EP3154250B1 - Image acquiring apparatus and method and image forming apparatus - Google Patents

Image acquiring apparatus and method and image forming apparatus Download PDF

Info

Publication number
EP3154250B1
EP3154250B1 EP16165798.6A EP16165798A EP3154250B1 EP 3154250 B1 EP3154250 B1 EP 3154250B1 EP 16165798 A EP16165798 A EP 16165798A EP 3154250 B1 EP3154250 B1 EP 3154250B1
Authority
EP
European Patent Office
Prior art keywords
image
document
penetrated
acquiring apparatus
image sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16165798.6A
Other languages
German (de)
French (fr)
Other versions
EP3154250A1 (en
Inventor
Kyoung-Youn Lee
Jung-Han Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HP Printing Korea Co Ltd
Original Assignee
HP Printing Korea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HP Printing Korea Co Ltd filed Critical HP Printing Korea Co Ltd
Publication of EP3154250A1 publication Critical patent/EP3154250A1/en
Application granted granted Critical
Publication of EP3154250B1 publication Critical patent/EP3154250B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/203Simultaneous scanning of two or more separate pictures, e.g. two sides of the same sheet
    • H04N1/2032Simultaneous scanning of two or more separate pictures, e.g. two sides of the same sheet of two pictures corresponding to two sides of a single medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/12Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using the sheet-feed movement or the medium-advance or the drum-rotation movement as the slow scanning component, e.g. arrangements for the main-scanning
    • H04N1/121Feeding arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/17Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa the scanning speed being dependent on content of picture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/40062Discrimination between different image types, e.g. two-tone, continuous tone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/409Edge or detail enhancement; Noise or error suppression
    • H04N1/4095Correction of errors due to scanning a two-sided document, i.e. show-through correction

Definitions

  • the present disclosure relates to an image acquiring apparatus and method and image forming apparatus, and more particularly, to an image acquiring apparatus and method and image forming apparatus using a plurality of image sensors.
  • an image acquiring apparatus is to acquire an image formed on the surface of a document, and as a typical example of the image acquiring apparatus, there is a scanner for acquiring and storing an image formed on the surface of a document.
  • the image acquiring apparatus may correspond to a facsimile for acquiring an image formed on the surface of a document and transmitting the image through communication, a copying machine for acquiring an image formed on the surface of a document and printing the image onto a print medium, and even a multifunctional device capable of performing functions of the scanner, facsimile, copying machine, and printer.
  • the image acquiring apparatus has evolved to one that may not only obtain an image on a single side of a document but also obtain images on both sides of a document.
  • the image acquiring apparatus is equipped with a plurality of image sensors JP 2012 147382 A discloses an apparatus capable of setting optimal scanning parameters for a whole document based on an analysis of an image penetrated to the other side of the document.
  • the present disclosure provides an image acquiring apparatus and method, and image forming apparatus, which uses a plurality of image sensors to acquire clearer and more natural images in acquisition of one-side image of a document.
  • the present disclosure also provides an image acquiring apparatus and method, and image forming apparatus, which processes an image of a document based on a penetrated image seen on the other side of the document in acquisition of one-side image of the document.
  • the present disclosure also provides an image acquiring apparatus and method, and image forming apparatus, allowing a clear rear-side image to be acquired in acquisition of one-side image of a document.
  • an image acquiring method includes receiving an instruction for acquiring a first image formed on a first surface of a document; obtaining a second image shown on a second surface of the document with a second image sensor while the document is being fed, the second image being corresponding to the first image shown through the second surface; obtaining the first image formed on the first surface with a first image sensor while the document is being fed; and processing the first image obtained by the first image sensor, based on the second image obtained by the second image sensor.
  • the obtaining of the second image comprises determining whether the second image is a text image or a picture image.
  • the processing of the first image comprises sharpening the first image if the second image is the text image.
  • the processing of the first image comprises blurring the first image if the second image is the picture image.
  • the obtaining of the first image comprises increasing feed speed of the document if the second image is the text image.
  • the obtaining of the first image comprises decreasing feed speed of the document if the second image is a picture image.
  • the obtaining of the second image comprises determining whether the second image is a monochrome image or a color image.
  • the obtaining of the first image comprises changing line times of the first image sensor to mono image line times if the second image is a monochrome image.
  • the obtaining of the first image comprises changing line times of the first image sensor to color image line times if the second image is a color image.
  • the obtaining of the second image comprises changing a black shading offset for the second image sensor.
  • the obtaining of the second image comprises changing a gamma value for the second image sensor.
  • an image acquiring apparatus may include a user input unit configured to receive a single-side acquisition instruction for acquiring a first image formed on a first surface of a document; a document feed module configured to feed the document; a second image sensor configured to obtain a second image shown on a second surface of the document while the document is being fed, the second image being corresponding to the first image shown through the second surface; a first image sensor configured to obtain the first image formed on the first surface while the document is being fed; and a controller configured to process the first image obtained by the first image sensor, based on the second image obtained by the second image sensor.
  • the controller is configured to determine whether the second image is a text image or a picture image.
  • the controller is configured to sharpen the first image if the second image of the first side is a text image.
  • the controller is configured to blur the first image if the penetrated image of the first side is a picture image.
  • the controller is configured to increase feed speed of the document feed module if the second image is a text image.
  • the controller is configured to decrease feed speed of the document feed module if the second image is a picture image.
  • the controller is configured to determine whether the second image is a monochrome image or a color image.
  • the controller is configured to change line times of the first image sensor to mono image line times if the second image is a monochrome image.
  • the controller is configured to change line times of the first image sensor to color image line times if the second image is a color image.
  • the image acquiring apparatus may further include a reflecting member configured to reflect light emitted from the second image sensor and having penetrated the document
  • the reflecting member may include a first reflecting part and a second reflecting part, the first reflecting part having higher optical reflectivity than the second reflecting part.
  • the user input unit further receives a double-side acquisition instruction to acquire the first image formed the first surface and the second image formed the second surface
  • the image acquiring apparatus may further include a reflecting member moving module configured to move the reflecting member such that the first reflecting part is aligned with the second image sensor if the single-side acquisition instruction is input, and move the reflecting member such that the second reflecting part is aligned with the second image sensor if the double-side acquisition instruction is input.
  • the user input unit further receives a double-side acquisition instruction to acquire the first image formed the first surface and the second image formed the second surface
  • the image acquiring apparatus may further include a sensor moving module configured to move the first image sensor such that the first reflecting part is aligned with the second image sensor if the single-side acquisition instruction is input, and move the first image sensor such that the second reflecting part is aligned with the second image sensor if the double-side acquisition instruction is input.
  • an image forming apparatus includes a user input unit configured to receive a single-side acquisition instruction for acquiring a first image formed on a first surface of a document; a document feed module configured to feed the document; a second image sensor configured to obtain a second image shown on a second surface of the document while the document is being fed, the second image being corresponding to the first image shown through the second surface; a first image sensor configured to obtain the first image formed on the first surface while the document is being fed; an image former configured to print the first image obtained by the first image sensor onto a print medium; and a controller configured to process the first image obtained by the first image sensor, based on the second image obtained by the second image sensor and print the processed first image on the print medium.
  • FIG. 1 illustrates an exterior view of an image acquiring apparatus, according to an embodiment of the present disclosure
  • FIG. 2 is a block diagram of an image acquiring apparatus, according to an embodiment of the present disclosure
  • FIG. 3 illustrates arrangement of first and second image sensor modules included in an image acquiring apparatus, according to an embodiment of the present disclosure
  • FIG. 4 illustrates arrangement of first and second image sensor modules included in an image acquiring apparatus, according to another embodiment of the present disclosure.
  • An image acquiring apparatus 1 acquires an image formed on the surface of a document D.
  • the document D as herein used refers to paper, film, cloth, etc., the surface of which has an image, such as characters, pictures, etc., formed thereon.
  • the image acquiring apparatus 1 there is a scanner for acquiring an image formed on the surface of the document D and storing the acquired image.
  • the image acquiring apparatus 1 is not, however, limited to the scanner, but may correspond to a facsimile for acquiring an image formed on the surface of the document D and transmitting the acquired image through communication, a copying machine for acquiring an image formed on the surface of the document D and printing the acquired image onto a print medium, or the like.
  • the image acquiring apparatus 1 may correspond to a multifunctional device that is capable of performing functions of all the scanner, facsimile, copying machine, and printer.
  • the image acquiring apparatus 1 may include, in appearance, a main body 1b and a flatbed cover 1a for covering the top face of the main body 1b.
  • the main body 1b forms the exterior of the image acquiring apparatus 1, and may protect key components of the image acquiring apparatus 1, as will be described below.
  • a flatbed 1e made of a transparent material may be arranged on the top of the main body 1b to allow the image acquiring apparatus 1 to acquire an image formed on the surface of the document D, and an image sensor module 110 or 120 may be arranged below the transparent flatbed 1e to obtain the image formed on the surface of the document D.
  • the flatbed cover 1a may include an Automatic Document Feeder (ADF) to automatically feed the document D.
  • ADF Automatic Document Feeder
  • the image sensor module 110 or 120 may be located on one side of a feed path (FP) along which the document D is fed inside the flatbed cover 1a.
  • the flatbed cover 1a may include an input tray 1c on which the document D is placed and an output tray 1d onto which the document D, from the surface of which an image has been acquired, is released.
  • the image acquiring apparatus 1 may functionally include an image acquirer 101 for acquiring an image formed on the surface of the document D, a user interface 400 for receiving a use input from the user and indicating operational information of the image acquiring apparatus 1, a storage 500 for storing the image acquired by the image acquirer 101, an image processor 200 for analyzing and processing the image acquired by the image acquirer 101, and a controller 300 for controlling overall operation of the image acquiring apparatus 1.
  • the image acquirer 101 may include first and second image sensor modules 110 and 120 for capturing the image formed on the surface of the document D, a document feed module 130 for feeding the document D, and a sensor moving module 140 for moving the first image sensor module 110.
  • the first and second image sensor modules 110 and 120 may each capture an image formed on the document D. Furthermore, the image acquirer 101 may output image data that corresponds to the image acquired by the first and second image sensor modules 110 and 120 to the image processor 200.
  • the document D may typically have double sides, and only one side or both sides may have images formed thereon.
  • the first and second image sensor modules 110 and 120 may capture an image formed on one side of the document D and an image formed on the other side of the document D, respectively. In other words, the first and second image sensor modules 110 and 120 may capture images formed on different sides of the document D.
  • first side one side of the document D from which the first image sensor module 110 captures an image
  • second side an image formed on the first side
  • second side The other side of the document D from which the second image sensor module 120 captures an image
  • the first and second image sensor modules 110 and 120 are not limited to obtaining images formed on the first and second sides of the document D, respectively.
  • the first image sensor module 110 may capture the image on the first side
  • the second image sensor module 120 may capture the image on the first side that penetrates the document D and appears on the second side.
  • the second image sensor module 120 may receive light that has penetrated the document D.
  • an image on the first side that the second image sensor module 120 captures on the second side will be called an "penetrated image of the first side”.
  • the first and second image sensor modules 110 and 120 may each include a light transmitter that emits light to the document D and a light receiver that receives light reflected from the document D.
  • the light transmitter may include a plurality of photo diodes for emitting light to the surface of the document D
  • the light receiver may include a plurality of photo detectors for measuring intensity of light reflected off the surface of the document D from the image formed on the document D.
  • the light receiver may include mono photo detectors for measuring intensity of light, and color photo detectors for measuring intensity of light of a particular wavelength.
  • An image formed on the surface of the document D is commonly a two dimensional (2D) image.
  • the plurality of photo detectors may be arrayed in 2D.
  • the plurality of photo detectors may be arrayed in a line, obtaining the 2D image formed on the document D by moving themselves or by moving the document D.
  • each of the first and second image sensor modules 110 and 120 are arrayed in a line, obtaining the 2D image of the document D by moving the first and second image sensor modules 110 and 120 or by moving the document D.
  • the plurality of photo detectors arrayed in a line to obtain a line image are typically referred to as a linear image sensor.
  • the first and second image sensor modules 110 and 120 may each include a linear image sensor.
  • the image acquirer 101 may include a document feed module 130 for feeding the document D and a sensor moving module 140 for moving the first image sensor module 110, in order to obtain a 2D image of the document D.
  • a document feed module 130 for feeding the document D
  • a sensor moving module 140 for moving the first image sensor module 110, in order to obtain a 2D image of the document D.
  • the first and second image sensor modules 120 may be arranged opposite to each other with respect to a feed path (FP) of the document D.
  • the first image sensor module 110 may be arranged on the outer side of the feed path FP along which the document D is fed, while the second image sensor module 120 may be arranged on the inner side of the feed path FP.
  • the first image sensor module 110 may capture an image on the first side of the document D or a penetrated image of the second side
  • the second image sensor module 120 may capture an image on the second side or a penetrated image of the first side.
  • the second image sensor module 120 may be situated at a higher reach than the first image sensor module 110 is with respect to a feed direction FD in which the document D is fed. As a result, the second image sensor module 120 may first capture the image on the second side of the document D or the penetrated image of the first side, and the first image sensor module 110 may then capture the image on the first side of the document D or the penetrated image of the second side.
  • arrangement of the first and second image sensor modules 110 and 120 is not limited to what is shown in FIG. 3 .
  • the first image sensor module 110 may be situated at a higher reach than the second image sensor module 120 is with respect to the feed direction FD in which the document D is fed.
  • the first image sensor module 110 may first capture the image on the first side of the document D or the penetrated image of the second side, and the second image sensor module 112 may then capture the image on the second side of the document D or the penetrated image of the first side.
  • the document feed module 130 may feed the document D put on the input tray 1c to the output tray 1d along the feed path FP. As the document D is fed by the document feed module 130, the first and second image sensor modules 120 may capture a 2D image of the document D.
  • the document feed module 130 may include a plurality of feed rollers 131 for rolling the document D and feed motors (not shown) for turning the feed roller 131. In other words, rotation of the feed motor turns the feed roller 131, which in turn feeds the document D along the feed path FP.
  • Speed of the rotation of the feed motor may be controlled by the controller 300 as will be described below, and a feed speed of the document D may vary depending on the rotation speed of the feed motor. In other words, the feed speed of the document D may be controlled by the controller 300.
  • the resolution of images to be obtained by the first and second image sensor modules 110 and 120 may vary depending on the feed speed of the document D. For example, as the feed speed of the document D becomes faster, the resolution of images obtained by the first and second image sensor modules 110 and 120 becomes lower; as the feed speed of the document D becomes slower, the resolution of images obtained by the first and second image sensor modules 110 and 120 becomes higher.
  • the sensor moving module 140 may move the first image sensor module 110 to obtain the 2D image on the document D. For example, if the document D is put on the flatbed 1e shown in FIG. 1 , the document D remains stationary, so the first image sensor module 110 needs to be moved to obtain the 2D image on the document D. In this regard, the sensor moving module 140 may move the first image sensor module 110.
  • the sensor moving module 140 may include a guide bar 141 for guiding movement of the first image sensor module 110, and a moving motor (not shown) for moving the first image sensor module 110 along the guide bar 141.
  • a moving motor (not shown) for moving the first image sensor module 110 along the guide bar 141.
  • the moving motor may move the first image sensor module 110 along the y-axis.
  • Rotation speed of the moving motor may be controlled by the controller 300 as will be described below, and the moving speed of the first image sensor module 110 may vary depending on the rotation speed of the moving motor. In other words, the moving speed of the first image sensor module 110 may be controlled by the controller 300.
  • the resolution of an image to be obtained by the first image sensor module 110 may vary depending on the moving speed of the first image sensor module 110. For example, as the moving speed of the first image sensor module 110 becomes faster, the resolution of an image to be obtained by the first image sensor module 110 becomes lower; as the moving speed of the first image sensor module 110 becomes slower, the resolution of an image to be obtained by the first image sensor module 110 becomes higher.
  • the user interface 400 may interact with the user.
  • the user interface 400 may receive a user input from the user and indicate operation information of the image acquiring apparatus 1.
  • the user interface 400 may receive color scan settings for the image acquiring apparatus 1 to acquire an image formed on the document D as a color image in colors, mono scan settings for the image acquiring apparatus 1 to acquire an image formed on the document D as a black and white (or monochrome) image, and automatic scan settings for the image acquiring apparatus 1 to acquire an image formed on the document D as a black and withe image or a color image depending on whether the image on the document D is a monochrome image or a color image.
  • the user interface 400 may receive a resolution from the user for the image acquiring apparatus 1 to apply the resolution in acquiring an image formed on the document D.
  • the controller 300 may set an image acquisition type (mono or color) and image acquisition resolution for the image acquirer 101 based on the user input received through the user interface 400.
  • the controller 300 may activate mono photo detectors or color photo detectors of the first and second image sensor modules 110 and 120 depending on the image acquisition type (mono or color). Furthermore, the controller 300 may control line times of the first and second image sensor modules 110 and 120 depending on the image acquisition type (mono or color).
  • the line time refers to a time for the image sensor module 110, 120, which corresponds to a linear image sensor, to acquire a single line image, and there may be color image line times to acquire color images and mono image line times to acquire mono images.
  • the controller 300 may also control the document feed speed or sensor moving speed according to the image acquisition resolution.
  • the user interface 400 may include a plurality of buttons 410 to receive predetermined user inputs from the user, and a display 420 for displaying operation information of the image acquiring apparatus 1.
  • the plurality of buttons 410 may output a user instruction predefined for each button.
  • the plurality of buttons 410 may include a numeric keypad for receiving predetermined numerical numbers, and an operation button to initiate or stop image acquisition operation of the image acquiring apparatus 1.
  • the display 420 may display the operation information of the image acquiring apparatus 1 in a visual manner.
  • the display 420 may include a Liquid Crystal Display (LCD) panel, Light Emitting Diode (LED) panel, or the like, which converts electric signals to optical signals.
  • LCD Liquid Crystal Display
  • LED Light Emitting Diode
  • the display 420 may also include a touch screen to receive touch inputs of the user.
  • the touch screen may receive at least one touch or consecutive touches through a body part (e.g., a finger) of the user or touchable input means (e.g., a stylus pen), and convert the touch input of the user to a corresponding digital signal (e.g., in the xy coordinates) and output the digital signal to the controller 300.
  • the touch screen may also display information corresponding to the touch input of the user.
  • the storage 500 may store a control program and control data for controlling the image acquiring apparatus 1, and various application programs and application data for performing various functions according to the user input.
  • the storage 500 may store an Operating System (OS) program that manages features and resources (in software and hardware) included in the image acquiring apparatus 1, an image reproduction program that reproduces an image of the document D, an image editing program that edits the image of the document D, and a browser that accesses a Wide Area Network (WAN), such as the Internet.
  • OS Operating System
  • WAN Wide Area Network
  • the storage 500 may include a non-volatile memory that preserves the stored program or data even if the power is out.
  • the storage 500 may include a magnetic disc drive 510 or a semiconductor drive 520.
  • the image processor 200 may analyze or process the image acquired by the image acquirer 101.
  • the image processor 200 may analyze the image acquired by the image acquirer 101, and determine whether the acquired image is text or pictures.
  • the image processor 200 may also analyze the image acquired by the image acquirer 101, and determine whether the acquired image is a monochrome image e.g., only in white, black, and gray, or a color image e.g., in multiple colors.
  • the image processor 200 may perform sharpening or blurring on the image acquired by the image acquirer 101.
  • the image processor 200 may have the image pass through a low pass filter or a Gaussian filter.
  • the image processor 200 may have the image pass through the high pass filter. Also, for the sharpening process, the image processor 200 may detect edges of the image and combine the original image and the edge image.
  • the image processor 200 may include a graphic processor 210 for performing operation to process the image acquired by the image acquirer 101, and a graphic memory 220 for storing a program or data related to computational operation of the graphic processor 210.
  • the graphic memory 220 may include volatile memories, such as Static Random Access Memories (S-RAMs), Dynamic RAMs (D-RAMs), or the like, and non-volatile memories, such as Read Only Memories (ROMs), Erasable Programmable ROMs (EPROMs), Electrically Erasable Programmable ROMs (EEPROMs), flash memories or the like.
  • volatile memories such as Static Random Access Memories (S-RAMs), Dynamic RAMs (D-RAMs), or the like
  • non-volatile memories such as Read Only Memories (ROMs), Erasable Programmable ROMs (EPROMs), Electrically Erasable Programmable ROMs (EEPROMs), flash memories or the like.
  • the volatile memory may temporarily store a program and data.
  • the volatile memory may temporarily store computational results of the graphic processor 210.
  • the non-volatile memory may semipermanently store a program and data.
  • the non-volatile memory may store a program and data for controlling computational operation of the graphic processor 210.
  • the graphic processor 210 may include an arithmetic and logic unit (ALU) for performing computations, and a memory circuit for storing data for computation or computed data.
  • ALU arithmetic and logic unit
  • the graphic processor 210 may perform operation to analyze and process the image acquired by the image acquirer 101.
  • the controller 300 may control operation of the aforementioned image acquirer 101, user interface 400, storage 500, and image processor 200.
  • the controller 300 may activate mono photo detectors or color photo detectors included in the image acquirer 101 depending on the image acquisition type received through the user interface 400, and control line times.
  • the controller 300 may also control the document feed speed or sensor moving speed according to the image acquisition resolution received through the user interface 400.
  • the controller 300 may also activate the mono photo detectors or color photo detectors included in the image acquirer 101 depending on whether the image acquired by the image acquirer 101 is a monochrome image or a color image, and control line times.
  • the controller 300 may also control the document feed speed or sensor moving speed depending on whether the image acquired by the image acquirer 101 is text or pictures.
  • controller 300 may control the image processor 200 to perform sharpening or blurring on the image depending on whether the image acquired by the image acquirer 101 is text or pictures.
  • the controller 300 may include a control processor 310 for performing operation to control operation of the image acquiring apparatus 1, and a control memory 320 for storing a program and data related to computational operation of the control processor 310.
  • the control memory 320 may include volatile memories, such as Static Random Access Memories (S-RAMs), Dynamic RAMs (D-RAMs), or the like, and non-volatile memories, such as Read Only Memories (ROMs), Erasable Programmable ROMs (EPROMs), Electrically Erasable Programmable ROMs (EEPROMs), flash memories or the like.
  • volatile memories such as Static Random Access Memories (S-RAMs), Dynamic RAMs (D-RAMs), or the like
  • non-volatile memories such as Read Only Memories (ROMs), Erasable Programmable ROMs (EPROMs), Electrically Erasable Programmable ROMs (EEPROMs), flash memories or the like.
  • the volatile memory may temporarily store a program and data.
  • the volatile memory may temporarily store control instructions of the control processor 310.
  • the non-volatile memory may semipermanently store a program and data.
  • the non-volatile memory may store a program and data for the graphic processor 210 to perform control operation.
  • the control processor 310 may include an ALU for performing computation, and a memory circuit for storing data for computation or computed data.
  • the control processor 310 may perform arithmetic and logic operation for controlling operation of the image acquiring apparatus 1, and output control instructions resulting from the operation.
  • FIG. 5 is a flowchart illustrating an image acquiring method carried out by an image acquiring apparatus, according to an embodiment of the present disclosure.
  • FIG. 6 illustrates an image formed on a document
  • FIG. 7 illustrates a penetrated image obtained by the image acquiring method shown in FIG. 5 .
  • An image acquiring method 600 of the image acquiring apparatus 1 is described in connection with FIGS. 5 , 6 , and 7 .
  • the image acquiring apparatus 1 receives an instruction from the user to acquire an image on a single side of the document D, in operation 610.
  • the image acquiring apparatus 1 may receive the user input through the user interface 400.
  • the image acquiring apparatus 1 may receive image acquisition setting values, such as an image acquisition type (e.g., mono scan or color scan), image acquisition resolution, etc., as well as user instructions related to operation of the image acquiring apparatus 1, such as to initiate or stop image acquisition.
  • image acquisition setting values such as an image acquisition type (e.g., mono scan or color scan), image acquisition resolution, etc.
  • user instructions related to operation of the image acquiring apparatus 1 such as to initiate or stop image acquisition.
  • the user may put the document D on the input tray 1c of the image acquiring apparatus 1 with a side having an image OI to be acquired facing upward, and input an instruction to initiate image acquisition through the user interface 400.
  • the image acquiring apparatus 1 obtains a penetrated image PI of the document D, in operation 620.
  • the controller 300 may control the document feed module 130 to pick up the document D and feed the picked-up document D.
  • the image acquirer 101 may acquire the image on the first side S1 through the second side S2. In other words, the image acquirer 101 may acquire the penetrated image PI of the first side S1 from the second side S2.
  • the second image sensor module 120 may obtain the image of the document D earlier than the first image sensor module 110 does.
  • the second image sensor module 120 which is able to obtain an image on the second side S2 of the document D, may obtain a penetrated image of the first side S1 that is seen on the second side S2, i.e., the penetrated image PI of the first side S1.
  • the second image sensor module 120 may obtain the penetrated image P1 as shown in FIG. 7 .
  • the penetrated image PI has more blurred parts and lower contrast ratio than the original image OI. This is because the penetrated image PI is obtained by means of the light that has penetrated the document D.
  • the image acquirer 101 may output image data of the penetrated image PI to the image processor 200.
  • the image acquiring apparatus 1 then analyzes the penetrated image PI of the document D, in operation 630.
  • the image processor 200 of the image acquiring apparatus 1 may receive the image data of the penetrated image PI from the image acquirer 101 and analyze the received image data of the penetrated image PI.
  • the image processor 200 may receive part of the penetrated image PI from the image acquirer 101 and analyze the received part of the penetrated image PI.
  • the document feed module 130 keeps feeding the document D, allowing the image acquirer 101 to acquire the original image OI of the document D.
  • feeding of the document D may allow the second image sensor module 120 to obtain the penetrated image P1 of the first side S1 of the document D earlier than the first image sensor module 110 does.
  • the document D reaches the first image sensor module 110, which is then able to obtain the original image OI on the first side S1 of the document D.
  • the first image sensor module 110 may start obtaining the original image OI of the document D.
  • the image processor 200 may analyze the received penetrated image PI until receiving the original image OI of the document 200.
  • the image processor 200 may analyze the penetrated image PI based on part (PIO) of the penetrated image PI as shown in FIG. 7 .
  • the size of the partial penetrated image PIO to be analyzed by the image processor 200 may be determined based on a distance between the first and second image sensor modules 110 and 120. Specifically, the longer the distance between the first and second image sensor modules 110 and 120, the larger the size of the penetrated image PIO to be analyzed by the image processor 200; the shorter the distance between the first and second image sensor modules 110 and 120, the smaller the size of the penetrated image PIO to be analyzed by the image processor 200.
  • the image processor 200 may determine whether the image of the document D is a text image or a picture image or whether the image of the document D is a monochrome image or a color image, based on analysis of the penetrated image PI.
  • the image processor 200 may determine whether the document D is a text image or a picture image using a character area extraction algorithm, e.g., a morphology operation algorithm.
  • a character area extraction algorithm e.g., a morphology operation algorithm.
  • the image processor 200 may determine whether the image of the document D is a text image or a picture image.
  • the image processor 200 may also determine whether the image of the document D is a monochrome image or a color image based on a result of analyzing color information of the penetrated image PI received from the image acquirer 101.
  • the image processor 200 may provide the result of analyzing the penetrated image PI to the controller 300.
  • the image acquiring apparatus 101 acquires the original image OI of the document D, in operation 640.
  • the document D fed by the document feed device 130 reaches the first image sensor module 110, which is then able to obtain the original image OI formed on the first side S1 of the document D.
  • the controller 300 may change settings about acquiring the original image OI depending on the result of analyzing the transmitted image PI.
  • the controller 300 may activate color photo detectors included in the first image sensor module 110 to obtain the color image effectively.
  • the controller 300 may activate mono photo detectors included in the first image sensor module 110 to obtain the monochrome image effectively.
  • the controller 300 may set the line time of the first image sensor module 110 to a color image line time; when the penetrated image PI is a monochrome image, the controller 300 may set the line time of the first image sensor module 110 to a mono image line time.
  • the line time as herein used refers to a time for the first image sensor module 110 to obtain a single line image, and the mono image line time may be shorter than the color image line time.
  • the controller 300 may slower the document D feed speed to acquire the picture effectively. As a result, the resolution of the original image OI acquired by the image acquirer 101 increases. If the penetrated image PI includes characters only without any picture, the controller 300 may increase the document D feed speed to reduce image acquisition time. As a result, the image acquiring apparatus 1 may quickly acquire the original image OI at a moderate resolution.
  • the first image sensor module 110 may obtain the original image OI formed on the first side S1 of the document D based on the changed setting values. Furthermore, the image acquirer 101 may provide image data that corresponds to the original image OI obtained by the first image sensor modules 110 to the image processor 200.
  • the image acquirer 101 processes the original image OI of the document D, in operation 650.
  • the image processor 200 of the image acquiring apparatus 1 may process the original image OI received from the image acquirer 101 in real time, make the image viewed more clearly to the user.
  • the image processor 200 may process the image data of the original image OI as soon as the image data is received from the image acquirer 101. Since the first image sensor module 110 of the image acquirer 101 uses the linear image sensor to obtain the original image OI of the document D, the image acquirer 101 may transmit a part of the original image OI, i.e., one line image or two or more line images that make up the original image OI to the image processor 200. Upon reception of the one line or two or more line images, the image processor 200 may immediately process the one line or two or more line images.
  • the image processor 200 may process the original image OI differently depending on the result of analyzing the penetrated image PI.
  • the image processor 200 may perform a sharpening process to increase sharpness of the image in order for the user to easily recognize the characters or symbols.
  • the image processor 200 may perform image processing to add a blurring effect to the image in order for the picture to be naturally recognizable to the user.
  • the image processor 200 may perform a sharpening process to increase sharpness of the image in the area of the characters while performing a blurring process on the area of the pictures to make the pictures natural.
  • the image acquiring apparatus 1 then stores the processed original image OI , in operation 660.
  • the controller 300 may store image data of the processed original image OI in the storage 500. Moreover, even before completion of acquisition and process of the original image OI, the controller 300 may store image data that has already been processed in the storage 500.
  • the controller 300 may store the original image OI in the storage 500 in various formats.
  • the controller 300 may store the original image OI in a bitmap format, an international standard image compression format, or an international standard electronic document format.
  • the image acquiring apparatus 100 may acquire and analyze the penetrated image P1 of the document D through the other side on which the original image OI is not formed, and depending on the analysis result, may change setting values about acquisition of the original image OI or change processing of the original image OI.
  • the image acquiring apparatus 100 may quickly acquire a clearer and more natural image.
  • FIG. 8 is a flowchart illustrating an image acquiring method carried out by an image acquiring apparatus, according to another embodiment of the present disclosure.
  • FIGS. 9A and 9B illustrate changing back shading offsets according to the image acquiring method shown in FIG. 8
  • FIGS. 10A and 10B illustrate a conventional penetrated image and histogram
  • FIGS. 11A and 11B illustrate a penetrated image and histogram obtained by changing black shading offsets
  • FIGS. 12A , 12B , and 12C illustrate changing gamma values according to the image acquiring method shown in FIG. 8 .
  • An image acquiring method 700 of the image acquiring apparatus 1 is described in connection with FIGS. 8 to 12C .
  • the image acquiring apparatus 1 receives an instruction from the user to acquire an image on a single side of the document D, in operation 710.
  • the user may put the document D on the input tray 1c of the image acquiring apparatus 1 with a side having an image OI to be acquired facing upward, and input an instruction to initiate image acquisition through the user interface 400.
  • the image acquiring apparatus 1 changes setting values for image acquisition, in operation 720.
  • the controller 300 of the image acquiring apparatus 1 may change setting values of the first or second sensor module 110 or 120.
  • the controller 300 may change setting values about image acquisition of the second image sensor module 120.
  • controller 300 may change an offset for shading correction of the second image sensor module 120.
  • the first and second image sensor modules 110, 120 each include a linear image sensor having a plurality of photo detectors arrayed in a line.
  • the plurality of photo detectors may have optical properties, which are a little different from one another. For example, even if the plurality of photo detectors detect the same light, they each may output a signal at a different level.
  • the image acquirer 101 may perform shading correction.
  • black shading offsets to compensate for minimum values of outputs of the photo detectors (outputs corresponding to a black image) and white shading offsets to compensate for maximum values of outputs of the photo detectors (outputs corresponding to a white image).
  • the image acquirer 101 may use the black shading offsets and whit shading offsets to compensate the outputs of the plurality of photo detectors, to make the outputs of the plurality of photo detectors even.
  • the image acquirer 101 may change the black shading offsets for the second image sensor module 120 to acquire a clear penetrated image PI.
  • the penetrated image PI has an increased contrast value as compared to the original image, due to the color (white) of the document D.
  • the image acquirer 101 may increase the black shading offset for the second image sensor module 120.
  • the penetrated image acquired by the second image sensor module 120 becomes dark as a whole.
  • the black shading offset is "0”
  • the black color which is the darkest in the detection range of a photo detector
  • the white color which is the brightest in the detection range of the photo detector
  • the black shading offset is "128”
  • colors from black, which is the darkest in the detection range of a photo detector, to gray are mapped to contrast value "0”
  • the white color which is the brightest in the detection range of the photo detector, is mapped to contrast value "255”, as shown in FIG. 9B .
  • the black shading offset is "128”
  • the image acquirer 101 may detect gray in the actual penetrated image as black.
  • the image acquirer 101 may output a penetrated image that has been compensated to be darker than the actual penetrated image.
  • the image acquirer 101 may acquire the penetrated image, which is clearer than the actual penetrated image.
  • the brightness histogram of the penetrated image PI1 is shown as in FIG. 10B .
  • the first penetrated image PI1 has many pixels that have high contrast values due to the color (white) of the document D itself.
  • a high contrast area includes many pieces of image information.
  • a second penetrated image PI2 obtained by the second image sensor module 120 with the increased black shading offset is shown as in FIG. 11A .
  • FIG. 11A it is seen that the second penetrated image PI2 looks even clearer than the first penetrated image PI1 shown in FIG. 10A .
  • FIG. 11B A histogram of the second penetrated image PI2 obtained by the second image sensor module 120 with the increased black shading offset is shown as in FIG. 11B . Referring to FIG. 11B , it is seen that the second penetrated image PI2 has decreased contrast values as compared to the histogram of the first penetrated image PI1.
  • the controller 300 may change a gamma value for the second image sensor module 120.
  • a gamma value in the display field, represents a relationship between brightness of image data input to a display device and brightness of an image displayed by the display device
  • a gamma value in the image acquisition field, represents a relationship between contrast (or brightness) detected by an image sensor and contrast (or brightness) stored in image data that corresponds to an image.
  • contrast or brightness
  • Lout denotes a ratio of output contrast to available maximum output contrast
  • Lin denotes a ratio of input contrast to available maximum input contrast
  • denotes the gamma value.
  • the image sensor may output image data having the same contrast value as in the actual image, as shown in FIG. 12A .
  • the image sensor may output image data with a dark part of the actual image shrunk and a bright part expanded, as shown in FIG. 12B .
  • the image sensor may output image data with a dark part of the actual image expanded and a bright part shrunk, as shown in FIG. 12C .
  • the gamma value of an image sensor of an image acquiring apparatus is set to "2.2".
  • An initial gamma value of the first and second image sensor modules 110 and 120 may also be set to "2.2".
  • the penetrated image has high contrast as a whole, due to the color (white) of the document D. That is, the penetrated image has more bright parts which include more image information.
  • the image sensor may obtain image data including more information of a bright area of the image, and the bright part of an image resulting from the acquired image data becomes clearer.
  • the image acquirer 101 may decrease gamma values for the second image sensor modules 120.
  • the gamma value for the second image sensor module 120 may be set to a value less than '1'.
  • the image acquirer 101 may control the black shading offset or gamma value for the second image sensor module 120 to obtain an even clearer penetrated image.
  • the image acquiring apparatus 1 obtains a penetrated image PI of the document D, in operation 730.
  • the second image sensor module 1120 of the image acquirer 1100 may acquire the penetrated image P1 of the first side S1 through the second side S2.
  • the image acquiring apparatus 1 then analyzes the penetrated image PI of the document D, in operation 740.
  • the image processor 200 of the image acquiring apparatus 1 may receive the image data of the penetrated image PI from the image acquirer 101 and analyze the received image data of the penetrated image PI.
  • the image processor 200 may determine whether the image of the document D is a text image or a picture image or whether the image of the document D is a monochrome image or a color image, based on analysis of the penetrated image PI.
  • the image processor 200 may provide the result of analyzing the penetrated image PI to the controller 300.
  • the image acquiring apparatus 1 acquires an original image OI of the document D, in operation 750.
  • the document D fed by the document feed device 130 reaches the first image sensor module 110, which is then able to acquire the original image OI formed on the first side S1 of the document D.
  • the controller 300 may change settings about acquiring the original image OI depending on the result of analyzing the penetrated image PI.
  • the controller may control the image acquirer 101 to acquire a monochrome image or color image depending on whether the penetrated image PI is a monochrome image or color image, and control the image acquirer 101 to adjust the document feed speed or sensor moving speed depending on whether the penetrated image PI is a text image or a picture image.
  • the image acquiring apparatus 1 processes the original image OI of the document D, in operation 760.
  • the image processor 200 of the image acquiring apparatus 1 may process the original image OI received from the image acquirer 101 in real time, make the image viewed more clearly to the user.
  • the image processor 200 may process the original image OI differently depending on the result of analyzing the penetrated image P1.
  • the image processor 200 may perform sharpening on the image, and if the result of analyzing the penetrated image PI reveals that the original image OI includes pictures only, the image processor 200 may perform blurring on the image.
  • the image acquiring apparatus 1 then stores the original image OI , in operation 770.
  • the controller 300 may store image data of the processed original image OI in the storage 500. Especially, the controller 300 may store the original image OI in the storage 500 in various formats.
  • the image acquiring apparatus 1 may acquire and analyze the penetrated image PI of the document D through the other side on which the original image OI is not formed, and depending on the analysis result, may change setting values about acquisition of the original image OI or change processing of the original image OI.
  • the image acquiring apparatus 1 may change black shading offsets or gamma values for the image sensor module to acquire the penetrated image PI.
  • FIG. 13 is a block diagram of an image acquiring apparatus, according to another embodiment of the present disclosure.
  • FIG. 14 illustrates a reflecting member included in an image acquiring apparatus, according to an embodiment of the present disclosure
  • FIGS. 15 and 16 illustrate functionalities of a reflecting member included in an image acquiring apparatus, according to an embodiment of the present disclosure.
  • FIGS. 17 and 18 illustrate arrangement of a reflecting member included in an image acquiring apparatus, according to embodiments of the present disclosure.
  • an image acquiring apparatus 2 may include an image acquirer 102 for acquiring an image formed on the surface of the document D, an image processor 200 for analyzing and processing the image acquired by the image acquirer 102, a user interface 400 for receiving a use input from the user and indicating operational information of the image acquiring apparatus 2, a storage 500 for storing the image acquired by the image acquirer 102, and a controller 300 for controlling overall operation of the image acquiring apparatus 2.
  • the image acquirer 102 may include first and second image sensor modules 110 and 120 for capturing the image formed on the document D, a document feed module 130 for feeding the document D, a sensor moving module 140 for moving the first image sensor module 110, and a reflecting member 150 for enabling a clearer penetrated image to be obtained.
  • the first and second image sensor modules 110 and 120 may each capture an image formed on the document D. Furthermore, the image acquirer 102 may output image data that corresponds to the image acquired by the first and second image sensor modules 110 and 120 to the image processor 200.
  • the first and second image sensor modules 110 and 120 may each include a linear image sensor.
  • the image acquirer 102 may include a document feed module 130 for feeding the document D and a sensor moving module 140 for moving the first image sensor module 110, in order to obtain a 2D image of the document D.
  • the document feed module 130 may feed the document D put on the input tray 1c to the output tray 1d along the feed path FP, and the sensor moving module 140 may move the first image sensor module 110 to obtain the 2D image of the document D.
  • the reflecting member 150 may include first and second reflecting parts 151 and 152, as shown in FIG. 14 , the first reflecting part 151 having a greater optical reflectivity than that of the second reflecting part 152.
  • the first reflecting part 151 may reflect a majority of incident light
  • the second reflecting part 152 may absorb a majority of incident light
  • the first reflecting part 151 may be made of a material having a higher optical reflectivity in order for the image acquirer 102 to acquire a clearer penetrated image.
  • the first and second image sensor modules 110 and 120 may each capture an image formed on the document D by receiving light reflected from the document D.
  • the white part of an image has a higher optical reflectivity while the black part of the image has a lower optical reflectivity.
  • the first and second image sensor modules 110 and 120 may distinguish the white part from the black part in the document D by measuring the intensity of light reflected from the surface of the document D.
  • a part having high intensity of light reflected from the surface of the document D may be determined to be in white
  • a part having low intensity of light reflected from the surface of the document D may be determined to be in black.
  • the image acquirer 102 may acquire an image formed on the document D by a combination of the white and black parts.
  • the first and second image sensor modules 110 and 120 may obtain the penetrated image PI of the document D by measuring intensity of light reflected from the document D.
  • light may be reflected from the surface of the document D, or may be penetrated a base material BM e.g., paper, of the document D and absorbed into the image formed on the document D.
  • a base material BM e.g., paper
  • the penetrated image PI acquired through the second side S2 is less clear than the original image formed on the first side S1.
  • the first reflecting part 151 may make the penetrated image PI acquired by the first or second image sensor module 110 or 120 clear.
  • the second image sensor module 120 obtains an image I formed on the first side S1 of the document D through the second side S2, light may travel in different paths (L1, L2, L3, L4).
  • some light L2, L3 among the light irradiated toward the document D may penetrate the base material BM e.g., paper, of the document D and reach the first side S1 of the document D.
  • the second image sensor module 120 may recognize an area with the pigment material applied thereon to be in black.
  • the second image sensor module 120 may recognize the area with the pigment material PM applied thereon not to be in pure black but to be in gray with white mixed, and thus the penetrated image PI is not clear as compared with the original image.
  • light L3 that has penetrated the base material BM, e.g., paper, of the document D may pass through the document D intact.
  • the first reflecting part 151 of the reflecting member 150 may reflect light L3 that has penetrated the document D. Like this, light L3 reflected off the first reflecting part 151 penetrates the document D again and is received by the second image sensor 120.
  • the first reflecting part 151 makes intensity of light in the area with no pigment material PM applied stronger. As a result, the area with the pigment material PM applied may appear even darker.
  • the first reflecting part 151 may enable the penetrated image PI obtained by the second image sensor module 120 to be clearer.
  • the second reflecting part 152 may be made of a material having low optical reflectivity to prevent images formed on both sides of the document from interfering with each other in acquiring images on both sides.
  • the first and second image sensor modules 110 and 120 may each capture an image formed on the document D by measuring intensity of light reflected from the document D.
  • an image on the first side may cause interference with the second image sensor module 120 obtaining an image on the second side
  • the image on the second side may cause interference with the first image sensor module 110 obtaining the image on the first side
  • the second reflecting part 152 may minimize the interferences between the images on the first and second sides.
  • the second image sensor module 120 obtains an image I formed on the first side S1 of the document D through the second side S2, light may travel in different paths (L1, L2, L3).
  • some light L2, L3 among the light irradiated toward the document D may penetrate the base material BM e.g., paper, of the document D and reach the first side S1 of the document D.
  • the second image sensor module 120 may recognize an area on which the pigment material is applied to be in black. As a result, during acquisition of the image on the second side S2, the image on the first side S1 may be acquired.
  • light L3 that has penetrated the base material BM, e.g., paper, of the document D may pass through the document D intact.
  • the second reflecting part 152 of the reflecting member 150 may absorb light L3 that has penetrated the document D.
  • light L2, L3 that has penetrated the base material BM, e.g., paper, of the document D may be absorbed in the second reflecting part 152 or in the pigment material PM, and the second image sensor module 120 may only receive the light reflected from the second side S2 of the document D but may not acquire the image formed on the first side S1 of the document D.
  • the second reflecting part 152 may enable interference of the image on the first side S1 to be reduced in acquiring the image on the second side S2 of the document D.
  • the reflecting member 150 may make the penetrated image clear in acquiring a single-side image, and reduce interferences between images on the first and second sides in acquiring double-side images.
  • the reflecting member 150 may be arranged near the first image sensor module 110 that may be movable by the sensor moving module 140, as shown in FIGS. 17 and 18 .
  • the first image sensor module 110 may be arranged at an upper reach from the second image sensor module 120 with respect to the feed direction of the document D, in order for the first image sensor module 110 to obtain the penetrated image PI of the document D.
  • the first image sensor module 110 may be moved between the first and second reflecting parts 151 and 152 of the reflecting member 150 depending on whether a single-side image is to be acquired or double-side images are to be acquired.
  • the first image sensor module 110 may be moved to the first reflecting part 151 of the reflecting member 150, as shown in FIG. 17 .
  • the first image sensor module 110 may obtain a clear penetrated image PI of the document D with the help of the first reflecting part 151.
  • the first image sensor module 110 may be moved to the second reflecting part 152 of the reflecting member 150, as shown in FIG. 18 .
  • the first image sensor module 110 may obtain an image on the second side S2, which is not interfered by an image on the first side S1, with the help of the second reflecting part 152.
  • the reflecting member 150 is not limited to being shaped like a bar or plate.
  • the reflecting member 150 may be shaped like a cylinder or polyprism, in which the first and second reflecting parts 151 and 152 are alternately arranged along the outer face.
  • the user interface 400 may interact with the user.
  • the user interface 400 may receive color scan settings for the image acquiring apparatus 2 to acquire an image formed on the document D as a color image, mono scan settings for the image acquiring apparatus 2 to acquire an image formed on the document D as a black and white (or monochrome) image, and automatic scan settings for the image acquiring apparatus 2 to acquire an image formed on the document D as a black and white image or color image depending on whether the image on the document D is a monochrome image or a color image.
  • the user interface 400 may receive a resolution from the user for the image acquiring apparatus 2 to apply the resolution in acquiring an image formed on the document D.
  • the user interface 400 may include a plurality of buttons 410 to receive predetermined user inputs from the user, and a display 420 for displaying operation information of the image acquiring apparatus 2.
  • the storage 500 may store a control program and control data for controlling the image acquiring apparatus 2, and various application programs and application data for performing various functions according to the user input.
  • the storage 500 may include a non-volatile memory that preserves the stored program or data even if the power is out.
  • the storage 500 may include a magnetic disc drive 510 or a semiconductor drive 520.
  • the image processor 200 may analyze or process an image acquired by the image acquirer 102.
  • the image processor 200 may analyze an image acquired by the image acquirer 102, and determine whether the acquired image is text or pictures.
  • the image processor 200 may analyze the image acquired by the image acquirer 102, and determine whether the acquired image is a monochrome image e.g., only in white, black, and gray, or a color image e.g., in multiple colors.
  • the image processor 200 may perform sharpening or blurring on the image acquired by the image acquirer 102.
  • the image processor 200 may include a graphic processor 210 for performing operation to process the image acquired by the image acquirer 102, and a graphic memory 220 for storing a program or data related to computational operation of the graphic processor 210.
  • the controller 300 may control operation of the aforementioned image acquirer 102, user interface 400, storage 500, and image processor 200.
  • the controller 300 may control the sensor moving module 140 to move the first image sensor module 110 to the first or second reflecting part 151 or 152 of the reflecting member 150 depending on whether a singe-side image is to be acquired or double-side images are to be acquired.
  • the controller 300 may control the image acquirer 102 to acquire a monochrome image or color image depending on the image acquisition type, and may control the image acquirer 102 to adjust the document feed speed or sensor moving speed depending on the image acquisition resolution.
  • controller 300 may control the image processor 200 to perform sharpening or blurring on the image depending on whether the penetrated image PI is text or pictures.
  • the controller 300 may include a control processor 310 for performing operation to control operation of the image acquiring apparatus 2, and a control memory 320 for storing a program and data related to computational operation of the control processor 310.
  • FIG. 19 is a flowchart illustrating an image acquiring method carried out by an image acquiring apparatus, according to another embodiment of the present disclosure.
  • An image acquiring method 800 of the image acquiring apparatus 2 is described in connection with FIG. 19 .
  • the image acquiring apparatus 2 receives an instruction from the user to acquire an image on a single side of the document D, in operation 810.
  • the user may put the document D on the input tray 1c of the image acquiring apparatus 2 with a side having an image OI to be acquired facing upward, and input an instruction to initiate image acquisition through the user interface 400.
  • the image acquiring apparatus 2 changes the position of the movable first image sensor module 110, in operation 820.
  • the controller 300 of the image acquiring apparatus 2 may control the sensor moving module 140 to move the first image sensor module 110 to the first reflecting part 151 of the reflecting member 150.
  • the first image sensor module 110 may obtain a clear penetrated image PI of the document D with the help of the first reflecting part 151 of the reflecting member 150.
  • the image acquiring apparatus 2 acquires the penetrated image P1 of the document D, in operation 830.
  • the first image sensor module 110 of the image acquirer 102 may obtain the penetrated image P1 of the second side S2 through the first side S1.
  • the image acquiring apparatus 2 then analyzes the penetrated image P1 of the document D, in operation 840.
  • the image processor 200 of the image acquiring apparatus 2 may receive image data of the penetrated image P1 from the image acquirer 102 and analyze the received image data of the penetrated image P1.
  • the image processor 200 may determine whether the image of the document D is a text image or a picture image or whether the image of the document D is a monochrome image or a color image, based on analysis of the penetrated image PI.
  • the image processor 200 may provide the result of analyzing the penetrated image PI to the controller 300.
  • the image acquiring apparatus 2 acquires an original image OI of the document D, in operation 850.
  • the document fed by the document feed device 130 reaches the second image sensor module 120, which is then able to obtain the original image OI formed on the second side S2 of the document D.
  • the controller 300 may change settings about acquiring the original image OI depending on the result of analyzing the penetrated image PI.
  • the controller 300 may control the image acquirer 102 to acquire a monochrome image or color image depending on whether the transmitted image PI is a monochrome image or color image, and control the image acquirer 102 to adjust the document feed speed or sensor moving speed depending on whether the transmitted image PI is a text image or a picture image.
  • the image acquiring apparatus 2 processes the original image OI of the document D, in operation 860.
  • the image processor 200 of the image acquiring apparatus 2 may process the original image OI received from the image acquirer 102 in real time, to make the image viewed more clearly to the user.
  • the image processor 200 may process the original image OI differently depending on the result of analyzing the penetrated image P1.
  • the image processor 200 may perform sharpening on the image to increase sharpness of the image, and if the result of analyzing the penetrated image PI reveals that the original image OI includes pictures only, the image processor 200 may perform blurring on the image to make the pictures look natural.
  • the image acquiring apparatus 2 then stores the processed original image OI , in operation 870.
  • the controller 300 may store image data of the processed original image OI in the storage 500. Especially, the controller 300 may store the original image OI in the storage 500 in various formats.
  • the image acquiring apparatus 2 may acquire and analyze the penetrated image PI of the document D through the other side on which the original image OI is not formed, and depending on the analysis result, may change setting values about acquisition of the original image OI or change processing of the original image OI.
  • the image acquiring apparatus 2 may further include the reflecting member 150 to acquire a clear penetrated image PI.
  • FIG. 20 is a block diagram of an image acquiring apparatus, according to another embodiment of the present disclosure.
  • FIGS. 21 and 22 illustrate arrangement of a reflecting member included in an image acquiring apparatus, according to other embodiments of the present disclosure
  • FIGS. 23 and 24 illustrate movement of a reflecting member by a reflecting member movement module included in an image acquiring apparatus, according to an embodiment of the present disclosure.
  • an image acquiring apparatus 3 may include an image acquirer 103 for acquiring an image formed on the surface of the document D, an image processor 200 for analyzing and processing the image acquired by the image acquirer 103, a user interface 400 for receiving a use input from the user and indicating operational information of the image acquiring apparatus 3, a storage 500 for storing the image acquired by the image acquirer 103, and a controller 300 for controlling overall operation of the image acquiring apparatus 3.
  • the image acquirer 103 may include first and second image sensor modules 110 and 120 for capturing the image formed on the document D, a document feed module 130 for feeding the document D, a sensor moving module 140 for moving the first image sensor module 110, a reflecting member 150 for enabling a clearer penetrated image to be obtained, and a reflecting member moving module 160 for moving the reflecting member 150.
  • the first and second image sensor modules 110 and 120 may each capture an image formed on the document D. Furthermore, the image acquirer 103 may output image data that corresponds to the image obtained by the first and second image sensor modules 110 and 120 to the image processor 200.
  • the first and second image sensor modules 110 and 120 may each include a linear image sensor.
  • the image acquirer 103 may include a document feed module 130 for feeding the document D and a sensor moving module 140 for moving the first image sensor module 110, in order to obtain a 2D image of the document D.
  • the document feed module 130 may feed the document D put on the input tray 1c to the output tray 1d along the feed path FP, and the sensor moving module 140 may move the first image sensor module 110 to obtain the 2D image of the document D.
  • the reflecting member 150 may include the first reflecting part 151 and the second reflecting part 152.
  • the first reflecting part 151 may be made of a material having high optical reflectivity in order for the image acquirer 103 to acquire a clearer penetrated image
  • the second reflecting part 152 may be made of a material having low optical reflectivity to prevent images formed on both sides of the document D from interfering with each other during acquisition of images on both sides.
  • the reflecting member moving module 160 may move the reflecting member 150 back and forth according to whether a single-side image is to be acquired or double-side images are to be acquired.
  • the reflecting member moving module 160 may move the reflecting member 150 such that the first reflecting part 151 of the reflecting member 150 is aligned with the image sensor module 110, 120 of the image acquirer 103. Furthermore, in the case of acquiring double-side images, the reflecting member moving module 160 may move the reflecting member 150 such that the second reflecting part 152 of the reflecting member 150 is aligned with the image sensor module 110, 120 of the image acquirer 103.
  • the reflecting member moving module 160 and reflecting member 150 may be situated near the first image sensor module 110 or the second image sensor module 120 depending on the arrangement of the first and second image sensor modules 110 and 120.
  • the reflecting member moving module 160 and reflecting member 150 may be arranged near the second image sensor module 120.
  • the reflecting member moving module 160 and reflecting member 150 may be arranged near the first image sensor module 110.
  • the reflecting member moving module 160 and reflecting member 150 may be arranged near the image sensor module 110, 120 that is acquiring the penetrated image PI of the document D during acquisition of a single-side image.
  • the reflecting member moving module 160 may include a first moving module 161 to move the reflecting member 150 from a first position P1 to a second position P2, and a second moving module 162 to move the reflecting member 150 from the second position P2 to the first position P1.
  • the first moving module 161 may include a motor, a coil, and/or the like that may use magnetic force to move the reflecting member 150 from the first position P1 to the second position P2, and the second moving module 162 may include e.g., a spring that uses electricity to return the reflecting member 150 to the first position P1.
  • the second reflecting part 152 of the reflecting member 150 is aligned with the image sensor module 110, 120. That is, the reflecting member 150 in the first position P1 may minimize interferences between images on the first and second sides.
  • the first reflecting part 151 of the reflecting member 150 is aligned with the image sensor module 110, 120. That is, the reflecting member 150 in the second position P2 may enable the image sensor module 110, 120 to obtain a clear penetrated image.
  • the operation of the reflecting member moving module 160 is not limited to moving the reflecting member 150 back and forth.
  • the reflecting member 150 is shaped like a cylinder or polyprism in which the first and second reflecting parts 151 and 152 are alternately arranged along the outer face, the reflecting member moving module 160 may rotate the reflecting member 150.
  • the user interface 400 may interact with the user.
  • the user interface 400 may receive color scan settings for the image acquiring apparatus 3 to acquire an image formed on the document D as a color image, mono scan settings for the image acquiring apparatus 3 to acquire an image formed on the document D as a black and white (or monochrome) image, and automatic scan settings for the image acquiring apparatus 3 to acquire an image formed on the document D as a black and white image or color image depending on whether the image on the document D is a monochrome image or a color image.
  • the user interface 400 may receive a resolution from the user for the image acquiring apparatus 3 to apply the resolution in acquiring an image formed on the document D.
  • the user interface 400 may include a plurality of buttons 410 to receive predetermined user inputs from the user, and a display 420 for displaying operation information of the image acquiring apparatus 3.
  • the storage 500 may store a control program and control data for controlling the image acquiring apparatus 3, and various application programs and application data for performing various functions according to the user input.
  • the storage 500 may include a non-volatile memory that preserves the stored program or data even if the power is out.
  • the storage 500 may include a magnetic disc drive 510 or a semiconductor drive 520.
  • the image processor 200 may analyze or process an image acquired by the image acquirer 103.
  • the image processor 200 may analyze an image acquired by the image acquirer 103, and determine whether the acquired image is text or pictures.
  • the image processor 200 may analyze the image acquired by the image acquirer 103, and determine whether the acquired image is a monochrome image e.g., only in white, black, and gray, or a color image e.g., in multiple colors.
  • the image processor 200 may perform sharpening or blurring on the image acquired by the image acquirer 103.
  • the image processor 200 may include a graphic processor 210 for performing operation to process the image acquired by the image acquirer 103, and a graphic memory 220 for storing a program or data related to computational operation of the graphic processor 210.
  • the controller 300 may control operation of the aforementioned image acquirer 103, user interface 400, storage 500, and image processor 200.
  • the controller 300 may control the reflecting member moving module 160 to move the reflecting member 150 according to whether a single-side image is to be acquired or double-side images are to be acquired.
  • the controller 300 may control the image acquirer 103 to acquire a monochrome image or color image depending on the image acquisition type, and may control the image acquirer 103 to adjust the document feed speed or sensor moving speed depending on the image acquisition resolution.
  • controller 300 may control the image processor 200 to perform sharpening or blurring on the image depending on whether the penetrated image PI is text or pictures.
  • the controller 300 may include a control processor 310 for performing operation to control operation of the image acquiring apparatus 3, and a control memory 320 for storing a program and data related to computational operation of the control processor 310.
  • FIG. 25 is a flowchart illustrating an image acquiring method carried out by an image acquiring apparatus, according to yet another embodiment of the present disclosure.
  • An image acquiring method 900 of the image acquiring apparatus 3 is described in connection with FIG. 19 .
  • the image acquiring apparatus 3 receives an instruction from the user to acquire an image on a single side of the document D, in operation 910.
  • the user may put the document D on the input tray 1c of the image acquiring apparatus 3 with a side having an image OI to be acquired facing upward, and input an instruction to initiate image acquisition through the user interface 400.
  • the image acquiring apparatus 3 changes the position of the reflecting member 150, in operation 920.
  • the controller 300 of the image acquiring apparatus 3 may control the reflecting member moving module 160 such that the first reflecting part 151 of the reflecting member 150 is aligned with the second image sensor module 120.
  • the second image sensor module 120 may acquire a clear penetrated image PI of the document D with the help of the first reflecting part 151 of the reflecting member 150.
  • the image acquiring apparatus 3 acquires the penetrated image P1 of the document D, in operation 930.
  • the second image sensor module 120 of the image acquirer 103 may acquire the penetrated image P1 of the first side S1 through the second side S2.
  • the image acquiring apparatus 3 then analyzes the penetrated image P1 of the document D, in operation 940.
  • the image processor 200 of the image acquiring apparatus 3 may receive image data of the penetrated image P1 from the image acquirer 103 and analyze the received image data of the penetrated image P1.
  • the image processor 200 may determine whether the image of the document D is a text image or a picture image or whether the image of the document D is a monochrome image or a color image, based on analysis of the penetrated image PI.
  • the image processor 200 may provide the result of analyzing the penetrated image PI to the controller 300.
  • the image acquiring apparatus 3 acquires an original image OI of the document D, in operation 950.
  • the document D fed by the document feed device 130 reaches the first image sensor module 110, which is then able to acquire the original image OI formed on the first side S1 of the document D.
  • the controller 300 may change settings about acquiring the original image OI depending on the result of analyzing the penetrated image PI.
  • the controller 300 may control the image acquirer 103 to acquire a monochrome image or color image depending on whether the penetrated image PI is a monochrome image or color image, and control the image acquirer 103 to adjust the document feed speed or sensor moving speed depending on whether the penetrated image PI is a text image or a picture image.
  • the image acquiring apparatus 3 processes the original image OI of the document D, in operation 960.
  • the image processor 200 of the image acquiring apparatus 3 may process the original image OI received from the image acquirer 101 in real time, to make the image viewed more clearly to the user.
  • the image processor 200 may process the original image OI differently depending on the result of analyzing the penetrated image P1.
  • the image processor 200 may perform sharpening on the image to increase sharpness of the image, and if the result of analyzing the penetrated image PI reveals that the original image OI includes pictures only, the image processor 200 may perform blurring on the image to make the pictures look natural.
  • the image acquiring apparatus 3 then stores the processed original image OI, in operation 970.
  • the controller 300 may store image data of the processed original image OI in the storage 500. Especially, the controller 300 may store the original image OI in the storage 500 in various formats.
  • the image acquiring apparatus 3 may acquire and analyze the penetrated image PI of the document D through the other side on which the original image OI is not formed, and depending on the analysis result, may change setting values about acquisition of the original image OI or change processing of the original image OI.
  • the image acquiring apparatus 3 may include the reflecting member 150 to obtain a clearer penetrated image PI, and the reflecting member moving module 160 to move the reflecting member 150.
  • the image acquiring apparatus may include a plurality of image sensor modules to obtain an image on one side of a document.
  • an image forming apparatus that includes a plurality of image sensor modules to obtain an image on one side of a document and print the acquired image onto a print medium will be described.
  • FIG. 26 illustrates an exterior view of an image forming apparatus, according to an embodiment of the present disclosure
  • FIG. 27 is a block diagram of an image forming apparatus, according to an embodiment of the present disclosure
  • FIG. 28 illustrates arrangement of first and second image sensor modules included in an image forming apparatus, according to an embodiment of the present disclosure.
  • the image forming apparatus 1001 may acquire an image formed on the surface of a document D, and form the acquired image onto a print medium P.
  • the document D as herein used refers to paper, film, cloth, etc., the surface of which has an image formed thereon, such as characters, pictures, etc.
  • the print medium P refers to paper, film, cloth, etc., into which an image such as characters, pictures, etc., may be formed.
  • the image forming apparatus 1001 there is a copying machine for acquiring an image formed on the surface of the document D and printing out the acquired image.
  • the image forming apparatus 1001 is not limited to the copying machine, and may correspond to a multifunctional device that acquires an image formed on the surface of the document D and stores, transmits, or prints out the acquired image.
  • the image forming apparatus 1 may include, in appearance, a main body 1001b and a flatbed cover 1001a for covering the top face of the main body 1001b.
  • the main body 1001b forms the exterior of the image forming apparatus 1001, and may protect key components of the image forming apparatus 1001, as will be described below.
  • a flatbed 1001e made of a transparent material may be arranged on the top of the main body 1001b to allow the image forming apparatus 1001 to acquire an image formed on the surface of the document D, and an image sensor module 1110 or 1120 may be arranged below the transparent flatbed 1001e to capture the image formed on the surface of the document D.
  • the flatbed cover 1001a may include an ADF to automatically feed the document D.
  • the image sensor module 1110 or 1120 may be located on one side of a feed path (FP) along which the document D is fed.
  • the flatbed cover 1001a may include an input tray 1001c on which the document D is placed and an output tray 1001d onto which the document D, from the surface of which an image has been acquired, is released.
  • the image forming apparatus 1001 may functionally include an image acquirer 1100 for acquiring an image formed on the surface of the document D, a user interface 1400 for receiving a use input from the user and indicating operational information of the image forming apparatus 1001, a storage 1500 for storing the image acquired by the image acquirer 1100, an image former 1600 for forming an image onto the print medium P, an image processor 1200 for analyzing and processing the image acquired by the image acquirer 1100, and a controller 1300 for controlling overall operation of the image forming apparatus 1001.
  • an image acquirer 1100 for acquiring an image formed on the surface of the document D
  • a user interface 1400 for receiving a use input from the user and indicating operational information of the image forming apparatus 1001
  • a storage 1500 for storing the image acquired by the image acquirer 1100
  • an image former 1600 for forming an image onto the print medium P
  • an image processor 1200 for analyzing and processing the image acquired by the image acquirer 1100
  • a controller 1300 for controlling overall operation of the image
  • the image acquirer 1100 may include first and second image sensor modules 1110 and 1120 for capturing the image formed on the surface of the document D, a document feed module 1130 for feeding the document D, and a sensor moving module 1140 for moving the first image sensor module 1110.
  • the first and second image sensor modules 1110 and 1120 may each capture an image formed on the document D. Furthermore, the image acquirer 1100 may output image data that corresponds to the image captured by the first and second image sensor modules 1110 and 1120 to the image processor 1200.
  • the first and second image sensor modules 1110 and 1120 may each include a linear image sensor.
  • the image acquirer 1100 may include a document feed module 1130 for feeding the document D and a sensor moving module 1140 for moving the first image sensor module 1110, in order to obtain a 2D image of the document D.
  • the document feed module 1130 may feed the document D put on the input tray 1001c to the output tray 1001d along the feed path FP, and the sensor moving module 1140 may move the first image sensor module 1110 to obtain the 2D image of the document D.
  • the user interface 1400 may interact with the user.
  • the user interface 1400 may receive color scan settings for the image forming apparatus 1001 to acquire an image formed on the document D as a color image, mono scan settings for the image forming apparatus 1001 to acquire an image formed on the document D as a black and white (or monochrome) image, and automatic scan settings for the image forming apparatus 1001 to acquire an image formed on the document D as a black and white image or a color image depending on whether the image on the document D is a monochrome image or a color image.
  • the user interface 1400 may receive a resolution from the user for the image forming apparatus 1001 to apply the resolution in acquiring an image formed on the document D.
  • the user interface 1400 may include a plurality of buttons 1410 to receive predetermined user inputs from the user, and a display 1420 for displaying operation information of the image forming apparatus 1001.
  • the storage 1500 may store a control program and control data for controlling the image forming apparatus 1001, and various application programs and application data for performing various functions according to the user input.
  • the storage 1500 may include a non-volatile memory that preserves the stored program or data even if the power is out.
  • the storage 1500 may include a magnetic disc drive 1510 or a semiconductor drive 1520.
  • the image former 1600 may form an image onto the print medium P based on the image data.
  • the image former 1600 may pick up the print medium P contained in the paper box 1001f, form an image on the picked-up print medium P, and release the print medium P on which the image has been formed onto the output tray 1001e.
  • the image former 1600 may include a feeding module 1610, a light exposure module 1620, a developing module 1630, a transfer module 1640, and a settlement module 1650.
  • the feeding module 1610 may pick up the print medium P in the paper box 100f and feed the picked-up print medium P to the output tray 1001e via the transfer module 1640 and settlement module 1650.
  • the light exposure module 1620 emits light of a pattern that corresponds to an image on the document D acquired by the image acquirer 1100.
  • the light exposure module 1620 may include a Laser Scanning Unit (LSU) or LED Print Head (LPH).
  • LSU Laser Scanning Unit
  • LPH LED Print Head
  • An electrostatic latent image may be formed by the light emitted by the light exposure module 1620 on the outer circumferential face of a photosensitive drum 1631 of the developing module 1630, which will be described below.
  • the developing module 1630 develops the electrostatic latent image formed by the light exposure module 1620 with toner.
  • the developing module 1630 may include a first developing module 1630K for developing the electrostatic latent image with black toner, a second developing module 1630C for developing the electrostatic latent image with cyan toner, a third developing module 1630M for developing the electrostatic latent image with magenta toner, and a fourth developing module 1630Y for developing the electrostatic latent image with yellow toner.
  • the first developing module 1630K may include the photosensitive drum 1631 on which an electrostatic latent image is formed by light, a charging roller 1632 for charging the outer circumferential face of the photosensitive drum 1631 with electricity, and a developing roller 1633 for developing the electrostatic latent image with toner on a transfer belt 1641, which will be described below.
  • the second, third, and fourth developing modules 1630C, 1630M, and 1630Y are identical to that of the first developing module 1630K.
  • the transfer module 1640 may transfer (or copy) a toner image onto the print medium P fed by the feeding module 1610, and include the transfer belt 1641 for transferring the toner image of the photosensitive drum 1631 onto the print medium P.
  • the settlement module 1650 may settle the toner image transferred onto the print medium P with heat and pressure, and may include a heating roller 1651 for heating the print medium P with the toner image transferred thereon, and a pressing roller 1642 for pressing the print medium P with the toner image transferred thereon.
  • the image former 1600 may use the procedure of exposure-development-settlement to form an image on the print medium P while the print medium P is being fed.
  • the image processor 1200 may analyze or process the image acquired by the image acquirer 1100.
  • the image processor 1200 may analyze the image acquired by the image acquirer 1100, and determine whether the acquired image is text or pictures.
  • the image processor 1200 may analyze the image acquired by the image acquirer 1100, and determine whether the acquired image is a monochrome image e.g., only in white, black, and gray, or a color image e.g., in multiple colors.
  • the image processor 1200 may increase sharpness of the image acquired by the image acquirer 1100, or add a blurring effect onto the acquired image.
  • the image processor 1200 may include a graphic processor 1210 for performing operation to process the image acquired by the image acquirer 1100, and a graphic memory 1220 for storing a program or data related to computational operation of the graphic processor 1210.
  • the controller 1300 may control operation of the aforementioned image acquirer 1100, user interface 1400, storage 1500, and image processor 1200.
  • the controller 1300 may control the image acquirer 1100 to acquire a monochrome image or color image depending on the image acquisition type, and may control the image acquirer 1100 to adjust the document feed speed or sensor moving speed depending on the image acquisition resolution.
  • controller 1300 may control the image processor 1200 to increase sharpness of the image or add a blurring effect onto the image depending on whether the penetrated image PI is text or pictures.
  • the controller 1300 may include a control processor 1310 for performing operation to control operation of the image forming apparatus 1001, and a control memory 1320 for storing a program and data related to computational operation of the control processor 1310.
  • FIG. 29 is a flowchart illustrating an image forming method carried out by an image forming apparatus, according to an embodiment of the present disclosure.
  • An image forming method 1700 of the image acquiring apparatus 1001 is described in connection with FIG. 29 .
  • the image forming apparatus 1001 receives an instruction from the user to acquire an image on a single side of the document D, in operation 1710.
  • the user may put the document D on the input tray 1001c of the image forming apparatus 1001 with a side having an image OI to be acquired facing upward, and input an instruction to initiate image acquisition through the user interface 1400.
  • the image forming apparatus 1001 acquires a penetrated image P1 of the document D, in operation 1720.
  • the second image sensor module 1120 of the image acquirer 1100 may obtain the penetrated image P1 of the first side S1 through the second side S2.
  • the image forming apparatus 1001 then analyzes the penetrated image P1 of the document D, in operation 1730.
  • the image processor 1200 of the image forming apparatus 1001 may receive image data of the penetrated image P1 from the image acquirer 1100 and analyze the received image data of the penetrated image P1.
  • the image processor 1200 may determine whether the image of the document D is a text image or a picture image or whether the image of the document D is a monochrome image or a color image, based on analysis of the penetrated image PI.
  • the image processor 1200 may provide the result of analyzing the penetrated image PI to the controller 1300.
  • the image forming apparatus 1001 acquires an original image OI of the document D, in operation 1740.
  • the document D fed by the document feed device 1130 reaches the first image sensor module 1110, which is then able to acquire the original image OI formed on the first side S1 of the document D.
  • the controller 1300 may change settings about acquiring the original image OI depending on the result of analyzing the penetrated image PI.
  • the controller 1300 may control the image acquirer 1100 to acquire a monochrome image or color image depending on whether the penetrated image PI is a monochrome image or color image, and control the image acquirer 1100 to adjust the document feed speed or sensor moving speed depending on whether the penetrated image PI is a text image or a picture image.
  • the image forming apparatus 1001 processes the original image OI of the document D, in operation 1750.
  • the image processor 1200 of the image forming apparatus 1001 may process the original image OI received from the image acquirer 1100 in real time, to make the image viewed more clearly to the user.
  • the image processor 1200 may process the original image OI differently depending on the result of analyzing the penetrated image P1.
  • the image processor 1200 may perform image processing to increase sharpness of the image, and if the result of analyzing the penetrated image PI reveals that the original image OI includes pictures only, the image processor 1200 may perform image processing to add a blurring effect onto the image.
  • the image forming apparatus 1001 then prints an image that corresponds to the original image OI onto the print medium P, in operation 1760.
  • the image former 1600 of the image forming apparatus 1001 may receive image data that corresponds to the original image OI processed by the image processor 1200, and form an image that corresponds to the received image data onto the print medium P.
  • the light exposure module 1620 may create an electrostatic latent image by emitting light of a pattern corresponding to the original image OI; the developing module 1630 may develop the electrostatic latent image with toner; the transfer module 1640 may transfer the toner image onto the print medium P; the settlement module 1650 may settle the toner image onto the print medium P.
  • the image forming apparatus 1001 may acquire and analyze the penetrated image PI of the document D through the other side on which the original image OI is not formed, and depending on the analysis result, may change setting values about acquisition of the original image OI or change processing of the original image OI.
  • the image forming apparatus 1001 may form an image that corresponds to the original image OI onto the print medium P.
  • an image acquiring apparatus and method and image forming apparatus may be provided, which uses a plurality of image sensors to acquire clearer and more natural images in acquisition of one-side image of a document.
  • an image acquiring apparatus and method and image forming apparatus may be provided to process an image of a document based on a penetrated image seen on the rear side of the document in acquisition of one-side image of the document.
  • an image acquiring apparatus and method and image forming apparatus may be provided to allow a clear rear-side image in acquisition of one-side image of a document.

Description

    BACKGROUND 1. Field
  • The present disclosure relates to an image acquiring apparatus and method and image forming apparatus, and more particularly, to an image acquiring apparatus and method and image forming apparatus using a plurality of image sensors.
  • 1. 2. Description of the Related Art
  • Generally, an image acquiring apparatus is to acquire an image formed on the surface of a document, and as a typical example of the image acquiring apparatus, there is a scanner for acquiring and storing an image formed on the surface of a document.
  • In addition to the scanner, the image acquiring apparatus may correspond to a facsimile for acquiring an image formed on the surface of a document and transmitting the image through communication, a copying machine for acquiring an image formed on the surface of a document and printing the image onto a print medium, and even a multifunctional device capable of performing functions of the scanner, facsimile, copying machine, and printer.
  • Recently, the image acquiring apparatus has evolved to one that may not only obtain an image on a single side of a document but also obtain images on both sides of a document. To obtain such double-side images of a document, the image acquiring apparatus is equipped with a plurality of image sensors JP 2012 147382 A discloses an apparatus capable of setting optimal scanning parameters for a whole document based on an analysis of an image penetrated to the other side of the document.
  • SUMMARY
  • The present disclosure provides an image acquiring apparatus and method, and image forming apparatus, which uses a plurality of image sensors to acquire clearer and more natural images in acquisition of one-side image of a document.
  • The present disclosure also provides an image acquiring apparatus and method, and image forming apparatus, which processes an image of a document based on a penetrated image seen on the other side of the document in acquisition of one-side image of the document.
  • The present disclosure also provides an image acquiring apparatus and method, and image forming apparatus, allowing a clear rear-side image to be acquired in acquisition of one-side image of a document.
  • In accordance with an aspect of the present disclosure, an image acquiring method according to claim 11 is provided. The image acquiring method includes receiving an instruction for acquiring a first image formed on a first surface of a document; obtaining a second image shown on a second surface of the document with a second image sensor while the document is being fed, the second image being corresponding to the first image shown through the second surface; obtaining the first image formed on the first surface with a first image sensor while the document is being fed; and processing the first image obtained by the first image sensor, based on the second image obtained by the second image sensor.
  • The obtaining of the second image comprises determining whether the second image is a text image or a picture image.
  • The processing of the first image comprises sharpening the first image if the second image is the text image.
  • The processing of the first image comprises blurring the first image if the second image is the picture image.
  • The obtaining of the first image comprises increasing feed speed of the document if the second image is the text image.
  • The obtaining of the first image comprises decreasing feed speed of the document if the second image is a picture image.
  • The obtaining of the second image comprises determining whether the second image is a monochrome image or a color image.
  • The obtaining of the first image comprises changing line times of the first image sensor to mono image line times if the second image is a monochrome image.
  • The obtaining of the first image comprises changing line times of the first image sensor to color image line times if the second image is a color image.
  • The obtaining of the second image comprises changing a black shading offset for the second image sensor.
  • The obtaining of the second image comprises changing a gamma value for the second image sensor.
  • In accordance with another aspect of the present disclosure, an image acquiring apparatus according to claim 1 is provided. The image acquiring apparatus may include a user input unit configured to receive a single-side acquisition instruction for acquiring a first image formed on a first surface of a document; a document feed module configured to feed the document; a second image sensor configured to obtain a second image shown on a second surface of the document while the document is being fed, the second image being corresponding to the first image shown through the second surface; a first image sensor configured to obtain the first image formed on the first surface while the document is being fed; and a controller configured to process the first image obtained by the first image sensor, based on the second image obtained by the second image sensor.
  • The controller is configured to determine whether the second image is a text image or a picture image.
  • The controller is configured to sharpen the first image if the second image of the first side is a text image.
  • The controller is configured to blur the first image if the penetrated image of the first side is a picture image.
  • The controller is configured to increase feed speed of the document feed module if the second image is a text image.
  • The controller is configured to decrease feed speed of the document feed module if the second image is a picture image.
  • The controller is configured to determine whether the second image is a monochrome image or a color image.
  • The controller is configured to change line times of the first image sensor to mono image line times if the second image is a monochrome image.
  • The controller is configured to change line times of the first image sensor to color image line times if the second image is a color image.
  • The image acquiring apparatus may further include a reflecting member configured to reflect light emitted from the second image sensor and having penetrated the document
  • The reflecting member may include a first reflecting part and a second reflecting part, the first reflecting part having higher optical reflectivity than the second reflecting part.
  • The user input unit further receives a double-side acquisition instruction to acquire the first image formed the first surface and the second image formed the second surface, and the image acquiring apparatus may further include a reflecting member moving module configured to move the reflecting member such that the first reflecting part is aligned with the second image sensor if the single-side acquisition instruction is input, and move the reflecting member such that the second reflecting part is aligned with the second image sensor if the double-side acquisition instruction is input.
  • the user input unit further receives a double-side acquisition instruction to acquire the first image formed the first surface and the second image formed the second surface, and the image acquiring apparatus may further include a sensor moving module configured to move the first image sensor such that the first reflecting part is aligned with the second image sensor if the single-side acquisition instruction is input, and move the first image sensor such that the second reflecting part is aligned with the second image sensor if the double-side acquisition instruction is input.
  • In accordance with another aspect of the present disclosure, an image forming apparatus is provided. The image forming apparatus includes a user input unit configured to receive a single-side acquisition instruction for acquiring a first image formed on a first surface of a document; a document feed module configured to feed the document; a second image sensor configured to obtain a second image shown on a second surface of the document while the document is being fed, the second image being corresponding to the first image shown through the second surface; a first image sensor configured to obtain the first image formed on the first surface while the document is being fed; an image former configured to print the first image obtained by the first image sensor onto a print medium; and a controller configured to process the first image obtained by the first image sensor, based on the second image obtained by the second image sensor and print the processed first image on the print medium.
  • Other aspects, advantages, and salient features of the disclosure will become apparent to those skilled in the art from the following detailed description, which, taken in conjunction with the annexed drawings, discloses exemplary embodiments of the disclosure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other features and advantages of the present disclosure will become more apparent by describing in detail exemplary embodiments thereof with reference to the attached drawings in which:
    • FIG. 1 illustrates an exterior view of an image acquiring apparatus, according to an embodiment of the present disclosure;
    • FIG. 2 is a block diagram of an image acquiring apparatus, according to an embodiment of the present disclosure;
    • FIG. 3 illustrates arrangement of first and second image sensor modules included in an image acquiring apparatus, according to an embodiment of the present disclosure;
    • FIG. 4 illustrates arrangement of first and second image sensor modules included in an image acquiring apparatus, according to another embodiment of the present disclosure;
    • FIG. 5 is a flowchart illustrating an image acquiring method carried out by an image acquiring apparatus, according to an embodiment of the present disclosure;
    • FIG. 6 illustrates an image formed on a document;
    • FIG. 7 illustrates a penetrated image obtained by the image acquiring method shown in FIG. 5;
    • FIG. 8 is a flowchart illustrating an image acquiring method carried out by an image acquiring apparatus, according to another embodiment of the present disclosure;
    • FIGS. 9A and 9B illustrate changing back shading offsets according to the image acquiring method shown in FIG. 8;
    • FIGS. 10A and 10B illustrate a conventional penetrated image and histogram;
    • FIGS. 11A and 11B illustrate a penetrated image and histogram obtained by changing a black shading offset;
    • FIGS. 12A, 12B, and 12C illustrate changing gamma values according to the image acquiring method shown in FIG. 8;
    • FIG. 13 is a block diagram of an image acquiring apparatus, according to another embodiment of the present disclosure;
    • FIG. 14 illustrates a reflecting member included in an image acquiring apparatus, according to an embodiment of the present disclosure;
    • FIGS. 15 and 16 illustrate functionalities of a reflecting member included in an image acquiring apparatus, according to an embodiment of the present disclosure;
    • FIGS. 17 and 18 illustrate arrangement of a reflecting member included in an image acquiring apparatus, according to embodiments of the present disclosure;
    • FIG. 19 is a flowchart illustrating an image acquiring method carried out by an image acquiring apparatus, according to another embodiment of the present disclosure;
    • FIG. 20 is a block diagram of an image acquiring apparatus, according to another embodiment of the present disclosure;
    • FIGS. 21 and 22 illustrate arrangement of a reflecting member included in an image acquiring apparatus, according to other embodiments of the present disclosure;
    • FIGS. 23 and 24 illustrate movement of a reflecting member by a reflecting member moving module included in an image acquiring apparatus, according to an embodiment of the present disclosure;
    • FIG. 25 is a flowchart illustrating an image acquiring method carried out by an image acquiring apparatus, according to yet another embodiment of the present disclosure;
    • FIG. 26 illustrates an exterior view of an image forming apparatus, according to an embodiment of the present disclosure;
    • FIG. 27 is a block diagram of an image forming apparatus, according to an embodiment of the present disclosure;
    • FIG. 28 illustrates arrangement of first and second image sensor modules included in an image forming apparatus, according to an embodiment of the present disclosure; and
    • FIG. 29 is a flowchart illustrating an image forming method carried out by an image forming apparatus, according to an embodiment of the present disclosure.
  • Throughout the drawings, like reference numerals will be understood to refer to like parts, components, and structures.
  • DETAILED DESCRIPTION
  • Embodiments of the present disclosure will now be described with reference to accompanying drawings.
  • FIG. 1 illustrates an exterior view of an image acquiring apparatus, according to an embodiment of the present disclosure, and FIG. 2 is a block diagram of an image acquiring apparatus, according to an embodiment of the present disclosure. Furthermore, FIG. 3 illustrates arrangement of first and second image sensor modules included in an image acquiring apparatus, according to an embodiment of the present disclosure, and FIG. 4 illustrates arrangement of first and second image sensor modules included in an image acquiring apparatus, according to another embodiment of the present disclosure.
  • An image acquiring apparatus 1 acquires an image formed on the surface of a document D. The document D as herein used refers to paper, film, cloth, etc., the surface of which has an image, such as characters, pictures, etc., formed thereon.
  • As a typical example of the image acquiring apparatus 1, there is a scanner for acquiring an image formed on the surface of the document D and storing the acquired image.
  • The image acquiring apparatus 1 is not, however, limited to the scanner, but may correspond to a facsimile for acquiring an image formed on the surface of the document D and transmitting the acquired image through communication, a copying machine for acquiring an image formed on the surface of the document D and printing the acquired image onto a print medium, or the like. In addition, the image acquiring apparatus 1 may correspond to a multifunctional device that is capable of performing functions of all the scanner, facsimile, copying machine, and printer.
  • Referring to FIG. 1, the image acquiring apparatus 1 may include, in appearance, a main body 1b and a flatbed cover 1a for covering the top face of the main body 1b.
  • The main body 1b forms the exterior of the image acquiring apparatus 1, and may protect key components of the image acquiring apparatus 1, as will be described below.
  • A flatbed 1e made of a transparent material may be arranged on the top of the main body 1b to allow the image acquiring apparatus 1 to acquire an image formed on the surface of the document D, and an image sensor module 110 or 120 may be arranged below the transparent flatbed 1e to obtain the image formed on the surface of the document D.
  • The flatbed cover 1a may include an Automatic Document Feeder (ADF) to automatically feed the document D. The image sensor module 110 or 120 may be located on one side of a feed path (FP) along which the document D is fed inside the flatbed cover 1a.
  • Furthermore, the flatbed cover 1a may include an input tray 1c on which the document D is placed and an output tray 1d onto which the document D, from the surface of which an image has been acquired, is released.
  • Referring to FIG. 2, the image acquiring apparatus 1 may functionally include an image acquirer 101 for acquiring an image formed on the surface of the document D, a user interface 400 for receiving a use input from the user and indicating operational information of the image acquiring apparatus 1, a storage 500 for storing the image acquired by the image acquirer 101, an image processor 200 for analyzing and processing the image acquired by the image acquirer 101, and a controller 300 for controlling overall operation of the image acquiring apparatus 1.
  • The image acquirer 101 may include first and second image sensor modules 110 and 120 for capturing the image formed on the surface of the document D, a document feed module 130 for feeding the document D, and a sensor moving module 140 for moving the first image sensor module 110.
  • The first and second image sensor modules 110 and 120 may each capture an image formed on the document D. Furthermore, the image acquirer 101 may output image data that corresponds to the image acquired by the first and second image sensor modules 110 and 120 to the image processor 200.
  • The document D may typically have double sides, and only one side or both sides may have images formed thereon.
  • The first and second image sensor modules 110 and 120 may capture an image formed on one side of the document D and an image formed on the other side of the document D, respectively. In other words, the first and second image sensor modules 110 and 120 may capture images formed on different sides of the document D.
  • Hereinafter, one side of the document D from which the first image sensor module 110 captures an image will be called the "first side", and an image formed on the first side will be called an "image on the first side". The other side of the document D from which the second image sensor module 120 captures an image will be called the "second side".
  • However, the first and second image sensor modules 110 and 120 are not limited to obtaining images formed on the first and second sides of the document D, respectively. For example, if an image is formed on the first side of the document D, the first image sensor module 110 may capture the image on the first side, and even the second image sensor module 120 may capture the image on the first side that penetrates the document D and appears on the second side. In other words, since paper, film, cloth, etc., that makes up the document D may not completely cut off light, the second image sensor module 120 may receive light that has penetrated the document D.
  • Hereinafter, an image on the first side that the second image sensor module 120 captures on the second side will be called an "penetrated image of the first side".
  • The first and second image sensor modules 110 and 120 may each include a light transmitter that emits light to the document D and a light receiver that receives light reflected from the document D.
  • For example, the light transmitter may include a plurality of photo diodes for emitting light to the surface of the document D, and the light receiver may include a plurality of photo detectors for measuring intensity of light reflected off the surface of the document D from the image formed on the document D. Especially, the light receiver may include mono photo detectors for measuring intensity of light, and color photo detectors for measuring intensity of light of a particular wavelength.
  • An image formed on the surface of the document D is commonly a two dimensional (2D) image. To obtain such a 2D image, the plurality of photo detectors may be arrayed in 2D. Alternatively, the plurality of photo detectors may be arrayed in a line, obtaining the 2D image formed on the document D by moving themselves or by moving the document D.
  • It is assumed herein that the plurality of photo detectors included in each of the first and second image sensor modules 110 and 120 are arrayed in a line, obtaining the 2D image of the document D by moving the first and second image sensor modules 110 and 120 or by moving the document D.
  • The plurality of photo detectors arrayed in a line to obtain a line image are typically referred to as a linear image sensor. In other words, the first and second image sensor modules 110 and 120 may each include a linear image sensor.
  • Since the first and second image sensor modules 110 and 120 each include a linear image sensors, the image acquirer 101 may include a document feed module 130 for feeding the document D and a sensor moving module 140 for moving the first image sensor module 110, in order to obtain a 2D image of the document D. Features and functions of the document feed module 130 and sensor moving module 140 will be described below in detail.
  • To obtain respective images formed on different sides of the document D, the first and second image sensor modules 120 may be arranged opposite to each other with respect to a feed path (FP) of the document D.
  • For example, as shown in FIG. 3, the first image sensor module 110 may be arranged on the outer side of the feed path FP along which the document D is fed, while the second image sensor module 120 may be arranged on the inner side of the feed path FP. As a result, while the document D is being fed, the first image sensor module 110 may capture an image on the first side of the document D or a penetrated image of the second side, and the second image sensor module 120 may capture an image on the second side or a penetrated image of the first side.
  • Furthermore, the second image sensor module 120 may be situated at a higher reach than the first image sensor module 110 is with respect to a feed direction FD in which the document D is fed. As a result, the second image sensor module 120 may first capture the image on the second side of the document D or the penetrated image of the first side, and the first image sensor module 110 may then capture the image on the first side of the document D or the penetrated image of the second side.
  • However, arrangement of the first and second image sensor modules 110 and 120 is not limited to what is shown in FIG. 3.
  • For example, as shown in FIG. 4, the first image sensor module 110 may be situated at a higher reach than the second image sensor module 120 is with respect to the feed direction FD in which the document D is fed. As a result, the first image sensor module 110 may first capture the image on the first side of the document D or the penetrated image of the second side, and the second image sensor module 112 may then capture the image on the second side of the document D or the penetrated image of the first side.
  • The document feed module 130 may feed the document D put on the input tray 1c to the output tray 1d along the feed path FP. As the document D is fed by the document feed module 130, the first and second image sensor modules 120 may capture a 2D image of the document D.
  • The document feed module 130 may include a plurality of feed rollers 131 for rolling the document D and feed motors (not shown) for turning the feed roller 131. In other words, rotation of the feed motor turns the feed roller 131, which in turn feeds the document D along the feed path FP.
  • Speed of the rotation of the feed motor may be controlled by the controller 300 as will be described below, and a feed speed of the document D may vary depending on the rotation speed of the feed motor. In other words, the feed speed of the document D may be controlled by the controller 300.
  • Furthermore, the resolution of images to be obtained by the first and second image sensor modules 110 and 120 may vary depending on the feed speed of the document D. For example, as the feed speed of the document D becomes faster, the resolution of images obtained by the first and second image sensor modules 110 and 120 becomes lower; as the feed speed of the document D becomes slower, the resolution of images obtained by the first and second image sensor modules 110 and 120 becomes higher.
  • The sensor moving module 140 may move the first image sensor module 110 to obtain the 2D image on the document D. For example, if the document D is put on the flatbed 1e shown in FIG. 1, the document D remains stationary, so the first image sensor module 110 needs to be moved to obtain the 2D image on the document D. In this regard, the sensor moving module 140 may move the first image sensor module 110.
  • The sensor moving module 140 may include a guide bar 141 for guiding movement of the first image sensor module 110, and a moving motor (not shown) for moving the first image sensor module 110 along the guide bar 141. For example, as shown in FIG. 1, if the linear image sensors of the first image sensor module 110 is arranged along the x-axis, the moving motor may move the first image sensor module 110 along the y-axis.
  • Rotation speed of the moving motor may be controlled by the controller 300 as will be described below, and the moving speed of the first image sensor module 110 may vary depending on the rotation speed of the moving motor. In other words, the moving speed of the first image sensor module 110 may be controlled by the controller 300.
  • Furthermore, the resolution of an image to be obtained by the first image sensor module 110 may vary depending on the moving speed of the first image sensor module 110. For example, as the moving speed of the first image sensor module 110 becomes faster, the resolution of an image to be obtained by the first image sensor module 110 becomes lower; as the moving speed of the first image sensor module 110 becomes slower, the resolution of an image to be obtained by the first image sensor module 110 becomes higher.
  • The user interface 400 may interact with the user. For example, the user interface 400 may receive a user input from the user and indicate operation information of the image acquiring apparatus 1.
  • The user interface 400 may receive color scan settings for the image acquiring apparatus 1 to acquire an image formed on the document D as a color image in colors, mono scan settings for the image acquiring apparatus 1 to acquire an image formed on the document D as a black and white (or monochrome) image, and automatic scan settings for the image acquiring apparatus 1 to acquire an image formed on the document D as a black and withe image or a color image depending on whether the image on the document D is a monochrome image or a color image.
  • Furthermore, the user interface 400 may receive a resolution from the user for the image acquiring apparatus 1 to apply the resolution in acquiring an image formed on the document D.
  • The controller 300, which will be described below, may set an image acquisition type (mono or color) and image acquisition resolution for the image acquirer 101 based on the user input received through the user interface 400.
  • Specifically, the controller 300 may activate mono photo detectors or color photo detectors of the first and second image sensor modules 110 and 120 depending on the image acquisition type (mono or color). Furthermore, the controller 300 may control line times of the first and second image sensor modules 110 and 120 depending on the image acquisition type (mono or color). The line time refers to a time for the image sensor module 110, 120, which corresponds to a linear image sensor, to acquire a single line image, and there may be color image line times to acquire color images and mono image line times to acquire mono images.
  • The controller 300 may also control the document feed speed or sensor moving speed according to the image acquisition resolution.
  • The user interface 400 may include a plurality of buttons 410 to receive predetermined user inputs from the user, and a display 420 for displaying operation information of the image acquiring apparatus 1.
  • When pressed by the user, the plurality of buttons 410 may output a user instruction predefined for each button. The plurality of buttons 410 may include a numeric keypad for receiving predetermined numerical numbers, and an operation button to initiate or stop image acquisition operation of the image acquiring apparatus 1.
  • The display 420 may display the operation information of the image acquiring apparatus 1 in a visual manner. The display 420 may include a Liquid Crystal Display (LCD) panel, Light Emitting Diode (LED) panel, or the like, which converts electric signals to optical signals.
  • The display 420 may also include a touch screen to receive touch inputs of the user. For example, the touch screen may receive at least one touch or consecutive touches through a body part (e.g., a finger) of the user or touchable input means (e.g., a stylus pen), and convert the touch input of the user to a corresponding digital signal (e.g., in the xy coordinates) and output the digital signal to the controller 300. The touch screen may also display information corresponding to the touch input of the user.
  • The storage 500 may store a control program and control data for controlling the image acquiring apparatus 1, and various application programs and application data for performing various functions according to the user input.
  • For example, the storage 500 may store an Operating System (OS) program that manages features and resources (in software and hardware) included in the image acquiring apparatus 1, an image reproduction program that reproduces an image of the document D, an image editing program that edits the image of the document D, and a browser that accesses a Wide Area Network (WAN), such as the Internet.
  • The storage 500 may include a non-volatile memory that preserves the stored program or data even if the power is out. For example, the storage 500 may include a magnetic disc drive 510 or a semiconductor drive 520.
  • The image processor 200 may analyze or process the image acquired by the image acquirer 101.
  • For example, the image processor 200 may analyze the image acquired by the image acquirer 101, and determine whether the acquired image is text or pictures. The image processor 200 may also analyze the image acquired by the image acquirer 101, and determine whether the acquired image is a monochrome image e.g., only in white, black, and gray, or a color image e.g., in multiple colors.
  • Furthermore, the image processor 200 may perform sharpening or blurring on the image acquired by the image acquirer 101.
  • For example, for the blurring process, the image processor 200 may have the image pass through a low pass filter or a Gaussian filter.
  • For the sharpening process, the image processor 200 may have the image pass through the high pass filter. Also, for the sharpening process, the image processor 200 may detect edges of the image and combine the original image and the edge image.
  • The image processor 200 may include a graphic processor 210 for performing operation to process the image acquired by the image acquirer 101, and a graphic memory 220 for storing a program or data related to computational operation of the graphic processor 210.
  • The graphic memory 220 may include volatile memories, such as Static Random Access Memories (S-RAMs), Dynamic RAMs (D-RAMs), or the like, and non-volatile memories, such as Read Only Memories (ROMs), Erasable Programmable ROMs (EPROMs), Electrically Erasable Programmable ROMs (EEPROMs), flash memories or the like.
  • The volatile memory, a memory that loses stored data when the power is out, may temporarily store a program and data. For example, the volatile memory may temporarily store computational results of the graphic processor 210.
  • The non-volatile memory, a memory that preserves stored data even when the power is out, may semipermanently store a program and data. For example, the non-volatile memory may store a program and data for controlling computational operation of the graphic processor 210.
  • The graphic processor 210 may include an arithmetic and logic unit (ALU) for performing computations, and a memory circuit for storing data for computation or computed data.
  • The graphic processor 210 may perform operation to analyze and process the image acquired by the image acquirer 101.
  • The controller 300 may control operation of the aforementioned image acquirer 101, user interface 400, storage 500, and image processor 200.
  • For example, the controller 300 may activate mono photo detectors or color photo detectors included in the image acquirer 101 depending on the image acquisition type received through the user interface 400, and control line times. The controller 300 may also control the document feed speed or sensor moving speed according to the image acquisition resolution received through the user interface 400.
  • The controller 300 may also activate the mono photo detectors or color photo detectors included in the image acquirer 101 depending on whether the image acquired by the image acquirer 101 is a monochrome image or a color image, and control line times. The controller 300 may also control the document feed speed or sensor moving speed depending on whether the image acquired by the image acquirer 101 is text or pictures.
  • Furthermore, the controller 300 may control the image processor 200 to perform sharpening or blurring on the image depending on whether the image acquired by the image acquirer 101 is text or pictures.
  • The controller 300 may include a control processor 310 for performing operation to control operation of the image acquiring apparatus 1, and a control memory 320 for storing a program and data related to computational operation of the control processor 310.
  • The control memory 320 may include volatile memories, such as Static Random Access Memories (S-RAMs), Dynamic RAMs (D-RAMs), or the like, and non-volatile memories, such as Read Only Memories (ROMs), Erasable Programmable ROMs (EPROMs), Electrically Erasable Programmable ROMs (EEPROMs), flash memories or the like.
  • The volatile memory, a memory that loses stored data when the power is out, may temporarily store a program and data. For example, the volatile memory may temporarily store control instructions of the control processor 310.
  • The non-volatile memory, a memory that preserves stored data even when the power is out, may semipermanently store a program and data. For example, the non-volatile memory may store a program and data for the graphic processor 210 to perform control operation.
  • The control processor 310 may include an ALU for performing computation, and a memory circuit for storing data for computation or computed data.
  • The control processor 310 may perform arithmetic and logic operation for controlling operation of the image acquiring apparatus 1, and output control instructions resulting from the operation.
  • An embodiment of the features of the image acquiring apparatus 1 was described above.
  • Operation of the image acquiring apparatus 1 in the embodiment will now be described.
  • FIG. 5 is a flowchart illustrating an image acquiring method carried out by an image acquiring apparatus, according to an embodiment of the present disclosure. FIG. 6 illustrates an image formed on a document, and FIG. 7 illustrates a penetrated image obtained by the image acquiring method shown in FIG. 5.
  • An image acquiring method 600 of the image acquiring apparatus 1 is described in connection with FIGS. 5, 6, and 7.
  • The image acquiring apparatus 1 receives an instruction from the user to acquire an image on a single side of the document D, in operation 610.
  • The image acquiring apparatus 1 may receive the user input through the user interface 400. For example, the image acquiring apparatus 1 may receive image acquisition setting values, such as an image acquisition type (e.g., mono scan or color scan), image acquisition resolution, etc., as well as user instructions related to operation of the image acquiring apparatus 1, such as to initiate or stop image acquisition.
  • For example, the user may put the document D on the input tray 1c of the image acquiring apparatus 1 with a side having an image OI to be acquired facing upward, and input an instruction to initiate image acquisition through the user interface 400.
  • To help understand the present disclosure, it is assumed herein that an image is formed on the first side S1 of the document D.
  • The image acquiring apparatus 1 obtains a penetrated image PI of the document D, in operation 620.
  • Once the instruction to initiate image acquisition has been input through the user interface 400, the controller 300 may control the document feed module 130 to pick up the document D and feed the picked-up document D.
  • While the document D is being fed along the feed path FP, the image acquirer 101 may acquire the image on the first side S1 through the second side S2. In other words, the image acquirer 101 may acquire the penetrated image PI of the first side S1 from the second side S2.
  • For example, as described in connection with FIG. 3, if the second image sensor module 120 is situated at a higher reach than the first image sensor module 110 is with respect to the feed direction FD of the document D, the second image sensor module 120 may obtain the image of the document D earlier than the first image sensor module 110 does.
  • With the document D having the image OI formed on the first side S1, the second image sensor module 120, which is able to obtain an image on the second side S2 of the document D, may obtain a penetrated image of the first side S1 that is seen on the second side S2, i.e., the penetrated image PI of the first side S1.
  • For example, when the original image OI is formed on the first side S1 of the document D as shown in FIG. 6, the second image sensor module 120 may obtain the penetrated image P1 as shown in FIG. 7.
  • Comparing FIGS. 6 and 7, the penetrated image PI has more blurred parts and lower contrast ratio than the original image OI. This is because the penetrated image PI is obtained by means of the light that has penetrated the document D.
  • After obtaining the penetrated image PI of the first side S1, the image acquirer 101 may output image data of the penetrated image PI to the image processor 200.
  • The image acquiring apparatus 1 then analyzes the penetrated image PI of the document D, in operation 630.
  • The image processor 200 of the image acquiring apparatus 1 may receive the image data of the penetrated image PI from the image acquirer 101 and analyze the received image data of the penetrated image PI.
  • In this regard, the image processor 200 may receive part of the penetrated image PI from the image acquirer 101 and analyze the received part of the penetrated image PI.
  • While the image acquirer 101 is acquiring the penetrated image PI of the document D, the document feed module 130 keeps feeding the document D, allowing the image acquirer 101 to acquire the original image OI of the document D.
  • For example, as shown in FIG. 3, feeding of the document D may allow the second image sensor module 120 to obtain the penetrated image P1 of the first side S1 of the document D earlier than the first image sensor module 110 does. As the document D keeps being fed, the document D reaches the first image sensor module 110, which is then able to obtain the original image OI on the first side S1 of the document D. In other words, before the second image sensor module 120 obtains the entire penetrated image PI of the document D, the first image sensor module 110 may start obtaining the original image OI of the document D.
  • Since the image processor 200 processes the original image OI in real time based on a result of analyzing the penetrated image PI of the document D once the image acquirer 101 has obtained the original image OI of the document D, the image processor 200 may analyze the received penetrated image PI until receiving the original image OI of the document 200.
  • For example, the image processor 200 may analyze the penetrated image PI based on part (PIO) of the penetrated image PI as shown in FIG. 7.
  • The size of the partial penetrated image PIO to be analyzed by the image processor 200 may be determined based on a distance between the first and second image sensor modules 110 and 120. Specifically, the longer the distance between the first and second image sensor modules 110 and 120, the larger the size of the penetrated image PIO to be analyzed by the image processor 200; the shorter the distance between the first and second image sensor modules 110 and 120, the smaller the size of the penetrated image PIO to be analyzed by the image processor 200.
  • Furthermore, the image processor 200 may determine whether the image of the document D is a text image or a picture image or whether the image of the document D is a monochrome image or a color image, based on analysis of the penetrated image PI.
  • For example, the image processor 200 may determine whether the document D is a text image or a picture image using a character area extraction algorithm, e.g., a morphology operation algorithm.
  • Specifically, when dilation operation and erosion operation are performed on the penetrated image PI, characters, symbols, and the like are deleted. According to a difference between an image in which characters, symbols, and the like have been deleted and the penetrated image PI, pictures are deleted, leaving characters, symbols, or the like.
  • In this way, the image processor 200 may determine whether the image of the document D is a text image or a picture image.
  • The image processor 200 may also determine whether the image of the document D is a monochrome image or a color image based on a result of analyzing color information of the penetrated image PI received from the image acquirer 101.
  • The image processor 200 may provide the result of analyzing the penetrated image PI to the controller 300.
  • The image acquiring apparatus 101 acquires the original image OI of the document D, in operation 640.
  • As described above, the document D fed by the document feed device 130 reaches the first image sensor module 110, which is then able to obtain the original image OI formed on the first side S1 of the document D.
  • Before the first image sensor module 110 obtains the original image OI of the document D, the controller 300 may change settings about acquiring the original image OI depending on the result of analyzing the transmitted image PI.
  • For example, when the penetrated image PI is a color image, the controller 300 may activate color photo detectors included in the first image sensor module 110 to obtain the color image effectively. When the penetrated image PI is a monochrome image, the controller 300 may activate mono photo detectors included in the first image sensor module 110 to obtain the monochrome image effectively.
  • Again, when the penetrated image PI is a color image, the controller 300 may set the line time of the first image sensor module 110 to a color image line time; when the penetrated image PI is a monochrome image, the controller 300 may set the line time of the first image sensor module 110 to a mono image line time. The line time as herein used refers to a time for the first image sensor module 110 to obtain a single line image, and the mono image line time may be shorter than the color image line time.
  • Furthermore, if the penetrated image PI includes a picture, the controller 300 may slower the document D feed speed to acquire the picture effectively. As a result, the resolution of the original image OI acquired by the image acquirer 101 increases. If the penetrated image PI includes characters only without any picture, the controller 300 may increase the document D feed speed to reduce image acquisition time. As a result, the image acquiring apparatus 1 may quickly acquire the original image OI at a moderate resolution.
  • Once setting values about image acquisition has changed, the first image sensor module 110 may obtain the original image OI formed on the first side S1 of the document D based on the changed setting values. Furthermore, the image acquirer 101 may provide image data that corresponds to the original image OI obtained by the first image sensor modules 110 to the image processor 200.
  • The image acquirer 101 processes the original image OI of the document D, in operation 650.
  • The image processor 200 of the image acquiring apparatus 1 may process the original image OI received from the image acquirer 101 in real time, make the image viewed more clearly to the user.
  • Specifically, the image processor 200 may process the image data of the original image OI as soon as the image data is received from the image acquirer 101. Since the first image sensor module 110 of the image acquirer 101 uses the linear image sensor to obtain the original image OI of the document D, the image acquirer 101 may transmit a part of the original image OI, i.e., one line image or two or more line images that make up the original image OI to the image processor 200. Upon reception of the one line or two or more line images, the image processor 200 may immediately process the one line or two or more line images.
  • In this regard, the image processor 200 may process the original image OI differently depending on the result of analyzing the penetrated image PI.
  • For example, if the result of analyzing the penetrated image PI reveals that the original image OI includes characters or symbols only, the image processor 200 may perform a sharpening process to increase sharpness of the image in order for the user to easily recognize the characters or symbols.
  • If the result of analyzing the penetrated image PI reveals that the original image OI includes pictures only, the image processor 200 may perform image processing to add a blurring effect to the image in order for the picture to be naturally recognizable to the user.
  • Furthermore, if the result of analyzing the penetrated image PI reveals that the original image OI includes both characters and pictures, the image processor 200 may perform a sharpening process to increase sharpness of the image in the area of the characters while performing a blurring process on the area of the pictures to make the pictures natural.
  • The image acquiring apparatus 1 then stores the processed original image OI , in operation 660.
  • After completion of acquisition and process of the original image OI, the controller 300 may store image data of the processed original image OI in the storage 500. Moreover, even before completion of acquisition and process of the original image OI, the controller 300 may store image data that has already been processed in the storage 500.
  • Furthermore, the controller 300 may store the original image OI in the storage 500 in various formats. For example, the controller 300 may store the original image OI in a bitmap format, an international standard image compression format, or an international standard electronic document format.
  • As described above, to acquire an image on one side of the document D, the image acquiring apparatus 100 may acquire and analyze the penetrated image P1 of the document D through the other side on which the original image OI is not formed, and depending on the analysis result, may change setting values about acquisition of the original image OI or change processing of the original image OI.
  • As a result, the image acquiring apparatus 100 may quickly acquire a clearer and more natural image.
  • FIG. 8 is a flowchart illustrating an image acquiring method carried out by an image acquiring apparatus, according to another embodiment of the present disclosure. FIGS. 9A and 9B illustrate changing back shading offsets according to the image acquiring method shown in FIG. 8, FIGS. 10A and 10B illustrate a conventional penetrated image and histogram, FIGS. 11A and 11B illustrate a penetrated image and histogram obtained by changing black shading offsets, and FIGS. 12A, 12B, and 12C illustrate changing gamma values according to the image acquiring method shown in FIG. 8.
  • An image acquiring method 700 of the image acquiring apparatus 1 is described in connection with FIGS. 8 to 12C.
  • The image acquiring apparatus 1 receives an instruction from the user to acquire an image on a single side of the document D, in operation 710.
  • For example, the user may put the document D on the input tray 1c of the image acquiring apparatus 1 with a side having an image OI to be acquired facing upward, and input an instruction to initiate image acquisition through the user interface 400.
  • To help understand the present disclosure, it is assumed herein that an image is formed on the first side S1 of the document D.
  • The image acquiring apparatus 1 changes setting values for image acquisition, in operation 720.
  • To obtain clearer penetrated image P1, the controller 300 of the image acquiring apparatus 1 may change setting values of the first or second sensor module 110 or 120.
  • As shown in FIG. 3, when the second image sensor module 120 obtains the image on the first side S1 that is seen on the second side S2, i.e., the penetrated image PI of the first side S1, the controller 300 may change setting values about image acquisition of the second image sensor module 120.
  • For example, the controller 300 may change an offset for shading correction of the second image sensor module 120.
  • As described above, the first and second image sensor modules 110, 120 each include a linear image sensor having a plurality of photo detectors arrayed in a line.
  • The plurality of photo detectors may have optical properties, which are a little different from one another. For example, even if the plurality of photo detectors detect the same light, they each may output a signal at a different level.
  • To compensate for the different optical properties of the respective photo detectors that constitute the first and second image sensor modules 110, 120, the image acquirer 101 may perform shading correction.
  • Specifically, to compensate for the different optical properties of the plurality of photo detectors, there may be black shading offsets to compensate for minimum values of outputs of the photo detectors (outputs corresponding to a black image) and white shading offsets to compensate for maximum values of outputs of the photo detectors (outputs corresponding to a white image).
  • The image acquirer 101 may use the black shading offsets and whit shading offsets to compensate the outputs of the plurality of photo detectors, to make the outputs of the plurality of photo detectors even.
  • Specifically, the image acquirer 101 may change the black shading offsets for the second image sensor module 120 to acquire a clear penetrated image PI.
  • The penetrated image PI has an increased contrast value as compared to the original image, due to the color (white) of the document D. To decrease the contrast value, the image acquirer 101 may increase the black shading offset for the second image sensor module 120.
  • As the black shading offset value for the second image sensor module 120 increases, the penetrated image acquired by the second image sensor module 120 becomes dark as a whole.
  • For example, if the black shading offset is "0", the black color, which is the darkest in the detection range of a photo detector, is mapped to contrast value "0", and the white color, which is the brightest in the detection range of the photo detector, is mapped to contrast value "255", as shown in FIG. 9A.
  • On the other hand, if the black shading offset is "128", colors from black, which is the darkest in the detection range of a photo detector, to gray are mapped to contrast value "0", and the white color, which is the brightest in the detection range of the photo detector, is mapped to contrast value "255", as shown in FIG. 9B. In other words, if the black shading offset is "128", the image acquirer 101 may detect gray in the actual penetrated image as black.
  • As a result, with the black shading offset being "128", the image acquirer 101 may output a penetrated image that has been compensated to be darker than the actual penetrated image.
  • By compensating the penetrated image to be darker, the image acquirer 101 may acquire the penetrated image, which is clearer than the actual penetrated image.
  • For example, in a case that the second image sensor module 120 obtains a first penetrated image PI1 as shown in FIG. 10A, the brightness histogram of the penetrated image PI1 is shown as in FIG. 10B. Referring to FIG. 10B, the first penetrated image PI1 has many pixels that have high contrast values due to the color (white) of the document D itself. In other words, a high contrast area includes many pieces of image information.
  • A second penetrated image PI2 obtained by the second image sensor module 120 with the increased black shading offset is shown as in FIG. 11A. Referring to FIG. 11A, it is seen that the second penetrated image PI2 looks even clearer than the first penetrated image PI1 shown in FIG. 10A.
  • A histogram of the second penetrated image PI2 obtained by the second image sensor module 120 with the increased black shading offset is shown as in FIG. 11B. Referring to FIG. 11B, it is seen that the second penetrated image PI2 has decreased contrast values as compared to the histogram of the first penetrated image PI1.
  • In another example, the controller 300 may change a gamma value for the second image sensor module 120.
  • While a gamma value, in the display field, represents a relationship between brightness of image data input to a display device and brightness of an image displayed by the display device, a gamma value , in the image acquisition field, represents a relationship between contrast (or brightness) detected by an image sensor and contrast (or brightness) stored in image data that corresponds to an image. In other words, even for the same image, different image data may be stored depending on the gamma value of the image sensor.
  • The gamma value in the image acquisition field may be defined according to the following equation 1: L out = L in 1 / γ .
    Figure imgb0001

    where Lout denotes a ratio of output contrast to available maximum output contrast , Lin denotes a ratio of input contrast to available maximum input contrast, and γ denotes the gamma value.
  • For example, if the gamma value has "1", the image sensor may output image data having the same contrast value as in the actual image, as shown in FIG. 12A.
  • If the gamma value is less than "1", the image sensor may output image data with a dark part of the actual image shrunk and a bright part expanded, as shown in FIG. 12B.
  • If the gamma value is greater than "1", the image sensor may output image data with a dark part of the actual image expanded and a bright part shrunk, as shown in FIG. 12C.
  • Typically, the gamma value of an image sensor of an image acquiring apparatus is set to "2.2". An initial gamma value of the first and second image sensor modules 110 and 120 may also be set to "2.2".
  • At this time, the penetrated image has high contrast as a whole, due to the color (white) of the document D. That is, the penetrated image has more bright parts which include more image information.
  • Furthermore, as the gamma value of the image sensor decreases, the image sensor may obtain image data including more information of a bright area of the image, and the bright part of an image resulting from the acquired image data becomes clearer.
  • Accordingly, to make the penetrated image having more image information in the bright part clearer, the image acquirer 101 may decrease gamma values for the second image sensor modules 120. Preferably, the gamma value for the second image sensor module 120 may be set to a value less than '1'.
  • As described above, the image acquirer 101 may control the black shading offset or gamma value for the second image sensor module 120 to obtain an even clearer penetrated image.
  • The image acquiring apparatus 1 obtains a penetrated image PI of the document D, in operation 730.
  • While the document D is being fed along the feed path FP, the second image sensor module 1120 of the image acquirer 1100 may acquire the penetrated image P1 of the first side S1 through the second side S2.
  • The image acquiring apparatus 1 then analyzes the penetrated image PI of the document D, in operation 740.
  • The image processor 200 of the image acquiring apparatus 1 may receive the image data of the penetrated image PI from the image acquirer 101 and analyze the received image data of the penetrated image PI.
  • The image processor 200 may determine whether the image of the document D is a text image or a picture image or whether the image of the document D is a monochrome image or a color image, based on analysis of the penetrated image PI.
  • The image processor 200 may provide the result of analyzing the penetrated image PI to the controller 300.
  • The image acquiring apparatus 1 acquires an original image OI of the document D, in operation 750.
  • The document D fed by the document feed device 130 reaches the first image sensor module 110, which is then able to acquire the original image OI formed on the first side S1 of the document D.
  • Before the first image sensor module 110 acquires the original image OI of the document D, the controller 300 may change settings about acquiring the original image OI depending on the result of analyzing the penetrated image PI.
  • For example, the controller may control the image acquirer 101 to acquire a monochrome image or color image depending on whether the penetrated image PI is a monochrome image or color image, and control the image acquirer 101 to adjust the document feed speed or sensor moving speed depending on whether the penetrated image PI is a text image or a picture image.
  • The image acquiring apparatus 1 processes the original image OI of the document D, in operation 760.
  • The image processor 200 of the image acquiring apparatus 1 may process the original image OI received from the image acquirer 101 in real time, make the image viewed more clearly to the user.
  • In this regard, the image processor 200 may process the original image OI differently depending on the result of analyzing the penetrated image P1.
  • For example, if the result of analyzing the penetrated image PI reveals that the original image OI includes characters or symbols only, the image processor 200 may perform sharpening on the image, and if the result of analyzing the penetrated image PI reveals that the original image OI includes pictures only, the image processor 200 may perform blurring on the image.
  • The image acquiring apparatus 1 then stores the original image OI , in operation 770.
  • After completion of acquisition and process of the original image OI, the controller 300 may store image data of the processed original image OI in the storage 500. Especially, the controller 300 may store the original image OI in the storage 500 in various formats.
  • As described above, to acquire an image on one side of the document D, the image acquiring apparatus 1 may acquire and analyze the penetrated image PI of the document D through the other side on which the original image OI is not formed, and depending on the analysis result, may change setting values about acquisition of the original image OI or change processing of the original image OI.
  • To obtain clearer penetrated image PI, the image acquiring apparatus 1 may change black shading offsets or gamma values for the image sensor module to acquire the penetrated image PI.
  • FIG. 13 is a block diagram of an image acquiring apparatus, according to another embodiment of the present disclosure. FIG. 14 illustrates a reflecting member included in an image acquiring apparatus, according to an embodiment of the present disclosure, and FIGS. 15 and 16 illustrate functionalities of a reflecting member included in an image acquiring apparatus, according to an embodiment of the present disclosure. FIGS. 17 and 18 illustrate arrangement of a reflecting member included in an image acquiring apparatus, according to embodiments of the present disclosure.
  • Referring to FIG. 13, an image acquiring apparatus 2 may include an image acquirer 102 for acquiring an image formed on the surface of the document D, an image processor 200 for analyzing and processing the image acquired by the image acquirer 102, a user interface 400 for receiving a use input from the user and indicating operational information of the image acquiring apparatus 2, a storage 500 for storing the image acquired by the image acquirer 102, and a controller 300 for controlling overall operation of the image acquiring apparatus 2.
  • The image acquirer 102 may include first and second image sensor modules 110 and 120 for capturing the image formed on the document D, a document feed module 130 for feeding the document D, a sensor moving module 140 for moving the first image sensor module 110, and a reflecting member 150 for enabling a clearer penetrated image to be obtained.
  • The first and second image sensor modules 110 and 120 may each capture an image formed on the document D. Furthermore, the image acquirer 102 may output image data that corresponds to the image acquired by the first and second image sensor modules 110 and 120 to the image processor 200. The first and second image sensor modules 110 and 120 may each include a linear image sensor.
  • Since the first and second image sensor modules 110 and 120 each include the linear image sensor, the image acquirer 102 may include a document feed module 130 for feeding the document D and a sensor moving module 140 for moving the first image sensor module 110, in order to obtain a 2D image of the document D.
  • The document feed module 130 may feed the document D put on the input tray 1c to the output tray 1d along the feed path FP, and the sensor moving module 140 may move the first image sensor module 110 to obtain the 2D image of the document D.
  • The reflecting member 150 may include first and second reflecting parts 151 and 152, as shown in FIG. 14, the first reflecting part 151 having a greater optical reflectivity than that of the second reflecting part 152.
  • For example, the first reflecting part 151 may reflect a majority of incident light, and the second reflecting part 152 may absorb a majority of incident light.
  • Specifically, the first reflecting part 151 may be made of a material having a higher optical reflectivity in order for the image acquirer 102 to acquire a clearer penetrated image.
  • The first and second image sensor modules 110 and 120 may each capture an image formed on the document D by receiving light reflected from the document D.
  • Specifically, the white part of an image has a higher optical reflectivity while the black part of the image has a lower optical reflectivity. Accordingly, the first and second image sensor modules 110 and 120 may distinguish the white part from the black part in the document D by measuring the intensity of light reflected from the surface of the document D. In other words, a part having high intensity of light reflected from the surface of the document D may be determined to be in white, and a part having low intensity of light reflected from the surface of the document D may be determined to be in black. Furthermore, the image acquirer 102 may acquire an image formed on the document D by a combination of the white and black parts.
  • Even in case of obtaining the penetrated image PI of the document D, the first and second image sensor modules 110 and 120 may obtain the penetrated image PI of the document D by measuring intensity of light reflected from the document D.
  • However, in acquiring the penetrated image PI of the document D, light may be reflected from the surface of the document D, or may be penetrated a base material BM e.g., paper, of the document D and absorbed into the image formed on the document D.
  • As a result, the penetrated image PI acquired through the second side S2 is less clear than the original image formed on the first side S1.
  • The first reflecting part 151 may make the penetrated image PI acquired by the first or second image sensor module 110 or 120 clear.
  • For example, as shown in FIG. 15, if the second image sensor module 120 obtains an image I formed on the first side S1 of the document D through the second side S2, light may travel in different paths (L1, L2, L3, L4).
  • Specifically, a majority of light L1 irradiated toward the document D is reflected off the second side S2 of the document D. As a result, the penetrated image PI of the document D appears brighter than the original image does.
  • Furthermore, some light L2, L3 among the light irradiated toward the document D may penetrate the base material BM e.g., paper, of the document D and reach the first side S1 of the document D.
  • Among the light L2, L3 that has penetrated the base material BM, e.g., paper, light L2 that has reached a pigment material PM, such as ink or toner applied on the first side S1 is absorbed in the pigment material PM.
  • Like this, light L2 that has reached the pigment material PM is not reflected, so the second image sensor module 120 may recognize an area with the pigment material applied thereon to be in black.
  • However, since the second side S2 corresponding to the first side S1 with the pigment material PM applied thereon reflects light, the second image sensor module 120 may recognize the area with the pigment material PM applied thereon not to be in pure black but to be in gray with white mixed, and thus the penetrated image PI is not clear as compared with the original image.
  • Moreover, among the light L2, L3 that has penetrated the base material BM, e.g., paper, of the document D, light L3 that has reached an area with no pigment material PM applied thereon, such as ink or toner may pass through the document D intact.
  • At this time, the first reflecting part 151 of the reflecting member 150 may reflect light L3 that has penetrated the document D. Like this, light L3 reflected off the first reflecting part 151 penetrates the document D again and is received by the second image sensor 120.
  • Since the light L1 reflected off the second side S2 and the light L3 reflected off the first reflecting part 151 are combined in the area on the first side S1, on which no pigment material PM is applied, the first reflecting part 151 makes intensity of light in the area with no pigment material PM applied stronger. As a result, the area with the pigment material PM applied may appear even darker.
  • Accordingly, the first reflecting part 151 may enable the penetrated image PI obtained by the second image sensor module 120 to be clearer.
  • Furthermore, the second reflecting part 152 may be made of a material having low optical reflectivity to prevent images formed on both sides of the document from interfering with each other in acquiring images on both sides.
  • As described above, the first and second image sensor modules 110 and 120 may each capture an image formed on the document D by measuring intensity of light reflected from the document D.
  • With images formed on both sides (first and second sides) of the document D, an image on the first side may cause interference with the second image sensor module 120 obtaining an image on the second side, and the image on the second side may cause interference with the first image sensor module 110 obtaining the image on the first side.
  • The second reflecting part 152 may minimize the interferences between the images on the first and second sides.
  • For example, as shown in FIG. 16, in the case the second image sensor module 120 obtains an image I formed on the first side S1 of the document D through the second side S2, light may travel in different paths (L1, L2, L3).
  • Specifically, a majority of light L1 irradiated toward the document D is reflected off the second side S2 of the document D.
  • Furthermore, some light L2, L3 among the light irradiated toward the document D may penetrate the base material BM e.g., paper, of the document D and reach the first side S1 of the document D.
  • Among the light L2, L3 that has penetrated the base material BM, e.g., paper, light L2 that has reached a pigment material PM, such as ink or toner applied on the first side S1 is absorbed in the pigment material PM.
  • Like this, light L2 that has reached the pigment material PM is not reflected off, so the second image sensor module 120 may recognize an area on which the pigment material is applied to be in black. As a result, during acquisition of the image on the second side S2, the image on the first side S1 may be acquired.
  • Moreover, among the light L2, L3 that has penetrated the base material BM, e.g., paper, of the document D, light L3 that has reached an area with no pigment material PM applied thereon, such as ink or toner may pass through the document D intact.
  • At this time, the second reflecting part 152 of the reflecting member 150 may absorb light L3 that has penetrated the document D.
  • As a result, light L2, L3 that has penetrated the base material BM, e.g., paper, of the document D may be absorbed in the second reflecting part 152 or in the pigment material PM, and the second image sensor module 120 may only receive the light reflected from the second side S2 of the document D but may not acquire the image formed on the first side S1 of the document D.
  • Accordingly, the second reflecting part 152 may enable interference of the image on the first side S1 to be reduced in acquiring the image on the second side S2 of the document D.
  • As described above, the reflecting member 150 may make the penetrated image clear in acquiring a single-side image, and reduce interferences between images on the first and second sides in acquiring double-side images.
  • Furthermore, the reflecting member 150 may be arranged near the first image sensor module 110 that may be movable by the sensor moving module 140, as shown in FIGS. 17 and 18. Preferably, the first image sensor module 110 may be arranged at an upper reach from the second image sensor module 120 with respect to the feed direction of the document D, in order for the first image sensor module 110 to obtain the penetrated image PI of the document D.
  • The first image sensor module 110 may be moved between the first and second reflecting parts 151 and 152 of the reflecting member 150 depending on whether a single-side image is to be acquired or double-side images are to be acquired.
  • Specifically, when the user enters an instruction to acquire a single-side image, the first image sensor module 110 may be moved to the first reflecting part 151 of the reflecting member 150, as shown in FIG. 17. As a result, the first image sensor module 110 may obtain a clear penetrated image PI of the document D with the help of the first reflecting part 151.
  • When the user enters an instruction to acquire double-side images, the first image sensor module 110 may be moved to the second reflecting part 152 of the reflecting member 150, as shown in FIG. 18. As a result, the first image sensor module 110 may obtain an image on the second side S2, which is not interfered by an image on the first side S1, with the help of the second reflecting part 152.
  • The reflecting member 150 is not limited to being shaped like a bar or plate. For example, the reflecting member 150 may be shaped like a cylinder or polyprism, in which the first and second reflecting parts 151 and 152 are alternately arranged along the outer face.
  • The user interface 400 may interact with the user. For example, the user interface 400 may receive color scan settings for the image acquiring apparatus 2 to acquire an image formed on the document D as a color image, mono scan settings for the image acquiring apparatus 2 to acquire an image formed on the document D as a black and white (or monochrome) image, and automatic scan settings for the image acquiring apparatus 2 to acquire an image formed on the document D as a black and white image or color image depending on whether the image on the document D is a monochrome image or a color image. Furthermore, the user interface 400 may receive a resolution from the user for the image acquiring apparatus 2 to apply the resolution in acquiring an image formed on the document D.
  • The user interface 400 may include a plurality of buttons 410 to receive predetermined user inputs from the user, and a display 420 for displaying operation information of the image acquiring apparatus 2.
  • The storage 500 may store a control program and control data for controlling the image acquiring apparatus 2, and various application programs and application data for performing various functions according to the user input.
  • The storage 500 may include a non-volatile memory that preserves the stored program or data even if the power is out. For example, the storage 500 may include a magnetic disc drive 510 or a semiconductor drive 520.
  • The image processor 200 may analyze or process an image acquired by the image acquirer 102.
  • For example, the image processor 200 may analyze an image acquired by the image acquirer 102, and determine whether the acquired image is text or pictures. The image processor 200 may analyze the image acquired by the image acquirer 102, and determine whether the acquired image is a monochrome image e.g., only in white, black, and gray, or a color image e.g., in multiple colors.
  • Furthermore, the image processor 200 may perform sharpening or blurring on the image acquired by the image acquirer 102.
  • The image processor 200 may include a graphic processor 210 for performing operation to process the image acquired by the image acquirer 102, and a graphic memory 220 for storing a program or data related to computational operation of the graphic processor 210.
  • The controller 300 may control operation of the aforementioned image acquirer 102, user interface 400, storage 500, and image processor 200.
  • For example, the controller 300 may control the sensor moving module 140 to move the first image sensor module 110 to the first or second reflecting part 151 or 152 of the reflecting member 150 depending on whether a singe-side image is to be acquired or double-side images are to be acquired.
  • For example, the controller 300 may control the image acquirer 102 to acquire a monochrome image or color image depending on the image acquisition type, and may control the image acquirer 102 to adjust the document feed speed or sensor moving speed depending on the image acquisition resolution.
  • Furthermore, the controller 300 may control the image processor 200 to perform sharpening or blurring on the image depending on whether the penetrated image PI is text or pictures.
  • The controller 300 may include a control processor 310 for performing operation to control operation of the image acquiring apparatus 2, and a control memory 320 for storing a program and data related to computational operation of the control processor 310.
  • Another embodiment of the features of the image acquiring apparatus 2 was described above.
  • Operation of the image acquiring apparatus 2 according to the embodiment will now be described.
  • FIG. 19 is a flowchart illustrating an image acquiring method carried out by an image acquiring apparatus, according to another embodiment of the present disclosure.
  • An image acquiring method 800 of the image acquiring apparatus 2 is described in connection with FIG. 19.
  • The image acquiring apparatus 2 receives an instruction from the user to acquire an image on a single side of the document D, in operation 810.
  • For example, the user may put the document D on the input tray 1c of the image acquiring apparatus 2 with a side having an image OI to be acquired facing upward, and input an instruction to initiate image acquisition through the user interface 400.
  • To help understand the present disclosure, it is assumed in the following description that an image is formed on the second side S2 of the document D.
  • The image acquiring apparatus 2 changes the position of the movable first image sensor module 110, in operation 820.
  • As described above in connection with FIG. 17, the controller 300 of the image acquiring apparatus 2 may control the sensor moving module 140 to move the first image sensor module 110 to the first reflecting part 151 of the reflecting member 150.
  • As a result, the first image sensor module 110 may obtain a clear penetrated image PI of the document D with the help of the first reflecting part 151 of the reflecting member 150.
  • The image acquiring apparatus 2 acquires the penetrated image P1 of the document D, in operation 830.
  • While the document D is being fed along the feed path FP, the first image sensor module 110 of the image acquirer 102 may obtain the penetrated image P1 of the second side S2 through the first side S1.
  • The image acquiring apparatus 2 then analyzes the penetrated image P1 of the document D, in operation 840.
  • The image processor 200 of the image acquiring apparatus 2 may receive image data of the penetrated image P1 from the image acquirer 102 and analyze the received image data of the penetrated image P1.
  • The image processor 200 may determine whether the image of the document D is a text image or a picture image or whether the image of the document D is a monochrome image or a color image, based on analysis of the penetrated image PI.
  • The image processor 200 may provide the result of analyzing the penetrated image PI to the controller 300.
  • The image acquiring apparatus 2 acquires an original image OI of the document D, in operation 850.
  • The document fed by the document feed device 130 reaches the second image sensor module 120, which is then able to obtain the original image OI formed on the second side S2 of the document D.
  • Before the second image sensor module 120 obtains the original image OI of the document D, the controller 300 may change settings about acquiring the original image OI depending on the result of analyzing the penetrated image PI.
  • For example, the controller 300 may control the image acquirer 102 to acquire a monochrome image or color image depending on whether the transmitted image PI is a monochrome image or color image, and control the image acquirer 102 to adjust the document feed speed or sensor moving speed depending on whether the transmitted image PI is a text image or a picture image.
  • The image acquiring apparatus 2 processes the original image OI of the document D, in operation 860.
  • The image processor 200 of the image acquiring apparatus 2 may process the original image OI received from the image acquirer 102 in real time, to make the image viewed more clearly to the user.
  • In this regard, the image processor 200 may process the original image OI differently depending on the result of analyzing the penetrated image P1.
  • For example, if the result of analyzing the penetrated image PI reveals that the original image OI includes characters or symbols only, the image processor 200 may perform sharpening on the image to increase sharpness of the image, and if the result of analyzing the penetrated image PI reveals that the original image OI includes pictures only, the image processor 200 may perform blurring on the image to make the pictures look natural.
  • The image acquiring apparatus 2 then stores the processed original image OI , in operation 870.
  • After completion of acquisition and process of the original image OI, the controller 300 may store image data of the processed original image OI in the storage 500. Especially, the controller 300 may store the original image OI in the storage 500 in various formats.
  • As described above, to acquire an image on one side of the document D, the image acquiring apparatus 2 may acquire and analyze the penetrated image PI of the document D through the other side on which the original image OI is not formed, and depending on the analysis result, may change setting values about acquisition of the original image OI or change processing of the original image OI.
  • The image acquiring apparatus 2 may further include the reflecting member 150 to acquire a clear penetrated image PI.
  • FIG. 20 is a block diagram of an image acquiring apparatus, according to another embodiment of the present disclosure. FIGS. 21 and 22 illustrate arrangement of a reflecting member included in an image acquiring apparatus, according to other embodiments of the present disclosure, and FIGS. 23 and 24 illustrate movement of a reflecting member by a reflecting member movement module included in an image acquiring apparatus, according to an embodiment of the present disclosure.
  • Referring to FIG. 20, an image acquiring apparatus 3 may include an image acquirer 103 for acquiring an image formed on the surface of the document D, an image processor 200 for analyzing and processing the image acquired by the image acquirer 103, a user interface 400 for receiving a use input from the user and indicating operational information of the image acquiring apparatus 3, a storage 500 for storing the image acquired by the image acquirer 103, and a controller 300 for controlling overall operation of the image acquiring apparatus 3.
  • The image acquirer 103 may include first and second image sensor modules 110 and 120 for capturing the image formed on the document D, a document feed module 130 for feeding the document D, a sensor moving module 140 for moving the first image sensor module 110, a reflecting member 150 for enabling a clearer penetrated image to be obtained, and a reflecting member moving module 160 for moving the reflecting member 150.
  • The first and second image sensor modules 110 and 120 may each capture an image formed on the document D. Furthermore, the image acquirer 103 may output image data that corresponds to the image obtained by the first and second image sensor modules 110 and 120 to the image processor 200. The first and second image sensor modules 110 and 120 may each include a linear image sensor.
  • Since the first and second image sensor modules 110 and 120 each include the linear image sensor, the image acquirer 103 may include a document feed module 130 for feeding the document D and a sensor moving module 140 for moving the first image sensor module 110, in order to obtain a 2D image of the document D.
  • The document feed module 130 may feed the document D put on the input tray 1c to the output tray 1d along the feed path FP, and the sensor moving module 140 may move the first image sensor module 110 to obtain the 2D image of the document D.
  • The reflecting member 150 may include the first reflecting part 151 and the second reflecting part 152.
  • The first reflecting part 151 may be made of a material having high optical reflectivity in order for the image acquirer 103 to acquire a clearer penetrated image, and the second reflecting part 152 may be made of a material having low optical reflectivity to prevent images formed on both sides of the document D from interfering with each other during acquisition of images on both sides.
  • The reflecting member moving module 160 may move the reflecting member 150 back and forth according to whether a single-side image is to be acquired or double-side images are to be acquired.
  • For example, in the case of acquiring a single-side image, the reflecting member moving module 160 may move the reflecting member 150 such that the first reflecting part 151 of the reflecting member 150 is aligned with the image sensor module 110, 120 of the image acquirer 103. Furthermore, in the case of acquiring double-side images, the reflecting member moving module 160 may move the reflecting member 150 such that the second reflecting part 152 of the reflecting member 150 is aligned with the image sensor module 110, 120 of the image acquirer 103.
  • The reflecting member moving module 160 and reflecting member 150 may be situated near the first image sensor module 110 or the second image sensor module 120 depending on the arrangement of the first and second image sensor modules 110 and 120.
  • For example, as shown in FIG. 21, if the second image sensor module 120 is situated at an upper reach than the first image sensor module 110 is with respect to the feed direction FD of the document D, the reflecting member moving module 160 and reflecting member 150 may be arranged near the second image sensor module 120.
  • Furthermore, as shown in FIG. 22, if the first image sensor module 110 is situated at an upper reach than the second image sensor module 120 is with respect to the feed direction FD of the document D, the reflecting member moving module 160 and reflecting member 150 may be arranged near the first image sensor module 110.
  • As a result, the reflecting member moving module 160 and reflecting member 150 may be arranged near the image sensor module 110, 120 that is acquiring the penetrated image PI of the document D during acquisition of a single-side image.
  • The reflecting member moving module 160 may include a first moving module 161 to move the reflecting member 150 from a first position P1 to a second position P2, and a second moving module 162 to move the reflecting member 150 from the second position P2 to the first position P1.
  • For example, as shown in FIGS. 23 and 24, the first moving module 161 may include a motor, a coil, and/or the like that may use magnetic force to move the reflecting member 150 from the first position P1 to the second position P2, and the second moving module 162 may include e.g., a spring that uses electricity to return the reflecting member 150 to the first position P1.
  • Referring to FIG. 23, with the reflecting member 150 positioned in the first position P1, the second reflecting part 152 of the reflecting member 150 is aligned with the image sensor module 110, 120. That is, the reflecting member 150 in the first position P1 may minimize interferences between images on the first and second sides.
  • Furthermore, referring to FIG. 24, with the reflecting member 150 positioned in the second position P2, the first reflecting part 151 of the reflecting member 150 is aligned with the image sensor module 110, 120. That is, the reflecting member 150 in the second position P2 may enable the image sensor module 110, 120 to obtain a clear penetrated image.
  • However, the operation of the reflecting member moving module 160 is not limited to moving the reflecting member 150 back and forth. For example, if the reflecting member 150 is shaped like a cylinder or polyprism in which the first and second reflecting parts 151 and 152 are alternately arranged along the outer face, the reflecting member moving module 160 may rotate the reflecting member 150.
  • The user interface 400 may interact with the user. For example, the user interface 400 may receive color scan settings for the image acquiring apparatus 3 to acquire an image formed on the document D as a color image, mono scan settings for the image acquiring apparatus 3 to acquire an image formed on the document D as a black and white (or monochrome) image, and automatic scan settings for the image acquiring apparatus 3 to acquire an image formed on the document D as a black and white image or color image depending on whether the image on the document D is a monochrome image or a color image. Furthermore, the user interface 400 may receive a resolution from the user for the image acquiring apparatus 3 to apply the resolution in acquiring an image formed on the document D.
  • The user interface 400 may include a plurality of buttons 410 to receive predetermined user inputs from the user, and a display 420 for displaying operation information of the image acquiring apparatus 3.
  • The storage 500 may store a control program and control data for controlling the image acquiring apparatus 3, and various application programs and application data for performing various functions according to the user input.
  • The storage 500 may include a non-volatile memory that preserves the stored program or data even if the power is out. For example, the storage 500 may include a magnetic disc drive 510 or a semiconductor drive 520.
  • The image processor 200 may analyze or process an image acquired by the image acquirer 103.
  • For example, the image processor 200 may analyze an image acquired by the image acquirer 103, and determine whether the acquired image is text or pictures. The image processor 200 may analyze the image acquired by the image acquirer 103, and determine whether the acquired image is a monochrome image e.g., only in white, black, and gray, or a color image e.g., in multiple colors.
  • Furthermore, the image processor 200 may perform sharpening or blurring on the image acquired by the image acquirer 103.
  • The image processor 200 may include a graphic processor 210 for performing operation to process the image acquired by the image acquirer 103, and a graphic memory 220 for storing a program or data related to computational operation of the graphic processor 210.
  • The controller 300 may control operation of the aforementioned image acquirer 103, user interface 400, storage 500, and image processor 200.
  • For example, the controller 300 may control the reflecting member moving module 160 to move the reflecting member 150 according to whether a single-side image is to be acquired or double-side images are to be acquired.
  • For example, the controller 300 may control the image acquirer 103 to acquire a monochrome image or color image depending on the image acquisition type, and may control the image acquirer 103 to adjust the document feed speed or sensor moving speed depending on the image acquisition resolution.
  • Furthermore, the controller 300 may control the image processor 200 to perform sharpening or blurring on the image depending on whether the penetrated image PI is text or pictures.
  • The controller 300 may include a control processor 310 for performing operation to control operation of the image acquiring apparatus 3, and a control memory 320 for storing a program and data related to computational operation of the control processor 310.
  • Another embodiment of the features of the image acquiring apparatus 3 was described above.
  • Operation of the image acquiring apparatus 3 according to the embodiment will now be described.
  • FIG. 25 is a flowchart illustrating an image acquiring method carried out by an image acquiring apparatus, according to yet another embodiment of the present disclosure.
  • An image acquiring method 900 of the image acquiring apparatus 3 is described in connection with FIG. 19.
  • The image acquiring apparatus 3 receives an instruction from the user to acquire an image on a single side of the document D, in operation 910.
  • For example, the user may put the document D on the input tray 1c of the image acquiring apparatus 3 with a side having an image OI to be acquired facing upward, and input an instruction to initiate image acquisition through the user interface 400.
  • To help understand the present disclosure, it is assumed herein that an image is formed on the first side S1 of the document D.
  • The image acquiring apparatus 3 changes the position of the reflecting member 150, in operation 920.
  • As described above in connection with FIG. 24, the controller 300 of the image acquiring apparatus 3 may control the reflecting member moving module 160 such that the first reflecting part 151 of the reflecting member 150 is aligned with the second image sensor module 120.
  • As a result, the second image sensor module 120 may acquire a clear penetrated image PI of the document D with the help of the first reflecting part 151 of the reflecting member 150.
  • The image acquiring apparatus 3 acquires the penetrated image P1 of the document D, in operation 930.
  • While the document D is being fed along the feed path FP, the second image sensor module 120 of the image acquirer 103 may acquire the penetrated image P1 of the first side S1 through the second side S2.
  • The image acquiring apparatus 3 then analyzes the penetrated image P1 of the document D, in operation 940.
  • The image processor 200 of the image acquiring apparatus 3 may receive image data of the penetrated image P1 from the image acquirer 103 and analyze the received image data of the penetrated image P1.
  • The image processor 200 may determine whether the image of the document D is a text image or a picture image or whether the image of the document D is a monochrome image or a color image, based on analysis of the penetrated image PI.
  • The image processor 200 may provide the result of analyzing the penetrated image PI to the controller 300.
  • The image acquiring apparatus 3 acquires an original image OI of the document D, in operation 950.
  • The document D fed by the document feed device 130 reaches the first image sensor module 110, which is then able to acquire the original image OI formed on the first side S1 of the document D.
  • Before the first image sensor module 110 obtains the original image OI of the document D, the controller 300 may change settings about acquiring the original image OI depending on the result of analyzing the penetrated image PI.
  • For example, the controller 300 may control the image acquirer 103 to acquire a monochrome image or color image depending on whether the penetrated image PI is a monochrome image or color image, and control the image acquirer 103 to adjust the document feed speed or sensor moving speed depending on whether the penetrated image PI is a text image or a picture image.
  • The image acquiring apparatus 3 processes the original image OI of the document D, in operation 960.
  • The image processor 200 of the image acquiring apparatus 3 may process the original image OI received from the image acquirer 101 in real time, to make the image viewed more clearly to the user.
  • In this regard, the image processor 200 may process the original image OI differently depending on the result of analyzing the penetrated image P1.
  • For example, if the result of analyzing the penetrated image PI reveals that the original image OI includes characters or symbols only, the image processor 200 may perform sharpening on the image to increase sharpness of the image, and if the result of analyzing the penetrated image PI reveals that the original image OI includes pictures only, the image processor 200 may perform blurring on the image to make the pictures look natural.
  • The image acquiring apparatus 3 then stores the processed original image OI, in operation 970.
  • After completion of acquisition and process of the original image OI, the controller 300 may store image data of the processed original image OI in the storage 500. Especially, the controller 300 may store the original image OI in the storage 500 in various formats.
  • As described above, to acquire an image on one side of the document D, the image acquiring apparatus 3 may acquire and analyze the penetrated image PI of the document D through the other side on which the original image OI is not formed, and depending on the analysis result, may change setting values about acquisition of the original image OI or change processing of the original image OI.
  • Furthermore, the image acquiring apparatus 3 may include the reflecting member 150 to obtain a clearer penetrated image PI, and the reflecting member moving module 160 to move the reflecting member 150.
  • It was described above that the image acquiring apparatus may include a plurality of image sensor modules to obtain an image on one side of a document.
  • In the following, an image forming apparatus that includes a plurality of image sensor modules to obtain an image on one side of a document and print the acquired image onto a print medium will be described.
  • FIG. 26 illustrates an exterior view of an image forming apparatus, according to an embodiment of the present disclosure, and FIG. 27 is a block diagram of an image forming apparatus, according to an embodiment of the present disclosure. Furthermore, FIG. 28 illustrates arrangement of first and second image sensor modules included in an image forming apparatus, according to an embodiment of the present disclosure.
  • The image forming apparatus 1001 may acquire an image formed on the surface of a document D, and form the acquired image onto a print medium P. The document D as herein used refers to paper, film, cloth, etc., the surface of which has an image formed thereon, such as characters, pictures, etc., and the print medium P refers to paper, film, cloth, etc., into which an image such as characters, pictures, etc., may be formed.
  • As a typical example of the image forming apparatus 1001, there is a copying machine for acquiring an image formed on the surface of the document D and printing out the acquired image.
  • However, the image forming apparatus 1001 is not limited to the copying machine, and may correspond to a multifunctional device that acquires an image formed on the surface of the document D and stores, transmits, or prints out the acquired image.
  • Referring to FIG. 26, the image forming apparatus 1 may include, in appearance, a main body 1001b and a flatbed cover 1001a for covering the top face of the main body 1001b.
  • The main body 1001b forms the exterior of the image forming apparatus 1001, and may protect key components of the image forming apparatus 1001, as will be described below.
  • A flatbed 1001e made of a transparent material may be arranged on the top of the main body 1001b to allow the image forming apparatus 1001 to acquire an image formed on the surface of the document D, and an image sensor module 1110 or 1120 may be arranged below the transparent flatbed 1001e to capture the image formed on the surface of the document D.
  • There may also be a paper box 1001f located in the bottom part of the main body 1001b for containing the print medium P, and an output tray 1001g onto which the print medium P with an image formed thereon comes out.
  • The flatbed cover 1001a may include an ADF to automatically feed the document D. The image sensor module 1110 or 1120 may be located on one side of a feed path (FP) along which the document D is fed.
  • Furthermore, the flatbed cover 1001a may include an input tray 1001c on which the document D is placed and an output tray 1001d onto which the document D, from the surface of which an image has been acquired, is released.
  • Referring to FIG. 27, the image forming apparatus 1001 may functionally include an image acquirer 1100 for acquiring an image formed on the surface of the document D, a user interface 1400 for receiving a use input from the user and indicating operational information of the image forming apparatus 1001, a storage 1500 for storing the image acquired by the image acquirer 1100, an image former 1600 for forming an image onto the print medium P, an image processor 1200 for analyzing and processing the image acquired by the image acquirer 1100, and a controller 1300 for controlling overall operation of the image forming apparatus 1001.
  • The image acquirer 1100 may include first and second image sensor modules 1110 and 1120 for capturing the image formed on the surface of the document D, a document feed module 1130 for feeding the document D, and a sensor moving module 1140 for moving the first image sensor module 1110.
  • The first and second image sensor modules 1110 and 1120 may each capture an image formed on the document D. Furthermore, the image acquirer 1100 may output image data that corresponds to the image captured by the first and second image sensor modules 1110 and 1120 to the image processor 1200. The first and second image sensor modules 1110 and 1120 may each include a linear image sensor.
  • Since the first and second image sensor modules 1110 and 1120 each include the linear image sensor, the image acquirer 1100 may include a document feed module 1130 for feeding the document D and a sensor moving module 1140 for moving the first image sensor module 1110, in order to obtain a 2D image of the document D.
  • The document feed module 1130 may feed the document D put on the input tray 1001c to the output tray 1001d along the feed path FP, and the sensor moving module 1140 may move the first image sensor module 1110 to obtain the 2D image of the document D.
  • The user interface 1400 may interact with the user. For example, the user interface 1400 may receive color scan settings for the image forming apparatus 1001 to acquire an image formed on the document D as a color image, mono scan settings for the image forming apparatus 1001 to acquire an image formed on the document D as a black and white (or monochrome) image, and automatic scan settings for the image forming apparatus 1001 to acquire an image formed on the document D as a black and white image or a color image depending on whether the image on the document D is a monochrome image or a color image. Furthermore, the user interface 1400 may receive a resolution from the user for the image forming apparatus 1001 to apply the resolution in acquiring an image formed on the document D.
  • The user interface 1400 may include a plurality of buttons 1410 to receive predetermined user inputs from the user, and a display 1420 for displaying operation information of the image forming apparatus 1001.
  • The storage 1500 may store a control program and control data for controlling the image forming apparatus 1001, and various application programs and application data for performing various functions according to the user input.
  • The storage 1500 may include a non-volatile memory that preserves the stored program or data even if the power is out. For example, the storage 1500 may include a magnetic disc drive 1510 or a semiconductor drive 1520.
  • The image former 1600 may form an image onto the print medium P based on the image data. The image former 1600 may pick up the print medium P contained in the paper box 1001f, form an image on the picked-up print medium P, and release the print medium P on which the image has been formed onto the output tray 1001e.
  • The image former 1600 may include a feeding module 1610, a light exposure module 1620, a developing module 1630, a transfer module 1640, and a settlement module 1650.
  • The feeding module 1610 may pick up the print medium P in the paper box 100f and feed the picked-up print medium P to the output tray 1001e via the transfer module 1640 and settlement module 1650.
  • The light exposure module 1620 emits light of a pattern that corresponds to an image on the document D acquired by the image acquirer 1100. The light exposure module 1620 may include a Laser Scanning Unit (LSU) or LED Print Head (LPH).
  • An electrostatic latent image may be formed by the light emitted by the light exposure module 1620 on the outer circumferential face of a photosensitive drum 1631 of the developing module 1630, which will be described below.
  • The developing module 1630 develops the electrostatic latent image formed by the light exposure module 1620 with toner.
  • The developing module 1630 may include a first developing module 1630K for developing the electrostatic latent image with black toner, a second developing module 1630C for developing the electrostatic latent image with cyan toner, a third developing module 1630M for developing the electrostatic latent image with magenta toner, and a fourth developing module 1630Y for developing the electrostatic latent image with yellow toner.
  • The first developing module 1630K may include the photosensitive drum 1631 on which an electrostatic latent image is formed by light, a charging roller 1632 for charging the outer circumferential face of the photosensitive drum 1631 with electricity, and a developing roller 1633 for developing the electrostatic latent image with toner on a transfer belt 1641, which will be described below. Features of the second, third, and fourth developing modules 1630C, 1630M, and 1630Y are identical to that of the first developing module 1630K.
  • The transfer module 1640 may transfer (or copy) a toner image onto the print medium P fed by the feeding module 1610, and include the transfer belt 1641 for transferring the toner image of the photosensitive drum 1631 onto the print medium P.
  • The settlement module 1650 may settle the toner image transferred onto the print medium P with heat and pressure, and may include a heating roller 1651 for heating the print medium P with the toner image transferred thereon, and a pressing roller 1642 for pressing the print medium P with the toner image transferred thereon.
  • The image former 1600 may use the procedure of exposure-development-settlement to form an image on the print medium P while the print medium P is being fed.
  • The image processor 1200 may analyze or process the image acquired by the image acquirer 1100.
  • For example, the image processor 1200 may analyze the image acquired by the image acquirer 1100, and determine whether the acquired image is text or pictures. The image processor 1200 may analyze the image acquired by the image acquirer 1100, and determine whether the acquired image is a monochrome image e.g., only in white, black, and gray, or a color image e.g., in multiple colors.
  • Furthermore, the image processor 1200 may increase sharpness of the image acquired by the image acquirer 1100, or add a blurring effect onto the acquired image.
  • The image processor 1200 may include a graphic processor 1210 for performing operation to process the image acquired by the image acquirer 1100, and a graphic memory 1220 for storing a program or data related to computational operation of the graphic processor 1210.
  • The controller 1300 may control operation of the aforementioned image acquirer 1100, user interface 1400, storage 1500, and image processor 1200.
  • For example, the controller 1300 may control the image acquirer 1100 to acquire a monochrome image or color image depending on the image acquisition type, and may control the image acquirer 1100 to adjust the document feed speed or sensor moving speed depending on the image acquisition resolution.
  • Furthermore, the controller 1300 may control the image processor 1200 to increase sharpness of the image or add a blurring effect onto the image depending on whether the penetrated image PI is text or pictures.
  • The controller 1300 may include a control processor 1310 for performing operation to control operation of the image forming apparatus 1001, and a control memory 1320 for storing a program and data related to computational operation of the control processor 1310.
  • Another embodiment of the features of the image forming apparatus 1001 was described above.
  • Operation of the image acquiring apparatus 1001 according to the embodiment will now be described.
  • FIG. 29 is a flowchart illustrating an image forming method carried out by an image forming apparatus, according to an embodiment of the present disclosure.
  • An image forming method 1700 of the image acquiring apparatus 1001 is described in connection with FIG. 29.
  • The image forming apparatus 1001 receives an instruction from the user to acquire an image on a single side of the document D, in operation 1710.
  • For example, the user may put the document D on the input tray 1001c of the image forming apparatus 1001 with a side having an image OI to be acquired facing upward, and input an instruction to initiate image acquisition through the user interface 1400.
  • To help understand the present disclosure, it is assumed herein that an image is formed on the first side S1 of the document D.
  • The image forming apparatus 1001 acquires a penetrated image P1 of the document D, in operation 1720.
  • While the document D is being fed along the feed path FP, the second image sensor module 1120 of the image acquirer 1100 may obtain the penetrated image P1 of the first side S1 through the second side S2.
  • The image forming apparatus 1001 then analyzes the penetrated image P1 of the document D, in operation 1730.
  • The image processor 1200 of the image forming apparatus 1001 may receive image data of the penetrated image P1 from the image acquirer 1100 and analyze the received image data of the penetrated image P1.
  • The image processor 1200 may determine whether the image of the document D is a text image or a picture image or whether the image of the document D is a monochrome image or a color image, based on analysis of the penetrated image PI.
  • The image processor 1200 may provide the result of analyzing the penetrated image PI to the controller 1300.
  • The image forming apparatus 1001 acquires an original image OI of the document D, in operation 1740.
  • The document D fed by the document feed device 1130 reaches the first image sensor module 1110, which is then able to acquire the original image OI formed on the first side S1 of the document D.
  • Before the first image sensor module 1110 obtains the original image OI of the document D, the controller 1300 may change settings about acquiring the original image OI depending on the result of analyzing the penetrated image PI.
  • For example, the controller 1300 may control the image acquirer 1100 to acquire a monochrome image or color image depending on whether the penetrated image PI is a monochrome image or color image, and control the image acquirer 1100 to adjust the document feed speed or sensor moving speed depending on whether the penetrated image PI is a text image or a picture image.
  • The image forming apparatus 1001 processes the original image OI of the document D, in operation 1750.
  • The image processor 1200 of the image forming apparatus 1001 may process the original image OI received from the image acquirer 1100 in real time, to make the image viewed more clearly to the user.
  • In this regard, the image processor 1200 may process the original image OI differently depending on the result of analyzing the penetrated image P1.
  • For example, if the result of analyzing the penetrated image PI reveals that the original image OI includes characters or symbols only, the image processor 1200 may perform image processing to increase sharpness of the image, and if the result of analyzing the penetrated image PI reveals that the original image OI includes pictures only, the image processor 1200 may perform image processing to add a blurring effect onto the image.
  • The image forming apparatus 1001 then prints an image that corresponds to the original image OI onto the print medium P, in operation 1760.
  • The image former 1600 of the image forming apparatus 1001 may receive image data that corresponds to the original image OI processed by the image processor 1200, and form an image that corresponds to the received image data onto the print medium P.
  • Specifically, the light exposure module 1620 may create an electrostatic latent image by emitting light of a pattern corresponding to the original image OI; the developing module 1630 may develop the electrostatic latent image with toner; the transfer module 1640 may transfer the toner image onto the print medium P; the settlement module 1650 may settle the toner image onto the print medium P.
  • As described above, to acquire an image on one side of the document D, the image forming apparatus 1001 may acquire and analyze the penetrated image PI of the document D through the other side on which the original image OI is not formed, and depending on the analysis result, may change setting values about acquisition of the original image OI or change processing of the original image OI.
  • Furthermore, the image forming apparatus 1001 may form an image that corresponds to the original image OI onto the print medium P.
  • According to an embodiment of the present disclosure, an image acquiring apparatus and method and image forming apparatus may be provided, which uses a plurality of image sensors to acquire clearer and more natural images in acquisition of one-side image of a document.
  • According to another embodiment of the present disclosure, an image acquiring apparatus and method and image forming apparatus may be provided to process an image of a document based on a penetrated image seen on the rear side of the document in acquisition of one-side image of the document.
  • According to yet another embodiment of the present disclosure, an image acquiring apparatus and method and image forming apparatus may be provided to allow a clear rear-side image in acquisition of one-side image of a document.
  • Several embodiments have been described, but a person of ordinary skill in the art will understand and appreciate that various modifications can be made without departing the scope of the present disclosure. Thus, it will be apparent to those ordinary skilled in the art that the disclosure is not limited to the embodiments described, which have been provided only for illustrative purposes.

Claims (13)

  1. An image acquiring apparatus comprising:
    a user input unit configured to receive a single-surface acquisition instruction for acquiring a first image formed on a first surface of a document;
    a document feed module configured to feed the document;
    a second image sensor configured to obtain a second image shown on a second surface of the document while the document is being fed, the second image corresponding to a penetrated image of the first image which is shown through the second surface of the document in response to penetration of a light through the document; and
    a first image sensor configured to obtain the first image formed on the first surface while the document is being fed;
    characterised by comprising a controller configured to perform an image process on the first image obtained by the first image sensor, based on the second image obtained by the second image sensor,
    wherein the controller is configured to determine whether the second image is a text image, a picture image or an image comprising both text and pictures; and
    if the controller determines the second image is the image comprising both text and pictures, the controller is configured to:
    sharpen the first image in an area of the text, and
    blur the first image in an area of the pictures.
  2. The image acquiring apparatus of claim 1, wherein the controller is configured to perform the image process including sharpening the first image if the second image of the first surface is a text image.
  3. The image acquiring apparatus of claim 1, wherein the controller is configured to perform the image process including blurring the first image if the second image of the first surface is a picture image.
  4. The image acquiring apparatus of claim 1, wherein the controller is configured to determine whether the second image is a monochrome image or a color image.
  5. The image acquiring apparatus of claim 4, wherein the controller is configured to change line times of the first image sensor to mono image line times if the second image is a monochrome image.
  6. The image acquiring apparatus of claim 4, wherein the controller is configured to change line times of the first image sensor to color image line times if the second image is a color image.
  7. The image acquiring apparatus of any one of claims 1 to 6, further comprising: a reflecting member configured to reflect the light, which is emitted from the second image sensor and having penetrated the document.
  8. The image acquiring apparatus of claim 9, wherein the reflecting member comprises a first reflecting part and a second reflecting part, the first reflecting part having higher optical reflectivity than the second reflecting part.
  9. The image acquiring apparatus of claim 8, wherein the user input unit further receives a double-surface acquisition instruction to acquire the first image formed the first surface and the second image formed the second surface,
    further comprising a reflecting member moving module configured to:
    move the reflecting member such that the first reflecting part is aligned with the second image sensor if the single-surface acquisition instruction is input, and
    move the reflecting member such that the second reflecting part is aligned with the second image sensor if the double-surface acquisition instruction is input.
  10. The image acquiring apparatus of claim 8, wherein the user input unit further receives a double-surface acquisition instruction to acquire the first image formed the first surface and the second image formed the second surface,
    further comprising a sensor moving module configured to:
    move the first image sensor such that the first reflecting part is aligned with the second image sensor if the single-surface acquisition instruction is input, and
    move the first image sensor such that the second reflecting part is aligned with the second image sensor if the double-surface acquisition instruction is input.
  11. An image acquiring method comprising:
    receiving an instruction for acquiring a first image formed on a first surface of a document;
    obtaining a second image shown on a second surface of the document with a second image sensor while the document is being fed, the second image corresponding to a penetrated image of the first image which is shown through the second surface of the document in response to penetration of a light through the document; and
    obtaining the first image formed on the first surface with a first image sensor while the document is being fed;
    characterised by image processing the first image obtained by the first image sensor, based on the second image obtained by the second image sensor, wherein the obtaining of the second image comprises
    determining whether the second image is a text image, a picture image or an image comprising both text and pictures; and
    if it is determined that the second image is the image comprising both text and pictures, sharpening the first image in an area of the text, and blurring the first image in an area of the pictures.
  12. The image acquiring method of claim 11, wherein the image processing of the first image comprises
    sharpening the first image if the second image is the text image.
  13. The image acquiring method of claim 11, wherein the image processing of the first image comprises
    blurring the first image if the second image is the picture image.
EP16165798.6A 2015-10-06 2016-04-18 Image acquiring apparatus and method and image forming apparatus Active EP3154250B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150140392A KR20170040997A (en) 2015-10-06 2015-10-06 Image acquiring apparatus, image acquiring method and image forming apparatus

Publications (2)

Publication Number Publication Date
EP3154250A1 EP3154250A1 (en) 2017-04-12
EP3154250B1 true EP3154250B1 (en) 2019-02-20

Family

ID=55963147

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16165798.6A Active EP3154250B1 (en) 2015-10-06 2016-04-18 Image acquiring apparatus and method and image forming apparatus

Country Status (3)

Country Link
US (1) US10484567B2 (en)
EP (1) EP3154250B1 (en)
KR (1) KR20170040997A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180041402A (en) * 2016-10-14 2018-04-24 에스프린팅솔루션 주식회사 Image scanning apparatus and method for controlling scan

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4212545B2 (en) 2004-11-12 2009-01-21 シャープ株式会社 Image processing apparatus, image processing method, image processing program, and computer-readable recording medium recorded with the same
US7620360B2 (en) * 2005-05-20 2009-11-17 Lexmark International, Inc. Method for reducing show-through in a scanned duplexed document
JP4620025B2 (en) * 2005-11-29 2011-01-26 株式会社リコー Image reading apparatus, information processing apparatus, and program
KR100888600B1 (en) * 2007-04-03 2009-03-16 삼성전자주식회사 Method and apparatus for removing show-through in scanned image
KR101164814B1 (en) 2007-06-26 2012-07-12 삼성전자주식회사 Scanning apparatus and multi-function printing apparatus having the same
JP2010074342A (en) 2008-09-17 2010-04-02 Fuji Xerox Co Ltd Image processing apparatus, image forming apparatus, and program
KR101282258B1 (en) 2008-09-25 2013-07-10 삼성전자주식회사 Scanner, method for compensating image of the same and image forming apparatus employing the scanner
JP2010199978A (en) 2009-02-25 2010-09-09 Brother Ind Ltd Image reader, image reading control method, and image reading control program
KR20120079333A (en) * 2011-01-04 2012-07-12 삼성전자주식회사 Image reading apparatus and controlling method thereof
JP2012147382A (en) 2011-01-14 2012-08-02 Brother Ind Ltd Image reading apparatus and image forming apparatus
JP5971034B2 (en) * 2011-10-13 2016-08-17 株式会社リコー Image inspection apparatus, image forming apparatus, image inspection method, and program
JP2013115728A (en) * 2011-11-30 2013-06-10 Canon Inc Image processing apparatus, image processing method, and program
JP2015181218A (en) 2014-01-24 2015-10-15 船井電機株式会社 Image scanning device and image scanning method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US10484567B2 (en) 2019-11-19
US20170099407A1 (en) 2017-04-06
KR20170040997A (en) 2017-04-14
EP3154250A1 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
US10194051B2 (en) Device for detecting amount of skew in document and image processing apparatus
JP6537699B2 (en) Image reading apparatus, control method and control program
US20180309895A1 (en) Image reading apparatus and original size detection method
US11457116B2 (en) Image processing apparatus and image reading method
US20190149701A1 (en) Reading apparatus, image processing program, and image production method
US20180198953A1 (en) Image reading apparatus, image forming apparatus, and method for generating image data
EP3154250B1 (en) Image acquiring apparatus and method and image forming apparatus
GB2459675A (en) Double sided substrate scanning
US9473670B2 (en) Peripheral with image processing function
US8822908B2 (en) Image scanner, image forming apparatus and dew-condensation determination method
US11457121B2 (en) Reading device, image forming apparatus, and color mixture prevention method
US20070159655A1 (en) Method and apparatus for compensating two-dimensional images for illumination non-uniformities
JP2017059879A (en) Image reader and image formation apparatus
US10068507B2 (en) Visible image forming apparatus and image forming apparatus
JP7136225B2 (en) Image reading device, image reading device control method
US10897554B2 (en) System and method for correctly detecting a printing area
JP2019057779A (en) Image forming device
JP2015061211A (en) Processing device
JP2021193780A (en) Image reader, image reading method and image reading program
US11870960B2 (en) Image processing system
US10289367B2 (en) Image forming apparatus
US10936923B2 (en) Image forming apparatus that degrades visibility of printed side of used paper
US9363397B2 (en) Image reading device and image forming apparatus
JP6850149B2 (en) Image information reader, multifunction device, image information reading method and program
JP2021111819A (en) Image reading device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170407

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171005

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HP PRINTING KOREA CO., LTD.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181107

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016009999

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1099752

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190620

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190620

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190520

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190521

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1099752

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016009999

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602016009999

Country of ref document: DE

Representative=s name: SCHOPPE, ZIMMERMANN, STOECKELER, ZINKLER, SCHE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602016009999

Country of ref document: DE

Owner name: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P., SPR, US

Free format text: FORMER OWNER: HP PRINTING KOREA CO., LTD., SUWON-SI, GYEONGGI-DO, KR

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190418

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

26N No opposition filed

Effective date: 20191121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190418

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20200917 AND 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230321

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230321

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230321

Year of fee payment: 8