EP3155871B1 - Planar heating element with a structure of ptc resistance - Google Patents

Planar heating element with a structure of ptc resistance Download PDF

Info

Publication number
EP3155871B1
EP3155871B1 EP15728852.3A EP15728852A EP3155871B1 EP 3155871 B1 EP3155871 B1 EP 3155871B1 EP 15728852 A EP15728852 A EP 15728852A EP 3155871 B1 EP3155871 B1 EP 3155871B1
Authority
EP
European Patent Office
Prior art keywords
heating element
conductive track
resistor structure
ptc resistor
overlap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15728852.3A
Other languages
German (de)
French (fr)
Other versions
EP3155871A1 (en
Inventor
Jiri Holoubek
Mirko Lehmann
Josef Vlk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innovative Sensor Technology IST AG
Original Assignee
Innovative Sensor Technology IST AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innovative Sensor Technology IST AG filed Critical Innovative Sensor Technology IST AG
Publication of EP3155871A1 publication Critical patent/EP3155871A1/en
Application granted granted Critical
Publication of EP3155871B1 publication Critical patent/EP3155871B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0014Devices wherein the heating current flows through particular resistances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/003Heaters using a particular layout for the resistive material or resistive elements using serpentine layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/007Heaters using a particular layout for the resistive material or resistive elements using multiple electrically connected resistive elements or resistive zones
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/016Heaters using particular connecting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/02Heaters using heating elements having a positive temperature coefficient

Definitions

  • the invention relates to a planar heating element with a PTC resistance structure, which is arranged in a defined surface area of a first surface of a carrier substrate, with the PTC resistance structure being assigned electrical connection contacts for connection to an electrical voltage source. Furthermore, the invention relates to a heating arrangement in which the planar heating element according to the invention is used. Furthermore, the invention describes preferred uses of the heating element according to the invention or the heating arrangement according to the invention. In addition, a method for producing the heating element according to the invention is described.
  • the resistance structure is connected to an electrical voltage source.
  • heatable resistance structures are used in thermal flowmeters to determine and/or monitor the mass flow of a medium through a measuring tube.
  • Resistance structures that are used for temperature measurement and heatable resistance structures are usually made of a PTC (Positive Temperature Coefficient) material, preferably made of nickel or platinum.
  • PTC resistance structures are characterized by the fact that the ohmic resistance increases as the temperature rises, with the functional dependency being highly linear over a large temperature range.
  • the disadvantage of the known resistance structures lies in the relatively high resistance of these structures. As a result, a relatively high voltage must be provided for the power supply. If, in addition, a uniform temperature distribution is required within a defined surface area, this cannot be achieved with a known meander structure.
  • Such a structure has the disadvantage that - caused by process fluctuations in the production of the coatings - can result in different line widths. This leads to the formation of hotspots, since the resistance is greater in the area of smaller line widths. This leads to locally stronger heating (hotspot), which is intensified by the fact that the heating also increases the resistance.
  • hotspot locally stronger heating
  • such a solution means that high current densities can result in electromigration.
  • the DE 195 23 301 A1 describes a heating structure in which an external and an internal conductor track have the same width. Because the outside trace is longer than the inside trace, the resistance of the outside trace is greater than the resistance of the inside trace.
  • the DE 10 2005 057 566 A1 refers to a gas sensor for measuring a physical property of a measurement gas.
  • the property is, for example, the concentration of a gas component, such as oxygen, or the temperature.
  • the resistance heater has current paths connected in parallel, which extend over an extensive heating area.
  • the U.S.A. 4,970,376 describes a transparent heating element for heating a glass substrate.
  • the transparent heating element is part of a glass cell or container and is applied to its surface.
  • the heating element applied to the glass cell or glass container is transparent to visible light or to IR radiation.
  • the invention is based on the object of proposing a planar heating element which has at least approximately a homogeneous or uniform temperature distribution in a defined surface area.
  • the PTC resistor structure has at least one inner conductor track and one outer conductor track connected in parallel, with the inner conductor track having a greater resistance than the outer conductor track and with the resistances of the inner conductor track and the outer conductor track being dimensioned in this way are that when a voltage is applied, there is a substantially uniform temperature distribution within the defined surface area.
  • the effect is exploited that the conductor track with the lower resistance makes a higher contribution to the heating output. Therefore, the parallel connection of the two traces has a self-stabilizing effect. If, for example, one of the two conductor tracks has a narrowing caused by the process technology, no hotspot usually forms at this point.
  • the heating zone is essentially limited to the defined surface area.
  • Small ohmic resistances can be realized with the at least two conductor tracks running in parallel and connected in parallel.
  • the total resistance of the PTC resistance structure at room temperature without applied heating voltage is preferably less than 3 ohms.
  • the PTC resistance structure is preferably designed in such a way that, in addition to the heating function, it also provides measured temperature values, so that the PTC resistance structure serves as a heating element and as a temperature sensor.
  • the conductor track lying on the inside and the conductor track lying on the outside are made of the same material; the different resistances are realized via different cross-sectional areas and/or length extensions of the internal conductor track and the external conductor track.
  • This first configuration has the advantage that the resistance structure consists of a single material, which can be produced in one production step. Nickel or platinum is preferably used as the material for the PTC resistance structure. Platinum has the advantage that it can also be used in a high-temperature range above 300°C without any problems.
  • the conductor track lying on the inside and the conductor track lying on the outside run essentially parallel in the central partial area.
  • the inner conductor track and the outer conductor track also run essentially parallel in the second partial area at the end.
  • the conductor track lying on the inside and the conductor track lying on the outside are each connected to run towards one another with each of the two electrical connection contacts.
  • the two conductor tracks in the first partial area at the end therefore preferably have a V-shape. If there are no abrupt changes in the geometry of the PTC resistance structure, high temperature stability can be achieved in the defined surface area. In particular, the formation of so-called hot spots is avoided.
  • the two conductor tracks can be connected to one another in the first partial area at the end via a section running at right angles to the two conductor tracks.
  • both the internal conductor track and the external conductor track in the second partial area at the end can have either a V-shape or a rectangular shape.
  • the conductor track lying on the inside and the conductor track lying on the outside run essentially parallel to one another.
  • Another shape is also possible, for example a semicircular shape.
  • an advantageous embodiment proposes that the resistance per length of the inner conductor track and/or the resistance per length of the outer conductor track in the first partial area at the end and/or in the second partial area at the end are/is greater than the resistance per length of the inner conductor track and/or or the external conductor track in the middle section.
  • the heating element according to the invention provides that at least one geometric parameter of the inner conductor track and/or the outer conductor track, such as line width and filling thickness, is varied at least in a subsection of at least one subarea in such a way that a locally occurring deviation from the uniform temperature distribution in the affected Section is at least approximately balanced.
  • the carrier substrate preferably consists of a material with a thermal conductivity that is below a predetermined limit value, so that between the defined surface area with a uniform temperature distribution and the connection contacts large heat gradient occurs that is above a specified limit value, typically above 50°C/mm. This ensures that the heated 'hot' zone is essentially limited to the defined surface area and is thermally decoupled from the 'cold' zone lying outside.
  • a material is preferably used as the carrier material whose thermal conductivity (thermal conductivity) is less than 5 watts/m*K.
  • the thermal conductivity is preferably less than 3 watts/m ⁇ K
  • the defined surface area has a limitation that is essentially given by the outer dimensions of the outer conductor track.
  • This defined surface area characterizes the so-called heating zone or hot zone, in which the temperature is at least 300°C.
  • the limitation of the heating zone to the area defined by the outer dimensions of the outer conductor track is achieved in particular by the fact that the carrier material is characterized by low thermal conductivity. In addition, it preferably has a thickness of less than or equal to 1 mm.
  • connection contacts In order to achieve heat exchange between the heating zone and the cold zone, which is usually at room temperature and in which the connection contacts are located, electrical connecting lines with a low filling density are provided. These are made of preferably high-purity gold (gold content at least greater than 95%, preferably greater than 99%).
  • the connection contacts are made of silver or a silver alloy.
  • the resistance of the PTC resistance structure is below 10 ⁇ at room temperature, preferably below 3 ⁇ or even 1 ⁇ . This is achieved by choosing at least one suitable material (preferably platinum) and a suitable dimensioning of the corresponding conductor track structure.
  • Zirconium oxide is preferably used as the carrier substrate in connection with the invention.
  • the thickness of the carrier substrate is preferably less than 1 mm.
  • Zirconium oxide has the following advantages: low thermal conductivity (which is, however, sufficient to compensate for any local hotspots that may occur), high mechanical stability even with small thicknesses and, with regard to thermal expansion, optimal adaptation to metallic components of the heating element, especially if the conductor tracks are made of pass platinum. This configuration ensures that the homogeneous temperature distribution is limited to the surface area that is defined by the external dimensions of the resistance structure. Outside the PTC resistance structure, the temperature drops a lot due to the high temperature gradient off quickly.
  • the shape of the carrier substrate is preferably adapted to the shape of the PTC resistance structure.
  • the carrier material is therefore V-shaped or rectangular in the second partial area at the end. If the second partial area at the end has a V-shape—that is, if it has a point—then the heating element can be inserted into a medium to be heated.
  • An example of a chip arrangement with a tip is the EP 1 189 281 B1 refer to.
  • At least one essentially electrically insulating separating layer which is preferably made of glass, is provided on or in the carrier substrate.
  • the carrier substrate is preferably made of zirconium oxide.
  • zirconium oxide has properties that predestine it for use in the heating element according to the invention.
  • zirconium oxide has the disadvantage that it becomes conductive at temperatures above 200°C.
  • the application of a separating layer prevents the conductivity from occurring. More information about this known solution can be found in the EP 1 801 548 A2 .
  • the carrier substrate is assigned at least one passivation layer, which is preferably applied to the surface of the carrier substrate.
  • the passivation layer preferably consists at least partially of the material of the separating layer.
  • the passivation layer serves to protect against mechanical, chemical and electrical influences.
  • the passivation layer is preferably applied to both surfaces of the heating element. This makes it possible to prevent mechanical bending of the carrier substrate.
  • the material of the passivation layer can be a tightly sealed glass. More information on a passivation layer that can be used in connection with the present invention can be found in WO 2009/016013 A1 .
  • the PTC resistance structure is preferably made of a conductive material that is suitable for use in the high-temperature range.
  • the PTC resistance structure is preferably made of platinum. Platinum has the advantage that, in addition to its good temperature stability, it has a well-defined, almost linear temperature characteristic and a very high electromigration resistance. In addition, due to the PTC characteristics of a platinum resistance structure, a self-regulation of the temperature can be approximately achieved when the resistance structure is connected to a quasi-constant voltage source (eg a battery). In addition, a platinum PTC resistor structure is recognized as an industry-standard temperature sensor.
  • the electrical connection contacts are made of a precious metal or a precious metal alloy, the precious metal preferably being silver and the precious metal alloy preferably being a silver alloy.
  • Silver also enjoys recognition as an industry standard and has the advantage that it can be easily soldered or welded.
  • silver has the disadvantage that it diffuses laterally into platinum at temperatures above 300°C. Therefore, when used in the high-temperature range (above 250°C), no direct connection between a platinum resistor structure and silver connection contacts is possible. It should be mentioned that in practice silver is only used as an alloy. This is due to the fact that a certain proportion of palladium, or here preferably a certain proportion of platinum, blocks the mobility of the silver atoms and thus prevents material migration.
  • electrical connecting lines are provided between the electrical connection contacts and the first partial area at the end of the first resistance structure. These are also made of a precious metal, preferably gold. Gold ensures a stable transition to platinum up to 850°C, it is characterized by good electrical conductivity and is technologically available in a very pure form for compact thin layers.
  • both the connecting lines and the conductor tracks in the first partial area at the end of the PTC resistor structure and the connecting lines and the electrical connection contacts have a defined overlap.
  • the overlap ensures reliable electrical contact.
  • the length of the overlap between the connecting lines and the conductor tracks in the first partial area of the PTC resistor structure at the end is greater than the distance between the inner conductor track and the outer conductor track.
  • the depth of the overlap between the connecting lines and the conductor tracks in the first end-side partial area of the PTC resistor structure is preferably greater than 100 ⁇ m, in particular in the case of a linear or V-shaped overlap. It is considered to be particularly advantageous in connection with the invention if the length and the depth of the overlap between the connecting lines and the conductor tracks in the first partial area at the end of the PTC resistor structure are approximately greater than 5:1.
  • the first end-side partial area of the PTC resistance structure is, according to the invention, with regard to its geometric parameters designed so that the physical heating properties of the PTC resistance structure are at least approximately unchanged.
  • the adaptation preferably takes place by changing the filling density or the line width of the conductor tracks or the connecting lines in the vicinity of the respective overlap.
  • the overlap between the connecting lines and the conductor tracks in the first partial area at the end of the PTC resistance structure is preferably V-shaped or line-shaped; however, it can also be designed in the form of a web.
  • the filling thickness of the conductor tracks of the PTC resistance structure which preferably consist of platinum, is between 5-10 ⁇ m, at least in the first partial area at the end.
  • the filling thickness of the connecting lines which are preferably made of gold, is preferably between 3-10 ⁇ m.
  • the thickness of the connection contacts which preferably consist of silver or a silver alloy, is preferably in the range of 10-30 ⁇ m.
  • the linear expansion of the PTC resistance structure is on the order of a few millimeters, preferably in a range of 2-10 mm.
  • the resistance of the PTC resistor structure at room temperature without an applied heating voltage is preferably below 3 ⁇ , preferably below 1 ⁇ .
  • the PTC resistance structure Since the PTC resistance structure has a very low resistance, it is possible to heat the PTC resistance structure to a high temperature with a relatively low energy supply.
  • a voltage source with a few volts, e.g. 3 volts, is sufficient to operate the heating element.
  • planar heating element using thick-film technology
  • the overall length of the planar heating element is 19 mm and the width is 5 mm.
  • the conductor track on the outside is about twice as wide as the one on the inside (eg 800 ⁇ m to 400 ⁇ m).
  • the carrier substrate made of zirconium oxide has a thickness of 0.3 mm.
  • the separation layer and the passivation layer each have a thickness of 15 ⁇ m and are arranged on both surfaces of the planar heating element. That The planar heating element described above can easily reach a heating temperature of 450°C.
  • the planar heating element according to the invention can be produced using thin or thick film technology. However, due to the more cost-effective manufacturing processes, it is preferably manufactured using thick-film technology.
  • the heating element according to the invention is characterized by high dynamics. After switching on, the operating temperature is reached very quickly; after switching off, the planar heating element cools down very quickly to the ambient room temperature.
  • the temperature in the defined surface area with a substantially uniform temperature distribution is preferably in a temperature range between 300°C and 750°C. It goes without saying that, depending on the design and use of materials for the heating element according to the invention, temperatures outside the previously specified range can also be covered.
  • An overlap of the two conductor tracks, which are preferably made of platinum, with the connecting lines, which are preferably made of gold, is necessary in order to ensure reliable electrical contact.
  • the requirements placed on the components of the heating element made of pure metals eg Au and PI
  • These degraded properties in the areas of the overlap must be taken into account when designing the PTC resistor structure.
  • the ideal choice of the geometry of the lap is the highest possible length with the smallest possible depth of the lap, so the V-shape is particularly suitable.
  • the depth of the overlap is preferably 100 ⁇ m. In general, the depth of the overlap should be selected so that it can be reproduced in terms of process technology.
  • a small depth can also have disadvantages, for example if it is between 25 ⁇ m and 30 ⁇ m varies. With a small depth, the influence of a process-related inaccuracy, eg of 5 ⁇ m, on the overall performance is of course much greater than if you set the depth of the overlap to 100 ⁇ m.
  • connection contacts e.g. Ag
  • connecting lines e.g. Au
  • ⁇ cold zone the temperature essentially corresponds to the prevailing ambient temperature
  • hot zone or heating zone the temperature corresponds to the temperature in the defined area of the PTC resistance structure, i.e. the temperature of the heating zone
  • the invention relates to a heating arrangement which uses the above-described PTC resistance structure in a suitable but arbitrary configuration.
  • an electrical power supply is provided, which supplies the PTC resistance structure with energy, and a control/evaluation unit, which regulates the PTC resistance structure to a predetermined temperature value.
  • the electrical voltage supply is a voltage source that has a limited energy supply.
  • the electrical voltage is preferably supplied by a battery.
  • a separate resistance structure be provided for determining the temperature of the medium that is heated by the heating element.
  • the resistance structure for temperature measurement and for heating is preferably applied to the second surface of the carrier substrate, which is opposite the first surface on which the PTC resistance structure is arranged. Based on the measured temperature, the temperature control is carried out preferentially and heating is carried out from both surfaces.
  • planar heating element according to the invention or the heating arrangement according to the invention is preferably used in a compact semiconductor-based gas sensor, in a compact heater for pocket devices or in a calorimetric flow sensor.
  • a gas-sensitive structure such as a metal oxide and an interdigital electrode structure, can be located on the passivation layer.
  • the invention can therefore also generally serve as a basis for sensors in which heating is essential for the sensor function.
  • the planar heating element according to the invention is preferably manufactured using the method described below:
  • a separating layer is applied—usually one after the other—to each of the two surfaces of the carrier substrate. It is common, when using the thick layer technique, to print the coatings on. However, as already mentioned above, thin-film technology can also be used in connection with the invention.
  • the PTC resistance structure is applied to one of the two dry separating layers. As soon as the PTC resistance structure has hardened, the electrical connection lines are applied and subjected to a drying process. The connection contacts are then applied and also cured. The overlapping areas of the connection contacts and electrical connecting lines are preferably cured again separately.
  • the passivation layers are applied—preferably successively—to the two surfaces of the planar heating element and cured.
  • the heating element 1 shows a plan view of a preferred embodiment of the heating element 1 according to the invention.
  • the external dimensions of the PTC resistance structure 2 delimit the defined surface area 3 or the heating zone.
  • the PTC resistance structure is divided into three different sub-areas: a first end-side sub-area 10, which adjoins the connection contacts 6 or the electrical connecting lines 15, a middle sub-area 11, which adjoins the first end-side sub-area 10, and a second end portion 12 which adjoins the middle portion 11 .
  • the inner conductor track 8 and the outer conductor track 9 of the PTC resistance structure 2 run approximately parallel and are electrically connected in parallel.
  • the inner conductor track 8 has a higher resistance than the outer conductor track 9.
  • the resistances of the inner conductor track 8 and the outer conductor track 9 are dimensioned such that when a voltage is applied, there is a substantially uniform temperature distribution within the defined surface area 3.
  • This defined surface area is also referred to as the heating zone and is 1 indicated by the dashed line on the outer edge of the PTC resistance structure 2.
  • the cold zone i.e. the area where essentially room temperature prevails, is in the area of the connection contacts 6.
  • the temperature gradient is very high.
  • the heating zone is largely limited to the defined surface area 3 .
  • the high temperature gradient is achieved by choosing a carrier substrate 5 with low thermal conductivity. Further information on this can be found in the previous description.
  • the conductor track 8 lying on the inside and the conductor track 9 lying on the outside are made of the same material. It has already been described above that platinum is preferably used as the material for the conductor tracks 8 , 9 .
  • the different resistances of the conductor tracks 8, 9 are realized by means of different cross-sectional areas and/or linear expansions of the inner conductor track 8 and the outer conductor track 9.
  • planar heating element according to the invention or of the chip according to the invention has already been specified above.
  • the connecting lines 15, which - as already described in detail above - are preferably made of gold, also vary in diameter: Following the first partial area 10, the width is smaller and thus the resistance is greater than in the area that adjoins the connection contacts 6 connects. This ensures that the thermal conductivity does not increase. In connection with the lower thermal conductivity of gold compared to platinum, the desired large temperature gradient is achieved in the transition area between the heating and cold zones.
  • Fig. 1a shows a longitudinal section according to the marking AA through the in 1 illustrated heating element 1 according to the invention.
  • a separating layer 14 is arranged on both surfaces 4, 19 of a carrier substrate 5, a separating layer 14 is arranged.
  • the carrier substrate 5 is preferably zirconium oxide with a thickness of 300 ⁇ m, the separating layers 14 each have a thickness of 15 ⁇ m.
  • the PTC resistance structure 2 is arranged on the separating layer 14 applied to the surface 4 of the carrier substrate 5 .
  • the PTC resistor structure consists of platinum with a thickness of 8 ⁇ m. It goes without saying that the previously described dimensioning of the PTC resistance structure 2 is not limited to the stated values. Each of the explicitly mentioned values can be varied up or down as desired. How the dimensioning of the variants is designed in detail is at the discretion of the person skilled in the art.
  • connection contacts 6 are made of silver and have a thickness of 10 ⁇ m.
  • the electrical connecting line 15 between the connection contacts 6 and the PTC resistance structure 2 are made of gold and are 4 ⁇ m thick.
  • the connection contacts 6 and the electrical connecting lines 15 overlap, in the area of an overlap 16a the electrical connecting lines 15 and the conductor tracks 8, 9 of the PTC resistance structure overlap.
  • the surfaces 4, 19 of the planar heating element 1 are sealed with a passivation layer 13.
  • the Passivation layer 13 has a thickness of 15 ⁇ m.
  • the functions of the individual layers have already been described in detail above.
  • the sensitivity of the planar heating element is 3700ppm/K (+- 100ppm/K) at room temperature without applying the heating voltage. It goes without saying that the specified thicknesses of the individual layers are exemplary.
  • Each of the explicitly mentioned values of the preferred embodiment can be varied up or down as desired. How the dimensioning is designed in detail is at the discretion of the specialist.
  • the figures 2, 3, 4 show schematic partial views of heating elements 1 according to the invention with different configurations of the overlap 16a between one of the connecting lines 15 and the connected conductor tracks 8, 9.
  • the overlap 16a in 2 has a web-like configuration
  • the overlap 16a in 3 is rectangular
  • the overlap 16a in 4 has a V shape.
  • the overlap 16a between the connecting lines 15 and the conductor tracks 8, 9 in the first partial area 10 at the end of the PTC resistance structure 2 is designed with regard to its geometric parameters in such a way that the physical heating properties of the PTC resistance structure 2 are at least approximately unchanged or are almost identical with the properties in the defined area 3, in which the heating zone is located.
  • the materials and the special features that occur in the areas of the overlap 16a, 16b have already been described at the previous point, so that they will not be repeated at this point.
  • Figure 5a shows a plan view of a second embodiment of the heating element 1 according to the invention with a PTC resistance structure 2
  • Figure 5b a plan view of the back 19 of the in Figure 5a shown heating element 1, on which a meandering temperature sensor 18 is arranged.
  • Figure 5a also the heating arrangement according to the invention with heating element 1, electrical voltage source 7 and control/evaluation unit 17 is shown schematically.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Surface Heating Bodies (AREA)

Description

Die Erfindung betrifft ein planares Heizelement mit einer PTC-Widerstands-struktur, die in einem definierten Flächenbereich einer ersten Oberfläche eines Trägersubstrats angeordnet ist, wobei der PTC-Widerstandsstruktur elektrische Anschlusskontakte zum Anschluss an eine elektrische Spannungsquelle zugeordnet sind. Desweiteren betrifft die Erfindung eine Heizanordnung, bei der das erfindungsgemäße planare Heizelement eingesetzt wird. Weiterhin beschreibt die Erfindung bevorzugte Verwendungen des erfindungsgemäßen Heizelements bzw. der erfindungsgemäßen Heizanordnung. Darüber hinaus wird ein Verfahren zur Herstellung des erfindungsgemäßen Heizelements beschrieben.The invention relates to a planar heating element with a PTC resistance structure, which is arranged in a defined surface area of a first surface of a carrier substrate, with the PTC resistance structure being assigned electrical connection contacts for connection to an electrical voltage source. Furthermore, the invention relates to a heating arrangement in which the planar heating element according to the invention is used. Furthermore, the invention describes preferred uses of the heating element according to the invention or the heating arrangement according to the invention. In addition, a method for producing the heating element according to the invention is described.

Aus dem Stand der Technik ist es beispielsweise bekannt, die Temperatur über die Auswertung des elektrischen Widerstands einer Widerstandsstruktur zu bestimmen bzw, zu überwachen. Entsprechende Widerstandsstrukturen werden entweder in Dünnschichttechnik oder in Dickschichttechnik auf einem Trägersubstrat aufgebracht. Oftmals sind die Widerstandsstrukturen mäanderförmig oder spiralförmig ausgestaltet.It is known from the prior art, for example, to determine or monitor the temperature by evaluating the electrical resistance of a resistance structure. Corresponding resistance structures are applied to a carrier substrate either using thin-film technology or using thick-film technology. The resistance structures are often designed in a meandering or spiral shape.

Weiterhin ist es bekannt geworden, über entsprechende Widerstands-strukturen ein umgebendes Medium auf eine vorgegebene Temperatur zu erwärmen. Hierzu ist die Widerstandsstruktur mit einer elektrischen Spannungsquelle verbunden. Beispielsweise werden beheizbare Widerstandsstrukturen bei thermischen Durchflussmessgeräten zur Bestimmung und/oder Überwachung des Massestroms eines Mediums durch ein Messrohr eingesetzt.Furthermore, it has become known to heat a surrounding medium to a predetermined temperature via corresponding resistance structures. For this purpose, the resistance structure is connected to an electrical voltage source. For example, heatable resistance structures are used in thermal flowmeters to determine and/or monitor the mass flow of a medium through a measuring tube.

Widerstandsstrukturen, die für die Temperaturmessung eingesetzt werden, und beheizbare Widerstandsstrukturen sind üblicherweise aus einem PTC (Positive Temperature Coefficient) Material, bevorzugt aus Nickel oder Platin, gefertigt. PTC-Widerstandsstrukturen zeichnen sich dadurch aus, dass sich mit steigender Temperatur der Ohm'sche Widerstand erhöht, wobei die funktionale Abhängigkeit über einen großen Temperaturbereich in hohem Maße linear ist.Resistance structures that are used for temperature measurement and heatable resistance structures are usually made of a PTC (Positive Temperature Coefficient) material, preferably made of nickel or platinum. PTC resistance structures are characterized by the fact that the ohmic resistance increases as the temperature rises, with the functional dependency being highly linear over a large temperature range.

Der Nachteil der bekannten Widerstandsstrukturen, insbesondere wenn sie mäanderförmig ausgestaltet sind, liegt in dem relativ großen Widerstand dieser Strukturen. Als Folge davon, muss eine relativ hohe Spannung zur Energieversorgung bereitgestellt werden. Ist darüber hinaus eine gleichmäßige Temperaturverteilung innerhalb eines definierten Flächenbereichs gefordert, so ist dies mit einer bekannten Mäanderstruktur nicht realisierbar. Eine derartige Struktur hat den Nachteil, dass sie - verursacht durch Prozessschwankungen bei der Fertigung der Beschichtungen - unterschiedliche Linienbreiten zur Folge haben kann. Dies führt zur Ausbildung von Hotspots, da in Bereich kleinerer Linienbreiten der Widerstand größer ist. Dies führt zu einer lokal stärkeren Erhitzung (Hotspot), die dadurch verstärkt wird, dass sich durch die Erhitzung der Widerstand zusätzlich erhöht. Zum anderen hat eine solche Lösung zur Folge, dass hohe Stromdichten eine Elektromigration zur Folge haben können.The disadvantage of the known resistance structures, in particular when they are designed in a meandering manner, lies in the relatively high resistance of these structures. As a result, a relatively high voltage must be provided for the power supply. If, in addition, a uniform temperature distribution is required within a defined surface area, this cannot be achieved with a known meander structure. Such a structure has the disadvantage that - caused by process fluctuations in the production of the coatings - can result in different line widths. This leads to the formation of hotspots, since the resistance is greater in the area of smaller line widths. This leads to locally stronger heating (hotspot), which is intensified by the fact that the heating also increases the resistance. On the other hand, such a solution means that high current densities can result in electromigration.

Die DE 195 23 301 A1 beschreibt eine Heizstruktur, bei der eine außenliegende und eine innenliegende Leiterbahn die gleiche Breite aufweisen. Da die außenliegende Leiterbahn länger ist als die innenliegende Leiterbahn, ist der Widerstand der außenliegenden Leiterbahn größer als der Widerstand der innenliegenden Leiterbahn.the DE 195 23 301 A1 describes a heating structure in which an external and an internal conductor track have the same width. Because the outside trace is longer than the inside trace, the resistance of the outside trace is greater than the resistance of the inside trace.

Die in der WO 2011/078063 A1 gezeigte Bilderwärmungsvorrichtung enthält eine Heizvorrichtung, die eine gleichmäßige Wärmeerzeugungsverteilung erreicht, wenn ein Bild auf ein Blatt gedruckt wird, dessen Größe kleiner als eine maximale Größe des Geräts ist.The one in the WO 2011/078063 A1 The image heating device shown in FIG.

Die DE 10 2005 057 566 A1 bezieht sich auf einen Gassensor zur Messung einer physikalischen Eigenschaft eines Messgases. Bei der Eigenschaft handelt es sich z.B. um die Konzentration einer Gaskomponenten, z.B. Sauerstoff, oder die Temperatur. Zur gleichmäßigen Verteilung der Temperatur im Heizbereich besitzt der Widerstandsheizer parallelgeschaltete Strompfade, die sich über einen flächenhaft ausgedehnten Heizbereich erstrecken.the DE 10 2005 057 566 A1 refers to a gas sensor for measuring a physical property of a measurement gas. The property is, for example, the concentration of a gas component, such as oxygen, or the temperature. For the even distribution of the temperature in the heating area, the resistance heater has current paths connected in parallel, which extend over an extensive heating area.

Die US 4 970 376 A beschreibt ein transparentes Heizelement zum Heizen eines Glassubstrats. Das transparente Heizelement ist Teil einer Glaszelle oder eines Glasbehälters und ist auf deren/dessen Oberfläche aufgebracht. Das auf die Glaszelle oder den Glasbehälter aufgebrachte Heizelement ist transparent für sichtbares Licht oder für IR Strahlung.the U.S.A. 4,970,376 describes a transparent heating element for heating a glass substrate. The transparent heating element is part of a glass cell or container and is applied to its surface. The heating element applied to the glass cell or glass container is transparent to visible light or to IR radiation.

Der Erfindung liegt die Aufgabe zugrunde, ein planares Heizelement vorzuschlagen, das in einem definierten Flächenbereich zumindest näherungsweise eine homogene bzw. gleichmäßige Temperaturverteilung aufweist.The invention is based on the object of proposing a planar heating element which has at least approximately a homogeneous or uniform temperature distribution in a defined surface area.

Die Aufgabe wird dadurch gelöst durch das in Anspruch 1 beschriebene Heizelement. So weist die PTC-Widerstandsstruktur - ausgehend von den beiden elektrischen Anschlusskontakten - zumindest eine innenliegende Leiterbahn und eine parallel geschaltete außenliegende Leiterbahn auf, wobei die innenliegende Leiterbahn einen größeren Widerstand aufweist als die außenliegende Leiterbahn und wobei die Widerstände von innenliegender Leiterbahn und außenliegender Leiterbahn so bemessen sind, dass bei Anlegen einer Spannung eine im Wesentlichen gleichmäßige Temperaturverteilung innerhalb des definierten Flächenbereichs vorliegt. Hierbei wird der Effekt ausgenutzt, dass die Leiterbahn mit dem geringeren Widerstand einen höheren Beitrag zur Heizleistung beisteuert. Daher hat die Parallelschaltung der beiden Leiterbahnen eine selbst stabilisierende Wirkung. Hat nämlich eine der beiden Leiterbahnen z.B. eine prozesstechnisch bedingte Verjüngung, so bildet sich an dieser Stelle in der Regel kein Hotspot heraus.The object is achieved by the heating element described in claim 1. Starting from the two electrical connection contacts, the PTC resistor structure has at least one inner conductor track and one outer conductor track connected in parallel, with the inner conductor track having a greater resistance than the outer conductor track and with the resistances of the inner conductor track and the outer conductor track being dimensioned in this way are that when a voltage is applied, there is a substantially uniform temperature distribution within the defined surface area. Here, the effect is exploited that the conductor track with the lower resistance makes a higher contribution to the heating output. Therefore, the parallel connection of the two traces has a self-stabilizing effect. If, for example, one of the two conductor tracks has a narrowing caused by the process technology, no hotspot usually forms at this point.

Außerhalb des weitgehend gleichmäßig beheizten Flächenbereichs liegt ein hoher Temperaturgradient vor, so dass die Heizzone im Wesentlichen auf den definierten Flächenbereich beschränkt ist. Mit den zumindest zwei parallelen verlaufenden und parallel geschalteten Leiterbahnen lassen sich kleine Ohm'sche Widerstände realisieren. Insbesondere ist der Gesamtwiderstand der PTC- Widerstandsstruktur bei Raumtemperatur ohne angelegte Heizspannung bevorzugt kleiner als 3 Ohm.Outside of the largely uniformly heated surface area, there is a high temperature gradient, so that the heating zone is essentially limited to the defined surface area. Small ohmic resistances can be realized with the at least two conductor tracks running in parallel and connected in parallel. In particular, the total resistance of the PTC resistance structure at room temperature without applied heating voltage is preferably less than 3 ohms.

Bevorzugt ist die PTC-Widerstandsstruktur so ausgestaltet, dass sie neben der Heizfunktion auch Temperaturmesswerte zur Verfügung stellt, so dass die PTC-Widerstandsstruktur als Heizelement und als Temperatursensor dient.The PTC resistance structure is preferably designed in such a way that, in addition to the heating function, it also provides measured temperature values, so that the PTC resistance structure serves as a heating element and as a temperature sensor.

Gemäß einer ersten vorteilhaften Ausgestaltung des erfindungsgemäßen Heizelements sind die innenliegende Leiterbahn und die außenliegende Leiterbahn aus demselben Material gefertigt; die unterschiedlichen Widerstände sind über unterschiedliche Querschnittsflächen und/oder Längenausdehnungen von innenliegender Leiterbahn und außenliegender Leiterbahn realisiert. Diese erste Ausgestaltung hat den Vorteil, dass die Widerstandsstruktur aus einem einzigen Material besteht, was fertigungstechnisch in einem Fertigungsschritt zu bewerkstelligen ist. Bevorzugt wird als Material für die PTC-Widerstandsstruktur Nickel oder Platin verwendet. Platin hat den Vorteil, dass es auch in einem Hochtemperaturbereich oberhalb von 300°C problemlos eingesetzt werden kann.According to a first advantageous embodiment of the heating element according to the invention, the conductor track lying on the inside and the conductor track lying on the outside are made of the same material; the different resistances are realized via different cross-sectional areas and/or length extensions of the internal conductor track and the external conductor track. This first configuration has the advantage that the resistance structure consists of a single material, which can be produced in one production step. Nickel or platinum is preferably used as the material for the PTC resistance structure. Platinum has the advantage that it can also be used in a high-temperature range above 300°C without any problems.

Das erfindungsgemäßen Heizelements zeigt eine PTC-Widerstandsstruktur, die - quasi virtuell - in drei Teilbereiche strukturiert ist:

  • einen ersten endseitigen Teilbereich, der sich an die elektrischen Kontaktanschlüsse/Verbindungsleitungen anschließt, über die die Verbindung mit der elektrischen Spannungsquelle erfolgt,
  • einen mittleren Teilbereich, der sich an den ersten endseitigen Teilbereich anschließt, und einen zweiten sich an den mittleren Teilbereich anschließenden zweiten endseitigen Teilbereich.
The heating element according to the invention shows a PTC resistance structure, which - is structured in three sub-areas - quasi virtual:
  • a first partial area at the end, which adjoins the electrical contact terminals/connecting lines via which the connection to the electrical voltage source is made,
  • a central portion adjoining the first end portion, and a second end portion adjoining the central portion.

Erfindungsgemäß verlaufen die innenliegende Leiterbahn und die außenliegende Leiterbahn im mittleren Teilbereich im Wesentlichen parallel. Bevorzugt verlaufen die innenliegende Leiterbahn und die außenliegende Leiterbahn auch im zweiten endseitigen Teilbereich im Wesentlichen parallel. Im ersten endseitigen Teilbereich sind die innenliegende Leiterbahn und die außenliegende Leiterbahn jeweils aufeinander zulaufend mit jedem der beiden elektrischen Anschlusskontakten verbunden. Bevorzugt weisen die beiden Leiterbahnen im ersten endseitigen Teilbereich also eine V-Form auf. Treten keine sprunghaften Änderungen in der Geometrie der PTC-Widerstandsstruktur, so lässt sich in dem definierten Flächenbereich eine hohe Temperaturstabilität erreichen. Insbesondere wird die Bildung von sog. Hot Spots vermieden.According to the invention, the conductor track lying on the inside and the conductor track lying on the outside run essentially parallel in the central partial area. Preferably, the inner conductor track and the outer conductor track also run essentially parallel in the second partial area at the end. In the first partial area at the end, the conductor track lying on the inside and the conductor track lying on the outside are each connected to run towards one another with each of the two electrical connection contacts. The two conductor tracks in the first partial area at the end therefore preferably have a V-shape. If there are no abrupt changes in the geometry of the PTC resistance structure, high temperature stability can be achieved in the defined surface area. In particular, the formation of so-called hot spots is avoided.

Ebenso ist es jedoch auch möglich, dass die beiden Leiterbahnen im ersten endseitigen Teilbereich über einen rechtwinklig zu beiden Leiterbahnen verlaufenden Abschnitt miteinander verbunden sind.However, it is also possible for the two conductor tracks to be connected to one another in the first partial area at the end via a section running at right angles to the two conductor tracks.

Ebenso können sowohl die innenliegende Leiterbahn als auch die außenliegende Leiterbahn im zweiten endseitigen Teilbereich entweder eine V-Form oder eine Rechteckform aufweisen. Auch im zweiten endseitigen Teilbereich verlaufen die innenliegende Leiterbahn und die außenliegende Leiterbahn im Wesentlichen parallel zueinander. Möglich ist auch eine anderweitige Form, beispielsweise eine Halbkreisform. Weiterhin ist es möglich, in einem der beiden endseitigen Teilbereiche eine erste Form, z.B. eine Rechteckform, zu wählen und in dem anderen endseitigen Teilbereich eine davon abweichende zweite Form, z.B. eine V-Form.Likewise, both the internal conductor track and the external conductor track in the second partial area at the end can have either a V-shape or a rectangular shape. In the second partial area at the end, too, the conductor track lying on the inside and the conductor track lying on the outside run essentially parallel to one another. Another shape is also possible, for example a semicircular shape. Furthermore, it is possible to select a first shape, e.g. a rectangular shape, in one of the two end-side partial areas and a second shape deviating therefrom, e.g. a V-shape, in the other end-side partial area.

Weiterhin schlägt eine vorteilhafte Ausgestaltung vor, dass der Widerstand pro Länge der innenliegenden Leiterbahn und/oder der Widerstand pro Länge der außenliegenden Leiterbahn im ersten endseitigen Teilbereich und/oder im zweiten endseitigen Teilbereich größer sind/ist als der Widerstand pro Länge der innenliegenden Leiterbahn und/oder der außenliegenden Leiterbahn im mittleren Teilbereich.Furthermore, an advantageous embodiment proposes that the resistance per length of the inner conductor track and/or the resistance per length of the outer conductor track in the first partial area at the end and/or in the second partial area at the end are/is greater than the resistance per length of the inner conductor track and/or or the external conductor track in the middle section.

Das erfindungsgemäßen Heizelements sieht vor, dass zumindest ein geometrischer Parameter der innenliegenden Leiterbahn und/oder der außenliegenden Leiterbahn, wie Linienbreite und Füllungsdicke, zumindest in einem Teilabschnitt von zumindest einem Teilbereich so variiert ist, dass eine lokal auftretende Abweichung von der gleichmäßigen Temperaturverteilung in dem betroffenen Teilbereich zumindest näherungsweise ausgeglichen ist.The heating element according to the invention provides that at least one geometric parameter of the inner conductor track and/or the outer conductor track, such as line width and filling thickness, is varied at least in a subsection of at least one subarea in such a way that a locally occurring deviation from the uniform temperature distribution in the affected Section is at least approximately balanced.

Bevorzugt besteht das Trägersubstrat aus einem Material mit einer Wärmeleitfähigkeit, die unterhalb eines vorgegebenen Grenzwertes liegt, so dass zwischen dem definierten Flächenbereich mit gleichmäßiger Temperaturverteilung und den Anschlusskontakten ein großer Wärmegradient auftritt, der oberhalb eines vorgegebenen Grenzwertes, typisch oberhalb von 50°C/mm, liegt. Hierdurch wird sichergestellt, dass die beheizte 'heiße' Zone im Wesentlichen auf den definierten Flächenbereich begrenzt ist und von der außerhalb liegenden 'kalten' Zone thermisch entkoppelt ist. Bevorzugt kommt als Trägermaterial ein Material zum Einsatz, dessen thermische Leitfähigkeit (Wärmeleitfähigkeit) kleiner ist als 5 Watt/m·K. Bevorzugt ist die thermische Leitfähigkeit kleiner als 3 Watt/m·KThe carrier substrate preferably consists of a material with a thermal conductivity that is below a predetermined limit value, so that between the defined surface area with a uniform temperature distribution and the connection contacts large heat gradient occurs that is above a specified limit value, typically above 50°C/mm. This ensures that the heated 'hot' zone is essentially limited to the defined surface area and is thermally decoupled from the 'cold' zone lying outside. A material is preferably used as the carrier material whose thermal conductivity (thermal conductivity) is less than 5 watts/m*K. The thermal conductivity is preferably less than 3 watts/m·K

Der definierte Flächenbereich weist eine Begrenzung auf, die im Wesentlichen durch die äußeren Abmessungen der außenliegenden Leiterbahn gegeben ist. Dieser definierte Flächenbereich kennzeichnet die sog. Heizzone oder Heißzone, in der mindestens 300°C herrschen. Die Beschränkung der Heizzone auf den durch die äußeren Abmessungen der außen liegenden Leiterbahn definierten Bereich wird insbesondere dadurch erreicht, dass das Trägermaterial sich durch eine geringe Wärmeleitfähigkeit auszeichnet. Darüber hinaus hat es bevorzugt eine Dicke von kleiner/gleich 1mm.The defined surface area has a limitation that is essentially given by the outer dimensions of the outer conductor track. This defined surface area characterizes the so-called heating zone or hot zone, in which the temperature is at least 300°C. The limitation of the heating zone to the area defined by the outer dimensions of the outer conductor track is achieved in particular by the fact that the carrier material is characterized by low thermal conductivity. In addition, it preferably has a thickness of less than or equal to 1 mm.

Um den Wärmeaustausch zwischen der Heizzone und der auf üblicherweise Zimmertemperatur liegenden Kaltzone, in der die Anschlusskontakte liegen, zu erreichen, sind elektrische Verbindungsleitungen mit einer geringen Füllungsdichte vorgesehen. Diese sind aus bevorzugt hochreinem Gold (Goldanteil zumindest größer als 95%, bevorzugt größer als 99%) gefertigt. Die Anschlusskontakte bestehen aus Silber oder einer Silberlegierung.In order to achieve heat exchange between the heating zone and the cold zone, which is usually at room temperature and in which the connection contacts are located, electrical connecting lines with a low filling density are provided. These are made of preferably high-purity gold (gold content at least greater than 95%, preferably greater than 99%). The connection contacts are made of silver or a silver alloy.

Der Widerstand der PTC Widerstandsstruktur liegt bei Raumtemperatur unterhalb von 10Ω , bevorzugt unter 3Ω oder sogar 1 Ω. Erreicht wird dies durch die Wahl von zumindest einem geeigneten Materials (bevorzugt Platin) und einer geeigneten Dimensionierung der entsprechenden Leiterbahnstruktur.The resistance of the PTC resistance structure is below 10Ω at room temperature, preferably below 3Ω or even 1Ω. This is achieved by choosing at least one suitable material (preferably platinum) and a suitable dimensioning of the corresponding conductor track structure.

Als Trägermaterial kommen Aluminiumoxid, Quarzglas oder Zirkonoxid in Frage. Bevorzugt wird in Verbindung mit der Erfindung als Trägersubstrat Zirkonoxid verwendet. Die Dicke des Trägersubstrats ist bevorzugt kleiner als 1mm. Zirkonoxid hat folgende Vorteile: eine geringe thermische Leitfähigkeit (die jedoch ausreichend ist, um ggf. auftretende lokale Hotspots auszugleichen), eine hohe mechanische Stabilität auch bei kleinen Dicken und bezüglich der Wärmeausdehnung eine optimale Anpassung an metallische Komponenten des Heizelements, insbesondere wenn die Leiterbahnen aus Platin bestehen. Durch diese Ausgestaltung wird sichergestellt, dass die homogene Temperaturverteilung auf den Flächenbereich beschränkt ist, der durch die äußeren Abmessungen der Widerstandsstruktur definiert ist. Außerhalb der PTC-Widerstandsstruktur fällt die Temperatur infolge des hohen Temperaturgradienten sehr schnell ab. Bevorzugt ist die Form des Trägersubstrats an die Form der PTC-Widerstandsstruktur angepasst. Insbesondere ist das Trägermaterial daher im zweiten endseitigen Teilbereich V-förmig oder rechteckförmig ausgestaltet. Ist der zweite endseitige Teilbereich V-förmig ausbildet - hat er also eine Spitze -, so lässt sich das Heizelement in ein zu beheizendes Medium einführen. Ein Beispiel für eine Chipanordnung mit einer Spitze ist der EP 1 189 281 B1 zu entnehmen.Aluminum oxide, quartz glass or zirconium oxide can be used as the carrier material. Zirconium oxide is preferably used as the carrier substrate in connection with the invention. The thickness of the carrier substrate is preferably less than 1 mm. Zirconium oxide has the following advantages: low thermal conductivity (which is, however, sufficient to compensate for any local hotspots that may occur), high mechanical stability even with small thicknesses and, with regard to thermal expansion, optimal adaptation to metallic components of the heating element, especially if the conductor tracks are made of pass platinum. This configuration ensures that the homogeneous temperature distribution is limited to the surface area that is defined by the external dimensions of the resistance structure. Outside the PTC resistance structure, the temperature drops a lot due to the high temperature gradient off quickly. The shape of the carrier substrate is preferably adapted to the shape of the PTC resistance structure. In particular, the carrier material is therefore V-shaped or rectangular in the second partial area at the end. If the second partial area at the end has a V-shape—that is, if it has a point—then the heating element can be inserted into a medium to be heated. An example of a chip arrangement with a tip is the EP 1 189 281 B1 refer to.

Gemäß einer vorteilhaften Ausgestaltung des erfindungsgemäßen Heizelements ist auf oder in dem Trägersubstrat mindestens eine im Wesentlichen elektrisch isolierende Trennschicht vorgesehen, die bevorzugt aus Glas gefertigt ist. Zuvor wurde bereits erwähnt, dass das Trägersubstrat bevorzugt aus Zirkonoxid gefertigt ist. Zirkonoxid hat - wie ebenfalls bereits zuvor beschrieben - Eigenschaften, die es für den Einsatz in dem erfindungsgemäßen Heizelement prädestinieren. Allerdings hat Zirkonoxid den Nachteil, dass es bei Temperaturen oberhalb von 200°C leitfähig wird. Das Aufbringen einer Trennschicht unterbindet das Auftreten der Leitfähigkeit. Nähere Angaben zu dieser bekannten Lösung finden sich in der EP 1 801 548 A2 .According to an advantageous embodiment of the heating element according to the invention, at least one essentially electrically insulating separating layer, which is preferably made of glass, is provided on or in the carrier substrate. It was already mentioned above that the carrier substrate is preferably made of zirconium oxide. As already described above, zirconium oxide has properties that predestine it for use in the heating element according to the invention. However, zirconium oxide has the disadvantage that it becomes conductive at temperatures above 200°C. The application of a separating layer prevents the conductivity from occurring. More information about this known solution can be found in the EP 1 801 548 A2 .

Weiterhin ist dem Trägersubstrat zumindest eine Passivierungsschicht zugeordnet, die bevorzugt an der Oberfläche des Trägersubstrats aufgebracht ist. Die Passivierungsschicht besteht bevorzugt zumindest anteilig aus dem Material der Trennschicht. Die Passivierungsschicht dient dem Schutz gegen mechanische, chemische und elektrische Einflüsse. Bevorzugt ist die Passivierungsschicht auf beiden Oberflächen des Heizelements aufgetragen. Hierdurch lässt sich ein mechanisches Verbiegen des Trägersubstrats verhindern. Insbesondere kann es sich bei dem Material der Passivierungsschicht um ein dicht verschlossenes Glas handeln. Nähere Angaben zu einer Passivierungsschicht, die im Zusammenhang mit der vorliegenden Erfindung zum Einsatz kommen kann, finden sich in der WO 2009/016013 A1 .Furthermore, the carrier substrate is assigned at least one passivation layer, which is preferably applied to the surface of the carrier substrate. The passivation layer preferably consists at least partially of the material of the separating layer. The passivation layer serves to protect against mechanical, chemical and electrical influences. The passivation layer is preferably applied to both surfaces of the heating element. This makes it possible to prevent mechanical bending of the carrier substrate. In particular, the material of the passivation layer can be a tightly sealed glass. More information on a passivation layer that can be used in connection with the present invention can be found in WO 2009/016013 A1 .

Wie bereits an vorhergehender Stelle erwähnt, ist die PTC-Widerstandsstruktur bevorzugt aus einem leitfähigen Material, das für den Einsatz im Hochtemperaturbereich geeignet ist, gefertigt. Bevorzugt besteht die PTC-Widerstandsstruktur aus Platin. Platin hat den Vorteil, dass es neben seiner guten Temperaturstabilität eine gut definierte, nahezu lineare Temperatur-kennlinie und eine sehr hohe Elektromigrationsfestigkeit aufweist. Darüber hinaus lässt sich aufgrund der PTC-Charakteristik einer Platin-Widerstandsstruktur näherungsweise eine Selbstregelung der Temperatur erreichen, wenn die Widerstandsstruktur an eine quasi konstante Spannungsquelle (z.B. eine Batterie) angeschlossen ist. Darüber hinaus ist eine PTC-Widerstandsstruktur aus Platin als Temperatursensor mit Industrie-Standard anerkannt.As already mentioned above, the PTC resistance structure is preferably made of a conductive material that is suitable for use in the high-temperature range. The PTC resistance structure is preferably made of platinum. Platinum has the advantage that, in addition to its good temperature stability, it has a well-defined, almost linear temperature characteristic and a very high electromigration resistance. In addition, due to the PTC characteristics of a platinum resistance structure, a self-regulation of the temperature can be approximately achieved when the resistance structure is connected to a quasi-constant voltage source (eg a battery). In addition, a platinum PTC resistor structure is recognized as an industry-standard temperature sensor.

Gemäß einer vorteilhaften Ausgestaltung des erfindungsgemäßen Heizelements sind die elektrischen Anschlusskontakte aus einem Edelmetall oder einer Edelmetalllegierung gefertigt, wobei es sich bei dem Edelmetall bevorzugt um Silber und bei der Edelmetalllegierung bevorzugt um eine Silberlegierung handelt. Silber genießt gleichfalls die Anerkennung als Industriestandard und hat den Vorteil, dass es gut lötbar bzw. schweißbar ist. Allerdings hat Silber den Nachteil, dass es bei Temperaturen oberhalb von 300°C lateral in Platin eindiffundiert. Daher ist beim Einsatz im Hochtemperaturbereich (oberhalb von 250°C) keine direkte Verbindung zwischen einer Platin-Widerstandsstruktur und Silber-Anschlusskontakten möglich. Zu erwähnen ist, dass Silber in der Praxis nur als Legierung eingesetzt wird. Dies liegt daran, dass ein gewisser Anteil von Palladium oder hier bevorzugt ein gewisser Anteil von Platin die Beweglichkeit der Silberatome blockiert und damit eine Materialmigration verhindert.According to an advantageous embodiment of the heating element according to the invention, the electrical connection contacts are made of a precious metal or a precious metal alloy, the precious metal preferably being silver and the precious metal alloy preferably being a silver alloy. Silver also enjoys recognition as an industry standard and has the advantage that it can be easily soldered or welded. However, silver has the disadvantage that it diffuses laterally into platinum at temperatures above 300°C. Therefore, when used in the high-temperature range (above 250°C), no direct connection between a platinum resistor structure and silver connection contacts is possible. It should be mentioned that in practice silver is only used as an alloy. This is due to the fact that a certain proportion of palladium, or here preferably a certain proportion of platinum, blocks the mobility of the silver atoms and thus prevents material migration.

Um das zuvor beschriebene Problem zu umgehen, sind zwischen den elektrischen Anschlusskontakten und dem ersten endseitigen Teilbereich der ersten Widerstandsstruktur elektrische Verbindungsleitungen vorgesehen. Diese sind gleichfalls aus einem Edelmetall, bevorzugt aus Gold, gefertigt. Gold gewährleistet einen stabilen Übergang zu Platin bis hin zu 850°C, es zeichnet sich durch eine gute elektrische Leitfähigkeit aus und ist technologisch in sehr reiner Form für kompakte dünne Schichten verfügbar.In order to circumvent the problem described above, electrical connecting lines are provided between the electrical connection contacts and the first partial area at the end of the first resistance structure. These are also made of a precious metal, preferably gold. Gold ensures a stable transition to platinum up to 850°C, it is characterized by good electrical conductivity and is technologically available in a very pure form for compact thin layers.

Gemäß einer bevorzugten Ausgestaltung der erfindungsgemäßen Lösung weisen sowohl die Verbindungsleitungen und die Leiterbahnen im ersten endseitigen Teilbereich der PTC-Widerstandsstruktur als auch die Verbindungleitungen und die elektrischen Anschlusskontakte einen definierten Überlapp auf. Durch den Überlapp wird eine sichere elektrische Kontaktierung gewährleistet. Gemäß einer vorteilhaften Ausgestaltung des erfindungsgemäßen Heizelements ist vorgesehen, dass die Länge des Überlapps zwischen den Verbindungsleitungen und den Leiterbahnen im ersten endseitigen Teilbereich der PTC-Widerstandsstruktur größer ist als der Abstand zwischen der inneren Leiterbahn und der äußeren Leiterbahn.According to a preferred embodiment of the solution according to the invention, both the connecting lines and the conductor tracks in the first partial area at the end of the PTC resistor structure and the connecting lines and the electrical connection contacts have a defined overlap. The overlap ensures reliable electrical contact. According to an advantageous embodiment of the heating element according to the invention, it is provided that the length of the overlap between the connecting lines and the conductor tracks in the first partial area of the PTC resistor structure at the end is greater than the distance between the inner conductor track and the outer conductor track.

Bevorzugt ist die Tiefe des Überlapps zwischen den Verbindungsleitungen und den Leiterbahnen im ersten endseitigen Teilbereich der PTC-Widerstandsstruktur insbesondere bei einem linienförmigen oder V-förmigen Überlapp größer als 100µm. Als besonders vorteilhaft wird es im Zusammenhang mit der Erfindung erachtet, wenn die Länge und die Tiefe des Überlapps zwischen den Verbindungsleitungen und den Leiterbahnen im ersten endseitigen Teilbereich der PTC-Widerstandsstruktur näherungsweise ein Verhältnis von größer 5:1 aufweisen.The depth of the overlap between the connecting lines and the conductor tracks in the first end-side partial area of the PTC resistor structure is preferably greater than 100 μm, in particular in the case of a linear or V-shaped overlap. It is considered to be particularly advantageous in connection with the invention if the length and the depth of the overlap between the connecting lines and the conductor tracks in the first partial area at the end of the PTC resistor structure are approximately greater than 5:1.

Um sicherzustellen, dass infolge des Überlapps, insbesondere zwischen den Verbindungsleitungen und der PTC- Widerstandsstruktur, keine Störung im Bereich der durch die Abmessungen der PTC-Widerstandstruktur definierten Abmessungen der Heizzone auftreten, ist erfindungsgemäß der erste endseitige Teilbereich der PTC-Widerstandsstruktur bezüglich seiner geometrischen Parameter so ausgestaltet, dass die physikalischen Heizeigenschaften der PTC-Widerstandsstruktur zumindest näherungsweise unverändert sind. Bevorzugt erfolgt die Anpassung durch Änderungen der Füllungsdichte oder der Linienbreite der Leiterbahnen bzw. der Verbindungsleitungen in der Umgebung des jeweiligen Überlapps.In order to ensure that as a result of the overlap, in particular between the connecting lines and the PTC resistance structure, no disruption occurs in the area of the dimensions of the heating zone defined by the dimensions of the PTC resistance structure, the first end-side partial area of the PTC resistance structure is, according to the invention, with regard to its geometric parameters designed so that the physical heating properties of the PTC resistance structure are at least approximately unchanged. The adaptation preferably takes place by changing the filling density or the line width of the conductor tracks or the connecting lines in the vicinity of the respective overlap.

Wie bereits zuvor erwähnt, ist der Überlapp zwischen den Verbindungsleitungen und den Leiterbahnen im ersten endseitigen Teilbereich der PTC-Widerstandsstruktur bevorzugt V-förmig oder linienförmig; er kann jedoch auch stegförmig ausgestaltet sein.As already mentioned above, the overlap between the connecting lines and the conductor tracks in the first partial area at the end of the PTC resistance structure is preferably V-shaped or line-shaped; however, it can also be designed in the form of a web.

Nachfolgend werden noch einige bevorzugte Abmessungen für die einzelnen Komponenten des erfindungsgemäßen Heizelements angegeben. Die Füllungsdicke der Leiterbahnen der PTC-Widerstandsstruktur, die bevorzugt aus Platin bestehen, liegt zumindest im ersten endseitigen Teilbereich zwischen 5-10µm. Die Füllungsdicke der Verbindungsleitungen, die bevorzugt aus Gold bestehen, liegt bevorzugt zwischen 3-10µm. Die Dicke der Anschlusskontakte, die bevorzugt aus Silber oder einer Silberlegierung bestehen, liegt bevorzugt im Bereich von 10-30µm. Die Längenausdehnung der PTC-Widerstandsstruktur liegt in der Größenordnung von einigen wenigen Millimetern, bevorzugt liegt sie in einem Bereich von 2-10mm. Darüber hinaus liegt der Widerstand der PTC-Widerstandsstruktur bei Raumtemperatur ohne angelegte Heizspannung bevorzugt unterhalb von 3Ω, bevorzugt unterhalb von 1Ω. Da die PTC-Widerstandsstruktur sehr niederohmig ist, ist es möglich, die PTC-Widerstandsstruktur mit einer relativ geringen Energiezufuhr auf hohe Temperatur aufzuheizen. Eine Spannungsquelle mit wenigen Volt, z.B. 3 Volt, ist zum Betreiben des Heizelements ausreichend.Some preferred dimensions for the individual components of the heating element according to the invention are given below. The filling thickness of the conductor tracks of the PTC resistance structure, which preferably consist of platinum, is between 5-10 μm, at least in the first partial area at the end. The filling thickness of the connecting lines, which are preferably made of gold, is preferably between 3-10 μm. The thickness of the connection contacts, which preferably consist of silver or a silver alloy, is preferably in the range of 10-30 μm. The linear expansion of the PTC resistance structure is on the order of a few millimeters, preferably in a range of 2-10 mm. In addition, the resistance of the PTC resistor structure at room temperature without an applied heating voltage is preferably below 3Ω, preferably below 1Ω. Since the PTC resistance structure has a very low resistance, it is possible to heat the PTC resistance structure to a high temperature with a relatively low energy supply. A voltage source with a few volts, e.g. 3 volts, is sufficient to operate the heating element.

Nachfolgend werden bevorzugte Dimensionen und Materialien eines planaren Heizelements in Dickschichttechnologie angegeben. Es versteht sich von selbst, dass auch anderweitige Dimensionierungen und Materialien für eine fachlich qualifizierte Person auffindbar sind. Die Gesamtlänge des planaren Heizelements beträgt 19 mm und die Breite 5 mm. Die außenliegende Leiterbahn ist etwa doppelt so breit wie die innenliegende (z.B. 800µm zu 400µm). Das Trägersubstrat aus Zirkonoxid hat eine Dicke von 0.3 mm. Die Trennschicht und die Passivierungsschicht haben eine Dicke von jeweils 15µm und sind auf beiden Oberflächen des planares Heizelements angeordnet. Das zuvor beschriebene planare Heizelement kann problemlos eine Heiztemperatur von 450°C erreichen.Preferred dimensions and materials of a planar heating element using thick-film technology are specified below. It goes without saying that other dimensions and materials can also be found by a technically qualified person. The overall length of the planar heating element is 19 mm and the width is 5 mm. The conductor track on the outside is about twice as wide as the one on the inside (eg 800 µm to 400 µm). The carrier substrate made of zirconium oxide has a thickness of 0.3 mm. The separation layer and the passivation layer each have a thickness of 15 µm and are arranged on both surfaces of the planar heating element. That The planar heating element described above can easily reach a heating temperature of 450°C.

Das erfindungsgemäße planare Heizelement kann in Dünn- oder Dickschichttechnologie hergestellt sein. Bevorzugt wird es jedoch aufgrund der kostengünstigeren Fertigungsprozesse in Dickschichttechnologie gefertigt. Das erfindungsgemäße Heizelement zeichnet sich durch eine hohe Dynamik aus. Nach dem Einschalten ist die Betriebstemperatur sehr schnell erreicht; nach dem Ausschalten kühlt sich das planare Heizelement sehr schnell auf die umgebende Raumtemperatur ab.The planar heating element according to the invention can be produced using thin or thick film technology. However, due to the more cost-effective manufacturing processes, it is preferably manufactured using thick-film technology. The heating element according to the invention is characterized by high dynamics. After switching on, the operating temperature is reached very quickly; after switching off, the planar heating element cools down very quickly to the ambient room temperature.

Die Temperatur in dem definierten Flächenbereich mit einer im Wesentlichen gleichmäßige Temperaturverteilung liegt bevorzugt in einem Temperaturbereich zwischen 300°C und 750°C. Es versteht sich von selbst, dass je nach Ausgestaltung und Verwendung von Materialien für das erfindungsgemäße Heizelement auch Temperaturen außerhalb des zuvor spezifizierten Bereichs abgedeckt werden können.The temperature in the defined surface area with a substantially uniform temperature distribution is preferably in a temperature range between 300°C and 750°C. It goes without saying that, depending on the design and use of materials for the heating element according to the invention, temperatures outside the previously specified range can also be covered.

Bei der Materialwahl sind insbesondere die folgenden Punkte zu beachten:
Die beiden nachfolgenden Effekte müssen im Gleichgewicht gehalten werden:

  • Eine möglichst hohe thermische Leitfähigkeit der PTC-Widerstandsstruktur minimiert die thermischen Effekte der Verlustleistung infolge von Spannungsabfällen an den Leiterbahnen und Leitungen.
  • Die thermische Leitfähigkeit der Leiterbahnen muss relativ gering sein, um die unerwünschte Wärmeabfuhr aus der Heizzone zu vermeiden.
  • Die elektrische Leitfähigkeit muss aber genügend hoch bleiben, um die Erzeugung zusätzlicher Wärme durch Verlustleistung in diesem Bereich in Grenzen zu halten.
When choosing the material, the following points in particular must be observed:
The following two effects must be kept in balance:
  • A thermal conductivity of the PTC resistance structure that is as high as possible minimizes the thermal effects of the power loss as a result of voltage drops on the conductor tracks and lines.
  • The thermal conductivity of the conductor tracks must be relatively low in order to avoid unwanted heat dissipation from the heating zone.
  • However, the electrical conductivity must remain high enough to limit the generation of additional heat due to power loss in this area.

Ein Überlapp der beiden Leiterbahnen, die bevorzugt aus Platin bestehen, mit den bevorzugt aus Gold bestehenden Verbindungsleitungen ist notwendig, um eine sichere elektrische Kontaktierung zu gewährleisten. Im Bereich des Überlapps (PI/Au) werden die Anforderungen, die an die aus Reinmetallen (z.B. Au und PI) bestehenden Komponenten des Heizelements gestellt werden, nicht erfüllt. Diese verschlechterten Eigenschaften in den Bereichen des Überlapps müssen beim Design der PTC-Widerstandsstruktur berücksichtigt werden. Die ideale Wahl der Geometrie des Überlapps ist die höchstmögliche Länge bei möglichst geringer Tiefe des Überlapps, daher ist die V-Form besonders geeignet. Bevorzugt beträgt die Tiefe des Überlapps 100µm. Generell ist die Tiefe des Überlapps so zu wählen, dass sie prozesstechnisch reproduzierbar ist. Eine kleine Tiefe kann durchaus auch Nachteile haben, wenn diese z.B. zwischen 25µm und 30µm variert. Bei einer kleinen Tiefe ist der Einfluss einer prozesstechnisch bedingten Ungenauigkeit, z.B. von 5µm auf die Gesamtperformance natürlich um einiges grösser, als wenn man sich auf 100µm für die Tiefe des Überlapps festlegt.An overlap of the two conductor tracks, which are preferably made of platinum, with the connecting lines, which are preferably made of gold, is necessary in order to ensure reliable electrical contact. In the area of the overlap (PI/Au), the requirements placed on the components of the heating element made of pure metals (eg Au and PI) are not met. These degraded properties in the areas of the overlap must be taken into account when designing the PTC resistor structure. The ideal choice of the geometry of the lap is the highest possible length with the smallest possible depth of the lap, so the V-shape is particularly suitable. The depth of the overlap is preferably 100 μm. In general, the depth of the overlap should be selected so that it can be reproduced in terms of process technology. A small depth can also have disadvantages, for example if it is between 25 µm and 30µm varies. With a small depth, the influence of a process-related inaccuracy, eg of 5 µm, on the overall performance is of course much greater than if you set the depth of the overlap to 100 µm.

Die gleichen Überlegungen gelten auch im Bereich des Überlapps (Ag/Au) von Anschlusskontakten (z.B. Ag) und Verbindungsleitungen (z.B. Au). Da die bei diesem Überlapp auftretenden Temperaturen wesentlich tiefer liegen (→ kalte Zone: die Temperatur entspricht im Wesentlichen der herrschenden Umgebungstemperatur) als im Bereich des Überlapps von Verbindungsleitungen und Leiterbahnen (heiße Zone oder Heizzone: die Temperatur entspricht der Temperatur im definierten Bereich der PTC-Widerstandsstruktur, also der Temperatur der Heizzone), werden die Eigenschaften der PTC-Widerstandsstruktur allerdings weniger stark beeinflusst.The same considerations also apply in the area of the overlap (Ag/Au) of connection contacts (e.g. Ag) and connecting lines (e.g. Au). Since the temperatures that occur in this overlap are much lower (→ cold zone: the temperature essentially corresponds to the prevailing ambient temperature) than in the area of the overlap of connecting lines and conductor tracks (hot zone or heating zone: the temperature corresponds to the temperature in the defined area of the PTC resistance structure, i.e. the temperature of the heating zone), the properties of the PTC resistance structure are less affected.

Desweiteren bezieht sich die Erfindung auf eine Heizanordnung, die die zuvor beschriebene PTC-Widerstandsstruktur in geeigneten, aber beliebigen Ausgestaltung verwendet. Hierzu sind neben dem erfindungsgemäßen Heizelement vorgesehen: eine elektrische Spannungsversorgung, die die PTC-Widerstandsstruktur mit Energie versorgt, und eine Regel-/Auswerteeinheit, die die PTC-Widerstandsstruktur auf einen vorgegebenen Temperaturwert regelt.Furthermore, the invention relates to a heating arrangement which uses the above-described PTC resistance structure in a suitable but arbitrary configuration. For this purpose, in addition to the heating element according to the invention, an electrical power supply is provided, which supplies the PTC resistance structure with energy, and a control/evaluation unit, which regulates the PTC resistance structure to a predetermined temperature value.

Bei der elektrischen Spannungsversorgung handelt es um eine Spannungsquelle, die einen begrenzten Energievorrat aufweist. Bevorzugt wird die elektrische Spannung von einer Batterie geliefert.The electrical voltage supply is a voltage source that has a limited energy supply. The electrical voltage is preferably supplied by a battery.

Darüber hinaus wird im Zusammenhang mit der erfindungsgemäßen Heizanordnung angeregt, dass eine separate Widerstandsstruktur zur Bestimmung der Temperatur des Mediums, das durch das Heizelement beheizt wird, vorgesehen ist. Bevorzugt ist die Widerstandsstruktur zur Temperaturmessung und zur Heizung auf der zweiten Oberfläche des Trägersubstrats aufgebracht, die der ersten Oberfläche, auf der die PTC-Widerstandsstruktur angeordnet ist, gegenüberliegt. Aufgrund der gemessenen Temperatur wird die Temperaturregelung bevorzugt durchgeführt, und es wird von beiden Oberflächen her geheizt.Furthermore, in connection with the heating arrangement according to the invention, it is suggested that a separate resistance structure be provided for determining the temperature of the medium that is heated by the heating element. The resistance structure for temperature measurement and for heating is preferably applied to the second surface of the carrier substrate, which is opposite the first surface on which the PTC resistance structure is arranged. Based on the measured temperature, the temperature control is carried out preferentially and heating is carried out from both surfaces.

Bevorzugt kommt das erfindungsgemäße planare Heizelement bzw. die erfindungsgemäße Heizanordnung bei einem kompakten Gassensor auf Halbleiterbasis, bei einem kompakten Heizer für Taschengeräte oder bei einem kalorimetrischen Strömungssensor zur Anwendung.The planar heating element according to the invention or the heating arrangement according to the invention is preferably used in a compact semiconductor-based gas sensor, in a compact heater for pocket devices or in a calorimetric flow sensor.

Auf der Passivierungsschicht kann sich z.B. eine gassensitive Struktur, z.B. ein Metalloxid und eine interdigitale Elektrodenstruktur, befinden. Die Erfindung kann deshalb auch generell als Basis für Sensoren dienen, bei denen Heizen für die Sensorfunktion essentiell ist.For example, a gas-sensitive structure, such as a metal oxide and an interdigital electrode structure, can be located on the passivation layer. The invention can therefore also generally serve as a basis for sensors in which heating is essential for the sensor function.

Das erfindungsgemäße planare Heizelement wird bevorzugt über das nachfolgend beschriebene Verfahren gefertigt:
Auf jede der beiden Oberflächen des Trägersubstrats wird - üblicherweise hintereinander - eine Trennschicht aufgebracht. Üblich ist es, wenn die Dichschichttechnik verwendet wird, die Beschichtungen aufzudrucken. Wie bereits zuvor erwähnt, kann jedoch im Zusammenhang mit der Erfindung auch die Dünnschichttechnik zum Einsatz kommen. Auf eine der beiden trockene Trennschichten wird die PTC-Widerstandsstruktur aufgebracht. Sobald die PTC-Widerstandsstruktur ausgehärtet ist, werden die elektrischen Verbindungsleitungen appliziert und einem Trocknungsprozess ausgesetzt. Anschließend werden die Anschlusskontakte aufgebracht und gleichfalls ausgehärtet. Bevorzugt werden die Überlappbereiche der Anschlusskontakte und elektrischen Verbindungsleitungen noch einmal gesondert ausgehärtet. Auf die beiden Oberflächen des planaren Heizelements werden die Passivierungsschichten - bevorzugt sukzessive - aufgebracht und ausgehärtet.
The planar heating element according to the invention is preferably manufactured using the method described below:
A separating layer is applied—usually one after the other—to each of the two surfaces of the carrier substrate. It is common, when using the thick layer technique, to print the coatings on. However, as already mentioned above, thin-film technology can also be used in connection with the invention. The PTC resistance structure is applied to one of the two dry separating layers. As soon as the PTC resistance structure has hardened, the electrical connection lines are applied and subjected to a drying process. The connection contacts are then applied and also cured. The overlapping areas of the connection contacts and electrical connecting lines are preferably cured again separately. The passivation layers are applied—preferably successively—to the two surfaces of the planar heating element and cured.

Die Erfindung wird anhand der nachfolgenden Figuren näher erläutert. Es zeigt:

  • Fig. 1: eine Draufsicht auf eine bevorzugte Ausgestaltung des erfindungsgemäßen Heizelements,
  • Fig. 1a: einen Längsschnitt gemäß der Kennzeichnung A-A durch das in Fig. 1 dargestellte erfindungsgemäße Heizelement,
  • Fig. 2: eine schematische Teilansicht des erfindungsgemäßen Heizelements, das eine erste Ausgestaltung des Überlapps zwischen einer Verbindungs-leitung und den Leiterbahnen zeigt,
  • Fig. 3: eine schematische Teilansicht des erfindungsgemäßen Heizelements, das eine zweite Ausgestaltung des Überlapps zwischen einer Verbindungs-leitung und den Leiterbahnen zeigt,
  • Fig. 4: eine schematische Teilansicht des erfindungsgemäßen Heizelements, das eine dritte Ausgestaltung des Überlapps zwischen einer Verbindungs-leitung und den Leiterbahnen zeigt,
  • Fig. 5a: eine Draufsicht auf eine zweite Ausgestaltung des erfindungsgemäßen Heizelements mit PTC-Widerstandsstruktur und
  • Fig. 5b: eine Draufsicht auf die Rückseite des in Fig. 5a gezeigten Heizelements.
The invention is explained in more detail with reference to the following figures. It shows:
  • 1 : a plan view of a preferred embodiment of the heating element according to the invention,
  • Fig. 1a : a longitudinal section according to the marking AA through the in 1 illustrated heating element according to the invention,
  • 2 : a schematic partial view of the heating element according to the invention, showing a first embodiment of the overlap between a connecting line and the conductor tracks,
  • 3 : a schematic partial view of the heating element according to the invention, showing a second embodiment of the overlap between a connecting line and the conductor tracks,
  • 4 : a schematic partial view of the heating element according to the invention, showing a third embodiment of the overlap between a connecting line and the conductor tracks,
  • Figure 5a : a plan view of a second embodiment of the heating element according to the invention with a PTC resistance structure and
  • Figure 5b : a top view of the back of the in Figure 5a shown heating element.

Fig. 1 zeigt eine Draufsicht auf eine bevorzugte Ausgestaltung des erfindungsgemäßen Heizelements 1. Die Außenabmessungen der PTC-Widerstandsstruktur 2 begrenzen den definierten Flächenbereich 3 bzw. die Heizzone. Virtuell ist die PTC-Widerstandsstruktur in drei unterschiedliche Teilbereiche aufgeteilt: einen ersten endseitigen Teilbereich 10, der sich an die Anschlusskontakte 6 bzw. die elektrischen Verbindungsleitungen 15 anschließt, einen mittleren Teilbereich 11, der sich an den ersten endseitigen Teilbereich 10 anschließt, und einen zweiten endseitigen Teilbereich 12, der sich an den mittleren Teilbereich 11 anschließt. Zwischen den Anschlusskontakten 6 und den elektrischen Verbindungsleitungen 15 liegt ein Überlapp 16b einer definierten Länge vor. Ebenso ist zwischen jeder Verbindungsleitungen 15 und den Leiterbahnen 8, 9 ein Überlapp 16a. 1 shows a plan view of a preferred embodiment of the heating element 1 according to the invention. The external dimensions of the PTC resistance structure 2 delimit the defined surface area 3 or the heating zone. Virtually, the PTC resistance structure is divided into three different sub-areas: a first end-side sub-area 10, which adjoins the connection contacts 6 or the electrical connecting lines 15, a middle sub-area 11, which adjoins the first end-side sub-area 10, and a second end portion 12 which adjoins the middle portion 11 . There is an overlap 16b of a defined length between the connection contacts 6 and the electrical connecting lines 15 . There is also an overlap 16a between each connecting line 15 and the conductor tracks 8, 9.

Die innenliegende Leiterbahn 8 und die außenliegende Leiterbahn 9 der PTC-Widerstandsstruktur 2 verlaufen näherungsweise parallel und sind elektrisch parallel geschaltet. Die innenliegende Leiterbahn 8 hat einen größeren Widerstand als die außenliegende Leiterbahn 9. Die Widerstände von innenliegender Leiterbahn 8 und außenliegender Leiterbahn 9 sind so bemessen, dass bei Anlegen einer Spannung eine im Wesentlichen gleichmäßige Temperaturverteilung innerhalb des definierten Flächenbereichs 3 vorliegt. Dieser definierte Flächenbereich wird auch als Heizzone bezeichnet und ist in Fig. 1 durch die strichlierte Linie am Außenrand der PTC-Widerstandsstruktur 2 angedeutet.The inner conductor track 8 and the outer conductor track 9 of the PTC resistance structure 2 run approximately parallel and are electrically connected in parallel. The inner conductor track 8 has a higher resistance than the outer conductor track 9. The resistances of the inner conductor track 8 and the outer conductor track 9 are dimensioned such that when a voltage is applied, there is a substantially uniform temperature distribution within the defined surface area 3. This defined surface area is also referred to as the heating zone and is 1 indicated by the dashed line on the outer edge of the PTC resistance structure 2.

Die Kaltzone, also der Bereich, wo im Wesentlichen Raumtemperatur herrscht, liegt im Bereich der Anschlusskontakte 6. In dem zwischen der Heizzone und der Kaltzone liegenden Übergangsbereich ebenso wie im Außenbereich des definierten Flächenbereichs 3 ist der Temperaturgradient sehr hoch. Infolge des hohen Temperaturgradienten ist die Heizzone weitgehend auf den definierten Flächenbereich 3 begrenzt. Erreicht wird der hohe Temperaturgradient durch die Wahl eines Trägersubstrats 5 mit geringer thermischer Leitfähigkeit. Weitere Information hierzu findet sich in der vorhergehenden Beschreibung.The cold zone, i.e. the area where essentially room temperature prevails, is in the area of the connection contacts 6. In the transition area between the heating zone and the cold zone, as well as in the outer area of the defined surface area 3, the temperature gradient is very high. As a result of the high temperature gradient, the heating zone is largely limited to the defined surface area 3 . The high temperature gradient is achieved by choosing a carrier substrate 5 with low thermal conductivity. Further information on this can be found in the previous description.

Bei der gezeigten Ausführungsform sind die innenliegende Leiterbahn 8 und die außenliegende Leiterbahn 9 aus demselben Material gefertigt. An vorhergehender Stelle wurde bereits beschrieben, dass als Material der Leiterbahnen 8, 9 bevorzugt Platin verwendet wird. Die unterschiedlichen Widerstände der Leiterbahnen 8, 9 werden über unterschiedliche Querschnittsflächen und/oder Längenausdehnungen von innenliegender Leiterbahn 8 und außenliegender Leiterbahn 9 realisiert.In the embodiment shown, the conductor track 8 lying on the inside and the conductor track 9 lying on the outside are made of the same material. It has already been described above that platinum is preferably used as the material for the conductor tracks 8 , 9 . The different resistances of the conductor tracks 8, 9 are realized by means of different cross-sectional areas and/or linear expansions of the inner conductor track 8 and the outer conductor track 9.

Eine bevorzugte Dimensionierung des erfindungsgemäßen planaren Heizelements bzw. des erfindungsgemäßen Chips wurde bereits an vorhergehender Stelle angegeben.A preferred dimensioning of the planar heating element according to the invention or of the chip according to the invention has already been specified above.

Aus Fig. 1 ist ersichtlich, dass die Verbindungsleitungen 15, die - wie bereits zuvor ausführlich beschrieben - bevorzugt aus Gold bestehen, gleichfalls im Durchmesser variieren: Im Anschluss an den ersten Teilbereich 10 ist die Breite geringer und damit der Widerstand größer als in dem Bereich, der sich an die Anschlusskontakte 6 anschließt. Hierdurch wird erreicht, dass sich die thermische Leitfähigkeit nicht erhöht. In Verbindung mit der gegenüber Platin geringeren thermischen Leitfähigkeit von Gold wird der gewünschte große Temperaturgradient im Übergangsbereich von Heiz- und Kaltzone erreicht.Out of 1 it can be seen that the connecting lines 15, which - as already described in detail above - are preferably made of gold, also vary in diameter: Following the first partial area 10, the width is smaller and thus the resistance is greater than in the area that adjoins the connection contacts 6 connects. This ensures that the thermal conductivity does not increase. In connection with the lower thermal conductivity of gold compared to platinum, the desired large temperature gradient is achieved in the transition area between the heating and cold zones.

Fig. 1a zeigt einen Längsschnitt gemäß der Kennzeichnung A-A durch das in Fig. 1 dargestellte erfindungsgemäße Heizelement 1. Auf beiden Oberflächen 4, 19 eines Trägersubstrats 5 ist eine Trennschicht 14 angeordnet. Bei dem Trägersubstrat 5 handelt es sich bevorzugt um Zirkonoxid mit einer Dicke von 300µm handelt, die Trennschichten 14 weisen jeweils eine Dicke von 15µm auf. Auf der an der Oberfläche 4 des Trägersubstrats 5 aufgebrachten Trennschicht 14 ist die PTC-Widerstandsstruktur 2 angeordnet. Die PTC-Widerstandsstruktur besteht aus Platin mit einer Dicke von 8µm. Es versteht sich von selbst, dass die zuvorbeschriebene Dimensionierung der PTC-Widerstandsstruktur 2 nicht auf die genannten Werte beschränkt ist. Jeder der explizit genannten Werte kann beliebig nach oben oder unter variiert werden. Wie die Dimensionierung der Varianten im Detail gestaltet ist, liegt im Ermessen des Fachmanns. Fig. 1a shows a longitudinal section according to the marking AA through the in 1 illustrated heating element 1 according to the invention. On both surfaces 4, 19 of a carrier substrate 5, a separating layer 14 is arranged. The carrier substrate 5 is preferably zirconium oxide with a thickness of 300 μm, the separating layers 14 each have a thickness of 15 μm. The PTC resistance structure 2 is arranged on the separating layer 14 applied to the surface 4 of the carrier substrate 5 . The PTC resistor structure consists of platinum with a thickness of 8 µm. It goes without saying that the previously described dimensioning of the PTC resistance structure 2 is not limited to the stated values. Each of the explicitly mentioned values can be varied up or down as desired. How the dimensioning of the variants is designed in detail is at the discretion of the person skilled in the art.

Bei einer bevorzugten Ausgestaltung der Erfindung sind die Anschlusskontakte 6 aus Silber gefertigt und haben eine Dicke von 10µm. Die elektrische Verbindungsleitung 15 zwischen den Anschlusskontakten 6 und der PTC-Widerstandsstruktur 2 bestehen aus Gold und sind 4µm dick. Im Bereich des Überlapps 16b überlappen die Anschlusskontakte 6 und die elektrischen Verbindungsleitungen 15, im Bereich eines Überlapps 16a überlappen die elektrischen Verbindungsleitungen 15 und die Leiterbahnen 8, 9 der PTC-Widerstandsstruktur. Die Oberflächen 4, 19 des planaren Heizelements 1 sind mit einer Passivierungsschicht 13 versiegelt. Die Passivierungsschicht 13 hat eine Dicke von 15µm. Die Funktionen der einzelnen Schichten wurden bereits an vorhergehender Stelle eingehend beschrieben. Die Empfindlichkeit des planaren Heizelements beträgt bei Raumtemperatur ohne Anlegen der Heizspannung 3700ppm/K (+- 100ppm/K). Es versteht sich von selbst, dass die angegebenen Dicken der einzelnen Schichten beispielhaft sind. Jeder der explizit genannten Werte der bevorzugten Ausgestaltung kann beliebig nach oben oder unter variiert werden. Wie die Dimensionierung im Detail gestaltet ist, liegt im Ermessen des Fachmanns.In a preferred embodiment of the invention, the connection contacts 6 are made of silver and have a thickness of 10 μm. The electrical connecting line 15 between the connection contacts 6 and the PTC resistance structure 2 are made of gold and are 4 μm thick. In the area of the overlap 16b, the connection contacts 6 and the electrical connecting lines 15 overlap, in the area of an overlap 16a the electrical connecting lines 15 and the conductor tracks 8, 9 of the PTC resistance structure overlap. The surfaces 4, 19 of the planar heating element 1 are sealed with a passivation layer 13. the Passivation layer 13 has a thickness of 15 μm. The functions of the individual layers have already been described in detail above. The sensitivity of the planar heating element is 3700ppm/K (+- 100ppm/K) at room temperature without applying the heating voltage. It goes without saying that the specified thicknesses of the individual layers are exemplary. Each of the explicitly mentioned values of the preferred embodiment can be varied up or down as desired. How the dimensioning is designed in detail is at the discretion of the specialist.

Die Figuren Fig. 2, Fig. 3, Fig. 4 zeigen schematisch Teilansichten von erfindungsgemäßen Heizelementen 1 mit unterschiedlichen Ausgestaltungen des Überlapps 16a zwischen einer der Verbindungsleitungen 15 und den verbunden Leiterbahnen 8, 9. Der Überlapp 16a in Fig. 2 hat eine stegförmige Ausgestaltung, der Überlapp 16a in Fig. 3 ist rechteckförmig und der Überlapp 16a in Fig. 4 hat eine V-Form. Der Überlapp 16a zwischen den Verbindungsleitungen 15 und den Leiterbahnen 8, 9 im ersten endseitigen Teilbereich 10 der PTC-Widerstandsstruktur 2 ist bezüglich seiner geometrischen Parameter so ausgestaltet, dass die physikalischen Heizeigenschaften der PTC-Widerstandsstruktur 2 zumindest näherungsweise unverändert sind, bzw. nahezu identisch sind mit den Eigenschaften in dem definierten Flächenbereich 3, in dem die Heizzone angesiedelt ist. Die Materialien und die Besonderheiten, die in den Bereichen des Überlapps 16a, 16b auftreten, wurden bereits an vorhergehender Stelle beschrieben, so dass auf eine Wiederholung an dieser Stelle verzichtet wird.The figures 2, 3, 4 show schematic partial views of heating elements 1 according to the invention with different configurations of the overlap 16a between one of the connecting lines 15 and the connected conductor tracks 8, 9. The overlap 16a in 2 has a web-like configuration, the overlap 16a in 3 is rectangular and the overlap 16a in 4 has a V shape. The overlap 16a between the connecting lines 15 and the conductor tracks 8, 9 in the first partial area 10 at the end of the PTC resistance structure 2 is designed with regard to its geometric parameters in such a way that the physical heating properties of the PTC resistance structure 2 are at least approximately unchanged or are almost identical with the properties in the defined area 3, in which the heating zone is located. The materials and the special features that occur in the areas of the overlap 16a, 16b have already been described at the previous point, so that they will not be repeated at this point.

Fig. 5a zeigt eine Draufsicht auf eine zweite Ausgestaltung des erfindungsgemäßen Heizelements 1 mit PTC-Widerstandsstruktur 2, Fig. 5b eine Draufsicht auf die Rückseite 19 des in Fig. 5a gezeigten Heizelements 1, auf der ein mäanderförmiger Temperatursensor 18 angeordnet ist. Weiterhin ist in Fig. 5a auch die erfindungsgemäße Heizanordnung mit Heizelement 1, elektrischer Spannungsquelle 7 und Regel-/Auswerteeinheit 17 schematisch dargestellt. Figure 5a shows a plan view of a second embodiment of the heating element 1 according to the invention with a PTC resistance structure 2, Figure 5b a plan view of the back 19 of the in Figure 5a shown heating element 1, on which a meandering temperature sensor 18 is arranged. Furthermore, in Figure 5a also the heating arrangement according to the invention with heating element 1, electrical voltage source 7 and control/evaluation unit 17 is shown schematically.

BezugszeichenlisteReference List

11
Heizelementheating element
22
PTC-WiderstandsstrukturPTC resistance structure
33
definierter Flächenbereichdefined area
44
Oberflächesurface
55
Trägersubstratcarrier substrate
66
Anschlusskontaktconnection contact
77
elektrische Spannungsquelleelectrical voltage source
88th
innenliegende Leiterbahninternal conductor track
99
außenliegenden Leiterbahnexternal conductor track
1010
erster endseitiger Teilbereichfirst terminal section
1111
mittlerer Teilbereichmiddle section
1212
zweiter endseitiger Teilbereichsecond end portion
1313
Passivierungsschichtpassivation layer
1414
Trennschichtrelease layer
1515
elektrische Verbindungsleitungelectrical connection line
16a16a
Überlappoverlap
16b16b
Überlappoverlap
1717
Regel-/Auswerteeinheitcontrol/evaluation unit
1818
Widerstandsstruktur zur TemperaturmessungResistance structure for temperature measurement
1919
gegenüberliegende Oberflächeopposite surface

Claims (26)

  1. Planar heating element (1) with a PTC resistor structure (2), which is arranged in a defined surface area (3) of a first surface (4) of a carrier substrate (5), wherein electrical connection contacts (6) are assigned to the PTC resistor structure (2) for connection to an electrical voltage source (7), wherein the electrical connection contacts (6) are connected to the PTC resistor structure (2) via electrical connection lines (15), wherein the PTC resistor structure (2) has a first end section (10), a middle section (11) and a second end section (12),
    wherein, starting from a defined overlap (16a), the PTC resistor structure (2) is made from interlocking conductive tracks (8, 9) and has an interior conductive track (8) and an exterior conductive track (9),
    wherein the interior conductive track (8) and the exterior conductive track (9) are essentially parallel in the middle section (11),
    wherein the interior conductive track (8) and the exterior conductive track (9) are switched in parallel,
    characterized in that
    the connection lines (15) and the conductive tracks (8, 9) each have the defined overlap (16a) in the first end section (10) of the PTC resistor structure (2),
    the interior conductive track (8) has a bigger resistance than the exterior conductive track (9),
    the resistances of the interior conductive track (8) and the exterior conductive track (9) are sized in such a way that, when voltage is applied, there is an essentially even distribution of temperature within the defined surface area (3),
    and
    the first end section (10) of the PTC resistor structure is designed in such a way, with regard to the filling thickness and/or the line width of the conductive tracks (8, 9) in the area of the specific overlap (16a), that the physical heating properties of the PTC resistor structure are at least approximately unchanged in the first section (10).
  2. Heating element as claimed in Claim 1,
    wherein the PTC resistor structure (2) makes temperature measured values available in such a way that the PTC resistor structure (2) serves as a heating element and as a temperature sensor.
  3. Heating element as claimed in Claim 1 or 2,
    wherein the interior conductive track (8) and the exterior conductive track (9) are made from the same material, and
    wherein the different resistances are implemented via different cross-sectional areas and/or elongations of the interior conductive track (8) and of the exterior conductive track (9).
  4. Heating element as claimed in Claim 1 or 2,
    wherein the interior conductive track (8) and the exterior conductive track (9) are made from different materials, which have a different resistivity.
  5. Heating element as claimed in one or more of the Claims 1 to 4,
    wherein, in the first end section (10), the interior conductive track (8) and the exterior conductive track (9) are put into contact with the corresponding electrical connection contacts (6) in a manner that they approach one another.
  6. Heating element as claimed in one or more of the previous claims
    wherein the resistance of the interior conductive track (8) and/or the resistance of the exterior conductive track (9) in the first end section (10) and/or in the second end section (12) is greater than the resistance of the interior conductive track (8) and/or of the exterior conductive track (9) in the middle section (11).
  7. Heating element as claimed in one or more of the Claims 1 to 6,
    wherein the carrier substrate (5) is made from a material with a thermal conductivity that is less than a predefined limit value, such that a thermal gradient occurs between the heated defined surface area (3) and the connection contacts (6) that is above a predefined limit value, preferably above 50 °C/mm.
  8. Heating element as claimed in one or more of the previous claims,
    wherein at least a separation layer (14), which is essentially electrically isolating, is provided on or in the carrier substrate (5), wherein said layer is preferably made of glass.
  9. Heating element as claimed in one or more of the previous claims,
    wherein at least a passivation layer (13) is assigned to the carrier substrate (5), said layer being preferably applied on the surface of the carrier substrate (5).
  10. Heating element as claimed in one or more of the previous claims,
    wherein the PTC resistor structure (2) is made from a conductive material for use in the high-temperature range, said material being preferably platinum.
  11. Heating element as claimed in one or more of the previous claims,
    wherein the electrical connection contacts (6) are made from a precious metal or a precious metal alloy, wherein the precious metal is preferably silver and wherein the precious metal alloy is preferably a silver alloy.
  12. Heating element as claimed in one or more of the previous claims,
    wherein electrical connection lines (15) are provided between the electrical connection contacts (6) and the first end section (10) of the PTC resistor structure (2), wherein said lines are made from a precious metal, preferably gold, preferably with a purity of 99.9 %.
  13. Heating element as claimed in Claim 11 or 12,
    wherein the overlap (16a) between the connection lines (15) and the conductive tracks (8, 9) in the first end section (10) of the PTC resistor structure (2) is in the form of a V, a square or a bar.
  14. Heating element as claimed in Claim 13,
    wherein the width (b) of the overlap (16a) between the connection lines (15) and the conductive tracks (8, 9) in the first end section (10) of the PTC resistor structure (2) is greater than the distance between the interior conductive track (8) and the exterior conductive track (9).
  15. Heating element as claimed in one or more of the Claims 13 to 14,
    wherein the depth of the overlap (16a) between the connection lines (15) and the conductive tracks (8, 9) in the first end section (10) of the PTC resistor structure (2) is greater than 100 µm for a linear or V-shaped overlap.
  16. Heating element as claimed in one or more of the Claims 13 to 15,
    wherein the length and the depth of the overlap (16a) between the connection lines (15) and the conductive tracks (8, 9) in the first end section (10) of the PTC resistor structure (2) have approximately a ratio greater than 5:1.
  17. Heating element as claimed in one or more of the previous claims,
    wherein the thickness (d) of the PTC resistor structure (2), which is preferably made of platinum, is between 5 and 10 µm at least in the first section (10).
  18. Heating element as claimed in one or more of the previous claims,
    wherein the thickness of the connection lines (15), which are preferably made of gold, is between 3 and 10 µm.
  19. Heating element as claimed in one or more of the previous claims,
    wherein the thickness of the connection contacts (6), which are preferably made of silver, is between 10 and 30 µm.
  20. Heating element as claimed in one or more of the previous claims,
    wherein the temperature in the defined surface area (3) with an essentially even distribution of temperature is preferably in a temperature range between 300 °C and 750 °C.
  21. Heating element as claimed in one or more of the previous claims,
    wherein the resistance of the PTC resistor structure (2) is less than 3 Ω, preferably less than 1 Ω, at room temperature without heating voltage applied.
  22. Heating arrangement with a heating element as claimed in at least one of the Claims 1 to 21,
    wherein an electrical voltage source (7) is provided that supplies the PTC resistor structure (2) with energy, and
    wherein a control/evaluation unit (17) is provided which regulates the PTC resistor structure (2) to a predefined temperature value.
  23. Heating arrangement as claimed in Claim 22,
    wherein the electrical voltage source (7) is a voltage source with a limited energy reserve, preferably a battery with a voltage less than or equal to 3 V.
  24. Heating arrangement as claimed in Claim 22 or 23,
    wherein a resistance structure (18) is provided to determine the temperature and to heat the medium, and
    wherein the resistance structure (18) is applied to a second surface (19) of the carrier substrate (5), said second surface being opposite to the first surface (4).
  25. Procedure for producing a planar heating element, which is described in at least one of the Claims 1 to 21, said procedure comprising the following steps:
    - Coating of each of the surfaces (4, 19) of the carrier substrate (5) with a separation layer (14)
    - Fitting of the resistor structure (2) on the separation layer (14) of the surface (4)
    - Fitting of the electrical connection lines (15)
    - Fitting of the connection contacts (6)
    - Application of the passivation layers (13) in the area of the two surfaces (4, 19).
  26. Procedure as claimed in Claim 25,
    wherein thick film technology or thin film technology is used to produce the planar heating element (1).
EP15728852.3A 2014-06-13 2015-06-12 Planar heating element with a structure of ptc resistance Active EP3155871B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014108356.3A DE102014108356A1 (en) 2014-06-13 2014-06-13 Planar heating element with a PTC resistor structure
PCT/EP2015/063165 WO2015189388A1 (en) 2014-06-13 2015-06-12 Planar heating element with a ptc resistance structure

Publications (2)

Publication Number Publication Date
EP3155871A1 EP3155871A1 (en) 2017-04-19
EP3155871B1 true EP3155871B1 (en) 2022-04-20

Family

ID=53396498

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15728852.3A Active EP3155871B1 (en) 2014-06-13 2015-06-12 Planar heating element with a structure of ptc resistance

Country Status (7)

Country Link
US (2) US10694585B2 (en)
EP (1) EP3155871B1 (en)
JP (1) JP6482654B2 (en)
CN (1) CN106465481B (en)
DE (1) DE102014108356A1 (en)
RU (1) RU2668087C2 (en)
WO (1) WO2015189388A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014108356A1 (en) 2014-06-13 2015-12-17 Innovative Sensor Technology Ist Ag Planar heating element with a PTC resistor structure
JP6674211B2 (en) * 2015-08-21 2020-04-01 日本碍子株式会社 Ceramic heater, sensor element and gas sensor
JP6796358B2 (en) * 2015-08-21 2020-12-09 日本碍子株式会社 Ceramic heater, sensor element and gas sensor
CN106686773B (en) * 2016-01-06 2019-09-10 黄伟聪 A kind of thick film heating element of two-sided high thermal conductivity ability
DE102016113815A1 (en) * 2016-07-27 2018-02-01 Heraeus Noblelight Gmbh Infrared surface radiator and method for producing the infrared surface radiator
DE102016118137A1 (en) * 2016-09-26 2018-03-29 Heraeus Noblelight Gmbh Infrared Panel Heaters
JP7016642B2 (en) * 2016-10-11 2022-02-07 ローム株式会社 Manufacturing method of thermal print head and thermal print head
DE102016120536A1 (en) * 2016-10-27 2018-05-03 Heraeus Noblelight Gmbh infrared Heaters
KR20180124739A (en) 2017-05-11 2018-11-21 주식회사 케이티앤지 An aerosol generating device for controlling the temperature of a heater according to the type of cigarette and method thereof
JP6813697B2 (en) 2017-05-11 2021-01-13 ケーティー・アンド・ジー・コーポレーション Vaporizer and aerosol generator equipped with it
KR20190049391A (en) * 2017-10-30 2019-05-09 주식회사 케이티앤지 Aerosol generating apparatus having heater
KR102057215B1 (en) 2017-10-30 2019-12-18 주식회사 케이티앤지 Method and apparatus for generating aerosols
JP6884264B2 (en) 2017-10-30 2021-06-09 ケイティー アンド ジー コーポレイション Aerosol generator
JP6978580B2 (en) 2017-10-30 2021-12-08 ケイティー アンド ジー コーポレイション Heaters for aerosol generators and aerosol generators
KR102180421B1 (en) 2017-10-30 2020-11-18 주식회사 케이티앤지 Apparatus for generating aerosols
WO2019088589A2 (en) 2017-10-30 2019-05-09 주식회사 케이티앤지 Aerosol generating device and method for controlling same
KR102138246B1 (en) 2017-10-30 2020-07-28 주식회사 케이티앤지 Vaporizer and aerosol generating apparatus comprising the same
KR102057216B1 (en) 2017-10-30 2019-12-18 주식회사 케이티앤지 An apparatus for generating aerosols and A heater assembly therein
EP3704964A4 (en) 2017-10-30 2021-09-15 KT&G Corporation Aerosol generating device
KR102138245B1 (en) 2017-10-30 2020-07-28 주식회사 케이티앤지 Aerosol generating apparatus
CN108851245A (en) * 2018-08-02 2018-11-23 东莞市东思电子技术有限公司 A kind of heating of built-in thermometric PTC is not burnt low temperature cigarette heater element and preparation method thereof
LU100929B1 (en) * 2018-09-17 2020-03-17 Iee Sa Robust Printed Heater Connections for Automotive Applications
KR20200093718A (en) 2019-01-28 2020-08-06 삼성디스플레이 주식회사 Organic light emitting diode display device and method of manufacturing organic light emitting diode display device
DE102019112238A1 (en) * 2019-05-10 2020-11-12 HELLA GmbH & Co. KGaA Method for checking the coating of an electronic component
WO2021177061A1 (en) * 2020-03-03 2021-09-10 株式会社大真空 Thin-film heater, method of producing thin-film heater, and thermostatic oven piezoelectric oscillator
CN111657556A (en) * 2020-05-15 2020-09-15 深圳麦克韦尔科技有限公司 Heating assembly and heating atomization device
DE102020134440A1 (en) 2020-12-21 2022-06-23 Innovative Sensor Technology Ist Ag Heating element for electronic cigarette and electronic cigarette for detecting physical property of tobacco aerosol and/or user's health condition
US11543604B2 (en) * 2021-04-06 2023-01-03 Globalfoundries U.S. Inc. On-chip heater with a heating element that locally generates different amounts of heat and methods
JP2023117633A (en) * 2022-02-14 2023-08-24 東京コスモス電機株式会社 planar heating element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3902484A1 (en) * 1988-01-28 1989-08-10 Ngk Insulators Ltd CERAMIC RADIATOR WITH AREAS CONNECTING A HEAT-GENERATING AREA AND PIPE AREAS
US4970376A (en) * 1987-12-22 1990-11-13 Gte Products Corporation Glass transparent heater

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246657A (en) * 1985-08-23 1987-02-28 Mitsubishi Electric Corp Production of thermal head
US4849611A (en) * 1985-12-16 1989-07-18 Raychem Corporation Self-regulating heater employing reactive components
JPH0529067A (en) * 1991-07-25 1993-02-05 Rohm Co Ltd Structure of heating element and heater for office automation equipment
JP2828575B2 (en) * 1993-11-12 1998-11-25 京セラ株式会社 Silicon nitride ceramic heater
DE19523301A1 (en) * 1995-06-27 1997-01-09 Siemens Ag Heater for high temp. metal oxide sensor - has current flowing through platinum heating wires at 600-1000 deg. C, and measures voltage drop across platinum measurement wires
JPH10104067A (en) * 1996-09-27 1998-04-24 Fuji Electric Co Ltd Infrared light source of molybdenum disilicide composite ceramics or heating source
EP0905494A3 (en) * 1997-09-26 2000-02-23 SIEMENS MATSUSHITA COMPONENTS GmbH & CO. KG High temperature sensor
EP1199751A3 (en) 1998-06-30 2005-12-07 Micronas GmbH Chip arrangement
DE29907566U1 (en) * 1999-04-28 1999-08-26 Honsberg & Co Kg Flow sensor
DE10108662A1 (en) * 2000-02-23 2001-08-30 Tyco Electronics Amp Gmbh Conducting track on substrate has first and second straight sections connected by a third section running along an inwardly curved bend divided into mutually insulated sub-sections
DE10206497A1 (en) * 2002-02-16 2003-09-11 Bosch Gmbh Robert Sensor element, in particular planar gas sensor element
DE10314010A1 (en) * 2003-03-28 2004-10-21 Robert Bosch Gmbh Ceramic layer composite
DE602004022327D1 (en) * 2003-11-25 2009-09-10 Kyocera Corp CERAMIC HEATING ELEMENT AND MANUFACTURING METHOD THEREFOR
US7132628B2 (en) * 2004-03-10 2006-11-07 Watlow Electric Manufacturing Company Variable watt density layered heater
US20070114130A1 (en) * 2005-11-18 2007-05-24 Lankheet Earl W Gas sensors and methods of manufacture
DE102005057566A1 (en) * 2005-12-02 2007-06-06 Robert Bosch Gmbh Sensor element for a gas sensor for measuring a physical property of a sample gas
DE102005061703A1 (en) 2005-12-21 2007-07-05 Innovative Sensor Technology Ist Ag Device for determining and / or monitoring a process variable and method for producing a corresponding sensor unit
JP5029067B2 (en) 2007-03-01 2012-09-19 ブラザー工業株式会社 Liquid ejection device
DE102007035997A1 (en) 2007-07-30 2009-02-05 Innovative Sensor Technology Ist Ag Device for determining and / or monitoring a process variable
DE102008007664A1 (en) * 2008-02-06 2009-08-13 Robert Bosch Gmbh Ceramic heating element for use in electrochemical gas sensor that detects soot particle in exhaust gas of e.g. internal combustion engine, has electric resistor elements arranged parallel to each other in ceramic layer plane
JP5791264B2 (en) * 2009-12-21 2015-10-07 キヤノン株式会社 Heater and image heating apparatus equipped with the heater
DE102010063529A1 (en) * 2010-12-20 2012-06-21 Robert Bosch Gmbh heating element
RU109536U1 (en) * 2011-03-21 2011-10-20 Общество с ограниченной ответственностью "Термостат" HEATING DEVICE
JP5403017B2 (en) * 2011-08-30 2014-01-29 株式会社デンソー Ceramic heater and gas sensor element using the same
DE102014108356A1 (en) 2014-06-13 2015-12-17 Innovative Sensor Technology Ist Ag Planar heating element with a PTC resistor structure
DE102014213657A1 (en) * 2014-07-14 2016-01-14 Wacker Chemie Ag Fatty acid vinyl ester copolymers with wax properties

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4970376A (en) * 1987-12-22 1990-11-13 Gte Products Corporation Glass transparent heater
DE3902484A1 (en) * 1988-01-28 1989-08-10 Ngk Insulators Ltd CERAMIC RADIATOR WITH AREAS CONNECTING A HEAT-GENERATING AREA AND PIPE AREAS

Also Published As

Publication number Publication date
US11382182B2 (en) 2022-07-05
EP3155871A1 (en) 2017-04-19
DE102014108356A1 (en) 2015-12-17
CN106465481B (en) 2022-03-11
RU2668087C2 (en) 2018-09-26
JP2017525122A (en) 2017-08-31
RU2017100894A (en) 2018-07-13
WO2015189388A1 (en) 2015-12-17
CN106465481A (en) 2017-02-22
US20180152989A1 (en) 2018-05-31
RU2017100894A3 (en) 2018-07-13
US10694585B2 (en) 2020-06-23
JP6482654B2 (en) 2019-03-13
US20200305240A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
EP3155871B1 (en) Planar heating element with a structure of ptc resistance
DE2826515C2 (en)
DE2815879C2 (en)
DE3916311C2 (en) Multiple thermocouple probe
DE102013110291A1 (en) Method for producing a soot sensor with a laser beam
DE3907312A1 (en) CERAMIC RESISTANCE HEATING DEVICE WITH CONNECTED HEATING DEVELOPERS AND AN ELECTROCHEMICAL ELEMENT OR ANALYZER USING SUCH A HEATING DEVICE
DE19753642A1 (en) Temperature-dependent measurement resistance with fast reaction time
DE19957991C2 (en) Arrangement of a heating layer for a high temperature gas sensor
DE3417170A1 (en) OXYGEN SENSOR WITH HEATING DEVICE
DE19611964A1 (en) Gas sensor
EP1155311A1 (en) Eletrochemical measuring sensor
DE2029065A1 (en) Electric resistance thermometer
EP1046319A1 (en) Ceramic layer system and method for producing a ceramic heating device
DE19736855A1 (en) Circuit arrangement with an SMD component, in particular temperature sensor and method for producing a temperature sensor
DE10359569A1 (en) Ceramic layer composite
DE1489751B2 (en) SOLIDS INFRATE SOLIDS INFRARED IMAGE AMPLIFIER
DE3936103C2 (en) Arrangement for attaching a wire to a solid electrolyte element
EP2929311B1 (en) Thermocouple
DE10208533B4 (en) Method for adjusting the resistance of a resistance track
DE102013206406A1 (en) Room air conditioner and control device
DE4001048A1 (en) SENSOR FOR GAS MEASUREMENT WITH A CATALYST SENSOR ELEMENT
WO2016082965A1 (en) Ceramic sensor element for a waste gas sensor
DE10100599B4 (en) gas sensor
DE4328791C2 (en) Hybrid thermistor temperature sensor
DE4420944A1 (en) Ceramic heating body used in oxygen@ probe

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190205

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 3/00 20060101ALI20211111BHEP

Ipc: H05B 3/20 20060101AFI20211111BHEP

INTG Intention to grant announced

Effective date: 20211130

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015015782

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1486179

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220822

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220721

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220820

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015015782

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230123

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220612

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220612

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220720

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1486179

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230702

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420