EP3154378B1 - Improved sweetener - Google Patents

Improved sweetener Download PDF

Info

Publication number
EP3154378B1
EP3154378B1 EP15723751.2A EP15723751A EP3154378B1 EP 3154378 B1 EP3154378 B1 EP 3154378B1 EP 15723751 A EP15723751 A EP 15723751A EP 3154378 B1 EP3154378 B1 EP 3154378B1
Authority
EP
European Patent Office
Prior art keywords
weight
stevia extract
amount
allulose
sweetener
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP15723751.2A
Other languages
German (de)
French (fr)
Other versions
EP3154378A1 (en
Inventor
Ryan D. WOODYER
John R. Bridges
Jason C. Cohen
Joshua Nehemiah FLETCHER
Yuqing ZHOU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tate and Lyle Technology Ltd
Tate and Lyle Solutions USA LLC
Original Assignee
Tate and Lyle Technology Ltd
Tate and Lyle Ingredients Americas LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51494840&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3154378(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tate and Lyle Technology Ltd, Tate and Lyle Ingredients Americas LLC filed Critical Tate and Lyle Technology Ltd
Priority to PL15723751T priority Critical patent/PL3154378T3/en
Priority to EP20184341.4A priority patent/EP3738441A1/en
Publication of EP3154378A1 publication Critical patent/EP3154378A1/en
Application granted granted Critical
Publication of EP3154378B1 publication Critical patent/EP3154378B1/en
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • A23L2/60Sweeteners
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • A23L2/54Mixing with gases
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/30Artificial sweetening agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/30Artificial sweetening agents
    • A23L27/33Artificial sweetening agents containing sugars or derivatives
    • A23L27/36Terpene glycosides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/20Reducing nutritive value; Dietetic products with reduced nutritive value
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/30Artificial sweetening agents
    • A23L27/33Artificial sweetening agents containing sugars or derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/12Replacer
    • A23V2200/132Sugar replacer
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/20Natural extracts
    • A23V2250/21Plant extracts
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/24Non-sugar sweeteners
    • A23V2250/258Rebaudioside
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/14Extraction

Definitions

  • the present invention relates generally to a low or "zero"-calorie synergistic sweetener composition.
  • the present invention relates to a sweetener composition with sweetness synergy and improved taste.
  • the present invention also relates to food or beverage products comprising said sweetener composition.
  • nutritive sweeteners such as sucrose (generally referred to as 'sugar' or 'table sugar'), glucose, fructose, corn syrup, high fructose corn syrup and the like.
  • sucrose generally referred to as 'sugar' or 'table sugar'
  • glucose fructose
  • corn syrup high fructose corn syrup and the like.
  • sweeteners supply not only sweetness to the food and beverage products, but also bulk, texture and desirable functional properties such as browning, humectancy, freezing point depression and the like. They also produce a favorable sensory response, for example in terms of quality of sweetness, lack of bitterness and off taste, desirable temporal profile and desirable mouthfeel.
  • US patent publication no. 2011/0275138 discloses a ketose 3-epimerase derived from a microorganism of the Rhizobium genus. This protein shows a high specificity to D- or L-ketopentose and D- or L-ketohexose, and especially to D-fructose and D-psicose. This document also discloses a process for producing ketoses by using the protein.
  • Korean patent application no. 1020090098938 discloses a method of producing psicose using E. coli wherein the E. coli expresses a polynucleotide encoding a psicose 3-epimerase.
  • the present invention seeks to provide a solution to the above mentioned problem by providing a sweetener composition having taste characteristics comparable to sucrose but having low or no calories.
  • the present invention also seeks to provide a sweetener composition which has improved taste compared with known sweeteners.
  • a sweetener composition comprising allulose and a stevia extract, the sweetener composition comprising allulose in an amount of at least 85% by weight and stevia extract in an amount of at least 0.07% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis, wherein the stevia extract comprises Rebaudioside A in an amount of from 60 weight % to 85 weight % relative to the combined total weight of steviol glycosides in the stevia extract on a dry solids basis.
  • the stevia extract comprises Rebaudioside A in an amount of from 75 weight % to 80 weight %, relative to the combined total weight of steviol glycosides in the stevia extract on a dry solids basis.
  • the stevia extract comprises Rebaudioside B in an amount of from 15 weight % to 30 weight %, preferably from 19 weight % to 23 weight %, relative to the combined total weight of steviol glycosides in the stevia extract on a dry solids basis.
  • the sweetener composition comprises allulose in an amount of from 97.5% to 99.9% by weight and stevia extract in an amount of 0.1% to 2.5% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis. In another embodiment, the sweetener composition comprises allulose in an amount of from 98% to 99.9% by weight and stevia extract in an amount of 0.1 % to 2% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis.
  • the sweetener composition comprises allulose in an amount of from 98.9% to 99.9% by weight and stevia extract in an amount of 0.1 % to 1.1% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis. In another embodiment, the sweetener composition comprises allulose in an amount of from 98.9% to 99.8% by weight and stevia extract in an amount of 0.2% to 1.1% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis.
  • a second aspect of the present invention provides a food or beverage product comprising the sweetener composition of the invention.
  • the food or beverage product is a food product and the sweetener composition is provided as a coating or frosting on the surface of the food product.
  • a further aspect of the present invention provides a table-top sweetener comprising the sweetener composition of the invention.
  • the sweetener composition of the table-top sweetener comprises allulose in an amount of 99.03% and stevia extract in an amount of 0.07% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mycology (AREA)
  • Seasonings (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Cosmetics (AREA)
  • Medicinal Preparation (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Non-Alcoholic Beverages (AREA)

Description

    Field of the Invention
  • The present invention relates generally to a low or "zero"-calorie synergistic sweetener composition. In particular, the present invention relates to a sweetener composition with sweetness synergy and improved taste. The present invention also relates to food or beverage products comprising said sweetener composition.
  • Background of the Invention
  • Many food and beverage products contain nutritive sweeteners such as sucrose (generally referred to as 'sugar' or 'table sugar'), glucose, fructose, corn syrup, high fructose corn syrup and the like. Such sweeteners supply not only sweetness to the food and beverage products, but also bulk, texture and desirable functional properties such as browning, humectancy, freezing point depression and the like. They also produce a favorable sensory response, for example in terms of quality of sweetness, lack of bitterness and off taste, desirable temporal profile and desirable mouthfeel.
  • Although desirable in terms of taste and functional properties, excess intake of nutritive sweeteners, such as sucrose, has long been associated with an increase in diet-related health issues, such as obesity, heart disease, metabolic disorders and dental problems. This worrying trend has caused consumers to become increasingly aware of the importance of adopting a healthier lifestyle and reducing the level of nutritive sweeteners in their diet.
  • In recent years, there has been a movement towards the development of replacements for nutritive sweeteners, with a particular focus on the development of low or zero-calorie sweeteners. An ideal replacement for a nutritive sweetener is a sweetener that has the same desirable taste characteristics and functional properties as the nutritive sweetener, but which also has fewer or substantially no calories. Aiming to meet this growing need, the market has been flooded with possible candidates to replace conventional nutritive sweeteners. Unfortunately, however, many of the low or zero calorie replacements offered on the market lack one or all of the necessary characteristics, and often exhibit bitterness or off-taste. Therefore, many of the proposed sweeteners are not an ideal replacement for nutritive sweeteners.
  • One proposed alternative to nutritive sweeteners is allulose (also known as D-psicose). Allulose is known as a "rare sugar", since it occurs in nature in only very small amounts. It provides around 70% of the sweetness of sucrose, but only around 5% of the calories (approximately 0.2 kcal/g). It may therefore essentially be considered to be a 'zero calorie' sweetener.
  • In view of its scarcity in nature, production of allulose relies on the epimerization of readily available fructose. Ketose-3-epimerases can interconvert fructose and allulose, and various ketose-3-epimerases are known for carrying out this conversion.
  • US patent no. 8,030,035 and PCT publication no. WO2011/040708 disclose that D-psicose can be produced by reacting D-fructose with a protein derived from Agrobacterium tumefaciens, and having psicose 3-epimerase activity.
  • US patent publication no. 2011/0275138 discloses a ketose 3-epimerase derived from a microorganism of the Rhizobium genus. This protein shows a high specificity to D- or L-ketopentose and D- or L-ketohexose, and especially to D-fructose and D-psicose. This document also discloses a process for producing ketoses by using the protein.
  • Korean patent no. 100832339 discloses a Sinorhizobium YB-58 strain which is capable of converting fructose into psicose (i.e. allulose), and a method of producing psicose using a fungus body of the Sinorhizobium YB-58 strain.
  • Korean patent application no. 1020090098938 discloses a method of producing psicose using E. coli wherein the E. coli expresses a polynucleotide encoding a psicose 3-epimerase.
  • US patent publication no. 2009/304891 discloses a D-psicose containing sweetener comprising D-psicose, a sugar alcohol and/or a high intensity sweetener.
  • US patent publication no. 2012/076908 discloses a composition for improving a taste of a high-intensity sweetener containing an isomerized sugar and a rare sugar such that the rare sugar is contained in amount of from 1 to 150 parts by mass based on 100 parts by mass of the isomerized sugar.
  • Allulose is present in processed cane and beet molasses, steam treated coffee, wheat plant products and high fructose corn syrup. D-allulose is the C-3 epimer of D-fructose and the structural differences between allulose and fructose result in allulose not being metabolized by the human body to any significant extent, and thus having "zero" calories. Thus, allulose is thought to be a promising candidate as a replacement for nutritive sweeteners and as a sweet bulking agent, as it has no calories and is reported to be sweet while maintaining similar properties to sucrose.
  • Another proposed alternative to nutritive sweeteners is stevia extract. The species stevia rebaudiana (or Stevia) contains sweet compounds in its leaves. These compounds may be extracted to provide stevia extracts. The sweet taste of stevia extracts is mainly attributed to a family of compounds known as 'steviol glycosides', examples of which include Rebaudiosides (e.g., Rebaudiosides A to F, M and X), Rubusoside, Stevioside and Dulcosides.
  • Low or non-caloric sweeteners based on Rebaudioside A and other steviol glycosides can have a bitter or licorice aftertaste, especially at concentrations above 300 ppm. In food applications, preferred use levels (8%-10% sugar equivalence values) are typically 500 ppm to 1000 ppm, which is above the range at which off-tastes are first noticed. Furthermore, allulose may have limitations in use due to cost and digestive tolerance in some applications. Therefore, there is a need to provide an improved replacement for sucrose and other nutritive sweeteners that has low or zero-calories and is without limitations in use, but which also has taste characteristics similar to those of sucrose.
  • The present invention seeks to provide a solution to the above mentioned problem by providing a sweetener composition having taste characteristics comparable to sucrose but having low or no calories. Advantageously, the present invention also seeks to provide a sweetener composition which has improved taste compared with known sweeteners.
  • Summary of the Invention
  • According to a first aspect of the present invention, there is provided a sweetener composition comprising allulose and a stevia extract, the sweetener composition comprising allulose in an amount of at least 85% by weight and stevia extract in an amount of at least 0.07% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis, wherein the stevia extract comprises Rebaudioside A in an amount of from 60 weight % to 85 weight % relative to the combined total weight of steviol glycosides in the stevia extract on a dry solids basis.
  • According to an embodiment, the stevia extract additionally comprises at least one steviol glycoside selected from the group consisting of Rebaudioside B, Rebaudioside C, Rebaudioside D, Rebaudioside E, Rebaudioside F, Rebaudioside M, Rebaudioside X, Rubusoside, Stevioside and Dulcosides, and mixtures thereof.
  • In another embodiment, the at least one steviol glycoside comprises Rebaudioside B. In an embodiment, the stevia extract comprises steviol glycosides in a total amount of at least 90 weight %, preferably in a total amount of 95 weight % or more, relative to the total weight of the stevia extract on a dry solids basis.
  • In an embodiment, the stevia extract comprises Rebaudioside A and Stevioside in a combined total amount of at least 70 weight %, preferably in a combined total amount of 75 weight % or more, relative to the total weight of the stevia extract on a dry solids basis.
  • In an embodiment, the stevia extract comprises Rebaudioside A in an amount of from 75 weight % to 80 weight %, relative to the combined total weight of steviol glycosides in the stevia extract on a dry solids basis.
  • In an embodiment, the stevia extract comprises Rebaudioside B in an amount of from 15 weight % to 30 weight %, preferably from 19 weight % to 23 weight %, relative to the combined total weight of steviol glycosides in the stevia extract on a dry solids basis.
  • In an embodiment, the sweetener composition comprises allulose in an amount of from 97.5% to 99.9% by weight and stevia extract in an amount of 0.1% to 2.5% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis. In another embodiment, the sweetener composition comprises allulose in an amount of from 98% to 99.9% by weight and stevia extract in an amount of 0.1 % to 2% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis. In another embodiment, the sweetener composition comprises allulose in an amount of from 98.9% to 99.9% by weight and stevia extract in an amount of 0.1 % to 1.1% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis. In another embodiment, the sweetener composition comprises allulose in an amount of from 98.9% to 99.8% by weight and stevia extract in an amount of 0.2% to 1.1% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis. In another embodiment, the sweetener composition comprises allulose in an amount of from 99.5% to 99.8% by weight and stevia extract in an amount of 0.2% to 0.5% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis. In another embodiment, the sweetener composition comprises allulose in an amount of from 98.9% to 99.4% by weight and stevia extract in an amount of 0.6% to 1.1% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis. In another embodiment, the sweetener composition comprises allulose in an amount of from 99.0% to 99.3% by weight and stevia extract in an amount of 0.7% to 1.0% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis. In another embodiment, the sweetener composition comprises allulose in an amount of 99.03% by weight and stevia extract in an amount of 0.97% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis. In another embodiment, the sweetener composition comprises allulose in an amount of from 99.4% to 99.9% by weight and stevia extract in an amount of 0.1% to 0.6% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis. In another embodiment, the sweetener composition comprises allulose in an amount of from 97.5% to 99.0% by weight and stevia extract in an amount of 1.0% to 2.5% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis. In another embodiment, the sweetener composition comprises allulose in an amount of from 98.0% to 98.9% by weight and stevia extract in an amount of 1.1% to 2.0% by
    weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis.
  • According to an embodiment, the sweetener composition further comprises a sweet taste improving additive, a bulking agent, a flavoring agent, or a stabilizer.
  • A second aspect of the present invention provides a food or beverage product comprising the sweetener composition of the invention.
  • According to an embodiment, the food or beverage product is a food product and the sweetener composition is provided as a coating or frosting on the surface of the food product.
  • According to an embodiment, the food or beverage product is a carbonated or non-carbonated beverage.
  • A further aspect of the present invention provides a table-top sweetener comprising the sweetener composition of the invention.
  • According to an embodiment, the table-top sweetener is a dry table-top sweetener. For example, it may be provided as tablets, granules or as a powder.
  • According to an embodiment, the sweetener composition of the table-top sweetener comprises allulose in an amount of from 98.8% to 99.2% and stevia extract in an amount of from 0.8% to 1.2% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis.
  • According to an embodiment, the sweetener composition of the table-top sweetener comprises allulose in an amount of from 98.9% to 99.1% and stevia extract in an amount of from 0.9% to 1.1% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis.
  • According to an embodiment, the sweetener composition of the table-top sweetener comprises allulose in an amount of 99.03% and stevia extract in an amount of 0.07% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis.
  • In an embodiment, the table-top sweetener further comprises one or more nutritive sweetener.
  • In an embodiment, the table-top sweetener further comprises one or more co-sweetener selected from the group consisting of high intensity sweeteners and sugar alcohols.
  • Another aspect of the present invention provides the use of the sweetener composition of the invention in a food product, a beverage product, a pharmaceutical product, a nutritional product, a sports product, or a cosmetic product.
  • Another aspect of the present invention provides the use of the sweetener composition of the invention as a bulking agent.
  • Another aspect of the present invention provides the use of the sweetener composition of the invention as a coating agent.
  • Brief Description of the Drawings
  • Figure 1:
    The results of paired comparison analysis of a blend of stevia extract and allulose against a stevia extract in neutral pH water.
    Detailed Description
  • The present invention is based on the finding that allulose and a stevia extract, when present in a sweetener composition, exhibit sweetness synergy whereby the blend is sweeter than the expected sweetness based on the sweetness of its components. Furthermore, it has been found that this blend of allulose and a stevia extract has desirable taste characteristics (for example in terms of reduced off-flavors and off-tastes, and in terms of temporal profile).
  • Due to the presence of the zero calorie sweeteners, the sweetener composition is low or "zero" calorie. Furthermore, as a consequence of the sweetness synergy exhibited by the composition, the amount of the composition required to provide a given level of sweetness is less than would be expected in the absence of synergy, thereby allowing a further reduction in calories. Thus, the sweetener of the present invention provides enhanced sweetness and desirable taste characteristics, while at the same time allowing a significant reduction in calories compared to a sweet-equivalent amount of a conventional nutritive sweetener.
  • Using the sweetener composition of the present invention allows delivery of an increased sweetness in food or beverage products when compared to the individual components used separately. This enhanced sweetness means that a smaller amount of sweetener can be used in these products, to provide a temporal and taste profile that closely matches that of sucrose.
  • In general terms, the present invention relates to a sweetener composition comprising allulose and a stevia extract.
  • The term "allulose" as used herein refers to a monosaccharide sugar of the structure shown as a Fischer projection in below Formula I. It is also known as "D-psicose":
    Figure imgb0001
  • The term "stevia extract" as used herein refers to an extract or sample taken from a Stevia plant, Stevia rebaudiana. Such extracts or samples typically comprise at least one steviol glycoside. The term "steviol glycoside" means any of a number of naturally occurring compounds based on the steviol diterpene structure shown in Formula (II):
    Figure imgb0002
  • R1 in above Formula (II) is generally a glucose moiety or hydrogen, while R2 in above Formula (II) is generally a saccharide moiety including glucose and/or rhamnose moieties.
  • Examples of steviol glycosides that may be extracted from Stevia include Rebaudioside A, Rebaudioside B, Rebaudioside C, Rebaudioside D, Rebaudioside E, Rebaudioside F, Rebaudioside M, Rebaudioside X, Rubusoside, Stevioside and Dulcosides, and mixtures thereof.
  • The term "temporal profile" of a composition, sugar or sweetener, as used herein, is a measure of the perceived sweetness intensity of said composition, sugar or sweetener over time. A desirable or advantageous temporal profile is one wherein sweetness is observed quickly and has a short linger similar to that of sucrose.
  • The term "sucrose equivalent value" or "SEV" as used herein refers to the sweetness equivalent of a sweetener related to the sweetness of sucrose. For example, a sweetener at an SEV value of 5 would have a sweetness similar to a 5% by weight solution of sucrose.
  • The term "zero calorie" as used herein refers to a sweetener with less than 5 calories per reference amount customarily consumed (RACC) and per labeled serving.
  • The term "low calorie" as used herein refers to a sweetener having 40 calories or fewer per reference amount customarily consumed (RACC) and per labeled serving.
  • All amounts given in % by weight are quoted on a dry solids (ds) basis unless specifically stated otherwise. Thus, where components are provided other than in their pure form, the amount added should be adjusted to provide the required amount on a dry solids basis. For example, where allulose is provided as a syrup, the amount of syrup used should be adjusted to supply the required amount of allulose on a dry solids basis.
  • The present invention provides a sweetener composition comprising allulose and a stevia extract, the sweetener comprising allulose in an amount of at least 85% by weight and stevia extract in an amount of at least 0.07% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis, wherein the stevia extract comprises Rebaudioside A in an amount of from 60 weight % to 85 weight % relative to the combined total weight of steviol glycosides in the stevia extract on a dry solids basis.
  • According to an embodiment, the stevia extract additionally comprises at least one steviol glycoside selected from the group consisting of Rebaudioside B, Rebaudioside C, Rebaudioside D, Rebaudioside E, Rebaudioside F, Rebaudioside M, Rebaudioside X, Rubusoside, Stevioside and Dulcosides, and mixtures thereof.
  • According to a preferred embodiment, the at least one steviol glycoside comprises Rebaudioside B. Preferably, the at least one steviol glycoside comprises both Rebaudioside A and Rebaudioside B.
  • The stevia extract for use in the present invention preferably comprises steviol glycosides in a total amount of at least 90 weight %, preferably in a total amount of 95 weight % or more, relative to the total weight of the stevia extract on a dry solids basis. For example, the stevia extract may comprise steviol glycosides in a total amount of at least 90, 91, 92, 93, 94, 95, 96, 97, 98 or 99 weight %, relative to the total weight of the stevia extract on a dry solids basis.
  • A preferred stevia extract for use in the present invention comprises Rebaudioside A and Stevioside in a combined total amount of at least 70 weight %, preferably in a combined total amount of 75 weight % or more, relative to the total weight of the stevia extract on a dry solids basis.
  • Preferably, the stevia extract comprises Rebaudioside A in an amount of from 70 weight % to 85 weight %, and more preferably from 75 weight % to 80 weight %, relative to the combined total weight of steviol glycosides in the stevia extract on a dry solids basis. In some embodiments, the stevia extract comprises Rebaudioside A in an amount of from 60 weight % to 80 weight %, preferably from 67 weight % to 73 weight %, relative to the combined total weight of steviol glycosides in the stevia extract on a dry solids basis. For example, the stevia extract may comprise Rebaudioside A in an amount of 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84 or 85 weight %, relative to the combined total weight of steviol glycosides in the stevia extract on a dry solids basis.
  • According to a preferred embodiment, the stevia extract comprises Rebaudioside B in an amount of from 15 weight % to 30 weight %, preferably from 19 weight % to 23 weight %, relative to the combined total weight of steviol glycosides in the stevia extract on a dry solids basis. For example, the stevia extract may comprise Rebaudioside B in an amount of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 weight %, relative to the combined total weight of steviol glycosides in the stevia extract on a dry solids basis.
  • The stevia extract used in the present invention may be one of the stevia extracts described in WO 2012/102769 . A particular stevia extract that may be mentioned in this regard is described in Example 1 of WO 2012/102769 , and comprises 21 weight % Rebaudioside B (relative to the combined total weight of steviol glycosides in the stevia extract on a dry solids basis) and a ratio of Rebaudioside A to Rebaudioside B of 3:1.
  • An example stevia extract that is disclosed in Example 1 of WO 2012/102769 and which may be used in the present invention contains 70.56 weight % of Rebaudioside A, 6.45 weight % of Stevioside, 20.97 weight % of Rebaudioside B and 2.02 weight % of Rebaudioside C, based on the total weight of steviol glycosides contained in the stevia extract on a dry solids basis.
  • In another embodiment, the sweetener composition comprises allulose in an amount of from 97.5% to 99.9% by weight and stevia extract in an amount of 0.1% to 2.5% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis. In another embodiment, the sweetener composition comprises allulose in an amount of from 98% to 99.9% by weight and stevia extract in an amount of 0.1% to 2% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis. In another embodiment, the sweetener composition comprises allulose in an amount of from 98.9% to 99.9% by weight and stevia extract in an amount of 0.1% to 1.1% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis. In another embodiment, the sweetener composition comprises allulose in an amount of from 98.9% to 99.8% by weight and stevia extract in an amount of 0.2% to 1.1% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis. In another embodiment, the sweetener composition comprises allulose in an amount of from 99.5% to 99.8% by weight and stevia extract in an amount of 0.2% to 0.5% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis. In another embodiment, the sweetener composition comprises allulose in an amount of from 98.9% to 99.4% by weight and stevia extract in an amount of 0.6% to 1.1% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis. In another embodiment, the sweetener composition comprises allulose in an amount of from 99.0% to 99.3% by weight and stevia extract in an amount of 0.7% to 1.0% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis. In another embodiment, the sweetener composition comprises allulose in an amount of 99.03% by weight and stevia extract in an amount of 0.97% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis. In another embodiment, the sweetener composition comprises allulose in an amount of from 99.4% to 99.9% by weight and stevia extract in an amount of 0.1% to 0.6% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis. In another embodiment, the sweetener composition comprises allulose in an amount of from 97.5% to 99.0% by weight and stevia extract in an amount of 1.0% to 2.5% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis. In another embodiment, the sweetener composition comprises allulose in an amount of from 98.0% to 98.9% by weight and stevia extract in an amount of 1.1% to 2.0% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis.
  • According to an embodiment, the sweetener composition further comprises a sweet taste improving additive, a bulking agent, a flavoring agent, or a stabilizer. Sweet taste improving additives suitable for use in the present invention include one or more selected from the group consisting of anti-foaming agents (also known as anti-foams; examples include polydimethylsiloxane and/or silicon dioxide), cyclodextrins, sweet taste enhancers, bitter maskers and flavor modifiers.
  • According to an embodiment, the sweetener composition of the present invention does not comprise any mogrosides.
  • A further aspect of the present invention provides a food product comprising the sweetener composition of the invention. Non-limiting examples of a food product include a confectionary product (including, but not limited to, jelly candies, hard candies and gums), a dessert product such as, yogurt (including, but not limited to, full fat, reduced fat and fat-free dairy yoghurts, as well non-dairy and lactose-free yoghurts and frozen equivalents of all of these), frozen desserts (including, but not limited to, frozen dairy desserts such as ice-cream - including regular ice cream, soft-serve ice cream and all other types of ice cream - and frozen non-dairy desserts such as non-dairy ice cream, sorbet and the like), sweet bakery products (including, but not limited to, biscuits, cakes, rolls, pies, pastries, and cookies), pre-made sweet bakery mixes for preparing sweet bakery products, pie fillings (including, but not limited to, fruit pie fillings and nut pie fillings such as pecan pie filling), a cereal product such as sweetened breakfast cereals (including, but not limited to, extruded (kix type) breakfast cereals, flaked breakfast cereals and puffed breakfast cereals), cereal coating compositions, baked goods including bread products (including, but not limited to, leavened and unleavened breads, yeasted and unyeasted breads such as soda breads, breads comprising any type of wheat flour, breads comprising any type of non-wheat flour (such as potato, rice and rye flours), gluten-free breads), pre-made bread mixes for preparing bread products, frozen dairy products, meats, dairy products, condiments, snack bars (including, but not limited to, cereal, nut, seed and/or fruit bars), soups, dressings, mixes, prepared foods, baby foods, diet preparations, syrups, food coatings, dried fruit, sauces, gravies, spreads (including, but not limited to, jams/jellies, butters and other spreadable preserves, conserves and the like). Other types of food product not mentioned here but which conventionally include one or more nutritive sweetener may also be contemplated in the context of the present invention, especially those which are reduced sugar or low sugar products. The food product may be an animal feed product. The food product of the invention may comprise the sweetener composition as a coating or frosting formed on the surface of the product. This coating improves the flavor of the food product as well as its shelf life.
  • Another aspect of the invention provides a beverage product comprising the sweetener composition of the present invention. Non-limiting examples of a beverage product include a carbonated beverage (including, but not limited to, soft carbonated beverages), a non-carbonated beverage (including, but not limited to, soft non-carbonated beverages such as flavored waters and sweet tea or coffee based beverages), fruit-flavored beverage, fruit-juice, tea, milk, coffee especially those which are reduced sugar or low sugar products. Frozen beverage products (sometimes known as 'slurpees') are also explicitly contemplated. Other types of beverage product not mentioned here but which conventionally include one or more nutritive sweetener may also be contemplated in the context of the present invention, especially those which are reduced sugar or low sugar products.
  • A further aspect of the present invention provides a table-top sweetener comprising the sweetener composition of the invention.
  • The table-top sweeteners of the present invention may optionally include one or more further ingredients selected from the group consisting of bulking agents (such as maltodextrin, polydextrose, gums - such as xanthan gum or guar gum, soluble corn fiber (SCF), starches and polyols), natural and/or artificial flavors, natural and/or artificial colors, fiber, acidulants, vitamins, antioxidants, preservatives, starch hydrolysates and the like.
  • According to an embodiment, the table-top sweetener is a dry table-top sweetener. For example, it may take the form of tablets, granules or a powder. Liquid table-top sweeteners may also be contemplated, and typically take the form of an aqueous solution of the components.
  • According to an embodiment, the sweetener composition of the table-top sweetener comprises allulose in an amount of from 98.8% to 99.2% and stevia extract in an amount of from 0.8% to 1.2% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis.
  • According to an embodiment, the sweetener composition of the table-top sweetener comprises allulose in an amount of from 98.9% to 99.1% and stevia extract in an amount of from 0.9% to 1.1% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis.
  • According to an embodiment, the sweetener composition of the table-top sweetener comprises allulose in an amount of 99.03% and stevia extract in an amount of 0.07% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis.
  • According to an embodiment, the table-top sweetener further comprises one or more nutritive sweetener. The nutritive sweetener may be selected from the group consisting of sucrose, glucose, glucose syrup, isoglucose, fructose, glucose-fructose syrup, maltose, lactose, corn syrup, high fructose corn syrup, invert sugar, molasses, honey and agave. The nutritive sweetener is sucrose in one preferred embodiment. Where the table-top product includes a nutritive sweetener, said nutritive sweetener may be present in an amount of up to 30% by weight based on the total weight of the table-top sweetener. For example, the nutritive sweetener may be present in an amount of 26% by weight based on the total weight of the table-top sweetener.
  • According to an embodiment, the table-top sweetener further comprises one or more co-sweetener selected from the group consisting of high intensity sweeteners and sugar alcohols.
  • Various synthetic high potency sweeteners may also be used as the one or more co-sweetener of the present invention. Specific examples include sucralose, aspartame and acesulfame potassium (Ace K).
  • Various sugar alcohols may also be used as the one or more co-sweetener of the present invention. Specific examples include maltitol, xylitol and erythritol.
  • Table-top sweeteners according to the present invention may typically be used to sweeten beverages, especially hot beverages such as tea and coffee. It has been found that the taste provided by the table-top product is similar to the taste provided by sucrose, and is superior to many known table-top sweeteners.
  • The present invention provides the use of the sweetener composition of the invention in a food product, a beverage product, a pharmaceutical product, a nutritional product, a sports product, or a cosmetic product, as a bulking agent or as a coating agent.
  • The sweetener composition may be formulated in any ingestible form, for example, as a syrup, in powder form, tablet form, as granules, in a solution or in any other suitable form including beverages and food products.
  • As outlined in the below examples, the sweetener composition of the invention exhibits a sucrose equivalent value (SEV) greater than the predicted value based on its individual components. Put another way, for a given SEV, a lower amount of each of the components is required than would be predicted based on their individual SEVs; indeed, it has been shown that the required amount of allulose can be reduced by around 30%, while the required amount of stevia extract can be reduced by over 20%. These results show that the sweetener composition of the present invention displays significant sweetness synergy.
  • The following examples are exemplary only and are not intended to be limiting in any way.
  • Examples Example 1: Paired Comparison Study Introduction
  • A paired comparison study was carried out using the methodology described in Wolf, P. A. et a/. (2010), J. Food Science, 75 (2), S95-S102: "Application of Agonist-Receptor Modeling to the Sweetness Synergy between High Fructose Corn Syrup and Sucralose, and between High-Potency Sweeteners".
  • Materials
  • TASTEVA™ (available from Tate & Lyle) was used as a stevia extract in the following examples and is referred to as Extract A.
  • Method
  • Tate & Lyle employees participated in sweetness paired comparisons of Extract A and allulose against Extract A in neutral pH water. Panelists were asked to taste test solutions of Extract A/allulose blends and solutions of known Extract A concentration, and state which was sweeter. A minimum of three paired comparisons were conducted for each of the binary sweetener mixtures in each test session. The paired comparisons were rotated. There was a one minute waiting period between each paired comparison. The solutions were served in 2 ounce (50 mL) soufflé cups coded with 3-digit codes at room temperature. Reverse osmosis water and unsalted crackers were available for the panelists to clear their palates before and during testing.
  • Figure 1 shows the results of the analysis for three mixtures by way of example. In each case, the expected sweetness (sucrose equivalent) of each mixture in the absence of synergy is plotted next to the observed sweetness of the mixture. In each case, it can be seen that the observed sweetness is significantly greater than the expected sweetness. Thus, significant sweetness synergy has been shown for blends of allulose and stevia extract.
  • Example 2: Dry table-top sweeteners:
  • A dry table-top sweetener was prepared with stevia extract (Extract A) and allulose, and comparative and control compositions were also prepared using Truvia™ and sucrose respectively. The compositions are shown in Table 2: Table 2:
    Sample Table top composition Total dry weight of each table-top sample in 200mL of coffee
    1 99.03% Allulose + 0.97% Extract A 3.53 gram
    Truvia™ (comparative) 3.5 gram
    Sucrose (control) 8.4 gram
  • Each combination was dissolved in hot coffee. The total weight of each combination was designed such that the sweetness of each combination in 200ml of coffee is similar to that of 8-10 grams of sucrose in the same amount of coffee. The coffee was made by brewing 91.9 grams of Starbucks™ Blounde Veranda Blend ground coffee with about 1600 mL of water. The calorie content of each combination was targeted to be less than 5 kcal/200mL coffee. Five panelists were asked to compare the sweetness and taste profile of each sample against sucrose control and Truvia™ (a commercially available stevia-based tabletop sweetener based on erythritol and Reb A 97) in hot coffee on a scale of 1 to 5. The results are shown in Table 3: Table 3:
    Sample 1 Truvia™
    Average rating 2.4 1.2
  • It was unexpectedly found that allulose can make low calorie table-top sweeteners taste more like sugar (sucrose). It was also unexpectedly found that allulose-based low or zero calorie table top sweeteners taste significantly better than an erythritol-based table top product.
  • Example 3: Lemonade:
  • Lemonade samples were prepared using the following sweetener systems: Table 4:
    Sample Sweetener System (amounts relative to final lemonade)
    A (reference) Sucrose (11 wt%)
    B (comparative) Rebaudioside A (2000 ppm)
    C Allulose (5 wt%, ds); Rebaudioside A (500 ppm)
  • All samples were prepared in 5% lemon solution. The 5% lemon solution was prepared by diluting 5 grams of 100% lemon concentrate with 95 grams of water. An 11% sucrose/lemon solution was also prepared as a reference, by diluting 11 grams of sucrose and 5 grams of 100% lemon concentrate with 84 grams of water. Allulose was provided in the form of an allulose syrup with 95% pure allulose and 78% dry solid (DS).
  • A total of 200 grams of each sample was prepared in glass bottles and was stirred with a stirrer bar until completely clear. Once the samples were completely dissolved, they were allowed to settle on the bench until the bubbles were gone.
  • All samples were evaluated by an expert group of tasters. Sample C was found to be less bitter and to have less sweetness linger than Sample B, and to be more similar overall to Sample A.
  • Example 4: Lemonade:
  • Lemonade samples were prepared using the following sweetener systems, each of which were made to be approximately equal sweet before the study: Table 5:
    Sample Sweetener System (amounts relative to final lemonade)
    A (reference) Sucrose (11 wt%)
    B (reference) Extract B (2000 ppm)
    C Extract B (80 ppm); Sucrose (5.5 wt%); Allulose (5 wt%)
    C (comparative) Extract B (290 ppm); Sucrose (5.5 wt%)
    D Extract B (380 ppm); Sucrose (3 wt%); Allulose (5 wt%)
    D (comparative) Extract B (720 ppm); Sucrose (3 wt%)
    E Rebaudioside A (80 ppm); Sucrose (5.5 wt%); Allulose (5 wt%)
    E (comparative) Rebaudioside A (280 ppm); Sucrose (5.5 wt%)
    Extract B: An SG95 comprising Rebaudioside A and stevioside (75:25)
  • All samples were prepared in 5% lemon solution. The 5% lemon solution was prepared by diluting 5 grams of 100% lemon concentrate with 95 grams of water. An 11% sucrose/lemon solution was also prepared as a reference, by diluting 11 grams of sucrose and 5 grams of 100% lemon concentrate with 84 grams of water. A 2000 ppm Extract B/lemon solution was prepared as a further reference, by diluting 200 mg of Extract B and 5 grams of 100% lemon concentrate with 94.8 grams of water. Allulose was provided in the form of an allulose syrup with 95% pure allulose and 78% dry solid (DS).
  • A total of 200 grams of each sample was prepared in glass bottles and was stirred with a stirrer bar until completely clear. Once the samples were completely dissolved, they were allowed to settle on the bench until the bubbles were gone.
  • All samples were evaluated by an expert group of tasters (9 or 12 tasters per test). The following properties were evaluated on scales of 1 to 5: i) Similarity to sucrose (1 = like sucrose; 5 = not at all like sucrose); ii) Sweetness (1 = very low; 5 = very high); iii) Bitterness (1 = not at all bitter; 5 = very high bitterness); iv) Sweetness onset (1 = very slow; 5 = very quick); v) Linger (1 = very little; 5 = very long). The results are shown in Table 6: Table 6:
    Sample Similarity to sucrose Sweetness Bitterness Sweetness Onset Linger
    A (reference) 1 4 1 5 1
    B (reference) 4
    C 2.1 3.4 1.3 4.3 1.3
    C (comparative) 2.4 3.3 1.7 4.0 2.1
    D 2.9 3.1 2.4 3.9 2.0
    D (comparative) 3.5 3.0 2.9 3.4 2.4
    E 2.1 3.3 1.4 4.3 1.6
    E (comparative) 2.7 3.1 1.6 3.8 2.1
  • The results show that the samples including allulose (C, D and E) were more similar to sucrose, less bitter, had quicker sweetness onset and had less linger than the samples without allulose (comparative C, D and E).

Claims (17)

  1. A sweetener composition comprising allulose and a stevia extract, the sweetener composition comprising allulose in an amount of at least 85% by weight and stevia extract in an amount of at least 0.07% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis, wherein the stevia extract comprises Rebaudioside A in an amount of from 60 weight % to 85 weight % relative to the combined total weight of steviol glycosides in the stevia extract on a dry solids basis.
  2. The sweetener composition according to claim 1, wherein the stevia extract comprises Rebaudioside A in an amount of from 75 weight % to 80 weight % relative to the combined total weight of steviol glycosides in the stevia extract on a dry solids basis.
  3. The sweetener composition according to claim 1 or 2, wherein the stevia extract comprises at least one steviol glycoside selected from the group consisting of Rebaudioside B, Rebaudioside C, Rebaudioside D, Rebaudioside E, Rebaudioside F, Rebaudioside M, Rebaudioside X, Rubusoside, Stevioside and Dulcosides, and mixtures thereof and, wherein the stevia extract preferably comprises Rebaudioside B.
  4. The sweetener composition according to any preceding claim, wherein the stevia extract comprises steviol glycosides in a total amount of at least 90 weight %, preferably in a total amount of 95 weight % or more, relative to the total weight of the stevia extract on a dry solids basis.
  5. The sweetener composition according to any preceding claim, wherein the stevia extract comprises Rebaudioside A and Stevioside in a combined total amount of at least 70 weight %, preferably in a combined total amount of 75 weight % or more, relative to the total weight of the stevia extract on a dry solids basis.
  6. The sweetener composition according to any preceding claim, wherein the stevia extract comprises Rebaudioside B in an amount of from 15 weight % to 30 weight %, preferably from 19 weight % to 23 weight %, relative to the combined total weight of steviol glycosides in the stevia extract on a dry solids basis.
  7. The sweetener composition according to any preceding claim, comprising allulose in an amount of from 97.5% to 99.9% by weight and stevia extract in an amount of 0.1% to 2.5% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis;
    preferably comprising allulose in an amount of from 98% to 99.9% by weight and stevia extract in an amount of 0.1% to 2% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis;
    preferably comprising allulose in an amount of from 98.9% to 99.4% by weight and stevia extract in an amount of 0.6% to 1.1% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis;
    preferably comprising allulose in an amount of from 99.0% to 99.3% by weight and stevia extract in an amount of 0.7% to 1.0% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis;
    preferably comprising allulose in an amount of about 99.03% by weight and stevia extract in an amount of about 0.97% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis.
  8. The sweetener composition according to any preceding claim, further comprising a sweet taste improving additive, a bulking agent, a flavoring agent, or a stabilizer.
  9. A food or beverage product comprising the sweetener composition according to any one of the preceding claims.
  10. The food or beverage product according to claim 9, wherein the product is a food product and the sweetener composition is provided as a coating or frosting on the surface of the food product.
  11. The food or beverage product according to claim 9, wherein the product is a carbonated or non-carbonated beverage.
  12. A table-top sweetener comprising the sweetener composition according to any one of claims 1 to 8, wherein the table-top sweetener is preferably a dry table-top sweetener, and wherein the table-top sweetener is optionally provided as tablets, granules or as a powder.
  13. The table-top sweetener according to claim 12, wherein the sweetener composition comprises allulose in an amount of from 98.8% to 99.2% and stevia extract in an amount of from 0.8% to 1.2% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis;
    wherein the sweetener composition preferably comprises allulose in an amount of from 98.9% to 99.1% and stevia extract in an amount of from 0.9% to 1.1% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis;
    wherein the sweetener composition preferably comprises allulose in an amount of about 99.03% and stevia extract in an amount of about 0.07% by weight relative to the total weight of allulose and stevia extract in the composition on a dry solids basis.
  14. The table-top sweetener according to any of claims 12 or 13, wherein the table-top sweetener further comprises one or more nutritive sweetener.
  15. The table-top sweetener according to any of claims 12 to 14, wherein the table-top sweetener further comprises one or more co-sweetener selected from the group consisting of high intensity sweeteners and sugar alcohols.
  16. Use of the sweetener composition according to any one of claims 1 to 8 in a food product, a beverage product, a pharmaceutical product, a nutritional product, a sports product, or a cosmetic product.
  17. Use of the sweetener composition according to any one of claims 1 to 8 as a bulking agent or as a coating agent.
EP15723751.2A 2014-05-20 2015-05-18 Improved sweetener Revoked EP3154378B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL15723751T PL3154378T3 (en) 2014-05-20 2015-05-18 Improved sweetener
EP20184341.4A EP3738441A1 (en) 2014-05-20 2015-05-18 Improved sweetener

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462000773P 2014-05-20 2014-05-20
GB1412840.9A GB2526383B (en) 2014-05-20 2014-07-18 Improved sweetener
PCT/GB2015/051453 WO2015177522A1 (en) 2014-05-20 2015-05-18 Improved sweetener

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP20184341.4A Division EP3738441A1 (en) 2014-05-20 2015-05-18 Improved sweetener

Publications (2)

Publication Number Publication Date
EP3154378A1 EP3154378A1 (en) 2017-04-19
EP3154378B1 true EP3154378B1 (en) 2020-07-08

Family

ID=51494840

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20184341.4A Withdrawn EP3738441A1 (en) 2014-05-20 2015-05-18 Improved sweetener
EP15723751.2A Revoked EP3154378B1 (en) 2014-05-20 2015-05-18 Improved sweetener

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP20184341.4A Withdrawn EP3738441A1 (en) 2014-05-20 2015-05-18 Improved sweetener

Country Status (15)

Country Link
US (1) US20170079313A1 (en)
EP (2) EP3738441A1 (en)
JP (2) JP6728066B2 (en)
KR (2) KR20230019990A (en)
CN (1) CN106659203A (en)
AR (1) AR100522A1 (en)
AU (2) AU2015263073B2 (en)
BR (1) BR112016027088B1 (en)
CA (1) CA2949595C (en)
CL (1) CL2016002955A1 (en)
GB (1) GB2526383B (en)
IL (1) IL249027B (en)
MX (1) MX2016015212A (en)
PL (1) PL3154378T3 (en)
WO (1) WO2015177522A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2526383B (en) * 2014-05-20 2018-01-31 Tate & Lyle Ingredients Americas Llc Improved sweetener
CA3012106C (en) * 2016-03-09 2020-06-02 Cj Cheiljedang Corporation Allulose-containing syrup composition and food containing same
KR101981397B1 (en) * 2016-10-07 2019-05-23 씨제이제일제당 (주) Sweetener compositions having improved quality of taste comprising allulose and salt, and a method for improving the quality of taste of allulose using salt
CN110022690A (en) 2016-12-21 2019-07-16 Cj第一制糖株式会社 Amino acid beverage containing psicose
CN110914445B (en) 2017-02-03 2024-08-27 泰莱解决方案美国有限责任公司 Engineered glycosyltransferases and sweeteners method for glucosylation of chrysanthenol glycosides
MX2019014119A (en) * 2017-06-02 2020-02-07 Givaudan Sa Compositions.
WO2020005021A1 (en) * 2018-06-28 2020-01-02 주식회사 삼양사 Sweetener powder composition and preparation method therefor
EP3864966A1 (en) * 2020-02-12 2021-08-18 Savanna Ingredients GmbH Oral compositions comprising allulose crystals
CN113017066B (en) * 2021-04-16 2023-09-19 湖南华诚生物资源股份有限公司 Sugar substitute for improving sweet taste performance of rubusoside and preparation method thereof
CN115381076A (en) * 2022-09-02 2022-11-25 河南中大恒源生物科技股份有限公司 Flavor agent composition containing D-psicose and preparation method thereof
KR102578244B1 (en) * 2023-03-30 2023-09-14 인테이크 주식회사 Sweetner composition including Siraitia grosvenorii extract and stevia and method of manufacturing thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1412840A (en) 1972-12-27 1975-11-05 Arboga Maskin Ab Tool spindle assembly for machine tools
WO2007061900A1 (en) 2005-11-23 2007-05-31 The Coca-Cola Company High-potency sweetener composition with antioxidant and compositions sweetened therewith
US20090304891A1 (en) 2006-11-10 2009-12-10 Matsutani Chemical Industry Co., Ltd. Sweetener containing d-psicose and foods and drinks obtained by using the same
US20120076908A1 (en) 2010-09-29 2012-03-29 Matsutani Chemical Industry Co., Ltd. Composition for improving taste of high-intensity sweetener and application thereof
WO2012082677A1 (en) 2010-12-13 2012-06-21 Cargill, Incorporated Glycoside blends
WO2012102769A1 (en) 2011-01-28 2012-08-02 Tate & Lyle Ingredients Americas Llc Stevia blends containing rebaudioside b
WO2012109585A1 (en) 2011-02-10 2012-08-16 Purecircle Usa Stevia composition
WO2013039364A2 (en) 2011-09-15 2013-03-21 씨제이제일제당(주) Sweetener composition for preventing and improving obesity, containing glycolysis inhibitor ingredient
WO2013039365A2 (en) 2011-09-15 2013-03-21 씨제이제일제당(주) Sweetener composition for alleviating diabetes, containing slowly digestible ingredient
WO2013123281A1 (en) 2012-02-15 2013-08-22 Kraft Foods Group Brands Llc High solubility natural sweetener compositions
US20130337138A1 (en) 2010-12-13 2013-12-19 Siddhartha PURKAYASTHA Stevia composition to improve sweetness and flavor profile

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07177862A (en) 1993-12-24 1995-07-18 Morita Kagaku Kogyo Kk Slightly water-soluble sweetener
AU2006219311B2 (en) 2005-03-04 2012-02-02 Morita Kagaku Kogyo Co., Ltd. Stevia sweetener
KR100744479B1 (en) 2005-06-01 2007-08-01 씨제이 주식회사 D-Psicose production method by D-psicose epimerase
EP1956088B1 (en) 2005-11-15 2013-10-23 Hayashibara Co., Ltd. Ketose 3-epimerase, process for production thereof, and use thereof
KR100832339B1 (en) 2006-12-11 2008-05-26 솔젠트 (주) Novel sinorhizobium sp. yb-58 strain converting fructose into psicose, and method for producing psicose using the same strain
ES2702991T3 (en) * 2007-05-18 2019-03-06 Matsutani Kagaku Kogyo Kk New sweetener that has a flavor similar to sugar and procedure of production and use thereof
KR101523701B1 (en) 2008-03-12 2015-06-01 주식회사 케이엠더블유 Housing device of wireless communication apparatus
KR20110035805A (en) 2009-09-30 2011-04-06 씨제이제일제당 (주) Method of producing d-psicose using immobilized d-psicose 3-epimerase
GB201217700D0 (en) * 2012-08-01 2012-11-14 Tate & Lyle Ingredients Sweetener compositions containing rebaudioside B
US9717267B2 (en) * 2013-03-14 2017-08-01 The Coca-Cola Company Beverages containing rare sugars
US20140272068A1 (en) * 2013-03-14 2014-09-18 Indra Prakash Beverages containing rare sugars
GB201309077D0 (en) * 2013-03-15 2013-07-03 Tate & Lyle Ingredients Improved sweetener
US20140342044A1 (en) * 2013-05-14 2014-11-20 Pepsico, Inc. Compositions and Comestibles
US20140342043A1 (en) * 2013-05-14 2014-11-20 Pepsico, Inc. Rebaudioside Sweetener Compositions and Food Products Sweetened with Same
US20150110940A1 (en) * 2013-10-22 2015-04-23 Pepsico, Inc. D-Psicose In Zero Or Low Calorie Frozen Beverages
KR20160089551A (en) * 2013-11-22 2016-07-27 테이트 앤드 라일 인그리디언츠 어메리카즈 엘엘씨 Food and beverage products comprising allulose (psicose)
GB2526383B (en) * 2014-05-20 2018-01-31 Tate & Lyle Ingredients Americas Llc Improved sweetener

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1412840A (en) 1972-12-27 1975-11-05 Arboga Maskin Ab Tool spindle assembly for machine tools
WO2007061900A1 (en) 2005-11-23 2007-05-31 The Coca-Cola Company High-potency sweetener composition with antioxidant and compositions sweetened therewith
US20090304891A1 (en) 2006-11-10 2009-12-10 Matsutani Chemical Industry Co., Ltd. Sweetener containing d-psicose and foods and drinks obtained by using the same
US20120076908A1 (en) 2010-09-29 2012-03-29 Matsutani Chemical Industry Co., Ltd. Composition for improving taste of high-intensity sweetener and application thereof
WO2012082677A1 (en) 2010-12-13 2012-06-21 Cargill, Incorporated Glycoside blends
US20130309389A1 (en) 2010-12-13 2013-11-21 Cargill, Incorporated Glycoside blends
US20130337138A1 (en) 2010-12-13 2013-12-19 Siddhartha PURKAYASTHA Stevia composition to improve sweetness and flavor profile
WO2012102769A1 (en) 2011-01-28 2012-08-02 Tate & Lyle Ingredients Americas Llc Stevia blends containing rebaudioside b
WO2012109585A1 (en) 2011-02-10 2012-08-16 Purecircle Usa Stevia composition
WO2013039364A2 (en) 2011-09-15 2013-03-21 씨제이제일제당(주) Sweetener composition for preventing and improving obesity, containing glycolysis inhibitor ingredient
WO2013039365A2 (en) 2011-09-15 2013-03-21 씨제이제일제당(주) Sweetener composition for alleviating diabetes, containing slowly digestible ingredient
WO2013123281A1 (en) 2012-02-15 2013-08-22 Kraft Foods Group Brands Llc High solubility natural sweetener compositions

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"GLG Creates Stevia Distribution Agreements in Australia and South America", INTERNET PUBLICATION, 19 April 2010 (2010-04-19), XP055797704, Retrieved from the Internet <URL:https://www.foodingredientsfirst.com/news/glg-creates-stevia-distribution-agreements-in-australia-and-south-america.html>
"GRAS ASSESSMENT OF REBAUDIOSIDE X Food Usage Conditions for General Recognition of Safety", GRAS NR. 473, 17 December 2013 (2013-12-17), pages 493, XP055625509
"TASTEVA. Stevia Sweetener. Specification Sheet", TATE & LYLE, 23 October 2012 (2012-10-23), XP055797696
"TASTEVA. Stevia sweetener. Technical Data Sheet", TATE & LYLE, 3 September 2012 (2012-09-03), XP055797693
ANDREA BELFORD: "SWEETABULARY™ sweetness language: Bridging the gap between consumer and food scientists", SWEETABULARY, INGREDION INCORPORATED, 1 January 2014 (2014-01-01), pages 1 - 5, XP093154172, Retrieved from the Internet <URL:https://www.ingredion.com/content/dam/ingredion/pdf-downloads/US-Assets/whitepapers/SWEETABULARY_WP1.pdf>
ANONYMOUS: "Specification Sheet TASTEVA™ Stevia Sweetener Steviol Glycosides", TATE LYLE, October 2012 (2012-10-01), pages 1 - 2, XP055797676
HELLFRITSCH, CAROLINE, ANNE BROCKHOFF; FRAUKE STÄHLER; WOLFGANG MEYERHOF; THOMAS HOFMANN: "Human Psychometric and Taste Receptor Responses to Steviol Glycosides", J. AG FOOD CHEM, vol. 60, no. 27, May 2012 (2012-05-01), pages 6782 - 6793, XP055715001, DOI: 10.1021/jf301297n
P.A. WOLF ET AL.: "Application of Agonist-Receptor Modeling to the Sweetness Synergy between High Fructose Corn Syrup and Sucralose, and between High-Potency Sweeteners", J. FOOD SCIENCE, vol. 75, no. 2, 2010, pages 95 - 102, XP055411167, DOI: 10.1111/j.1750-3841.2009.01463.x
P.A. WOLF ET AL: "Application of Agonist-Receptor Modeling to the Sweetness Synergy between High Fructose Corn Syrup and Sucralose, and between High-Potency Sweeteners", JOURNAL OF FOOD SCIENCE, vol. 75, no. 2, 1 March 2010 (2010-03-01), US, pages S95 - S102, XP055411167, ISSN: 0022-1147, DOI: 10.1111/j.1750-3841.2009.01463.x *

Also Published As

Publication number Publication date
GB201412840D0 (en) 2014-09-03
GB2526383B (en) 2018-01-31
EP3738441A1 (en) 2020-11-18
US20170079313A1 (en) 2017-03-23
GB2526383A (en) 2015-11-25
EP3154378A1 (en) 2017-04-19
AU2015263073B2 (en) 2018-11-29
JP2017515487A (en) 2017-06-15
IL249027B (en) 2020-07-30
CL2016002955A1 (en) 2017-05-12
IL249027A0 (en) 2017-01-31
AU2019201408A1 (en) 2019-03-28
WO2015177522A1 (en) 2015-11-26
BR112016027088B1 (en) 2022-04-26
BR112016027088A2 (en) 2017-08-15
PL3154378T3 (en) 2021-03-08
CA2949595C (en) 2023-03-28
JP2020171296A (en) 2020-10-22
KR20230019990A (en) 2023-02-09
AR100522A1 (en) 2016-10-12
MX2016015212A (en) 2017-04-05
CA2949595A1 (en) 2015-11-26
JP6728066B2 (en) 2020-07-22
KR20170009894A (en) 2017-01-25
CN106659203A (en) 2017-05-10
AU2015263073A1 (en) 2016-12-08

Similar Documents

Publication Publication Date Title
US20210051991A1 (en) Sweetener
EP3154378B1 (en) Improved sweetener
AU2014229723B2 (en) Improved sweetener
EP2983500A1 (en) Improved sweetener
CN111601516A (en) Compositions comprising glycosylated terpene glycosides, terpene glycosides and cyclodextrins

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171005

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: A23L 33/20 20160101AFI20191218BHEP

Ipc: A23L 2/60 20060101ALI20191218BHEP

Ipc: A23L 27/30 20160101ALI20191218BHEP

INTG Intention to grant announced

Effective date: 20200121

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1287467

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015055400

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 35532

Country of ref document: SK

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1287467

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201009

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602015055400

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

26 Opposition filed

Opponent name: CORN PRODUCTS DEVELOPMENT, INC.

Effective date: 20210406

26 Opposition filed

Opponent name: STRAWMAN LIMITED

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210518

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: TATE & LYLE TECHNOLOGY LIMITED

Owner name: TATE & LYLE SOLUTIONS USA LLC

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: TATE & LYLE TECHNOLOGY LIMITED

Owner name: TATE & LYLE SOLUTIONS USA LLC

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210518

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220420

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602015055400

Country of ref document: DE

Owner name: TATE & LYLE TECHNOLOGY LIMITED, GB

Free format text: FORMER OWNERS: TATE & LYLE INGREDIENTS AMERICAS LLC, HOFFMANN ESTATES, ILL., US; TATE & LYLE TECHNOLOGY LIMITED, LONDON, GB

Ref country code: DE

Ref legal event code: R081

Ref document number: 602015055400

Country of ref document: DE

Owner name: TATE & LYLE SOLUTIONS USA LLC, HOFFMAN ESTATES, US

Free format text: FORMER OWNERS: TATE & LYLE INGREDIENTS AMERICAS LLC, HOFFMANN ESTATES, ILL., US; TATE & LYLE TECHNOLOGY LIMITED, LONDON, GB

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20220413

Year of fee payment: 8

REG Reference to a national code

Ref country code: SK

Ref legal event code: TE4A

Ref document number: E 35532

Country of ref document: SK

Owner name: TATE & LYLE TECHNOLOGY LIMITED, LONDON W1H 7EJ, GB

Effective date: 20220808

Ref country code: SK

Ref legal event code: PC4A

Ref document number: E 35532

Country of ref document: SK

Owner name: TATE & LYLE TECHNOLOGY LIMITED, LONDON W1H 7EJ, GB

Free format text: FORMER OWNER: TATE & LYLE INGREDIENTS AMERICAS LLC, HOFFMANN ESTATES, IL 60192, US; TATE & LYLE TECHNOLOGY LIMITED, LONDON W1H 7EJ, GB

Effective date: 20220808

Ref country code: SK

Ref legal event code: PC4A

Ref document number: E 35532

Country of ref document: SK

Owner name: TATE & LYLE SOLUTIONS USA LLC, HOFFMANN ESTATE, US

Free format text: FORMER OWNER: TATE & LYLE INGREDIENTS AMERICAS LLC, HOFFMANN ESTATES, IL 60192, US; TATE & LYLE TECHNOLOGY LIMITED, LONDON W1H 7EJ, GB

Effective date: 20220808

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20220412

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150518

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230412

Year of fee payment: 9

Ref country code: FR

Payment date: 20230421

Year of fee payment: 9

Ref country code: DE

Payment date: 20230404

Year of fee payment: 9

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230601

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 35532

Country of ref document: SK

Effective date: 20230518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 602015055400

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 602015055400

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SK

Ref legal event code: MC4A

Ref document number: E 35532

Country of ref document: SK

Effective date: 20240313

27W Patent revoked

Effective date: 20240313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708