periodic switching is replaced in the monitoring receiver 1 according to the invention by an audio signal sequence ASS, which is calculated by the calculation unit 5 of the monitoring receiver 1 from the demodulated radio signal. In Fig. 3 the calculated audio signal sequence ASS is shown.

Bei dem in Fig. 1 dargestellten Ausführungsbeispiel wird das durch die Demodulationseinheit 6 erzeugte Audiosignal AS einschließlich der darin enthaltenen periodisch auftretenden Signalstörungen in einem Signalspeicher 7 zwischengespeichert. Das zwischengespeicherte Audiosignal AS kann mehrere Signalstörungen, wie sie in Fig. 2 dargestellt sind, enthalten. Aufgrund des periodischen Umschaltvorgangs ist der Abstand zwischen den Signalstörungen innerhalb des zwischengespeicherten Signals im Wesentlichen konstant. Der Schaltvorgang wird durch die Ablaufsteuerung 4 gesteuert. Bei einer möglichen Ausführungsform sind somit die Schaltzeitpunkte tA, tB sowie die Dauer der Signalstörung TSTÖR der Berechnungseinheit 5 bekannt. Bei einer alternativen Ausführungsform kann die Berechnungseinheit 5 auch mit der Ablaufsteuerung 4 verbunden sein, wie in Fig. 1 durch die gestrichelte Linie angedeutet. Bei dieser Ausführungsform kann die Ablaufsteuerung 4 der Berechnungseinheit 5 die Schaltzeitpunkte tA, tB melden. Die Berechnungseinheit 5 berechnet die Audiosignalsequenz ASS, wobei eine in dem zwischengespeicherten Audiosignal AS enthaltene Signalstörung mittels einer Ersetzungseinheit 8 des Überwachungsempfängers 1 automatisch durch die berechnete Audiosignalsequenz ASS ersetzt wird. Das Ausgangssignal der Ersetzungseinheit 8 ist das von Signalstörungen bereinigte Audiosignal AS', wie es in Fig. 1 dargestellt ist.The in Fig. 1 The illustrated embodiment, the audio signal AS generated by the demodulation unit 6, including the periodically occurring signal interference contained therein, is temporarily stored in a signal memory 7. The cached audio signal AS can have several signal disturbances, as shown in Fig. 2 are included. Due to the periodic switching process, the distance between the signal disturbances is within the buffered Signal essentially constant. The switching process is controlled by the sequence control 4. In one possible embodiment, the switching times t A , t B and the duration of the signal disturbance T STÖR of the calculation unit 5 are known. In an alternative embodiment, the calculation unit 5 can also be connected to the sequence control 4, as in FIG Fig. 1 indicated by the dashed line. In this embodiment, the sequence controller 4 can report the switching times t A , t B to the computation unit 5. The calculation unit 5 calculates the audio signal sequence ASS, a signal interference contained in the buffered audio signal AS being automatically replaced by the calculated audio signal sequence ASS by means of a replacement unit 8 of the monitoring receiver 1. The output signal of the replacement unit 8 is the audio signal AS 'which has been cleared of signal interference, as shown in FIG Fig. 1 is shown.

Bei einer möglichen Ausführungsform sind die Demodulationseinheit 6, der Signalspeicher 7, die Berechnungseinheit 5 und die Ersetzungseinheit 8 in den Überwachungsempfänger integriert. Bei einer alternativen Ausführungsform befinden sich die Demodulationseinheit 6, der Signalspeicher 7, die Berechnungseinheit 5 und die Ersetzungseinheit 8 ganz oder teilweise auf einem externen Rechner.In one possible embodiment, the demodulation unit 6, the signal memory 7, the calculation unit 5 and the replacement unit 8 are integrated in the monitoring receiver. In an alternative embodiment, the demodulation unit 6, the signal memory 7, the calculation unit 5 and the replacement unit 8 are wholly or partially located on an external computer.

Bei einer möglichen Ausführungsform berechnet die Berechnungseinheit 5 des Überwachungsempfängers 1 die eine Signalstörung ersetzende Audiosignalsequenz ASS aus Audiosignalabschnitten des im Signalspeicher 7 zwischengespeicherten Empfangssignals. Diese Audiosignalabschnitte liegen vorzugsweise unmittelbar vor oder nach der auftretenden Signalstörung. Fig. 2 zeigt einen ersten Audiosignalabschnitt ASA1 in dem Audiosignal AS, welcher unmittelbar vor der auftretenden Signalstörung liegt. Ferner zeigt Fig. 2 einen zweiten Audiosignalabschnitt ASA2, der unmittelbar nach der auftretenden Signalstörung liegt. Bei einer möglichen Ausführungsform interpoliert die Berechnungseinheit 2 die ersetzende Audiosignalsequenz ASS aus Audiosignalabschnitten ASA des demodulierten Funksignals. Dabei erfolgt die Interpolation vorzugsweise auf Basis eines Audiosignalabschnittes ASA1, der unmittelbar vor der Signalstörung liegt, und auf Basis eines zweiten Audiosignalabschnitts ASA2, der unmittelbar nach der aufgetretenen Signalstörung liegt. Bei alternativen Ausführungsformen können auch Audiosignalabschnitte verwendet werden, die allesamt vor der Signalstörung liegen. Bei einer weiteren möglichen Ausführungsform können auch Audiosignalabschnitte verwendet werden, die allesamt hinter der Signalstörung liegen.In one possible embodiment, the calculation unit 5 of the monitoring receiver 1 calculates the audio signal sequence ASS replacing a signal interference from audio signal sections of the received signal temporarily stored in the signal memory 7. These audio signal sections are preferably immediately before or after the signal disturbance that occurs. Fig. 2 shows a first audio signal section ASA1 in the audio signal AS, which is immediately before the occurring signal interference. Also shows Fig. 2 a second audio signal section ASA2, which is immediately after the occurring signal interference. In one possible embodiment, the calculation unit 2 interpolates the replacing audio signal sequence ASS from audio signal sections ASA of the demodulated radio signal. In this case, the interpolation is preferably carried out on the basis of an audio signal section ASA1, which lies immediately before the signal interference, and on the basis of a second audio signal section ASA2, which lies immediately after the signal interference that has occurred. In alternative embodiments, audio signal sections can also be used which all lie before the signal interference. In a further possible embodiment, audio signal sections can also be used which are all behind the signal interference.

Hinsichtlich der Kenntnis der Lage der Signalstörungen in dem demodulierten Funksignal bestehen erfindungsgemäß verschiedene Ausführungsvarianten. Bei einer möglichen Ausführungsform ist der Berechnungseinheit 5 die Lage der Signalstörung zwischen den beiden Schaltzeitpunkten tA, tB ex ante aufgrund der Messanwendung des Überwachungsempfängers 1 bekannt. Alternativ werden die Schaltzeitpunkte tA, tB der Berechnungseinheit 5 von der Ablaufsteuerung 4 über eine Leitung oder einen Bus gemeldet. Bei einer weiteren möglichen Ausführungsvariante wird eine auftretende Signalstörung durch einen in dem Überwachungsempfänger 1 integrierten Detektor detektiert bzw. erkannt. Insbesondere bei Auftreten von Pegelspitzen im Signal, wie sie beispielhaft in Fig. 2 dargestellt sind, kann ein derartiger Detektor auftretende Signalstörungen innerhalb des Audiosignals AS erkennen.With regard to the knowledge of the position of the signal interference in the demodulated radio signal, there are various design variants according to the invention. In one possible embodiment, the calculation unit 5 knows the position of the signal interference between the two switching times t A , t B ex ante due to the measurement application of the monitoring receiver 1. Alternatively, the switching times t A , t B of the calculation unit 5 are reported by the sequence control 4 via a line or a bus. In a further possible embodiment variant, a signal interference that occurs is detected or recognized by a detector integrated in the monitoring receiver 1. Especially when level peaks occur in the signal, as exemplified in Fig. 2 are shown, such a detector can detect occurring signal interference within the audio signal AS.

Da die genauen Zeitpunkte der auftretenden Signalstörung innerhalb des Audiosignals AS bekannt sind, können diese gestörten Ton- bzw. Audioabschnitte durch die Ersetzungseinheit 8 durch Toninformationen ersetzt werden, die aus der vor und/oder nach der Signalstörung vorliegenden Toninformation mittels Interpolation gewonnen werden. Bei einer möglichen Ausführungsform verwendet die Berechnungseinheit 5 hierzu ein bestimmtes Interpolationsverfahren. Bei einer möglichen Ausführungsform ist das verwendete Interpolationsverfahren ein Interpolationsverfahren, welches autoregressive Modulierung einsetzt. Ein alternatives Interpolationsverfahren, welches durch die Berechnungseinheit 5 verwendet werden kann, umfasst eine lineare Vorhersage bzw. Linear Prediction. In weiteren Ausführungsvarianten verwendet die Berechnungseinheit 5 zur Interpolation der Audiosignalsequenz ASS spektrale Interpolation, Interleaving Concealment oder Incremental Subspace Learning. Bei einer möglichen Ausführungsvariante des erfindungsgemäßen Überwachungsempfängers 1 kann die Berechnungseinheit 5 je nach Anwendungsfall zwischen verschiedenen Interpolationsverfahren umschalten. Eine oder mehrere der in Fig. 1 dargestellten Einheiten können bei einer möglichen Ausführungsform in einem internen oder externen Rechenwerk integriert sein.Since the exact times of the occurring signal disturbance within the audio signal AS are known, these disturbed sound or audio segments can be replaced by the replacement unit 8 with sound information obtained from the sound information present before and / or after the signal disturbance by means of interpolation. In one possible embodiment, the calculation unit 5 uses a specific interpolation method for this purpose. In one possible embodiment, the interpolation method used is an interpolation method, which is autoregressive modulation begins. An alternative interpolation method which can be used by the calculation unit 5 comprises a linear prediction or linear prediction. In further embodiment variants, the calculation unit 5 uses spectral interpolation, interleaving concealment or incremental subspace learning to interpolate the audio signal sequence ASS. In a possible embodiment variant of the monitoring receiver 1 according to the invention, the calculation unit 5 can switch between different interpolation methods depending on the application. One or more of the in Fig. 1 In one possible embodiment, the illustrated units can be integrated in an internal or external arithmetic unit.

Bei einer möglichen Ausführungsform des erfindungsgemäßen Überwachungsempfängers 1 schaltet die Schalteinheit 3 des Überwachungsempfängers 1 zum Anpeilen einer Funksignalquelle verschiedene Empfangsantennen 2-i bei gleicher Empfangsfrequenz periodisch um. Während des Anpeilens einer Funksignalquelle wird das empfangene Funksignal durch die Demodulationseinheit 6 des Überwachungsempfängers 1 zur Gewinnung des durch das Funksignal transportierten Audiosignals AS demoduliert. Die durch das periodische Umschalten der Empfangsantennen 2-i hervorgerufenen Signalstörungen innerhalb des demodulierten Funksignals werden durch eine Audiosignalsequenz ASS ersetzt, die durch die Berechnungseinheit 5 des Überwachungsempfängers 1 aus dem empfangenen Funksignal automatisch berechnet wird.In one possible embodiment of the surveillance receiver 1 according to the invention, the switching unit 3 of the surveillance receiver 1 periodically switches over different receiving antennas 2-i at the same receiving frequency in order to locate a radio signal source. During the targeting of a radio signal source, the received radio signal is demodulated by the demodulation unit 6 of the monitoring receiver 1 in order to obtain the audio signal AS transported by the radio signal. The signal interference within the demodulated radio signal caused by the periodic switching of the receiving antennas 2-i are replaced by an audio signal sequence ASS, which is automatically calculated by the calculation unit 5 of the monitoring receiver 1 from the received radio signal.

Bei einer weiteren möglichen Ausführungsform des erfindungsgemäßen Überwachungsempfängers 1 schaltet die Schalteinheit 3 des Überwachungsempfängers 1 zum Abhören und/oder zur Vermessung bzw. Klassifizierung verschiedener Sendekanäle und/oder zur Signalsuche zwischen verschiedener Empfangsfrequenzen und/oder Empfangsfrequenzbereichen periodisch um.In a further possible embodiment of the surveillance receiver 1 according to the invention, the switching unit 3 of the surveillance receiver 1 switches periodically between different reception frequencies and / or reception frequency ranges for listening and / or for measuring or classifying different transmission channels and / or for signal search.

Die aus den verschiedenen Empfangsfrequenzen empfangenen Funksignale werden durch die Demodulationseinheit 6 des Überwachungsempfängers 1 zur Gewinnung der durch die Funksignale transportierten Audiosignale AS demoduliert. Die durch das periodische Umschalten zwischen den Empfangsfrequenzen innerhalb der demodulierten Funksignale hervorgerufenen Signalstörungen werden dabei jeweils durch eine Audiosignalsequenz ASS ersetzt, die durch die Berechnungseinheit 5 des Überwachungsempfängers 1 aus dem empfangenen und demodulierten entsprechenden Funksignal berechnet wird.The radio signals received from the various reception frequencies are demodulated by the demodulation unit 6 of the monitoring receiver 1 in order to obtain the audio signals AS transported by the radio signals. The signal interference caused by the periodic switching between the reception frequencies within the demodulated radio signals are replaced by an audio signal sequence ASS, which is calculated by the calculation unit 5 of the monitoring receiver 1 from the received and demodulated corresponding radio signal.

Die Schalteinheit 3 des Überwachungsempfängers 1 wird vorzugsweise zum Anpeilen einer Funksignalquelle auf einer bestimmten Empfangsfrequenz zwischen verschiedenen Empfangsantennen 2-i periodisch umgeschaltet, wobei parallel dazu zum Abhören und/oder zur Vermessung bzw. Klassifizierung verschiedener Sendesignale und/oder zur Signalsuche zwischen verschiedenen Empfangsfrequenzen und/oder Empfangsfrequenzbereichen periodisch umgeschaltet wird.The switching unit 3 of the monitoring receiver 1 is preferably switched periodically between different receiving antennas 2-i in order to locate a radio signal source on a specific reception frequency, in parallel to this for interception and / or for measuring or classifying different transmission signals and / or for signal search between different reception frequencies and / or receiving frequency ranges is switched periodically.

Bei dem erfindungsgemäßen Überwachungsempfänger 1 werden somit gestörte Signalteile auf Basis bekannter Audio-Interpolationsverfahren ersetzt. Bei einer möglichen Ausführungsform handelt es sich bei dem erfindungsgemäßen Überwachungsempfänger 1 um einen Funkpeilempfänger.In the monitoring receiver 1 according to the invention, disturbed signal parts are thus replaced on the basis of known audio interpolation methods. In one possible embodiment, the monitoring receiver 1 according to the invention is a radio direction finder.

Fig. 4 zeigt ein Ausführungsbeispiel des erfindungsgemäßen Überwachungsempfängers 1, der als Funkpeilempfänger ausgelegt ist. Der Überwachungsempfänger 1 weist eine Referenzempfangsantenne 2-0 auf sowie mehrere weitere Empfangsantennen 2-1 bis 2-6, wie in Fig. 4 dargestellt. Ein erstes Schaltelement 3-1 schaltet mit relativ hoher Schaltgeschwindigkeit zwischen den verschiedenen Empfangsantennen 2-1, 2-2, 2-3, 2-4, 2-5, 2-6 umlaufend um. Hierdurch können auch zeitlich relativ kurze Signale angepeilt werden. Das von dem Empfangsantennenfeld erhaltene Funksignal wird einem Schaltelement 3-2 zugeführt, welches ebenfalls durch die Ablaufsteuerung 4 angesteuert wird. Die Ablaufsteuerung 4 schaltet synchron zu dem zweiten Schaltelement 3-2 ein weiteres Schaltelement 3-3, wie in Fig. 4 dargestellt. Das Schaltelement 3-2 bildet einen Signaldemultiplexer und das Schaltelement 3-3 einen Multiplexer, dessen Ausgangssignal einem Signaladdierer 9 zugeführt wird. Zwischen dem Demultiplexer 3-2 und dem Multiplexer 3-3 sind Phasenschieber 10-1, 10-2, 10-3, 10-4 vorgesehen, welche das von dem Antennenfeld zugeschaltete Empfangssignal jeweils um 0°, 90°, 180° und 270° phasenverschieben. Das phasenverschobene Signal gelangt zu dem Signaladdierer 9, welcher das von der Referenzantenne 2-0 empfangene Funksignal mit dem phasenverschobenen Empfangssignal summiert. Der Receiver 11 des Überwachungsempfängers 1 extrahiert aus dem Empfangssignal das Basisbandsignal, welches durch einen Digital-AnalogWandler 12 einem digitalen Signalprozessor DSP 13 übergeben wird, der die Amplitude misst. Aus den vier Amplitudenwerten der phasenverschobenen Signale A1, A2, A3, A4 kann der digitale Signalprozessor 13 den Phasenwinkel ϕ zwischen dem Empfangssignal und dem Referenzsignal bestimmen bzw. berechnen. Aus den Phasenwinkeln ϕ für jede Empfangsantenne 2-i kann der digitale Signalprozessor 13 die Einfallsrichtung des Empfangssignals (Peilergebnis) berechnen. Fig. 4 shows an embodiment of the monitoring receiver 1 according to the invention, which is designed as a radio direction finder. The monitoring receiver 1 has a reference receiving antenna 2-0 and several further receiving antennas 2-1 to 2-6, as in FIG Fig. 4 shown. A first switching element 3-1 switches at a relatively high switching speed between the various receiving antennas 2-1, 2-2, 2-3, 2-4, 2-5, 2-6 in a rotating manner. In this way, signals that are relatively short in time can also be targeted. The radio signal received from the receiving antenna array is fed to a switching element 3-2, which is also controlled by the sequence controller 4 will. The sequence control 4 switches a further switching element 3-3 in synchronism with the second switching element 3-2, as in FIG Fig. 4 shown. The switching element 3-2 forms a signal demultiplexer and the switching element 3-3 a multiplexer, the output signal of which is fed to a signal adder 9. Phase shifters 10-1, 10-2, 10-3, 10-4 are provided between the demultiplexer 3-2 and the multiplexer 3-3 ° phase shift. The phase-shifted signal arrives at the signal adder 9, which sums the radio signal received by the reference antenna 2-0 with the phase-shifted received signal. The receiver 11 of the monitoring receiver 1 extracts the baseband signal from the received signal, which is transferred by a digital-to-analog converter 12 to a digital signal processor DSP 13, which measures the amplitude. The digital signal processor 13 can determine or calculate the phase angle ϕ between the received signal and the reference signal from the four amplitude values of the phase-shifted signals A1, A2, A3, A4. The digital signal processor 13 can calculate the direction of incidence of the received signal (bearing result) from the phase angles ϕ for each receiving antenna 2-i.

Die Schalteinheiten 3-1, 3-2, 3-3 bilden in dem Überwachungsempfänger 1 eine Schalteinheit 3, bei der periodisch zwischen verschiedenen Empfangsantennen 2-i umgeschaltet wird. Die dabei auftretenden Signalstörungen werden bei dem in Fig. 4 dargestellten erfindungsgemäßen Überwachungsempfänger 1 automatisch beseitigt. Hierzu verfügt der digitale Signalprozessor DSP 13 vorzugsweise über eine Berechnungseinheit 5, die eine Audiosignalsequenz ASS aus dem demodulierten Funksignal interpoliert. Die durch das periodische Umschalten der Schalteinheiten 3-i hervorgerufenen Signalstörungen innerhalb des Empfangssignals werden jeweils durch eine Audiosignalsequenz ASS ersetzt, die durch die Berechnungseinheit 5 innerhalb des digitalen Signalprozessors 13 aus dem demodulierten Funksignal berechnet wird. Bei einer möglichen Ausführungsform verfügt der digitale Signalprozessor 13 über einen Signalspeicher 7 und eine Ersetzungseinheit 8, wie sie in Fig. 1 dargestellt sind. Der in Fig. 4 dargestellte Überwachungsempfänger 1 bietet den Vorteil, dass eine Signalquelle bei einer bestimmten Empfangsfrequenz f1 angepeilt werden kann, um gleichzeitig ein Funksignal auf dieser Frequenz f1 mittels eines Empfängers abgehört werden kann. Der erfindungsgemäße Einkanal-Funkpeilüberwachungsempfänger, wie er in Fig. 4 dargestellt ist, kann daher gleichzeitig ein Funksignal peilen und gleichzeitig die darin enthaltenen Toninformationen ohne Störungen gewinnen.The switching units 3-1, 3-2, 3-3 form a switching unit 3 in the monitoring receiver 1, in which switching takes place periodically between different receiving antennas 2-i. The signal disturbances that occur in the process are not affected by the in Fig. 4 illustrated monitoring receiver 1 according to the invention is automatically eliminated. For this purpose, the digital signal processor DSP 13 preferably has a calculation unit 5 which interpolates an audio signal sequence ASS from the demodulated radio signal. The signal disturbances within the received signal caused by the periodic switching of the switching units 3-i are each replaced by an audio signal sequence ASS, which is calculated by the calculation unit 5 within the digital signal processor 13 from the demodulated radio signal. In one possible embodiment the digital signal processor 13 has a signal memory 7 and a replacement unit 8, as shown in FIG Fig. 1 are shown. The in Fig. 4 The monitoring receiver 1 shown offers the advantage that a signal source can be targeted at a certain reception frequency f1 in order to be able to listen to a radio signal at this frequency f1 by means of a receiver at the same time. The single-channel radio direction finder monitoring receiver according to the invention, as shown in Fig. 4 is shown, can therefore at the same time bearing a radio signal and at the same time gain the sound information contained therein without interference.

Die Figuren 5, 6 zeigen Signaldiagramme zur Darstellung unterschiedlicher Ausführungsvarianten des erfindungsgemäßen Verfahrens zum Beseitigen von Signalstörungen. Wie man in Fig. 5 erkennen kann, kommt es aufgrund der zur Peilung notwendigen Schaltvorgänge zu Signalstörungen in dem Audiosignal. Die Signalstörungen treten dabei, wie in Fig. 5 dargestellt, periodisch auf und weisen eine im Wesentlichen konstante zeitliche Länge auf. Die durch die Peilung (Direction Finding DF) auftretenden Signalstörungen werden, wie in Fig. 5 dargestellt, jeweils durch Audiosignalsequenzen ASS1, ASS2 ersetzt, die durch die Berechnungseinheit 5, insbesondere durch Interpolation, vorzugsweise in Echtzeit berechnet werden und die auftretenden Signalstörungsabschnitte zur Vervollständigung des Audiosignals ersetzen. Hierdurch ist es möglich, das Audiosignal AS weitestgehend störungsfrei während des Peilungsvorgangs abzuhören. Fig. 5 zeigt eine Ausführungsvariante, bei der zwischen verschiedenen Empfangsantennen umgeschaltet wird.the Figures 5 , 6th show signal diagrams to illustrate different embodiment variants of the method according to the invention for eliminating signal interference. How to get in Fig. 5 can recognize, the switching operations required for direction finding cause signal interference in the audio signal. The signal interference occurs as in Fig. 5 shown, periodically and have a substantially constant time length. The signal disturbances caused by the direction finding (DF) are, as in Fig. 5 shown, each replaced by audio signal sequences ASS1, ASS2, which are calculated by the calculation unit 5, in particular by interpolation, preferably in real time and replace the occurring signal interference sections to complete the audio signal. This makes it possible to listen to the audio signal AS largely without interference during the direction finding process. Fig. 5 shows a variant in which a switch is made between different receiving antennas.

Fig. 6 zeigt ein Signaldiagramm zur Verdeutlichung einer weiteren Ausführungsvariante, bei der zwischen verschiedenen Empfangsfrequenzen zum Erzeugen eines Empfangssignals periodisch umgeschaltet wird. Um ein klares Audiosignal auf zwei unabhängigen Frequenzkanälen mithilfe eines einzigen Empfängers zu erhalten, wird zwischen zwei Frequenzkanälen bzw. Empfangsfrequenzen f1, f2 umgeschaltet. Ein Teil des Audiosignals wird für jeden Frequenzkanal bzw. Empfangsfrequenz zwischengespeichert und die Lücken in den Audiosignalströmen, die durch den Schaltvorgang auftreten, werden mittels Interpolation geschlossen. Bei dem in Fig. 6 dargestellten Ausführungsbeispiel kann auf einer ersten Empfangsfrequenz f1 und gleichzeitig parallel dazu auf einer zweiten Empfangsfrequenz f2 abgehört werden. Fig. 6 shows a signal diagram to clarify a further embodiment variant, in which a periodic switch is made between different reception frequencies for generating a reception signal. To get a clear audio signal on two independent frequency channels using a single receiver, a distinction is made between two frequency channels or Reception frequencies f1, f2 switched. A part of the audio signal is temporarily stored for each frequency channel or reception frequency and the gaps in the audio signal streams that occur as a result of the switching process are closed by means of interpolation. The in Fig. 6 The illustrated embodiment can be monitored on a first reception frequency f1 and at the same time in parallel on a second reception frequency f2.

Bei einer möglichen Ausführungsform des erfindungsgemäßen Überwachungsempfängers 1 kann dieser in verschiedenen Betriebsmodi betrieben werden. In einem ersten Betriebsmodus wird auf einer Empfangsfrequenz gleichzeitig parallel abgehört und eine Funksignalquelle angepeilt. In einem weiteren Betriebsmodus kann der Überwachungsempfänger 1 gleichzeitig auf zwei verschiedenen Empfangsfrequenzen f1, f2 abhören. In einem weiteren Betriebsmodus kann der Überwachungsempfänger 1 auf einer ersten Frequenz f1 die Peilung einer Funksignalquelle vornehmen und gleichzeitig auf einer anderen Empfangsfrequenz ein Funksignal abhören.In a possible embodiment of the surveillance receiver 1 according to the invention, this can be operated in different operating modes. In a first operating mode, monitoring is carried out in parallel on a receiving frequency and a radio signal source is targeted. In a further operating mode, the monitoring receiver 1 can listen to two different reception frequencies f1, f2 at the same time. In a further operating mode, the monitoring receiver 1 can locate a radio signal source on a first frequency f1 and at the same time listen to a radio signal on a different receiving frequency.

Neben dem Abhören kann der Überwachungsempfänger 1 auch zur Vermessung bzw. Klassifizierung verschiedener Sendekanäle verwendet werden. Weiterhin ist es möglich, dass der erfindungsgemäße Überwachungsempfänger 1 zur Signalsuche zwischen verschiedenen Empfangsfrequenzen und/oder Empfangsfrequenzbereichen periodisch umschaltet. Die durch das Schalten hervorgerufenen Signalstörungen werden dabei automatisch beseitigt.In addition to eavesdropping, the monitoring receiver 1 can also be used to measure or classify various transmission channels. It is also possible for the monitoring receiver 1 according to the invention to periodically switch between different reception frequencies and / or reception frequency ranges for signal search. The signal interference caused by switching is automatically eliminated.

Der erfindungsgemäße Überwachungsempfänger 1 kann in einem tragbaren Gerät integriert sein. Die Signalaufbereitung des Audiosignals zur Beseitigung von Signalstörungen, die durch Umschaltvorgänge hervorgerufen werden, erfolgt vorzugsweise in Echtzeit während des Betriebs des Überwachungsempfängers 1. Bei einer möglichen Ausführungsform kann automatisch oder manuell zwischen verschiedenen Berechnungs- bzw. Interpolationsverfahren zur Beseitigung der Signalstörungen umgeschaltet werden. Die Berechnungseinheit 5 des Überwachungsempfängers 1 ist vorzugsweise in einem digitalen Signalprozessor DSP 13 integriert. Bei einer weiteren möglichen Ausführungsform weist die Berechnungseinheit 5 eine oder mehrere Signalprozessoren auf, die ein Signalverarbeitungsverfahren in Echtzeit ausführen, wobei die periodisch auftretenden Signalstörungen innerhalb eines Empfangssignals jeweils durch Audiosignalsequenzen ASS ersetzt werden, die aus einem durch mindestens eine Empfangsantenne empfangenen und durch das Funksignal transportierten Audiosignal interpoliert werden. Der Signalverarbeitungsalgorithmus kann bei einer möglichen Ausführungsform über eine Konfigurationsschnittstelle des Überwachungsempfängers 1 konfiguriert werden. Der erfindungsgemäße Überwachungsempfänger 1 eignet sich bei einer möglichen Ausführungsform auch zum Abhören auf einer Empfangsfrequenz, während gleichzeitig ein Signal auf einer anderen Empfangsfrequenz vermessen bzw. klassifiziert wird. Weiterhin kann der erfindungsgemäße Überwachungsempfänger 1 auch zum Abhören auf einer Empfangsfrequenz und zur gleichzeitigen Signalsuche auf einem anderen Frequenzbereich eingesetzt werden. Der Überwachungsempfänger 1 bzw. Monitoring-Empfänger wird im Gegensatz zu einem Rundfunkempfänger in einem nicht kooperativ arbeitenden Rundfunksystem eingesetzt, d.h. der Überwachungsempfänger 1 ist in der Lage, auf beliebigen Empfangsfrequenzen ein beliebiges Signal zu verarbeiten. Der erfindungsgemäße Überwachungsempfänger 1 ist vielseitig einsetzbar. Er kann beispielsweise zur parallelen Peilung bzw. Ortung und Abhören von Funkkanälen, beispielsweise einem Funkgerät, verwendet werden. Weiterhin kann der Überwachungsempfänger 1 zur Richtungsfindung (Direction Finding DF) bzw. Peilung in Verkehrssteuerungssystemen für die See- und Luftfahrt mit gleichzeitiger Abhör- und Aufzeichnungsmöglichkeit verwendet werden. Weiterhin ist eine parallele Peilung und Audioaufzeichnung von verschiedenen Kanälen möglich. Weiterhin bietet der erfindungsgemäße Überwachungsempfänger 1 die Möglichkeit, zwei vollständig unabhängige Frequenzkanäle innerhalb des Frequenzspektrums gleichzeitig abzuhören und/oder aufzuzeichnen und/oder zu vermessen/klassifizieren. Mit dem erfindungsgemäßen Verfahren können Funkpeilvorrichtungen bzw. Überwachungsempfänger mit einem einzelnen Funkempfangskanal ein Funksignal peilen und gleichzeitig die darin enthaltenen Toninhalte ohne Signalstörungen gewinnen. Weiterhin können Funkempfangsvorrichtungen mit einem einzelnen Funkempfangskanal auf zwei unabhängig wählbaren Empfangsfrequenzkanälen bzw. Empfangsfrequenzen die Toninformation ohne Signalstörungen gewinnen.The monitoring receiver 1 according to the invention can be integrated in a portable device. The signal processing of the audio signal to eliminate signal interference caused by switching processes is preferably carried out in real time during operation of the monitoring receiver 1. In one possible embodiment, it is possible to switch automatically or manually between different calculation or interpolation methods for eliminating the signal interference become. The calculation unit 5 of the monitoring receiver 1 is preferably integrated in a digital signal processor DSP 13. In a further possible embodiment, the calculation unit 5 has one or more signal processors that carry out a signal processing method in real time, the periodically occurring signal interference within a received signal being replaced by audio signal sequences ASS that are received from at least one receiving antenna and transported by the radio signal Audio signal can be interpolated. In one possible embodiment, the signal processing algorithm can be configured via a configuration interface of the monitoring receiver 1. In one possible embodiment, the surveillance receiver 1 according to the invention is also suitable for listening in on a receiving frequency while at the same time a signal is being measured or classified on a different receiving frequency. Furthermore, the monitoring receiver 1 according to the invention can also be used for listening in on a receiving frequency and for simultaneously searching for signals on a different frequency range. In contrast to a radio receiver, the monitoring receiver 1 or monitoring receiver is used in a radio system that does not operate cooperatively, ie the monitoring receiver 1 is able to process any signal at any receiving frequency. The surveillance receiver 1 according to the invention can be used in many ways. It can be used, for example, for parallel direction finding or location and listening to radio channels, for example a radio device. Furthermore, the monitoring receiver 1 can be used for direction finding (Direction Finding DF) or direction finding in traffic control systems for sea and aviation with the possibility of listening and recording at the same time. Furthermore, a parallel bearing and audio recording of different channels is possible. Furthermore, the monitoring receiver 1 according to the invention offers the possibility of listening to and / or recording two completely independent frequency channels within the frequency spectrum at the same time and / or to measure / classify. With the method according to the invention, radio direction finders or monitoring receivers can locate a radio signal with a single radio receiving channel and at the same time obtain the sound content contained therein without signal interference. Furthermore, radio receiving devices with a single radio receiving channel on two independently selectable receiving frequency channels or receiving frequencies can obtain the sound information without signal interference.

Claims (7)

  1. A monitoring receiver (1), with at least one receiving antenna (2), which is configured to receive at least one radio signal,
    with a switching unit (3) which is configured to periodically switch between different receiving antennas (2) and/or receiving frequencies for generating a receiving signal,
    with a demodulation unit (6), which is configured to demodulate the received radio signal to obtain an audio signal transported by the radio signal,
    with a signal storage (7), which is configured to place in temporary storage the demodulated audio signal as a receiving signal including the signal interference contained therein;
    with a calculation unit (5), which is configured to, based on the receiving signal, interpolate an audio signal sequence (ASS) of audio signal sections (ASA) of the receiving signal temporarily stored in the signal storage (7) which lie immediately before and/or after the occurred signal interference; and
    with a replacement unit (8), which is configured to replace the signal interference within the receiving signal caused by the periodic switching in each case with the audio signal sequence (ASS),
    with a sequence controller (4), which is configured to control the periodic switching of the receiving antennas (2) and/or receiving frequencies, wherein the calculation unit (5) is connected to the sequence controller (4), and wherein the sequence controller (4) is designed to report switching times for the switching of the receiving antennas (2) and/or receiving frequencies to the calculation unit (5).
  2. The monitoring receiver according to claim 1,
    wherein the switching unit (3) of the monitoring receiver (1) is configured to periodically switch different receiving antennas (2) at the same receiving frequency to locate a radio signal source.
  3. The monitoring receiver according to claim 2,
    wherein during the location of a radio signal source the demodulation unit (6) is configured to demodulate the received radio signal to obtain an audio signal (AS) transported by the radio signal, wherein the replacement unit (8) is configured to replace the signal interference within the demodulated radio signal by an audio signal sequence (ASS) by periodically switching the receiving antennas (2), which is calculated by the calculation unit (5) of the monitoring receiver (1) from the received radio signal.
  4. The monitoring receiver according to claim 1,
    wherein the switching unit (3) is configured to switch between different receiving frequencies and/or receiving frequency ranges for interception and/or measurement/classification of different transmission channels and/or for signal search.
  5. The monitoring receiver according to claim 4,
    wherein the demodulation unit (6) is configured to demodulate radio signals received from the different receiving frequencies to obtain the audio signals transported by the radio signals,
    wherein the replacement unit (8) is configured to replace the signal interference caused by the periodic switching between the receiving frequencies within the demodulated radio signals in each case by the audio signal sequence (ASS), which is calculated by the calculation unit (5) of the monitoring receiver (1) from the corresponding received and demodulated radio signal.
  6. The monitoring receiver according to claim 1,
    wherein the switching unit (3) is configured to periodically switch between different receiving antennas (2) to locate a radio signal source at a specified receiving frequency and/or parallel thereto to periodically switch between different receiving frequencies and/or receiving frequency ranges for interception and/or measurement/classification of different transmitting channels and/or for signal search.
  7. A method for removing signal interference which periodically occurs within a receiving signal and caused by a periodic switching between different receiving antennas (2) and/or receiving frequencies, wherein the periodic switching of the receiving antennas (2) and/or receiving frequencies is controlled by means of a sequence controller (4), comprising:
    Demodulation of a received radio signal by a demodulation unit (6) for obtaining an audio signal transported by the radio signal,
    Temporary storage of the demodulated radio signal as a receiving signal including the signal interference contained therein in a signal storage (7),
    Interpolation of a respective audio signal sequence (ASS) replacing a signal interference from audio signal sections (ASA) of the receiving signal temporarily stored in the signal storage (7), which lie immediately before and/or after the occurred signal interference, by a calculation unit (5), and
    automatic replacement of the periodically occurring signal interference by the respective audio signal sequence (ASS), wherein switching times for the switching of the receiving antennas (2) and/or receiving frequencies are reported by the sequence controller (4) to the calculation unit (5).
EP15192818.1A 2015-11-03 2015-11-03 Method and device for removing signal interference Active EP3165936B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15192818.1A EP3165936B1 (en) 2015-11-03 2015-11-03 Method and device for removing signal interference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15192818.1A EP3165936B1 (en) 2015-11-03 2015-11-03 Method and device for removing signal interference

Publications (2)

Publication Number Publication Date
EP3165936A1 EP3165936A1 (en) 2017-05-10
EP3165936B1 true EP3165936B1 (en) 2021-08-18

Family

ID=54366084

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15192818.1A Active EP3165936B1 (en) 2015-11-03 2015-11-03 Method and device for removing signal interference

Country Status (1)

Country Link
EP (1) EP3165936B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110129036A1 (en) * 2009-11-30 2011-06-02 Kabushiki Kaisha Kenwood FM detector, signal interpolation method, and related program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3454214B2 (en) * 1999-12-22 2003-10-06 三菱電機株式会社 Pulse noise removing apparatus and medium-wave AM broadcast receiver including the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110129036A1 (en) * 2009-11-30 2011-06-02 Kabushiki Kaisha Kenwood FM detector, signal interpolation method, and related program

Also Published As

Publication number Publication date
EP3165936A1 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
EP1798870B1 (en) Reception installation with phase alignment of antenna signals
EP0063803B1 (en) Pulse doppler radar receiver with a circuit for regenerating the undisturbed signal form
WO2017118621A1 (en) Method and system for reducing interference caused by phase noise in a radar system
EP1825602B1 (en) Apparatus and method for determining a correlation maximum
DE102014114107A1 (en) radar sensor
DE102016205227A1 (en) Method and device for tracking objects, in particular moving objects, in the three-dimensional space of imaging radar sensors
DE102011120244A1 (en) Receiver architecture for orthogonal, multiple-input-multiple-output radar systems
DE102015221163A1 (en) Method and device for tracking objects, in particular moving objects, in the three-dimensional space of imaging radar sensors
EP3165936B1 (en) Method and device for removing signal interference
EP3368916A1 (en) Method and device for tracking objects, in particular moving objects, in the three-dimensional space of imaging radar sensors
DE102009047931A1 (en) Method for determining distance and relative speed of remote object from observing point, involves transmitting signals synchronous to other signals, where each of former signals is differentiated from latter signals by frequency offset
CH634927A5 (en) CIRCUIT ARRANGEMENT FOR SHIFTING THE CLUTTER SPECTRUM IN THE RECEIVER OF A PULSE DOPPLER RADAR.
DE102017203543B4 (en) Method for receiving and monitoring a signal and device for receiving and monitoring signals
EP0152523B1 (en) Method of localizing signal sources with interference suppression
DE102013111633B4 (en) Method and device for radio location
EP2428816A1 (en) Method and device for determining a doppler frequency shift resulting from the doppler effect
DE102010056526B4 (en) Method for determining one or more relative directions as target bearing or target bearings and device for carrying out the method
DE19704763B4 (en) Method and device for detecting the emission of a high-frequency electromagnetic radiation within the interior of a predominantly poorly permeable to electromagnetic radiation aircraft shell
EP2480907B1 (en) Method and device for locating sound-emitting targets
DE3222489A1 (en) PULSE DOPPLER RADAR DEVICE WITH A PULSE LENGTH DISCRIMINATOR
EP2950116B1 (en) Method for detecting the presence of at least one object in a section of air and/or of at least one property of the object and associated detection device
DE3227259C2 (en) Directional radio station
DE4130699C2 (en) Method for determining the bearing angle of received signals from a multi-channel direction finder with all-round channel and multi-channel direction finder with all-round channel for carrying out the method
DE10342040A1 (en) Method for monitoring the time synchronicity of transmitters in a common wave network
DE102011051969A1 (en) Radar apparatus for determining distance and/or relative speed of vehicle i.e. motor car to object, has oscillator producing signal that is synchronized to another signal, and transmitter antenna transmitting former signal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171109

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210420

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CY CZ DE DK EE ES FI FR GB GR HR HU IS IT LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CY CZ DE DK EE ES FI FR GB GR HR HU IS IT LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015015065

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1422123

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211118

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211118

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211220

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015015065

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

26N No opposition filed

Effective date: 20220519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1422123

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 9

Ref country code: DE

Payment date: 20231120

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818