EP3157929A1 - Pyrazole compounds as modulators of fshr and uses thereof - Google Patents
Pyrazole compounds as modulators of fshr and uses thereofInfo
- Publication number
- EP3157929A1 EP3157929A1 EP14896199.8A EP14896199A EP3157929A1 EP 3157929 A1 EP3157929 A1 EP 3157929A1 EP 14896199 A EP14896199 A EP 14896199A EP 3157929 A1 EP3157929 A1 EP 3157929A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- compound
- ring
- nitrogen
- optionally substituted
- sulfur
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000003217 pyrazoles Chemical class 0.000 title abstract description 3
- 101150105763 FSHR gene Proteins 0.000 title 1
- 150000001875 compounds Chemical class 0.000 claims abstract description 323
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 187
- 229910052757 nitrogen Inorganic materials 0.000 claims description 156
- 229910052717 sulfur Inorganic materials 0.000 claims description 145
- 229910052760 oxygen Inorganic materials 0.000 claims description 143
- -1 –OR Chemical group 0.000 claims description 133
- 125000005842 heteroatom Chemical group 0.000 claims description 131
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 130
- 239000011593 sulfur Chemical group 0.000 claims description 129
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 127
- 239000001301 oxygen Chemical group 0.000 claims description 127
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 122
- 125000001931 aliphatic group Chemical group 0.000 claims description 83
- 229920006395 saturated elastomer Polymers 0.000 claims description 71
- 125000003118 aryl group Chemical group 0.000 claims description 70
- 150000003839 salts Chemical class 0.000 claims description 58
- 125000002837 carbocyclic group Chemical group 0.000 claims description 51
- 238000000034 method Methods 0.000 claims description 50
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 36
- 238000011282 treatment Methods 0.000 claims description 36
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 35
- 125000004429 atom Chemical group 0.000 claims description 32
- 229910052739 hydrogen Inorganic materials 0.000 claims description 31
- 239000001257 hydrogen Substances 0.000 claims description 31
- 125000004076 pyridyl group Chemical group 0.000 claims description 30
- 230000000694 effects Effects 0.000 claims description 24
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 23
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 22
- 229910052736 halogen Inorganic materials 0.000 claims description 21
- 150000002367 halogens Chemical class 0.000 claims description 21
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 21
- 125000001544 thienyl group Chemical group 0.000 claims description 20
- 125000001072 heteroaryl group Chemical group 0.000 claims description 19
- 239000003814 drug Substances 0.000 claims description 15
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 15
- 230000001225 therapeutic effect Effects 0.000 claims description 14
- 239000012472 biological sample Substances 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 230000001404 mediated effect Effects 0.000 claims description 10
- 230000000069 prophylactic effect Effects 0.000 claims description 9
- 125000003107 substituted aryl group Chemical group 0.000 claims description 9
- 208000021267 infertility disease Diseases 0.000 claims description 7
- 239000002671 adjuvant Substances 0.000 claims description 6
- 239000008194 pharmaceutical composition Substances 0.000 claims description 6
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 5
- 125000004011 3 membered carbocyclic group Chemical group 0.000 claims description 2
- 230000008569 process Effects 0.000 claims description 2
- LMBFAGIMSUYTBN-MPZNNTNKSA-N teixobactin Chemical compound C([C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H](CCC(N)=O)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H]1C(N[C@@H](C)C(=O)N[C@@H](C[C@@H]2NC(=N)NC2)C(=O)N[C@H](C(=O)O[C@H]1C)[C@@H](C)CC)=O)NC)C1=CC=CC=C1 LMBFAGIMSUYTBN-MPZNNTNKSA-N 0.000 claims description 2
- 102100027627 Follicle-stimulating hormone receptor Human genes 0.000 claims 3
- 101000862396 Homo sapiens Follicle-stimulating hormone receptor Proteins 0.000 claims 3
- 239000000203 mixture Substances 0.000 abstract description 136
- 108010060374 FSH Receptors Proteins 0.000 abstract description 67
- 102000018343 Follicle stimulating hormone receptors Human genes 0.000 abstract description 58
- 230000003281 allosteric effect Effects 0.000 abstract description 8
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 84
- 239000000243 solution Substances 0.000 description 75
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 75
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 74
- 239000007787 solid Substances 0.000 description 71
- 235000002639 sodium chloride Nutrition 0.000 description 54
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 49
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 48
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 47
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 44
- 239000011541 reaction mixture Substances 0.000 description 42
- 238000005160 1H NMR spectroscopy Methods 0.000 description 41
- 108010079345 Follicle Stimulating Hormone Proteins 0.000 description 38
- 102000012673 Follicle Stimulating Hormone Human genes 0.000 description 38
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 38
- 229940028334 follicle stimulating hormone Drugs 0.000 description 37
- 239000012071 phase Substances 0.000 description 27
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 26
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 26
- 125000000714 pyrimidinyl group Chemical group 0.000 description 26
- 125000000160 oxazolidinyl group Chemical group 0.000 description 25
- 239000004480 active ingredient Substances 0.000 description 24
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 22
- 210000004027 cell Anatomy 0.000 description 22
- 239000012043 crude product Substances 0.000 description 21
- 125000001424 substituent group Chemical group 0.000 description 21
- 201000010099 disease Diseases 0.000 description 20
- 125000004594 isoindolinyl group Chemical group C1(NCC2=CC=CC=C12)* 0.000 description 20
- 235000019439 ethyl acetate Nutrition 0.000 description 19
- 238000002953 preparative HPLC Methods 0.000 description 19
- 125000000623 heterocyclic group Chemical group 0.000 description 18
- 239000002904 solvent Substances 0.000 description 18
- 238000000338 in vitro Methods 0.000 description 17
- 229910052938 sodium sulfate Inorganic materials 0.000 description 17
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 16
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 16
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 14
- 208000035475 disorder Diseases 0.000 description 14
- 125000002541 furyl group Chemical group 0.000 description 14
- 125000002883 imidazolyl group Chemical group 0.000 description 14
- 125000000842 isoxazolyl group Chemical group 0.000 description 14
- 125000001715 oxadiazolyl group Chemical group 0.000 description 14
- 125000002971 oxazolyl group Chemical group 0.000 description 14
- 125000003373 pyrazinyl group Chemical group 0.000 description 14
- 125000003226 pyrazolyl group Chemical group 0.000 description 14
- 125000002098 pyridazinyl group Chemical group 0.000 description 14
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 14
- 125000000168 pyrrolyl group Chemical group 0.000 description 14
- 125000000335 thiazolyl group Chemical group 0.000 description 14
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 13
- 125000002757 morpholinyl group Chemical group 0.000 description 13
- 125000004193 piperazinyl group Chemical group 0.000 description 13
- 125000003386 piperidinyl group Chemical group 0.000 description 13
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 13
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 13
- 125000001422 pyrrolinyl group Chemical group 0.000 description 13
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 13
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 13
- 125000000147 tetrahydroquinolinyl group Chemical group N1(CCCC2=CC=CC=C12)* 0.000 description 13
- KZPYGQFFRCFCPP-UHFFFAOYSA-N 1,1'-bis(diphenylphosphino)ferrocene Chemical compound [Fe+2].C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1 KZPYGQFFRCFCPP-UHFFFAOYSA-N 0.000 description 12
- 125000004502 1,2,3-oxadiazolyl group Chemical group 0.000 description 12
- 125000004504 1,2,4-oxadiazolyl group Chemical group 0.000 description 12
- 125000004506 1,2,5-oxadiazolyl group Chemical group 0.000 description 12
- 125000001781 1,3,4-oxadiazolyl group Chemical group 0.000 description 12
- 125000005955 1H-indazolyl group Chemical group 0.000 description 12
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 12
- 241000124008 Mammalia Species 0.000 description 12
- 239000007832 Na2SO4 Substances 0.000 description 12
- 125000000217 alkyl group Chemical group 0.000 description 12
- 125000002393 azetidinyl group Chemical group 0.000 description 12
- 239000012267 brine Substances 0.000 description 12
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 12
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 12
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 12
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 12
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 12
- 125000003838 furazanyl group Chemical group 0.000 description 12
- 125000002632 imidazolidinyl group Chemical group 0.000 description 12
- 125000002636 imidazolinyl group Chemical group 0.000 description 12
- 125000004926 indolenyl group Chemical group 0.000 description 12
- 125000001786 isothiazolyl group Chemical group 0.000 description 12
- 125000001624 naphthyl group Chemical group 0.000 description 12
- 125000003566 oxetanyl group Chemical group 0.000 description 12
- 125000004934 phenanthridinyl group Chemical group C1(=CC=CC2=NC=C3C=CC=CC3=C12)* 0.000 description 12
- 125000004309 pyranyl group Chemical group O1C(C=CC=C1)* 0.000 description 12
- 125000003072 pyrazolidinyl group Chemical group 0.000 description 12
- 125000002755 pyrazolinyl group Chemical group 0.000 description 12
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 12
- 239000003826 tablet Substances 0.000 description 12
- 125000003039 tetrahydroisoquinolinyl group Chemical group C1(NCCC2=CC=CC=C12)* 0.000 description 12
- 125000002471 4H-quinolizinyl group Chemical group C=1(C=CCN2C=CC=CC12)* 0.000 description 11
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 11
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 11
- 238000003556 assay Methods 0.000 description 11
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 11
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 11
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 11
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 11
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 11
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 11
- 125000003016 chromanyl group Chemical group O1C(CCC2=CC=CC=C12)* 0.000 description 11
- 125000000259 cinnolinyl group Chemical group N1=NC(=CC2=CC=CC=C12)* 0.000 description 11
- 125000004856 decahydroquinolinyl group Chemical group N1(CCCC2CCCCC12)* 0.000 description 11
- 125000003392 indanyl group Chemical group C1(CCC2=CC=CC=C12)* 0.000 description 11
- 125000003387 indolinyl group Chemical group N1(CCC2=CC=CC=C12)* 0.000 description 11
- 125000003406 indolizinyl group Chemical group C=1(C=CN2C=CC=CC12)* 0.000 description 11
- 125000001041 indolyl group Chemical group 0.000 description 11
- 125000000904 isoindolyl group Chemical group C=1(NC=C2C=CC=CC12)* 0.000 description 11
- 125000004593 naphthyridinyl group Chemical group N1=C(C=CC2=CC=CN=C12)* 0.000 description 11
- 125000001791 phenazinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3N=C12)* 0.000 description 11
- 125000001484 phenothiazinyl group Chemical group C1(=CC=CC=2SC3=CC=CC=C3NC12)* 0.000 description 11
- 125000001644 phenoxazinyl group Chemical group C1(=CC=CC=2OC3=CC=CC=C3NC12)* 0.000 description 11
- 125000004592 phthalazinyl group Chemical group C1(=NN=CC2=CC=CC=C12)* 0.000 description 11
- 125000001042 pteridinyl group Chemical group N1=C(N=CC2=NC=CN=C12)* 0.000 description 11
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 11
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 11
- 125000004621 quinuclidinyl group Chemical group N12C(CC(CC1)CC2)* 0.000 description 11
- 230000019491 signal transduction Effects 0.000 description 11
- 125000001712 tetrahydronaphthyl group Chemical group C1(CCCC2=CC=CC=C12)* 0.000 description 11
- 125000004511 1,2,3-thiadiazolyl group Chemical group 0.000 description 10
- 125000001399 1,2,3-triazolyl group Chemical group N1N=NC(=C1)* 0.000 description 10
- 125000004514 1,2,4-thiadiazolyl group Chemical group 0.000 description 10
- 125000001376 1,2,4-triazolyl group Chemical group N1N=C(N=C1)* 0.000 description 10
- 125000004517 1,2,5-thiadiazolyl group Chemical group 0.000 description 10
- 125000004520 1,3,4-thiadiazolyl group Chemical group 0.000 description 10
- GAMYYCRTACQSBR-UHFFFAOYSA-N 4-azabenzimidazole Chemical compound C1=CC=C2NC=NC2=N1 GAMYYCRTACQSBR-UHFFFAOYSA-N 0.000 description 10
- 239000007821 HATU Substances 0.000 description 10
- BBAWTPDTGRXPDG-UHFFFAOYSA-N [1,3]thiazolo[4,5-b]pyridine Chemical compound C1=CC=C2SC=NC2=N1 BBAWTPDTGRXPDG-UHFFFAOYSA-N 0.000 description 10
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 10
- 125000004931 azocinyl group Chemical group N1=C(C=CC=CC=C1)* 0.000 description 10
- 125000004604 benzisothiazolyl group Chemical group S1N=C(C2=C1C=CC=C2)* 0.000 description 10
- 125000004603 benzisoxazolyl group Chemical group O1N=C(C2=C1C=CC=C2)* 0.000 description 10
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 10
- 125000005512 benztetrazolyl group Chemical group 0.000 description 10
- 125000004623 carbolinyl group Chemical group 0.000 description 10
- 125000004230 chromenyl group Chemical group O1C(C=CC2=CC=CC=C12)* 0.000 description 10
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 10
- 239000002552 dosage form Substances 0.000 description 10
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 10
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 10
- 150000002431 hydrogen Chemical class 0.000 description 10
- 125000001977 isobenzofuranyl group Chemical group C=1(OC=C2C=CC=CC12)* 0.000 description 10
- 125000003384 isochromanyl group Chemical group C1(OCCC2=CC=CC=C12)* 0.000 description 10
- 125000005438 isoindazolyl group Chemical group 0.000 description 10
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 10
- 125000004930 octahydroisoquinolinyl group Chemical group C1(NCCC2CCCC=C12)* 0.000 description 10
- QNNHQVPFZIFNFK-UHFFFAOYSA-N oxazolo[4,5-b]pyridine Chemical compound C1=CC=C2OC=NC2=N1 QNNHQVPFZIFNFK-UHFFFAOYSA-N 0.000 description 10
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 10
- 125000004625 phenanthrolinyl group Chemical group N1=C(C=CC2=CC=C3C=CC=NC3=C12)* 0.000 description 10
- 125000005954 phenoxathiinyl group Chemical group 0.000 description 10
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 10
- 102000005962 receptors Human genes 0.000 description 10
- 108020003175 receptors Proteins 0.000 description 10
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 10
- 125000004627 thianthrenyl group Chemical group C1(=CC=CC=2SC3=CC=CC=C3SC12)* 0.000 description 10
- 125000004306 triazinyl group Chemical group 0.000 description 10
- 125000001834 xanthenyl group Chemical group C1=CC=CC=2OC3=CC=CC=C3C(C12)* 0.000 description 10
- 102000008175 FSH Receptors Human genes 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 239000002775 capsule Substances 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- 230000003993 interaction Effects 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 208000024891 symptom Diseases 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 229910000024 caesium carbonate Inorganic materials 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 8
- 238000012544 monitoring process Methods 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- DRNCYZUDAUHAHX-UHFFFAOYSA-N 8-bromo-N-tert-butyl-1-(3,5-dichlorophenyl)-7-methoxy-N-methyl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound COC1=C(Br)C=C2C3=C(COC2=C1)C(=NN3C1=CC(Cl)=CC(Cl)=C1)C(=O)N(C)C(C)(C)C DRNCYZUDAUHAHX-UHFFFAOYSA-N 0.000 description 7
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 7
- 241001465754 Metazoa Species 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 239000000556 agonist Substances 0.000 description 7
- 125000002947 alkylene group Chemical group 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 229910052805 deuterium Inorganic materials 0.000 description 7
- 239000003480 eluent Substances 0.000 description 7
- 238000009472 formulation Methods 0.000 description 7
- 239000008101 lactose Substances 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 235000019198 oils Nutrition 0.000 description 7
- 230000016087 ovulation Effects 0.000 description 7
- 239000000546 pharmaceutical excipient Substances 0.000 description 7
- 229920001223 polyethylene glycol Polymers 0.000 description 7
- 239000003981 vehicle Substances 0.000 description 7
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 6
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 6
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 6
- 229910002666 PdCl2 Inorganic materials 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000004440 column chromatography Methods 0.000 description 6
- 239000003937 drug carrier Substances 0.000 description 6
- 239000000706 filtrate Substances 0.000 description 6
- 229940088597 hormone Drugs 0.000 description 6
- 239000005556 hormone Substances 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 231100000252 nontoxic Toxicity 0.000 description 6
- 230000003000 nontoxic effect Effects 0.000 description 6
- 210000004681 ovum Anatomy 0.000 description 6
- 230000004783 oxidative metabolism Effects 0.000 description 6
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 6
- 235000011152 sodium sulphate Nutrition 0.000 description 6
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 102000009151 Luteinizing Hormone Human genes 0.000 description 5
- 108010073521 Luteinizing Hormone Proteins 0.000 description 5
- GZEKRGVXQPFQAN-UHFFFAOYSA-N N-(1-amino-2-methyl-1-oxopropan-2-yl)-8-(5-carbamoylpyridin-3-yl)-1-(3,5-difluorophenyl)-7-methoxy-N-methyl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound NC(C(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CC(=CC(=C1)F)F)C=1C=C(C(=CC=1OC2)OC)C=1C=NC=C(C=1)C(N)=O)C)=O GZEKRGVXQPFQAN-UHFFFAOYSA-N 0.000 description 5
- LEBAPIXURKVEQM-UHFFFAOYSA-N N-tert-butyl-1-(3,5-dichlorophenyl)-8-[1-[2-(dimethylamino)-2-oxoethyl]-3,5-dimethylpyrazol-4-yl]-7-methoxy-N-methyl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CC(=CC(=C1)Cl)Cl)C=1C=C(C(=CC=1OC2)OC)C=1C(=NN(C=1C)CC(=O)N(C)C)C)C LEBAPIXURKVEQM-UHFFFAOYSA-N 0.000 description 5
- IOJQYTPCHSCHQE-UHFFFAOYSA-N N-tert-butyl-1-(3,5-dichlorophenyl)-8-[2-fluoro-3-(hydroxymethyl)phenyl]-7-methoxy-N-methyl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CC(=CC(=C1)Cl)Cl)C=1C=C(C(=CC=1OC2)OC)C1=C(C(=CC=C1)CO)F)C IOJQYTPCHSCHQE-UHFFFAOYSA-N 0.000 description 5
- JOQZSAYOPYFMMG-UHFFFAOYSA-N N-tert-butyl-7-methoxy-N-methyl-1-thiophen-3-yl-8-(1H-1,2,4-triazol-5-yl)-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CSC=C1)C=1C=C(C(=CC=1OC2)OC)C1=NNC=N1)C JOQZSAYOPYFMMG-UHFFFAOYSA-N 0.000 description 5
- YZCFDOAHJYHKMP-UHFFFAOYSA-N N-tert-butyl-7-methoxy-N-methyl-1-thiophen-3-yl-8-(2H-triazol-4-yl)-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CSC=C1)C=1C=C(C(=CC=1OC2)OC)C=1N=NNC=1)C YZCFDOAHJYHKMP-UHFFFAOYSA-N 0.000 description 5
- UMPAGDPFGTUHTQ-UHFFFAOYSA-N N-tert-butyl-7-methoxy-N-methyl-8-(5-oxo-1,2-dihydropyrazol-3-yl)-1-thiophen-3-yl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CSC=C1)C=1C=C(C(=CC=1OC2)OC)C=1NNC(C=1)=O)C UMPAGDPFGTUHTQ-UHFFFAOYSA-N 0.000 description 5
- BMUXMGBTLFHBEZ-UHFFFAOYSA-N N-tert-butyl-8-(1-hydroxypropan-2-yloxy)-7-methoxy-N-methyl-1-thiophen-3-yl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CSC=C1)C=1C=C(C(=CC=1OC2)OC)OC(CO)C)C BMUXMGBTLFHBEZ-UHFFFAOYSA-N 0.000 description 5
- WFVXCQULOCJKOX-UHFFFAOYSA-N N-tert-butyl-8-(4-carbamoyl-1-methylpyrazol-3-yl)-1-(3,5-dimethoxyphenyl)-7-methoxy-N-methyl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CC(=CC(=C1)OC)OC)C=1C=C(C(=CC=1OC2)OC)C1=NN(C=C1C(N)=O)C)C WFVXCQULOCJKOX-UHFFFAOYSA-N 0.000 description 5
- OPSFJGWYUDFVRQ-UHFFFAOYSA-N N-tert-butyl-8-(4-carbamoylpyrimidin-2-yl)-1-(3,5-dichlorophenyl)-7-methoxy-N-methyl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CC(=CC(=C1)Cl)Cl)C=1C=C(C(=CC=1OC2)OC)C1=NC=CC(=N1)C(N)=O)C OPSFJGWYUDFVRQ-UHFFFAOYSA-N 0.000 description 5
- PQLMEZTXWDZHBX-UHFFFAOYSA-N N-tert-butyl-N-(2-hydroxyethyl)-7-methoxy-8-(1-methylpyrazol-3-yl)-1-thiophen-3-yl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CSC=C1)C=1C=C(C(=CC=1OC2)OC)C1=NN(C=C1)C)CCO PQLMEZTXWDZHBX-UHFFFAOYSA-N 0.000 description 5
- 125000003342 alkenyl group Chemical group 0.000 description 5
- 125000002619 bicyclic group Chemical group 0.000 description 5
- 150000001721 carbon Chemical group 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 238000004113 cell culture Methods 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 125000000753 cycloalkyl group Chemical group 0.000 description 5
- 239000002270 dispersing agent Substances 0.000 description 5
- 238000004128 high performance liquid chromatography Methods 0.000 description 5
- 230000006698 induction Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229940040129 luteinizing hormone Drugs 0.000 description 5
- 239000002207 metabolite Substances 0.000 description 5
- 125000002950 monocyclic group Chemical group 0.000 description 5
- 239000006187 pill Substances 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 239000000741 silica gel Substances 0.000 description 5
- 229910002027 silica gel Inorganic materials 0.000 description 5
- 239000007909 solid dosage form Substances 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- 239000000829 suppository Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000004809 thin layer chromatography Methods 0.000 description 5
- QAKVPNZQJJOAOY-UHFFFAOYSA-N 1-(3,5-dichlorophenyl)-N-ethyl-N-ethylsulfonyl-7-methoxy-8-(1-methylpyrazol-3-yl)-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound ClC=1C=C(C=C(C=1)Cl)N1N=C(C2=C1C=1C=C(C(=CC=1OC2)OC)C1=NN(C=C1)C)C(=O)N(S(=O)(=O)CC)CC QAKVPNZQJJOAOY-UHFFFAOYSA-N 0.000 description 4
- HEGZBDYQQFRNEH-UHFFFAOYSA-N 1-(3,5-dimethoxyphenyl)-N-(4-hydroxy-2-methylbutan-2-yl)-7-methoxy-N-methyl-8-(1-methylpyrazol-3-yl)-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound COC=1C=C(C=C(C=1)OC)N1N=C(C2=C1C=1C=C(C(=CC=1OC2)OC)C1=NN(C=C1)C)C(=O)N(C)C(C)(CCO)C HEGZBDYQQFRNEH-UHFFFAOYSA-N 0.000 description 4
- MSPQMCHDKIVRPX-UHFFFAOYSA-N 2-[3-[tert-butyl(methyl)carbamoyl]-1-(3,5-dichlorophenyl)-7-methoxy-4H-chromeno[4,3-c]pyrazol-8-yl]cyclopropane-1-carboxylic acid Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CC(=CC(=C1)Cl)Cl)C=1C=C(C(=CC=1OC2)OC)C1C(C1)C(=O)O)C MSPQMCHDKIVRPX-UHFFFAOYSA-N 0.000 description 4
- NFUXYCLQVUMPBS-UHFFFAOYSA-N 2-[4-[3-[tert-butyl(methyl)carbamoyl]-1-(3,5-dichlorophenyl)-7-methoxy-4H-chromeno[4,3-c]pyrazol-8-yl]-3,5-dimethylpyrazol-1-yl]acetic acid Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CC(=CC(=C1)Cl)Cl)C=1C=C(C(=CC=1OC2)OC)C=1C(=NN(C=1C)CC(=O)O)C)C NFUXYCLQVUMPBS-UHFFFAOYSA-N 0.000 description 4
- DZZVQYQXEAAKMR-UHFFFAOYSA-N 4-[7-methoxy-8-(1-methylpyrazol-3-yl)-1-thiophen-3-yl-4H-chromeno[4,3-c]pyrazole-3-carbonyl]-3,3-dimethylpiperazine-1-carbonitrile Chemical compound COC=1C(=CC2=C(C=1)OCC1=C2N(N=C1C(=O)N1C(CN(CC1)C#N)(C)C)C1=CSC=C1)C1=NN(C=C1)C DZZVQYQXEAAKMR-UHFFFAOYSA-N 0.000 description 4
- PJYAUJLVLXTXBU-UHFFFAOYSA-N 5-[1-(3,5-dichlorophenyl)-3-(3,3-dimethylmorpholine-4-carbonyl)-7-methoxy-4H-chromeno[4,3-c]pyrazol-8-yl]pyridine-3-carboxylic acid Chemical compound ClC=1C=C(C=C(C=1)Cl)N1N=C(C2=C1C=1C=C(C(=CC=1OC2)OC)C=1C=NC=C(C(=O)O)C=1)C(=O)N1C(COCC1)(C)C PJYAUJLVLXTXBU-UHFFFAOYSA-N 0.000 description 4
- DLIMNDKGVUBOGC-UHFFFAOYSA-N 8-(4-bromo-1-methylpyrazol-3-yl)-N-tert-butyl-1-(3,5-dimethoxyphenyl)-7-methoxy-N-methyl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound BrC=1C(=NN(C=1)C)C1=CC2=C(C=C1OC)OCC1=C2N(N=C1C(=O)N(C)C(C)(C)C)C1=CC(=CC(=C1)OC)OC DLIMNDKGVUBOGC-UHFFFAOYSA-N 0.000 description 4
- ZHFXIMIQBXFECC-UHFFFAOYSA-N 8-bromo-1-(3,5-dichlorophenyl)-7-methoxy-4H-chromeno[4,3-c]pyrazole-3-carboxylic acid Chemical compound COC1=C(Br)C=C2C3=C(COC2=C1)C(=NN3C1=CC(Cl)=CC(Cl)=C1)C(O)=O ZHFXIMIQBXFECC-UHFFFAOYSA-N 0.000 description 4
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- RFLSBKRLDOOALC-UHFFFAOYSA-N COc1cc2OCc3c(nn(-c4ccsc4)c3-c2cc1-c1ccn(C)n1)C(O)=O Chemical compound COc1cc2OCc3c(nn(-c4ccsc4)c3-c2cc1-c1ccn(C)n1)C(O)=O RFLSBKRLDOOALC-UHFFFAOYSA-N 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 4
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 4
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- ZMANZCXQSJIPKH-UHFFFAOYSA-N N,N-Diethylethanamine Substances CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 4
- JXDMGRAITHCHQP-UHFFFAOYSA-N N-tert-butyl-1-(3,5-dichlorophenyl)-7-methoxy-8-(2-methoxy-5-methylpyridin-3-yl)-N-methyl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CC(=CC(=C1)Cl)Cl)C=1C=C(C(=CC=1OC2)OC)C=1C(=NC=C(C=1)C)OC)C JXDMGRAITHCHQP-UHFFFAOYSA-N 0.000 description 4
- FOZQCSSVIZTLFT-UHFFFAOYSA-N N-tert-butyl-8-(1-carbamoylpyrazol-4-yl)-1-(3,5-dichlorophenyl)-7-methoxy-N-methyl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CC(=CC(=C1)Cl)Cl)C=1C=C(C(=CC=1OC2)OC)C=1C=NN(C=1)C(N)=O)C FOZQCSSVIZTLFT-UHFFFAOYSA-N 0.000 description 4
- KZUSRDQITBJVDY-UHFFFAOYSA-N N-tert-butyl-8-(2-carbamoylcyclopropyl)-1-(3,5-dichlorophenyl)-7-methoxy-N-methyl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CC(=CC(=C1)Cl)Cl)C=1C=C(C(=CC=1OC2)OC)C1C(C1)C(N)=O)C KZUSRDQITBJVDY-UHFFFAOYSA-N 0.000 description 4
- JJEWLDDLNVSZRM-UHFFFAOYSA-N N-tert-butyl-8-(4-cyano-1-methylpyrazol-3-yl)-1-(3,5-dimethoxyphenyl)-7-methoxy-N-methyl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CC(=CC(=C1)OC)OC)C=1C=C(C(=CC=1OC2)OC)C1=NN(C=C1C#N)C)C JJEWLDDLNVSZRM-UHFFFAOYSA-N 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 4
- HFYWIWNHXWSKTD-UHFFFAOYSA-N [1-(3,5-dichlorophenyl)-7-methoxy-8-pyridin-2-yl-4H-chromeno[4,3-c]pyrazol-3-yl]-(4-hydroxy-2,2-dimethylpiperidin-1-yl)methanone Chemical compound COC1=C(C=C2C3=C(COC2=C1)C(=NN3C1=CC(Cl)=CC(Cl)=C1)C(=O)N1CCC(O)CC1(C)C)C1=NC=CC=C1 HFYWIWNHXWSKTD-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 4
- 230000037396 body weight Effects 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- 239000003995 emulsifying agent Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 230000004720 fertilization Effects 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 210000001035 gastrointestinal tract Anatomy 0.000 description 4
- 125000005843 halogen group Chemical group 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 201000003368 hypogonadotropic hypogonadism Diseases 0.000 description 4
- 239000003701 inert diluent Substances 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 235000019359 magnesium stearate Nutrition 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 239000000346 nonvolatile oil Substances 0.000 description 4
- 239000002674 ointment Substances 0.000 description 4
- 210000000056 organ Anatomy 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 230000000644 propagated effect Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 125000006413 ring segment Chemical group 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- 239000000375 suspending agent Substances 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 230000000699 topical effect Effects 0.000 description 4
- 239000001993 wax Substances 0.000 description 4
- 239000000080 wetting agent Substances 0.000 description 4
- CJUVCYCYJRQRGT-UHFFFAOYSA-N (2,2-dimethylpiperazin-1-yl)-[7-methoxy-8-(1-methylpyrazol-3-yl)-1-thiophen-3-yl-4H-chromeno[4,3-c]pyrazol-3-yl]methanone hydrochloride Chemical compound Cl.COc1cc2OCc3c(nn(-c4ccsc4)c3-c2cc1-c1ccn(C)n1)C(=O)N1CCNCC1(C)C CJUVCYCYJRQRGT-UHFFFAOYSA-N 0.000 description 3
- 125000006570 (C5-C6) heteroaryl group Chemical group 0.000 description 3
- MBTPFAQYPODHGO-UHFFFAOYSA-N 1-(3,5-dichlorophenyl)-N-ethyl-7-methoxy-8-(1-methylpyrazol-3-yl)-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound ClC=1C=C(C=C(C=1)Cl)N1N=C(C2=C1C=1C=C(C(=CC=1OC2)OC)C1=NN(C=C1)C)C(=O)NCC MBTPFAQYPODHGO-UHFFFAOYSA-N 0.000 description 3
- MFYSUUPKMDJYPF-UHFFFAOYSA-N 2-[(4-methyl-2-nitrophenyl)diazenyl]-3-oxo-n-phenylbutanamide Chemical compound C=1C=CC=CC=1NC(=O)C(C(=O)C)N=NC1=CC=C(C)C=C1[N+]([O-])=O MFYSUUPKMDJYPF-UHFFFAOYSA-N 0.000 description 3
- VQOUDUVJUBAXKV-UHFFFAOYSA-N 3-methyl-3-(methylamino)butan-1-ol Chemical compound CNC(C)(C)CCO VQOUDUVJUBAXKV-UHFFFAOYSA-N 0.000 description 3
- VTZLQNYCANVDRK-UHFFFAOYSA-N 3-n-tert-butyl-7-methoxy-3-n-methyl-1-thiophen-3-yl-4h-chromeno[4,3-c]pyrazole-3,8-dicarboxamide Chemical compound C1=2C=3C=C(C(N)=O)C(OC)=CC=3OCC=2C(C(=O)N(C)C(C)(C)C)=NN1C=1C=CSC=1 VTZLQNYCANVDRK-UHFFFAOYSA-N 0.000 description 3
- VQJIIRJJGBCSIV-UHFFFAOYSA-N 8-(5-acetamidopyridin-3-yl)-N-tert-butyl-1-(3,5-dichlorophenyl)-7-methoxy-N-methyl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(C)(=O)NC=1C=C(C=NC=1)C1=CC2=C(C=C1OC)OCC1=C2N(N=C1C(=O)N(C)C(C)(C)C)C1=CC(=CC(=C1)Cl)Cl VQJIIRJJGBCSIV-UHFFFAOYSA-N 0.000 description 3
- GHMCYCTVNXFVOI-UHFFFAOYSA-N 8-bromo-N-(2-cyanopropan-2-yl)-1-(3,5-difluorophenyl)-7-methoxy-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound BrC1=CC2=C(C=C1OC)OCC1=C2N(N=C1C(=O)NC(C)(C)C#N)C1=CC(=CC(=C1)F)F GHMCYCTVNXFVOI-UHFFFAOYSA-N 0.000 description 3
- SAQQLZNTRWGWJI-UHFFFAOYSA-N 8-bromo-N-(2-cyanopropan-2-yl)-1-(3,5-difluorophenyl)-7-methoxy-N-methyl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound BrC1=CC2=C(C=C1OC)OCC1=C2N(N=C1C(=O)N(C)C(C)(C)C#N)C1=CC(=CC(=C1)F)F SAQQLZNTRWGWJI-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 3
- PGVQGGLTKZEDFV-UHFFFAOYSA-N BrC1=CC2=C(C=C1OC)OCC1=C2N(N=C1C(=O)N(C)C(C)(CCO[Si](C1=CC=CC=C1)(C1=CC=CC=C1)C(C)(C)C)C)C1=CC(=CC(=C1)OC)OC Chemical compound BrC1=CC2=C(C=C1OC)OCC1=C2N(N=C1C(=O)N(C)C(C)(CCO[Si](C1=CC=CC=C1)(C1=CC=CC=C1)C(C)(C)C)C)C1=CC(=CC(=C1)OC)OC PGVQGGLTKZEDFV-UHFFFAOYSA-N 0.000 description 3
- CLZKVWCDULFTDJ-UHFFFAOYSA-N C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CC(=CC(=C1)Cl)Cl)C=1C=C(C(=CC=1OC2)OC)B1OC(C(O1)(C)C)(C)C)C Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CC(=CC(=C1)Cl)Cl)C=1C=C(C(=CC=1OC2)OC)B1OC(C(O1)(C)C)(C)C)C CLZKVWCDULFTDJ-UHFFFAOYSA-N 0.000 description 3
- XEBQSIVXRKLCRA-VULFUBBASA-N C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CSC=C1)C=1C=C(C(=CC=1OC2)OC)C(=O)/N=C/N(C)C)C Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CSC=C1)C=1C=C(C(=CC=1OC2)OC)C(=O)/N=C/N(C)C)C XEBQSIVXRKLCRA-VULFUBBASA-N 0.000 description 3
- ZWQDIRMNJVQGPN-UHFFFAOYSA-N C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CSC=C1)C=1C=C(C(=CC=1OC2)OC)C1=NN(C=C1)C)CCO[Si](C)(C)C(C)(C)C Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CSC=C1)C=1C=C(C(=CC=1OC2)OC)C1=NN(C=C1)C)CCO[Si](C)(C)C(C)(C)C ZWQDIRMNJVQGPN-UHFFFAOYSA-N 0.000 description 3
- CTOIOEBKDDQUFI-UHFFFAOYSA-N CC(C)(C)NCCO[Si](C)(C)C(C)(C)C Chemical compound CC(C)(C)NCCO[Si](C)(C)C(C)(C)C CTOIOEBKDDQUFI-UHFFFAOYSA-N 0.000 description 3
- WVTQCAQCDLDALZ-UHFFFAOYSA-N COC1=C(C=C2C3=C(COC2=C1)C(=NN3C1=CSC=C1)C(=O)N1CCN(CC1(C)C)C(=O)OC(C)(C)C)C1=NN(C)C=C1 Chemical compound COC1=C(C=C2C3=C(COC2=C1)C(=NN3C1=CSC=C1)C(=O)N1CCN(CC1(C)C)C(=O)OC(C)(C)C)C1=NN(C)C=C1 WVTQCAQCDLDALZ-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 206010058359 Hypogonadism Diseases 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- NQKPYKNZHNKNPF-UHFFFAOYSA-N N-(2-cyanopropan-2-yl)-8-(5-cyanopyridin-3-yl)-1-(3,5-difluorophenyl)-7-methoxy-N-methyl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(#N)C(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CC(=CC(=C1)F)F)C=1C=C(C(=CC=1OC2)OC)C=1C=NC=C(C=1)C#N)C NQKPYKNZHNKNPF-UHFFFAOYSA-N 0.000 description 3
- HQJYQLLDBAIGAJ-UHFFFAOYSA-N N-tert-butyl-1-(3,5-dichlorophenyl)-7-methoxy-N-methyl-8-(1H-pyrazol-4-yl)-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CC(=CC(=C1)Cl)Cl)C=1C=C(C(=CC=1OC2)OC)C=1C=NNC=1)C HQJYQLLDBAIGAJ-UHFFFAOYSA-N 0.000 description 3
- DYRZNPACUHAQPJ-UHFFFAOYSA-N N-tert-butyl-1-(3,5-dichlorophenyl)-8-(2-fluoro-3-formylphenyl)-7-methoxy-N-methyl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CC(=CC(=C1)Cl)Cl)C=1C=C(C(=CC=1OC2)OC)C1=C(C(=CC=C1)C=O)F)C DYRZNPACUHAQPJ-UHFFFAOYSA-N 0.000 description 3
- IVUXCXWWFCIVJL-UHFFFAOYSA-N N-tert-butyl-1-(3,5-dichlorophenyl)-8-[1-(2,3-dihydroxypropyl)pyrazol-4-yl]-7-methoxy-N-methyl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CC(=CC(=C1)Cl)Cl)C=1C=C(C(=CC=1OC2)OC)C=1C=NN(C=1)CC(CO)O)C IVUXCXWWFCIVJL-UHFFFAOYSA-N 0.000 description 3
- ZGNJXZWNAWVQSZ-UHFFFAOYSA-N N-tert-butyl-1-(3,5-dichlorophenyl)-8-[1-[(2,2-dimethyl-1,3-dioxolan-4-yl)methyl]pyrazol-4-yl]-7-methoxy-N-methyl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CC(=CC(=C1)Cl)Cl)C=1C=C(C(=CC=1OC2)OC)C=1C=NN(C=1)CC1OC(OC1)(C)C)C ZGNJXZWNAWVQSZ-UHFFFAOYSA-N 0.000 description 3
- BEFJPCGVXMNCAZ-UHFFFAOYSA-N N-tert-butyl-1-(3,5-dichlorophenyl)-8-ethenyl-7-methoxy-N-methyl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CC(=CC(=C1)Cl)Cl)C=1C=C(C(=CC=1OC2)OC)C=C)C BEFJPCGVXMNCAZ-UHFFFAOYSA-N 0.000 description 3
- VQGDRXAFBLMLCO-UHFFFAOYSA-N N-tert-butyl-8-(3-hydroxyprop-1-ynyl)-7-methoxy-N-methyl-1-thiophen-3-yl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CSC=C1)C=1C=C(C(=CC=1OC2)OC)C#CCO)C VQGDRXAFBLMLCO-UHFFFAOYSA-N 0.000 description 3
- NGOQOKQIRRLEMP-UHFFFAOYSA-N N-tert-butyl-8-(4-cyanopyrimidin-2-yl)-1-(3,5-dichlorophenyl)-7-methoxy-N-methyl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CC(=CC(=C1)Cl)Cl)C=1C=C(C(=CC=1OC2)OC)C1=NC=CC(=N1)C#N)C NGOQOKQIRRLEMP-UHFFFAOYSA-N 0.000 description 3
- NHQGPDBFNHLCSS-UHFFFAOYSA-N N-tert-butyl-8-[5-(carbamoylamino)pyridin-3-yl]-1-(3,5-dichlorophenyl)-7-methoxy-N-methyl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CC(=CC(=C1)Cl)Cl)C=1C=C(C(=CC=1OC2)OC)C=1C=NC=C(C=1)NC(=O)N)C NHQGPDBFNHLCSS-UHFFFAOYSA-N 0.000 description 3
- MRJQEEGNALESQW-UHFFFAOYSA-N N-tert-butyl-8-ethynyl-7-methoxy-N-methyl-1-thiophen-3-yl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CSC=C1)C=1C=C(C(=CC=1OC2)OC)C#C)C MRJQEEGNALESQW-UHFFFAOYSA-N 0.000 description 3
- HWMZTZMSZQMTEA-UHFFFAOYSA-N N-tert-butyl-8-hydroxy-7-methoxy-N-methyl-1-thiophen-3-yl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CSC=C1)C=1C=C(C(=CC=1OC2)OC)O)C HWMZTZMSZQMTEA-UHFFFAOYSA-N 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- YTIJPOJPITVOIB-UHFFFAOYSA-N [Si](C1=CC=CC=C1)(C1=CC=CC=C1)(C(C)(C)C)OCCC(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CC(=CC(=C1)OC)OC)C=1C=C(C(=CC=1OC2)OC)C1=NN(C=C1)C)C Chemical compound [Si](C1=CC=CC=C1)(C1=CC=CC=C1)(C(C)(C)C)OCCC(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CC(=CC(=C1)OC)OC)C=1C=C(C(=CC=1OC2)OC)C1=NN(C=C1)C)C YTIJPOJPITVOIB-UHFFFAOYSA-N 0.000 description 3
- SSYVBXLWJIXJNB-UHFFFAOYSA-N [Si](C1=CC=CC=C1)(C1=CC=CC=C1)(C(C)(C)C)OCCC(C)(NC)C Chemical compound [Si](C1=CC=CC=C1)(C1=CC=CC=C1)(C(C)(C)C)OCCC(C)(NC)C SSYVBXLWJIXJNB-UHFFFAOYSA-N 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 235000010443 alginic acid Nutrition 0.000 description 3
- 229920000615 alginic acid Polymers 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 125000004450 alkenylene group Chemical group 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 235000019437 butane-1,3-diol Nutrition 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 229940110456 cocoa butter Drugs 0.000 description 3
- 235000019868 cocoa butter Nutrition 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 125000004431 deuterium atom Chemical group 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 239000007903 gelatin capsule Substances 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 125000001188 haloalkyl group Chemical group 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 150000002430 hydrocarbons Chemical group 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 3
- 239000012044 organic layer Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 235000014786 phosphorus Nutrition 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000011321 prophylaxis Methods 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 230000001850 reproductive effect Effects 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 235000017557 sodium bicarbonate Nutrition 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- ZVCDLGYNFYZZOK-UHFFFAOYSA-M sodium cyanate Chemical compound [Na]OC#N ZVCDLGYNFYZZOK-UHFFFAOYSA-M 0.000 description 3
- 239000008247 solid mixture Substances 0.000 description 3
- 239000012453 solvate Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 229910052623 talc Inorganic materials 0.000 description 3
- 235000012222 talc Nutrition 0.000 description 3
- FPGGTKZVZWFYPV-UHFFFAOYSA-M tetrabutylammonium fluoride Chemical compound [F-].CCCC[N+](CCCC)(CCCC)CCCC FPGGTKZVZWFYPV-UHFFFAOYSA-M 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- CEZOQHPIKUJGLE-UHFFFAOYSA-N 1-(3,5-dichlorophenyl)-8-(2-fluoro-5-methylpyridin-3-yl)-7-methoxy-4H-chromeno[4,3-c]pyrazole-3-carboxylic acid Chemical compound ClC=1C=C(C=C(C=1)Cl)N1N=C(C2=C1C=1C=C(C(=CC=1OC2)OC)C=1C(=NC=C(C=1)C)F)C(=O)O CEZOQHPIKUJGLE-UHFFFAOYSA-N 0.000 description 2
- KPXUWAMGPCLHKH-UHFFFAOYSA-N 1-[(2,2-dimethyl-1,3-dioxolan-4-yl)methyl]-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrazole Chemical compound O1C(C)(C)OCC1CN1N=CC(B2OC(C)(C)C(C)(C)O2)=C1 KPXUWAMGPCLHKH-UHFFFAOYSA-N 0.000 description 2
- BJMSXWLXFYZHIU-UHFFFAOYSA-N 1-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrazole Chemical compound CN1C=CC(B2OC(C)(C)C(C)(C)O2)=N1 BJMSXWLXFYZHIU-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- TVOJIBGZFYMWDT-UHFFFAOYSA-N 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1h-pyrazole Chemical compound O1C(C)(C)C(C)(C)OB1C1=CNN=C1 TVOJIBGZFYMWDT-UHFFFAOYSA-N 0.000 description 2
- JNEWUCNXJRJRMM-UHFFFAOYSA-N 5-[1-(3,5-dichlorophenyl)-3-(3,3-dimethylmorpholine-4-carbonyl)-7-methoxy-4H-chromeno[4,3-c]pyrazol-8-yl]-1-oxidopyridin-1-ium-3-carboxamide Chemical compound C(N)(=O)C=1C=[N+](C=C(C=1)C1=CC2=C(C=C1OC)OCC1=C2N(N=C1C(=O)N1C(COCC1)(C)C)C1=CC(=CC(=C1)Cl)Cl)[O-] JNEWUCNXJRJRMM-UHFFFAOYSA-N 0.000 description 2
- MONNJSQUVUULAO-UHFFFAOYSA-N 8-(3-amino-3-oxoprop-1-ynyl)-N-tert-butyl-7-methoxy-N-methyl-1-thiophen-3-yl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound NC(C#CC1=CC2=C(C=C1OC)OCC1=C2N(N=C1C(=O)N(C)C(C)(C)C)C1=CSC=C1)=O MONNJSQUVUULAO-UHFFFAOYSA-N 0.000 description 2
- SIMJBSXQVXYPNH-UHFFFAOYSA-N 8-(5-aminopyridin-3-yl)-N-tert-butyl-1-(3,5-dichlorophenyl)-7-methoxy-N-methyl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound NC=1C=C(C=NC=1)C1=CC2=C(C=C1OC)OCC1=C2N(N=C1C(=O)N(C)C(C)(C)C)C1=CC(=CC(=C1)Cl)Cl SIMJBSXQVXYPNH-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- PRRIEQGTKPFOLL-UHFFFAOYSA-N C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CSC=C1)C=1C=C(C(=CC=1OC2)OC)C#CCO[Si](C)(C)C(C)(C)C)C Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CSC=C1)C=1C=C(C(=CC=1OC2)OC)C#CCO[Si](C)(C)C(C)(C)C)C PRRIEQGTKPFOLL-UHFFFAOYSA-N 0.000 description 2
- LWQAJXDPXXRZKK-UHFFFAOYSA-N COc1cc2OCc3c(nn(-c4ccsc4)c3-c2cc1Br)C(=O)N(C)C(C)(C)C Chemical compound COc1cc2OCc3c(nn(-c4ccsc4)c3-c2cc1Br)C(=O)N(C)C(C)(C)C LWQAJXDPXXRZKK-UHFFFAOYSA-N 0.000 description 2
- NRNQSWRQOSZBLF-UHFFFAOYSA-N COc1cc2OCc3c(nn(-c4ccsc4)c3-c2cc1Br)C(O)=O Chemical compound COc1cc2OCc3c(nn(-c4ccsc4)c3-c2cc1Br)C(O)=O NRNQSWRQOSZBLF-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 102000011022 Chorionic Gonadotropin Human genes 0.000 description 2
- 108010062540 Chorionic Gonadotropin Proteins 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- IVOMOUWHDPKRLL-KQYNXXCUSA-N Cyclic adenosine monophosphate Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-KQYNXXCUSA-N 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 102000006771 Gonadotropins Human genes 0.000 description 2
- 108010086677 Gonadotropins Proteins 0.000 description 2
- 229910004373 HOAc Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 208000007466 Male Infertility Diseases 0.000 description 2
- ANOJOXRAEGXZAW-UHFFFAOYSA-N N-tert-butyl-1-(3,5-dichlorophenyl)-8-(2-fluoro-5-methylpyridin-3-yl)-7-methoxy-N-methyl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CC(=CC(=C1)Cl)Cl)C=1C=C(C(=CC=1OC2)OC)C=1C(=NC=C(C=1)C)F)C ANOJOXRAEGXZAW-UHFFFAOYSA-N 0.000 description 2
- NHBXAYFPDLYOEZ-UHFFFAOYSA-N N-tert-butyl-1-(3,5-dichlorophenyl)-8-(3,5-dimethyl-1H-pyrazol-4-yl)-7-methoxy-N-methyl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CC(=CC(=C1)Cl)Cl)C=1C=C(C(=CC=1OC2)OC)C=1C(=NNC=1C)C)C NHBXAYFPDLYOEZ-UHFFFAOYSA-N 0.000 description 2
- DYKDQKUPGVLYIU-UHFFFAOYSA-N N-tert-butyl-1-(3,5-dichlorophenyl)-8-[1-(2-hydroxyethyl)pyrazol-4-yl]-7-methoxy-N-methyl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound COC1=C(C=C2C3=C(COC2=C1)C(=NN3C1=CC(Cl)=CC(Cl)=C1)C(=O)N(C)C(C)(C)C)C1=CN(CCO)N=C1 DYKDQKUPGVLYIU-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- 101000857870 Squalus acanthias Gonadoliberin Proteins 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 102000011923 Thyrotropin Human genes 0.000 description 2
- 108010061174 Thyrotropin Proteins 0.000 description 2
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 2
- WTVRQQDNACESHK-UHFFFAOYSA-N [8-bromo-1-(3,5-dichlorophenyl)-7-methoxy-4H-chromeno[4,3-c]pyrazol-3-yl]-(4-hydroxy-2,2-dimethylpiperidin-1-yl)methanone Chemical compound COC1=C(Br)C=C2C3=C(COC2=C1)C(=NN3C1=CC(Cl)=CC(Cl)=C1)C(=O)N1CCC(O)CC1(C)C WTVRQQDNACESHK-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 230000001270 agonistic effect Effects 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 235000019445 benzyl alcohol Nutrition 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000006172 buffering agent Substances 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000004359 castor oil Substances 0.000 description 2
- 229940015047 chorionic gonadotropin Drugs 0.000 description 2
- 229940125904 compound 1 Drugs 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 229940099112 cornstarch Drugs 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 230000009260 cross reactivity Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 230000037213 diet Effects 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 2
- 229940043264 dodecyl sulfate Drugs 0.000 description 2
- 239000008298 dragée Substances 0.000 description 2
- 230000001804 emulsifying effect Effects 0.000 description 2
- 239000002702 enteric coating Substances 0.000 description 2
- 238000009505 enteric coating Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 229940011871 estrogen Drugs 0.000 description 2
- 239000000262 estrogen Substances 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- GJFIFRFDLVRLSZ-UHFFFAOYSA-N ethyl 8-bromo-1-(3,5-dichlorophenyl)-7-methoxy-4H-chromeno[4,3-c]pyrazole-3-carboxylate Chemical compound CCOC(=O)C1=NN(C2=C1COC1=CC(OC)=C(Br)C=C21)C1=CC(Cl)=CC(Cl)=C1 GJFIFRFDLVRLSZ-UHFFFAOYSA-N 0.000 description 2
- 201000003585 eunuchism Diseases 0.000 description 2
- 230000029142 excretion Effects 0.000 description 2
- 239000003889 eye drop Substances 0.000 description 2
- 229940012356 eye drops Drugs 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000035558 fertility Effects 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 125000005456 glyceride group Chemical group 0.000 description 2
- 239000002622 gonadotropin Substances 0.000 description 2
- 229940094892 gonadotropins Drugs 0.000 description 2
- 210000002503 granulosa cell Anatomy 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 125000004475 heteroaralkyl group Chemical group 0.000 description 2
- 238000002868 homogeneous time resolved fluorescence Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 208000000509 infertility Diseases 0.000 description 2
- 230000036512 infertility Effects 0.000 description 2
- 231100000535 infertility Toxicity 0.000 description 2
- 239000007972 injectable composition Substances 0.000 description 2
- 229940102223 injectable solution Drugs 0.000 description 2
- 229940102213 injectable suspension Drugs 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 230000005445 isotope effect Effects 0.000 description 2
- 230000000155 isotopic effect Effects 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000008297 liquid dosage form Substances 0.000 description 2
- 239000006210 lotion Substances 0.000 description 2
- 208000037106 male hypogonadism Diseases 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 230000035800 maturation Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- WNEGZRZFYCBUGX-UHFFFAOYSA-N methyl 2-[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrazol-1-yl]acetate Chemical compound C1=NN(CC(=O)OC)C=C1B1OC(C)(C)C(C)(C)O1 WNEGZRZFYCBUGX-UHFFFAOYSA-N 0.000 description 2
- 239000004530 micro-emulsion Substances 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- ZQGJEUVBUVKZKS-UHFFFAOYSA-N n,2-dimethylpropan-2-amine Chemical compound CNC(C)(C)C ZQGJEUVBUVKZKS-UHFFFAOYSA-N 0.000 description 2
- 239000007922 nasal spray Substances 0.000 description 2
- 231100000344 non-irritating Toxicity 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 230000002611 ovarian Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 235000019271 petrolatum Nutrition 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 210000002826 placenta Anatomy 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 229920001592 potato starch Polymers 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 239000000651 prodrug Substances 0.000 description 2
- 229940002612 prodrug Drugs 0.000 description 2
- 229960004063 propylene glycol Drugs 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 210000000664 rectum Anatomy 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 210000000717 sertoli cell Anatomy 0.000 description 2
- 239000012279 sodium borohydride Substances 0.000 description 2
- 229910000033 sodium borohydride Inorganic materials 0.000 description 2
- 230000021595 spermatogenesis Effects 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000005556 structure-activity relationship Methods 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- XQUYIMLIJSXUFL-UHFFFAOYSA-N tert-butyl 4-[3-[tert-butyl(methyl)carbamoyl]-1-(3,5-dichlorophenyl)-7-methoxy-4H-chromeno[4,3-c]pyrazol-8-yl]-3,5-dimethylpyrazole-1-carboxylate Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CC(=CC(=C1)Cl)Cl)C=1C=C(C(=CC=1OC2)OC)C=1C(=NN(C=1C)C(=O)OC(C)(C)C)C)C XQUYIMLIJSXUFL-UHFFFAOYSA-N 0.000 description 2
- 230000002381 testicular Effects 0.000 description 2
- 125000003831 tetrazolyl group Chemical group 0.000 description 2
- 125000001113 thiadiazolyl group Chemical group 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- 125000001425 triazolyl group Chemical group 0.000 description 2
- 229910052722 tritium Inorganic materials 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- LSPHULWDVZXLIL-UHFFFAOYSA-N (+/-)-Camphoric acid Chemical compound CC1(C)C(C(O)=O)CCC1(C)C(O)=O LSPHULWDVZXLIL-UHFFFAOYSA-N 0.000 description 1
- YJXJCPZHXDDRNH-UHFFFAOYSA-N (2-fluoro-3-formylphenyl)boronic acid Chemical compound OB(O)C1=CC=CC(C=O)=C1F YJXJCPZHXDDRNH-UHFFFAOYSA-N 0.000 description 1
- GLYOQOICJWEBJH-UHFFFAOYSA-N (2-fluoro-5-methylpyridin-3-yl)boronic acid Chemical compound CC1=CN=C(F)C(B(O)O)=C1 GLYOQOICJWEBJH-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- BDXZOJVMTJOAPS-UHFFFAOYSA-N (3,5-dichlorophenyl)hydrazine;hydron;chloride Chemical compound Cl.NNC1=CC(Cl)=CC(Cl)=C1 BDXZOJVMTJOAPS-UHFFFAOYSA-N 0.000 description 1
- CYEXXDYQJPRMIQ-UHFFFAOYSA-N (5-cyanopyridin-3-yl)boronic acid Chemical compound OB(O)C1=CN=CC(C#N)=C1 CYEXXDYQJPRMIQ-UHFFFAOYSA-N 0.000 description 1
- OIIOPWHTJZYKIL-PMACEKPBSA-N (5S)-5-[[[5-[2-chloro-3-[2-chloro-3-[6-methoxy-5-[[[(2S)-5-oxopyrrolidin-2-yl]methylamino]methyl]pyrazin-2-yl]phenyl]phenyl]-3-methoxypyrazin-2-yl]methylamino]methyl]pyrrolidin-2-one Chemical compound C1(=C(N=C(C2=C(C(C3=CC=CC(=C3Cl)C3=NC(OC)=C(N=C3)CNC[C@H]3NC(=O)CC3)=CC=C2)Cl)C=N1)OC)CNC[C@H]1NC(=O)CC1 OIIOPWHTJZYKIL-PMACEKPBSA-N 0.000 description 1
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- TYHUQPXPBPFBJK-UHFFFAOYSA-N 1-(3,5-dichlorophenyl)-7-methoxy-8-(1-methylpyrazol-3-yl)-4H-chromeno[4,3-c]pyrazole-3-carboxylic acid Chemical compound ClC=1C=C(C=C(C=1)Cl)N1N=C(C2=C1C=1C=C(C(=CC=1OC2)OC)C1=NN(C=C1)C)C(=O)O TYHUQPXPBPFBJK-UHFFFAOYSA-N 0.000 description 1
- PZNPLUBHRSSFHT-RRHRGVEJSA-N 1-hexadecanoyl-2-octadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[C@@H](COP([O-])(=O)OCC[N+](C)(C)C)COC(=O)CCCCCCCCCCCCCCC PZNPLUBHRSSFHT-RRHRGVEJSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- NCYCYZXNIZJOKI-IOUUIBBYSA-N 11-cis-retinal Chemical compound O=C/C=C(\C)/C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-IOUUIBBYSA-N 0.000 description 1
- UIBILPLZRULHTE-UHFFFAOYSA-N 2,2-dimethylpiperidin-4-ol Chemical compound CC1(C)CC(O)CCN1 UIBILPLZRULHTE-UHFFFAOYSA-N 0.000 description 1
- CHHHXKFHOYLYRE-UHFFFAOYSA-M 2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)- Chemical compound [K+].CC=CC=CC([O-])=O CHHHXKFHOYLYRE-UHFFFAOYSA-M 0.000 description 1
- IUXYVKZUDNLISR-UHFFFAOYSA-N 2-(tert-butylamino)ethanol Chemical compound CC(C)(C)NCCO IUXYVKZUDNLISR-UHFFFAOYSA-N 0.000 description 1
- QTMAZYGAVHCKKX-UHFFFAOYSA-N 2-[(4-amino-5-bromopyrrolo[2,3-d]pyrimidin-7-yl)methoxy]propane-1,3-diol Chemical compound NC1=NC=NC2=C1C(Br)=CN2COC(CO)CO QTMAZYGAVHCKKX-UHFFFAOYSA-N 0.000 description 1
- JQULXIOYDDCNGR-UHFFFAOYSA-N 2-amino-2-methylpropanenitrile Chemical compound CC(C)(N)C#N JQULXIOYDDCNGR-UHFFFAOYSA-N 0.000 description 1
- DBTWOTKWIVISQR-UHFFFAOYSA-N 2-bromopropan-1-ol Chemical compound CC(Br)CO DBTWOTKWIVISQR-UHFFFAOYSA-N 0.000 description 1
- HXVQPZSXXYOZMP-UHFFFAOYSA-N 2-chloropyrimidine-4-carbonitrile Chemical compound ClC1=NC=CC(C#N)=N1 HXVQPZSXXYOZMP-UHFFFAOYSA-N 0.000 description 1
- 229940080296 2-naphthalenesulfonate Drugs 0.000 description 1
- LEACJMVNYZDSKR-UHFFFAOYSA-N 2-octyldodecan-1-ol Chemical compound CCCCCCCCCCC(CO)CCCCCCCC LEACJMVNYZDSKR-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 1
- ZRPLANDPDWYOMZ-UHFFFAOYSA-N 3-cyclopentylpropionic acid Chemical compound OC(=O)CCC1CCCC1 ZRPLANDPDWYOMZ-UHFFFAOYSA-N 0.000 description 1
- LHJVMOIOTPJSLS-UHFFFAOYSA-N 3-methyl-3-[(2-methylpropan-2-yl)oxycarbonylamino]butanoic acid Chemical compound CC(C)(C)OC(=O)NC(C)(C)CC(O)=O LHJVMOIOTPJSLS-UHFFFAOYSA-N 0.000 description 1
- XMIIGOLPHOKFCH-UHFFFAOYSA-M 3-phenylpropionate Chemical compound [O-]C(=O)CCC1=CC=CC=C1 XMIIGOLPHOKFCH-UHFFFAOYSA-M 0.000 description 1
- ZOPZKFNSQYCIPP-UHFFFAOYSA-N 4-(bromomethyl)-2,2-dimethyl-1,3-dioxolane Chemical compound CC1(C)OCC(CBr)O1 ZOPZKFNSQYCIPP-UHFFFAOYSA-N 0.000 description 1
- VKHLVVJKDDSZSO-UHFFFAOYSA-N 5-[1-(3,5-dichlorophenyl)-3-(3,3-dimethylmorpholine-4-carbonyl)-7-methoxy-4H-chromeno[4,3-c]pyrazol-8-yl]pyridine-3-carbonitrile Chemical compound ClC=1C=C(C=C(C=1)Cl)N1N=C(C2=C1C=1C=C(C(=CC=1OC2)OC)C=1C=NC=C(C#N)C=1)C(=O)N1C(COCC1)(C)C VKHLVVJKDDSZSO-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- FFQIZFUTTMWQHG-UHFFFAOYSA-N 8-[1-(2-amino-2-oxoethyl)-3,5-dimethylpyrazol-4-yl]-N-tert-butyl-1-(3,5-dichlorophenyl)-7-methoxy-N-methyl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound NC(CN1N=C(C(=C1C)C1=CC2=C(C=C1OC)OCC1=C2N(N=C1C(=O)N(C)C(C)(C)C)C1=CC(=CC(=C1)Cl)Cl)C)=O FFQIZFUTTMWQHG-UHFFFAOYSA-N 0.000 description 1
- KTGRZYXDTHPTNQ-UHFFFAOYSA-N 8-[1-(2-amino-2-oxoethyl)pyrazol-4-yl]-N-tert-butyl-1-(3,5-dichlorophenyl)-7-methoxy-N-methyl-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound COC1=C(C=C2C3=C(COC2=C1)C(=NN3C1=CC(Cl)=CC(Cl)=C1)C(=O)N(C)C(C)(C)C)C1=CN(CC(N)=O)N=C1 KTGRZYXDTHPTNQ-UHFFFAOYSA-N 0.000 description 1
- PEKJGMGQPVMQIU-UHFFFAOYSA-N 8-bromo-1-(3,5-difluorophenyl)-7-methoxy-4H-chromeno[4,3-c]pyrazole-3-carboxylic acid Chemical compound BrC1=CC2=C(C=C1OC)OCC1=C2N(N=C1C(=O)O)C1=CC(=CC(=C1)F)F PEKJGMGQPVMQIU-UHFFFAOYSA-N 0.000 description 1
- PNPQXXNLVSMSPF-UHFFFAOYSA-N 8-bromo-1-(3,5-dimethoxyphenyl)-7-methoxy-4H-chromeno[4,3-c]pyrazole-3-carboxylic acid Chemical compound COC1=CC(=CC(OC)=C1)N1N=C(C(O)=O)C2=C1C1=CC(Br)=C(OC)C=C1OC2 PNPQXXNLVSMSPF-UHFFFAOYSA-N 0.000 description 1
- 208000005676 Adrenogenital syndrome Diseases 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 208000000103 Anorexia Nervosa Diseases 0.000 description 1
- 235000003276 Apios tuberosa Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000010744 Arachis villosulicarpa Nutrition 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 208000002017 Autoimmune Hypophysitis Diseases 0.000 description 1
- 229910015844 BCl3 Inorganic materials 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- CAZCQZYASRXFQM-JYRVWZFOSA-N BrC=1C=C2C(\C(\COC2=CC=1OC)=C(\C(=O)OCC)/O)=O Chemical compound BrC=1C=C2C(\C(\COC2=CC=1OC)=C(\C(=O)OCC)/O)=O CAZCQZYASRXFQM-JYRVWZFOSA-N 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- 125000004648 C2-C8 alkenyl group Chemical group 0.000 description 1
- 125000004649 C2-C8 alkynyl group Chemical group 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- OKTJSMMVPCPJKN-NJFSPNSNSA-N Carbon-14 Chemical compound [14C] OKTJSMMVPCPJKN-NJFSPNSNSA-N 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 208000008448 Congenital adrenal hyperplasia Diseases 0.000 description 1
- 208000027205 Congenital disease Diseases 0.000 description 1
- 208000029767 Congenital, Hereditary, and Neonatal Diseases and Abnormalities Diseases 0.000 description 1
- 208000009798 Craniopharyngioma Diseases 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- 206010014567 Empty Sella Syndrome Diseases 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- 108091006027 G proteins Proteins 0.000 description 1
- 102000030782 GTP binding Human genes 0.000 description 1
- 108091000058 GTP-Binding Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 241000206672 Gelidium Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- 102000017357 Glycoprotein hormone receptor Human genes 0.000 description 1
- 108050005395 Glycoprotein hormone receptor Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- NMJREATYWWNIKX-UHFFFAOYSA-N GnRH Chemical compound C1CCC(C(=O)NCC(N)=O)N1C(=O)C(CC(C)C)NC(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)CNC(=O)C(NC(=O)C(CO)NC(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)C(CC=1NC=NC=1)NC(=O)C1NC(=O)CC1)CC1=CC=C(O)C=C1 NMJREATYWWNIKX-UHFFFAOYSA-N 0.000 description 1
- 239000000579 Gonadotropin-Releasing Hormone Substances 0.000 description 1
- 208000018565 Hemochromatosis Diseases 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- 101000772267 Homo sapiens Thyrotropin receptor Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 206010062767 Hypophysitis Diseases 0.000 description 1
- 206010021067 Hypopituitarism Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 201000007493 Kallmann syndrome Diseases 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- 102000023108 LH Receptors Human genes 0.000 description 1
- 108010011942 LH Receptors Proteins 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 229910010084 LiAlH4 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 206010063685 Lymphocytic hypophysitis Diseases 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-L Malonate Chemical compound [O-]C(=O)CC([O-])=O OFOBLEOULBTSOW-UHFFFAOYSA-L 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 201000009906 Meningitis Diseases 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- KLSLDEIQISHORU-UHFFFAOYSA-N N-tert-butyl-1-(3,5-dimethoxyphenyl)-7-methoxy-N-methyl-8-(1-methylpyrazol-3-yl)-4H-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C(C)(C)(C)N(C(=O)C=1C2=C(N(N=1)C1=CC(=CC(=C1)OC)OC)C=1C=C(C(=CC=1OC2)OC)C1=NN(C=C1)C)C KLSLDEIQISHORU-UHFFFAOYSA-N 0.000 description 1
- 229910017909 NH2NH2H2O Inorganic materials 0.000 description 1
- 108010040722 Neurokinin-2 Receptors Proteins 0.000 description 1
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 206010053142 Olfacto genital dysplasia Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 206010033266 Ovarian Hyperstimulation Syndrome Diseases 0.000 description 1
- 239000004264 Petrolatum Substances 0.000 description 1
- BELBBZDIHDAJOR-UHFFFAOYSA-N Phenolsulfonephthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2S(=O)(=O)O1 BELBBZDIHDAJOR-UHFFFAOYSA-N 0.000 description 1
- 208000007913 Pituitary Neoplasms Diseases 0.000 description 1
- 206010049760 Pituitary haemorrhage Diseases 0.000 description 1
- 206010035092 Pituitary infarction Diseases 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 206010036297 Postpartum hypopituitarism Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical class C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 102100040756 Rhodopsin Human genes 0.000 description 1
- 108090000820 Rhodopsin Proteins 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 229910006074 SO2NH2 Inorganic materials 0.000 description 1
- 206010059594 Secondary hypogonadism Diseases 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 201000009895 Sheehan syndrome Diseases 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 1
- SSZBUIDZHHWXNJ-UHFFFAOYSA-N Stearinsaeure-hexadecylester Natural products CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCCCC SSZBUIDZHHWXNJ-UHFFFAOYSA-N 0.000 description 1
- 102100037342 Substance-K receptor Human genes 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 102000003911 Thyrotropin Receptors Human genes 0.000 description 1
- 108090000253 Thyrotropin Receptors Proteins 0.000 description 1
- 102100029337 Thyrotropin receptor Human genes 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 1
- IVOMOUWHDPKRLL-UHFFFAOYSA-N UNPD107823 Natural products O1C2COP(O)(=O)OC2C(O)C1N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000001089 [(2R)-oxolan-2-yl]methanol Substances 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000003655 absorption accelerator Substances 0.000 description 1
- 229940124532 absorption promoter Drugs 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 102000030621 adenylate cyclase Human genes 0.000 description 1
- 108060000200 adenylate cyclase Proteins 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 125000004419 alkynylene group Chemical group 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- 150000001413 amino acids Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 229940027983 antiseptic and disinfectant quaternary ammonium compound Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000005160 aryl oxy alkyl group Chemical group 0.000 description 1
- 125000005228 aryl sulfonate group Chemical group 0.000 description 1
- 229940072107 ascorbate Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- 229940050390 benzoate Drugs 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- 125000000649 benzylidene group Chemical group [H]C(=[*])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- XMIIGOLPHOKFCH-UHFFFAOYSA-N beta-phenylpropanoic acid Natural products OC(=O)CCC1=CC=CC=C1 XMIIGOLPHOKFCH-UHFFFAOYSA-N 0.000 description 1
- 125000002618 bicyclic heterocycle group Chemical group 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 238000010504 bond cleavage reaction Methods 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- FATUQANACHZLRT-KMRXSBRUSA-L calcium glucoheptonate Chemical compound [Ca+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)C([O-])=O FATUQANACHZLRT-KMRXSBRUSA-L 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- MIOPJNTWMNEORI-UHFFFAOYSA-N camphorsulfonic acid Chemical compound C1CC2(CS(O)(=O)=O)C(=O)CC1C2(C)C MIOPJNTWMNEORI-UHFFFAOYSA-N 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229940081733 cetearyl alcohol Drugs 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 235000017168 chlorine Nutrition 0.000 description 1
- SYGSTRANUHFLOT-UHFFFAOYSA-N chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C1=CC=C2C3=NN=C(C(=O)N)C3=COC2=C1 SYGSTRANUHFLOT-UHFFFAOYSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- PYTMYKVIJXPNBD-UHFFFAOYSA-N clomiphene citrate Chemical compound [H+].[H+].[H+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.C1=CC(OCCN(CC)CC)=CC=C1C(C=1C=CC=CC=1)=C(Cl)C1=CC=CC=C1 PYTMYKVIJXPNBD-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000002288 cocrystallisation Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000012230 colorless oil Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 229940125782 compound 2 Drugs 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 1
- 229940095074 cyclic amp Drugs 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 208000031513 cyst Diseases 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000011903 deuterated solvents Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 125000002576 diazepinyl group Chemical group N1N=C(C=CC=C1)* 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- GXGAKHNRMVGRPK-UHFFFAOYSA-N dimagnesium;dioxido-bis[[oxido(oxo)silyl]oxy]silane Chemical compound [Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O GXGAKHNRMVGRPK-UHFFFAOYSA-N 0.000 description 1
- XHFGWHUWQXTGAT-UHFFFAOYSA-N dimethylamine hydrochloride Natural products CNC(C)C XHFGWHUWQXTGAT-UHFFFAOYSA-N 0.000 description 1
- IQDGSYLLQPDQDV-UHFFFAOYSA-N dimethylazanium;chloride Chemical compound Cl.CNC IQDGSYLLQPDQDV-UHFFFAOYSA-N 0.000 description 1
- 125000000532 dioxanyl group Chemical group 0.000 description 1
- 125000005879 dioxolanyl group Chemical group 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- 235000019797 dipotassium phosphate Nutrition 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 239000000890 drug combination Substances 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000003221 ear drop Substances 0.000 description 1
- 229940047652 ear drops Drugs 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008387 emulsifying waxe Substances 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940095399 enema Drugs 0.000 description 1
- XWBDWHCCBGMXKG-UHFFFAOYSA-N ethanamine;hydron;chloride Chemical compound Cl.CCN XWBDWHCCBGMXKG-UHFFFAOYSA-N 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- FRYHCSODNHYDPU-UHFFFAOYSA-N ethanesulfonyl chloride Chemical compound CCS(Cl)(=O)=O FRYHCSODNHYDPU-UHFFFAOYSA-N 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- YVPJCJLMRRTDMQ-UHFFFAOYSA-N ethyl diazoacetate Chemical compound CCOC(=O)C=[N+]=[N-] YVPJCJLMRRTDMQ-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000019000 fluorine Nutrition 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229940060037 fluorine Drugs 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 210000004186 follicle cell Anatomy 0.000 description 1
- 230000008217 follicular development Effects 0.000 description 1
- 108010006578 follitropin alfa Proteins 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 230000006543 gametophyte development Effects 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000009395 genetic defect Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 208000032291 genetic form combined pituitary hormone deficiencies Diseases 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 229960002449 glycine Drugs 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 230000002710 gonadal effect Effects 0.000 description 1
- XLXSAKCOAKORKW-AQJXLSMYSA-N gonadorelin Chemical compound C([C@@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)NCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 XLXSAKCOAKORKW-AQJXLSMYSA-N 0.000 description 1
- 229940035638 gonadotropin-releasing hormone Drugs 0.000 description 1
- 229940057854 gonal f Drugs 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical compound CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 1
- 125000004415 heterocyclylalkyl group Chemical group 0.000 description 1
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 201000008298 histiocytosis Diseases 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 208000031424 hyperprolactinemia Diseases 0.000 description 1
- 201000002733 hypogonadotropic hypogonadism 23 with or without anosmia Diseases 0.000 description 1
- 208000003532 hypothyroidism Diseases 0.000 description 1
- 230000002989 hypothyroidism Effects 0.000 description 1
- 230000000642 iatrogenic effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 102000027411 intracellular receptors Human genes 0.000 description 1
- 108091008582 intracellular receptors Proteins 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000007919 intrasynovial administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 229940001447 lactate Drugs 0.000 description 1
- 229940099584 lactobionate Drugs 0.000 description 1
- JYTUSYBCFIZPBE-AMTLMPIISA-N lactobionic acid Chemical compound OC(=O)[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O JYTUSYBCFIZPBE-AMTLMPIISA-N 0.000 description 1
- 229940070765 laurate Drugs 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 102000014650 luteinizing hormone receptor activity proteins Human genes 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910000386 magnesium trisilicate Inorganic materials 0.000 description 1
- 235000019793 magnesium trisilicate Nutrition 0.000 description 1
- 229940099273 magnesium trisilicate Drugs 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N malic acid Chemical compound OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229940127554 medical product Drugs 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 208000037819 metastatic cancer Diseases 0.000 description 1
- 208000011575 metastatic malignant neoplasm Diseases 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Natural products C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- YFBPRJGDJKVWAH-UHFFFAOYSA-N methiocarb Chemical compound CNC(=O)OC1=CC(C)=C(SC)C(C)=C1 YFBPRJGDJKVWAH-UHFFFAOYSA-N 0.000 description 1
- YDCHPLOFQATIDS-UHFFFAOYSA-N methyl 2-bromoacetate Chemical compound COC(=O)CBr YDCHPLOFQATIDS-UHFFFAOYSA-N 0.000 description 1
- 125000004092 methylthiomethyl group Chemical group [H]C([H])([H])SC([H])([H])* 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 230000003228 microsomal effect Effects 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 229940042472 mineral oil Drugs 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical compound CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- REPVNSJSTLRQEQ-UHFFFAOYSA-N n,n-dimethylacetamide;n,n-dimethylformamide Chemical compound CN(C)C=O.CN(C)C(C)=O REPVNSJSTLRQEQ-UHFFFAOYSA-N 0.000 description 1
- ZNICVKSLYOPBCH-UHFFFAOYSA-N n-tert-butyl-7-methoxy-n-methyl-8-propan-2-yloxy-1-thiophen-3-yl-4h-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C1=2C=3C=C(OC(C)C)C(OC)=CC=3OCC=2C(C(=O)N(C)C(C)(C)C)=NN1C=1C=CSC=1 ZNICVKSLYOPBCH-UHFFFAOYSA-N 0.000 description 1
- WRYOARVJJMUKIY-UHFFFAOYSA-N n-tert-butyl-8-cyano-7-methoxy-n-methyl-1-thiophen-3-yl-4h-chromeno[4,3-c]pyrazole-3-carboxamide Chemical compound C1=2C=3C=C(C#N)C(OC)=CC=3OCC=2C(C(=O)N(C)C(C)(C)C)=NN1C=1C=CSC=1 WRYOARVJJMUKIY-UHFFFAOYSA-N 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-M naphthalene-2-sulfonate Chemical compound C1=CC=CC2=CC(S(=O)(=O)[O-])=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-M 0.000 description 1
- 229940097496 nasal spray Drugs 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- 125000006574 non-aromatic ring group Chemical group 0.000 description 1
- 229940127264 non-peptide agonist Drugs 0.000 description 1
- 230000036963 noncompetitive effect Effects 0.000 description 1
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 239000000668 oral spray Substances 0.000 description 1
- 229940041678 oral spray Drugs 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 210000002394 ovarian follicle Anatomy 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000004043 oxo group Chemical group O=* 0.000 description 1
- 201000009958 panhypopituitarism Diseases 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 229940066842 petrolatum Drugs 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 229960003531 phenolsulfonphthalein Drugs 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 125000005545 phthalimidyl group Chemical group 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 208000001213 pituitary apoplexy Diseases 0.000 description 1
- 230000001817 pituitary effect Effects 0.000 description 1
- 210000003635 pituitary gland Anatomy 0.000 description 1
- 208000016925 pituitary gland infarction Diseases 0.000 description 1
- 201000005558 pituitary infarct Diseases 0.000 description 1
- 229950010765 pivalate Drugs 0.000 description 1
- IUGYQRQAERSCNH-UHFFFAOYSA-N pivalic acid Chemical compound CC(C)(C)C(O)=O IUGYQRQAERSCNH-UHFFFAOYSA-N 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000001818 polyoxyethylene sorbitan monostearate Substances 0.000 description 1
- 235000010989 polyoxyethylene sorbitan monostearate Nutrition 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229940113124 polysorbate 60 Drugs 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 1
- 235000010241 potassium sorbate Nutrition 0.000 description 1
- 239000004302 potassium sorbate Substances 0.000 description 1
- 229940069338 potassium sorbate Drugs 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 238000012746 preparative thin layer chromatography Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 208000011610 primary hypophysitis Diseases 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 229950008679 protamine sulfate Drugs 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- HAMAGKWXRRTWCJ-UHFFFAOYSA-N pyrido[2,3-b][1,4]oxazin-3-one Chemical compound C1=CN=C2OC(=O)C=NC2=C1 HAMAGKWXRRTWCJ-UHFFFAOYSA-N 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 238000009790 rate-determining step (RDS) Methods 0.000 description 1
- 229940100618 rectal suppository Drugs 0.000 description 1
- 239000006215 rectal suppository Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000027272 reproductive process Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 239000003340 retarding agent Substances 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 201000000306 sarcoidosis Diseases 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 210000000582 semen Anatomy 0.000 description 1
- 210000002863 seminiferous tubule Anatomy 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- AWUCVROLDVIAJX-GSVOUGTGSA-N sn-glycerol 3-phosphate Chemical compound OC[C@@H](O)COP(O)(O)=O AWUCVROLDVIAJX-GSVOUGTGSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- PPASLZSBLFJQEF-RKJRWTFHSA-M sodium ascorbate Substances [Na+].OC[C@@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RKJRWTFHSA-M 0.000 description 1
- 235000010378 sodium ascorbate Nutrition 0.000 description 1
- 229960005055 sodium ascorbate Drugs 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- MNWBNISUBARLIT-UHFFFAOYSA-N sodium cyanide Chemical compound [Na+].N#[C-] MNWBNISUBARLIT-UHFFFAOYSA-N 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- KSAVQLQVUXSOCR-UHFFFAOYSA-M sodium lauroyl sarcosinate Chemical compound [Na+].CCCCCCCCCCCC(=O)N(C)CC([O-])=O KSAVQLQVUXSOCR-UHFFFAOYSA-M 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000001587 sorbitan monostearate Substances 0.000 description 1
- 235000011076 sorbitan monostearate Nutrition 0.000 description 1
- 229940035048 sorbitan monostearate Drugs 0.000 description 1
- 239000008347 soybean phospholipid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 239000003206 sterilizing agent Substances 0.000 description 1
- 230000010009 steroidogenesis Effects 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 125000005017 substituted alkenyl group Chemical group 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 125000004426 substituted alkynyl group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 210000001138 tear Anatomy 0.000 description 1
- LBAIYWWWORXVEQ-UHFFFAOYSA-N tert-butyl 3,3-dimethylpiperazine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCNC(C)(C)C1 LBAIYWWWORXVEQ-UHFFFAOYSA-N 0.000 description 1
- GNLNGVZPEKSDAR-UHFFFAOYSA-N tert-butyl 3,5-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrazole-1-carboxylate Chemical compound CC1=NN(C(=O)OC(C)(C)C)C(C)=C1B1OC(C)(C)C(C)(C)O1 GNLNGVZPEKSDAR-UHFFFAOYSA-N 0.000 description 1
- MHYGQXWCZAYSLJ-UHFFFAOYSA-N tert-butyl-chloro-diphenylsilane Chemical compound C=1C=CC=CC=1[Si](Cl)(C(C)(C)C)C1=CC=CC=C1 MHYGQXWCZAYSLJ-UHFFFAOYSA-N 0.000 description 1
- ZYDKYFIXEYSNPO-UHFFFAOYSA-N tert-butyl-dimethyl-prop-2-ynoxysilane Chemical compound CC(C)(C)[Si](C)(C)OCC#C ZYDKYFIXEYSNPO-UHFFFAOYSA-N 0.000 description 1
- BCNZYOJHNLTNEZ-UHFFFAOYSA-N tert-butyldimethylsilyl chloride Chemical compound CC(C)(C)[Si](C)(C)Cl BCNZYOJHNLTNEZ-UHFFFAOYSA-N 0.000 description 1
- MHXBHWLGRWOABW-UHFFFAOYSA-N tetradecyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCC MHXBHWLGRWOABW-UHFFFAOYSA-N 0.000 description 1
- BSYVTEYKTMYBMK-UHFFFAOYSA-N tetrahydrofurfuryl alcohol Chemical compound OCC1CCCO1 BSYVTEYKTMYBMK-UHFFFAOYSA-N 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 125000005308 thiazepinyl group Chemical group S1N=C(C=CC=C1)* 0.000 description 1
- 125000000464 thioxo group Chemical group S=* 0.000 description 1
- 238000003354 tissue distribution assay Methods 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 239000012049 topical pharmaceutical composition Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 125000004665 trialkylsilyl group Chemical group 0.000 description 1
- YEMJHNYABQHWHL-UHFFFAOYSA-N tributyl(ethynyl)stannane Chemical compound CCCC[Sn](CCCC)(CCCC)C#C YEMJHNYABQHWHL-UHFFFAOYSA-N 0.000 description 1
- GYUURHMITDQTRU-UHFFFAOYSA-N tributyl(pyridin-2-yl)stannane Chemical compound CCCC[Sn](CCCC)(CCCC)C1=CC=CC=N1 GYUURHMITDQTRU-UHFFFAOYSA-N 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
- WLPUWLXVBWGYMZ-UHFFFAOYSA-N tricyclohexylphosphine Chemical compound C1CCCCC1P(C1CCCCC1)C1CCCCC1 WLPUWLXVBWGYMZ-UHFFFAOYSA-N 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- HJOAXCLZLHDZDX-UHFFFAOYSA-N tris(1,2,2-trifluoroethenyl) borate Chemical compound FC(F)=C(F)OB(OC(F)=C(F)F)OC(F)=C(F)F HJOAXCLZLHDZDX-UHFFFAOYSA-N 0.000 description 1
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- ZDPHROOEEOARMN-UHFFFAOYSA-N undecanoic acid Chemical compound CCCCCCCCCCC(O)=O ZDPHROOEEOARMN-UHFFFAOYSA-N 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical class CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 229940099259 vaseline Drugs 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 239000003871 white petrolatum Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 238000002424 x-ray crystallography Methods 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- GTLDTDOJJJZVBW-UHFFFAOYSA-N zinc cyanide Chemical compound [Zn+2].N#[C-].N#[C-] GTLDTDOJJJZVBW-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/415—1,2-Diazoles
- A61K31/4162—1,2-Diazoles condensed with heterocyclic ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/04—Ortho-condensed systems
- C07D491/044—Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
- C07D491/052—Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being six-membered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/42—Oxazoles
- A61K31/422—Oxazoles not condensed and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4427—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
- A61K31/4439—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
- A61K31/4523—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
- A61K31/454—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. pimozide, domperidone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5377—1,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/54—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
- A61K31/541—Non-condensed thiazines containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/08—Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/24—Drugs for disorders of the endocrine system of the sex hormones
Definitions
- the present invention relates to pyrazole compounds useful as agonists of follicle stimulating hormone receptor (FSHR) .
- the invention also provides pharmaceutically acceptable compositions comprising compounds of the present invention and methods of using said compositions in the treatment of various disorders.
- Gonadotropins serve important functions in a variety of bodily functions including metabolism, temperature regulation and the reproductive process. Gonadotropins act on specific gonadal cell types to initiate ovarian and testicular differentiation and steroidogenesis.
- the gonadotropin FSH follicle stimulating hormone
- FSH is a heterodimeric glycoprotein hormone that shares structural similarities with luteinizing hormone (LH) and thyroid stimulating hormone (TSH) , both of which are also produced in the pituitary gland, and chorionic gonadotropin (CG) , which is produced in the placenta.
- LH luteinizing hormone
- TSH thyroid stimulating hormone
- CG chorionic gonadotropin
- FSH plays a pivotal role in the stimulation of follicle development and maturation and in addition, it is the major hormone regulating secretion of estrogens, whereas LH induces ovulation.
- FSH is responsible for the integrity of the seminiferous tubules and acts on Sertoli cells to support gametogenesis.
- the hormones are relatively large (28-38 kDa) and are composed of a common ⁇ -subunit non-covalently bound to a distinct ⁇ -subunit that confers receptor binding specificity.
- the cellular receptor for these hormones is expressed on testicular Sertoli cells and ovarian granulosa cells.
- the FSH receptor is known to be members of the G protein-coupled class of membrane-bound receptors, which when activated stimulate an increase in the activity of adenylyl cyclase. This results in an increase in the level of the intracellular second messenger adenosine 3', 5'-monophosphate (cAMP) , which in turn causes increased steroid synthesis and secretion.
- cAMP adenosine 3', 5'-monophosphate
- Hydropathicity plots of the amino acid sequences of these receptors reveal three general domains: a hydrophilic amino-terminal region, considered to be the amino-terminal extracellular domain; seven hydrophobic segments of membrane-spanning length, considered to be the transmembrane domain; and a carboxy-terminal region that contains potential phosphorylation sites (serine, threonine, and tyrosine residues) , considered to be the carboxy-terminal intracellular or cytoplasmic domain.
- the glycoprotein hormone receptor family is distinguished from other G protein-coupled receptors, such as the ⁇ -2-adrenergic, rhodopsin, and substance K receptors, by the large size of the hydrophilic amino-terminal domain, which is involved in hormone binding.
- FSH either extracted from urine or produced by recombinant DNA technology
- FSH is a parenterally-administered protein product used by specialists for ovulation induction and for controlled ovarial hyperstimulation.
- ovulation induction is directed at achieving a single follicle to ovulate
- controlled ovarial hyperstimulation is directed at harvesting multiple oocytes for use in various in-vitro assisted reproductive technologies, e.g. in-vitro fertilization (IVF) .
- FSH is also used clinically to treat male hypogonadism and male infertility, e.g. some types of failure of spermatogenesis.
- FSHR is a highly specific target in the ovarian follicle growth process and is exclusively expressed in the ovary.
- the use of FSH is limited by its high cost, lack of oral dosing, and need of extensive monitoring by specialist physicians.
- identification of a non-peptidic small molecule substitute for FSH that could potentially be developed for oral administration is desirable.
- Low molecular weight FSH mimetics with agonistic properties are disclosed in the international applications WO 2002/09706 and WO 2010/136438 as well as the patent US 6,653,338. There is still a need for low molecular weight hormone mimetics that selectively activate FSHR.
- Ring A, X, Y, Z, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , n, and p is as defined and described in embodiments herein.
- Compounds of the present invention are useful for treating a variety of diseases, disorders or conditions, associated with abnormal cellular responses triggered by follicle stimulating hormone events. Such diseases, disorders, or conditions include those described herein.
- the present invention provides modulators of follicle stimulating hormone receptor (FSHR) .
- FSHR follicle stimulating hormone receptor
- the present invention provides positive allosteric modulators of FSHR.
- such compounds include those of the formulae described herein, or a pharmaceutically acceptable salt thereof, wherein each variable is as defined and described herein.
- aliphatic or “aliphatic group” , as used herein, means a straight-chain (i.e., unbranched) or branched, substituted or unsubstituted hydrocarbon chain that is completely saturated or that contains one or more units of unsaturation, or a monocyclic hydrocarbon or bicyclic hydrocarbon that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic (also referred to herein as “carbocycle” “cycloaliphatic” or “cycloalkyl” ) , that has a single point of attachment to the rest of the molecule.
- aliphatic groups contain 1-6 aliphatic carbon atoms.
- aliphatic groups contain 1-5 aliphatic carbon atoms. In other embodiments, aliphatic groups contain 1-4 aliphatic carbon atoms. In still other embodiments, aliphatic groups contain 1-3 aliphatic carbon atoms, and in yet other embodiments, aliphatic groups contain 1-2 aliphatic carbon atoms.
- “cycloaliphatic” (or “carbocycle” or “cycloalkyl” ) refers to a monocyclic C 3 -C 6 hydrocarbon that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic, that has a single point of attachment to the rest of the molecule.
- Exemplary aliphatic groups are linear or branched, substituted or unsubstituted C 1 -C 8 alkyl, C 2 -C 8 alkenyl, C 2 -C 8 alkynyl groups and hybrids thereof such as (cycloalkyl) alkyl, (cycloalkenyl) alkyl or (cycloalkyl) alkenyl.
- lower alkyl refers to a C 1-4 straight or branched alkyl group.
- exemplary lower alkyl groups are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, and tert-butyl.
- lower haloalkyl refers to a C 1-4 straight or branched alkyl group that is substituted with one or more halogen atoms.
- heteroatom means one or more of oxygen, sulfur, nitrogen, or phosphorus (including, any oxidized form of nitrogen, sulfur, or phosphorus; the quaternized form of any basic nitrogen or; a substitutable nitrogen of a heterocyclic ring, for example N (as in 3, 4-dihydro-2H-pyrrolyl) , NH (as in pyrrolidinyl) or NR + (as in N-substituted pyrrolidinyl) ) .
- unsaturated means that a moiety has one or more units of unsaturation.
- bivalent C 1-8 (or C 1-6 ) saturated or unsaturated, straight or branched, hydrocarbon chain refers to bivalent alkylene, alkenylene, and alkynylene chains that are straight or branched as defined herein.
- alkylene refers to a bivalent alkyl group.
- An “alkylene chain” is a polymethylene group, i.e., – (CH 2 ) n –, wherein n is a positive integer, preferably from 1 to 6, from 1 to 4, from 1 to 3, from 1 to 2, or from 2 to 3.
- a substituted alkylene chain is a polymethylene group in which one or more methylene hydrogen atoms are replaced with a substituent. Suitable substituents include those described below for a substituted aliphatic group.
- alkenylene refers to a bivalent alkenyl group.
- a substituted alkenylene chain is a polymethylene group containing at least one double bond in which one or more hydrogen atoms are replaced with a substituent. Suitable substituents include those described below for a substituted aliphatic group.
- halogen means F, Cl, Br, or I.
- aryl used alone or as part of a larger moiety as in “aralkyl” , “aralkoxy” , or “aryloxyalkyl” , refers to monocyclic and bicyclic ring systems having a total of five to fourteen ring members, wherein at least one ring in the system is aromatic and wherein each ring in the system contains three to seven ring members.
- aryl is used interchangeably with the term “aryl ring” .
- aryl refers to an aromatic ring system.
- Exemplary aryl groups are phenyl, biphenyl, naphthyl, anthracyl and the like, which optionally includes one or more substituents.
- aryl is a group in which an aromatic ring is fused to one or more non–aromatic rings, such as indanyl, phthalimidyl, naphthimidyl, phenanthridinyl, or tetrahydronaphthyl, and the like.
- heteroaryl and “heteroar–” used alone or as part of a larger moiety, e.g., “heteroaralkyl” , or “heteroaralkoxy” , refer to groups having 5 to 10 ring atoms, preferably 5, 6, or 9 ring atoms; having 6, 10, or 14 ⁇ electrons shared in a cyclic array; and having, in addition to carbon atoms, from one to five heteroatoms.
- heteroatom refers to nitrogen, oxygen, or sulfur, and includes any oxidized form of nitrogen or sulfur, and any quaternized form of a basic nitrogen.
- Heteroaryl groups include, without limitation, thiophenyl, furanyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, indolizinyl, purinyl, naphthyridinyl, and pteridinyl.
- heteroaryl and “heteroar–” , as used herein, also include groups in which a heteroaromatic ring is fused to one or more aryl, cycloaliphatic, or heterocyclyl rings, where the radical or point of attachment is on the heteroaromatic ring.
- Nonlimiting examples include indolyl, isoindolyl, benzothienyl, benzofuranyl, dibenzofuranyl, indazolyl, benzimidazolyl, benzthiazolyl, quinolyl, isoquinolyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, 4H–quinolizinyl, carbazolyl, acridinyl, phenazinyl, phenothiazinyl, phenoxazinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, and pyrido [2, 3–b] –1, 4–oxazin–3 (4H) –one.
- heteroaryl group is optionally mono–or bicyclic.
- heteroaryl is used interchangeably with the terms “heteroaryl ring” , “heteroaryl group” , or “heteroaromatic” , any of which terms include rings that are optionally substituted.
- heteroarylkyl refers to an alkyl group substituted by a heteroaryl, wherein the alkyl and heteroaryl portions independently are optionally substituted.
- thienyl and “thiophenyl” are used interchangeably and refer to a 5-membered monocyclic heteroaryl ring containing a single sulfur heteroatom.
- heterocycle As used herein, the terms “heterocycle” , “heterocyclyl” , “heterocyclic radical” , and “heterocyclic ring” are used interchangeably and refer to a stable 5–to 7–membered monocyclic or 7–10–membered bicyclic heterocyclic moiety that is either saturated or partially unsaturated, and having, in addition to carbon atoms, one or more, preferably one to four, heteroatoms, as defined above.
- nitrogen includes a substituted nitrogen.
- the nitrogen is N (as in 3, 4–dihydro–2H–pyrrolyl) , NH (as in pyrrolidinyl) , or + NR (as in N–substituted pyrrolidinyl) .
- a heterocyclic ring can be attached to its pendant group at any heteroatom or carbon atom that results in a stable structure and any of the ring atoms can be optionally substituted.
- saturated or partially unsaturated heterocyclic radicals include, without limitation, tetrahydrofuranyl, tetrahydrothiophenyl pyrrolidinyl, piperidinyl, pyrrolinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, oxazolidinyl, piperazinyl, dioxanyl, dioxolanyl, diazepinyl, oxazepinyl, thiazepinyl, morpholinyl, and quinuclidinyl.
- heterocycle refers to an alkyl group substituted by a heterocyclyl, wherein the alkyl and heterocyclyl portions independently are optionally substituted.
- partially unsaturated refers to a ring moiety that includes at least one double or triple bond.
- partially unsaturated is intended to encompass rings having multiple sites of unsaturation, but is not intended to include aryl or heteroaryl moieties, as herein defined.
- certain compounds of the invention contain “optionally substituted” moieties.
- substituted means that one or more hydrogens of the designated moiety are replaced with a suitable substituent. “Substituted” applies to one or more hydrogens that are either explicit or implicit from the structure (e.g., refers to at least and refers to at least Unless otherwise indicated, an “optionally substituted” group has a suitable substituent at each substitutable position of the group, and when more than one position in any given structure is substituted with more than one substituent selected from a specified group, the substituent is either the same or different at every position.
- Combinations of substituents envisioned by this invention are preferably those that result in the formation of stable or chemically feasible compounds.
- stable refers to compounds that are not substantially altered when subjected to conditions to allow for their production, detection, and, in certain embodiments, their recovery, purification, and use for one or more of the purposes disclosed herein.
- Suitable monovalent substituents on R ⁇ are independently deuterium, halogen, – (CH 2 ) 0–2 R ⁇ , – (haloR ⁇ ) , – (CH 2 ) 0–2 OH, – (CH 2 ) 0–2 OR ⁇ , – (CH 2 ) 0– 2 CH (OR ⁇ ) 2 ; -O (haloR ⁇ ) , –CN, –N 3 , – (CH 2 ) 0–2 C (O) R ⁇ , – (CH 2 ) 0–2 C (O) OH, – (CH 2 ) 0–2 C (O) OR ⁇ , –(CH 2 ) 0–2 SR ⁇ , – (CH 2 ) 0–2 SH, – (CH 2 ) 0–2 NH 2 ,
- Suitable divalent substituents that are bound to vicinal substitutable carbons of an “optionally substituted” group include: –O (CR * 2 ) 2–3 O–, wherein each independent occurrence of R * is selected from hydrogen, C 1–6 aliphatic which is optionally substituted as defined below, or an unsubstituted 5–6–membered saturated, partially unsaturated, or aryl ring having 0–4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- Suitable substituents on the aliphatic group of R * include halogen, –R ⁇ , - (haloR ⁇ ) , -OH, –OR ⁇ , –O (haloR ⁇ ) , –CN, –C (O) OH, –C (O) OR ⁇ , –NH 2 , –NHR ⁇ , –NR ⁇ 2 , or –NO 2 , wherein each R ⁇ is unsubstituted or where preceded by “halo” is substituted only with one or more halogens, and is independently C 1–4 aliphatic, –CH 2 Ph, –O (CH 2 ) 0–1 Ph, or a 5–6–membered saturated, partially unsaturated, or aryl ring having 0–4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- Suitable substituents on a substitutable nitrogen of an “optionally substituted” group include wherein each is independently hydrogen, C 1–6 aliphatic which is optionally substituted as defined below, unsubstituted –OPh, or an unsubstituted 5–6–membered saturated, partially unsaturated, or aryl ring having 0–4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or, notwithstanding the definition above, two independent occurrences of taken together with their intervening atom (s) form an unsubstituted 3–12–membered saturated, partially unsaturated, or aryl mono–or bicyclic ring having 0–4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- Suitable substituents on the aliphatic group of are independently halogen, –R ⁇ , - (haloR ⁇ ) , –OH, –OR ⁇ , –O (haloR ⁇ ) , –CN, –C (O) OH, –C (O) OR ⁇ , –NH 2 , –NHR ⁇ , –NR ⁇ 2 , or -NO 2 , wherein each R ⁇ is unsubstituted or where preceded by “halo” is substituted only with one or more halogens, and is independently C 1–4 aliphatic, –CH 2 Ph, –O (CH 2 ) 0–1 Ph, or a 5–6–membered saturated, partially unsaturated, or aryl ring having 0–4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- the terms “optionally substituted” refer to groups that are substituted or unsubstituted by independent replacement of one, two, or three or more of the hydrogen atoms thereon with typical substituents including, but not limited to:
- -NH 2 protected amino, -NH alkyl, -NH alkenyl, -NH alkynyl, -NH cycloalkyl, -NH -aryl, -NH -heteroaryl, -NH -heterocyclic, -dialkylamino, -diarylamino, -diheteroarylamino,
- -OCO 2 -alkyl -OCO 2 -alkenyl, -OCO 2 - alkynyl, -OCO 2 -carbocyclyl, -OCO 2 -aryl, -OCO 2 -heteroaryl, -OCO 2 -heterocyclyl, -OCONH 2 , -OCONH-alkyl, -OCONH-alkenyl, -OCONH- alkynyl, -OCONH-carbocyclyl, -OCONH-aryl, -OCONH-heteroaryl, -OCONH-heterocyclyl,
- -alkyl -alkenyl, -alkynyl, -aryl, -arylalkyl, -heteroaryl, -heteroarylalkyl, -heterocycloalkyl, -cycloalkyl, -carbocyclic, -heterocyclic, polyalkoxyalkyl, polyalkoxy, -methoxymethoxy, -methoxyethoxy, -SH, -S-alkyl, -S-alkenyl, -S-alkynyl, -S-carbocyclyl, -S-aryl, -S-heteroaryl, -S-heterocyclyl, or methylthiomethyl.
- the term “pharmaceutically acceptable salt” refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio.
- Pharmaceutically acceptable salts are well known in the art. For example, S. M. Berge et al. , describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 1977, 66, 1–19, incorporated herein by reference.
- Pharmaceutically acceptable salts of the compounds of this invention include those derived from suitable inorganic and organic acids and bases.
- Examples of pharmaceutically acceptable, nontoxic acid addition salts are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange.
- inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid
- organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange.
- salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2–hydroxy–ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2–naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pect
- Salts derived from appropriate bases include alkali metal, alkaline earth metal, ammonium and N + (C 1–4 alkyl) 4 salts.
- Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like.
- Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, loweralkyl sulfonate and aryl sulfonate.
- structures depicted herein are also meant to include all isomeric (e.g., enantiomeric, diastereomeric, and geometric (or conformational) ) forms of the structure; for example, the R and S configurations for each asymmetric center, Z and E double bond isomers, and Z and E conformational isomers. Therefore, single stereochemical isomers as well as enantiomeric, diastereomeric, and geometric (or conformational) mixtures of the present compounds are within the scope of the invention. Unless otherwise stated, all tautomeric forms of the compounds of the invention are within the scope of the invention.
- structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms.
- compounds having the present structures including the replacement of hydrogen by deuterium or tritium, or the replacement of a carbon by a 13 C- or 14 C-enriched carbon are within the scope of this invention.
- the group comprises one or more deuterium atoms.
- a compound of formula (I) or formula (II) includes isotope-labeled forms thereof.
- An isotope-labeled form of a compound of formula (I) or formula (II) is identical to this compound apart from the fact that one or more atoms of the compound have been replaced by an atom or atoms having an atomic mass or mass number which differs from the atomic mass or mass number of the atom which usually occurs naturally.
- isotopes which are readily commercially available and which can be incorporated into a compound of formula (I) or formula (II) by well-known methods include isotopes of hydrogen, carbon, nitrogen, oxygen, phos-phorus, fluo-rine and chlorine, for example 2 H, 3 H, 13 C, 14 C, 15 N, 18 O, 17 O, 31 P, 32 P, 35 S, 18 F and 36 CI, respectively.
- a compound of formula (I) or formula (II) , a prodrug, thereof or a pharmaceutically acceptable salt of either which contains one or more of the above-mentioned isotopes and/or other isotopes of other atoms is intended to be part of the present invention.
- An isotope-labeled compound of formula (I) or formula (II) can be used in a number of beneficial ways.
- an isotope-labeled compound of the formula (I) or formula (II) into which, for example, a radioisotope, such as 3 H or 14 C, has been incorporated is suitable for medicament and/or substrate tissue distribution assays.
- radioisotopes i.e. tritium ( 3 H) and carbon-14 ( 14 C) , are particularly preferred owing to simple preparation and excellent detectability.
- Deuterium ( 2 H) can also be incorporated into a compound of formula (I) or formula (II) for the purpose in order to manipulate the oxidative metabolism of the compound by way of the primary kinetic isotope effect.
- the primary kinetic isotope effect is a change of the rate for a chemical reaction that results from exchange of isotopic nuclei, which in turn is caused by the change in ground state energies necessary for covalent bond formation after this isotopic exchange.
- Exchange of a heavier isotope usually results in a lowering of the ground state energy for a chemical bond and thus causes a reduction in the rate in rate-limiting bond breakage.
- the product distribution ratios can be altered substantially.
- a compound of formula (I) or formula (II) which has multiple potential sites of attack for oxidative metabolism for example benzylic hydrogen atoms and hydrogen atoms bonded to a nitrogen atom, is prepared as a series of analogues in which various combinations of hydrogen atoms are replaced by deuterium atoms, so that some, most or all of these hydrogen atoms have been replaced by deuterium atoms.
- Half-life determinations enable favorable and accurate determination of the extent of the extent to which the improvement in resistance to oxidative metabolism has improved. In this way, it is determined that the half-life of the parent compound can be extended by up to 100%as the result of deuterium-hydrogen exchange of this type.
- Deuterium-hydrogen exchange in a compound of formula (I) or formula (II) can also be used to achieve a favorable modification of the metabolite spectrum of the starting compound in order to diminish or eliminate undesired toxic metabolites. For example, if a toxic metabolite arises through oxidative carbon-hydrogen (C-H) bond cleavage, it can reasonably be assumed that the deuterated analogue will greatly diminish or eliminate production of the unwanted metabolite, even if the particular oxidation is not a rate-determining step. Further information on the state of the art with respect to deuterium-hydrogen exchange may be found, for example in Hanzlik et al. , J. Org. Chem.
- a modulator is defined as a compound that binds to and /or inhibits the target with measurable affinity.
- a modulator has an IC 50 and/or binding constant of less about 50 ⁇ M, less than about 1 ⁇ M, less than about 500 nM, less than about 100 nM, or less than about 10 nM.
- measurable affinity and “measurably inhibit, ” as used herein, means a measurable change in FSHR activity between a sample comprising a compound of the present invention, or composition thereof, and FSHR, and an equivalent sample comprising FSHR, in the absence of said compound, or composition thereof.
- stable refers to compounds which possess stability sufficient to allow manufacture and which maintains the integrity of the compound for a sufficient period of time to be useful for the purposes detailed herein (e.g., therapeutic or prophylactic administration to a subject) .
- the present invention provides a compound of formula I,
- X is O, S, SO, SO 2 , or NR;
- Y is O, S, or NR
- Z is O, S, SO, SO 2 , or N; wherein when Z is O, S, SO, or SO 2 , then p is 0;
- each R is independently hydrogen, C 1–6 aliphatic, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted; or
- R groups on the same atom are taken together with the atom to which they are attached to form an aryl ring, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;
- Ring A is a fused aryl, a fused 3-8 membered saturated or partially unsaturated carbocyclic ring, a fused 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a fused 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur;
- R 1 is –OR, –SR, –CN, –NO 2 , -SO 2 R, -SOR, -C (O) R, -CO 2 R, -C (O) N (R) 2 , -NRC (O) R, -NRC (O) N (R) 2 , -NRSO 2 R, or –N (R) 2 ;
- R 2 is –R, halogen, -haloalkyl, –OR, –SR, –CN, –NO 2 , -SO 2 R, -SOR, -C (O) R, -CO 2 R, -C (O) N (R) 2 , -NRC (O) R, -NRC (O) N (R) 2 , -NRSO 2 R, or –N (R) 2 ;
- R 3 is an optionally substituted aryl
- each R 4 is independently –R, halogen, -haloalkyl, –OR, –SR, –CN, –NO 2 , -SO 2 R, -SOR, -C (O) R, -CO 2 R, -C (O) N (R) 2 , -NRC (O) R, -NRC (O) N (R) 2 , -NRSO 2 R, or –N (R) 2 ;
- R 5 is C 1–6 aliphatic, -SO 2 R, -SOR, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;
- R 6 is hydrogen, C 1–6 aliphatic, -SO 2 R, -SOR, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;
- R 5 and R 6 together with the atom to which each is attached, form a 3-8 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 3-8 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;
- n 0, 1, or 2;
- p 0 or 1.
- X is O. In certain embodiments, X is S. In certain embodiments, X is SO or SO 2 . In certain embodiments, X is NR.
- Y is O. In certain embodiments, Y is S. In certain embodiments, Y is NR.
- Z is O. In certain embodiments, Z is S. In certain embodiments, Z is SO or SO 2 . In certain embodiments, Z is N.
- Ring A is a fused aryl. In certain embodiments, Ring A is a fused 3-8 membered saturated or partially unsaturated carbocyclic ring. In certain embodiments, Ring A is a fused 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, Ring A is a fused 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- Ring A is phenyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolenyl, isoxazolyl, morpholinyl, oxadiazolyl, 1, 2, 3-oxadiazolyl, 1, 2, 4-oxadiazolyl; 1, 2, 5-oxadiazolyl, 1, 3, 4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, pyrimidinyl, piperazinyl, piperidinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyri
- Ring A is phenyl
- R 1 is –OR, –SR, -SO 2 R, -SOR, -C (O) R, -CO 2 R, -C (O) N (R) 2 , -NRC (O) R, -NRC (O) N (R) 2 , -NRSO 2 R, or –N (R) 2 .
- R 1 is –OR, – SR, -SO 2 R, or –SOR.
- R 1 is -C (O) R, -CO 2 R, or -C (O) N (R) 2 .
- R 1 is -NRC (O) R, -NRC (O) N (R) 2 , -NRSO 2 R, or –N (R) 2 .
- R 1 is —OR, and R is hydrogen.
- R 1 is –OR, and R is C 1–6 aliphatic, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- R 1 is –OR, and R is C 1–6 aliphatic.
- R is methyl, ethyl, propyl, i-propyl, butyl, s-butyl, t-butyl, straight or branched pentyl, or straight or branched hexyl; each of which is optionally substituted.
- R is methyl or or deuterated methyl. In certain embodiments, R is methyl.
- R 1 is –OR, and R is aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- R is phenyl, naphthyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, [3.3.0] bicyclooctanyl, [4.3.0] bicyclononanyl, [4.4.0] bicyclodecanyl, [2.2.2] bicyclooctanyl, fluorenyl, indanyl, tetrahydronaphthyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl, NH
- R 1 is –OR
- R 2 is aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- R 1 is –OR
- R 2 is a 6-membered aryl ring, a 3-membered carbocyclic ring, or a 5-6 membered monocyclic heteroaryl ring having 1-4 nitrogen atoms; each of which is optionally substituted.
- R 2 is hydrogen
- R 2 is C 1–6 aliphatic. In certain embodiments, R 2 is C 1–6 aliphatic wherein the aliphatic group is a C 1–6 alkyl. In certain embodiments, R 2 is methyl, ethyl, propyl, i-propyl, butyl, s-butyl, t-butyl, straight or branched pentyl, or straight or branched hexyl; each of which is optionally substituted. In certain embodiments, R 2 is C 1–6 aliphatic wherein the aliphatic group is a C 1–6 alkenyl.
- R 2 is aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- R 2 is phenyl, naphthyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, [3.3.0] bicyclooctanyl, [4.3.0] bicyclononanyl, [4.4.0] bicyclodecanyl, [2.2.2] bicyclooctanyl, fluorenyl, indanyl, tetrahydronaphthyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl,
- R 2 is halogen, -haloalkyl, –OR, –SR, –CN, –NO 2 , -SO 2 R, -SOR, -C (O) R, -CO 2 R, -C (O) N (R) 2 , -NRC (O) R, -NRC (O) N (R) 2 , -NRSO 2 R, or –N (R) 2 .
- R 2 is F, Cl, Br, I, or haloalkyl.
- R 2 is –OR, –SR, –CN, –NO 2 , -SO 2 R, -SOR, -C (O) R, -CO 2 R, -C (O) N (R) 2 , -NRC (O) R, -NRC (O) N (R) 2 , -NRSO 2 R, or –N (R) 2 .
- R is C 1–6 aliphatic, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- R is methyl, ethyl, propyl, i-propyl, butyl, s-butyl, t-butyl, straight or branched pentyl, or straight or branched hexyl; each of which is optionally substituted.
- R is methyl, ethyl, or propyl; each of which is optionally substituted.
- R is phenyl, naphthyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, [3.3.0] bicyclooctanyl, [4.3.0] bicyclononanyl, [4.4.0] bicyclodecanyl, [2.2.2] bicyclooctanyl, fluorenyl, indanyl, tetrahydronaphthyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisox
- R 2 is
- R 3 is phenyl or naphthyl; each of which is optionally substituted.
- R 3 is an optionally substituted phenyl.
- R 3 is phenyl substituted by –R, halogen, -haloalkyl, –OR, –SR, –CN, –NO 2 , -SO 2 R, -SOR, -C (O) R, -CO 2 R, -C (O) N (R) 2 , -NRC (O) R, -NRC (O) N (R) 2 , -NRSO 2 R, or –N (R) 2 .
- R 3 is
- each R 4 is independently hydrogen.
- each R 4 is independently C 1–6 aliphatic, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- each R 4 is independently an optionally substituted C 1–6 aliphatic. In certain embodiments, each R 4 is independently an optionally substituted aryl. In certain embodiments, each R 4 is independently an optionally substituted 3-8 membered saturated or partially unsaturated carbocyclic ring. In certain embodiments, each R 4 is independently an optionally substituted 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, each R 4 is independently an optionally substituted 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- each R 4 is independently halogen, -haloalkyl, –OR, –SR, –CN, –NO 2 , -SO 2 R, -SOR, -C (O) R, -CO 2 R, -C (O) N (R) 2 , -NRC (O) R, -NRC (O) N (R) 2 , -NRSO 2 R, or –N (R) 2 .
- R 5 is C 1–6 aliphatic, SO 2 R, -SOR, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- R 5 is an optionally substituted C 1–6 aliphatic. In certain embodiments, R 5 is an optionally substituted aryl. In certain embodiments, R 5 is an optionally substituted 3-8 membered saturated or partially unsaturated carbocyclic ring. In certain embodiments, R 5 is an optionally substituted 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, R 5 is an optionally substituted 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- R 5 is C 1–6 aliphatic. In certain embodiments, R 5 is methyl, ethyl, propyl, i-propyl, butyl, s-butyl, t-butyl, straight or branched pentyl, or straight or branched hexyl; each of which is optionally substituted.
- R 5 is phenyl, naphthyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, [3.3.0] bicyclooctanyl, [4.3.0] bicyclononanyl, [4.4.0] bicyclodecanyl, [2.2.2] bicyclooctanyl, fluorenyl, indanyl, tetrahydronaphthyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl,
- R 5 and R 6 together with the atom to which each is attached, form a 3-8 membered heterocylic l ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- R 5 is methyl, t-butyl
- Z is N. In certain embodiments, Z is N and R 5 , R 6 , and Z together with the atoms to which each is attached form an optionally substituted 3-8 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, Z is N and the ring formed by Z, R 5 and R 6 is
- R 6 is hydrogen
- R 6 is C 1–6 aliphatic, SO 2 R, -SOR, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- R 6 is an optionally substituted C 1–6 aliphatic. In certain embodiments, R 6 is an optionally substituted aryl. In certain embodiments, R 6 is an optionally substituted 3-8 membered saturated or partially unsaturated carbocyclic ring. In certain embodiments, R 6 is an optionally substituted 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, R 6 is an optionally substituted 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- R 6 is C 1–6 aliphatic. In certain embodiments, R 6 is methyl, ethyl, propyl, i-propyl, butyl, s-butyl, t-butyl, straight or branched pentyl, or straight or branched hexyl; each of which is optionally substituted.
- R 6 is phenyl, naphthyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, [3.3.0] bicyclooctanyl, [4.3.0] bicyclononanyl, [4.4.0] bicyclodecanyl, [2.2.2] bicyclooctanyl, fluorenyl, indanyl, tetrahydronaphthyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl,
- R 6 is hydrogen
- R 6 is SO 2 R or –SOR.
- R 6 is optionally substituted C 1–6 aliphatic or -SO 2 R.
- R 6 is methyl, ethyl, t-butyl, or
- n is 0. In certain embodiments, n is 1. In certain embodiments, n is 2.
- p is 0. In certain embodiments, p is 1.
- each of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , X, Y, Z, n, and p is as defined above and described in embodiments, classes and subclasses above and herein, singly or in combination.
- the present invention provides a compound of formula I-a,
- R 1 , R 2 , R 3 , R 5 , R 6 , X, Y, Z, and p is as defined above and described in embodiments, classes and subclasses above and herein, singly or in combination.
- the present invention provides a compound of formula I-b,
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , Y, Z, n, and p is as defined above and described in embodiments, classes and subclasses above and herein, singly or in combination.
- the compound is of formula I-c:
- R 1 , R 2 , R 3 , R 5 , R 6 , Z, and p is as defined above and described in embodiments, classes and subclasses above and herein, singly or in combination.
- the invention provides a compound of formula I-d:
- R 1 , R 2 , R 3 , R 5 , and R 6 is as defined above and described in embodiments, classes and subclasses above and herein, singly or in combination.
- the invention provides a compound of formula I-e:
- R 2 , R 3 , R 5 , and R 6 is as defined above and described in embodiments, classes and subclasses above and herein, singly or in combination.
- the invention provides a compound of formula I-f:
- R 2 is aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;
- R 3 is an optionally substituted phenyl;
- R 5 is an optionally substituted C 1–6 aliphatic;
- R 6 is an optionally substituted C 1–6 aliphatic; or R 5 and R 6 , together with the atom to which each is attached, form an optionally substituted 3-8 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- the present invention provides a compound of formula II,
- X is O, S, SO, SO 2 , or NR;
- Y is O, S, or NR
- Z is O, S, SO, SO 2 , or N; wherein when Z is O, S, SO, or SO 2 , then p is 0;
- each R is independently hydrogen, C 1–6 aliphatic, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted; or
- R groups on the same atom are taken together with the atom to which they are attached to form an aryl ring, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;
- Ring A is a fused aryl, a fused 3-8 membered saturated or partially unsaturated carbocyclic ring, a fused 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a fused 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur;
- R 1 is –OR, –SR, –CN, –NO 2 , -SO 2 R, -SOR, -C (O) R, -CO 2 R, -C (O) N (R) 2 , -NRC (O) R, -NRC (O) N (R) 2 , -NRSO 2 R, or –N (R) 2 ;
- R 2 is –R, halogen, -haloalkyl, –OR, –SR, –CN, –NO 2 , -SO 2 R, -SOR, -C (O) R, -CO 2 R, -C (O) N (R) 2 , -NRC (O) R, -NRC (O) N (R) 2 , -NRSO 2 R, or –N (R) 2 ;
- R 3 is an optionally substituted 5-6 membered monocyclic heteroaryl ring
- each R 4 is independently –R, halogen, -haloalkyl, –OR, –SR, –CN, –NO 2 , -SO 2 R, -SOR, -C (O) R, -CO 2 R, -C (O) N (R) 2 , -NRC (O) R, -NRC (O) N (R) 2 , -NRSO 2 R, or –N (R) 2 ;
- R 5 is C 1–6 aliphatic, -SO 2 R, -SOR, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;
- R 6 is hydrogen, C 1–6 aliphatic, -SO 2 R, -SOR, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;
- R 5 and R 6 together with the atom to which each is attached, form a 3-8 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 3-8 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;
- n 0, 1, or 2;
- p 0 or 1.
- X is O. In certain embodiments, X is S. In certain embodiments, X is SO or SO 2 . In certain embodiments, X is NR.
- Y is O. In certain embodiments, Y is S. In certain embodiments, Y is NR.
- Z is O. In certain embodiments, Z is S. In certain embodiments, Z is SO or SO 2 . In certain embodiments, Z is N.
- Ring A is a fused aryl. In certain embodiments, Ring A is a fused 3-8 membered saturated or partially unsaturated carbocyclic ring. In certain embodiments, Ring A is a fused 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, Ring A is a fused 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- Ring A is phenyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolenyl, isoxazolyl, morpholinyl, oxadiazolyl, 1, 2, 3-oxadiazolyl, 1, 2, 4-oxadiazolyl; 1, 2, 5-oxadiazolyl, 1, 3, 4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, pyrimidinyl, piperazinyl, piperidinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyri
- Ring A is phenyl
- R 1 is –OR, –SR, -SO 2 R, -SOR, -C (O) R, -CO 2 R, -C (O) N (R) 2 , -NRC (O) R, -NRC (O) N (R) 2 , -NRSO 2 R, or –N (R) 2 .
- R 1 is –OR, –SR, -SO 2 R, or –SOR.
- R 1 is -C (O) R, -CO 2 R, or -C (O) N (R) 2 .
- R 1 is -NRC (O) R, -NRC (O) N (R) 2 , -NRSO 2 R, or –N (R) 2 .
- R 1 is —OR, and R is hydrogen.
- R 1 is –OR, and R is C 1–6 aliphatic, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- R 1 is –OR, and R is C 1–6 aliphatic.
- R is methyl, ethyl, propyl, i-propyl, butyl, s-butyl, t-butyl, straight or branched pentyl, or straight or branched hexyl; each of which is optionally substituted.
- R is methyl.
- R 1 is –OR, and R is aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- R is phenyl, naphthyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, [3.3.0] bicyclooctanyl, [4.3.0] bicyclononanyl, [4.4.0] bicyclodecanyl, [2.2.2] bicyclooctanyl, fluorenyl, indanyl, tetrahydronaphthyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl, NH
- R 1 is –OR
- R 2 is OR, C 1–6 aliphatic, Aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- R 1 is –OR
- R 2 is –OR, C 1–6 aliphatic, a 6-membered aryl ring, or a 5-6 membered monocyclic heteroaryl ring having 1-4 nitrogen atoms; each of which is optionally substituted.
- R 2 is hydrogen
- R 2 is C 1–6 aliphatic. In certain embodiments, R 2 is C 1–6 aliphatic wherein the aliphatic group is a C 1–6 alkyl. In certain embodiments, R 2 is methyl, ethyl, propyl, i-propyl, butyl, s-butyl, t-butyl, straight or branched pentyl, or straight or branched hexyl; each of which is optionally substituted. In certain embodiments, R 2 is methyl, ethyl, propyl, or i-propyl. In certain embodiments, R 2 is i-propyl. In certain embodiments, R 2 is C 1–6 aliphatic wherein the aliphatic group is a C 1–6 alkenyl.
- R 2 is aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- R 2 is phenyl, naphthyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, [3.3.0] bicyclooctanyl, [4.3.0] bicyclononanyl, [4.4.0] bicyclodecanyl, [2.2.2] bicyclooctanyl, fluorenyl, indanyl, tetrahydronaphthyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl,
- R 2 is halogen, -haloalkyl, –OR, –SR, –CN, –NO 2 , -SO 2 R, -SOR, -C (O) R, -CO 2 R, -C (O) N (R) 2 , -NRC (O) R, -NRC (O) N (R) 2 , -NRSO 2 R, or –N (R) 2 .
- R 2 is F, Cl, Br, I, or haloalkyl.
- R 2 is –OR, –SR, –CN, –NO 2 , -SO 2 R, -SOR, -C (O) R, -CO 2 R, -C (O) N (R) 2 , -NRC (O) R, -NRC (O) N (R) 2 , -NRSO 2 R, or –N (R) 2 .
- R is C 1–6 aliphatic, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- R is methyl, ethyl, propyl, i-propyl, butyl, s-butyl, t-butyl, straight or branched pentyl, or straight or branched hexyl; each of which is optionally substituted.
- R is phenyl, naphthyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, [3.3.0] bicyclooctanyl, [4.3.0] bicyclononanyl, [4.4.0] bicyclodecanyl, [2.2.2] bicyclooctanyl, fluorenyl, indanyl, tetrahydronaphthyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl, NH
- R 2 is
- R 3 is thiophenyl, furanyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyridyl, pyridazinyl, pyrimidinyl, and pyrazinyl.
- R 3 is thiophenyl or pyridyl; each of which is optionally substituted.
- R 3 is
- each R 4 is independently hydrogen.
- each R 4 is independently C 1–6 aliphatic, C 3–10 aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- each R 4 is independently an optionally substituted C 1–6 aliphatic. In certain embodiments, each R 4 is independently an optionally substituted aryl. In certain embodiments, each R 4 is independently an optionally substituted 3-8 membered saturated or partially unsaturated carbocyclic ring. In certain embodiments, each R 4 is independently an optionally substituted 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, each R 4 is independently an optionally substituted 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- each R 4 is independently halogen, -haloalkyl, –OR, –SR, –CN, –NO 2 , -SO 2 R, -SOR, -C (O) R, -CO 2 R, -C (O) N (R) 2 , -NRC (O) R, -NRC (O) N (R) 2 , -NRSO 2 R, or –N (R) 2 .
- R 5 is C 1–6 aliphatic, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- R 5 is an optionally substituted C 1–6 aliphatic. In certain embodiments, R 5 is an optionally substituted aryl. In certain embodiments, R 5 is an optionally substituted 3-8 membered saturated or partially unsaturated carbocyclic ring. In certain embodiments, R 5 is an optionally substituted 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, R 5 is an optionally substituted 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- R 5 is C 1–6 aliphatic. In certain embodiments, R 5 is methyl, ethyl, propyl, i-propyl, butyl, s-butyl, t-butyl, straight or branched pentyl, or straight or branched hexyl; each of which is optionally substituted.
- R 5 is phenyl, naphthyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, [3.3.0] bicyclooctanyl, [4.3.0] bicyclononanyl, [4.4.0] bicyclodecanyl, [2.2.2] bicyclooctanyl, fluorenyl, indanyl, tetrahydronaphthyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl,
- R 5 and R 6 together with the atom to which each is attached, form a 3-8 membered heterocylic l ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- R 5 is methyl, t-butyl
- Z is N. In certain embodiments, Z is N and R 5 , R 6 , and Z together with the atoms to which each is attached form an optionally substituted 3-8 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, Z is N and and the ring formed by Z, R 5 and R 6 is
- R 6 is hydrogen
- R 6 is C 1–6 aliphatic, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- R 6 is an optionally substituted C 1–6 aliphatic. In certain embodiments, R 6 is an optionally substituted aryl. In certain embodiments, R 6 is an optionally substituted 3-8 membered saturated or partially unsaturated carbocyclic ring. In certain embodiments, R 6 is an optionally substituted 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, R 6 is an optionally substituted 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- R 6 is C 1–6 aliphatic. In certain embodiments, R 6 is methyl, ethyl, propyl, i-propyl, butyl, s-butyl, t-butyl, straight or branched pentyl, or straight or branched hexyl; each of which is optionally substituted.
- R 6 is phenyl, naphthyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, [3.3.0] bicyclooctanyl, [4.3.0] bicyclononanyl, [4.4.0] bicyclodecanyl, [2.2.2] bicyclooctanyl, fluorenyl, indanyl, tetrahydronaphthyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl,
- R 6 is hydrogen
- R 6 is methyl or t-butyl.
- n is 0. In certain embodiments, n is 1. In certain embodiments, n is 2.
- p is 0. In certain embodiments, p is 1.
- each of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , X, Y, Z, n, and p is as defined above and described in embodiments, classes and subclasses above and herein, singly or in combination.
- the present invention provides a compound of formula II-a,
- R 1 , R 2 , R 3 , R 5 , R 6 , X, Y, Z, and p is as defined above and described in embodiments, classes and subclasses above and herein, singly or in combination.
- the present invention provides a compound of formula II-b,
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , Y, Z, n, and p is as defined above and described in embodiments, classes and subclasses above and herein, singly or in combination.
- the compound is of formula II-c:
- R 1 , R 2 , R 3 , R 5 , R 6 , Z, and p is as defined above and described in embodiments, classes and subclasses above and herein, singly or in combination.
- the invention provides a compound of formula II-d:
- R 1 , R 2 , R 3 , R 5 , and R 6 is as defined above and described in embodiments, classes and subclasses above and herein, singly or in combination.
- the invention provides a compound of formula II-e:
- R 2 , R 3 , R 5 , and R 6 is as defined above and described in embodiments, classes and subclasses above and herein, singly or in combination.
- the invention provides a compound of formula II-f:
- R 2 is C 1–6 aliphatic, –OR, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;
- R 3 is an optionally substituted thiophenyl or pyridyl;
- R 5 is an optionally substituted C 1–6 aliphatic;
- R 6 is an optionally substituted C 1–6 aliphatic or -SO 2 R; or R 5 and R 6 , together with the atom to which each is attached, form an optionally substituted 3-8 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- the invention provides a compound selected from Table 1.
- the present invention provides a compound selected from those depicted above, or a pharmaceutically acceptable salt thereof.
- the compounds of the invention were synthesized in accordance with Schemes A-C below. More specific examples of compounds made utilizingSchemes A-C are provided in the Examples below.
- the invention provides a composition comprising a compound of this invention or a pharmaceutically acceptable derivative thereof and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
- the amount of compound in compositions of this invention is such that is effective to measurably modulate FSHR, or a mutant thereof, in a biological sample or in a patient.
- the amount of compound in compositions of this invention is such that is effective to measurably modulate FSHR, or a mutant thereof, in a biological sample or in a patient.
- a composition of this invention is formulated for administration to a patient in need of such composition.
- patient or “subject” , as used herein, means an animal, preferably a mammal, and most preferably a human.
- compositions of this invention refers to a non-toxic carrier, adjuvant, or vehicle that does not destroy the pharmacological activity of the compound with which it is formulated.
- Pharmaceutically acceptable carriers, adjuvants or vehicles that are used in the compositions of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block poly
- a “pharmaceutically acceptable derivative” means any non-toxic salt, ester, salt of an ester or other derivative of a compound of this invention that, upon administration to a recipient, is capable of providing, either directly or indirectly, a compound of this invention or an inhibitorily active metabolite or residue thereof.
- compositions of the present invention are administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir.
- parenteral as used herein includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques.
- the compositions are administered orally, intraperitoneally or intravenously.
- Sterile injectable forms of the compositions of this invention include aqueous or oleaginous suspension. These suspensions are formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents.
- the sterile injectable preparation is also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1, 3-butanediol.
- a non-toxic parenterally acceptable diluent or solvent for example as a solution in 1, 3-butanediol.
- acceptable vehicles and solvents that are employed are water, Ringer’s solution and isotonic sodium chloride solution.
- sterile, fixed oils are conventionally employed as a solvent or suspending medium.
- any bland fixed oil employed includes synthetic mono- or di-glycerides.
- Fatty acids such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions.
- These oil solutions or suspensions also contain a long-chain alcohol diluent or dispersant, such as carboxymethyl cellulose or similar dispersing agents that are commonly used in the formulation of pharmaceutically acceptable dosage forms including emulsions and suspensions.
- Other commonly used surfactants such as Tweens, Spans and other emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms are also be used for the purposes of formulation.
- compositions of this invention are orally administered in any orally acceptable dosage form.
- exemplary oral dosage forms are capsules, tablets, aqueous suspensions or solutions.
- carriers commonly used include lactose and corn starch.
- Lubricating agents such as magnesium stearate, are also typically added.
- useful diluents include lactose and dried cornstarch.
- aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents are optionally also added.
- compositions of this invention are administered in the form of suppositories for rectal administration.
- suppositories can be prepared by mixing the agent with a suitable non-irritating excipient that is solid at room temperature but liquid at rectal temperature and therefore will melt in the rectum to release the drug.
- suitable non-irritating excipient include cocoa butter, beeswax and polyethylene glycols.
- compositions of this invention are also administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, including diseases of the eye, the skin, or the lower intestinal tract. Suitable topical formulations are readily prepared for each of these areas or organs.
- Topical application for the lower intestinal tract can be effected in a rectal suppository formulation (see above) or in a suitable enema formulation. Topically-transdermal patches are also used.
- compositions are formulated in a suitable ointment containing the active component suspended or dissolved in one or more carriers.
- exemplary carriers for topical administration of compounds of this aremineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene compound, emulsifying wax and water.
- provided pharmaceutically acceptable compositions can be formulated in a suitable lotion or cream containing the active components suspended or dissolved in one or more pharmaceutically acceptable carriers.
- Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water.
- compositions of this invention are optionally administered by nasal aerosol or inhalation.
- Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and are prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other conventional solubilizing or dispersing agents.
- compositions of this invention are formulated for oral administration. Such formulations may be administered with or without food. In some embodiments, pharmaceutically acceptable compositions of this invention are administered without food. In other embodiments, pharmaceutically acceptable compositions of this invention are administered with food.
- compositions of the present invention that are optionally combined with the carrier materials to produce a composition in a single dosage form will vary depending upon the host treated, the particular mode of administration.
- provided compositions should be formulated so that a dosage of between 0.01 -100 mg/kg body weight/day of the compound can be administered to a patient receiving these compositions.
- a specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, rate of excretion, drug combination, and the judgment of the treating physician and the severity of the particular disease being treated.
- the amount of a compound of the present invention in the composition will also depend upon the particular compound in the composition.
- the invention provides a method for allosterically agonising FSHR, or a mutant thereof, in a positive manner in a patient or in a biological sample comprising the step of administering to said patient or contacting said biological sample with a compound according to the invention.
- the invention is directed to the use of compounds of the invention and/or physiologically acceptable salts thereof, for modulating a FSH receptor, particularly in the presence of FSH.
- modulation denotes any change in FSHR-mediated signal transduction, which is based on the action of the specific inventive compounds capable to interact with the FSHR target in such a manner that makes recognition, binding and activating possible.
- the compounds are characterized by such a high affinity to FSHR, which ensures a reliable binding and preferably a positive allosteric modulation of FSHR.
- the substances are mono-specific in order to guarantee an exclusive and directed recognition with the single FSHR target.
- the term “recognition” -without being limited thereto - relates to any type of interaction between the specific compounds and the target, particularly covalent or non-covalent binding or association, such as a covalent bond, hydrophobic/hydrophilic interactions, van der Waals forces, ion pairs, hydrogen bonds, ligand-receptor interactions, and the like. Such association may also encompass the presence of other molecules such as peptides, proteins or nucleotide sequences.
- the present receptor/ligand-interaction is characterized by high affinity, high selectivity and minimal or even lacking cross-reactivity to other target molecules to exclude unhealthy and harmful impacts to the treated subject.
- the present invention relates to a method for modulating an FSH receptor, and in particular in a positive allosteric manner, wherein a system capable of expressing the FSH receptor is contacted, in the presence of FSH, with at least one compound of formula (I) or formula (II) according to the invention and/or physiologically acceptable salts thereof, under conditions such that said FSH receptor is modulated.
- modulation is in a positive allosteric manner.
- the system is a cellular system.
- the system is an in-vitro translation which is based on the protein synthesis without living cells.
- the cellular system is defined to be any subject provided that the subject comprises cells.
- the cellular system can be selected from the group of single cells, cell cultures, tissues, organs and animals.
- the method for modulating an FSH receptor is performed in-vitro.
- the prior teaching of the present specification concerning the compounds of formula (I) or formula (II) is valid and applicable without restrictions to the compounds according to formula (I) or formula (II) and their salts when used in the method for modulating FSHR.
- the prior teaching of the present specification concerning the compounds of formula (I) or formula (II) is valid and applicable without restrictions to the compounds according to formula (I) or formula (II) and their salts when used in the method for modulating FSHR.
- the compounds according to the invention exhibit an advantageous biological activity, which is easily demonstrated in cell culture-based assays, for example assays as described herein or in prior art (cf. e.g. WO 2002/09706, which is incorporated herein by reference) .
- the compounds according to the invention preferably exhibit and cause an agonistic effect.
- the compounds of the invention have an FSHR agonist activity, as expressed by an EC 50 standard, of less than 5 ⁇ M. In certain embodiments, less than 1 ⁇ M. In certain embodiments, less than 0.5 ⁇ M. In certain embodiments, less than 0.1 ⁇ M.
- “EC 50 ” is the effective concentration of a compound at which 50 %of the maximal response of that obtained with FSH would be obtained.
- disorders/diseases treated by the methods of the invention include but are not limited to, hypogonadotropic hypogonadism, Isolated idiopathic hypogonadotropic hypogonadism, Kallmann syndrome, Idiopathic hypogonadotropic hypogonadism, Craniopharyngiomas, Combined pituitary hormone deficiency, Fertile eunuch syndrome, Abnormal beta subunit of LH, Abnormal beta subunit of FSH, mass lesions, pituitary adenomas, cysts, metastatic cancer to the sella (breast in women, lung and prostate in men) , Infiltrative lesions, Hemochromatosis, sarcoidosis, histiocytosis, lymphoma, Lymphocytic hypophysitis, Infections, Meningitis, Pituitary apoplexy, Hyperprolactinemia, hypothyroidism, Intention
- the compounds according to the invention are useful in the prophylaxis and/or treatment of diseases that are dependent on the said signaling pathways by interaction with one or more of the said signaling pathways.
- the present invention therefore relates to compounds according to the invention as modulators, preferably agonists, more preferably positive allosteric modulators, of the signaling pathways described herein, preferably of the FSHR-mediated signaling pathway.
- the compounds of the invention are supposed to bind to the intracellular receptor domain without a competitive interaction with FSH, but they act as an allosteric enhancer of FSH on its receptor.
- the non-competitive interaction refers to the nature of the agonist activity exhibited by the compounds of the invention, wherein the compounds activate FSHR without substantially reducing the magnitude of binding of FSH to FSHR.
- the invention is directed towards the stimulation of follicular development, ovulation induction, controlled ovarial hyperstimulation, assisted reproductive technology, including in-vitro fertilization, male hypogonadism and male infertility, including some types of failure of spermatogenesis.
- the invention provides a method for treating fertility disorders, wherein at least one compound of formula (I) or formula (II) according to the invention and/or physiologically acceptable salts thereof is administered to a mammal in need of such treatment.
- the compound is administered in an effective amount as defined above.
- the treatment is an oral administration.
- the method of treatment aims to achieve ovulation induction and/or controlled ovarian hyperstimulation.
- the method of treatment forms the basis for a method for in-vitro fertilization comprising the steps of: (a) treating a mammal according to the method of treatment as described above, (b) collecting ova from said mammal, (c) fertilizing said ova, and (d) implanting said fertilized ova into a host mammal.
- the host mammal can be either the treated mammal (i.e. the patient) or a surrogate.
- the method of the invention can be performed either in-vitro or in-vivo.
- the susceptibility of a particular cell to treatment with the compounds according to the invention can be particularly determined by in-vitro tests, whether in the course of research or clinical application.
- a culture of the cell is combined with a compound according to the invention at various concentrations for a period of time which is sufficient to allow the active agents to modulate FSHR activity, usually between about one hour and one week.
- In-vitro treatment can be carried out using cultivated cells from a biopsy sample or cell line.
- a follicle cell is stimulated for maturation. The viable cells remaining after the treatment are counted and further processed.
- the host or patient can belong to any mammalian species, for example a primate species, particularly humans; rodents, including mice, rats and hamsters; rabbits; horses, cows, dogs, cats, etc. Animal models are of interest for experimental investigations, providing a model for treatment of human disease.
- Suitable models or model systems for example cell culture models and models of transgenic animals.
- interacting compounds can be utilized in order to modulate the signal.
- the compounds according to the invention can also be used as reagents for testing FSHR-dependent signal transduction pathways in animals and/or cell culture models or in the clinical diseases mentioned in this application.
- the use according to the previous paragraphs of the specification may be either performed in-vitro or in-vivo models.
- the modulation can be monitored by the techniques described in the course of the present specification.
- the in-vitro use is preferably applied to samples of humans suffering from fertility disorders. Testing of several specific compounds and/or derivatives thereof makes the selection of that active ingredient possible that is best suited for the treatment of the human subject.
- the in-vivo dose rate of the chosen derivative is advantageously pre-adjusted to the FSHR susceptibility and/or severity of disease of the respective subject with regard to the in-vitro data. Therefore, the therapeutic efficacy is remarkably enhanced.
- the invention also relates to the use of compounds according to formula (I) or formula (II) and/or physiologically acceptable salts thereof for the prophylactic or therapeutic treatment and/or monitoring of diseases that are caused, mediated and/or propagated by FSHR activity. Furthermore, the invention relates to the use of compounds according to formula (I) or formula (II) and/or physiologically acceptable salts thereof for the production of a medicament for the prophylactic or therapeutic treatment and/or monitoring of diseases that are caused, mediated and/or propagated by FSHR activity.
- the invention provides the use of a compound according to formula (I) or formula (II) or formula (II) or physiologically acceptable salts thereof, for the production of a medicament for the prophylactic or therapeutic treatment of a FSHR-mediated disorder.
- Compounds of formula (I) or formula (II) and/or a physiologically acceptable salt thereof can furthermore be employed as intermediate for the preparation of further medicament active ingredients.
- the medicament is preferably prepared in a non-chemical manner, e.g. by combining the active ingredient with at least one solid, fluid and/or semi-fluid carrier or excipient, and optionally in conjunction with a single or more other active substances in an appropriate dosage form.
- Another object of the present invention are compounds of formula (I) or formula (II) according to the invention and/or physiologically acceptable salts thereof for use in the prophylactic or therapeutic treatment and/or monitoring of diseases that are caused, mediated and/or propagated by FSHR activity.
- Another preferred object of the invention concerns compounds of formula (I) or formula (II) according to the invention and/or physiologically acceptable salts thereof for use in the prophylactic or therapeutic treatment and/or monitoring of fertility disorders.
- the prior teaching of the present specification concerning the compounds of formula (I) or formula (II) is valid and applicable without restrictions to the compounds according to formula (I) or formula (II) and their salts for use in the prophylactic or therapeutic treatment and/or monitoring of fertility disorders.
- the compounds of formula (I) or formula (II) according to the invention can be administered before or following an onset of disease once or several times acting as therapy.
- the aforementioned compounds and medical products of the inventive use are particularly used for the therapeutic treatment.
- a therapeutically relevant effect relieves to some extent one or more symptoms of a disorder, or returns to normality, either partially or completely, one or more physiological or biochemical parameters associated with or causative of a disease or pathological condition.
- Monitoring is considered as a kind of treatment provided that the compounds are administered in distinct intervals, e.g. in order to booster the response and eradicate the pathogens and/or symptoms of the disease completely. Either the identical compound or different compounds can be applied.
- the methods of the invention can also be used to reducing the likelihood of developing a disorder or even prevent the initiation of disorders associated with FSHR activity in advance or to treat the arising and continuing symptoms.
- the disorders are fertility disorders.
- prophylactic treatment is advisable if the subject possesses any preconditions for the aforementioned physiological or pathological conditions, such as a familial disposition, a genetic defect, or a previously passed disease.
- the invention furthermore relates to a medicament comprising at least one compound according to the invention and/or pharmaceutically usable derivatives, salts, solvates and stereoisomers thereof, including mixtures thereof in all ratios.
- the invention relates to a medicament comprising at least one compound according to the invention and/or physiologically acceptable salts thereof.
- a “medicament” in the meaning of the invention is any agent in the field of medicine, which comprises one or more compounds of formula (I) or formula (II) or preparations thereof (e.g. a pharmaceutical composition or pharmaceutical formulation) and can be used in prophylaxis, therapy, follow-up or aftercare of patients who suffer from diseases, which are associated with FSHR activity, in such a way that a pathogenic modification of their overall condition or of the condition of particular regions of the organism could establish at least temporarily.
- the active ingredient may be administered alone or in combination with other treatments.
- a synergistic effect may be achieved by using more than one compound in the pharmaceutical composition, i.e. the compound of formula (I) or formula (II) is combined with at least another agent as active ingredient, which is either another compound of formula (I) or formula (II) or a compound of different structural scaffold.
- the active ingredients can be used either simultaneously or sequentially.
- the present compounds are suitable for combination with known fertility-inducing agents.
- the other active pharmaceutical ingredient is selected from the group of FSH, ⁇ -FSH (Gonal F) , ⁇ -FSH, LH, hMG and 2- (4- (2-chloro-1, 2-diphenylethenyl) -phenoxy) -N, N-diethyl-ethanamine citrate (Chlomifene citrate) .
- Further ovulation adjuncts are known to those of skill in the art (cf. e.g. WO 2002/09706, which is incorporated herein by reference) and are useful with the compounds of the present invention.
- the invention provides for a kit consisting of separate packs of an effective amount of a compound according to the invention and/or pharmaceutically acceptable salts, derivatives, solvates and stereoisomers thereof, including mixtures thereof in all ratios, and optionally, an effective amount of a further active ingredient.
- the kit comprises suitable containers, such as boxes, individual bottles, bags or ampoules.
- the kit may, for example, comprise separate ampoules, each containing an effective amount of a compound according to the invention and/or pharmaceutically acceptable salts, derivatives, solvates and stereoisomers thereof, including mixtures thereof in all ratios, and an effective amount of a further active ingredient in dissolved or lyophilized form.
- treatment refers to reversing, alleviating, delaying the onset of, or inhibiting the progress of a disease or disorder, or one or more symptoms thereof, as described herein.
- treatment is administered after one or more symptoms have developed.
- treatment is administered in the absence of symptoms.
- treatment is administered to a susceptible individual prior to the onset of symptoms (e.g., in light of a history of symptoms and/or in light of genetic or other susceptibility factors) . Treatment is also continued after symptoms have resolved, for example to prevent or delay their recurrence.
- the compounds and compositions, according to the method of the present invention are administered using any amount and any route of administration effective for treating or lessening the severity of a disorder provided above.
- the exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the infection, the particular agent, its mode of administration, and the like.
- Compounds of the invention are preferably formulated in dosage unit form for ease of administration and uniformity of dosage.
- dosage unit form refers to a physically discrete unit of agent appropriate for the patient to be treated. It will be understood, however, that the total daily usage of the compounds and compositions of the present invention will be decided by the attending physician within the scope of sound medical judgment.
- the specific effective dose level for any particular patient or organism will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed, and like factors well known in the medical arts.
- compositions of this invention can be administered to humans and other animals orally, rectally, parenterally, intracisternally, intravaginally, intraperitoneally, topically (as by powders, ointments, or drops) , bucally, as an oral or nasal spray, or the like, depending on the severity of the infection being treated.
- the compounds of the invention are administered orally or parenterally at dosage levels of about 0.01 mg/kg to about 100 mg/kg and preferably from about 1 mg/kg to about 50 mg/kg, of subject body weight per day, one or more times a day, to obtain the desired therapeutic effect.
- Liquid dosage forms for oral administration include, but are not limited to, pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs.
- the liquid dosage forms optionally contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1, 3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils) , glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
- the oral compositions can also include adjuvant
- Injectable preparations for example, sterile injectable aqueous or oleaginous suspensions are formulated according to the known art using suitable dispersing or wetting agents and suspending agents.
- the sterile injectable preparation are also a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1, 3-butanediol.
- acceptable vehicles and solvents that may be employed are water, Ringer’s solution, U.S.P. and isotonic sodium chloride solution.
- sterile, fixed oils are conventionally employed as a solvent or suspending medium.
- any bland fixed oil can be employed including synthetic mono-or diglycerides.
- fatty acids such as oleic acid are used in the preparation of injectables.
- Injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.
- the rate of compound release can be controlled.
- biodegradable polymers include poly (orthoesters) and poly (anhydrides) .
- Depot injectable formulations are also prepared by entrapping the compound in liposomes or microemulsions that are compatible with body tissues.
- compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
- suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
- Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules.
- the active compound is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar--agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and g
- Solid compositions of a similar type are also employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
- the solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They optionally contain opacifying agents and can also be of a composition that they release the active ingredient (s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes.
- Solid compositions of a similar type are also employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polethylene glycols and the like.
- the active compounds can also be in micro-encapsulated form with one or more excipients as noted above.
- the solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings, release controlling coatings and other coatings well known in the pharmaceutical formulating art.
- the active compound may be admixed with at least one inert diluent such as sucrose, lactose or starch.
- Such dosage forms also comprise, as is normal practice, additional substances other than inert diluents, e.g., tableting lubricants and other tableting aids such a magnesium stearate and microcrystalline cellulose.
- the dosage forms optionally also comprise buffering agents. They optionally contain opacifying agents and can also be of a composition that they release the active ingredient (s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner.
- buffering agents optionally contain opacifying agents and can also be of a composition that they release the active ingredient (s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner.
- embedding compositions that can be used include polymeric substances and waxes.
- Dosage forms for topical or transdermal administration of a compound of this invention include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants or patches.
- the active component is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as required.
- Ophthalmic formulation, ear drops, and eye drops are also contemplated as being within the scope of this invention.
- the present invention contemplates the use of transdermal patches, which have the added advantage of providing controlled delivery of a compound to the body.
- Such dosage forms can be made by dissolving or dispensing the compound in the proper medium.
- Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate can be controlled by either providing a rate controlling membrane or by dispersing the compound in a polymer matrix or gel.
- the invention relates to a method of allosterically modulating FSHR activity in a biological sample comprising the step of contacting said biological sample with a compound of this invention, or a composition comprising said compound.
- the invention relates to a method of allosterically modulating FSHR, or a mutant thereof, activity in a biological sample in a positive manner, comprising the step of contacting said biological sample with a compound of this invention, or a composition comprising said compound.
- the compounds of the invention are strong and selective modulators of the FSH receptor. Their selectivity to the FSH receptor is 3 to 10-fold over the LH receptor and even 10 to 100-fold over the TSH receptor while the EC 50 or IC 50 amounts to more than 10 ⁇ M on unrelated G protein-coupled receptors (GPCR) or non-GPCR targets.
- GPCR G protein-coupled receptors
- the current invention comprises the use of the compounds of the invention in the regulation and/or modulation of the FSHR signal cascade, which can be advantageously applied as research tool, for diagnosis and/or in treatment of any disorder arising from FSHR signaling.
- the compounds of the invention are useful in-vitro as unique tools for understanding the biological role of FSH, including the evaluation of the many factors thought to influence, and be influenced by, the production of FSH and the interaction of FSH with the FSHR (e.g. the mechanism of FSH signal transduction/receptor activation) .
- the present compounds are also useful in the development of other compounds that interact with FSHR since the present compounds provide important structure-activity relationship (SAR) information that facilitate that development.
- SAR structure-activity relationship
- Compounds of the present invention that bind to FSHR can be used as reagents for detecting FSHR on living cells, fixed cells, in biological fluids, in tissue homogenates, in purified, natural biological materials, etc.
- compounds of the present invention can be used in in-situ staining, FACS (fluorescence-activated cell sorting) , western blotting, ELISA (enzyme-linked immunoadsorptive assay) , etc. , receptor purification, or in purifying cells expressing FSHR on the cell surface or inside permeabilized cells.
- the compounds of the invention can also be utilized as commercial research reagents for various medical research and diagnostic uses. Such uses can include but are not limited to: use as a calibration standard for quantifying the activities of candidate FSH agonists in a variety of functional assays; use as blocking reagents in random compound screening, i.e. in looking for new families of FSH receptor ligands, the compounds can be used to block recovery of the presently claimed FSH compounds; use in the co-crystallization with FSHR receptor, i.e.
- the compounds of the present invention will allow formation of crystals of the compound bound to FSHR, enabling the determination of receptor/compound structure by x-ray crystallography; other research and diagnostic applications, wherein FSHR is preferably activated or such activation is conveniently calibrated against a known quantity of an FSH agonist, etc. ; use in assays as probes for determining the expression of FSHR on the surface of cells; and developing assays for detecting compounds which bind to the same site as the FSHR binding ligands.
- the compounds of the invention can be applied either themselves and/or in combination with physical measurements for diagnostics of treatment effectiveness.
- Pharmaceutical compositions containing said compounds and the use of said compounds to treat FSHR-mediated conditions is a promising, novel approach for a broad spectrum of therapies causing a direct and immediate improvement in the state of health, whether in human or animal.
- the impact is of special benefit to efficiently combat infertility, either alone or in combination with other fertility-inducing treatments.
- the compounds of the invention potentiate the native FSH effect for both ovulation induction and assisted reproductive technology.
- the orally bioavailable and active new chemical entities of the invention improve convenience for patients and compliance for physicians.
- the compounds of the invention are active in the primary screen (CHO with or without FSH) , selective in secondary screen (no or low activity against TSHR and LHR) and potent in the granulosa cell estrodiol assay. Neither hERG nor any toxic effects could be observed in-vitro.
- the invention provides a method for in-vitro fertilization comprising the steps of:
- the compounds of formula (I) or formula (II) are characterized by a high specificity and stability, low manufacturing costs and convenient handling. These features form the basis for a reproducible action, wherein the lack of cross-reactivity is included, and for a reliable and safe interaction with the target structure.
- biological sample includes, without limitation, cell cultures or extracts thereof; biopsied material obtained from a mammal or extracts thereof; and blood, saliva, urine, feces, semen, tears, or other body fluids or extracts thereof.
- Modulation of FSHR, or a mutant thereof, activity in a biological sample is useful for a variety of purposes that are known to one of skill in the art. Examples of such purposes include, but are not limited to, blood transfusion, organ transplantation, biological specimen storage, and biological assays.
- Method A: 0.1 %TFA in H 2 O, B: 0.1 %TFA in ACN; Run time: 6.5 min; Flow Rate: 1.0mL/min; Gradient: 5-95%B in 4.5 min, wavelengths 254 and 215 nM; Column: Waters Sunfire C18, 3.0x50mm, 3.5um, positive mode; Mass Scan: 100-900 Da.
- Step 1 Ethyl 8-bromo-1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxylate
- Step 2 8-bromo-1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxylic acid
- Step 3 8-bromo-N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydro chromeno [4, 3-c] pyrazole-3-carboxamide
- Step 4 Methyl 2- (4- (3- (tert-butyl (methyl) carbamoyl) -1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) -1H-pyrazol-1-yl) acetate
- the reaction mixture was degassed with nitrogen for 20 min and water (4 mL) was added at RT. The reaction mixture was stirred at 90 °C for 1h under MW conditions. The reaction mixture was filtered through celite and washed with DCM (50 mL) . The filtrate was concentrated under vacuum; the crude product was washed with water (10 ml) , brine (10 mL) and dried over sodium sulphate. The organic solvent was removed under vacuum; the crude product was purified by column chromatograph using pet ether: ethyl acetate as an eluent to afford the desired compound (90 mg, 51 %) as an off-white solid.
- Step 5 N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (1- (2-hydroxyethyl) -1H-pyrazol-4-yl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 1)
- Step 1 Synthesis of (8-bromo-1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-3-yl) (4-hydroxy-2, 2-dimethylpiperidin-1-yl) methanone
- reaction mixture was quenched with sodium bicarbonate (10 mL, 10 %) , and extracted with EtOAc (2 x 50 mL) .
- the combined organic layer was washed with brine (30 mL) and dried over anhydrous Na 2 SO 4 .
- the solvent was removed under vacuum; the crude product was purified by column chromatography by using pet ether and ethyl acetate (5: 1) as eluents to afford the desired compound (500 mg, 80%) as a white solid.
- Step 2 Synthesis of (1- (3, 5-dichlorophenyl) -7-methoxy-8- (pyridin-2-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazol-3-yl) (4-hydroxy-2, 2-dimethylpiperidin-1-yl) methanone (Compound 102)
- Step 1 8-bromo-N- (2-cyanopropan-2-yl) -1- (3, 5-difluorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- Step 2 8-bromo-N- (2-cyanopropan-2-yl) -1- (3, 5-difluorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- Step 3 N- (2-cyanopropan-2-yl) -8- (5-cyanopyridin-3-yl) -1- (3, 5-difluorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 105)
- Step 4 N- (1-amino-2-methyl-1-oxopropan-2-yl) -8- (5-carbamoylpyridin-3-yl) -1-(3, 5-difluorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 104)
- Step 1 N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-8- (4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolan-2-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- Step 2 N-tert-butyl-8- (4-cyanopyrimidin-2-yl) -1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- Step 3 N-tert-butyl-8- (4-carbamoylpyrimidin-2-yl) -1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 111)
- Step 1 N- (2- (tert-butyldimethylsilyloxy) ethyl) -2-methylpropan-2-amine
- Step 2 7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxylic acid
- Step 3 N-tert-butyl-N- (2- (tert-butyldimethylsilyloxy) ethyl) -7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- Step 4 N-tert-butyl-N- (2-hydroxyethyl) -7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 121)
- Step 2 4- (tert-butyldiphenylsilyloxy) -N, 2-dimethylbutan-2-amine
- Step 3 8-bromo-N- (4- (tert-butyldiphenylsilyloxy) -2-methylbutan-2-yl) -1- (3, 5-dimethoxyphenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- Step 4 N- (4- (tert-butyldiphenylsilyloxy) -2-methylbutan-2-yl) -1- (3, 5-dimethoxyphenyl) -7-methoxy-N-methyl-8- (1-methyl-1H-pyrazol-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- the reaction mixture was degassed with nitrogen for 20 min and water (0.3 mL) was added at RT. The reaction mixture was stirred at 120 °C for 1h under MW conditions. The reaction mixture was filtered through celite and washed with DCM (50 mL) . The filtrate was concentrated under vacuum; the crude product was washed with water (10 ml) , brine (10 mL) and dried over sodium sulphate. The organic solvent was removed under vacuum; the crude product was purified by preparative HPLC (C18, A 10 mmol NH 4 HCO 3 , B.
- Step 5 1- (3, 5-dimethoxyphenyl) -N- (4-hydroxy-2-methylbutan-2-yl) -7-methoxy-N-methyl-8- (1-methyl-1H-pyrazol-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 134)
- Step 1 tert-butyl 4- (3- (tert-butyl (methyl) carbamoyl) -1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) -3, 5-dimethyl-1H-pyrazole-1-carboxylate
- reaction mixture was stirred at 90 °C for 1h under MW conditions.
- the reaction mixture was filtered through celite and washed with DCM (50 mL) .
- the filtrate was concentrated in vacuum and the crude product was purified by column chromatograph using pet ether: ethyl acetate as eluent to afford the desired compound (230 mg, 56 %) as an off-white solid.
- Step 2 N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (3, 5-dimethyl-1H-pyrazol-4-yl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- Step 3 methyl 2- (4- (3- (tert-butyl (methyl) carbamoyl) -1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) -3, 5-dimethyl-1H-pyrazol-1-yl) acetate (Compound 138)
- N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (3, 5-dimethyl-1H-pyrazol-4-yl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (100 mg, 0.18 mmol) in DMF (3 mL) was added Cs 2 CO 3 (117 mg, 0.36 mmol) and methyl 2-bromoacetate (55 mg, 0.36 mmol) .
- Step 4 8- (1- (2-amino-2-oxoethyl) -3, 5-dimethyl-1H-pyrazol-4-yl) -N-tert-butyl-1-(3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 139)
- Step 5 2- (4- (3- (tert-butyl (methyl) carbamoyl) -1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) -3, 5-dimethyl-1H-pyrazol-1-yl) acetic acid (Compound 137)
- Step 6 N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (1- (2- (dimethylamino) -2-oxoethyl) -3, 5-dimethyl-1H-pyrazol-4-yl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 136)
- Step 1 8- (4-bromo-1-methyl-1H-pyrazol-3-yl) -N-tert-butyl-1- (3, 5-dimethoxyphenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 145)
- Step 2 N-tert-butyl-8- (4-cyano-1-methyl-1H-pyrazol-3-yl) -1- (3, 5-dimethoxyphenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 146)
- Step 3 N-tert-butyl-8- (4-carbamoyl-1-methyl-1H-pyrazol-3-yl) -1- (3, 5-dimethoxyphenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 144)
- Step 1 3-carbamoyl-5- (1- (3, 5-dichlorophenyl) -3- (3, 3-dimethylmorpholine-4-carbonyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) pyridine 1-oxide
- Step 1 N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-8- (1H-pyrazol-4-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- reaction mixture was stirred at 90 °C for 1h under MW conditions.
- the reaction mixture was directly purified by Combi-Flash (mobile phase: acetonitrile/water (10 mM NH 4 HCO 3 ) ) to afford N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-8- (1H-pyrazol-4-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (280 mg, 95 %) as a white solid.
- LC-MS m/z 526 [M+H] + .
- Step 2 N-tert-butyl-8- (1-carbamoyl-1H-pyrazol-4-yl) -1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- Step 1 8- (5-acetamidopyridin-3-yl) -N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 182)
- Step 2 N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-8- (5-ureidopyridin-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 183)
- Step 1 7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxylic acid
- reaction mixture was stirred at 100 °C for 1h under MW conditions.
- the reaction mixture was filtered through celite and washed with DCM (50 mL) .
- the filtrate was concentrated under vacuum; the crude product was purified by HPLC (mobile phase: acetonitrile/water (10 mM NH 4 HCO 3 ) to afford the desired compound (300 mg, 30 %) as an off-white solid.
- HPLC mobile phase: acetonitrile/water (10 mM NH 4 HCO 3 ) to afford the desired compound (300 mg, 30 %) as an off-white solid.
- LCMS m/z 409 [M+H] + .
- Step 2 tert-butyl 4- (7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carbonyl) -3, 3-dimethylpiperazine-1-carboxylate
- Step 3 (2, 2-dimethylpiperazin-1-yl) (7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1-(thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazol-3-yl) methanone hydrochloride
- Step 4 4- (7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carbonyl) -3, 3-dimethylpiperazine-1-carbonitrile
- Step 1 N-tert-butyl-8- (3- (tert-butyldimethylsilyloxy) prop-1-ynyl) -7-methoxy-N-methyl-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- Step 2 N-tert-butyl-8- (3-hydroxyprop-1-ynyl) -7-methoxy-N-methyl-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- Step 3 Methyl 3- (3- (tert-butyl (methyl) carbamoyl) -7-methoxy-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) propiolate
- Step 4 8- (3-amino-3-oxoprop-1-ynyl) -N-tert-butyl-7-methoxy-N-methyl-1-(thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 186)
- Step 5 N-tert-butyl-7-methoxy-N-methyl-8- (5-oxo-2, 5-dihydro-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 185)
- Step 1 1- (3, 5-dichlorophenyl) -N-ethyl-7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- Step 2 1- (3, 5-dichlorophenyl) -N-ethyl-N- (ethylsulfonyl) -7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 188)
- Step 1 1- (3, 5-dichlorophenyl) -8- (2-fluoro-5-methylpyridin-3-yl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxylic acid
- Step 2 N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (2-fluoro-5-methylpyridin-3-yl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- Step 3 N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-8- (2-methoxy-5-methylpyridin-3-yl) -N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 189)
- Step 1 1- ( (2, 2-dimethyl-1, 3-dioxolan-4-yl) methyl) -4- (4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolan-2-yl) -1H-pyrazole
- Step 2 N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (1- ( (2, 2-dimethyl-1, 3-dioxolan-4-yl) methyl) -1H-pyrazol-4-yl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- Step 3 N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (1- (2, 3-dihydroxypropyl) -1H-pyrazol-4-yl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (1- ( (2, 2-dimethyl-1, 3-dioxolan-4-yl) methyl) -1H-pyrazol-4-yl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (30 mg, 0.05 mmol) in THF (3 mL) was added 1M HCl (aq. , 0.6 mL) at 0 °C. The solution was stirred at rt overnight Then the solution was diluted with CH 2 Cl 2 (100 mL) , washed with sat.
- Step 1 N-tert-butyl-8-hydroxy-7-methoxy-N-methyl-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- BCl 3 was added to N-tert-butyl-8-isopropoxy-7-methoxy-N-methyl-1-(thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (200 mg, 0.44 mmol) and srirred at -10°C for 2h. Then the resulting mixture was added to the sat.
- Step 2 N-tert-butyl-8- (1-hydroxypropan-2-yloxy) -7-methoxy-N-methyl-1-(thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 193)
- Step 1 N-tert-butyl-8-ethynyl-7-methoxy-N-methyl-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- Step 2 N-tert-butyl-7-methoxy-N-methyl-1- (thiophen-3-yl) -8- (1H-1, 2, 3-triazol-4-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 194)
- Step 1 N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (2-fluoro-3-formylphenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- reaction mixture was directly purified by Combi-Flash (mobile phase: acetonitrile/water (10 mM NH 4 HCO 3 ) to afford N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (2-fluoro-3-formylphenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (20 mg, 37 %) as a white solid.
- Step 2 N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (2-fluoro-3-(hydroxymethyl) phenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 195)
- Step 1 N- (tert-butyl) -1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-8-vinyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- Step 2 (1RS, 2SR) -ethyl 2- (3- (tert-butyl (methyl) carbamoyl) -1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) cyclopropanecarboxylate (Compound 197) and (1SR, 2SR) -ethyl 2- (3- (tert-butyl (methyl) carbamoyl) -1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) cyclopropanecarboxylate (Compound 198)
- Step 3 (1SR, 2SR) -2- (3- (tert-butyl (methyl) carbamoyl) -1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) cyclopropanecarboxylic acid (Compound 204)
- Step 4 N- (tert-butyl) -8- ( (1SR, 2SR) -2-carbamoylcyclopropyl) -1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 201)
- Step 1 N 3 -tert-butyl-7-methoxy-N 3 -methyl-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3, 8-dicarboxamide
- Step 2 (E) -N3-tert-butyl-N8- ( (dimethylamino) methylene) -7-methoxy-N3-methyl-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3, 8-dicarboxamide
- Step 3 N-tert-butyl-7-methoxy-N-methyl-1- (thiophen-3-yl) -8- (1H-1, 2, 4-triazol-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 207)
- Example 24 EC 50 of cyclic AMP production in CHO FSHR cells + EC 20 FSH (Assay A)
- the compound plate map was as follows: Column 1: 2 ⁇ l of DMSO; Column 2: 2 ⁇ l of DMSO; Columns 3-12 and 13-24: 2 ⁇ l of test compound, diluted 1: 4 in 100% DMSO, or 2 ⁇ l of FSH, diluted 1: 4 in DMEM/F12+0.1%BSA.
- the starting concentration for FSH was 50 nM (final concentration was 0.5 nM) .
- Column 23 contained 2 ⁇ l of EC 100 FSH reference (100X) (diluted in DMEM/F12 + 0.1% BSA) at a final concentration of 0.5 nM
- Column 24 contained 2 ⁇ l of 1 mM AS707664/2 reference compound 2.5 ⁇ l of compound + EC 20 FSH mixture were transferred to cell plates (1: 2 dilution into 5 ⁇ l of cell media) The plates were incubated at 37 °C for 1 h. 10 ⁇ l of mixed HTRF (CisBio #62AM4PEC) reagents were added per well and incubated at room temperature for 1 h. The plates were read on Envision using the cAMP HTRF -low volume 384 well protocol.
- the readout was the calculated fluorescence ratio (665 nm /620 nm) . Values given in percent (%) indicate the percental effect (response) at a certain concentration of agonist relative to the maximum response of the FSH standard. The results are provided below.
- the data is interpreted according to the following:
- a solution of 100 g of an active ingredient according to the invention and 5 g of disodium hydrogen phosphate in 3 l of bidistilled water is adjusted to pH 6.5 using 2 N hydrochloric acid, sterile filtered, transferred into injection vials, is lyophilized under sterile conditions and is sealed under sterile conditions. Each injection vial contains 5 mg of active ingredient.
- (B) Suppositories A mixture of 20 g of an active ingredient according to the invention is melted with 100 g of soy lecithin and 1400 g of cocoa butter, is poured into moulds and is allowed to cool. Each suppository contains 20 mg of active ingredient.
- (C) Solution A solution is prepared from 1 g of an active ingredient according to the invention, 9.38 g of NaH 2 PO 4 ⁇ 2 H 2 O, 28.48 g of Na 2 HPO 4 ⁇ 12 H 2 O and 0.1 g of benzalkonium chloride in 940 ml of bidistilled water. The pH is adjusted to 6.8, and the solution is made up to 1 l and sterilized by irradiation. This solution could be used in the form of eye drops.
- (D) Ointment 500 mg of an active ingredient according to the invention is mixed with 99.5 g of Vaseline under aseptic conditions.
- Coated tablets Tablets are pressed analogously to Example E and subsequently are coated in a conventional manner with a coating of sucrose, potato starch, talc, tragacanth and dye.
- Ampoules A solution of 1 kg of an active ingredient according to the invention in 60 l of bidistilled water is sterile filtered, transferred into ampoules, is lyophilized under sterile conditions and is sealed under sterile conditions. Each ampoule contains 10 mg of active ingredient.
- Inhalation spray 14 g of an active ingredient according to the invention are dissolved in 10 l of isotonic NaCl solution, and the solution is transferred into commercially available spray containers with a pump mechanism. The solution could be sprayed into the mouth or nose. One spray shot (about 0.1 ml) corresponds to a dose of about 0.14 mg.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Reproductive Health (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Endocrinology (AREA)
- Pregnancy & Childbirth (AREA)
- Gynecology & Obstetrics (AREA)
- Diabetes (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
Description
- TECHNICAL FIELD OF THE INVENTION
- The present invention relates to pyrazole compounds useful as agonists of follicle stimulating hormone receptor (FSHR) . The invention also provides pharmaceutically acceptable compositions comprising compounds of the present invention and methods of using said compositions in the treatment of various disorders.
- Gonadotropins serve important functions in a variety of bodily functions including metabolism, temperature regulation and the reproductive process. Gonadotropins act on specific gonadal cell types to initiate ovarian and testicular differentiation and steroidogenesis. The gonadotropin FSH (follicle stimulating hormone) is released from the anterior pituitary under the influence of gonadotropin-releasing hormone and estrogens, and from the placenta during pregnancy. FSH is a heterodimeric glycoprotein hormone that shares structural similarities with luteinizing hormone (LH) and thyroid stimulating hormone (TSH) , both of which are also produced in the pituitary gland, and chorionic gonadotropin (CG) , which is produced in the placenta. In the female, FSH plays a pivotal role in the stimulation of follicle development and maturation and in addition, it is the major hormone regulating secretion of estrogens, whereas LH induces ovulation. In the male, FSH is responsible for the integrity of the seminiferous tubules and acts on Sertoli cells to support gametogenesis.
- The hormones are relatively large (28-38 kDa) and are composed of a common α-subunit non-covalently bound to a distinct β-subunit that confers receptor binding specificity. The cellular receptor for these hormones is expressed on testicular Sertoli cells and ovarian granulosa cells. The FSH receptor is known to be members of the G protein-coupled class of membrane-bound receptors, which when activated stimulate an increase in the activity of adenylyl cyclase. This results in an increase in the level of the intracellular second messenger adenosine 3', 5'-monophosphate (cAMP) , which in turn causes increased steroid synthesis and secretion. Hydropathicity plots of the amino acid sequences of these receptors reveal three general domains: a hydrophilic amino-terminal region, considered to be the amino-terminal extracellular domain; seven hydrophobic segments of membrane-spanning length, considered to be the transmembrane domain; and a carboxy-terminal region that contains potential phosphorylation sites (serine, threonine, and tyrosine residues) , considered to be the carboxy-terminal intracellular or cytoplasmic domain. The glycoprotein hormone receptor family is distinguished from other G protein-coupled receptors, such as the β-2-adrenergic, rhodopsin, and substance K receptors, by the large size of the hydrophilic amino-terminal domain, which is involved in hormone binding.
- Annually in the U.S. there are 2.4 million couples experiencing infertility that are potential candidates for treatment. FSH, either extracted from urine or produced by recombinant DNA technology, is a parenterally-administered protein product used by specialists for ovulation induction and for controlled ovarial hyperstimulation. Whereas ovulation induction is directed at achieving a single follicle to ovulate, controlled ovarial hyperstimulation is directed at harvesting multiple oocytes for use in various in-vitro assisted reproductive technologies, e.g. in-vitro fertilization (IVF) . FSH is also used clinically to treat male hypogonadism and male infertility, e.g. some types of failure of spermatogenesis.
- FSHR is a highly specific target in the ovarian follicle growth process and is exclusively expressed in the ovary. However, the use of FSH is limited by its high cost, lack of oral dosing, and need of extensive monitoring by specialist physicians. Hence, identification of a non-peptidic small molecule substitute for FSH that could potentially be developed for oral administration is desirable. Low molecular weight FSH mimetics with agonistic properties are disclosed in the international applications WO 2002/09706 and WO 2010/136438 as well as the patent US 6,653,338. There is still a need for low molecular weight hormone mimetics that selectively activate FSHR.
- SUMMARY OF THE INVENTION
- It has now been found that compounds of this invention, and pharmaceutically acceptable compositions thereof, are effective as modulators of FSHR. Such compounds have general formula I or formula II:
-
- or a pharmaceutically acceptable salt thereof, wherein each of Ring A, X, Y, Z, R1, R2, R3, R4, R5, R6, n, and p, is as defined and described in embodiments herein.
- Compounds of the present invention, and pharmaceutically acceptable compositions thereof, are useful for treating a variety of diseases, disorders or conditions, associated with abnormal cellular responses triggered by follicle stimulating hormone events. Such diseases, disorders, or conditions include those described herein.
- DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS
- 1.General Description of Compounds of the Invention
- In certain embodiments, the present invention provides modulators of follicle stimulating hormone receptor (FSHR) . In certain embodiments, the present invention provides positive allosteric modulators of FSHR. In some embodiments, such compounds include those of the formulae described herein, or a pharmaceutically acceptable salt thereof, wherein each variable is as defined and described herein.
- 2.Compounds and Definitions
- Compounds of this invention include those described generally above, and are further illustrated by the classes, subclasses, and species disclosed herein. As used herein, the following definitions shall apply unless otherwise indicated. For purposes of this invention, the chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, Handbook of Chemistry and Physics, 75th Ed. Additionally, general principles of organic chemistry are described in “Organic Chemistry” , Thomas Sorrell, University Science Books, Sausalito: 1999, and “March’s Advanced Organic Chemistry” , 5th Ed. , Ed. : Smith, M. B. and March, J. , John Wiley & Sons, New York: 2001, the entire contents of which are hereby incorporated by reference.
- The term “aliphatic” or “aliphatic group” , as used herein, means a straight-chain (i.e., unbranched) or branched, substituted or unsubstituted hydrocarbon chain that is completely saturated or that contains one or more units of unsaturation, or a monocyclic hydrocarbon or bicyclic hydrocarbon that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic (also referred to herein as “carbocycle” “cycloaliphatic” or “cycloalkyl” ) , that has a single point of attachment to the rest of the molecule. Unless otherwise specified, aliphatic groups contain 1-6 aliphatic carbon atoms. In some embodiments, aliphatic groups contain 1-5 aliphatic carbon atoms. In other embodiments, aliphatic groups contain 1-4 aliphatic carbon atoms. In still other embodiments, aliphatic groups contain 1-3 aliphatic carbon atoms, and in yet other embodiments, aliphatic groups contain 1-2 aliphatic carbon atoms. In some embodiments, “cycloaliphatic” (or “carbocycle” or “cycloalkyl” ) refers to a monocyclic C3-C6 hydrocarbon that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic, that has a single point of attachment to the rest of the molecule. Exemplary aliphatic groups are linear or branched, substituted or unsubstituted C1-C8 alkyl, C2-C8 alkenyl, C2-C8 alkynyl groups and hybrids thereof such as (cycloalkyl) alkyl, (cycloalkenyl) alkyl or (cycloalkyl) alkenyl.
- The term “lower alkyl” refers to a C1-4 straight or branched alkyl group. Exemplary lower alkyl groups are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, and tert-butyl.
- The term “lower haloalkyl” refers to a C1-4 straight or branched alkyl group that is substituted with one or more halogen atoms.
- The term “heteroatom” means one or more of oxygen, sulfur, nitrogen, or phosphorus (including, any oxidized form of nitrogen, sulfur, or phosphorus; the quaternized form of any basic nitrogen or; a substitutable nitrogen of a heterocyclic ring, for example N (as in 3, 4-dihydro-2H-pyrrolyl) , NH (as in pyrrolidinyl) or NR+ (as in N-substituted pyrrolidinyl) ) .
- The term “unsaturated” , as used herein, means that a moiety has one or more units of unsaturation.
- As used herein, the term “bivalent C1-8 (or C1-6) saturated or unsaturated, straight or branched, hydrocarbon chain” , refers to bivalent alkylene, alkenylene, and alkynylene chains that are straight or branched as defined herein.
- The term “alkylene” refers to a bivalent alkyl group. An “alkylene chain” is a polymethylene group, i.e., – (CH2) n–, wherein n is a positive integer, preferably from 1 to 6, from 1 to 4, from 1 to 3, from 1 to 2, or from 2 to 3. A substituted alkylene chain is a polymethylene group in which one or more methylene hydrogen atoms are replaced with a substituent. Suitable substituents include those described below for a substituted aliphatic group.
- The term “alkenylene” refers to a bivalent alkenyl group. A substituted alkenylene chain is a polymethylene group containing at least one double bond in which one or more hydrogen atoms are replaced with a substituent. Suitable substituents include those described below for a substituted aliphatic group.
- The term “halogen” means F, Cl, Br, or I.
- The term “aryl” used alone or as part of a larger moiety as in “aralkyl” , “aralkoxy” , or “aryloxyalkyl” , refers to monocyclic and bicyclic ring systems having a total of five to fourteen ring members, wherein at least one ring in the system is aromatic and wherein each ring in the system contains three to seven ring members. The term “aryl” is used interchangeably with the term “aryl ring” . In certain embodiments of the present invention, “aryl” refers to an aromatic ring system. Exemplary aryl groups are phenyl, biphenyl, naphthyl, anthracyl and the like, which optionally includes one or more substituents. Also included within the scope of the term “aryl” , as it is used herein, is a group in which an aromatic ring is fused to one or more non–aromatic rings, such as indanyl, phthalimidyl, naphthimidyl, phenanthridinyl, or tetrahydronaphthyl, and the like.
- The terms “heteroaryl” and “heteroar–” , used alone or as part of a larger moiety, e.g., “heteroaralkyl” , or “heteroaralkoxy” , refer to groups having 5 to 10 ring atoms, preferably 5, 6, or 9 ring atoms; having 6, 10, or 14 π electrons shared in a cyclic array; and having, in addition to carbon atoms, from one to five heteroatoms. The term “heteroatom” refers to nitrogen, oxygen, or sulfur, and includes any oxidized form of nitrogen or sulfur, and any quaternized form of a basic nitrogen. Heteroaryl groups include, without limitation, thiophenyl, furanyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, indolizinyl, purinyl, naphthyridinyl, and pteridinyl. The terms “heteroaryl” and “heteroar–” , as used herein, also include groups in which a heteroaromatic ring is fused to one or more aryl, cycloaliphatic, or heterocyclyl rings, where the radical or point of attachment is on the heteroaromatic ring. Nonlimiting examples include indolyl, isoindolyl, benzothienyl, benzofuranyl, dibenzofuranyl, indazolyl, benzimidazolyl, benzthiazolyl, quinolyl, isoquinolyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, 4H–quinolizinyl, carbazolyl, acridinyl, phenazinyl, phenothiazinyl, phenoxazinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, and pyrido [2, 3–b] –1, 4–oxazin–3 (4H) –one. A heteroaryl group is optionally mono–or bicyclic. The term “heteroaryl” is used interchangeably with the terms “heteroaryl ring” , “heteroaryl group” , or “heteroaromatic” , any of which terms include rings that are optionally substituted. The term “heteroaralkyl” refers to an alkyl group substituted by a heteroaryl, wherein the alkyl and heteroaryl portions independently are optionally substituted.
- As used herein, the terms “thienyl” and “thiophenyl” are used interchangeably and refer to a 5-membered monocyclic heteroaryl ring containing a single sulfur heteroatom.
- As used herein, the terms “heterocycle” , “heterocyclyl” , “heterocyclic radical” , and “heterocyclic ring” are used interchangeably and refer to a stable 5–to 7–membered monocyclic or 7–10–membered bicyclic heterocyclic moiety that is either saturated or partially unsaturated, and having, in addition to carbon atoms, one or more, preferably one to four, heteroatoms, as defined above. When used in reference to a ring atom of a heterocycle, the term “nitrogen” includes a substituted nitrogen. As an example, in a saturated or partially unsaturated ring having 0–3 heteroatoms selected from oxygen, sulfur or nitrogen, the nitrogen is N (as in 3, 4–dihydro–2H–pyrrolyl) , NH (as in pyrrolidinyl) , or +NR (as in N–substituted pyrrolidinyl) .
- A heterocyclic ring can be attached to its pendant group at any heteroatom or carbon atom that results in a stable structure and any of the ring atoms can be optionally substituted. Examples of such saturated or partially unsaturated heterocyclic radicals include, without limitation, tetrahydrofuranyl, tetrahydrothiophenyl pyrrolidinyl, piperidinyl, pyrrolinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, oxazolidinyl, piperazinyl, dioxanyl, dioxolanyl, diazepinyl, oxazepinyl, thiazepinyl, morpholinyl, and quinuclidinyl. The terms “heterocycle” , “heterocyclyl” , “heterocyclyl ring” , “heterocyclic group” , “heterocyclic moiety” , and “heterocyclic radical” , are used interchangeably herein, and also include groups in which a heterocyclyl ring is fused to one or more aryl, heteroaryl, or cycloaliphatic rings, such as indolinyl, 3H–indolyl, chromanyl, phenanthridinyl, or tetrahydroquinolinyl, where the radical or point of attachment is on the heterocyclyl ring. A heterocyclyl group is optionally mono–or bicyclic. The term “heterocyclylalkyl” refers to an alkyl group substituted by a heterocyclyl, wherein the alkyl and heterocyclyl portions independently are optionally substituted.
- As used herein, the term “partially unsaturated” refers to a ring moiety that includes at least one double or triple bond. The term “partially unsaturated” is intended to encompass rings having multiple sites of unsaturation, but is not intended to include aryl or heteroaryl moieties, as herein defined.
- As described herein, certain compounds of the invention contain “optionally substituted” moieties. In general, the term “substituted” , whether preceded by the term “optionally” or not, means that one or more hydrogens of the designated moiety are replaced with a suitable substituent. “Substituted” applies to one or more hydrogens that are either explicit or implicit from the structure (e.g., refers to at leastand refers to at leastUnless otherwise indicated, an “optionally substituted” group has a suitable substituent at each substitutable position of the group, and when more than one position in any given structure is substituted with more than one substituent selected from a specified group, the substituent is either the same or different at every position. Combinations of substituents envisioned by this invention are preferably those that result in the formation of stable or chemically feasible compounds. The term “stable” , as used herein, refers to compounds that are not substantially altered when subjected to conditions to allow for their production, detection, and, in certain embodiments, their recovery, purification, and use for one or more of the purposes disclosed herein.
- Suitable monovalent substituents on a substitutable carbon atom of an “optionally substituted” group are independently deuterium; halogen; – (CH2) 0–4R○; – (CH2) 0–4OR○; -O (CH2) 0- 4R○, –O– (CH2) 0–4C (O) OR○; – (CH2) 0–4CH (OR○) 2; – (CH2) 0–4SR○; – (CH2) 0–4Ph, which are optionally substituted with R○; – (CH2) 0–4O (CH2) 0–1Ph which is optionally substituted with R○; –CH=CHPh, which is optionally substituted with R○; – (CH2) 0–4O (CH2) 0–1-pyridyl which is optionally substituted with R○; –NO2; –CN; –N3; - (CH2) 0–4N (R○) 2; – (CH2) 0–4N (R○) C (O) R○; –N (R○) C (S) R○; – (CH2) 0–4N (R○) C (O) NR○ 2; -N (R○) C (S) NR○ 2; – (CH2) 0–4N (R○) C (O) OR○; –N (R○) N (R○) C (O) R○; -N (R○) N (R○) C (O) NR○ 2; -N (R○) N (R○) C (O) OR○; – (CH2) 0–4C (O) R○; –C (S) R○; – (CH2) 0–4C (O) OR○; – (CH2) 0–4C (O) SR○; - (CH2) 0–4C (O) OSiR○ 3; – (CH2) 0–4OC (O) R○; –OC (O) (CH2) 0–4SR○, SC (S) SR○; – (CH2) 0–4SC (O) R○; – (CH2) 0–4C (O) NR○ 2; –C (S) NR○ 2; –C (S) SR○; –SC (S) SR○, - (CH2) 0–4OC (O) NR○ 2; -C (O) N (OR○) R○; –C (O) C (O) R○; –C (O) CH2C (O) R○; –C (NOR○) R○; - (CH2) 0–4SSR○; – (CH2) 0–4S (O) 2R○; – (CH2) 0–4S (O) 2OR○; – (CH2) 0–4OS (O) 2R○; –S (O) 2NR○ 2; - (CH2) 0–4S (O) R○; -N (R○) S (O) 2NR○ 2; –N (R○) S (O) 2R○; –N (OR○) R○; –C (NH) NR○ 2; –P (O) 2R○; -P (O) R○ 2; -OP (O) R○ 2; –OP (O) (OR○) 2; SiR○ 3; – (C1–4 straight or branched alkylene) O–N (R○) 2; or – (C1–4 straight or branched alkylene) C (O) O–N (R○) 2, wherein each R○ is optionally substituted as defined below and is independently hydrogen, C1–6 aliphatic, –CH2Ph, –O (CH2) 0– 1Ph, -CH2- (5-6 membered heteroaryl ring) , or a 5–6–membered saturated, partially unsaturated, or aryl ring having 0–4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or, notwithstanding the definition above, two independent occurrences of R○, taken together with their intervening atom (s) , form a 3–12–membered saturated, partially unsaturated, or aryl mono–or bicyclic ring having 0–4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, which is optionally substituted as defined below.
- Suitable monovalent substituents on R○ (or the ring formed by taking two independent occurrences of R○ together with their intervening atoms) , are independently deuterium, halogen, – (CH2) 0–2R●, – (haloR●) , – (CH2) 0–2OH, – (CH2) 0–2OR●, – (CH2) 0– 2CH (OR●) 2; -O (haloR●) , –CN, –N3, – (CH2) 0–2C (O) R●, – (CH2) 0–2C (O) OH, – (CH2) 0–2C (O) OR●, –(CH2) 0–2SR●, – (CH2) 0–2SH, – (CH2) 0–2NH2, – (CH2) 0–2NHR●, – (CH2) 0–2NR● 2, –NO2, –SiR● 3, –OSiR● 3, -C (O) SR● , – (C1–4 straight or branched alkylene) C (O) OR●, or –SSR● wherein each R● is unsubstituted or where preceded by “halo” is substituted only with one or more halogens, and is independently selected from C1–4 aliphatic, –CH2Ph, –O (CH2) 0–1Ph, or a 5–6–membered saturated, partially unsaturated, or aryl ring having 0–4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. Suitable divalent substituents on a saturated carbon atom of R○include =O and =S.
- Suitable divalent substituents on a saturated carbon atom of an “optionally substituted” group include the following: =O, =S, =NNR* 2, =NNHC (O) R*, =NNHC (O) OR*, =NNHS (O) 2R*, =NR*, =NOR*, –O (C (R* 2) ) 2–3O–, or –S (C (R* 2) ) 2–3S–, wherein each independent occurrence of R*is selected from hydrogen, C1–6 aliphatic which is substituted as defined below, or an unsubstituted 5–6–membered saturated, partially unsaturated, or aryl ring having 0–4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. Suitable divalent substituents that are bound to vicinal substitutable carbons of an “optionally substituted” group include: –O (CR* 2) 2–3O–, wherein each independent occurrence of R*is selected from hydrogen, C1–6 aliphatic which is optionally substituted as defined below, or an unsubstituted 5–6–membered saturated, partially unsaturated, or aryl ring having 0–4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- Suitable substituents on the aliphatic group of R*include halogen, –R●, - (haloR●) , -OH, –OR●, –O (haloR●) , –CN, –C (O) OH, –C (O) OR●, –NH2, –NHR●, –NR● 2, or –NO2, wherein each R● is unsubstituted or where preceded by “halo” is substituted only with one or more halogens, and is independently C1–4 aliphatic, –CH2Ph, –O (CH2) 0–1Ph, or a 5–6–membered saturated, partially unsaturated, or aryl ring having 0–4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- Suitable substituents on a substitutable nitrogen of an “optionally substituted” group include wherein eachis independently hydrogen, C1–6 aliphatic which is optionally substituted as defined below, unsubstituted –OPh, or an unsubstituted 5–6–membered saturated, partially unsaturated, or aryl ring having 0–4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or, notwithstanding the definition above, two independent occurrences oftaken together with their intervening atom (s) form an unsubstituted 3–12–membered saturated, partially unsaturated, or aryl mono–or bicyclic ring having 0–4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- Suitable substituents on a substitutable sulfur of an “optionally substituted” group include =O, (=O) 2, wherein eachis independently hydrogen, C1–6 aliphatic which is optionally substituted as defined below, or an unsubstituted 5–6–membered saturated, partially unsaturated, or aryl ring having 0–4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or, notwithstanding the definition above, two independent occurrences oftaken together with their intervening atom (s) form an unsubstituted 3–12–membered saturated, partially unsaturated, or aryl mono–or bicyclic ring having 0–4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- Suitable substituents on the aliphatic group ofare independently halogen, –R●, - (haloR●) , –OH, –OR●, –O (haloR●) , –CN, –C (O) OH, –C (O) OR●, –NH2, –NHR●, –NR● 2, or -NO2, wherein each R● is unsubstituted or where preceded by “halo” is substituted only with one or more halogens, and is independently C1–4 aliphatic, –CH2Ph, –O (CH2) 0–1Ph, or a 5–6–membered saturated, partially unsaturated, or aryl ring having 0–4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- In certain embodiments, the terms “optionally substituted” , “optionally substituted alkyl, ” “optionally substituted “optionally substituted alkenyl, ” “optionally substituted alkynyl” , “optionally substituted carbocyclic, ” “optionally substituted aryl” , "optionally substituted heteroaryl, " “optionally substituted heterocyclic, ” and any other optionally substituted group as used herein, refer to groups that are substituted or unsubstituted by independent replacement of one, two, or three or more of the hydrogen atoms thereon with typical substituents including, but not limited to:
- -F, -Cl, -Br, -I, deuterium,
- -OH, protected hydroxy, alkoxy, oxo, thiooxo,
- -NO2, -CN, CF3, N3,
- -NH2, protected amino, -NH alkyl, -NH alkenyl, -NH alkynyl, -NH cycloalkyl, -NH -aryl, -NH -heteroaryl, -NH -heterocyclic, -dialkylamino, -diarylamino, -diheteroarylamino,
- -O-alkyl, -O-alkenyl, -O-alkynyl, -O-cycloalkyl, -O-aryl, -O-heteroaryl, -O-heterocyclic,
- -C (O) -alkyl, -C (O) -alkenyl, -C (O) -alkynyl, -C (O) -carbocyclyl, -C (O) -aryl, -C (O) -heteroaryl, -C (O) -heterocyclyl,
- -CONH2, -CONH-alkyl, -CONH-alkenyl, -CONH- alkynyl, -CONH-carbocyclyl, -CONH-aryl, -CONH-heteroaryl, -CONH-heterocyclyl,
- -OCO2-alkyl, -OCO2-alkenyl, -OCO2- alkynyl, -OCO2-carbocyclyl, -OCO2-aryl, -OCO2-heteroaryl, -OCO2-heterocyclyl, -OCONH2, -OCONH-alkyl, -OCONH-alkenyl, -OCONH- alkynyl, -OCONH-carbocyclyl, -OCONH-aryl, -OCONH-heteroaryl, -OCONH-heterocyclyl,
- -NHC (O) -alkyl, -NHC (O) -alkenyl, -NHC (O) - alkynyl, -NHC (O) -carbocyclyl, -NHC (O) -aryl, -NHC (O) -heteroaryl, -NHC (O) -heterocyclyl, -NHCO2-alkyl, -NHCO2-alkenyl, -NHCO2- alkynyl, -NHCO2 -carbocyclyl, -NHCO2-aryl, -NHCO2-heteroaryl, -NHCO2-heterocyclyl, -NHC (O) NH2, -NHC (O) NH-alkyl, -NHC (O) NH-alkenyl, -NHC (O) NH-alkenyl, -NHC (O) NH-carbocyclyl, -NHC (O) NH-aryl, -NHC (O) NH-heteroaryl, -NHC (O) NH-heterocyclyl, NHC (S) NH2, -NHC (S) NH-alkyl, -NHC (S) NH-alkenyl, -NHC (S) NH- alkynyl, - NHC (S) NH-carbocyclyl, -NHC (S) NH-aryl, -NHC (S) NH-heteroaryl, -NHC (S) NH-heterocyclyl, -NHC (NH) NH2, -NHC (NH) NH- alkyl, -NHC (NH) NH- -alkenyl, -NHC (NH) NH- alkenyl, -NHC (NH) NH- carbocyclyl, -NHC (NH) NH-aryl, -NHC (NH) NH-heteroaryl, -NHC (NH) NH-heterocyclyl, -NHC (NH) - alkyl, -NHC (NH) - alkenyl, -NHC (NH) - alkenyl, -NHC (NH) -carbocyclyl, -NHC (NH) -aryl, -NHC (NH) -heteroaryl, -NHC (NH) -heterocyclyl,
- -C (NH) NH- alkyl, -C (NH) NH- alkenyl, -C (NH) NH- alkynyl, -C (NH) NH- carbocyclyl, -C (NH) NH-aryl, -C (NH) NH-heteroaryl, -C (NH) NH-heterocyclyl,
- -S (O) - alkyl, -S (O) - alkenyl, -S (O) - alkynyl, -S (O) - carbocyclyl, -S (O) -aryl, -S (O) -heteroaryl, -S (O) -heterocyclyl -SO2NH2, -SO2NH- alkyl, -SO2NH- alkenyl, -SO2NH- alkynyl, -SO2NH- carbocyclyl, -SO2NH-aryl, -SO2NH- heteroaryl, -SO2NH- heterocyclyl,
- -NHSO2- alkyl, -NHSO2- alkenyl, -NHSO2- alkynyl, -NHSO2- carbocyclyl, -NHSO2-aryl, -NHSO2-heteroaryl, -NHSO2-heterocyclyl,
- -CH2NH2, -CH2SO2CH3,
- -mono-, di-, or tri-alkyl silyl,
- -alkyl, -alkenyl, -alkynyl, -aryl, -arylalkyl, -heteroaryl, -heteroarylalkyl, -heterocycloalkyl, -cycloalkyl, -carbocyclic, -heterocyclic, polyalkoxyalkyl, polyalkoxy, -methoxymethoxy, -methoxyethoxy, -SH, -S-alkyl, -S-alkenyl, -S-alkynyl, -S-carbocyclyl, -S-aryl, -S-heteroaryl, -S-heterocyclyl, or methylthiomethyl.
- As used herein, the term “pharmaceutically acceptable salt” refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well known in the art. For example, S. M. Berge et al. , describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 1977, 66, 1–19, incorporated herein by reference. Pharmaceutically acceptable salts of the compounds of this invention include those derived from suitable inorganic and organic acids and bases. Examples of pharmaceutically acceptable, nontoxic acid addition salts are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange. Other pharmaceutically acceptable salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2–hydroxy–ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2–naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3–phenylpropionate, phosphate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, p–toluenesulfonate, undecanoate, valerate salts, and the like.
- Salts derived from appropriate bases include alkali metal, alkaline earth metal, ammonium and N+ (C1–4alkyl) 4 salts. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like. Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, loweralkyl sulfonate and aryl sulfonate.
- Unless otherwise stated, structures depicted herein are also meant to include all isomeric (e.g., enantiomeric, diastereomeric, and geometric (or conformational) ) forms of the structure; for example, the R and S configurations for each asymmetric center, Z and E double bond isomers, and Z and E conformational isomers. Therefore, single stereochemical isomers as well as enantiomeric, diastereomeric, and geometric (or conformational) mixtures of the present compounds are within the scope of the invention. Unless otherwise stated, all tautomeric forms of the compounds of the invention are within the scope of the invention.
- Additionally, unless otherwise stated, structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structures including the replacement of hydrogen by deuterium or tritium, or the replacement of a carbon by a 13C- or 14C-enriched carbon are within the scope of this invention. In some embodiments, the group comprises one or more deuterium atoms.
- There is furthermore intended that a compound of formula (I) or formula (II) includes isotope-labeled forms thereof. An isotope-labeled form of a compound of formula (I) or formula (II) is identical to this compound apart from the fact that one or more atoms of the compound have been replaced by an atom or atoms having an atomic mass or mass number which differs from the atomic mass or mass number of the atom which usually occurs naturally. Examples of isotopes which are readily commercially available and which can be incorporated into a compound of formula (I) or formula (II) by well-known methods include isotopes of hydrogen, carbon, nitrogen, oxygen, phos-phorus, fluo-rine and chlorine, for example 2H, 3H, 13C, 14C, 15N, 18O, 17O, 31P, 32P, 35S, 18F and 36CI, respectively. A compound of formula (I) or formula (II) , a prodrug, thereof or a pharmaceutically acceptable salt of either which contains one or more of the above-mentioned isotopes and/or other isotopes of other atoms is intended to be part of the present invention. An isotope-labeled compound of formula (I) or formula (II) can be used in a number of beneficial ways. For example, an isotope-labeled compound of the formula (I) or formula (II) into which, for example, a radioisotope, such as 3H or 14C, has been incorporated, is suitable for medicament and/or substrate tissue distribution assays. These radioisotopes, i.e. tritium (3H) and carbon-14 (14C) , are particularly preferred owing to simple preparation and excellent detectability. Incorporation of heavier isotopes, for example deuterium (2H) , into a compound of formula (I) or formula (II) has therapeutic advantages owing to the higher metabolic stability of this isotope-labeled compound. Higher metabolic stability translates directly into an increased in vivo half-life or lower dosages, which under most circumstances would represent a preferred embodiment of the present invention. An isotope-labeled compound of formula (I) or formula (II) can usually be prepared by carrying out the procedures disclosed in the synthesis schemes and the related description, in the example part and in the preparation part in the present text, replacing a non-isotope-labeled reactant by a readily available isotope-labeled reactant.
- Deuterium (2H) can also be incorporated into a compound of formula (I) or formula (II) for the purpose in order to manipulate the oxidative metabolism of the compound by way of the primary kinetic isotope effect. The primary kinetic isotope effect is a change of the rate for a chemical reaction that results from exchange of isotopic nuclei, which in turn is caused by the change in ground state energies necessary for covalent bond formation after this isotopic exchange. Exchange of a heavier isotope usually results in a lowering of the ground state energy for a chemical bond and thus causes a reduction in the rate in rate-limiting bond breakage. If the bond breakage occurs in or in the vicinity of a saddle-point region along the coordinate of a multi-product reaction, the product distribution ratios can be altered substantially. For explanation: if deuterium is bonded to a carbon atom at a non-exchangeable position, rate differences of kM/kD = 2-7 are typical. If this rate difference is successfully applied to a com-pound of formula (I) or formula (II) that is susceptible to oxidation, the profile of this compound in vivo can be drastically modified and result in improved pharmacokinetic properties.
- When discovering and developing therapeutic agents, the person skilled in the art is able to optimize pharmacokinetic parameters while retaining desirable in vitro properties. It is reasonable to assume that many compounds with poor pharmacokinetic profiles are susceptible to oxidative metabolism. In vitro liver microsomal assays currently available provide valuable information on the course of oxidative metabolism of this type, which in turn permits the rational design of deuterated compounds of formula (I) or formula (II) with improved stability through resistance to such oxidative metabolism. Significant improvements in the pharmacokinetic profiles of compounds of formula (I) or formula (II) are thereby obtained, and can be expressed quantitatively in terms of increases in the in vivo half-life (t/2) , concentration at maximum therapeutic effect (Cmax) , area under the dose response curve (AUC) , and F; and in terms of reduced clearance, dose and materials costs.
- The following is intended to illustrate the above: a compound of formula (I) or formula (II) which has multiple potential sites of attack for oxidative metabolism, for example benzylic hydrogen atoms and hydrogen atoms bonded to a nitrogen atom, is prepared as a series of analogues in which various combinations of hydrogen atoms are replaced by deuterium atoms, so that some, most or all of these hydrogen atoms have been replaced by deuterium atoms. Half-life determinations enable favorable and accurate determination of the extent of the extent to which the improvement in resistance to oxidative metabolism has improved. In this way, it is determined that the half-life of the parent compound can be extended by up to 100%as the result of deuterium-hydrogen exchange of this type.
- Deuterium-hydrogen exchange in a compound of formula (I) or formula (II) can also be used to achieve a favorable modification of the metabolite spectrum of the starting compound in order to diminish or eliminate undesired toxic metabolites. For example, if a toxic metabolite arises through oxidative carbon-hydrogen (C-H) bond cleavage, it can reasonably be assumed that the deuterated analogue will greatly diminish or eliminate production of the unwanted metabolite, even if the particular oxidation is not a rate-determining step. Further information on the state of the art with respect to deuterium-hydrogen exchange may be found, for example in Hanzlik et al. , J. Org. Chem. 55, 3992-3997, 1990, Reider et al. , J. Org. Chem. 52, 3326-3334, 1987, Foster, Adv. Drug Res. 14, 1-40, 1985, Gillette et al, Biochemistry 33 (10) 2927-2937, 1994, and Jarman et al. Carcinogenesis 16 (4) , 683-688, 1993.
- As used herein, the term “modulator” is defined as a compound that binds to and /or inhibits the target with measurable affinity. In certain embodiments, a modulator has an IC50 and/or binding constant of less about 50 μM, less than about 1 μM, less than about 500 nM, less than about 100 nM, or less than about 10 nM.
- The terms “measurable affinity” and “measurably inhibit, ” as used herein, means a measurable change in FSHR activity between a sample comprising a compound of the present invention, or composition thereof, and FSHR, and an equivalent sample comprising FSHR, in the absence of said compound, or composition thereof.
- Combinations of substituents and variables envisioned by this invention are only those that result in the formation of stable compounds. The term “stable” , as used herein, refers to compounds which possess stability sufficient to allow manufacture and which maintains the integrity of the compound for a sufficient period of time to be useful for the purposes detailed herein (e.g., therapeutic or prophylactic administration to a subject) .
- The recitation of a listing of chemical groups in any definition of a variable herein includes definitions of that variable as any single group or combination of listed groups. The recitation of an embodiment for a variable herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.
- 3.Description of Exemplary Compounds
- According to one aspect, the present invention provides a compound of formula I,
-
- or a pharmaceutically acceptable salt thereof, wherein:
- X is O, S, SO, SO2, or NR;
- Y is O, S, or NR;
- Z is O, S, SO, SO2, or N; wherein when Z is O, S, SO, or SO2, then p is 0;
- each R is independently hydrogen, C1–6 aliphatic, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted; or
- two R groups on the same atom are taken together with the atom to which they are attached to form an aryl ring, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;
- Ring A is a fused aryl, a fused 3-8 membered saturated or partially unsaturated carbocyclic ring, a fused 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a fused 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur;
- R1 is –OR, –SR, –CN, –NO2, -SO2R, -SOR, -C (O) R, -CO2R, -C (O) N (R) 2, -NRC (O) R, -NRC (O) N (R) 2, -NRSO2R, or –N (R) 2;
- R2 is –R, halogen, -haloalkyl, –OR, –SR, –CN, –NO2, -SO2R, -SOR, -C (O) R, -CO2R, -C (O) N (R) 2, -NRC (O) R, -NRC (O) N (R) 2, -NRSO2R, or –N (R) 2;
- R3 is an optionally substituted aryl;
- each R4 is independently –R, halogen, -haloalkyl, –OR, –SR, –CN, –NO2, -SO2R, -SOR, -C (O) R, -CO2R, -C (O) N (R) 2, -NRC (O) R, -NRC (O) N (R) 2, -NRSO2R, or –N (R) 2;
- R5 is C1–6 aliphatic, -SO2R, -SOR, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;
- R6 is hydrogen, C1–6 aliphatic, -SO2R, -SOR, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;
- or R5 and R6, together with the atom to which each is attached, form a 3-8 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 3-8 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;
- n is 0, 1, or 2; and
- p is 0 or 1.
- In certain embodiments, X is O. In certain embodiments, X is S. In certain embodiments, X is SO or SO2. In certain embodiments, X is NR.
- In certain embodiments, Y is O. In certain embodiments, Y is S. In certain embodiments, Y is NR.
- In certain embodiments, Z is O. In certain embodiments, Z is S. In certain embodiments, Z is SO or SO2. In certain embodiments, Z is N.
- In certain embodiments, Ring A is a fused aryl. In certain embodiments, Ring A is a fused 3-8 membered saturated or partially unsaturated carbocyclic ring. In certain embodiments, Ring A is a fused 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, Ring A is a fused 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- In certain embodiments, Ring A is phenyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolenyl, isoxazolyl, morpholinyl, oxadiazolyl, 1, 2, 3-oxadiazolyl, 1, 2, 4-oxadiazolyl; 1, 2, 5-oxadiazolyl, 1, 3, 4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, pyrimidinyl, piperazinyl, piperidinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, tetrahydrofuranyl, thiazolyl, thiophenyl, oxetanyl, or azetidinyl.
- In certain embodiments, Ring A is phenyl.
- In certain embodiments, R1 is –OR, –SR, -SO2R, -SOR, -C (O) R, -CO2R, -C (O) N (R) 2, -NRC (O) R, -NRC (O) N (R) 2, -NRSO2R, or –N (R) 2. In certain embodiments, R1 is –OR, – SR, -SO2R, or –SOR. In certain embodiments, R1 is -C (O) R, -CO2R, or -C (O) N (R) 2. In certain embodiments, R1 is -NRC (O) R, -NRC (O) N (R) 2, -NRSO2R, or –N (R) 2.
- In certain embodiments, R1 is –OR, and R is hydrogen.
- In certain embodiments, R1 is –OR, and R is C1–6 aliphatic, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- In certain embodiments, R1 is –OR, and R is C1–6 aliphatic. In certain embodiments, R is methyl, ethyl, propyl, i-propyl, butyl, s-butyl, t-butyl, straight or branched pentyl, or straight or branched hexyl; each of which is optionally substituted. In certain embodiments, R is methyl or or deuterated methyl. In certain embodiments, R is methyl.
- In certain embodiments, R1 is –OR, and R is aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, R is phenyl, naphthyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, [3.3.0] bicyclooctanyl, [4.3.0] bicyclononanyl, [4.4.0] bicyclodecanyl, [2.2.2] bicyclooctanyl, fluorenyl, indanyl, tetrahydronaphthyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl, NH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H, 6H-1, 5, 2-dithiazinyl, dihydrofuro [2, 3-b] tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolenyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isoindolinyl, isoindolenyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1, 2, 3-oxadiazolyl, 1, 2, 4-oxadiazolyl; 1, 2, 5-oxadiazolyl, 1, 3, 4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazole, pyridoimidazole, pyridothiazole, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, 6H-1, 2, 5-thiadiazinyl, 1, 2, 3-thiadiazolyl, 1, 2, 4-thiadiazolyl, 1, 2, 5-thiadiazolyl, 1, 3, 4-thiadiazolyl, thianthrenyl, thiazolyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thiophenyl, triazinyl, 1, 2, 3-triazolyl, 1, 2, 4-triazolyl, 1, 2, 5-triazolyl, 1, 3, 4-triazolyl, oxetanyl, azetidinyl, or xanthenyl; each of which is optionally substituted.
- In certain embodiments, R1 is –OR, and R2 is aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- In certain embodiments, R1 is –OR, and R2 is a 6-membered aryl ring, a 3-membered carbocyclic ring, or a 5-6 membered monocyclic heteroaryl ring having 1-4 nitrogen atoms; each of which is optionally substituted.
- In certain embodiments, R2 is hydrogen.
- In certain embodiments, R2 is C1–6 aliphatic. In certain embodiments, R2 is C1–6 aliphatic wherein the aliphatic group is a C1–6 alkyl. In certain embodiments, R2 is methyl, ethyl, propyl, i-propyl, butyl, s-butyl, t-butyl, straight or branched pentyl, or straight or branched hexyl; each of which is optionally substituted. In certain embodiments, R2 is C1–6 aliphatic wherein the aliphatic group is a C1–6 alkenyl.
- In certain embodiments, R2 is aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- In certain embodiments, R2 is phenyl, naphthyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, [3.3.0] bicyclooctanyl, [4.3.0] bicyclononanyl, [4.4.0] bicyclodecanyl, [2.2.2] bicyclooctanyl, fluorenyl, indanyl, tetrahydronaphthyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl, NH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H, 6H-1, 5, 2-dithiazinyl, dihydrofuro [2, 3-b] tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolenyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isoindolinyl, isoindolenyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1, 2, 3-oxadiazolyl, 1, 2, 4-oxadiazolyl; 1, 2, 5-oxadiazolyl, 1, 3, 4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazole, pyridoimidazole, pyridothiazole, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, 6H-1, 2, 5-thiadiazinyl, 1, 2, 3-thiadiazolyl, 1, 2, 4-thiadiazolyl, 1, 2, 5-thiadiazolyl, 1, 3, 4-thiadiazolyl, thianthrenyl, thiazolyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thiophenyl, triazinyl, 1, 2, 3-triazolyl, 1, 2, 4-triazolyl, 1, 2, 5-triazolyl, 1, 3, 4-triazolyl, oxetanyl, azetidinyl, or xanthenyl; each of which is optionally substituted.
- In certain embodiments, R2 is halogen, -haloalkyl, –OR, –SR, –CN, –NO2, -SO2R, -SOR, -C (O) R, -CO2R, -C (O) N (R) 2, -NRC (O) R, -NRC (O) N (R) 2, -NRSO2R, or –N (R) 2.
- In certain embodiments, R2 is F, Cl, Br, I, or haloalkyl.
- In certain embodiments, R2 is –OR, –SR, –CN, –NO2, -SO2R, -SOR, -C (O) R, -CO2R, -C (O) N (R) 2, -NRC (O) R, -NRC (O) N (R) 2, -NRSO2R, or –N (R) 2. In certain embodiments, R is C1–6 aliphatic, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted. In certain embodiments, R is methyl, ethyl, propyl, i-propyl, butyl, s-butyl, t-butyl, straight or branched pentyl, or straight or branched hexyl; each of which is optionally substituted. In certain embodiments, R is methyl, ethyl, or propyl; each of which is optionally substituted. In other embodiments, R is phenyl, naphthyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, [3.3.0] bicyclooctanyl, [4.3.0] bicyclononanyl, [4.4.0] bicyclodecanyl, [2.2.2] bicyclooctanyl, fluorenyl, indanyl, tetrahydronaphthyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl, NH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H, 6H-1, 5, 2-dithiazinyl, dihydrofuro [2, 3-b] tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolenyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isoindolinyl, isoindolenyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1, 2, 3-oxadiazolyl, 1, 2, 4-oxadiazolyl; 1, 2, 5-oxadiazolyl, 1, 3, 4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazole, pyridoimidazole, pyridothiazole, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, 6H-1, 2, 5-thiadiazinyl, 1, 2, 3-thiadiazolyl, 1, 2, 4-thiadiazolyl, 1, 2, 5-thiadiazolyl, 1, 3, 4-thiadiazolyl, thianthrenyl, thiazolyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thiophenyl, triazinyl, 1, 2, 3-triazolyl, 1, 2, 4-triazolyl, 1, 2, 5-triazolyl, 1, 3, 4-triazolyl, oxetanyl, azetidinyl, or xanthenyl; each of which is optionally substituted.
- In certain embodiments, R2 is
-
-
-
- In certain embodiments, R3 is phenyl or naphthyl; each of which is optionally substituted.
- In certain embodiments, R3 is an optionally substituted phenyl. In certain embodiments, R3 is phenyl substituted by –R, halogen, -haloalkyl, –OR, –SR, –CN, –NO2, -SO2R, -SOR, -C (O) R, -CO2R, -C (O) N (R) 2, -NRC (O) R, -NRC (O) N (R) 2, -NRSO2R, or –N (R) 2.
- In certain embodiments, R3 is
- In certain embodiments, each R4 is independently hydrogen.
- In certain embodiments, each R4 is independently C1–6 aliphatic, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- In certain embodiments, each R4 is independently an optionally substituted C1–6 aliphatic. In certain embodiments, each R4 is independently an optionally substituted aryl. In certain embodiments, each R4 is independently an optionally substituted 3-8 membered saturated or partially unsaturated carbocyclic ring. In certain embodiments, each R4 is independently an optionally substituted 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, each R4 is independently an optionally substituted 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- In certain embodiments, each R4 is independently halogen, -haloalkyl, –OR, –SR, –CN, –NO2, -SO2R, -SOR, -C (O) R, -CO2R, -C (O) N (R) 2, -NRC (O) R, -NRC (O) N (R) 2, -NRSO2R, or –N (R) 2.
- In certain embodiments, R5 is C1–6 aliphatic, SO2R, -SOR, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- In certain embodiments, R5 is an optionally substituted C1–6 aliphatic. In certain embodiments, R5 is an optionally substituted aryl. In certain embodiments, R5 is an optionally substituted 3-8 membered saturated or partially unsaturated carbocyclic ring. In certain embodiments, R5 is an optionally substituted 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, R5 is an optionally substituted 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- In certain embodiments, R5 is C1–6 aliphatic. In certain embodiments, R5 is methyl, ethyl, propyl, i-propyl, butyl, s-butyl, t-butyl, straight or branched pentyl, or straight or branched hexyl; each of which is optionally substituted.
- In certain embodiments, R5 is phenyl, naphthyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, [3.3.0] bicyclooctanyl, [4.3.0] bicyclononanyl, [4.4.0] bicyclodecanyl, [2.2.2] bicyclooctanyl, fluorenyl, indanyl, tetrahydronaphthyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl, NH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H, 6H-1, 5, 2-dithiazinyl, dihydrofuro [2, 3-b] tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolenyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isoindolinyl, isoindolenyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1, 2, 3-oxadiazolyl, 1, 2, 4-oxadiazolyl; 1, 2, 5-oxadiazolyl, 1, 3, 4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazole, pyridoimidazole, pyridothiazole, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, 6H-1, 2, 5-thiadiazinyl, 1, 2, 3-thiadiazolyl, 1, 2, 4-thiadiazolyl, 1, 2, 5-thiadiazolyl, 1, 3, 4-thiadiazolyl, thianthrenyl, thiazolyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thiophenyl, triazinyl, 1, 2, 3-triazolyl, 1, 2, 4-triazolyl, 1, 2, 5-triazolyl, 1, 3, 4-triazolyl, oxetanyl, azetidinyl, or xanthenyl; each of which is optionally substituted.
- In certain embodiments, R5 and R6, together with the atom to which each is attached, form a 3-8 membered heterocylic l ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- In certain embodiments, R5 is methyl, t-butyl,
- In certain embodiments, Z is N. In certain embodiments, Z is N and R5, R6, and Z together with the atoms to which each is attached form an optionally substituted 3-8 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, Z is N and the ring formed by Z, R5 and R6 is
- In certain embodiments, R6 is hydrogen.
- In certain embodiments, R6 is C1–6 aliphatic, SO2R, -SOR, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- In certain embodiments, R6 is an optionally substituted C1–6 aliphatic. In certain embodiments, R6 is an optionally substituted aryl. In certain embodiments, R6 is an optionally substituted 3-8 membered saturated or partially unsaturated carbocyclic ring. In certain embodiments, R6 is an optionally substituted 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, R6 is an optionally substituted 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- In certain embodiments, R6 is C1–6 aliphatic. In certain embodiments, R6 is methyl, ethyl, propyl, i-propyl, butyl, s-butyl, t-butyl, straight or branched pentyl, or straight or branched hexyl; each of which is optionally substituted.
- In certain embodiments, R6 is phenyl, naphthyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, [3.3.0] bicyclooctanyl, [4.3.0] bicyclononanyl, [4.4.0] bicyclodecanyl, [2.2.2] bicyclooctanyl, fluorenyl, indanyl, tetrahydronaphthyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl, NH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H, 6H-1, 5, 2-dithiazinyl, dihydrofuro [2, 3-b] tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolenyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isoindolinyl, isoindolenyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1, 2, 3-oxadiazolyl, 1, 2, 4-oxadiazolyl; 1, 2, 5-oxadiazolyl, 1, 3, 4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazole, pyridoimidazole, pyridothiazole, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, 6H-1, 2, 5-thiadiazinyl, 1, 2, 3-thiadiazolyl, 1, 2, 4-thiadiazolyl, 1, 2, 5-thiadiazolyl, 1, 3, 4-thiadiazolyl, thianthrenyl, thiazolyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thiophenyl, triazinyl, 1, 2, 3-triazolyl, 1, 2, 4-triazolyl, 1, 2, 5-triazolyl, 1, 3, 4-triazolyl, oxetanyl, azetidinyl, or xanthenyl; each of which is optionally substituted.
- In certain embodiments, R6 is hydrogen.
- In certain embodiments, R6 is SO2R or –SOR.
- In certain embodiments, R6 is optionally substituted C1–6 aliphatic or -SO2R.
- In certain embodiments, R6 is methyl, ethyl, t-butyl, or
- In certain embodiments, n is 0. In certain embodiments, n is 1. In certain embodiments, n is 2.
- In certain embodiments, p is 0. In certain embodiments, p is 1.
- In certain embodiments, each of R1, R2, R3, R4, R5, R6, X, Y, Z, n, and p is as defined above and described in embodiments, classes and subclasses above and herein, singly or in combination.
- In certain embodiments, the present invention provides a compound of formula I-a,
-
- or a pharmaceutically acceptable salt thereof, wherein each of R1, R2, R3, R5, R6, X, Y, Z, and p is as defined above and described in embodiments, classes and subclasses above and herein, singly or in combination.
- In certain embodiments, the present invention provides a compound of formula I-b,
-
- or a pharmaceutically acceptable salt thereof, wherein each of R1, R2, R3, R4, R5, R6, Y, Z, n, and p is as defined above and described in embodiments, classes and subclasses above and herein, singly or in combination.
- In certain embodiments, the compound is of formula I-c:
-
- or a pharmaceutically acceptable salt thereof, wherein each of R1, R2, R3, R5, R6, Z, and p is as defined above and described in embodiments, classes and subclasses above and herein, singly or in combination.
- In certain embodiments, the invention provides a compound of formula I-d:
-
- or a pharmaceutically acceptable salt thereof, wherein each of R1, R2, R3, R5, and R6 is as defined above and described in embodiments, classes and subclasses above and herein, singly or in combination.
- In other embodiments, the invention provides a compound of formula I-e:
-
- or a pharmaceutically acceptable salt thereof, wherein each of R2, R3, R5, and R6 is as defined above and described in embodiments, classes and subclasses above and herein, singly or in combination.
- In other embodiments, the invention provides a compound of formula I-f:
-
- or a pharmaceutically acceptable salt thereof, wherein R2 is aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted; R3 is an optionally substituted phenyl; R5 is an optionally substituted C1–6 aliphatic; R6 is an optionally substituted C1–6 aliphatic; or R5 and R6, together with the atom to which each is attached, form an optionally substituted 3-8 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- In a second aspect, the present invention provides a compound of formula II,
-
- or a pharmaceutically acceptable salt thereof, wherein:
- X is O, S, SO, SO2, or NR;
- Y is O, S, or NR;
- Z is O, S, SO, SO2, or N; wherein when Z is O, S, SO, or SO2, then p is 0;
- each R is independently hydrogen, C1–6 aliphatic, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted; or
- two R groups on the same atom are taken together with the atom to which they are attached to form an aryl ring, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;
- Ring A is a fused aryl, a fused 3-8 membered saturated or partially unsaturated carbocyclic ring, a fused 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a fused 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur;
- R1 is –OR, –SR, –CN, –NO2, -SO2R, -SOR, -C (O) R, -CO2R, -C (O) N (R) 2, -NRC (O) R, -NRC (O) N (R) 2, -NRSO2R, or –N (R) 2;
- R2 is –R, halogen, -haloalkyl, –OR, –SR, –CN, –NO2, -SO2R, -SOR, -C (O) R, -CO2R, -C (O) N (R) 2, -NRC (O) R, -NRC (O) N (R) 2, -NRSO2R, or –N (R) 2;
- R3 is an optionally substituted 5-6 membered monocyclic heteroaryl ring;
- each R4 is independently –R, halogen, -haloalkyl, –OR, –SR, –CN, –NO2, -SO2R, -SOR, -C (O) R, -CO2R, -C (O) N (R) 2, -NRC (O) R, -NRC (O) N (R) 2, -NRSO2R, or –N (R) 2;
- R5 is C1–6 aliphatic, -SO2R, -SOR, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;
- R6 is hydrogen, C1–6 aliphatic, -SO2R, -SOR, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;
- or R5 and R6, together with the atom to which each is attached, form a 3-8 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 3-8 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;
- n is 0, 1, or 2; and
- p is 0 or 1.
- In certain embodiments, X is O. In certain embodiments, X is S. In certain embodiments, X is SO or SO2. In certain embodiments, X is NR.
- In certain embodiments, Y is O. In certain embodiments, Y is S. In certain embodiments, Y is NR.
- In certain embodiments, Z is O. In certain embodiments, Z is S. In certain embodiments, Z is SO or SO2. In certain embodiments, Z is N.
- In certain embodiments, Ring A is a fused aryl. In certain embodiments, Ring A is a fused 3-8 membered saturated or partially unsaturated carbocyclic ring. In certain embodiments, Ring A is a fused 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, Ring A is a fused 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- In certain embodiments, Ring A is phenyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolenyl, isoxazolyl, morpholinyl, oxadiazolyl, 1, 2, 3-oxadiazolyl, 1, 2, 4-oxadiazolyl; 1, 2, 5-oxadiazolyl, 1, 3, 4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, pyrimidinyl, piperazinyl, piperidinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, tetrahydrofuranyl, thiazolyl, thiophenyl, oxetanyl, or azetidinyl.
- In certain embodiments, Ring A is phenyl.
- In certain embodiments, R1 is –OR, –SR, -SO2R, -SOR, -C (O) R, -CO2R, -C (O) N (R) 2, -NRC (O) R, -NRC (O) N (R) 2, -NRSO2R, or –N (R) 2. In certain embodiments, R1 is –OR, –SR, -SO2R, or –SOR. In certain embodiments, R1 is -C (O) R, -CO2R, or -C (O) N (R) 2. In certain embodiments, R1 is -NRC (O) R, -NRC (O) N (R) 2, -NRSO2R, or –N (R) 2.
- In certain embodiments, R1 is –OR, and R is hydrogen.
- In certain embodiments, R1 is –OR, and R is C1–6 aliphatic, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- In certain embodiments, R1 is –OR, and R is C1–6 aliphatic. In certain embodiments, R is methyl, ethyl, propyl, i-propyl, butyl, s-butyl, t-butyl, straight or branched pentyl, or straight or branched hexyl; each of which is optionally substituted. In certan embodiments, R is methyl.
- In certain embodiments, R1 is –OR, and R is aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, R is phenyl, naphthyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, [3.3.0] bicyclooctanyl, [4.3.0] bicyclononanyl, [4.4.0] bicyclodecanyl, [2.2.2] bicyclooctanyl, fluorenyl, indanyl, tetrahydronaphthyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl, NH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H, 6H-1, 5, 2-dithiazinyl, dihydrofuro [2, 3-b] tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolenyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isoindolinyl, isoindolenyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1, 2, 3-oxadiazolyl, 1, 2, 4-oxadiazolyl; 1, 2, 5-oxadiazolyl, 1, 3, 4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazole, pyridoimidazole, pyridothiazole, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, 6H-1, 2, 5-thiadiazinyl, 1, 2, 3-thiadiazolyl, 1, 2, 4-thiadiazolyl, 1, 2, 5-thiadiazolyl, 1, 3, 4-thiadiazolyl, thianthrenyl, thiazolyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thiophenyl, triazinyl, 1, 2, 3-triazolyl, 1, 2, 4-triazolyl, 1, 2, 5-triazolyl, 1, 3, 4-triazolyl, oxetanyl, azetidinyl, or xanthenyl; each of which is optionally substituted.
- In certain embodiments, R1 is –OR, and R2 is OR, C1–6 aliphatic, Aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- In certain embodiments, R1 is –OR, and R2 is –OR, C1–6 aliphatic, a 6-membered aryl ring, or a 5-6 membered monocyclic heteroaryl ring having 1-4 nitrogen atoms; each of which is optionally substituted.
- In certain embodiments, R2 is hydrogen.
- In certain embodiments, R2 is C1–6 aliphatic. In certain embodiments, R2 is C1–6 aliphatic wherein the aliphatic group is a C1–6 alkyl. In certain embodiments, R2 is methyl, ethyl, propyl, i-propyl, butyl, s-butyl, t-butyl, straight or branched pentyl, or straight or branched hexyl; each of which is optionally substituted. In certain embodiments, R2 is methyl, ethyl, propyl, or i-propyl. In certain embodiments, R2 is i-propyl. In certain embodiments, R2 is C1–6 aliphatic wherein the aliphatic group is a C1–6 alkenyl.
- In certain embodiments, R2 is aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- In certain embodiments, R2 is phenyl, naphthyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, [3.3.0] bicyclooctanyl, [4.3.0] bicyclononanyl, [4.4.0] bicyclodecanyl, [2.2.2] bicyclooctanyl, fluorenyl, indanyl, tetrahydronaphthyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl, NH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H, 6H-1, 5, 2-dithiazinyl, dihydrofuro [2, 3-b] tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolenyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isoindolinyl, isoindolenyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1, 2, 3-oxadiazolyl, 1, 2, 4-oxadiazolyl; 1, 2, 5-oxadiazolyl, 1, 3, 4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazole, pyridoimidazole, pyridothiazole, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, 6H-1, 2, 5-thiadiazinyl, 1, 2, 3-thiadiazolyl, 1, 2, 4-thiadiazolyl, 1, 2, 5-thiadiazolyl, 1, 3, 4-thiadiazolyl, thianthrenyl, thiazolyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thiophenyl, triazinyl, 1, 2, 3-triazolyl, 1, 2, 4-triazolyl, 1, 2, 5-triazolyl, 1, 3, 4-triazolyl, oxetanyl, azetidinyl, or xanthenyl; each of which is optionally substituted.
- In certain embodiments, R2 is halogen, -haloalkyl, –OR, –SR, –CN, –NO2, -SO2R, -SOR, -C (O) R, -CO2R, -C (O) N (R) 2, -NRC (O) R, -NRC (O) N (R) 2, -NRSO2R, or –N (R) 2.
- In certain embodiments, R2 is F, Cl, Br, I, or haloalkyl.
- In certain embodiments, R2 is –OR, –SR, –CN, –NO2, -SO2R, -SOR, -C (O) R, -CO2R, -C (O) N (R) 2, -NRC (O) R, -NRC (O) N (R) 2, -NRSO2R, or –N (R) 2. In certain embodiments, R is C1–6 aliphatic, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted. In certain embodiments, R is methyl, ethyl, propyl, i-propyl, butyl, s-butyl, t-butyl, straight or branched pentyl, or straight or branched hexyl; each of which is optionally substituted. In other embodiments, R is phenyl, naphthyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, [3.3.0] bicyclooctanyl, [4.3.0] bicyclononanyl, [4.4.0] bicyclodecanyl, [2.2.2] bicyclooctanyl, fluorenyl, indanyl, tetrahydronaphthyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl, NH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H, 6H-1, 5, 2-dithiazinyl, dihydrofuro [2, 3-b] tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolenyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isoindolinyl, isoindolenyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1, 2, 3-oxadiazolyl, 1, 2, 4-oxadiazolyl; 1, 2, 5-oxadiazolyl, 1, 3, 4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazole, pyridoimidazole, pyridothiazole, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, 6H-1, 2, 5-thiadiazinyl, 1, 2, 3-thiadiazolyl, 1, 2, 4-thiadiazolyl, 1, 2, 5-thiadiazolyl, 1, 3, 4-thiadiazolyl, thianthrenyl, thiazolyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thiophenyl, triazinyl, 1, 2, 3-triazolyl, 1, 2, 4-triazolyl, 1, 2, 5-triazolyl, 1, 3, 4-triazolyl, oxetanyl, azetidinyl, or xanthenyl; each of which is optionally substituted.
- In certain embodiments, R2 is
-
- In certain embodiments, R3 is thiophenyl, furanyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyridyl, pyridazinyl, pyrimidinyl, and pyrazinyl.
- In certain embodiments, R3 is thiophenyl or pyridyl; each of which is optionally substituted.
- In certain embodiments, R3 is
- In certain embodiments, each R4 is independently hydrogen.
- In certain embodiments, each R4 is independently C1–6 aliphatic, C3–10 aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- In certain embodiments, each R4 is independently an optionally substituted C1–6 aliphatic. In certain embodiments, each R4 is independently an optionally substituted aryl. In certain embodiments, each R4 is independently an optionally substituted 3-8 membered saturated or partially unsaturated carbocyclic ring. In certain embodiments, each R4 is independently an optionally substituted 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, each R4 is independently an optionally substituted 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- In certain embodiments, each R4 is independently halogen, -haloalkyl, –OR, –SR, –CN, –NO2, -SO2R, -SOR, -C (O) R, -CO2R, -C (O) N (R) 2, -NRC (O) R, -NRC (O) N (R) 2, -NRSO2R, or –N (R) 2.
- In certain embodiments, R5 is C1–6 aliphatic, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- In certain embodiments, R5 is an optionally substituted C1–6 aliphatic. In certain embodiments, R5 is an optionally substituted aryl. In certain embodiments, R5 is an optionally substituted 3-8 membered saturated or partially unsaturated carbocyclic ring. In certain embodiments, R5 is an optionally substituted 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, R5 is an optionally substituted 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- In certain embodiments, R5 is C1–6 aliphatic. In certain embodiments, R5 is methyl, ethyl, propyl, i-propyl, butyl, s-butyl, t-butyl, straight or branched pentyl, or straight or branched hexyl; each of which is optionally substituted.
- In certain embodiments, R5 is phenyl, naphthyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, [3.3.0] bicyclooctanyl, [4.3.0] bicyclononanyl, [4.4.0] bicyclodecanyl, [2.2.2] bicyclooctanyl, fluorenyl, indanyl, tetrahydronaphthyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl, NH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H, 6H-1, 5, 2-dithiazinyl, dihydrofuro [2, 3-b] tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolenyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isoindolinyl, isoindolenyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1, 2, 3-oxadiazolyl, 1, 2, 4-oxadiazolyl; 1, 2, 5-oxadiazolyl, 1, 3, 4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazole, pyridoimidazole, pyridothiazole, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, 6H-1, 2, 5-thiadiazinyl, 1, 2, 3-thiadiazolyl, 1, 2, 4-thiadiazolyl, 1, 2, 5-thiadiazolyl, 1, 3, 4-thiadiazolyl, thianthrenyl, thiazolyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thiophenyl, triazinyl, 1, 2, 3-triazolyl, 1, 2, 4-triazolyl, 1, 2, 5-triazolyl, 1, 3, 4-triazolyl, oxetanyl, azetidinyl, or xanthenyl; each of which is optionally substituted.
- In certain embodiments, R5 and R6, together with the atom to which each is attached, form a 3-8 membered heterocylic l ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- In certain embodiments, R5 is methyl, t-butyl,
- In certain embodiments, Z is N. In certain embodiments, Z is N and R5, R6, and Z together with the atoms to which each is attached form an optionally substituted 3-8 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, Z is N and and the ring formed by Z, R5 and R6 is
- In certain embodiments, R6 is hydrogen.
- In certain embodiments, R6 is C1–6 aliphatic, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- In certain embodiments, R6 is an optionally substituted C1–6 aliphatic. In certain embodiments, R6 is an optionally substituted aryl. In certain embodiments, R6 is an optionally substituted 3-8 membered saturated or partially unsaturated carbocyclic ring. In certain embodiments, R6 is an optionally substituted 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, R6 is an optionally substituted 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- In certain embodiments, R6 is C1–6 aliphatic. In certain embodiments, R6 is methyl, ethyl, propyl, i-propyl, butyl, s-butyl, t-butyl, straight or branched pentyl, or straight or branched hexyl; each of which is optionally substituted.
- In certain embodiments, R6 is phenyl, naphthyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, [3.3.0] bicyclooctanyl, [4.3.0] bicyclononanyl, [4.4.0] bicyclodecanyl, [2.2.2] bicyclooctanyl, fluorenyl, indanyl, tetrahydronaphthyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl, NH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H, 6H-1, 5, 2-dithiazinyl, dihydrofuro [2, 3-b] tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolenyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isoindolinyl, isoindolenyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1, 2, 3-oxadiazolyl, 1, 2, 4-oxadiazolyl; 1, 2, 5-oxadiazolyl, 1, 3, 4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazole, pyridoimidazole, pyridothiazole, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, 6H-1, 2, 5-thiadiazinyl, 1, 2, 3-thiadiazolyl, 1, 2, 4-thiadiazolyl, 1, 2, 5-thiadiazolyl, 1, 3, 4-thiadiazolyl, thianthrenyl, thiazolyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thiophenyl, triazinyl, 1, 2, 3-triazolyl, 1, 2, 4-triazolyl, 1, 2, 5-triazolyl, 1, 3, 4-triazolyl, oxetanyl, azetidinyl, or xanthenyl; each of which is optionally substituted.
- In certain embodiments, R6 is hydrogen.
- In certain embodiments, R6 is methyl or t-butyl.
- In certain embodiments, n is 0. In certain embodiments, n is 1. In certain embodiments, n is 2.
- In certain embodiments, p is 0. In certain embodiments, p is 1.
- In certain embodiments, each of R1, R2, R3, R4, R5, R6, X, Y, Z, n, and p is as defined above and described in embodiments, classes and subclasses above and herein, singly or in combination.
- In certain embodiments, the present invention provides a compound of formula II-a,
-
- or a pharmaceutically acceptable salt thereof, wherein each of R1, R2, R3, R5, R6, X, Y, Z, and p is as defined above and described in embodiments, classes and subclasses above and herein, singly or in combination.
- In certain embodiments, the present invention provides a compound of formula II-b,
-
- or a pharmaceutically acceptable salt thereof, wherein each of R1, R2, R3, R4, R5, R6, Y, Z, n, and p is as defined above and described in embodiments, classes and subclasses above and herein, singly or in combination.
- In certain embodiments, the compound is of formula II-c:
-
- or a pharmaceutically acceptable salt thereof, wherein each of R1, R2, R3, R5, R6, Z, and p is as defined above and described in embodiments, classes and subclasses above and herein, singly or in combination.
- In certain embodiments, the invention provides a compound of formula II-d:
-
- or a pharmaceutically acceptable salt thereof, wherein each of R1, R2, R3, R5, and R6 is as defined above and described in embodiments, classes and subclasses above and herein, singly or in combination.
- In other embodiments, the invention provides a compound of formula II-e:
-
- or a pharmaceutically acceptable salt thereof, wherein each of R2, R3, R5, and R6 is as defined above and described in embodiments, classes and subclasses above and herein, singly or in combination.
- In other embodiments, the invention provides a compound of formula II-f:
-
- or a pharmaceutically acceptable salt thereof, wherein R2 is C1–6 aliphatic, –OR, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted; R3 is an optionally substituted thiophenyl or pyridyl; R5 is an optionally substituted C1–6 aliphatic; R6 is an optionally substituted C1–6 aliphatic or -SO2R; or R5 and R6, together with the atom to which each is attached, form an optionally substituted 3-8 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- In certain embodiments, the invention provides a compound selected from Table 1.
- Table 1. Exemplary compounds of the invention.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- In some embodiments, the present invention provides a compound selected from those depicted above, or a pharmaceutically acceptable salt thereof.
- Various structural depictions may show a heteroatom without an attached group,
- radical, charge, or counterion. Those of ordinary skill in the art are aware that such depictions are meant to indicate that the heteroatom is attached to hydrogen (e.g.,is understood to be
- In certain embodiments, the compounds of the invention were synthesized in accordance with Schemes A-C below. More specific examples of compounds made utilizingSchemes A-C are provided in the Examples below.
- Scheme A
-
- Scheme B
-
- Scheme C
-
- 4.Uses, Formulation and Administration
- Pharmaceutically Acceptable Compositions
- According to another embodiment, the invention provides a composition comprising a compound of this invention or a pharmaceutically acceptable derivative thereof and a pharmaceutically acceptable carrier, adjuvant, or vehicle. The amount of compound in compositions of this invention is such that is effective to measurably modulate FSHR, or a mutant thereof, in a biological sample or in a patient. In certain embodiments, the amount of compound in compositions of this invention is such that is effective to measurably modulate FSHR, or a mutant thereof, in a biological sample or in a patient. In certain embodiments, a composition of this invention is formulated for administration to a patient in need of such composition.
- The term “patient” or “subject” , as used herein, means an animal, preferably a mammal, and most preferably a human.
- The term “pharmaceutically acceptable carrier, adjuvant, or vehicle” refers to a non-toxic carrier, adjuvant, or vehicle that does not destroy the pharmacological activity of the compound with which it is formulated. Pharmaceutically acceptable carriers, adjuvants or vehicles that are used in the compositions of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat.
- A “pharmaceutically acceptable derivative” means any non-toxic salt, ester, salt of an ester or other derivative of a compound of this invention that, upon administration to a recipient, is capable of providing, either directly or indirectly, a compound of this invention or an inhibitorily active metabolite or residue thereof.
- Compositions of the present invention are administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir. The term "parenteral" as used herein includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques. Preferably, the compositions are administered orally, intraperitoneally or intravenously. Sterile injectable forms of the compositions of this invention include aqueous or oleaginous suspension. These suspensions are formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation is also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1, 3-butanediol. Among the acceptable vehicles and solvents that are employed are water, Ringer’s solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium.
- For this purpose, any bland fixed oil employed includes synthetic mono- or di-glycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions also contain a long-chain alcohol diluent or dispersant, such as carboxymethyl cellulose or similar dispersing agents that are commonly used in the formulation of pharmaceutically acceptable dosage forms including emulsions and suspensions. Other commonly used surfactants, such as Tweens, Spans and other emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms are also be used for the purposes of formulation.
- Pharmaceutically acceptable compositions of this invention are orally administered in any orally acceptable dosage form. Exemplary oral dosage forms are capsules, tablets, aqueous suspensions or solutions. In the case of tablets for oral use, carriers commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried cornstarch. When aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents are optionally also added.
- Alternatively, pharmaceutically acceptable compositions of this invention are administered in the form of suppositories for rectal administration. These can be prepared by mixing the agent with a suitable non-irritating excipient that is solid at room temperature but liquid at rectal temperature and therefore will melt in the rectum to release the drug. Such materials include cocoa butter, beeswax and polyethylene glycols.
- Pharmaceutically acceptable compositions of this invention are also administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, including diseases of the eye, the skin, or the lower intestinal tract. Suitable topical formulations are readily prepared for each of these areas or organs.
- Topical application for the lower intestinal tract can be effected in a rectal suppository formulation (see above) or in a suitable enema formulation. Topically-transdermal patches are also used.
- For topical applications, provided pharmaceutically acceptable compositions are formulated in a suitable ointment containing the active component suspended or dissolved in one or more carriers. Exemplary carriers for topical administration of compounds of this aremineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene compound, emulsifying wax and water. Alternatively, provided pharmaceutically acceptable compositions can be formulated in a suitable lotion or cream containing the active components suspended or dissolved in one or more pharmaceutically acceptable carriers. Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water.
- Pharmaceutically acceptable compositions of this invention are optionally administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and are prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other conventional solubilizing or dispersing agents.
- Most preferably, pharmaceutically acceptable compositions of this invention are formulated for oral administration. Such formulations may be administered with or without food. In some embodiments, pharmaceutically acceptable compositions of this invention are administered without food. In other embodiments, pharmaceutically acceptable compositions of this invention are administered with food.
- The amount of compounds of the present invention that are optionally combined with the carrier materials to produce a composition in a single dosage form will vary depending upon the host treated, the particular mode of administration. Preferably, provided compositions should be formulated so that a dosage of between 0.01 -100 mg/kg body weight/day of the compound can be administered to a patient receiving these compositions.
- It should also be understood that a specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, rate of excretion, drug combination, and the judgment of the treating physician and the severity of the particular disease being treated. The amount of a compound of the present invention in the composition will also depend upon the particular compound in the composition.
- Uses of Compounds and Pharmaceutically Acceptable Compositions
- In certain embodiments, the invention provides a method for allosterically agonising FSHR, or a mutant thereof, in a positive manner in a patient or in a biological sample comprising the step of administering to said patient or contacting said biological sample with a compound according to the invention.
- In certain embodiments, the invention is directed to the use of compounds of the invention and/or physiologically acceptable salts thereof, for modulating a FSH receptor, particularly in the presence of FSH. The term “modulation” denotes any change in FSHR-mediated signal transduction, which is based on the action of the specific inventive compounds capable to interact with the FSHR target in such a manner that makes recognition, binding and activating possible. The compounds are characterized by such a high affinity to FSHR, which ensures a reliable binding and preferably a positive allosteric modulation of FSHR. In certain embodiments, the substances are mono-specific in order to guarantee an exclusive and directed recognition with the single FSHR target. In the context of the present invention, the term “recognition” -without being limited thereto -relates to any type of interaction between the specific compounds and the target, particularly covalent or non-covalent binding or association, such as a covalent bond, hydrophobic/hydrophilic interactions, van der Waals forces, ion pairs, hydrogen bonds, ligand-receptor interactions, and the like. Such association may also encompass the presence of other molecules such as peptides, proteins or nucleotide sequences. The present receptor/ligand-interaction is characterized by high affinity, high selectivity and minimal or even lacking cross-reactivity to other target molecules to exclude unhealthy and harmful impacts to the treated subject.
- In certain embodiments, the present invention relates to a method for modulating an FSH receptor, and in particular in a positive allosteric manner, wherein a system capable of expressing the FSH receptor is contacted, in the presence of FSH, with at least one compound of formula (I) or formula (II) according to the invention and/or physiologically acceptable salts thereof, under conditions such that said FSH receptor is modulated. In certain embodiments, modulation is in a positive allosteric manner. In certain embodiments, the system is a cellular system. In other embodiments, the system is an in-vitro translation which is based on the protein synthesis without living cells. The cellular system is defined to be any subject provided that the subject comprises cells. Hence, the cellular system can be selected from the group of single cells, cell cultures, tissues, organs and animals. In certain embodiments, the method for modulating an FSH receptor is performed in-vitro. The prior teaching of the present specification concerning the compounds of formula (I) or formula (II) , including any embodiments thereof, is valid and applicable without restrictions to the compounds according to formula (I) or formula (II) and their salts when used in the method for modulating FSHR. The prior teaching of the present specification concerning the compounds of formula (I) or formula (II) , including any embodiments thereof, is valid and applicable without restrictions to the compounds according to formula (I) or formula (II) and their salts when used in the method for modulating FSHR.
- In certain embodiments, the compounds according to the invention exhibit an advantageous biological activity, which is easily demonstrated in cell culture-based assays, for example assays as described herein or in prior art (cf. e.g. WO 2002/09706, which is incorporated herein by reference) . In such assays, the compounds according to the invention preferably exhibit and cause an agonistic effect. In certain embodiments, the compounds of the invention have an FSHR agonist activity, as expressed by an EC50 standard, of less than 5 μM. In certain embodiments, less than 1 μM. In certain embodiments, less than 0.5 μM. In certain embodiments, less than 0.1 μM. “EC50” is the effective concentration of a compound at which 50 %of the maximal response of that obtained with FSH would be obtained.
- As discussed herein, these signaling pathways are relevant for various diseases, including fertility disorders. Disorders/diseases treated by the methods of the invention include but are not limited to, hypogonadotropic hypogonadism, Isolated idiopathic hypogonadotropic hypogonadism, Kallmann syndrome, Idiopathic hypogonadotropic hypogonadism, Craniopharyngiomas, Combined pituitary hormone deficiency, Fertile eunuch syndrome, Abnormal beta subunit of LH, Abnormal beta subunit of FSH, mass lesions, pituitary adenomas, cysts, metastatic cancer to the sella (breast in women, lung and prostate in men) , Infiltrative lesions, Hemochromatosis, sarcoidosis, histiocytosis, lymphoma, Lymphocytic hypophysitis, Infections, Meningitis, Pituitary apoplexy, Hyperprolactinemia, hypothyroidism, Intentional (iatrogenic) secondary hypogonadism, Empty sella, Pituitary infarction, Sheehan syndrome, Anorexia nervosa, Congenital adrenal hyperplasia, and disorders related to GnRH deficiency. Accordingly, the compounds according to the invention are useful in the prophylaxis and/or treatment of diseases that are dependent on the said signaling pathways by interaction with one or more of the said signaling pathways. The present invention therefore relates to compounds according to the invention as modulators, preferably agonists, more preferably positive allosteric modulators, of the signaling pathways described herein, preferably of the FSHR-mediated signaling pathway. The compounds of the invention are supposed to bind to the intracellular receptor domain without a competitive interaction with FSH, but they act as an allosteric enhancer of FSH on its receptor. The non-competitive interaction refers to the nature of the agonist activity exhibited by the compounds of the invention, wherein the compounds activate FSHR without substantially reducing the magnitude of binding of FSH to FSHR.
- In certain embodiments, the invention is directed towards the stimulation of follicular development, ovulation induction, controlled ovarial hyperstimulation, assisted reproductive technology, including in-vitro fertilization, male hypogonadism and male infertility, including some types of failure of spermatogenesis.
- It is another object of the invention to provide a method for treating diseases that are caused, mediated and/or propagated by FSHR activity, wherein at least one compound of formula (I) or formula (II) according to the invention and/or physiologically acceptable salts thereof is administered to a mammal in need of such treatment. In certain embodiments, the invention provides a method for treating fertility disorders, wherein at least one compound of formula (I) or formula (II) according to the invention and/or physiologically acceptable salts thereof is administered to a mammal in need of such treatment. In certain embodiments, the compound is administered in an effective amount as defined above. In certain embodiments, the treatment is an oral administration.
- In certain embodiments, the method of treatment aims to achieve ovulation induction and/or controlled ovarian hyperstimulation. In still another embodiment, the method of treatment forms the basis for a method for in-vitro fertilization comprising the steps of: (a) treating a mammal according to the method of treatment as described above, (b) collecting ova from said mammal, (c) fertilizing said ova, and (d) implanting said fertilized ova into a host mammal. The host mammal can be either the treated mammal (i.e. the patient) or a surrogate. The prior teaching of the invention and its embodiments is valid and applicable without restrictions to the methods of treatment if expedient.
- The method of the invention can be performed either in-vitro or in-vivo. The susceptibility of a particular cell to treatment with the compounds according to the invention can be particularly determined by in-vitro tests, whether in the course of research or clinical application. Typically, a culture of the cell is combined with a compound according to the invention at various concentrations for a period of time which is sufficient to allow the active agents to modulate FSHR activity, usually between about one hour and one week. In-vitro treatment can be carried out using cultivated cells from a biopsy sample or cell line. In a preferred aspect of the invention, a follicle cell is stimulated for maturation. The viable cells remaining after the treatment are counted and further processed.
- The host or patient can belong to any mammalian species, for example a primate species, particularly humans; rodents, including mice, rats and hamsters; rabbits; horses, cows, dogs, cats, etc. Animal models are of interest for experimental investigations, providing a model for treatment of human disease.
- For identification of a signal transduction pathway and for detection of interactions between various signal transduction pathways, various scientists have developed suitable models or model systems, for example cell culture models and models of transgenic animals. For the determination of certain stages in the signal transduction cascade, interacting compounds can be utilized in order to modulate the signal. The compounds according to the invention can also be used as reagents for testing FSHR-dependent signal transduction pathways in animals and/or cell culture models or in the clinical diseases mentioned in this application.
- The use according to the previous paragraphs of the specification may be either performed in-vitro or in-vivo models. The modulation can be monitored by the techniques described in the course of the present specification. In certain embodiments, the in-vitro use is preferably applied to samples of humans suffering from fertility disorders. Testing of several specific compounds and/or derivatives thereof makes the selection of that active ingredient possible that is best suited for the treatment of the human subject. The in-vivo dose rate of the chosen derivative is advantageously pre-adjusted to the FSHR susceptibility and/or severity of disease of the respective subject with regard to the in-vitro data. Therefore, the therapeutic efficacy is remarkably enhanced. Moreover, the subsequent teaching of the present specification concerning the use of the compounds according to formula (I) or formula (II) and its derivatives for the production of a medicament for the prophylactic or therapeutic treatment and/or monitoring is considered as valid and applicable without restrictions to the use of the compound for the modulation of FSHR activity if expedient.
- The invention also relates to the use of compounds according to formula (I) or formula (II) and/or physiologically acceptable salts thereof for the prophylactic or therapeutic treatment and/or monitoring of diseases that are caused, mediated and/or propagated by FSHR activity. Furthermore, the invention relates to the use of compounds according to formula (I) or formula (II) and/or physiologically acceptable salts thereof for the production of a medicament for the prophylactic or therapeutic treatment and/or monitoring of diseases that are caused, mediated and/or propagated by FSHR activity. In certain embodiments, the invention provides the use of a compound according to formula (I) or formula (II) or formula (II) or physiologically acceptable salts thereof, for the production of a medicament for the prophylactic or therapeutic treatment of a FSHR-mediated disorder.
- Compounds of formula (I) or formula (II) and/or a physiologically acceptable salt thereof can furthermore be employed as intermediate for the preparation of further medicament active ingredients. The medicament is preferably prepared in a non-chemical manner, e.g. by combining the active ingredient with at least one solid, fluid and/or semi-fluid carrier or excipient, and optionally in conjunction with a single or more other active substances in an appropriate dosage form.
- Another object of the present invention are compounds of formula (I) or formula (II) according to the invention and/or physiologically acceptable salts thereof for use in the prophylactic or therapeutic treatment and/or monitoring of diseases that are caused, mediated and/or propagated by FSHR activity. Another preferred object of the invention concerns compounds of formula (I) or formula (II) according to the invention and/or physiologically acceptable salts thereof for use in the prophylactic or therapeutic treatment and/or monitoring of fertility disorders. The prior teaching of the present specification concerning the compounds of formula (I) or formula (II) , including any preferred embodiment thereof, is valid and applicable without restrictions to the compounds according to formula (I) or formula (II) and their salts for use in the prophylactic or therapeutic treatment and/or monitoring of fertility disorders.
- The compounds of formula (I) or formula (II) according to the invention can be administered before or following an onset of disease once or several times acting as therapy. The aforementioned compounds and medical products of the inventive use are particularly used for the therapeutic treatment. A therapeutically relevant effect relieves to some extent one or more symptoms of a disorder, or returns to normality, either partially or completely, one or more physiological or biochemical parameters associated with or causative of a disease or pathological condition. Monitoring is considered as a kind of treatment provided that the compounds are administered in distinct intervals, e.g. in order to booster the response and eradicate the pathogens and/or symptoms of the disease completely. Either the identical compound or different compounds can be applied. The methods of the invention can also be used to reducing the likelihood of developing a disorder or even prevent the initiation of disorders associated with FSHR activity in advance or to treat the arising and continuing symptoms. In certain embodiments, the disorders are fertility disorders.
- In the meaning of the invention, prophylactic treatment is advisable if the subject possesses any preconditions for the aforementioned physiological or pathological conditions, such as a familial disposition, a genetic defect, or a previously passed disease.
- The invention furthermore relates to a medicament comprising at least one compound according to the invention and/or pharmaceutically usable derivatives, salts, solvates and stereoisomers thereof, including mixtures thereof in all ratios. In certain embodiments, the invention relates to a medicament comprising at least one compound according to the invention and/or physiologically acceptable salts thereof.
- A “medicament” in the meaning of the invention is any agent in the field of medicine, which comprises one or more compounds of formula (I) or formula (II) or preparations thereof (e.g. a pharmaceutical composition or pharmaceutical formulation) and can be used in prophylaxis, therapy, follow-up or aftercare of patients who suffer from diseases, which are associated with FSHR activity, in such a way that a pathogenic modification of their overall condition or of the condition of particular regions of the organism could establish at least temporarily.
- In various embodiments, the active ingredient may be administered alone or in combination with other treatments. A synergistic effect may be achieved by using more than one compound in the pharmaceutical composition, i.e. the compound of formula (I) or formula (II) is combined with at least another agent as active ingredient, which is either another compound of formula (I) or formula (II) or a compound of different structural scaffold. The active ingredients can be used either simultaneously or sequentially. The present compounds are suitable for combination with known fertility-inducing agents. In certain embodiments, the other active pharmaceutical ingredient is selected from the group of FSH, α-FSH (Gonal F) , β-FSH, LH, hMG and 2- (4- (2-chloro-1, 2-diphenylethenyl) -phenoxy) -N, N-diethyl-ethanamine citrate (Chlomifene citrate) . Further ovulation adjuncts are known to those of skill in the art (cf. e.g. WO 2002/09706, which is incorporated herein by reference) and are useful with the compounds of the present invention.
- In another aspect, the invention provides for a kit consisting of separate packs of an effective amount of a compound according to the invention and/or pharmaceutically acceptable salts, derivatives, solvates and stereoisomers thereof, including mixtures thereof in all ratios, and optionally, an effective amount of a further active ingredient. The kit comprises suitable containers, such as boxes, individual bottles, bags or ampoules. The kit may, for example, comprise separate ampoules, each containing an effective amount of a compound according to the invention and/or pharmaceutically acceptable salts, derivatives, solvates and stereoisomers thereof, including mixtures thereof in all ratios, and an effective amount of a further active ingredient in dissolved or lyophilized form.
- As used herein, the terms “treatment, ” “treat, ” and “treating” refer to reversing, alleviating, delaying the onset of, or inhibiting the progress of a disease or disorder, or one or more symptoms thereof, as described herein. In some embodiments, treatment is administered after one or more symptoms have developed. In other embodiments, treatment is administered in the absence of symptoms. For example, treatment is administered to a susceptible individual prior to the onset of symptoms (e.g., in light of a history of symptoms and/or in light of genetic or other susceptibility factors) . Treatment is also continued after symptoms have resolved, for example to prevent or delay their recurrence.
- The compounds and compositions, according to the method of the present invention, are administered using any amount and any route of administration effective for treating or lessening the severity of a disorder provided above. The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the infection, the particular agent, its mode of administration, and the like. Compounds of the invention are preferably formulated in dosage unit form for ease of administration and uniformity of dosage. The expression "dosage unit form" as used herein refers to a physically discrete unit of agent appropriate for the patient to be treated. It will be understood, however, that the total daily usage of the compounds and compositions of the present invention will be decided by the attending physician within the scope of sound medical judgment. The specific effective dose level for any particular patient or organism will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed, and like factors well known in the medical arts.
- Pharmaceutically acceptable compositions of this invention can be administered to humans and other animals orally, rectally, parenterally, intracisternally, intravaginally, intraperitoneally, topically (as by powders, ointments, or drops) , bucally, as an oral or nasal spray, or the like, depending on the severity of the infection being treated. In certain embodiments, the compounds of the invention are administered orally or parenterally at dosage levels of about 0.01 mg/kg to about 100 mg/kg and preferably from about 1 mg/kg to about 50 mg/kg, of subject body weight per day, one or more times a day, to obtain the desired therapeutic effect.
- Liquid dosage forms for oral administration include, but are not limited to, pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active compounds, the liquid dosage forms optionally contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1, 3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils) , glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.
- Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions are formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation are also a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1, 3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer’s solution, U.S.P. and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono-or diglycerides. In addition, fatty acids such as oleic acid are used in the preparation of injectables.
- Injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.
- In order to prolong the effect of a compound of the present invention, it is often desirable to slow the absorption of the compound from subcutaneous or intramuscular injection. This is accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the compound then depends upon its rate of dissolution that, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered compound form is accomplished by dissolving or suspending the compound in an oil vehicle. Injectable depot forms are made by forming microencapsule matrices of the compound in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of compound to polymer and the nature of the particular polymer employed, the rate of compound release can be controlled. Examples of other biodegradable polymers include poly (orthoesters) and poly (anhydrides) . Depot injectable formulations are also prepared by entrapping the compound in liposomes or microemulsions that are compatible with body tissues.
- Compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
- Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar--agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate, h) absorbents such as kaolin and bentonite clay, and i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof. In the case of capsules, tablets and pills, the dosage form also optionally comprises buffering agents.
- Solid compositions of a similar type are also employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They optionally contain opacifying agents and can also be of a composition that they release the active ingredient (s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes. Solid compositions of a similar type are also employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polethylene glycols and the like.
- The active compounds can also be in micro-encapsulated form with one or more excipients as noted above. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings, release controlling coatings and other coatings well known in the pharmaceutical formulating art. In such solid dosage forms the active compound may be admixed with at least one inert diluent such as sucrose, lactose or starch. Such dosage forms also comprise, as is normal practice, additional substances other than inert diluents, e.g., tableting lubricants and other tableting aids such a magnesium stearate and microcrystalline cellulose. In the case of capsules, tablets and pills, the dosage forms optionally also comprise buffering agents. They optionally contain opacifying agents and can also be of a composition that they release the active ingredient (s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes.
- Dosage forms for topical or transdermal administration of a compound of this invention include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants or patches. The active component is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as required. Ophthalmic formulation, ear drops, and eye drops are also contemplated as being within the scope of this invention. Additionally, the present invention contemplates the use of transdermal patches, which have the added advantage of providing controlled delivery of a compound to the body. Such dosage forms can be made by dissolving or dispensing the compound in the proper medium. Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate can be controlled by either providing a rate controlling membrane or by dispersing the compound in a polymer matrix or gel.
- According to one embodiment, the invention relates to a method of allosterically modulating FSHR activity in a biological sample comprising the step of contacting said biological sample with a compound of this invention, or a composition comprising said compound.
- According to another embodiment, the invention relates to a method of allosterically modulating FSHR, or a mutant thereof, activity in a biological sample in a positive manner, comprising the step of contacting said biological sample with a compound of this invention, or a composition comprising said compound.
- The compounds of the invention are strong and selective modulators of the FSH receptor. Their selectivity to the FSH receptor is 3 to 10-fold over the LH receptor and even 10 to 100-fold over the TSH receptor while the EC50 or IC50 amounts to more than 10 μM on unrelated G protein-coupled receptors (GPCR) or non-GPCR targets. The current invention comprises the use of the compounds of the invention in the regulation and/or modulation of the FSHR signal cascade, which can be advantageously applied as research tool, for diagnosis and/or in treatment of any disorder arising from FSHR signaling.
- For example, the compounds of the invention are useful in-vitro as unique tools for understanding the biological role of FSH, including the evaluation of the many factors thought to influence, and be influenced by, the production of FSH and the interaction of FSH with the FSHR (e.g. the mechanism of FSH signal transduction/receptor activation) . The present compounds are also useful in the development of other compounds that interact with FSHR since the present compounds provide important structure-activity relationship (SAR) information that facilitate that development. Compounds of the present invention that bind to FSHR can be used as reagents for detecting FSHR on living cells, fixed cells, in biological fluids, in tissue homogenates, in purified, natural biological materials, etc. For example, by labeling such compounds, one can identify cells having FSHR on their surfaces. In addition, based on their ability to bind FSHR, compounds of the present invention can be used in in-situ staining, FACS (fluorescence-activated cell sorting) , western blotting, ELISA (enzyme-linked immunoadsorptive assay) , etc. , receptor purification, or in purifying cells expressing FSHR on the cell surface or inside permeabilized cells.
- The compounds of the invention can also be utilized as commercial research reagents for various medical research and diagnostic uses. Such uses can include but are not limited to: use as a calibration standard for quantifying the activities of candidate FSH agonists in a variety of functional assays; use as blocking reagents in random compound screening, i.e. in looking for new families of FSH receptor ligands, the compounds can be used to block recovery of the presently claimed FSH compounds; use in the co-crystallization with FSHR receptor, i.e. the compounds of the present invention will allow formation of crystals of the compound bound to FSHR, enabling the determination of receptor/compound structure by x-ray crystallography; other research and diagnostic applications, wherein FSHR is preferably activated or such activation is conveniently calibrated against a known quantity of an FSH agonist, etc. ; use in assays as probes for determining the expression of FSHR on the surface of cells; and developing assays for detecting compounds which bind to the same site as the FSHR binding ligands.
- The compounds of the invention can be applied either themselves and/or in combination with physical measurements for diagnostics of treatment effectiveness. Pharmaceutical compositions containing said compounds and the use of said compounds to treat FSHR-mediated conditions is a promising, novel approach for a broad spectrum of therapies causing a direct and immediate improvement in the state of health, whether in human or animal. The impact is of special benefit to efficiently combat infertility, either alone or in combination with other fertility-inducing treatments. In particular, the compounds of the invention potentiate the native FSH effect for both ovulation induction and assisted reproductive technology. The orally bioavailable and active new chemical entities of the invention improve convenience for patients and compliance for physicians.
- The compounds of the invention are active in the primary screen (CHO with or without FSH) , selective in secondary screen (no or low activity against TSHR and LHR) and potent in the granulosa cell estrodiol assay. Neither hERG nor any toxic effects could be observed in-vitro.
- In certain embodiments, the invention provides a method for in-vitro fertilization comprising the steps of:
- (a) treating a mammal according to the method as described above,
- (b) collecting ova from said mammal,
- (c) fertilizing said ova, and
- (d) implanting said fertilized ova into a host mammal.
- The compounds of formula (I) or formula (II) , their salts, isomers, tautomers, enantiomeric forms, diastereomers, racemates, derivatives, prodrugs and/or metabolites are characterized by a high specificity and stability, low manufacturing costs and convenient handling. These features form the basis for a reproducible action, wherein the lack of cross-reactivity is included, and for a reliable and safe interaction with the target structure.
- The term “biological sample” , as used herein, includes, without limitation, cell cultures or extracts thereof; biopsied material obtained from a mammal or extracts thereof; and blood, saliva, urine, feces, semen, tears, or other body fluids or extracts thereof.
- Modulation of FSHR, or a mutant thereof, activity in a biological sample is useful for a variety of purposes that are known to one of skill in the art. Examples of such purposes include, but are not limited to, blood transfusion, organ transplantation, biological specimen storage, and biological assays.
- EXEMPLIFICATION
- As depicted in the Examples below, in certain exemplary embodiments, compounds are prepared according to the following general procedures. It will be appreciated that, although the general methods depict the synthesis of certain compounds of the present invention, the following general methods, and other methods known to one of ordinary skill in the art, can be applied to all compounds and subclasses and species of each of these compounds, as described herein.
- Compound numbers utilized in the Examples below correspond to compound numbers set forth supra.
- 1H NMR was recorded on a Bruker 400 MHz spectrometer, using the residual signal of deuterated solvent as an internal reference. Chemical shifts (δ) are reported in ppm relative to the residual solvent signal (δ = 2.49 ppm for 1H NMR in DMSO-d6) . 1H NMR data are reported as follows: chemical shift (multiplicity, coupling constants, and number of hydrogens) . Multiplicity is abbreviated as follows: s (singlet) , d (doublet) , t (triplet) , q (quartet) , m (multiplet) , br (broad) .
- LC-MS analysis was performed under the following conditions:
- Method : A: 0.1 %TFA in H2O, B: 0.1 %TFA in ACN; Run time: 6.5 min; Flow Rate: 1.0mL/min; Gradient: 5-95%B in 4.5 min, wavelengths 254 and 215 nM; Column: Waters Sunfire C18, 3.0x50mm, 3.5um, positive mode; Mass Scan: 100-900 Da.
- Example 1: N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (1- (2-hydroxyethyl) -1H-pyrazol-4-yl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 1)
- Scheme 1
-
- Step 1: Ethyl 8-bromo-1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxylate
-
- To a solution of (Z) -ethyl 2- (6-bromo-7-methoxy-4-oxochroman-3-ylidene) -2-hydroxyacetate (500 mg, 1.4 mmol) in a mixture of t-BuOH (30 mL) and acetic acid (420 mg, 7 mmol) was added (3, 5-dichlorophenyl) hydrazine hydrochloride (290 mg, 1.4 mmol) at RT under nitrogen. The reaction mixture was stirred at 90 ℃ for 4 h. The reaction mixture was concentrated under high vacuum. The residue was dissolved with ethyl acetate (40 mL) , washed with water (10 mL) , brine (20 mL) , dried over sodium sulphate and concentrated under vacuum. The crude product was purified by column chromatography using pet ether/ethyl acetate as an eluent to afford the titled compound (600 mg, 75 %) as a pale yellow solid.
- Step 2: 8-bromo-1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxylic acid
-
- To a solution of ethyl 8-bromo-1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxylate (100 mg, 0.2 mmol) in a mixture of THF (10 mL) and H2O (10 mL) was added LiOH. H2O (17 mg, 0.4 mmol) at RT. The reaction mixture was stirred at RT for 4 h. The reaction mixture was evaporated and acidified with a solution of 1.5N HCl. The solid was filtered and dried to afford the desired compound (80 mg, 89 %) as an off-white solid.
- Step 3: 8-bromo-N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydro chromeno [4, 3-c] pyrazole-3-carboxamide
-
- To a solution of 8-bromo-1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxylic acid (500 mg, 0.11 mmol) in DMF (10 mL) was added N-tert-butyl methyl amine (140 mg, 1.6 mmol) , HATU (420 mg, 1.1 mmol) and diisopropylethylamine (280 mg, 2.13 mmol) at RT under nitrogen. The reaction mixture was stirred at RT for 3 h. The reaction mixture was quenched to sodium bicarbonate (10 mL, 10 %) , and extracted with EtOAc (2 x 50 mL) . The combined organic layer was washed with NaHCO3 solution (30 mL, 10 %solution) , brine (30 mL) and dried over anhydrous sodium sulphate. The solvent was removed under vacuum; the crude product was purified by column chromatography by using pet ether and ethyl acetate (9: 1) as an eluent to afford the desired compound (40 mg, 67%) as a white solid.
- Step 4: Methyl 2- (4- (3- (tert-butyl (methyl) carbamoyl) -1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) -1H-pyrazol-1-yl) acetate
-
- To a solution of 8-bromo-N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (200 mg, 0.37 mmol) in dioxane (6 mL) was added methyl 2- (4- (4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolan-2-yl) -1H-pyrazol-1-yl) acetate (150 mg, 0.56 mmol) , PdCl2 (dppf) (54 mg, 0.07 mmol) and KF (43 mg, 0.74 mmol) at RT under nitrogen. The reaction mixture was degassed with nitrogen for 20 min and water (4 mL) was added at RT. The reaction mixture was stirred at 90 ℃ for 1h under MW conditions. The reaction mixture was filtered through celite and washed with DCM (50 mL) . The filtrate was concentrated under vacuum; the crude product was washed with water (10 ml) , brine (10 mL) and dried over sodium sulphate. The organic solvent was removed under vacuum; the crude product was purified by column chromatograph using pet ether: ethyl acetate as an eluent to afford the desired compound (90 mg, 51 %) as an off-white solid.
- Step 5: N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (1- (2-hydroxyethyl) -1H-pyrazol-4-yl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 1)
-
- To a stirred solution of methyl 2- (4- (3- (tert-butyl (methyl) carbamoyl) -1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) -1H-pyrazol-1-yl) acetate (200 mg, 0.33 mmol) in MeOH (20 ml) and THF (20 ml) was added NaBH4 (50 mg, 1.32 mmol) at RT for 0.5 h. Water (10 ml) was added to the mixture and extracted by DCM (100 ml) , then dried over sodium sulphate. The organic solvent was removed under vacuum; the crude product was purified by column chromatograph using pet ether: ethyl acetate as an eluent to afford the desired compound (100 mg, 65 %) as a white solid. 1H NMR (400 MHz, CDCl3) : 7.72 (s, 1H) , 7.56 (s, 3H) , 7.49 (s, 1H) , 7.09 (s, 1H) , 6.70 (s, 1H) , 5.47 (s, 2H) , 4.26 (t, 2H) , 4.03 (d, 2H) , 3.92 (s, 3H) , 3.28 (s, 3H) , 1.54 (s, 9H) .
- Example 2: 8- (1- (2-amino-2-oxoethyl) -1H-pyrazol-4-yl) -N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 2)
-
- A mixture of methyl 2- (4- (3- (tert-butyl (methyl) carbamoyl) -1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) -1H-pyrazol-1-yl) acetate (100 mg, 0.066 mmol) and NH3 in MeOH (12 ml) was heated to 60℃ for 2 h. The solvents were removed to provide crude product, which was purified by preparative HPLC to provide the desired product (60 mg, 66 %) as a white solid. 1H NMR (400 MHz, CDCl3) : 7.79 (s, 1H) , 7.57 (s, 4H) , 7.11 (s, 1H) , 6.71 (s, 1H) , 5.48 (s, 2H) , 4.83 (s, 2H) , 3.93 (s, 3H) , 3.28 (s, 3H) , 1.54 (s, 9H) .
- The following compounds were prepared using procedures analogous to those disclosed in Scheme 1.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Example 3: (1- (3, 5-dichlorophenyl) -7-methoxy-8- (pyridin-2-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazol-3-yl) (4-hydroxy-2, 2-dimethylpiperidin-1-yl) methanone (Compound 102)
- Scheme 2
-
- Step 1: Synthesis of (8-bromo-1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-3-yl) (4-hydroxy-2, 2-dimethylpiperidin-1-yl) methanone
-
- To a solution of 8-bromo-1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxylic acid (500 mg, 1.07 mmol) in DMF (20 mL) was added 2, 2-dimethylpiperidin-4-ol (166 mg, 1.28 mmol) , HATU (407 mg, 1.07 mmol) and diisopropyl ethyl amine (0.57mL, 3.21 mmol) at RT under nitrogen. The reaction mixture was stirred at RT for 3 h. The reaction mixture was quenched with sodium bicarbonate (10 mL, 10 %) , and extracted with EtOAc (2 x 50 mL) . The combined organic layer was washed with brine (30 mL) and dried over anhydrous Na2SO4. The solvent was removed under vacuum; the crude product was purified by column chromatography by using pet ether and ethyl acetate (5: 1) as eluents to afford the desired compound (500 mg, 80%) as a white solid.
- Step 2: Synthesis of (1- (3, 5-dichlorophenyl) -7-methoxy-8- (pyridin-2-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazol-3-yl) (4-hydroxy-2, 2-dimethylpiperidin-1-yl) methanone (Compound 102)
-
- To a solution of (8-bromo-1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-3-yl) (4-hydroxy-2, 2-dimethylpiperidin-1-yl) methanone (200 mg, 0.35 mmol) in DMF (5 mL) was added 2- (tributylstannyl) pyridine (193 mg, 0.53 mmol) and Pd(dppf) Cl2 (29 mg, 0.07mmol) at RT under nitrogen. The reaction was microwaved at 120 ℃ for 2 hours. LCMS showed the reaction was completed. The mixture was purified by preparative HPLC to afford the desired compound (30 mg, 15 %) as a yellow solid. 1H NMR (400 MHz, CDCl3) : δ 8.98 (d, 1H) , 8.07 (t, J = 7.8 Hz, 1H) , 7.67 (d, J = 7.8 Hz, 1H) , 7.53 (d, J = 1.8 Hz, 3H) , 7.46 (t, J = 1.8 Hz, 1H) , 7.22 (s, 1H) , 6.74 (s, 1H) , 5.54 (q, J = 13.8 Hz, 2H) , 4.23 –4.04 (m, 2H) , 3.87 (s, 3H) , 3.68–3.59 (m, 1H) , 2.16 (s, 1H) , 1.90 (dd, J = 13.5, 4.9 Hz, 1H) , 1.75 (dd, J = 24.2, 10.9 Hz, 1H) , 1.68 (s, 3H) , 1.53 (s, 3H) .
- Example 4. N- (1-amino-2-methyl-1-oxopropan-2-yl) -8- (5-carbamoylpyridin-3-yl) -1- (3, 5-difluorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 104)
- Scheme 3
-
- Step 1: 8-bromo-N- (2-cyanopropan-2-yl) -1- (3, 5-difluorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- A mixture of 8-bromo-1- (3, 5-difluorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxylic acid (100 mg, 0.229 mmol) , HATU 9104 mg, 0.275 mmol) , 2-amino-2-methylpropanenitrile (29 mg, 0.344 mmol) and DIPEA (89 mg, 0.687 mmol0 in DMF (4 ml) was stirred at RT for 2h. Then The mixture was purified by Combi-Flash (mobile phase: acetonitrile/water (10 mM NH4HCO3) to afford 8-bromo-N- (2-cyanopropan-2-yl) -1- (3, 5-difluorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (95 mg, 82%) . LCMS m/z [M+H] + 503.0.
- Step 2: 8-bromo-N- (2-cyanopropan-2-yl) -1- (3, 5-difluorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- At 0℃, to a solution of 8-bromo-N- (2-cyanopropan-2-yl) -1- (3, 5-difluorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (95 mg, 0.19 mmol) in DMF (4 mL) , was added NaH (31 mg, 0.76 mmol) and CH3I (54 mg, 0.38 mmol) . The mixture was stirred at RT under N2 for 2h, quenched by sat, NH4Cl, purified by Combi-Flash (mobile phase: acetonitrile/water (10 mM NH4HCO3) to afford 8-bromo-N- (2-cyanopropan-2-yl) -1- (3, 5-difluorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (70 mg, 71.4%) as white solid. LCMS m/z [M+H] + 516.8.
- Step 3: N- (2-cyanopropan-2-yl) -8- (5-cyanopyridin-3-yl) -1- (3, 5-difluorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 105)
- A mixture of 8-bromo-N- (2-cyanopropan-2-yl) -1- (3, 5-difluorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (70 mg, 0.136 mmol) , 5-cyanopyridin-3-ylboronic acid (40 mg, 0.272 mmol) , P (tBu) 3PdG2 (7 mg, 0.0136 mmol) and NaHCO3 (34 mg, 0.408 mmol) in DMF (3 ml) and water (0.6 ml) was heated at 120℃ by Microwave for 1h. Then the mixture was purified by preparative HPLC to get N- (2-cyanopropan-2-yl) -8- (5-cyanopyridin-3-yl) -1- (3, 5-difluorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (30 mg, 41%) as white solid. LCMS m/z [M+H] + 541.0. 1H NMR (400 MHz, CDCl3) : 8.75 (d, 1H, J=1.6 Hz) , 8.65 (d, 1H, J=2.0 Hz) , 7.96 (t, 1H, J=2.0 Hz) , 7.17-7.14 (m, 2H) , 7.04-6.99 (m, 1H) , 6.86 (s, 1H) , 6.75 (s, 1H) , 5.58 (s, 2H) , 3.86 (s, 3H) , 3.47 (s, 3H) , 1.84 (s, 6H) .
- Step 4: N- (1-amino-2-methyl-1-oxopropan-2-yl) -8- (5-carbamoylpyridin-3-yl) -1-(3, 5-difluorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 104)
- A mixture of N- (2-cyanopropan-2-yl) -8- (5-cyanopyridin-3-yl) -1- (3, 5-difluorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (20 mg, 0.037 mmol) , NH4OH (0.5 ml) and H2O2 (0.5 ml) in MeOH (2 ml) was stirred at 50℃ for 2h. Then the mixture was purified by preparative HPLC to get N- (1-amino-2-methyl-1-oxopropan-2-yl) -8- (5-carbamoylpyridin-3-yl) -1- (3, 5-difluorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (12 mg, 56%) as white solid. LCMS m/z [M+H] + 577.0.1H NMR (400 MHz, CDCl3) : 8.75 (d, 1H, J=1.6 Hz) , 8.65 (d, 1H, J=2.0 Hz) , 7.96 (t, 1H, J=2.0 Hz) , 7.168-7.145 (m, 2H) , 7.04-6.99 (m, 1H) , 6.86 (s, 1H) , 6.75 (s, 1H) , 5.58 (s, 2H) , 3.86 (s, 3H) , 3.47 (s, 3H) , 1.84 (s, 6H) .
- The following compounds were prepared using procedures analogous to those disclosed in Scheme 3.
-
-
-
- Example 5. N-tert-butyl-8- (4-carbamoylpyrimidin-2-yl) -1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 111)
- Scheme 4
-
- [00255]Step 1: N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-8- (4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolan-2-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- To a solution of 8-bromo-N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (100 mg, 0.19 mmol) in dioxane (3 mL) were added Pd (OAc) 2 (9 mg, 0.04 mmol) , PCy3 (11 mg, 0.04 mmol) and KOAc (56 mg, 0.57 mmol) . The mixture was heated at 100℃ for 4h. After cooling to r. t, the mixture was concentrated. The residue was purified by Combi-Flash (mobile phase: acetonitrile/water (10 mM NH4HCO3) ) to afford N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-8- (4, 4, 5, 5- tetramethyl-1, 3, 2-dioxaborolan-2-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (30 mg, 27%) as a yellow solid.
- Step 2: N-tert-butyl-8- (4-cyanopyrimidin-2-yl) -1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- To a solution of N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-8- (4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolan-2-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (20 mg, 0.03 mmol) in dioxane (1.5 mL) and water (0.3 mL) was added 2-chloropyrimidine-4-carbonitrile (10 mg, 0.06 mmol) , Pd (dppf) Cl2 (3 mg, 0.003 mmol) and KF (3 mg, 0.06 mmol) at RT under nitrogen. The mixture was stirred at 90 ℃ for 2h under MW conditions. Then the mixture was directly purified by Combi-Flash (mobile phase: acetonitrile/water (10 mM NH4HCO3) ) to afford N-tert-butyl-8- (4-cyanopyrimidin-2-yl) -1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (12 mg, 75%) as a white solid. LCMS: m/z=563 (M+H) .
- Step 3: N-tert-butyl-8- (4-carbamoylpyrimidin-2-yl) -1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 111)
- To a solution of N-tert-butyl-8- (4-cyanopyrimidin-2-yl) -1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide in acetone/H2O (2 mL/0.4 mL) was added NaOH (4 mg, 0.1 mmol) and H2O2 (0.5 mL, 30%) . The mixture was heated at 40℃ for 3h. The solvent was removed and the crude was purified by Combi-Flash (mobile phase: acetonitrile/water (10 mM NH4HCO3) ) to afford N-tert-butyl-8- (4-carbamoylpyrimidin-2-yl) -1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (5 mg, 45%) as a white solid. LCMS m/z=581 [M+H] +. 1H NMR (400 MHz, CDCl3) δ 8.98 (d, J = 4.9 Hz, 1H) , 7.92 (d, J = 4.9 Hz, 1H) , 7.71 (s, 1H) , 7.53 -7.49 (m, 3H) , 7.47 (t, J = 1.8 Hz, 1H) , 6.75 (s, 1H) , 5.68 (s, 1H) , 5.53 (s, 2H) , 3.90 (s, 3H) , 3.27 (s, 3H) , 1.52 (s, 9H) .
- The following compounds were prepared using procedures analogous to those disclosed in Scheme 4.
-
-
-
-
- Example 6. N-tert-butyl-N- (2-hydroxyethyl) -7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 121)
- Scheme 5
-
- Step 1: N- (2- (tert-butyldimethylsilyloxy) ethyl) -2-methylpropan-2-amine
- To a solution of 2- (tert-butylamino) ethanol (500 mg, 4.27 mmol) in DMF (5 mL) was added imidazle (581 mg, 8.54 mmol) and TBSCl (962 mg, 63.41 mmol) at 0 ℃. The mixture was stirred at RT overnight. Then the mixture was extracted with EtOAc (100 mL) , washed with water (20 mL×4) and dried over anhydrous Na2SO4. The organic phase was concentrated to afford N- (2- (tert-butyldimethylsilyloxy) ethyl) -2-methylpropan-2-amine (770 mg, 78 %) as a colorless oil. LCMS m/z [M+H] + 232.2.
- Step 2: 7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxylic acid
- To a solution of 8-bromo-7-methoxy-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxylic acid (100 mg, 0.25 mmol) in dioxane/H2O (5/1, 2 mL) were added 1-methyl-3- (4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolan-2-yl) -1H-pyrazole (104 mg, 0.50 mmol) , PdCl2 (dppf) (36.6 mg, 0.05 mmol) and Cs2CO3 (161 mg, 0.50 mmol) at RT under nitrogen. The reaction mixture was stirred at 90 ℃ for 1h under MW conditions. The reaction mixture was then filtered through celite and washed with DCM (50 mL) . The filtrate was concentrated under vacuum; the crude product was purified by HPLC (mobile phase: acetonitrile/water (10 mM NH4HCO3) to afford the desired compound (100 mg, 90 %) as an off-white solid. LCMS m/z=409 [M+H] +
- Step 3: N-tert-butyl-N- (2- (tert-butyldimethylsilyloxy) ethyl) -7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- To a solution of 7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxylic acid (50 mg, 0.123 mmol) in DMF (1 mL) was added N- (2- (tert-butyldimethylsilyloxy) ethyl) -2-methylpropan-2-amine (57 mg, 0.246 mmol) , DIEA (48 mg, 0.369 mmol) and HATU (70 mg, 0.185 mmol) . The mixture was stirred at 80 ℃ for 4h, then directly purified by Combi-Flash (mobile phase: acetonitrile/water (10 mM NH4HCO3) ) to afford N-tert-butyl-N- (2- (tert-butyldimethylsilyloxy) ethyl) -7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (20 mg, 26 %) as a white solid. LCMS m/z [M+H] + 622.
- Step 4: N-tert-butyl-N- (2-hydroxyethyl) -7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 121)
- To a solution of N-tert-butyl-N- (2- (tert-butyldimethylsilyloxy) ethyl) -7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (20 mg, 0.032 mmol) in THF (1 mL) was added TBAF (25 mg, 0.096 mmol) . The mixture was stirred at RT for 4h. Then the mixture was directly purified by Combi-Flash (mobile phase: acetonitrile/water (10 mM NH4HCO3) ) to afford N-tert-butyl-N- (2-hydroxyethyl) -7-methoxy-8-(1-methyl-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (3 mg, 19 %) as a white solid. LCMS m/z [M+H] + 507.9. 1H NMR (400 MHz, CDCl3) : 7.54-7.53 (m, 1H) , 7.52 (s, 1H) , 7.49-7.47 (m, 1H) , 7.30 (d, J=2 Hz, 1H) , 7.25-7.23 (m, 1H) , 6.65 (s, 1H) , 6.51 (d, J=2 Hz, 1H) , 5.47 (s, 2H) , 3.92-3.90 (m, 2H) , 3.88 (s, 3H) , 3.86 (s, 3H) , 3.83-3.82 (m, 2H) , 1.57 (s, 9H) .
- The following compounds were prepared using procedures analogous to those disclosed in Scheme 5.
-
-
-
-
-
- Example 7.1- (3, 5-dimethoxyphenyl) -N- (4-hydroxy-2-methylbutan-2-yl) -7-methoxy-N-methyl-8- (1-methyl-1H-pyrazol-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 134)
- Scheme 6
-
- Step 1: 3-methyl-3- (methylamino) butan-1-ol
- A mixture of 3- (tert-butoxycarbonylamino) -3-methylbutanoic acid (434 mg, 2.0 mmol) and LiAlH4 (10 mL, 10 mmol, 1 mol/L in THF) in THF (10 mL) was heated at 60 ℃ under N2 overnight. After cooling to room temperature, water (4 mL) was added, followed by 15% NaOH (1 mL aq) . The mixture was then extracted with DCM: MeOH 10: 1 (20 mLx3) , washed with brine (10 mL) , dried (Na2SO4) , and evaporated to afford 3-methyl-3- (methylamino) butan-1-ol (117 mg, yield 50%) . m/z=118.2 [M+H] +
- Step 2: 4- (tert-butyldiphenylsilyloxy) -N, 2-dimethylbutan-2-amine
- A mixture of 3-methyl-3- (methylamino) butan-1-ol (117 mg, 1.0 mmol) , TBDPSCl (274 mg, 1.0 mmol) and imidazole (210 mg, 3.0 mmol) in DMF (10 mL) was stirred at room temperature under N2 for 4 hrs. Then the mixture was diluted with EtOAc (80 mL) and washed with water (20 mLx3) , brine (20 mL) , dried (Na2SO4) , and evaporated. The residue was purified by prep-TLC (silica gel: PE: EA = 1: 1) to afford 4- (tert-butyldiphenylsilyloxy) -N, 2-dimethylbutan-2-amine (80 mg, yield 23%) .
- Step 3: 8-bromo-N- (4- (tert-butyldiphenylsilyloxy) -2-methylbutan-2-yl) -1- (3, 5-dimethoxyphenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- To a solution of 8-bromo-1- (3, 5-dimethoxyphenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxylic acid (69 mg, 0.15 mmol) in DMF (5 mL) was added 4- (tert-butyldiphenylsilyloxy) -N, 2-dimethylbutan-2-amine (54 mg, 0.15 mmol) , HATU (57 mg, 0.15 mmol) and diisopropyl ethylamine (59 mg, 0.45 mmol) at RT under nitrogen. The reaction mixture was stirred at RT for 3 h. then quenches with sodium bicarbonate (10 mL, 10 %) and extracted with EtOAc (2 x 30 mL) . The combined organic layers were washed with NaHCO3 solution (10 mL, 10 % solution) , brine (10 mL) , and dried (Na2SO4) . The solvent was removed under vacuum, and the crude product was purified by column chromatography by using pet ether and ethyl acetate (3: 1) as eluent to afford 8-bromo-N- (4- (tert-butyldiphenylsilyloxy) -2-methylbutan-2-yl) -1- (3, 5-dimethoxyphenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (65 mg, 54%) as a light-yellow solid. m/Z=820.2 [M+Na]
- Step 4: N- (4- (tert-butyldiphenylsilyloxy) -2-methylbutan-2-yl) -1- (3, 5-dimethoxyphenyl) -7-methoxy-N-methyl-8- (1-methyl-1H-pyrazol-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- To a solution of 8-bromo-N- (4- (tert-butyldiphenylsilyloxy) -2-methylbutan-2-yl) -1-(3, 5-dimethoxyphenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (27 mg, 0.034 mmol) in DMF (1.5 mL) was added 1-methyl-3- (4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolan-2-yl) -1H-pyrazole (21 mg, 0.10 mmol) , Pd (dppf) Cl2 (4 mg, 0.0068 mmol) and NaHCO3 (9 mg, 0.10 mmol) at RT under nitrogen. The reaction mixture was degassed with nitrogen for 20 min and water (0.3 mL) was added at RT. The reaction mixture was stirred at 120 ℃ for 1h under MW conditions. The reaction mixture was filtered through celite and washed with DCM (50 mL) . The filtrate was concentrated under vacuum; the crude product was washed with water (10 ml) , brine (10 mL) and dried over sodium sulphate. The organic solvent was removed under vacuum; the crude product was purified by preparative HPLC (C18, A 10 mmol NH4HCO3, B. CH3CN) to afford N- (4- (tert-butyldiphenylsilyloxy) -2-methylbutan-2-yl) -1- (3, 5-dimethoxyphenyl) -7-methoxy-N-methyl-8- (1-methyl-1H-pyrazol-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (15 mg, 55 %) as a white solid. m/Z=822.3 [M+Na]
- Step 5: 1- (3, 5-dimethoxyphenyl) -N- (4-hydroxy-2-methylbutan-2-yl) -7-methoxy-N-methyl-8- (1-methyl-1H-pyrazol-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 134)
- A mixture of N- (4- (tert-butyldiphenylsilyloxy) -2-methylbutan-2-yl) -1- (3, 5-dimethoxyphenyl) -7-methoxy-N-methyl-8- (1-methyl-1H-pyrazol-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (15 mg, 0.019 mmol) and TBAF (0.06 mL, 0.06 mmol, 1.0 mol. L-1) in THF (2 mL) was stirred at room temperature overnight. Then concentrated and the residue was purified by Preparative HPLC (C18, A 10 mmol NH4HCO3, B. CH3CN) to afford 1- (3, 5-dimethoxyphenyl) -N- (4-hydroxy-2-methylbutan-2-yl) -7-methoxy-N-methyl-8- (1-methyl-1H-pyrazol-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (6 mg, 57%) as a light-yellow solid. m/Z=562.3 [M+H] +; 1H NMR (400 MHz, CDCl3) δ ppm 7.69 (s, 1H) , 7.30 (s, 1H) , 6.73-6.72 (m, 2H) , 6.64 (s, 1H) , 6.58 (s, 1H) , 6.49 (d, J=2.4 Hz, 1H) , 5.46 (s, 2H) , 3.87 (s, 3H) , 3.85 (s, 3H) , 3.81 (s, 6H) , 3.77-3.73 (m, 2H) , 3.28 (s, 3H) , 2.20-2.17 (m, 2H) , 1.54 (s, 6H) .
- The following compounds were prepared using procedures analogous to those disclosed in Scheme 6.
-
- Example 8. N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (1- (2- (dimethylamino) -2-oxoethyl) -3, 5-dimethyl-1H-pyrazol-4-yl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 136)
- Scheme 7
-
- Step 1: tert-butyl 4- (3- (tert-butyl (methyl) carbamoyl) -1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) -3, 5-dimethyl-1H-pyrazole-1-carboxylate
- To a solution of 8-bromo-N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (330 mg, 0.61 mmol) in dioxane/H2O (5/1, 6 mL) was added tert-butyl 3, 5-dimethyl-4- (4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolan-2-yl) -1H-pyrazole-1-carboxylate (297 mg, 0.92 mmol) , PdCl2 (dppf) (89 mg, 0.12 mmol) and Cs2CO3 (398 mg, 1.22 mmol) at RT under nitrogen. The reaction mixture was stirred at 90 ℃ for 1h under MW conditions. The reaction mixture was filtered through celite and washed with DCM (50 mL) . The filtrate was concentrated in vacuum and the crude product was purified by column chromatograph using pet ether: ethyl acetate as eluent to afford the desired compound (230 mg, 56 %) as an off-white solid.
- Step 2: N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (3, 5-dimethyl-1H-pyrazol-4-yl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- A solution of tert-butyl 4- (3- (tert-butyl (methyl) carbamoyl) -1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) -3, 5-dimethyl-1H-pyrazole-1-carboxylate (120 mg, 0.18 mmol) in DMF (5 mL) was stirred at 120 ℃ for 2h under MW conditions. The solution was diluted with H2O (50 mL) , exacted with EA (20 mL×3) . The combined organics were washed with brine (20 mL×2) , dried with Na2SO4, and concentrated to give the crude product (100 mg, 99%) as a pale yellow solid. m/z = 654 [M+H] +.
- Step 3: methyl 2- (4- (3- (tert-butyl (methyl) carbamoyl) -1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) -3, 5-dimethyl-1H-pyrazol-1-yl) acetate (Compound 138)
- To a solution of N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (3, 5-dimethyl-1H-pyrazol-4-yl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (100 mg, 0.18 mmol) in DMF (3 mL) was added Cs2CO3 (117 mg, 0.36 mmol) and methyl 2-bromoacetate (55 mg, 0.36 mmol) . The reaction mixture was stirred at RT overnight, then directly purified by Combi-Flash (mobile phase: acetonitrile/water (10 mM NH4HCO3) ) to afford methyl 2- (4- (3-(tert-butyl (methyl) carbamoyl) -1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) -3, 5-dimethyl-1H-pyrazol-1-yl) acetate (100 mg, 88%) as a white solid. LCMS m/z=626 [M+H] +. 1H NMR (400 MHz, CDCl3) δ 7.44-7.43 (m, 3H) , 6.69 (s, 1H) , 6.61 (s, 1H) , 5.45 (s, 2H) , 4.79 (s, 2H) , 3.78 (d, J = 1.7 Hz, 6H) , 3.24 (s, 3H) , 2.00 (d, J = 9.6 Hz, 6H) , 1.52 (s, 9H) .
- Step 4: 8- (1- (2-amino-2-oxoethyl) -3, 5-dimethyl-1H-pyrazol-4-yl) -N-tert-butyl-1-(3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 139)
- A mixture of methyl 2- (4- (3- (tert-butyl (methyl) carbamoyl) -1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) -3, 5-dimethyl-1H-pyrazol-1-yl) acetate (10 mg, 0.016 mmol) and NH3 in MeOH (2 ml) was sealed up and heated to 60℃ for 2 h. The solvents were removed to give the crude product, which was purified by preparative HPLC to give desired product (7 mg, 70 %) as a white solid. LCMS m/z=611 [M+H] +. 1H NMR (400 MHz, CDCl3) δ 7.44-7.43 (m, 3H) , 6.69 (s, 1H) , 6.61 (s, 1H) , 5.45 (s, 2H) , 4.79 (s, 2H) , 3.78 (d, J = 1.7 Hz, 6H) , 3.24 (s, 3H) , 2.00 (d, J = 9.6 Hz, 6H) , 1.52 (s, 9H) .
- Step 5: 2- (4- (3- (tert-butyl (methyl) carbamoyl) -1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) -3, 5-dimethyl-1H-pyrazol-1-yl) acetic acid (Compound 137)
- To a solution of methyl 2- (4- (3- (tert-butyl (methyl) carbamoyl) -1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) -3, 5-dimethyl-1H-pyrazol-1-yl) acetate (90 mg, 0.14 mmol) in the mixture of THF (3 mL) and H2O (3 mL) was added LiOH·H2O (29 mg, 0.7 mmol) at RT. The reaction mixture was stirred at RT for 16 h. The reaction mixture was and concentrated. The residue was purified by Combi-Flash (mobile phase: acetonitrile/water (10 mM NH4HCO3) ) to afford 2- (4- (3- (tert-butyl (methyl) carbamoyl) -1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) -3, 5-dimethyl-1H-pyrazol-1-yl) acetic acid (80 mg, 91 %) as a white solid. LCMS m/z=612 [M+H] +. 1H NMR (400 MHz, CDCl3) δ 7.47-7.43 (m, 3H) , 6.71 (s, 1H) , 6.58 (s, 1H) , 5.46 (s, 2H) , 4.93 (s, 2H) , 3.78 (s, 3H) , 3.24 (s, 3H) , 2.06-2.01 (m, 6H) , 1.52 (s, 9H) .
- Step 6: N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (1- (2- (dimethylamino) -2-oxoethyl) -3, 5-dimethyl-1H-pyrazol-4-yl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 136)
- To a solution of 2- (4- (3- (tert-butyl (methyl) carbamoyl) -1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) -3, 5-dimethyl-1H-pyrazol-1-yl) acetic acid (45 mg, 0.074 mmol) in DMF (1 mL) was added dimethylamine hydrochloride (12 mg, 0.147 mmol) , HATU (42 mg, 0.11 mmol) and DIEA (38.2 mg, 0.296 mmol) . The mixture was stirred at RT overnight. Then the mixture was directly purified by Combi-Flash (mobile phase: acetonitrile/water (10 mM NH4HCO3) ) to afford N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (1- (2-(dimethylamino) -2-oxoethyl) -3, 5-dimethyl-1H-pyrazol-4-yl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (20 mg, 43%) as a white solid. LCMS m/z=639 [M+H] +. 1H NMR (400 MHz, CDCl3) δ 7.43 (s, 3H) , 6.69 (s, 1H) , 6.64 (s, 1H) , 5.44 (s, 2H) , 4.84 (s, 2H) , 3.77 (s, 3H) , 3.24 (s, 3H) , 3.08 (s, 3H) , 2.98 (s, 3H) , 2.00 (s, 6H) , 1.51 (s, 9H) .
- The following compounds were prepared using procedures analogous to those disclosed in Scheme 7.
-
-
-
- Example 9. N-tert-butyl-8- (4-carbamoyl-1-methyl-1H-pyrazol-3-yl) -1- (3, 5-dimethoxyphenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 144)
- Scheme 8
-
- Step 1: 8- (4-bromo-1-methyl-1H-pyrazol-3-yl) -N-tert-butyl-1- (3, 5-dimethoxyphenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 145)
- To a solution of N-tert-butyl-1- (3, 5-dimethoxyphenyl) -7-methoxy-N-methyl-8- (1-methyl-1H-pyrazol-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (250 mg, 0.47 mmol) in DCM (10 mL) was added NBS (84 mg, 0.47 mmol) . The mixture was stirred at RT for 6h. Then the mixture was directly purified by pre-TLC (peth: EA= 3: 2) to afford 8- (4-bromo-1-methyl-1H-pyrazol-3-yl) -N-tert-butyl-1- (3, 5-dimethoxyphenyl) -7-methoxy-N-methyl-1, 4 dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (200 mg, 70 %) as a white solid. LCMS m/z =610 [M+H] +. 1H NMR (400 MHz, CDCl3) : 7.39 (s, 1H) , 7.05 (s, 1H) , 6.69 (s, 1H) , 6.67 (d, 2H) , 6.51 (t, 1H) , 5.51 (s, 2H) , 3.88 (s, 3H) , 3.83 (s, 3H) , 3.80 (s, 6H) , 3.28 (s, 3H) , 1.53 (s, 9H) .
- Step 2: N-tert-butyl-8- (4-cyano-1-methyl-1H-pyrazol-3-yl) -1- (3, 5-dimethoxyphenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 146)
- To a solution of 8- (4-bromo-1-methyl-1H-pyrazol-3-yl) -N-tert-butyl-1- (3, 5-dimethoxyphenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (90 mg, 0.15 mmol) in DMAc (3 mL) was added zinc cyanide (52 mg, 0.45 mmol) , zinc powder (30 mg, 0.45 mmol) and PdP [ (t-Bu) 3] 2 (15 mg, 0.3 mmol) at RT under nitrogen. The mixture was stirred at 120 ℃ for 1h under MW conditions. The mixture was filtered and directly purified by purified by Combi-Flash (mobile phase: acetonitrile/water (10 mM NH4HCO3) ) to afford N-tert-butyl-8- (4-cyano-1-methyl-1H-pyrazol-3-yl) -1- (3, 5-dimethoxyphenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (60 mg, 73 %) as a white solid. LCMS m/z=557 [M+H] +. 1H NMR (400 MHz, CDCl3) : 7.77 (s, 1H) , 7.29 (s, 1H) , 6.69 (m, 3H) , 6.55 (t, 1H) , 5.54 (s, 2H) , 3.91 (s, 3H) , 3.89 (s, 3H) , 3.82 (s, 6H) , 3.29 (s, 3H) , 1.54 (s, 9H) .
- Step 3: N-tert-butyl-8- (4-carbamoyl-1-methyl-1H-pyrazol-3-yl) -1- (3, 5-dimethoxyphenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 144)
- To a solution of N-tert-butyl-8- (4-cyano-1-methyl-1H-pyrazol-3-yl) -1- (3, 5-dimethoxyphenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (20 mg, 0.36 mmol) in MeOH (1 mL) was added NH3. H2O (0.5 mL) and H2O2 (0.5 mL, 30%) at RT. The mixture was stirred at RT overnight. The mixture was concentrated in vacum and the residue was directly purified by Combi-Flash (mobile phase: acetonitrile/water (10 mM NH4HCO3) ) to afford N-tert-butyl-8- (4-carbamoyl-1-methyl-1H-pyrazol-3-yl) -1- (3, 5-dimethoxyphenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (6 mg, 29 %) as a white solid. LCMS m/z=575 [M+H] +. 1H NMR (400 MHz, CDCl3) : 7.92 (s, 1H) , 7.03 (s, 1H) , 6.71 (s, 1H) , 6.64 (d, 2H) , 6.53 (t, 1H) , 5.53 (s, 2H) , 3.89 (s, 3H) , 3.82 (s, 6H) , 3.80 (s, 3H) , 3.29 (s, 3H) , 1.53 (s, 9H) .
- The following compounds were prepared using procedures analogous to those disclosed in Scheme 8.
-
-
-
-
-
-
-
-
-
-
-
- Example 10.3-carbamoyl-5- (1- (3, 5-dichlorophenyl) -3- (3, 3-dimethylmorpholine-4-carbonyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) pyridine 1-oxide (Compound 174)
- Scheme 9
-
- Step 1: 3-carbamoyl-5- (1- (3, 5-dichlorophenyl) -3- (3, 3-dimethylmorpholine-4-carbonyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) pyridine 1-oxide
- To a solution of 5- (1- (3, 5-dichlorophenyl) -3- (3, 3-dimethylmorpholine-4-carbonyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) nicotinamide (30 mg, 0.05 mmol) in CH2Cl2 (10 mL) was added m-CPBA (26 mg, 0.15 mmol) at 0℃. The mixture was stirred at RT overnight. The mixture was concentrated in vacum and the residue was purified by Combi-Flash (mobile phase: acetonitrile/water (10 mM NH4HCO3) ) to afford 3-carbamoyl-5- (1- (3, 5-dichlorophenyl) -3- (3, 3-dimethylmorpholine-4-carbonyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) pyridine 1-oxide (20 mg, 65 %) as a white solid. LCMS m/z=624 [M+H] +. 1H NMR (400 MHz, DMSO) δ 8.51 (t, J = 1.4 Hz, 1H) , 8.24 (t, J = 1.5 Hz, 1H) , 8.14 (s, 1H) , 7.80 (dd, J = 3.0, 1.3 Hz, 4H) , 7.56 (t, J = 1.4 Hz, 1H) , 6.92 (d, J = 13.1 Hz, 2H) , 5.43 (s, 2H) , 3.96 –3.88 (m, 2H) , 3.84 (s, 3H) , 3.73 (t, J = 5.0 Hz, 2H) , 3.43 (s, 2H) , 1.42 (s, 6H) .
- The following compounds were prepared using procedures analogous to those disclosed in Scheme 9.
-
-
- Example 11. 5- (1- (3, 5-dichlorophenyl) -3- (3, 3-dimethylmorpholine-4-carbonyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) nicotinic acid (Compound 178)
- Scheme 10
-
- Step1 5- (1- (3, 5-dichlorophenyl) -3- (3, 3-dimethylmorpholine-4-carbonyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) nicotinic acid
- To a solution of 5- (1- (3, 5-dichlorophenyl) -3- (3, 3-dimethylmorpholine-4-carbonyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) nicotinonitrile (50 mg, 0.085 mmol) in dioxane/H2O (1/1, 2 mL) was added NaOH (17 mg, 0.42 mmol) . The mixture was stirred at 100℃ for 2h under MW conditions. The mixture was directly purified by Combi-Flash (mobile phase: acetonitrile/water (10 mM NH4HCO3) ) to afford 5- (1- (3, 5-dichlorophenyl) -3- (3, 3-dimethylmorpholine-4-carbonyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) nicotinic acid (33 mg, 65 %) as a white solid. LCMS m/z=609 [M+H] +. 1H NMR (400 MHz, CDCl3) δ8.75 (dd, J = 11.8, 1.9 Hz, 2H) , 7.97 (t, J = 2.1 Hz, 1H) , 7.56 –7.47 (m, 3H) , 6.88 (s, 1H) , 6.74 (s, 1H) , 5.51 (s, 2H) , 4.11 –4.02 (m, 2H) , 3.86 (d, J = 7.8 Hz, 5H) , 3.50 (s, 2H) , 1.53 (s, 6H) .
- The following compounds were prepared using procedures analogous to those disclosed in Scheme 10.
-
-
- Example 12. N-tert-butyl-8- (1-carbamoyl-1H-pyrazol-4-yl) -1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 181)
- Scheme 11
-
- Step 1: N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-8- (1H-pyrazol-4-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- To a solution of 8-bromo-N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (300 mg, 0.56 mmol) in dioxane/H2O (10/1, 3 mL) were added 4- (4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolan-2-yl) -1H-pyrazole (217 mg, 1.12 mmol) , Cs2CO3 (364 mg, 1.12 mmol) , and Pd (dppf) Cl2 (45 mg, 0.056 mmol) at RT under nitrogen. The reaction mixture was stirred at 90 ℃ for 1h under MW conditions. The reaction mixture was directly purified by Combi-Flash (mobile phase: acetonitrile/water (10 mM NH4HCO3) ) to afford N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-8- (1H-pyrazol-4-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (280 mg, 95 %) as a white solid.. LC-MS m/z=526 [M+H] +.
- Step 2: N-tert-butyl-8- (1-carbamoyl-1H-pyrazol-4-yl) -1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- To a solution of N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-8- (1H-pyrazol-4-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (50 mg, 0.095 mmol) in CH3CN (3 mL) were added NaOCN (10 mg, 0.19 mmol) , HOAc (0.2 mL) , and H2O (0.2 mL) . The reaction mixture was stirred at RT overnight. The mixture was diluted with NaHCO3 (aq. ) (10 mL) , extracted with CH2Cl2 (10 mL*2) . The combined organics were dried over Na2SO4, and concentrated. The residue was purified by HPLC (mobile phase: acetonitrile/water (10 mM NH4HCO3) to afford N-tert-butyl-8- (1-carbamoyl-1H-pyrazol-4-yl) -1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (20 mg, 38 %) as a white solid. LCMS m/z=569 [M+H] +. 1H NMR (400 MHz, CDCl3) δ 8.45 (d, J = 0.5 Hz, 1H) , 7.58 –7.50 (m, 4H) , 7.10 (s, 1H) , 6.70 (s, 1H) , 5.46 (s, 2H) , 3.92 (s, 3H) , 3.26 (s, 3H) , 1.52 (s, 9H) .
- Example 13. N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-8- (5-ureidopyridin-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- Scheme 12
-
- Step 1: 8- (5-acetamidopyridin-3-yl) -N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 182)
- To a solution of N 8- (5-aminopyridin-3-yl) -N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (5 mg, 0.01 mmol) , in AcOH (1 mL) were added NaOCN (2 mg, 0.03 mmol) . The reaction mixture was stirred at RT for 1h. The mixture was poured into NaHCO3 (aq. ) (5 mL) , extracted with CH2Cl2 (5 mL*2) . The combined organics were dried over Na2SO4, and concentrated. The solution was purified by HPLC (mobile phase: acetonitrile/water (10 mM NH4HCO3) to afford 8- (5-acetamidopyridin-3-yl) -N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (2 mg, 33%) as a as a white solid. LCMS m/z=594 [M+H] +. 1H NMR (400 MHz, CDCl3) δ 8.59 (d, J = 2.3 Hz, 1H) , 8.27 (d, J = 1.6 Hz, 1H) , 7.99 (s, 1H) , 7.52 (d, J = 1.8 Hz, 2H) , 7.46 (t, J = 1.8 Hz, 1H) , 7.37 (s, 1H) , 6.90 (s, 1H) , 6.71 (s, 1H) , 5.47 (s, 2H) , 3.83 (s, 3H) , 3.26 (s, 3H) , 2.22 (s, 3H) , 1.52 (s, 9H) .
- Step 2: N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-8- (5-ureidopyridin-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 183)
- A solution of 8- (5-aminopyridin-3-yl) -N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (20 mg, 0.036 mmol) in NaOCN (7 mg, 0.11 mmol) , HOAc (0.05 mL) , and THF/H2O (1/1, 0.1 Ml) was stirred at RT overnight. The mixture was poured into NaHCO3 (aq. ) (10 mL) , extracted with CH2Cl2 (10 mL*2) . The combined organics were dried over Na2SO4, and concentrated. The solution was purified by HPLC (mobile phase: acetonitrile/water (10 mM NH4HCO3) to afford N-tert-butyl-1-(3, 5-dichlorophenyl) -7-methoxy-N-methyl-8- (5-ureidopyridin-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (5 mg, 24%) as a as a white solid. LCMS m/z=595 [M+H] +. 1H NMR (400 MHz, CDCl3) δ 8.36 (s, 1H) , 8.11 (s, 1H) , 7.88 (d, J = 16.0 Hz, 2H) , 7.47 (d, J = 1.6 Hz, 2H) , 7.40 (d, J = 1.6 Hz, 1H) , 6.84 (s, 1H) , 6.65 (s, 1H) , 5.42 (s, 2H) , 5.13 (s, 2H) , 3.75 (s, 3H) , 3.24 (s, 3H) , 1.52 (s, 9H) .
- Example 14. 4- (7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carbonyl) -3, 3-dimethylpiperazine-1-carbonitrile (Compound 184)
- Scheme 15
-
- Step 1: 7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxylic acid
- To a solution of 8-bromo-7-methoxy-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxylic acid (1 g, 2.46 mmol) in dioxane/H2O (5/1, 10 mL) was added methyl 2- (4- (4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolan-2-yl) -1H-pyrazol-1-yl) acetate (1.02 g, 4.93 mmol) , PdCl2 (dppf) (360 mg, 0.49 mmol) and Cs2CO3 (1.6 g, 4.93 mmol) at RT under nitrogen. The reaction mixture was stirred at 100 ℃ for 1h under MW conditions. The reaction mixture was filtered through celite and washed with DCM (50 mL) . The filtrate was concentrated under vacuum; the crude product was purified by HPLC (mobile phase: acetonitrile/water (10 mM NH4HCO3) to afford the desired compound (300 mg, 30 %) as an off-white solid. LCMS m/z=409 [M+H] +.
- Step 2: tert-butyl 4- (7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carbonyl) -3, 3-dimethylpiperazine-1-carboxylate
- A mixture of 7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxylic acid (50 mg, 0.123 mmol) , HATU (51 mg, 0.135 mmol) , tert-butyl 3, 3-dimethylpiperazine-1-carboxylate (34 mg, 0.135 mmol) and DIPEA (48 mg, 0.369 mmol) in DMF (3 ml) was was stirred at RT overnight. Then the mixture was purified by Combi-Flash (mobile phase: acetonitrile/water (10 mM NH4HCO3) to afford tert-butyl 4- (7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carbonyl) -3, 3-dimethylpiperazine-1-carboxylate (55 mg, 37.2%) as a white solid. LCMS m/z=605 [M+H] +.
- Step 3: (2, 2-dimethylpiperazin-1-yl) (7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1-(thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazol-3-yl) methanone hydrochloride
- A mixture of tert-butyl 4- (7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carbonyl) -3, 3-dimethylpiperazine-1-carboxylate (55 mg, 0.091 mmol) and Dioxane/HCl (4M, 1 ml) in DCm (2 ml) was stirred at RT overnight. Then the mixture was concentrated to get (2, 2-dimethylpiperazin-1-yl) (7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazol-3-yl) methanone hydrochloride (40 mg, 54%) as a white solid. LCMS m/z =505 [M+H] +.
- Step 4: 4- (7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carbonyl) -3, 3-dimethylpiperazine-1-carbonitrile
- A mixture of (2, 2-dimethylpiperazin-1-yl) (7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazol-3-yl) methanone hydrochloride (20 mg, 0.037 mmol) , cyanic bromide (8 mg, 0.074 mmol) and TEA (12 mg, 0.111 mol) was stirred at RT overnight. Then the mixture was purified by column chromatography (silica gel: 200-300 mesh, PE: EtOAc = 1: 1) to get 4- (7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carbonyl) -3, 3-dimethylpiperazine-1-carbonitrile (10 mg, 50%) as a white solid. LCMS m/z = 530.2 [M+H] +. 1H NMR (400 MHz, CDCl3) : 7.53-7.52 (m , 1H) , 7.49-7.47 (m, 2H) , 7.30-7.29 (m, 1H) , 7.24-7.23 (m, 1H) , 6.51 (d, J=2.4 Hz, 1H) , 5.48 (s, 2H) , 4.29-4.27 (m, 2H) , 3.87 (s, 3H) , 3.86 (s, 3H) , 3.56 (m, 2H) , 3.25 (s, 2H) , 1.65 (s, 6H) .
- Example 15. N-tert-butyl-7-methoxy-N-methyl-8- (5-oxo-2, 5-dihydro-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 185)
- Scheme 14
-
- Step 1: N-tert-butyl-8- (3- (tert-butyldimethylsilyloxy) prop-1-ynyl) -7-methoxy-N-methyl-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- A mixture of 8-bromo-N-tert-butyl-7-methoxy-N-methyl-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (47.5 mg, 0.1 mmol) , tert-butyldimethyl (prop-2-ynyloxy) silane (51 mg, 0.3 mmol) , CuI (6 mg, 0.03 mmol) , Pd (PPh3) 4 (14 mg, 0.012 mmol) , TEA (0.15 ml) in DMF (2 ml) was stirred at 105 ℃ for 10 h. The crude product was purified by preparative HPLC to give the desired pure product (15 mg, 33%) as a yellow liquid. 1H NMR (400 MHz, CDCl3) : 7.48-7.51 (m, 2H) , 7.21-7.22 (m, 1H) , 6.91 (s, 1H) , 6.56 (s, 1H) , 5.50 (s, 2H) , 4.53 (s, 2H) , 3.85 (s, 3H) , 3.28 (s, 3H) , 1.53 (s, 9H) , 0.94 (s, 9H) , 0.15 (s, 6H) . m/z= 566.2 [M+H] +.
- Step 2: N-tert-butyl-8- (3-hydroxyprop-1-ynyl) -7-methoxy-N-methyl-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- To a solution of N-tert-butyl-8- (3- (tert-butyldimethylsilyloxy) prop-1-ynyl) -7-methoxy-N-methyl-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (56.5 mg, 0.1 mmol) in THF (5 mL) was added TBAF (1 ml, 0.2 mmol) at RT. The reaction mixture was stirred at RT for 2 h. The reaction mixture was evaporated and diluted with EtOAc (50 ml) and washed with brine. The mixture was filtered and concentrated to afford the desired crude compound N-tert-butyl-8- (3-hydroxyprop-1-ynyl) -7-methoxy-N-methyl-1- (thiophen-3-yl) -1, 4- dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (30 mg, 66%) as an off-white solid, which was used to the next step without further purification. m/z= 452.1 [M+H +.
- Step 3: Methyl 3- (3- (tert-butyl (methyl) carbamoyl) -7-methoxy-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) propiolate
- A mixture of N-tert-butyl-8- (3-hydroxyprop-1-ynyl) -7-methoxy-N-methyl-1-(thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (50 mg, 0.11 mmol) , NaCN (6 mg, 0.11 mmol) , MnO2 (145 mg, 1.65 mmol) in THF (5 ml) and MeOH (5 ml) was refluxed for 5 h. The crude product was purified by preparative HPLC to give the desired pure product (5 mg, 12%) as a white solid. 1H NMR (400 MHz, CDCl3) : 7.51-7.54 (m, 2H) , 7.20-7.22 (m, 1H) , 7.00 (s, 1H) , 6.58 (s, 1H) , 5.56 (s, 2H) , 3.89 (s, 3H) , 3.82 (s, 3H) , 3.29 (s, 3H) , 1.53 (s, 9H) . m/z= 480.0 [M+H] +. and 6 (5 mg, 13%) as a white solid. 1H NMR (400 MHz, CDCl3) : 7.51-7.54 (m, 2H) , 7.19 (s, 1H) , 6.98 (s, 1H) , 6.57 (s, 1H) , 3.88 (s, 3H) , 3.28 (s, 3H) , 1.52 (s, 9H) . m/z= 466.0 [M+H] +.
- Step 4: 8- (3-amino-3-oxoprop-1-ynyl) -N-tert-butyl-7-methoxy-N-methyl-1-(thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 186)
- A solution of methyl 3- (3- (tert-butyl (methyl) carbamoyl) -7-methoxy-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) propiolate (10 mg, 0.021 mmol) and NH3 in MeOH (3 ml) was heated to 60℃ for 2 h in a sealed tube. The solvent was removed to give crude product, which was purified by preparative HPLC to give desired product (5 mg, 50 %) as a white solid. 1H NMR (400 MHz, CDCl3) : 7.50-7.54 (m, 2H) , 7.20-7.22 (m, 1H) , 6.98 (s, 1H) , 6.59 (s, 1H) , 5.55 (s, 2H) , 3.88 (s, 3H) , 3.28 (s, 3H) , 1.53 (s, 9H) . m/z= 465.2 [M+H] +.
- Step 5: N-tert-butyl-7-methoxy-N-methyl-8- (5-oxo-2, 5-dihydro-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 185)
- A solution of methyl 3- (3- (tert-butyl (methyl) carbamoyl) -7-methoxy-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) propiolate (6 mg, 0.0125 mmol) in NH2NH2H2O (2 ml) was heated to 100℃ for 2 h under MW conditions. The solvent was removed to give crude product, which was purified by preparative HPLC to give N-tert-butyl-7-methoxy-N-methyl-8-(5-oxo-2, 5-dihydro-1H-pyrazol-3-yl) -1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (2 mg, 25 %) as a white solid. 1H NMR (400 MHz, CDCl3) : 7.57-7.59 (m, 2H) , 7.25-7.26 (m, 1H) , 7.04 (s, 1H) , 6.69 (s, 1H) , 5.56 (s, 2H) , 5.37 (s, 1H) , 3.98 (s, 3H) , 3.30 (s, 3H) , 1.54 (s, 9H) . m/z= 480.0 [M+H] +.
- The following compound was prepared using procedures analogous to those disclosed in Scheme 14.
-
- Example 16.1- (3, 5-dichlorophenyl) -N-ethyl-N- (ethylsulfonyl) -7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 188)
- Scheme 15
-
- Step 1: 1- (3, 5-dichlorophenyl) -N-ethyl-7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- A mixture of 1- (3, 5-dichlorophenyl) -7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxylic acid (100 mg, 0.212 mmol) , HATU (97 mg, 0.255 mmol) , ethanamine hydrochloride (21 mg, 0.255 mmol) in DMF (3 ml) was stirred at RT overnight. Then the mixture was purified by Combi-Flash (mobile phase: acetonitrile/water (10 mM NH4HCO3) to afford 1- (3, 5-dichlorophenyl) -N-ethyl-7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (100 mg, 94%) as a white solid. LCMS m/z [M+H] + 498.1. 1H NMR (400 MHz, CDCl3) : 7.598 (s, 1H) , 7.551-7.546 (d, 2H, J=2.0 Hz) , 7.509-7.504 (d, 1H, J=2.0 Hz) , 7.310-7.304 (d, 1H, J=2.4 Hz) , 6.863-6.850 (m, 1H) , 6.652 (s, 1H) , 6.555-6.550 (d, 1H, J=2.0 Hz) , 5.617 (s, 2H) , 3.880 (s, 3H) , 3.863 (s, 3H) , 3.510-3.441 (m, 2H) , 1.273-1.237 (t, 3H, J=2.0 Hz) .
- Step 2: 1- (3, 5-dichlorophenyl) -N-ethyl-N- (ethylsulfonyl) -7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 188)
- At 0℃, to a solution of 1- (3, 5-dichlorophenyl) -N-ethyl-7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (100 mg, 0.2 mmol) in DMF, was added NaH (24 mg, 0.6 mmol) and ethanesulfonyl chloride (77 mg, 0.6 mmol) . The mixture was stirred at 70℃ under N2 overnight, quenched by sat NH4Cl and purified by preparative HPLC to get 1- (3, 5-dichlorophenyl) -N-ethyl-N- (ethylsulfonyl) -7-methoxy-8- (1-methyl-1H-pyrazol-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (15 mg, 12.7%) as a white solid. LCMS m/z [M+H] + 590.1. 1H NMR (400 MHz, CDCl3) : 7.63 (s, 1H) , 7.53 (m, 3H, ) , 7.33-7.31 (m, 1H) , 6.65 (s, 1H) , 6.56 (d, 1H, J=2.0 Hz) , 5.53 (s, 2H) , 4.41-4.35 (m, 2H) , 3.89 (s, 3H) , 3.87 (s, 3H) , 3.74-3.69 (m, 2H) , 1.45-1.41 (m, 6H) .
- Example 17. N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-8- (2-methoxy-5-methylpyridin-3-yl) -N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 189)
- Scheme 16
-
- Step 1: 1- (3, 5-dichlorophenyl) -8- (2-fluoro-5-methylpyridin-3-yl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxylic acid
- To a solution of 8-bromo-1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxylic acid (160 mg, 0.34 mmol) in dioxane/H2O (5/1, 5 mL) was added 2-fluoro-5-methylpyridin-3-ylboronic acid (106 mg, 0.68 mmol) , PdCl2 (dppf) (50 mg, 0.068 mmol) and KF (39 mg, 0.68 mmol) at RT under nitrogen. The reaction mixture was stirred at 90 ℃ for 2h under MW conditions. The reaction mixture was filtered through celite and washed with DCM (50 mL) . The filtrate was concentrated in vacuum and the crude product was purified by purified by preparative HPLC to afford the desired compound (80 mg, 47 %) as an off-white solid. LCMS m/z [M+H] + 500.
- Step 2: N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (2-fluoro-5-methylpyridin-3-yl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- To a solution of 1- (3, 5-dichlorophenyl) -8- (2-fluoro-5-methylpyridin-3-yl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxylic acid (40 mg, 0.08mol) in DMF (3 mL) was added N, 2-dimethylpropan-2-amine (14 mg, 0.16 mmol) , HATU (45 mg, 0.12 mmol) and diisopropyl ethyl amine (21 mg, 0.16 mmol) at RT under nitrogen. The reaction mixture was stirred at RT for 3 h, then the mixture was purified by Combi-Flash (mobile phase: acetonitrile/water (10 mM NH4HCO3) to afford the desired compound (10 mg, 22 %) as a white solid. LCMS (ESI) m/z = 569 [M+H] +.
- Step 3: N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-8- (2-methoxy-5-methylpyridin-3-yl) -N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 189)
- To a solution of N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (2-fluoro-5-methylpyridin-3-yl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (5 mg, 0.009mol) in CH3OH (1 mL) was added sodium methanolate (1.5 mg, 0.027 mmol) at RT. The reaction mixture was stirred at 90 ℃ for 2h under MW conditions. The mixture was purified by Combi-Flash (mobile phase: acetonitrile/water (10 mM NH4HCO3) to afford the desired compound (2 mg, 39 %) as a white solid. LCMS (ESI) m/z = 581 [M+H] +. 1H NMR (400 MHz, CDCl3) δ 7.93 (d, J = 1.6 Hz, 1H) , 7.49 (d, J = 1.8 Hz, 2H) , 7.41 (t, J = 1.8 Hz, 1H) , 7.24 (d, J = 2.3 Hz, 1H) , 6.77 (s, 1H) , 6.68 (s, 1H) , 5.45 (s, 2H) , 3.84 (s, 3H) , 3.78 (s, 3H) , 3.25 (s, 3H) , 2.26 (s, 3H) , 1.52 (s, 9H) .
- Example 18. N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (1- (2, 3-dihydroxypropyl) -1H-pyrazol-4-yl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compounds 190, 191 and 192)
- Scheme 17
-
- Step 1: 1- ( (2, 2-dimethyl-1, 3-dioxolan-4-yl) methyl) -4- (4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolan-2-yl) -1H-pyrazole
- To a solution of 4- (4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolan-2-yl) -1H-pyrazole (500 mg, 2.57 mmol) and 4- (bromomethyl) -2, 2-dimethyl-1, 3-dioxolane (501 mg, 2.57 mmol) in DMF (10 mL) was added Cs2CO3, DMF, 0C (1.25 g, 3.85 mmol) . The reaction mixture was stirred at RT overnight. The solution was filtered and concentrated to give the desired compound (500 mg, 63 %) as a yellow oil. LCMS (ESI) m/z = 309 [M+H] +.
- Step 2: N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (1- ( (2, 2-dimethyl-1, 3-dioxolan-4-yl) methyl) -1H-pyrazol-4-yl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- To a solution of 8-bromo-N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (50 mg, 0.093 mmol) in dioxane/H2O (5/1, 2 mL) were added 1- ( (2, 2-dimethyl-1, 3-dioxolan-4-yl) methyl) -4- (4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolan-2-yl) -1H-pyrazole (57 mg, 0.19 mmol) , PdCl2 (dppf) (8mg, 0.009 mmol) and Cs2CO3 (62 mg, 0.19 mmol) at RT under nitrogen. The reaction mixture was stirred at 90 ℃ for 2h under MW conditions. The mixture was purified by preparative HPLC (mobile phase: acetonitrile/water, 10 mM) to afford N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (1- ( (2, 2-dimethyl-1, 3-dioxolan-4-yl) methyl) -1H-pyrazol-4-yl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (30 mg, 51 %) as a white solid. LCMS (ESI) m/z = 640 [M+H] +.
- Step 3: N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (1- (2, 3-dihydroxypropyl) -1H-pyrazol-4-yl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- To a solution of N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (1- ( (2, 2-dimethyl-1, 3-dioxolan-4-yl) methyl) -1H-pyrazol-4-yl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (30 mg, 0.05 mmol) in THF (3 mL) was added 1M HCl (aq. , 0.6 mL) at 0 ℃. The solution was stirred at rt overnight Then the solution was diluted with CH2Cl2 (100 mL) , washed with sat. NaHCO3, dried over Na2SO4, and concentrated. The crude was purified by preparative HPLC (mobile phase: acetonitrile/water (10 mM) to afford N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (1- (2, 3-dihydroxypropyl) -1H-pyrazol-4-yl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (20 mg, 67 %) as a white solid. LCMS (ESI) m/z = 600 [M+H] +. 1H NMR (400 MHz, CDCl3) δ 7.71 (s, 1H) , 7.55-7.53 (m, 3H) , 7.51 (s, 1H) , 7.07 (s, 1H) , 6.68 (s, 1H) , 5.44 (s, 2H) , 4.27 (d, J = 5.1 Hz, 2H) , 4.11-4.08 (m, 1H) , 3.90 (s, 3H) , 3.68-3.59 (m, 2H) , 3.26 (s, 3H) , 1.52 (s, 9H) . Chiral separation of Compound 190 gave Compound 191 and its stereoisomer Compound 192. Stereochemistry of both Compound 191 and Compound 192 are tentatively assigned.
- The following compounds were prepared using procedures analogous to those disclosed in Scheme 17.
-
-
- Example 19. N-tert-butyl-8- (1-hydroxypropan-2-yloxy) -7-methoxy-N-methyl-1-(thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 193)
- Scheme 18
-
- Step 1: N-tert-butyl-8-hydroxy-7-methoxy-N-methyl-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- At -10℃, BCl3 was added to N-tert-butyl-8-isopropoxy-7-methoxy-N-methyl-1-(thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (200 mg, 0.44 mmol) and srirred at -10℃ for 2h. Then the resulting mixture was added to the sat. NaHCO3 (20 ml) at 0℃, extracted with DCM (50 ml *3) , dried and evaporated to get N-tert-butyl-8-hydroxy-7-methoxy-N-methyl-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (220 mg, crude) as a white solid. LCMS m/z [M+H] + 414.
- Step 2: N-tert-butyl-8- (1-hydroxypropan-2-yloxy) -7-methoxy-N-methyl-1-(thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 193)
- A mixture of N-tert-butyl-8-hydroxy-7-methoxy-N-methyl-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (15 mg, 0.036 mmol) , 2-bromopropan-1-ol (7.4 mg, 0.054 mmol) and Cs2CO3 (35 mg, 0.108 mmol) in DMF (1 ml) was stirred at RT for 5h. Then the mixture was purified by preparative HPLC to get N-tert-butyl-8- (1-hydroxypropan-2-yloxy) -7-methoxy-N-methyl-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (10 mg, 59%) as a white solid. LCMS m/z [M+H] + 472.0.1H NMR (400 MHz, CDCl3) : 7.52-7.47 (m, 2H) , 7.23-7.21 (m, 1H) , 6.60 (s, 1H) , 6.44 (s, 1H) , 5.46-5.38 (m, 2H) , 3.90-3.86 (m, 1H) , 3.83 (s, 3H) . 3.6 (t, 1H, J=6.0 Hz) , 3.25 (s, 3H) , 2.76 (t, 1H, J=6.4 Hz) , 1.51 (s, 9H) , 1.11 (d, 3H, J=6.4 Hz) .
- Example 20. N-tert-butyl-7-methoxy-N-methyl-1- (thiophen-3-yl) -8- (1H-1, 2, 3-triazol-4-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 194)
- Scheme 19
-
- Step 1: N-tert-butyl-8-ethynyl-7-methoxy-N-methyl-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- A mixture of 8-bromo-N-tert-butyl-7-methoxy-N-methyl-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (500 mg, 1.05 mmol) , tributyl (ethynyl) stannane (1.65 g, 5.25 mmol) , Pd (PPh3) 2Cl2 (147 mg, 0.21 mmol) , PPh3 (110 mg, 0.42 mmol) , and TEA (318 mg, 3.15 mmol) in DME (10 ml) and toluene (5 ml) was heated at 140℃ by microwave for 5h. Then the mixture was purified by column chromatography (silica gel: 200-300 mesh, PE: EtOAc = 10: 1) to get N-tert-butyl-8-ethynyl-7-methoxy-N-methyl-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (390 mg, 88%) as a white solid. LCMS m/z [M+H] + 422.1.
- Step 2: N-tert-butyl-7-methoxy-N-methyl-1- (thiophen-3-yl) -8- (1H-1, 2, 3-triazol-4-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 194)
- A mixture of N-tert-butyl-8-ethynyl-7-methoxy-N-methyl-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (110 mg, 0.261 mmol) , NaN3 (85 mg, 1.306 mmol) , sodium ascorbate (103 mg, 0.522 mmol) and CuSO4 (42 mg, 0.261 mmol) in t-BuOH (3 ml) , toluene (3ml) and water (3 ml) was stirred at 80℃ under N2 for 5h. Then the mixture was filtered with celite and extracted with DCM (50 ml*3) and MeOH (5ml*3) to afford the crude product. The residue was purified by Prep-TLC (silica gel: DCM: EA=10: 1) to get N-tert-butyl-7-methoxy-N-methyl-1- (thiophen-3-yl) -8- (1H-1, 2, 3-triazol-4-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (25 mg, 18%) as a white solid. LCMS m/z [M+H] + 465.0. 1H NMR (400 MHz, CDCl3) : 7.65 (s, 1H) , 7.56-7.55 (m, 2H) , 7.25-7.23 (m, 2H) , 6.69 (s, 1H) , 5.55 (s, 2H) , 3.976 (s, 3H) , 3.281 (s, 3H) , 1.515 (s, 9H) .
- Example 21. N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (2-fluoro-3-(hydroxymethyl) phenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 195)
- Scheme 20
-
- Step 1: N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (2-fluoro-3-formylphenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- To a solution of 8-bromo-N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (50 mg, 0.093 mmol) in dioxane/H2O (5/1, 2 mL) were added 2-fluoro-3-formylphenylboronic acid (35 mg, 0.186 mmol) , KF (11 mg, 0.186 mmol) , and Pd (dppf) Cl2 (14 mg, 0.019 mmol) at RT under nitrogen. The reaction mixture was stirred at 90 ℃ for 2h under MW conditions. The reaction mixture was directly purified by Combi-Flash (mobile phase: acetonitrile/water (10 mM NH4HCO3) to afford N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (2-fluoro-3-formylphenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (20 mg, 37 %) as a white solid. LCMS m/z [M+H] + 582.
- Step 2: N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (2-fluoro-3-(hydroxymethyl) phenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 195)
- To a solution of N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (2-fluoro-3-formylphenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (20 mg, 0.034 mmol) in CH3OH (2 mL) and THF (0.5 mL) was added NaBH4 (2.6 mg, 0.069 mmol) . The mixture was filtered, concentrated and purified by preparative HPLC (10 mM NH4HCO3) to give N-tert-butyl-1- (3, 5-dichlorophenyl) -8- (2-fluoro-3- (hydroxymethyl) phenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (15 mg, 75 %) as a white solid. LCMS m/z [M+H] + 584. 1H NMR (400 MHz, CDCl3) δ 7.37 (d, J = 1.8 Hz, 2H) , 7.31-7.22 (m, 2H) , 7.09-6.97 (m, 2H) , 6.73 (s, 1H) , 6.59 (s, 1H) , 5.34 (s, 2H) , 4.65 (s, 2H) , 3.67 (s, 3H) , 3.13 (s, 3H) , 1.40 (s, 9H) .
- Example 22. N- (tert-butyl) -8- ( (1SR, 2SR) -2-carbamoylcyclopropyl) -1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- Scheme 21
-
- Step 1: N- (tert-butyl) -1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-8-vinyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide
- A mixture of 8-bromo-N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (100 mg, 0.186 mmol) , potassium trifluoro (vinyl) borate (5 mg, 0.372 mmol) , Pd (dppf) Cl2·CH2Cl2 (0.1 eq. ) and TEA (2 eq. ) in 2 mL of EtOH (0.1 mol/L) was allowed to reflux for 3 hours under N2. The reaction mixture was concentrated and purified by preparative TLC (DCM) to afford N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-8-vinyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (85 mg, yield: 94.44%) as a white solid. LCMS: m/Z=487 (M+H) +.
- Step 2: (1RS, 2SR) -ethyl 2- (3- (tert-butyl (methyl) carbamoyl) -1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) cyclopropanecarboxylate (Compound 197) and (1SR, 2SR) -ethyl 2- (3- (tert-butyl (methyl) carbamoyl) -1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) cyclopropanecarboxylate (Compound 198)
- A mixture of compound N-tert-butyl-1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-8-vinyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (85 mg, 0.175 mmol ) , ethyl diazoacetate (200 mg, 10 eq. ) in 5 mL of toluene was sealed up and heated at 110℃ for 3 days. The reaction mixture was concentrated and purified by preparative HPLC to afford isomer 1 (10 mg, 10%) as a white solid and isomer 2 (25 mg, 25%) as a white solid.
- Compound 197: LCMS: m/Z=572 [M+H] +. 1H NMR (400MHz, CDCl3) δ7.53-7.51 (m, 2H) . 7.50-7.49 (m, 1H) , 6.82 (s, 1H) , 6.51 (s, 1H) , 5.44-5.33 (m, 2H) , 3.91-3.88 (m, 2H) , 3.78 (s, 3H) , 3.23 (s, 3H) , 2.25-2.23 (m, 1H) , 2.0-1.99 (m, 1H) , 1.48 (s, 9H) , 1.28-1.26 (m, 1H) , 1.17-1.15 (m, 1H) , 1.03-1.01 (m, 3H) . Stereochemistry is tentatively assigned.
- Compound 198: LCMS: m/Z=572 [M+H] +. 1H NMR (400MHz, CDCl3) δ 7.52-7.50 (m, 1H) , 7.45-7.44 (m, 2H) , 6.56 (s, 1H) , 6.43 (s, 1H) , 5.39-5.38 (m, 2H) , 4.16-4.14 (m, 2H) , 3.83 (s, 3H) , 3.24-3.23 (m, 4H) , 2.54-2.50 (m, 1H) , 1.51 (s, 9H) , 1.44-1.39 (m, 1H) , 1.29-1.26 (m, 3H) , 0.92-0.89 (m, 1H) . Stereochemistry is tentatively assigned.
- Step 3: (1SR, 2SR) -2- (3- (tert-butyl (methyl) carbamoyl) -1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) cyclopropanecarboxylic acid (Compound 204)
- To a solution of (1SR, 2SR) -ethyl 2- (3- (tert-butyl (methyl) carbamoyl) -1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) cyclopropanecarboxylate (Compound 198) (20 mg, 0.035 mmol) in MeOH/H2O (3: 1) (4 mL) was added LiOH. H2O (10 eq.) . The reaction mixture was stirred at rom temperature overnight. The solvent was concentrated and purified by Prep-TLC (DCM/MeOH=20: 1) to afford 2- (3- (tert-butyl (methyl) carbamoyl) -1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) cyclopropanecarboxylic acid (17 mg, yield: 89.5%) as a white solid. LCMS: m/z=544 [M+H] +. 1H NMR (400 mHz, CDCl3) δ 7.51-7.50 (m, 2H) . 7.45-7.44 (m, 1H) , 6.57 (s, 1H) , 6.45 (s, 1H) , 5.40-5.38 (m, 2H) , 3.83 (s, 3H) , 3.24 (s, 3H) , 2.56-2.53 (m, 1H) , 1.47 (s, 9H) , 1.46-1.43 (m, 2H) , 1.15-1.10 (m, 1H) .
- Step 4: N- (tert-butyl) -8- ( (1SR, 2SR) -2-carbamoylcyclopropyl) -1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 201)
- A mixture of compound 2- (3- (tert-butyl (methyl) carbamoyl) -1- (3, 5-dichlorophenyl) -7-methoxy-1, 4-dihydrochromeno [4, 3-c] pyrazol-8-yl) cyclopropanecarboxylic acid (from Compound 204) (10 mg, 0.0184 mmol) , NH4Cl (5 eq. ) , HATU (1.2 eq, 8.5 mg) , DIPEA (3 eq. ) in 3 mL of DMF was stirred at room temperature overnight. The reaction mixture was concentrated and purified by preparative HPLC to afford N-tert-butyl-8- (2-carbamoylcyclopropyl) -1- (3, 5-dichlorophenyl) -7-methoxy-N-methyl-1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (8 mg, yield: 80.16%) as a white solid. LC MS: m/z=543 [M+H] +; 1H NMR (400 MHz, CDCl3) δ 7.51-7.50 (m, 1H) . 7.47-7.46 (m, 2H) , 6.57 (s, 1H) , 6.43 (s, 1H) , 5.44 (bs, 1H) , 5.35-5.31 (m, 3H) , 3.23 (s,3H) , 3.02 (s, 3H) , 2.54-2.50 (m, 1H) , 1.46 (s, 9H) , 1.45-1.40 (m, 1H) , 1.34-1.30 (m, 1H) , 0.89-0.84 (m, 1H) .
- The following compounds were prepared using procedures analogous to those disclosed in Scheme 21.
-
-
-
- Example 23. N-tert-butyl-7-methoxy-N-methyl-1- (thiophen-3-yl) -8- (1H-1, 2, 4-triazol-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 207)
- Scheme 22
-
- Step 1: N3-tert-butyl-7-methoxy-N3-methyl-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3, 8-dicarboxamide
- A mixture of N-tert-butyl-8-cyano-7-methoxy-N-methyl-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (200 mg, 0.47 mmol) , 30%H2O2 (2 mL) and NH4OH (2 mL) in MeOH (10 mL) was heated at 50℃ overnight. After cooling to room temperature, the reaction was diluted with EtOAc (60 mL) and washed with water (10 mL×3) , brine (20 mL) , dried (Na2SO4) , and evaporated to afford N3-tert-butyl-7-methoxy-N3-methyl-1-(thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3, 8-dicarboxamide (151mg, 72%) as a white solid which used directly without further purification. m/z=441.1 [M+H] +.
- Step 2: (E) -N3-tert-butyl-N8- ( (dimethylamino) methylene) -7-methoxy-N3-methyl-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3, 8-dicarboxamide
- A mixture of N3-tert-butyl-7-methoxy-N3-methyl-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3, 8-dicarboxamide (30 mg, 0.068 mmol) and DMF-DMA (24 mg, 0.20 mmol) in 1, 4-dioxane (3 mL) was heated at 80℃ for 2hrs under N2. After cooling to room temperature, then the reaction was concentrated to afford (E) -N3-tert-butyl-N8-( (dimethylamino) methylene) -7-methoxy-N3-methyl-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3, 8-dicarboxamide (35mg, 100%) as a light-yellow oil which used directly without further purification. m/z=496 [M+H] + .
- Step 3: N-tert-butyl-7-methoxy-N-methyl-1- (thiophen-3-yl) -8- (1H-1, 2, 4-triazol-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (Compound 207)
- To a solution of (E) -N3-tert-butyl-N8- ( (dimethylamino) methylene) -7-methoxy-N3-methyl-1- (thiophen-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3, 8-dicarboxamide (10 mg, 0.02 mmol) in AcOH (1 mL) at 0℃, 80%N2H4. H2O (3 mg, 0.06 mmol) was added. Then the mixture was stirred at room temperature for 2hrs. Then the reaction was diluted with EtOAc (60 mL) and washed with water (10 mL×3) , NaHCO3 (sat. ) (10 mL×3) , brine (20 mL) , dried (Na2SO4) , evaporated. The residue was purified by Pre-TLC (silica gel: PE: EA=1: 1) to afford N-tert-butyl-7-methoxy-N-methyl-1- (thiophen-3-yl) -8- (1H-1, 2, 4-triazol-3-yl) -1, 4-dihydrochromeno [4, 3-c] pyrazole-3-carboxamide (5mg, 48%) as a white solid. m/z=465.0 [M+H] . 1H NMR (400 MHz, CDCl3) δ ppm 1.46 (br, 1H) , 7.88-7.85 (m, 2H) , 7.55-7.54 (m, 2H) , 7.26 (m, 1H) , 6.72 (s, 1H) , 5.56 (s, 2H) , 4.03 (s, 3H) , 3.29 (s, 3H) , 2.86 (s, 3H) , 1.51 (s, 9H) .
- The following compound was prepared using procedures analogous to those disclosed in Scheme 21.
-
- Example 24. EC50 of cyclic AMP production in CHO FSHR cells + EC20 FSH (Assay A)
- 2500 Cho-FSHR-LUC-1-1-43 cells were plated per well in 5 μl of phenol red free DMEM/F12 + 1%FBS. Cells were plated in 384 well, solid white low volume plates (Greiner 784075) by Multidrop. Cells were assayed by adding 100 μl of 2X EC20 FSH/IBMX in DMEM/F12 + 0.1 %BSA) by Multidrop to 2 μl of test compound stamped in 384 well plates (compounds are diluted 1: 50) . The final FSH concentration was 0.265 pM, and the final IBMX concentration was 200 μM. The compound plate map was as follows: Column 1: 2 μl of DMSO; Column 2: 2 μl of DMSO; Columns 3-12 and 13-24: 2 μl of test compound, diluted 1: 4 in 100% DMSO, or 2 μl of FSH, diluted 1: 4 in DMEM/F12+0.1%BSA. The starting concentration for FSH was 50 nM (final concentration was 0.5 nM) . Furthermore, Column 23 contained 2 μl of EC100 FSH reference (100X) (diluted in DMEM/F12 + 0.1% BSA) at a final concentration of 0.5 nM, and Column 24 contained 2 μl of 1 mM AS707664/2 reference compound 2.5 μl of compound + EC20 FSH mixture were transferred to cell plates (1: 2 dilution into 5 μl of cell media) The plates were incubated at 37 ℃ for 1 h. 10 μl of mixed HTRF (CisBio #62AM4PEC) reagents were added per well and incubated at room temperature for 1 h. The plates were read on Envision using the cAMP HTRF -low volume 384 well protocol. The readout was the calculated fluorescence ratio (665 nm /620 nm) . Values given in percent (%) indicate the percental effect (response) at a certain concentration of agonist relative to the maximum response of the FSH standard. The results are provided below.
- Example 25. Rat granulosa EC50 FSH (Assay B)
- The assay was performed pursuant to the teaching of Yanofsky et al. (2006) Allosteric activation of the follicle-stimulating hormone (FSH) receptor by selective, nonpeptide agonists (JBC 281 (19) : 13226-13233, which is incorporated by reference in the disclosure of the invention) . The results are provided below.
- The data is interpreted according to the following:
-
-
-
-
-
- Example 26. Pharmaceutical preparations
- (A) Injection vials: A solution of 100 g of an active ingredient according to the invention and 5 g of disodium hydrogen phosphate in 3 l of bidistilled water is adjusted to pH 6.5 using 2 N hydrochloric acid, sterile filtered, transferred into injection vials, is lyophilized under sterile conditions and is sealed under sterile conditions. Each injection vial contains 5 mg of active ingredient.
- (B) Suppositories: A mixture of 20 g of an active ingredient according to the invention is melted with 100 g of soy lecithin and 1400 g of cocoa butter, is poured into moulds and is allowed to cool. Each suppository contains 20 mg of active ingredient.
- (C) Solution: A solution is prepared from 1 g of an active ingredient according to the invention, 9.38 g of NaH2PO4·2 H2O, 28.48 g of Na2HPO4·12 H2O and 0.1 g of benzalkonium chloride in 940 ml of bidistilled water. The pH is adjusted to 6.8, and the solution is made up to 1 l and sterilized by irradiation. This solution could be used in the form of eye drops.
- (D) Ointment: 500 mg of an active ingredient according to the invention is mixed with 99.5 g of Vaseline under aseptic conditions.
- (E) Tablets: A mixture of 1 kg of an active ingredient according to the invention, 4 kg of lactose, 1.2 kg of potato starch, 0.2 kg of talc and 0.1 kg of magnesium stearate is pressed to give tablets in a conventional manner in such a way that each tablet contains 10 mg of active ingredient.
- (F) Coated tablets: Tablets are pressed analogously to Example E and subsequently are coated in a conventional manner with a coating of sucrose, potato starch, talc, tragacanth and dye.
- (G) Capsules: 2 kg of an active ingredient according to the invention are introduced into hard gelatin capsules in a conventional manner in such a way that each capsule contains 20 mg of the active ingredient.
- (H) Ampoules: A solution of 1 kg of an active ingredient according to the invention in 60 l of bidistilled water is sterile filtered, transferred into ampoules, is lyophilized under sterile conditions and is sealed under sterile conditions. Each ampoule contains 10 mg of active ingredient.
- (I) Inhalation spray: 14 g of an active ingredient according to the invention are dissolved in 10 l of isotonic NaCl solution, and the solution is transferred into commercially available spray containers with a pump mechanism. The solution could be sprayed into the mouth or nose. One spray shot (about 0.1 ml) corresponds to a dose of about 0.14 mg.
- While a number of embodiments of this invention are described herein, it is apparent that the basic examples may be altered to provide other embodiments that utilize the compounds and methods of this invention. Therefore, it will be appreciated that the scope of this invention is to be defined by the appended claims rather than by the specific embodiments that have been represented by way of example.
Claims (42)
- A compound of formula I,or a pharmaceutically acceptable salt thereof, wherein:X is O, S, SO, SO2, or NR;Y is O, S, or NR;Z is O, S, SO, SO2, or N; wherein when Z is O, S, SO, or SO2, then p is 0;each R is independently hydrogen, C1–6 aliphatic, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted; ortwo R groups on the same atom are taken together with the atom to which they are attached to form an aryl ring, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;Ring A is a fused aryl, a fused 3-8 membered saturated or partially unsaturated carbocyclic ring, a fused 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a fused 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur;R1 is –OR, –SR, –CN, –NO2, -SO2R, -SOR, -C (O) R, -CO2R, -C (O) N (R) 2, -NRC (O) R, -NRC (O) N (R) 2, -NRSO2R, or –N (R) 2;R2 is –R, halogen, -haloalkyl, –OR, –SR, –CN, –NO2, -SO2R, -SOR, -C (O) R, -CO2R, -C (O) N (R) 2, -NRC (O) R, -NRC (O) N (R) 2, -NRSO2R, or –N(R) 2;R3 is an optionally substituted aryl;each R4 is independently–R, halogen, -haloalkyl, –OR, –SR, –CN, –NO2, -SO2R, -SOR, -C (O) R, -CO2R, -C (O) N (R) 2, -NRC (O) R, -NRC (O) N (R) 2, -NRSO2R, or –N(R) 2;R5 is C1–6 aliphatic, -SO2R, -SOR, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;R6 is hydrogen, C1–6 aliphatic, -SO2R, -SOR, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;or R5 and R6, together with the atom to which each is attached, form a 3-8 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 3-8 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;n is 0, 1, or 2; andp is 0 or 1.
- The compound of claim 1, wherein X is O.
- The compound of claim 1, wherein Y is O.
- The compound of claim 1, wherein Z is N.
- The compound of claim 1, wherein Ring A is phenyl.
- The compound of claim 1, wherein R1 is –OR, and R2 is aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- The compound of claim 6, wherein R1 is –OR, and R2 is a 6-membered aryl ring, a 3-membered carbocyclic ring, or a 5-6 membered monocyclic heteroaryl ring having 1-4 nitrogen atoms; each of which is optionally substituted.
- The compound of claim 7, wherein R2 is
- The compound of claim 1, wherein R3 is an optionally substituted phenyl.
- The compound of claim 9, wherein R3 is
- The compound of claim 1, wherein R5 is optionally substituted C1–6 aliphatic.
- The compound of claim 11, wherein R5 is methyl, t-butyl,
- The compound of claim 1, wherein Z is N and R5, R6, and Z together with the atoms to which each is attached form an optionally substituted 3-8 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- The compound of claim 13, wherein Z is N and the ring formed by Z, R5 and R6 is
- The compound of claim 1, wherein R6 is optionally substituted C1–6 aliphatic or -SO2R.
- The compound of claim 15, wherein R6 is methyl, ethyl, t-butyl, or
- The compound of claim 1, of formula I-e:or a pharmaceutically acceptable salt thereof.
- The compound of claim 1, of formula I-f:or a pharmaceutically acceptable salt thereof, wherein:R2 is aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;R3 is an optionally substituted phenyl;R5 is an optionally substituted C1–6 aliphatic;R6 is an optionally substituted C1–6 aliphatic or -SO2R;or R5 and R6, together with the atom to which each is attached, form an optionally substituted 3-8 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- A compound of formula II,or a pharmaceutically acceptable salt thereof, wherein:X is O, S, SO, SO2, or NR;Y is O, S, or NR;Z is O, S, SO, SO2, or N; wherein when Z is O, S, SO, or SO2, then p is 0;each R is independently hydrogen, C1–6 aliphatic, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted; ortwo R groups on the same atom are taken together with the atom to which they are attached to form an aryl ring, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;Ring A is a fused aryl, a fused 3-8 membered saturated or partially unsaturated carbocyclic ring, a fused 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a fused 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur;R1 is –OR, –SR, –CN, –NO2, -SO2R, -SOR, -C (O) R, -CO2R, -C (O) N (R) 2, -NRC (O) R, -NRC (O) N (R) 2, -NRSO2R, or –N (R) 2;R2 is –R, halogen, -haloalkyl, –OR, –SR, –CN, –NO2, -SO2R, -SOR, -C (O) R, -CO2R, -C(O) N (R) 2, -NRC (O) R, -NRC (O) N (R) 2, -NRSO2R, or –N (R) 2;R3 is an optionally substituted 5-6 membered monocyclic heteroaryl ring;each R4 is independently–R, halogen, -haloalkyl, –OR, –SR, –CN, –NO2, -SO2R, -SOR, -C (O) R, -CO2R, -C (O) N (R) 2, -NRC (O) R, -NRC (O) N (R) 2, -NRSO2R, or–N (R) 2;R5 is C1–6 aliphatic, -SO2R, -SOR, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;R6 is hydrogen, C1–6 aliphatic, SO2R, -SOR, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, a 3-7 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;or R5 and R6, together with the atom to which each is attached, form a 3-8 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 3-8 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;n is 0, 1, or 2; andp is 0 or 1.
- The compound of claim 19, wherein X is O.
- The compound of claim 19, wherein Y is O.
- The compound of claim 19, wherein Z is N.
- The compound of claim 19, wherein Ring A is phenyl.
- The compound of claim 19, wherein R1 is –OR, and R2 is –OR, C1–6 aliphatic, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted.
- The compound of claim 24, wherein R1 is –OR, and R2 is –OR, C1–6 aliphatic, a 6-membered aryl ring, or a 5-6 membered monocyclic heteroaryl ring having 1-4 nitrogen atoms; each of which is optionally substituted.
- The compound of claim 19, wherein R2 is
- The compound of claim 19, wherein R3 is thiophenyl or pyridyl.
- The compound of claim 27, wherein R3 is
- The compound of claim 19, wherein R5 is optionally substituted C1–6 aliphatic.
- The compound of claim 29, wherein R5 is methyl, t-butyl,
- The compound of claim 19, wherein Z is N and R5, R6, and Z together with the atoms to which each is attached form an optionally substituted 3-8 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- The compound of claim 31, wherein Z is N and the ring formed by Z, R5 and R6 is
- The compound of claim 19, wherein R6 is optionally substituted C1–6 aliphatic.
- The compound of claim 33, wherein R6 is methyl or t-butyl.
- The compound of claim 19, of formula II-f:or a pharmaceutically acceptable salt thereof, wherein:R2 is C1–6 aliphatic, –OR, aryl, a 3-8 membered saturated or partially unsaturated carbocyclic ring, or a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each of which is optionally substituted;R3 is an optionally substituted thiophenyl or pyridyl;R5 is an optionally substituted C1–6 aliphatic;R6 is an optionally substituted C1–6 aliphatic or -SO2R;or R5 and R6, together with the atom to which each is attached, form an optionally substituted 3-8 membered heterocylic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
- The compound of claim 1 or claim 19, selected from Table 1.
- A pharmaceutical composition comprising a compound of claim 1 or claim 19, and a pharmaceutically acceptable adjuvant, carrier, or vehicle.
- A method for modulating FSHR, or a mutant thereof, activity in a patient or in a biological sample, comprising the step of administering to said patient or contacting said biological sample with a compound of claim 1 or a physiologically acceptable salt thereof.
- A method for treating a FSHR-mediated disorder in a patient in need thereof, comprising the step of administering to said patient a compound of claim 1 or claim 19.
- A method for treating fertility disorders in a subject, comprising the step of administering to said subject a compound of claim 1 or claim 19, or a physiologically acceptable salt thereof.
- Use of a compound according to claim 1 or claim 19, or physiologically acceptable salts thereof, for the production of a medicament for the prophylactic or therapeutic treatment of a FSHR-mediated disorder.
- A process for manufacturing a compound of formula I or formula II according to claim 1 or claim 19, comprising the steps of:reacting a compound of formula (III)wherein X, Y, R1, R3, R4, and n are as defined in claim 1 or claim 19, and LG is a leaving group;with a compound of formula ZH (R5) (R6) pwherein Z, R5, R6, and p are as defined in claim 1 or claim 19;to yield a compound of formula I or formula II:wherein X, Y, Z, R1, R2, R3, R4, R5, R6, n, and p, are as defined in claim 1 or claim 19.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/080519 WO2015196335A1 (en) | 2014-06-23 | 2014-06-23 | Pyrazole compounds as modulators of fshr and uses thereof |
PCT/CN2014/094459 WO2015196759A1 (en) | 2014-06-23 | 2014-12-22 | Pyrazole compounds as modulators of fshr and uses thereof |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3157929A1 true EP3157929A1 (en) | 2017-04-26 |
EP3157929A4 EP3157929A4 (en) | 2018-03-07 |
EP3157929B1 EP3157929B1 (en) | 2023-12-13 |
Family
ID=54936412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14896199.8A Active EP3157929B1 (en) | 2014-06-23 | 2014-12-22 | Pyrazole compounds as modulators of fshr and uses thereof |
Country Status (12)
Country | Link |
---|---|
US (3) | US10208055B2 (en) |
EP (1) | EP3157929B1 (en) |
JP (3) | JP6557331B2 (en) |
KR (1) | KR102416279B1 (en) |
CN (1) | CN106573937B (en) |
AU (3) | AU2014398875B2 (en) |
CA (1) | CA2955415A1 (en) |
DK (1) | DK3157929T3 (en) |
ES (1) | ES2972131T3 (en) |
MX (1) | MX2017000182A (en) |
RU (1) | RU2752173C2 (en) |
WO (2) | WO2015196335A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015196335A1 (en) | 2014-06-23 | 2015-12-30 | Tocopherx, Inc. | Pyrazole compounds as modulators of fshr and uses thereof |
CN106967076A (en) * | 2017-03-30 | 2017-07-21 | 河南师范大学 | One kind has 6H dibenzopyrans structural compounds and preparation method thereof |
CN106977523A (en) * | 2017-03-30 | 2017-07-25 | 河南师范大学 | FSHR antagonists with phenyl and nafoxidine structure and preparation method thereof |
CN106866692A (en) * | 2017-03-30 | 2017-06-20 | 毛阿龙 | The preparation method of the FSHR antagonists with the Dioxin ketone structure of benzo 1,4 |
CA3085147A1 (en) | 2017-12-22 | 2019-06-27 | Petra Pharma Corporation | Chromenopyridine derivatives as phosphatidylinositol phosphate kinase inhibitors |
MX2020011405A (en) * | 2018-05-03 | 2021-01-08 | Jiangsu Hengrui Medicine Co | Benzimidazole derivatives as modulators of retinoid-related orphan receptor gamma (rorï) and pharmaceutical uses thereof. |
TW202112784A (en) | 2019-06-17 | 2021-04-01 | 美商佩特拉製藥公司 | Chromenopyrimidine derivatives as phosphatidylinositol phosphate kinase inhibitors |
CN113754678B (en) * | 2020-06-02 | 2023-03-10 | 江苏恒瑞医药股份有限公司 | Dihydrothiochromene pyrazole derivative, preparation method and medical application thereof |
CN115835863A (en) * | 2020-07-09 | 2023-03-21 | 江苏恒瑞医药股份有限公司 | Oxaazabicyclic derivatives, preparation method and application thereof in medicines |
CN115836077A (en) * | 2020-07-29 | 2023-03-21 | 江苏恒瑞医药股份有限公司 | Oxaazaspiro derivatives, preparation method and medical application thereof |
KR20240101561A (en) | 2021-10-14 | 2024-07-02 | 인사이트 코포레이션 | Quinoline compounds as inhibitors of KRAS |
WO2024044778A2 (en) * | 2022-08-26 | 2024-02-29 | Celmatix Inc. | Novel modulators of fshr and uses thereof |
WO2024077006A1 (en) * | 2022-10-05 | 2024-04-11 | Radionetics Oncology, Inc. | Follicle-stimulating hormone receptor (fshr) targeted therapeutics and uses thereof |
WO2024184461A2 (en) | 2023-03-08 | 2024-09-12 | Ferring B.V. | Small molecule fsh receptor modulators |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8814586D0 (en) * | 1988-06-20 | 1988-07-27 | Erba Carlo Spa | Tricyclic 3-oxo-propanenitrile derivatives & process for their preparation |
EP1307193A1 (en) | 2000-07-27 | 2003-05-07 | Affymax Research Institute | Agonists of follicle stimulating hormone activity |
ES2286275T3 (en) * | 2001-09-19 | 2007-12-01 | Pharmacia Corporation | PIRAZOLO COMPOUNDS REPLACED FOR THE TREATMENT OF INFLAMMATION. |
AU2004209495A1 (en) * | 2003-02-07 | 2004-08-19 | Daiichi Pharmaceutical Co., Ltd. | Pyrazole derivative |
MX2007014085A (en) * | 2005-05-12 | 2008-02-07 | Wyeth Corp | Pyrrolobenzodiazepines and heterocyclic carboxamide derivatives as follicle stimulating hormone receptor (fsh-r) antagonists. |
WO2008035356A2 (en) * | 2006-09-20 | 2008-03-27 | Glenmark Pharmaceuticals Limited | Novel cannabinoid receptor ligands, pharmaceutical compositions containing them, and process for their preparation |
IT1394400B1 (en) | 2009-02-25 | 2012-06-15 | Neuroscienze Pharmaness S C Ar L | PHARMACEUTICAL COMPOSITIONS |
IT1393930B1 (en) * | 2009-02-25 | 2012-05-17 | Neuroscienze Pharmaness S C A R L | PHARMACEUTICAL COMPOUNDS |
TWI461426B (en) * | 2009-05-27 | 2014-11-21 | Merck Sharp & Dohme | (dihydro)imidazoiso[5,1-a]quinolines |
AU2010317883B2 (en) | 2009-11-13 | 2015-08-06 | Merck Serono S.A. | Tricyclic pyrazol amine derivatives |
CA2837524C (en) | 2011-07-01 | 2019-08-20 | Merck Patent Gmbh | Dihydropyrazoles |
ES2649995T3 (en) | 2011-07-18 | 2018-01-16 | Merck Patent Gmbh | Benzamides |
AU2013208082B2 (en) | 2012-01-10 | 2017-07-20 | Merck Patent Gmbh | Benzamide derivatives as modulators of the follicle stimulating hormone |
AU2013218368B2 (en) | 2012-02-08 | 2017-09-07 | Merck Patent Gmbh | Deuterated thiazolidinone analogues as agonists for follicle stimulating hormone receptor |
EP3013832B1 (en) * | 2013-06-24 | 2020-11-04 | Merck Patent GmbH | Pyrazole compounds as modulators of fshr and uses thereof |
AU2014302710B2 (en) | 2013-06-24 | 2018-10-04 | Merck Patent Gmbh | Imidazole compounds as modulators of FSHR and uses thereof |
WO2015196335A1 (en) | 2014-06-23 | 2015-12-30 | Tocopherx, Inc. | Pyrazole compounds as modulators of fshr and uses thereof |
-
2014
- 2014-06-23 WO PCT/CN2014/080519 patent/WO2015196335A1/en active Application Filing
- 2014-12-22 US US15/321,249 patent/US10208055B2/en active Active
- 2014-12-22 ES ES14896199T patent/ES2972131T3/en active Active
- 2014-12-22 MX MX2017000182A patent/MX2017000182A/en unknown
- 2014-12-22 CN CN201480081442.1A patent/CN106573937B/en active Active
- 2014-12-22 CA CA2955415A patent/CA2955415A1/en active Pending
- 2014-12-22 AU AU2014398875A patent/AU2014398875B2/en active Active
- 2014-12-22 JP JP2017519756A patent/JP6557331B2/en active Active
- 2014-12-22 RU RU2017101829A patent/RU2752173C2/en active
- 2014-12-22 KR KR1020177001959A patent/KR102416279B1/en active IP Right Grant
- 2014-12-22 DK DK14896199.8T patent/DK3157929T3/en active
- 2014-12-22 WO PCT/CN2014/094459 patent/WO2015196759A1/en active Application Filing
- 2014-12-22 EP EP14896199.8A patent/EP3157929B1/en active Active
-
2018
- 2018-12-21 US US16/229,119 patent/US10941152B2/en active Active
-
2019
- 2019-07-11 JP JP2019129171A patent/JP2019196375A/en active Pending
-
2020
- 2020-02-20 AU AU2020201240A patent/AU2020201240A1/en not_active Abandoned
- 2020-11-18 JP JP2020191715A patent/JP2021038245A/en active Pending
-
2021
- 2021-01-05 US US17/141,621 patent/US20220402929A1/en not_active Abandoned
- 2021-07-09 AU AU2021204814A patent/AU2021204814B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20220402929A1 (en) | 2022-12-22 |
US10208055B2 (en) | 2019-02-19 |
JP2019196375A (en) | 2019-11-14 |
KR20170033314A (en) | 2017-03-24 |
CN106573937A (en) | 2017-04-19 |
CA2955415A1 (en) | 2015-12-30 |
CN106573937B (en) | 2022-02-11 |
US20170253605A1 (en) | 2017-09-07 |
WO2015196335A1 (en) | 2015-12-30 |
AU2020201240A1 (en) | 2020-03-12 |
KR102416279B1 (en) | 2022-07-01 |
US10941152B2 (en) | 2021-03-09 |
AU2021204814B2 (en) | 2023-07-20 |
RU2017101829A3 (en) | 2018-08-30 |
RU2752173C2 (en) | 2021-07-23 |
ES2972131T3 (en) | 2024-06-11 |
JP2021038245A (en) | 2021-03-11 |
JP6557331B2 (en) | 2019-08-07 |
AU2014398875B2 (en) | 2019-11-21 |
EP3157929B1 (en) | 2023-12-13 |
WO2015196759A1 (en) | 2015-12-30 |
JP2017524733A (en) | 2017-08-31 |
MX2017000182A (en) | 2017-06-30 |
EP3157929A4 (en) | 2018-03-07 |
AU2014398875A1 (en) | 2017-02-02 |
RU2017101829A (en) | 2018-07-27 |
DK3157929T3 (en) | 2024-02-05 |
US20190135823A1 (en) | 2019-05-09 |
AU2021204814A1 (en) | 2021-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10941152B2 (en) | Pyrazole compounds as modulators of FSHR and uses thereof | |
US11365199B2 (en) | Pyrazole compounds as modulators of FSHR and uses thereof | |
AU2014302710B2 (en) | Imidazole compounds as modulators of FSHR and uses thereof | |
NZ714201B2 (en) | Pyrazole compounds as modulators of fshr and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170123 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: PALMER, STEPHEN S. Inventor name: NATARAJA, SELVARAJ G. Inventor name: YU, HENRY Inventor name: QI, CHANGHE Inventor name: TEMPEST, PAUL |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20180201 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C07D 491/052 20060101AFI20180126BHEP Ipc: A61P 15/08 20060101ALI20180126BHEP Ipc: A61K 31/4162 20060101ALI20180126BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190121 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ARES TRADING S.A. |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602014089106 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C07D0491052000 Ipc: A61P0005240000 Ref country code: DE Ref legal event code: R079 Free format text: PREVIOUS MAIN CLASS: C07D0491052000 Ipc: A61P0005240000 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230518 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A61P 15/08 20060101ALI20230606BHEP Ipc: C07D 491/052 20060101ALI20230606BHEP Ipc: A61P 43/00 20060101ALI20230606BHEP Ipc: A61P 5/24 20060101AFI20230606BHEP |
|
INTG | Intention to grant announced |
Effective date: 20230626 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014089106 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20240202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240314 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231213 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240130 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20231213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231213 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240314 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231229 Year of fee payment: 10 Ref country code: GB Payment date: 20240109 Year of fee payment: 10 Ref country code: CH Payment date: 20240116 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1639984 Country of ref document: AT Kind code of ref document: T Effective date: 20231213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231213 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231213 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231213 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231213 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231213 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240227 Year of fee payment: 10 Ref country code: FR Payment date: 20240119 Year of fee payment: 10 Ref country code: DK Payment date: 20240215 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2972131 Country of ref document: ES Kind code of ref document: T3 Effective date: 20240611 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240413 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231213 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231213 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231213 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231213 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240413 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231213 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231213 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240415 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231222 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20231231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240415 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231213 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231213 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231231 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |