EP3153425B1 - Flexible box bag comprising detergent powder and a scoop - Google Patents

Flexible box bag comprising detergent powder and a scoop Download PDF

Info

Publication number
EP3153425B1
EP3153425B1 EP16154525.6A EP16154525A EP3153425B1 EP 3153425 B1 EP3153425 B1 EP 3153425B1 EP 16154525 A EP16154525 A EP 16154525A EP 3153425 B1 EP3153425 B1 EP 3153425B1
Authority
EP
European Patent Office
Prior art keywords
panel
edge
detergent
product according
detergent product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16154525.6A
Other languages
German (de)
French (fr)
Other versions
EP3153425A1 (en
Inventor
Dominique GEERAERT
Moustafa ELMIHY
Neil John Rogers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to US15/286,686 priority Critical patent/US20170096250A1/en
Priority to PCT/US2016/055661 priority patent/WO2017062560A1/en
Publication of EP3153425A1 publication Critical patent/EP3153425A1/en
Application granted granted Critical
Publication of EP3153425B1 publication Critical patent/EP3153425B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/52Details
    • B65D75/54Cards, coupons, or other inserts or accessories
    • B65D75/56Handles or other suspension means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D5/00Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
    • B65D5/20Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper by folding-up portions connected to a central panel from all sides to form a container body, e.g. of tray-like form
    • B65D5/24Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper by folding-up portions connected to a central panel from all sides to form a container body, e.g. of tray-like form with adjacent sides interconnected by gusset folds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D31/00Bags or like containers made of paper and having structural provision for thickness of contents
    • B65D31/10Bags or like containers made of paper and having structural provision for thickness of contents with gusseted sides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D5/00Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
    • B65D5/42Details of containers or of foldable or erectable container blanks
    • B65D5/4204Inspection openings or windows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D5/00Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
    • B65D5/42Details of containers or of foldable or erectable container blanks
    • B65D5/4208Means facilitating suspending, lifting, handling, or the like of containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D5/00Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
    • B65D5/42Details of containers or of foldable or erectable container blanks
    • B65D5/4279Joints, seams, leakproof joints or corners, special connections between panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D5/00Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
    • B65D5/42Details of containers or of foldable or erectable container blanks
    • B65D5/54Lines of weakness to facilitate opening of container or dividing it into separate parts by cutting or tearing
    • B65D5/5405Lines of weakness to facilitate opening of container or dividing it into separate parts by cutting or tearing for opening containers formed by erecting a blank in tubular form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/52Details
    • B65D75/58Opening or contents-removing devices added or incorporated during package manufacture
    • B65D75/5827Tear-lines provided in a wall portion
    • B65D75/5833Tear-lines provided in a wall portion for tearing out a portion of the wall
    • B65D75/5838Tear-lines provided in a wall portion for tearing out a portion of the wall combined with separate fixed tearing means, e.g. tabs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D77/00Packages formed by enclosing articles or materials in preformed containers, e.g. boxes, cartons, sacks or bags
    • B65D77/22Details
    • B65D77/24Inserts or accessories added or incorporated during filling of containers
    • B65D77/245Utensils for removing the contents from the package, e.g. spoons, forks, spatulas
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/046Insoluble free body dispenser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31BMAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31B2150/00Flexible containers made from sheets or blanks, e.g. from flattened tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31BMAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31B2150/00Flexible containers made from sheets or blanks, e.g. from flattened tubes
    • B31B2150/001Flexible containers made from sheets or blanks, e.g. from flattened tubes with square or cross bottom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B1/00Packaging fluent solid material, e.g. powders, granular or loose fibrous material, loose masses of small articles, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
    • B65B1/02Machines characterised by the incorporation of means for making the containers or receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B61/00Auxiliary devices, not otherwise provided for, for operating on sheets, blanks, webs, binding material, containers or packages
    • B65B61/20Auxiliary devices, not otherwise provided for, for operating on sheets, blanks, webs, binding material, containers or packages for adding cards, coupons or other inserts to package contents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2575/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes or webs of flexible sheet material, e.g. in folded wrappers
    • B65D2575/52Details
    • B65D2575/58Opening or contents-removing devices added or incorporated during package manufacture
    • B65D2575/586Opening or contents-removing devices added or incorporated during package manufacture with means for reclosing

Definitions

  • the present invention relates to a detergent product comprising a flexible box bag, laundry detergent powder and a scoop.
  • the flexible box bag comprises a two dimensional opening means that is capable of forming a two dimensional planar opening, which when combined with the other box bag features provide easier access to the internal volume for the consumer to scoop and dose laundry detergent powder from the flexible box bag during the laundering process.
  • Packaging for detergent powder, especially laundry detergent powder typically comes in the form of a flexible bag or a more rigid box.
  • Flexible bags have the advantage of being more easily handled by the consumer during the laundering process, and are also more efficient in terms of transport and storage.
  • the rigid box have the advantage of being easier to dose laundry powder from during the laundering process, especially when using a scoop.
  • rigid boxes have greater shelf impression to the consumer. Detergent manufacturers continue to seek flexible bags having the ease of handling, and transport and storage efficiency, but also having a good shelf impression of a box, and being easy to scoop and dose laundry powder from during the laundering process.
  • the Inventors provide a flexible box bag that overcomes these problems.
  • EP 1 508 531 relates to a flexible box bag comprising six rectangular panels: top panel, bottom panel, front panel, back panel and two side panels, wherein each of the top panel and bottom panel comprise a front horizontal edge, a back edge and two side edges, wherein each of the front panel, back panel and two side panels comprise a top edge, a bottom edge, and two side edges, and the top panel comprises a two dimensional opening means that is capable of forming a two dimensional planar opening.
  • the present invention relates to a detergent product comprising a flexible box bag, detergent powder and a scoop
  • the flexible box bag comprises six rectangular panels: top panel, bottom panel, front panel, back panel and two side panels, wherein the six rectangular panels are joined together so as to form an inner cuboidal volume inside the flexible box bag
  • each of the top panel and bottom panel comprise a front horizontal edge, a back edge and two side edges
  • each of the front panel, back panel and two side panels comprise a top edge, a bottom edge, and two side edges
  • the length of the two side edges of back panel are longer than the length of the two side edges of the front panel
  • the front edge of the top panel joins the top edge of the front panel
  • the back edge of the top panel joins the top edge of the back panel
  • the front edge of the bottom panel joins the bottom edge of the front panel
  • the back edge of the bottom panel joins the bottom edge of the back panel
  • the side edges of the top panel join the top edges of the side panels and part
  • the detergent product comprises a flexible box bag, detergent powder and a scoop.
  • the flexible box bag, detergent powder, and scoop are described in more detail below.
  • the flexible box bag comprises six rectangular panels: top panel, bottom panel, front panel, back panel and two side panels.
  • the six rectangular panels are joined together so as to form an inner cuboidal volume inside the flexible box bag.
  • the cuboidal volume is a cuboid. Suitable cuboids include square cuboids and rectangular cuboids.
  • the cuboidal volume is a rectangular cuboidal volume.
  • Each of the top panel and bottom panel comprise a front horizontal edge, a back edge and two side edges.
  • Each of the front panel, back panel and two side panels comprise a top edge, a bottom edge, and two side edges. The length of the two side edges of back panel are longer than the length of the two side edges of the front panel.
  • the front edge of the top panel joins the top edge of the front panel.
  • the back edge of the top panel joins the top edge of the back panel.
  • the front edge of the bottom panel joins the bottom edge of the front panel.
  • the back edge of the bottom panel joins the bottom edge of the back panel.
  • the side edges of the top panel join the top edges of the side panels and part of the side edges of the back panel.
  • the top panel comprises a two dimensional opening means that is capable of forming a two dimensional planar opening.
  • the laundry detergent powder and scoop are both contained within the inner cuboidal volume.
  • the six rectangular panels are made of weldable sheet material and are secured together at the edges by weld seams.
  • the weldable sheet material is described in more detail below.
  • At least one of the panels preferably at least one of the side panels, comprise a handle.
  • the handle is described in more detail below.
  • At least one of the panels, preferable one or more of the side panels, may be transparent. In this manner, typically, the laundry powder is visible from the outside of the detergent product.
  • top edge of the back panel is capable of being folded over the front edge of the top panel and being fastened to the front panel.
  • Suitable fastening means includes a clip, button, ties, adhesive labels, slider/zipper, hook and loop fasteners or hook and hook fasteners.
  • the flexible box bag is typically a stand-up bag
  • the panels may be composed of film material, suitable film material includes polyethylene (PE), polyethylene terephalate (PET), amorphous polyethylene terephalate (APET), recycled amorphous polyethylene terephathalate (RPET), foamed polyethylene terephthalate (XPET), polyethylene terephthalate glycol (GPET), polypropylene (PP), high impact polystyrene (HIPS), nylon (PA), polylactic acid (PLA), thermoplastic starch (TPS), ethylvinylacetate (EVA) and any combination thereof.
  • a preferred film material is a PET/PE laminate, and/or a PE/PE laminate.
  • a suitable laminate comprises an outer layer of PET having a width of from 10 to 15 micrometers, and an inner layer of PE having a width of from 50 to 200 micrometers.
  • the panels may also comprise a metallic gloss, and/or comprise print, for example revere flexo printing.
  • the opening means comprises a laser-scored line in a two dimensional pattern.
  • the two dimensional pattern is typically L shaped, or curved, however other two dimensional patterns are also suitable. Ensuring that the opening means is two dimensional and is capable of forming a two dimensional planar opening improves the accessibility to the inner cuboidal volume. This in turn improves the consumer experience when dosing powder from the flexible box bag, especially when using the scoop.
  • the opening means may comprise a reclosing means.
  • a suitable reclosing means may comprise an adhesive closing panel that is capable of enclosing the opening.
  • Suitable reclosing means include a cap, zip, velcro fastener, slide fastener or a hook and loop fastener.
  • weldable sheet material is a multilayer coextruded film or a composite film that has a heat-weldable polymer layer on the inside of the flexible box bag.
  • the handle is a film strip, or a textile strip, typically the handle is reinforced, for example by a film strip, or integrated into the front and back panels.
  • the handle further improves the ease of handling and manipulation of the flexible bog bag.
  • Detergent powder The detergent powder, together with the scoop, is contained within the inner cuboidal volume.
  • the detergent powder typically comprises surfactant.
  • the detergent powder is typically free-flowing.
  • the detergent powder can be a laundry detergent powder or a dish washing detergent powder.
  • the detergent powder is a laundry detergent powder, most preferably the detergent powder is a solid free-flowing particulate laundry detergent composition.
  • a suitable solid free-flowing particulate laundry detergent composition is described in more detail below.
  • Solid free-flowing particulate laundry detergent composition is a fully formulated laundry detergent composition, not a portion thereof such as a spray-dried, extruded or agglomerate particle that only forms part of the laundry detergent composition.
  • the solid composition comprises a plurality of chemically different particles, such as spray-dried base detergent particles and/or agglomerated base detergent particles and/or extruded base detergent particles, in combination with one or more, typically two or more, or five or more, or even ten or more particles selected from: surfactant particles, including surfactant agglomerates, surfactant extrudates, surfactant needles, surfactant noodles, surfactant flakes; phosphate particles; zeolite particles; silicate salt particles, especially sodium silicate particles; carbonate salt particles, especially sodium carbonate particles; polymer particles such as carboxylate polymer particles, cellulosic polymer particles, starch particles, polyester particles, polyamine particles, terephthalate polymer particles, polyethylene glycol particles; aesthetic particles such as coloured noodles, needles, lamellae particles and ring particles; enzyme particles such as protease granulates, amylase granulates, lipase granulates, cellulase granulates, cell
  • Suitable laundry detergent compositions comprise a detergent ingredient selected from: detersive surfactant, such as anionic detersive surfactants, non-ionic detersive surfactants, cationic detersive surfactants, zwitterionic detersive surfactants and amphoteric detersive surfactants; polymers, such as carboxylate polymers, soil release polymer, anti-redeposition polymers, cellulosic polymers and care polymers; bleach, such as sources of hydrogen peroxide, bleach activators, bleach catalysts and pre-formed peracids; photobleach, such as such as zinc and/or aluminium sulphonated phthalocyanine; enzymes, such as proteases, amylases, cellulases, lipases; zeolite builder; phosphate builder; co-builders, such as citric acid and citrate; carbonate, such as sodium carbonate and sodium bicarbonate; sulphate salt, such as sodium sulphate; silicate salt such as sodium silicate; chloride salt
  • Suitable laundry detergent compositions may have a low buffering capacity. Such laundry detergent compositions typically have a reserve alkalinity to pH 9.5 of less than 5.0gNaOH/100g. These low buffered laundry detergent compositions typically comprise low levels of carbonate salt.
  • Suitable detersive surfactants include anionic detersive surfactants, non-ionic detersive surfactant, cationic detersive surfactants, zwitterionic detersive surfactants and amphoteric detersive surfactants.
  • Suitable detersive surfactants may be linear or branched, substituted or un-substituted, and may be derived from petrochemical material or biomaterial.
  • Anionic detersive surfactant Suitable anionic detersive surfactants include sulphonate and sulphate detersive surfactants.
  • Suitable sulphonate detersive surfactants include methyl ester sulphonates, alpha olefin sulphonates, alkyl benzene sulphonates, especially alkyl benzene sulphonates, preferably C 10-13 alkyl benzene sulphonate.
  • Suitable alkyl benzene sulphonate (LAS) is obtainable, preferably obtained, by sulphonating commercially available linear alkyl benzene (LAB); suitable LAB includes low 2-phenyl LAB, other suitable LAB include high 2-phenyl LAB, such as those supplied by Sasol under the tradename Hyblene®.
  • Suitable sulphate detersive surfactants include alkyl sulphate, preferably C 8-18 alkyl sulphate, or predominantly C 12 alkyl sulphate.
  • a preferred sulphate detersive surfactant is alkyl alkoxylated sulphate, preferably alkyl ethoxylated sulphate, preferably a C 8-18 alkyl alkoxylated sulphate, preferably a C 8-18 alkyl ethoxylated sulphate, preferably the alkyl alkoxylated sulphate has an average degree of alkoxylation of from 0.5 to 20, preferably from 0.5 to 10, preferably the alkyl alkoxylated sulphate is a C 8-18 alkyl ethoxylated sulphate having an average degree of ethoxylation of from 0.5 to 10, preferably from 0.5 to 5, more preferably from 0.5 to 3 and most preferably from 0.5 to 1.5.
  • alkyl sulphate, alkyl alkoxylated sulphate and alkyl benzene sulphonates may be linear or branched, substituted or un-substituted, and may be derived from petrochemical material or biomaterial.
  • anionic detersive surfactants include alkyl ether carboxylates.
  • Suitable anionic detersive surfactants may be in salt form, suitable counter-ions include sodium, calcium, magnesium, amino alcohols, and any combination thereof.
  • suitable counter-ions include sodium, calcium, magnesium, amino alcohols, and any combination thereof.
  • a preferred counter-ion is sodium.
  • Non-ionic detersive surfactant Suitable non-ionic detersive surfactants are selected from the group consisting of: C 8 -C 18 alkyl ethoxylates, such as, NEODOL® non-ionic surfactants from Shell; C 6 -C 12 alkyl phenol alkoxylates wherein preferably the alkoxylate units are ethyleneoxy units, propyleneoxy units or a mixture thereof; C 12 -C 18 alcohol and C 6 -C 12 alkyl phenol condensates with ethylene oxide/propylene oxide block polymers such as Pluronic® from BASF; alkylpolysaccharides, preferably alkylpolyglycosides; methyl ester ethoxylates; polyhydroxy fatty acid amides; ether capped poly(oxyalkylated) alcohol surfactants; and mixtures thereof.
  • C 8 -C 18 alkyl ethoxylates such as, NEODOL® non-ionic surfactants from Shell
  • Suitable non-ionic detersive surfactants are alkylpolyglucoside and/or an alkyl alkoxylated alcohol.
  • Suitable non-ionic detersive surfactants include alkyl alkoxylated alcohols, preferably C 8-18 alkyl alkoxylated alcohol, preferably a C 8-18 alkyl ethoxylated alcohol, preferably the alkyl alkoxylated alcohol has an average degree of alkoxylation of from 1 to 50, preferably from 1 to 30, or from 1 to 20, or from 1 to 10, preferably the alkyl alkoxylated alcohol is a C 8-18 alkyl ethoxylated alcohol having an average degree of ethoxylation of from 1 to 10, preferably from 1 to 7, more preferably from 1 to 5 and most preferably from 3 to 7.
  • the alkyl alkoxylated alcohol can be linear or branched, and substituted or un-substituted.
  • Suitable nonionic detersive surfactants include secondary alcohol-based detersive surfactants.
  • Cationic detersive surfactant Suitable cationic detersive surfactants include alkyl pyridinium compounds, alkyl quaternary ammonium compounds, alkyl quaternary phosphonium compounds, alkyl ternary sulphonium compounds, and mixtures thereof.
  • Preferred cationic detersive surfactants are quaternary ammonium compounds having the general formula: (R)(R 1 )(R 2 )(R 3 )N + X - wherein, R is a linear or branched, substituted or unsubstituted C 6-18 alkyl or alkenyl moiety, R 1 and R 2 are independently selected from methyl or ethyl moieties, R 3 is a hydroxyl, hydroxymethyl or a hydroxyethyl moiety, X is an anion which provides charge neutrality, preferred anions include: halides, preferably chloride; sulphate; and sulphonate.
  • Suitable zwitterionic detersive surfactants include amine oxides and/or betaines.
  • Suitable polymers include carboxylate polymers, soil release polymers, anti-redeposition polymers, cellulosic polymers, care polymers and any combination thereof.
  • Carboxylate polymer The composition may comprise a carboxylate polymer, such as a maleate/acrylate random copolymer or polyacrylate homopolymer.
  • Suitable carboxylate polymers include: polyacrylate homopolymers having a molecular weight of from 4,000 Da to 9,000 Da; maleate/acrylate random copolymers having a molecular weight of from 50,000 Da to 100,000 Da, or from 60,000 Da to 80,000 Da.
  • Another suitable carboxylate polymer is a co-polymer that comprises: (i) from 50 to less than 98 wt% structural units derived from one or more monomers comprising carboxyl groups; (ii) from 1 to less than 49 wt% structural units derived from one or more monomers comprising sulfonate moieties; and (iii) from 1 to 49 wt% structural units derived from one or more types of monomers selected from ether bond-containing monomers represented by formulas (I) and (II): wherein in formula (I), R 0 represents a hydrogen atom or CH 3 group, R represents a CH 2 group, CH 2 CH 2 group or single bond, X represents a number 0-5 provided X represents a number 1-5 when R is a single bond, and R 1 is a hydrogen atom or C 1 to C 20 organic group; wherein in formula (II), R 0 represents a hydrogen atom or CH 3 group, R represents a CH 2 group, CH 2 CH 2 group or single bond,
  • the polymer has a weight average molecular weight of at least 50kDa, or even at least 70kDa.
  • Soil release polymer The composition may comprise a soil release polymer.
  • a suitable soil release polymer has a structure as defined by one of the following structures (I), (II) or (III): (I) -[(OCHR 1 -CHR 2 ) a -O-OC-Ar-CO-] d (II) -[(OCHR 3 -CHR 4 ) b -O-OC-sAr-CO-] e (III) -[(OCHR 5 -CHR 6 ) c -OR 7 ] f wherein:
  • Anti-redeposition polymer examples include polyethylene glycol polymers and/or polyethyleneimine polymers.
  • Suitable polyethylene glycol polymers include random graft co-polymers comprising: (i) hydrophilic backbone comprising polyethylene glycol; and (ii) hydrophobic side chain(s) selected from the group consisting of: C 4 -C 25 alkyl group, polypropylene, polybutylene, vinyl ester of a saturated C 1 -C 6 mono-carboxylic acid, C 1 -C 6 alkyl ester of acrylic or methacrylic acid, and mixtures thereof.
  • Suitable polyethylene glycol polymers have a polyethylene glycol backbone with random grafted polyvinyl acetate side chains.
  • the average molecular weight of the polyethylene glycol backbone can be in the range of from 2,000 Da to 20,000 Da, or from 4,000 Da to 8,000 Da.
  • the molecular weight ratio of the polyethylene glycol backbone to the polyvinyl acetate side chains can be in the range of from 1:1 to 1:5, or from 1:1.2 to 1:2.
  • the average number of graft sites per ethylene oxide units can be less than 1, or less than 0.8, the average number of graft sites per ethylene oxide units can be in the range of from 0.5 to 0.9, or the average number of graft sites per ethylene oxide units can be in the range of from 0.1 to 0.5, or from 0.2 to 0.4.
  • a suitable polyethylene glycol polymer is Sokalan HP22. Suitable polyethylene glycol polymers are described in WO08/007320 .
  • Cellulosic polymer Suitable cellulosic polymers are selected from alkyl cellulose, alkyl alkoxyalkyl cellulose, carboxyalkyl cellulose, alkyl carboxyalkyl cellulose, sulphoalkyl cellulose, more preferably selected from carboxymethyl cellulose, methyl cellulose, methyl hydroxyethyl cellulose, methyl carboxymethyl cellulose, and mixures thereof.
  • Suitable carboxymethyl celluloses have a degree of carboxymethyl substitution from 0.5 to 0.9 and a molecular weight from 100,000 Da to 300,000 Da. Suitable carboxymethyl celluloses have a degree of substitution greater than 0.65 and a degree of blockiness greater than 0.45, e.g. as described in WO09/154933 .
  • Suitable care polymers include cellulosic polymers that are cationically modified or hydrophobically modified. Such modified cellulosic polymers can provide anti-abrasion benefits and dye lock benefits to fabric during the laundering cycle. Suitable cellulosic polymers include cationically modified hydroxyethyl cellulose.
  • Suitable care polymers include dye lock polymers, for example the condensation oligomer produced by the condensation of imidazole and epichlorhydrin, preferably in ratio of 1:4:1.
  • a suitable commercially available dye lock polymer is Polyquart® FDI (Cognis).
  • Suitable care polymers include amino-silicone, which can provide fabric feel benefits and fabric shape retention benefits.
  • Suitable bleach includes sources of hydrogen peroxide, bleach activators, bleach catalysts, pre-formed peracids and any combination thereof.
  • a particularly suitable bleach includes a combination of a source of hydrogen peroxide with a bleach activator and/or a bleach catalyst.
  • Source of hydrogen peroxide include sodium perborate and/or sodium percarbonate.
  • Suitable bleach activators include tetra acetyl ethylene diamine and/or alkyl oxybenzene sulphonate.
  • the composition may comprise a bleach catalyst.
  • Suitable bleach catalysts include oxaziridinium bleach catalysts, transistion metal bleach catalysts, especially manganese and iron bleach catalysts.
  • a suitable bleach catalyst has a structure corresponding to general formula below: wherein R 13 is selected from the group consisting of 2-ethylhexyl, 2-propylheptyl, 2-butyloctyl, 2-pentylnonyl, 2-hexyldecyl, n-dodecyl, n-tetradecyl, n-hexadecyl, n-octadecyl, iso-nonyl, isodecyl, iso-tridecyl and iso-pentadecyl.
  • Pre-formed peracid Suitable pre-form peracids include phthalimido-peroxycaproic acid.
  • Enzymes include lipases, proteases, cellulases, amylases and any combination thereof.
  • Suitable proteases include metalloproteases and/or serine proteases.
  • suitable neutral or alkaline proteases include: subtilisins (EC 3.4.21.62); trypsin-type or chymotrypsin-type proteases; and metalloproteases.
  • the suitable proteases include chemically or genetically modified mutants of the aforementioned suitable proteases.
  • protease enzymes include those sold under the trade names Alcalase®, Savinase®, Primase®, Durazym®, Polarzyme®, Kannase®, Liquanase®, Liquanase Ultra®, Savinase Ultra®, Ovozyme®, Neutrase®, Everlase® and Esperase® by Novozymes A/S (Denmark), those sold under the tradename Maxatase®, Maxacal®, Maxapem®, Preferenz P® series of proteases including Preferenz® P280, Preferenz® P281, Preferenz® P2018-C, Preferenz® P2081-WE, Preferenz® P2082-EE and Preferenz® P2083-A/J, Properase®, Purafect®, Purafect Prime®, Purafect Ox®, FN3®, FN4®, Excellase® and Purafect OXP® by DuPont, those sold
  • a suitable protease is described in WO11/140316 and WO11/072117 .
  • Amylase Suitable amylases are derived from AA560 alpha amylase endogenous to Bacillus sp. DSM 12649, preferably having the following mutations: R118K, D183*, G184*, N195F, R320K, and/or R458K.
  • Suitable commercially available amylases include Stainzyme®, Stainzyme® Plus, Natalase, Termamyl®, Termamyl® Ultra, Liquezyme® SZ, Duramyl®, Everest® (all Novozymes) and Spezyme® AA, Preferenz S® series of amylases, Purastar® and Purastar® Ox Am, Optisize® HT Plus (all Du Pont).
  • a suitable amylase is described in WO06/002643 .
  • Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are also suitable. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g., the fungal cellulases produced from Humicola insolens, Myceliophthora thermophila and Fusarium oxysporum.
  • cellulases include Celluzyme®, Carezyme®, and Carezyme® Premium, Celluclean® and Whitezyme® (Novozymes A/S), Revitalenz® series of enzymes (Du Pont), and Biotouch® series of enzymes (AB Enzymes).
  • Suitable commercially available cellulases include Carezyme® Premium, Celluclean® Classic. Suitable cellulases are described in WO07/144857 and WO10/056652 .
  • Suitable lipases include those of bacterial, fungal or synthetic origin, and variants thereof. Chemically modified or protein engineered mutants are also suitable. Examples of suitable lipases include lipases from Humicola (synonym Thermomyces ), e.g., from H. lanuginosa ( T. lanuginosus ).
  • the lipase may be a "first cycle lipase", e.g. such as those described in WO06/090335 and WO13/116261 .
  • the lipase is a first-wash lipase, preferably a variant of the wild-type lipase from Thermomyces lanuginosus comprising T231R and/or N233R mutations.
  • Preferred lipases include those sold under the tradenames Lipex®, Lipolex® and Lipoclean® by Novozymes, Bagsvaerd, Denmark.
  • Liprl 139 e.g. as described in WO2013/171241
  • TfuLip2 e.g. as described in WO2011/084412 and WO2013/033318 .
  • Other enzymes are bleaching enzymes, such as peroxidases/oxidases, which include those of plant, bacterial or fungal origin and variants thereof.
  • peroxidases include Guardzyme® (Novozymes A/S).
  • suitable enzymes include choline oxidases and perhydrolases such as those used in Gentle Power BleachTM.
  • Suitable enzymes include pectate lyases sold under the tradenames X-Pect®, Pectaway® (from Novozymes A/S, Bagsvaerd, Denmark) and PrimaGreen® (DuPont) and mannanases sold under the tradenames Mannaway® (Novozymes A/S, Bagsvaerd, Denmark), and Mannastar® (Du Pont).
  • Zeolite builder The composition may comprise zeolite builder.
  • the composition may comprise from 0wt% to 5wt% zeolite builder, or 3wt% zeolite builder.
  • the composition may even be substantially free of zeolite builder; substantially free means "no deliberately added".
  • Typical zeolite builders include zeolite A, zeolite P and zeolite MAP.
  • the composition may comprise phosphate builder.
  • the composition may comprise from 0wt% to 5wt% phosphate builder, or to 3wt%, phosphate builder.
  • the composition may even be substantially free of phosphate builder; substantially free means "no deliberately added".
  • a typical phosphate builder is sodium tri-polyphosphate.
  • Carbonate salt The composition may comprise carbonate salt.
  • the composition may comprise from 0wt% to 10wt% carbonate salt, or to 5wt% carbonate salt.
  • the composition may even be substantially free of carbonate salt; substantially free means "no deliberately added".
  • Suitable carbonate salts include sodium carbonate and sodium bicarbonate.
  • Silicate salt The composition may comprise silicate salt.
  • the composition may comprise from 0wt% to 10wt% silicate salt, or to 5wt% silicate salt.
  • a preferred silicate salt is sodium silicate, especially preferred are sodium silicates having a Na 2 O:SiO 2 ratio of from 1.0 to 2.8, preferably from 1.6 to 2.0.
  • Sulphate salt A suitable sulphate salt is sodium sulphate.
  • Suitable fluorescent brighteners include: di-styryl biphenyl compounds, e.g. Tinopal® CBS-X, di-amino stilbene di-sulfonic acid compounds, e.g. Tinopal® DMS pure Xtra and Blankophor® HRH, and Pyrazoline compounds, e.g. Blankophor® SN, and coumarin compounds, e.g. Tinopal® SWN.
  • Preferred brighteners are: sodium 2(4-styryl-3-sulfophenyl)-2H-napthol[1,2-d]triazole, disodium 4,4'-bis ⁇ [(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1,3,5-triazin-2-yl)];amino ⁇ stilbene-2-2' disulfonate, disodium 4,4'-bis ⁇ [(4-anilino-6-morpholino-1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulfonate, and disodium 4,4'-bis(2-sulfostyryl)biphenyl.
  • a suitable fluorescent brightener is C.I. Fluorescent Brightener 260, which may be used in its beta or alpha crystalline forms, or a mixture of these forms.
  • the composition may also comprise a chelant selected from: diethylene triamine pentaacetate, diethylene triamine penta(methyl phosphonic acid), ethylene diamine-N'N'-disuccinic acid, ethylene diamine tetraacetate, ethylene diamine tetra(methylene phosphonic acid) and hydroxyethane di(methylene phosphonic acid).
  • a preferred chelant is ethylene diamine-N'N'-disuccinic acid (EDDS) and/or hydroxyethane diphosphonic acid (HEDP).
  • the composition preferably comprises ethylene diamine-N'N'-disuccinic acid or salt thereof.
  • the ethylene diamine-N'N'-disuccinic acid is in S,S enantiomeric form.
  • the composition comprises 4,5-dihydroxy-m-benzenedisulfonic acid disodium salt.
  • Preferred chelants may also function as calcium carbonate crystal growth inhibitors such as: 1-hydroxyethanediphosphonic acid (HEDP) and salt thereof; N,N-dicarboxymethyl-2-aminopentane-1,5-dioic acid and salt thereof; 2-phosphonobutane-1,2,4-tricarboxylic acid and salt thereof; and combination thereof.
  • Hueing agent Suitable hueing agents include small molecule dyes, typically falling into the Colour Index (C.I.) classifications of Acid, Direct, Basic, Reactive (including hydrolysed forms thereof) or Solvent or Disperse dyes, for example classified as Blue, Violet, Red, Green or Black, and provide the desired shade either alone or in combination.
  • C.I. Colour Index
  • Solvent or Disperse dyes for example classified as Blue, Violet, Red, Green or Black, and provide the desired shade either alone or in combination.
  • Preferred such hueing agents include Acid Violet 50, Direct Violet 9, 66 and 99, Solvent Violet 13 and any combination thereof.
  • hueing agents are known and described in the art which may be suitable for the present invention, such as hueing agents described in WO2014/089386 .
  • Suitable hueing agents include phthalocyanine and azo dye conjugates, such as described in WO2009/069077 .
  • Suitable hueing agents may be alkoxylated. Such alkoxylated compounds may be produced by organic synthesis that may produce a mixture of molecules having different degrees of alkoxylation. Such mixtures may be used directly to provide the hueing agent, or may undergo a purification step to increase the proportion of the target molecule.
  • Suitable hueing agents include alkoxylated bis-azo dyes, such as described in WO2012/054835 , and/or alkoxylated thiophene azo dyes, such as described in WO2008/087497 and WO2012/166768 .
  • the hueing agent may be incorporated into the detergent composition as part of a reaction mixture which is the result of the organic synthesis for a dye molecule, with optional purification step(s).
  • reaction mixtures generally comprise the dye molecule itself and in addition may comprise un-reacted starting materials and/or by-products of the organic synthesis route.
  • Suitable hueing agents can be incorporated into hueing dye particles, such as described in WO 2009/069077 .
  • Suitable dye transfer inhibitors include polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidone, polyvinyloxazolidone, polyvinylimidazole and mixtures thereof.
  • Preferred are poly(vinyl pyrrolidone), poly(vinylpyridine betaine), poly(vinylpyridine N-oxide), poly(vinyl pyrrolidone-vinyl imidazole) and mixtures thereof.
  • Suitable commercially available dye transfer inhibitors include PVP-K15 and K30 (Ashland), Sokalan® HP165, HP50, HP53, HP59, HP56K, HP56, HP66 (BASF), Chromabond® S-400, S403E and S-100 (Ashland).
  • Suitable perfumes comprise perfume materials selected from the group: (a) perfume materials having a ClogP of less than 3.0 and a boiling point of less than 250°C (quadrant 1 perfume materials); (b) perfume materials having a ClogP of less than 3.0 and a boiling point of 250°C or greater (quadrant 2 perfume materials); (c) perfume materials having a ClogP of 3.0 or greater and a boiling point of less than 250°C (quadrant 3 perfume materials); (d) perfume materials having a ClogP of 3.0 or greater and a boiling point of 250°C or greater (quadrant 4 perfume materials); and (e) mixtures thereof.
  • the perfume may be in the form of a perfume delivery technology. Such delivery technologies further stabilize and enhance the deposition and release of perfume materials from the laundered fabric. Such perfume delivery technologies can also be used to further increase the longevity of perfume release from the laundered fabric. Suitable perfume delivery technologies include: perfume microcapsules, pro-perfumes, polymer assisted deliveries, molecule assisted deliveries, fiber assisted deliveries, amine assisted deliveries, cyclodextrin, starch encapsulated accord, zeolite and other inorganic carriers, and any mixture thereof. A suitable perfume microcapsule is described in WO2009/101593 .
  • Suitable silicones include polydimethylsiloxane and amino-silicones. Suitable silicones are described in WO05075616 .
  • the particles of the composition can be prepared by any suitable method. For example: spray-drying, agglomeration, extrusion and any combination thereof.
  • a suitable spray-drying process comprises the step of forming an aqueous slurry mixture, transferring it through at least one pump, preferably two pumps, to a pressure nozzle. Atomizing the aqueous slurry mixture into a spray-drying tower and drying the aqueous slurry mixture to form spray-dried particles.
  • the spray-drying tower is a counter-current spray-drying tower, although a co-current spray-drying tower may also be suitable.
  • the spray-dried powder is subjected to cooling, for example an air lift.
  • the spray-drying powder is subjected to particle size classification, for example a sieve, to obtain the desired particle size distribution.
  • the spray-dried powder has a particle size distribution such that weight average particle size is in the range of from 300 micrometers to 500 micrometers, and less than 10wt% of the spray-dried particles have a particle size greater than 2360 micrometers.
  • aqueous slurry mixture may be heated to elevated temperatures prior to atomization into the spray-drying tower, such as described in WO2009/158162 .
  • anionic surfactant such as linear alkyl benzene sulphonate
  • anionic surfactant such as linear alkyl benzene sulphonate
  • a gas such as air
  • a gas such as air
  • any inorganic ingredients such as sodium sulphate and sodium carbonate, if present in the aqueous slurry mixture, to be micronized to a small particle size such as described in WO2012/134969 .
  • a suitable agglomeration process comprises the step of contacting a detersive ingredient, such as a detersive surfactant, e.g. linear alkyl benzene sulphonate (LAS) and/or alkyl alkoxylated sulphate, with an inorganic material, such as sodium carbonate and/or silica, in a mixer.
  • a detersive ingredient such as a detersive surfactant, e.g. linear alkyl benzene sulphonate (LAS) and/or alkyl alkoxylated sulphate
  • LAS linear alkyl benzene sulphonate
  • an inorganic material such as sodium carbonate and/or silica
  • the agglomeration process may also be an in-situ neutralization agglomeration process wherein an acid precursor of a detersive surfactant, such as LAS, is contacted with an alkaline material, such as carbonate and/or sodium hydroxide, in a mixer, and wherein the acid precursor of a detersive surfactant is neutralized by the alkaline material to form a detersive surfactant during the agglomeration process.
  • a detersive surfactant such as LAS
  • Suitable detergent ingredients include polymers, chelants, bleach activators, silicones and any combination thereof.
  • the agglomeration process may be a high, medium or low shear agglomeration process, wherein a high shear, medium shear or low shear mixer is used accordingly.
  • the agglomeration process may be a multi-step agglomeration process wherein two or more mixers are used, such as a high shear mixer in combination with a medium or low shear mixer.
  • the agglomeration process can be a continuous process or a batch process.
  • the agglomerates may be subjected to a drying step, for example to a fluid bed drying step. It may also be preferred for the agglomerates to be subjected to a cooling step, for example a fluid bed cooling step.
  • the agglomerates are subjected to particle size classification, for example a fluid bed elutriation and/or a sieve, to obtain the desired particle size distribution.
  • particle size classification for example a fluid bed elutriation and/or a sieve
  • the agglomerates have a particle size distribution such that weight average particle size is in the range of from 300 micrometers to 800 micrometers, and less than 10wt% of the agglomerates have a particle size less than 150 micrometers and less than 10wt% of the agglomerates have a particle size greater than 1200 micrometers.
  • fines and over-sized agglomerates may be recycled back into the agglomeration process.
  • over-sized particles are subjected to a size reduction step, such as grinding, and recycled back into an appropriate place in the agglomeration process, such as the mixer.
  • fines are recycled back into an appropriate place in the agglomeration process, such as the mixer.
  • ingredients such as polymer and/or non-ionic detersive surfactant and/or perfume to be sprayed onto base detergent particles, such as spray-dried base detergent particles and/or agglomerated base detergent particles.
  • base detergent particles such as spray-dried base detergent particles and/or agglomerated base detergent particles.
  • this spray-on step is carried out in a tumbling drum mixer.
  • the method of laundering fabric comprises the step of contacting the solid composition to water to form a wash liquor, and laundering fabric in said wash liquor.
  • the wash liquor has a temperature of above 0°C to 90°C, or to 60°C, or to 40°C, or to 30°C, or to 20°C.
  • the fabric may be contacted to the water prior to, or after, or simultaneous with, contacting the solid composition with water.
  • the wash liquor is formed by contacting the laundry detergent to water in such an amount so that the concentration of laundry detergent composition in the wash liquor is from 0.2g/l to 20g/l, or from 0.5g/l to 10g/l, or to 5.0g/l.
  • the method of laundering fabric can be carried out in a front-loading automatic washing machine, top loading automatic washing machines, including high efficiency automatic washing machines, or suitable hand-wash vessels.
  • the wash liquor comprises 90 litres or less, or 60 litres or less, or 15 litres or less, or 10 litres or less of water.
  • 200g or less, or 150g or less, or 100g or less, or 50g or less of laundry detergent composition is contacted to water to form the wash liquor.
  • Scoop The scoop, together with the laundry detergent powder, is contained within the inner cuboidal volume.
  • the method of making the detergent product comprises the steps: forming an interim flexible box bag by suitably joining together the edges of the six panels except for the back edge of the top panel and top edge of the back panel.
  • the laundry detergent powder and scoop are inserted into the inner cuboidal volume by passing through a filling opening that is formed between the back edge of the top panel and top edge of the back panel.
  • the back edge of the top panel and top edge of the back panel are joined together in such a manner as to close the filling opening to form the flexible box bag and detergent product.
  • the interim flexible box bag is sealed by a weld seal.
  • the flexible box bag may be made from at least two different webs of film.
  • a first film may form the top panel, bottom panel, back panel, and front panel
  • a second film may form the side panels.
  • the flexible box bag may have transparent side panels.
  • the laundry detergent powder is inserted into the inner cuboidal volume prior to the scoop.
  • settling plates may be used to slightly bury the scoop in the powder, this improves the stability of the detergent product.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a detergent product comprising a flexible box bag, laundry detergent powder and a scoop. The flexible box bag comprises a two dimensional opening means that is capable of forming a two dimensional planar opening, which when combined with the other box bag features provide easier access to the internal volume for the consumer to scoop and dose laundry detergent powder from the flexible box bag during the laundering process.
  • BACKGROUND OF THE INVENTION
  • Packaging for detergent powder, especially laundry detergent powder, typically comes in the form of a flexible bag or a more rigid box. Flexible bags have the advantage of being more easily handled by the consumer during the laundering process, and are also more efficient in terms of transport and storage. However, the rigid box have the advantage of being easier to dose laundry powder from during the laundering process, especially when using a scoop. In addition, rigid boxes have greater shelf impression to the consumer. Detergent manufacturers continue to seek flexible bags having the ease of handling, and transport and storage efficiency, but also having a good shelf impression of a box, and being easy to scoop and dose laundry powder from during the laundering process.
  • The Inventors provide a flexible box bag that overcomes these problems.
  • EP 1 508 531 relates to a flexible box bag comprising six rectangular panels: top panel, bottom panel, front panel, back panel and two side panels, wherein each of the top panel and bottom panel comprise a front horizontal edge, a back edge and two side edges, wherein each of the front panel, back panel and two side panels comprise a top edge, a bottom edge, and two side edges, and the top panel comprises a two dimensional opening means that is capable of forming a two dimensional planar opening.
  • SUMMARY OF THE INVENTION
  • The present invention relates to a detergent product comprising a flexible box bag, detergent powder and a scoop, wherein the flexible box bag comprises six rectangular panels: top panel, bottom panel, front panel, back panel and two side panels, wherein the six rectangular panels are joined together so as to form an inner cuboidal volume inside the flexible box bag, wherein each of the top panel and bottom panel comprise a front horizontal edge, a back edge and two side edges, wherein each of the front panel, back panel and two side panels comprise a top edge, a bottom edge, and two side edges, wherein the length of the two side edges of back panel are longer than the length of the two side edges of the front panel, wherein the front edge of the top panel joins the top edge of the front panel, wherein the back edge of the top panel joins the top edge of the back panel, wherein the front edge of the bottom panel joins the bottom edge of the front panel, wherein the back edge of the bottom panel joins the bottom edge of the back panel, wherein the side edges of the top panel join the top edges of the side panels and part of the side edges of the back panel, wherein the top panel comprises a two dimensional opening means that is capable of forming a two dimensional planar opening, wherein the detergent powder and scoop are both contained within the inner cuboidal volume.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Detergent product: The detergent product comprises a flexible box bag, detergent powder and a scoop. The flexible box bag, detergent powder, and scoop are described in more detail below.
  • Flexible box bag: The flexible box bag comprises six rectangular panels: top panel, bottom panel, front panel, back panel and two side panels. The six rectangular panels are joined together so as to form an inner cuboidal volume inside the flexible box bag. The cuboidal volume is a cuboid. Suitable cuboids include square cuboids and rectangular cuboids. Preferably, the cuboidal volume is a rectangular cuboidal volume. Each of the top panel and bottom panel comprise a front horizontal edge, a back edge and two side edges. Each of the front panel, back panel and two side panels comprise a top edge, a bottom edge, and two side edges. The length of the two side edges of back panel are longer than the length of the two side edges of the front panel. The front edge of the top panel joins the top edge of the front panel. The back edge of the top panel joins the top edge of the back panel. The front edge of the bottom panel joins the bottom edge of the front panel. The back edge of the bottom panel joins the bottom edge of the back panel. The side edges of the top panel join the top edges of the side panels and part of the side edges of the back panel. The top panel comprises a two dimensional opening means that is capable of forming a two dimensional planar opening. The laundry detergent powder and scoop are both contained within the inner cuboidal volume.
  • Typically, the six rectangular panels are made of weldable sheet material and are secured together at the edges by weld seams. The weldable sheet material is described in more detail below.
  • Typically, at least one of the panels, preferably at least one of the side panels, comprise a handle. The handle is described in more detail below.
  • It may be preferred for at least one of the panels, preferable one or more of the side panels, to be transparent. In this manner, typically, the laundry powder is visible from the outside of the detergent product.
  • It may be preferred that the top edge of the back panel is capable of being folded over the front edge of the top panel and being fastened to the front panel. Suitable fastening means includes a clip, button, ties, adhesive labels, slider/zipper, hook and loop fasteners or hook and hook fasteners.
  • The flexible box bag is typically a stand-up bag
    The panels may be composed of film material, suitable film material includes polyethylene (PE), polyethylene terephalate (PET), amorphous polyethylene terephalate (APET), recycled amorphous polyethylene terephathalate (RPET), foamed polyethylene terephthalate (XPET), polyethylene terephthalate glycol (GPET), polypropylene (PP), high impact polystyrene (HIPS), nylon (PA), polylactic acid (PLA), thermoplastic starch (TPS), ethylvinylacetate (EVA) and any combination thereof. A preferred film material is a PET/PE laminate, and/or a PE/PE laminate. A suitable laminate comprises an outer layer of PET having a width of from 10 to 15 micrometers, and an inner layer of PE having a width of from 50 to 200 micrometers.
  • The panels may also comprise a metallic gloss, and/or comprise print, for example revere flexo printing.
  • Opening means: Typically, the opening means comprises a laser-scored line in a two dimensional pattern. The two dimensional pattern is typically L shaped, or curved, however other two dimensional patterns are also suitable. Ensuring that the opening means is two dimensional and is capable of forming a two dimensional planar opening improves the accessibility to the inner cuboidal volume. This in turn improves the consumer experience when dosing powder from the flexible box bag, especially when using the scoop.
  • The opening means may comprise a reclosing means. A suitable reclosing means may comprise an adhesive closing panel that is capable of enclosing the opening. Suitable reclosing means include a cap, zip, velcro fastener, slide fastener or a hook and loop fastener.
  • Weldable sheet material: Typically, the weldable sheet material is a multilayer coextruded film or a composite film that has a heat-weldable polymer layer on the inside of the flexible box bag.
  • Handle: Typically, the handle is a film strip, or a textile strip, typically the handle is reinforced, for example by a film strip, or integrated into the front and back panels. The handle further improves the ease of handling and manipulation of the flexible bog bag.
  • Detergent powder: The detergent powder, together with the scoop, is contained within the inner cuboidal volume. The detergent powder typically comprises surfactant. The detergent powder is typically free-flowing. The detergent powder can be a laundry detergent powder or a dish washing detergent powder. Most preferably, the detergent powder is a laundry detergent powder, most preferably the detergent powder is a solid free-flowing particulate laundry detergent composition. A suitable solid free-flowing particulate laundry detergent composition is described in more detail below.
  • Solid free-flowing particulate laundry detergent composition: Typically, the solid free-flowing particulate laundry detergent composition is a fully formulated laundry detergent composition, not a portion thereof such as a spray-dried, extruded or agglomerate particle that only forms part of the laundry detergent composition. Typically, the solid composition comprises a plurality of chemically different particles, such as spray-dried base detergent particles and/or agglomerated base detergent particles and/or extruded base detergent particles, in combination with one or more, typically two or more, or five or more, or even ten or more particles selected from: surfactant particles, including surfactant agglomerates, surfactant extrudates, surfactant needles, surfactant noodles, surfactant flakes; phosphate particles; zeolite particles; silicate salt particles, especially sodium silicate particles; carbonate salt particles, especially sodium carbonate particles; polymer particles such as carboxylate polymer particles, cellulosic polymer particles, starch particles, polyester particles, polyamine particles, terephthalate polymer particles, polyethylene glycol particles; aesthetic particles such as coloured noodles, needles, lamellae particles and ring particles; enzyme particles such as protease granulates, amylase granulates, lipase granulates, cellulase granulates, mannanase granulates, pectate lyase granulates, xyloglucanase granulates, bleaching enzyme granulates and co- granulates of any of these enzymes, preferably these enzyme granulates comprise sodium sulphate; bleach particles, such as percarbonate particles, especially coated percarbonate particles, such as percarbonate coated with carbonate salt, sulphate salt, silicate salt, borosilicate salt, or any combination thereof, perborate particles, bleach activator particles such as tetra acetyl ethylene diamine particles and/or alkyl oxybenzene sulphonate particles, bleach catalyst particles such as transition metal catalyst particles, and/or isoquinolinium bleach catalyst particles, pre-formed peracid particles, especially coated pre-formed peracid particles; filler particles such as sulphate salt particles and chloride particles; clay particles such as montmorillonite particles and particles of clay and silicone; flocculant particles such as polyethylene oxide particles; wax particles such as wax agglomerates; silicone particles, brightener particles; dye transfer inhibition particles; dye fixative particles; perfume particles such as perfume microcapsules and starch encapsulated perfume accord particles, or pro-perfume particles such as Schiff base reaction product particles; hueing dye particles; chelant particles such as chelant agglomerates; and any combination thereof.
  • Suitable laundry detergent compositions comprise a detergent ingredient selected from: detersive surfactant, such as anionic detersive surfactants, non-ionic detersive surfactants, cationic detersive surfactants, zwitterionic detersive surfactants and amphoteric detersive surfactants; polymers, such as carboxylate polymers, soil release polymer, anti-redeposition polymers, cellulosic polymers and care polymers; bleach, such as sources of hydrogen peroxide, bleach activators, bleach catalysts and pre-formed peracids; photobleach, such as such as zinc and/or aluminium sulphonated phthalocyanine; enzymes, such as proteases, amylases, cellulases, lipases; zeolite builder; phosphate builder; co-builders, such as citric acid and citrate; carbonate, such as sodium carbonate and sodium bicarbonate; sulphate salt, such as sodium sulphate; silicate salt such as sodium silicate; chloride salt, such as sodium chloride; brighteners; chelants; hueing agents; dye transfer inhibitors; dye fixative agents; perfume; silicone; fabric softening agents, such as clay; flocculants, such as polyethyleneoxide; suds supressors; and any combination thereof.
  • Suitable laundry detergent compositions may have a low buffering capacity. Such laundry detergent compositions typically have a reserve alkalinity to pH 9.5 of less than 5.0gNaOH/100g. These low buffered laundry detergent compositions typically comprise low levels of carbonate salt.
  • Detersive Surfactant: Suitable detersive surfactants include anionic detersive surfactants, non-ionic detersive surfactant, cationic detersive surfactants, zwitterionic detersive surfactants and amphoteric detersive surfactants. Suitable detersive surfactants may be linear or branched, substituted or un-substituted, and may be derived from petrochemical material or biomaterial.
  • Anionic detersive surfactant: Suitable anionic detersive surfactants include sulphonate and sulphate detersive surfactants.
  • Suitable sulphonate detersive surfactants include methyl ester sulphonates, alpha olefin sulphonates, alkyl benzene sulphonates, especially alkyl benzene sulphonates, preferably C10-13 alkyl benzene sulphonate. Suitable alkyl benzene sulphonate (LAS) is obtainable, preferably obtained, by sulphonating commercially available linear alkyl benzene (LAB); suitable LAB includes low 2-phenyl LAB, other suitable LAB include high 2-phenyl LAB, such as those supplied by Sasol under the tradename Hyblene®.
  • Suitable sulphate detersive surfactants include alkyl sulphate, preferably C8-18 alkyl sulphate, or predominantly C12 alkyl sulphate.
  • A preferred sulphate detersive surfactant is alkyl alkoxylated sulphate, preferably alkyl ethoxylated sulphate, preferably a C8-18 alkyl alkoxylated sulphate, preferably a C8-18 alkyl ethoxylated sulphate, preferably the alkyl alkoxylated sulphate has an average degree of alkoxylation of from 0.5 to 20, preferably from 0.5 to 10, preferably the alkyl alkoxylated sulphate is a C8-18 alkyl ethoxylated sulphate having an average degree of ethoxylation of from 0.5 to 10, preferably from 0.5 to 5, more preferably from 0.5 to 3 and most preferably from 0.5 to 1.5.
  • The alkyl sulphate, alkyl alkoxylated sulphate and alkyl benzene sulphonates may be linear or branched, substituted or un-substituted, and may be derived from petrochemical material or biomaterial.
  • Other suitable anionic detersive surfactants include alkyl ether carboxylates.
  • Suitable anionic detersive surfactants may be in salt form, suitable counter-ions include sodium, calcium, magnesium, amino alcohols, and any combination thereof. A preferred counter-ion is sodium.
  • Non-ionic detersive surfactant: Suitable non-ionic detersive surfactants are selected from the group consisting of: C8-C18 alkyl ethoxylates, such as, NEODOL® non-ionic surfactants from Shell; C6-C12 alkyl phenol alkoxylates wherein preferably the alkoxylate units are ethyleneoxy units, propyleneoxy units or a mixture thereof; C12-C18 alcohol and C6-C12 alkyl phenol condensates with ethylene oxide/propylene oxide block polymers such as Pluronic® from BASF; alkylpolysaccharides, preferably alkylpolyglycosides; methyl ester ethoxylates; polyhydroxy fatty acid amides; ether capped poly(oxyalkylated) alcohol surfactants; and mixtures thereof.
  • Suitable non-ionic detersive surfactants are alkylpolyglucoside and/or an alkyl alkoxylated alcohol.
  • Suitable non-ionic detersive surfactants include alkyl alkoxylated alcohols, preferably C8-18 alkyl alkoxylated alcohol, preferably a C8-18 alkyl ethoxylated alcohol, preferably the alkyl alkoxylated alcohol has an average degree of alkoxylation of from 1 to 50, preferably from 1 to 30, or from 1 to 20, or from 1 to 10, preferably the alkyl alkoxylated alcohol is a C8-18 alkyl ethoxylated alcohol having an average degree of ethoxylation of from 1 to 10, preferably from 1 to 7, more preferably from 1 to 5 and most preferably from 3 to 7. The alkyl alkoxylated alcohol can be linear or branched, and substituted or un-substituted.
  • Suitable nonionic detersive surfactants include secondary alcohol-based detersive surfactants.
  • Cationic detersive surfactant: Suitable cationic detersive surfactants include alkyl pyridinium compounds, alkyl quaternary ammonium compounds, alkyl quaternary phosphonium compounds, alkyl ternary sulphonium compounds, and mixtures thereof.
  • Preferred cationic detersive surfactants are quaternary ammonium compounds having the general formula:

            (R)(R1)(R2)(R3)N+X-

    wherein, R is a linear or branched, substituted or unsubstituted C6-18 alkyl or alkenyl moiety, R1 and R2 are independently selected from methyl or ethyl moieties, R3 is a hydroxyl, hydroxymethyl or a hydroxyethyl moiety, X is an anion which provides charge neutrality, preferred anions include: halides, preferably chloride; sulphate; and sulphonate.
  • Zwitterionic detersive surfactant: Suitable zwitterionic detersive surfactants include amine oxides and/or betaines.
  • Polymer: Suitable polymers include carboxylate polymers, soil release polymers, anti-redeposition polymers, cellulosic polymers, care polymers and any combination thereof.
  • Carboxylate polymer: The composition may comprise a carboxylate polymer, such as a maleate/acrylate random copolymer or polyacrylate homopolymer. Suitable carboxylate polymers include: polyacrylate homopolymers having a molecular weight of from 4,000 Da to 9,000 Da; maleate/acrylate random copolymers having a molecular weight of from 50,000 Da to 100,000 Da, or from 60,000 Da to 80,000 Da.
  • Another suitable carboxylate polymer is a co-polymer that comprises: (i) from 50 to less than 98 wt% structural units derived from one or more monomers comprising carboxyl groups; (ii) from 1 to less than 49 wt% structural units derived from one or more monomers comprising sulfonate moieties; and (iii) from 1 to 49 wt% structural units derived from one or more types of monomers selected from ether bond-containing monomers represented by formulas (I) and (II):
    Figure imgb0001
    wherein in formula (I), R0 represents a hydrogen atom or CH3 group, R represents a CH2 group, CH2CH2 group or single bond, X represents a number 0-5 provided X represents a number 1-5 when R is a single bond, and R1 is a hydrogen atom or C1 to C20 organic group;
    Figure imgb0002
    wherein in formula (II), R0 represents a hydrogen atom or CH3 group, R represents a CH2 group, CH2CH2 group or single bond, X represents a number 0-5, and R1 is a hydrogen atom or C1 to C20 organic group.
  • It may be preferred that the polymer has a weight average molecular weight of at least 50kDa, or even at least 70kDa.
  • Soil release polymer: The composition may comprise a soil release polymer. A suitable soil release polymer has a structure as defined by one of the following structures (I), (II) or (III):

            (I)     -[(OCHR1-CHR2)a-O-OC-Ar-CO-]d

            (II)     -[(OCHR3-CHR4)b-O-OC-sAr-CO-]e

            (III)     -[(OCHR5-CHR6)c-OR7]f

    wherein:
    • a, b and c are from 1 to 200;
    • d, e and f are from 1 to 50;
    • Ar is a 1,4-substituted phenylene;
    • sAr is 1,3-substituted phenylene substituted in position 5 with SO3Me;
    • Me is Li, K, Mg/2, Ca/2, Al/3, ammonium, mono-, di-, tri-, or tetraalkylammonium wherein the alkyl groups are C1-C18 alkyl or C2-C10 hydroxyalkyl, or mixtures thereof; R1, R2, R3, R4, R5 and R6 are independently selected from H or C1-C18 n- or iso-alkyl; and
    • R7 is a linear or branched C1-C18 alkyl, or a linear or branched C2-C30 alkenyl, or a cycloalkyl group with 5 to 9 carbon atoms, or a C8-C30 aryl group, or a C6-C30 arylalkyl group. Suitable soil release polymers are sold by Clariant under the TexCare® series of polymers, e.g. TexCare® SRN240 and TexCare® SRA300. Other suitable soil release polymers are sold by Solvay under the Repel-o-Tex® series of polymers, e.g. Repel-o-Tex® SF2 and Repel-o-Tex® Crystal.
  • Anti-redeposition polymer: Suitable anti-redeposition polymers include polyethylene glycol polymers and/or polyethyleneimine polymers.
  • Suitable polyethylene glycol polymers include random graft co-polymers comprising: (i) hydrophilic backbone comprising polyethylene glycol; and (ii) hydrophobic side chain(s) selected from the group consisting of: C4-C25 alkyl group, polypropylene, polybutylene, vinyl ester of a saturated C1-C6 mono-carboxylic acid, C1-C6 alkyl ester of acrylic or methacrylic acid, and mixtures thereof. Suitable polyethylene glycol polymers have a polyethylene glycol backbone with random grafted polyvinyl acetate side chains. The average molecular weight of the polyethylene glycol backbone can be in the range of from 2,000 Da to 20,000 Da, or from 4,000 Da to 8,000 Da. The molecular weight ratio of the polyethylene glycol backbone to the polyvinyl acetate side chains can be in the range of from 1:1 to 1:5, or from 1:1.2 to 1:2. The average number of graft sites per ethylene oxide units can be less than 1, or less than 0.8, the average number of graft sites per ethylene oxide units can be in the range of from 0.5 to 0.9, or the average number of graft sites per ethylene oxide units can be in the range of from 0.1 to 0.5, or from 0.2 to 0.4. A suitable polyethylene glycol polymer is Sokalan HP22. Suitable polyethylene glycol polymers are described in WO08/007320 .
  • Cellulosic polymer: Suitable cellulosic polymers are selected from alkyl cellulose, alkyl alkoxyalkyl cellulose, carboxyalkyl cellulose, alkyl carboxyalkyl cellulose, sulphoalkyl cellulose, more preferably selected from carboxymethyl cellulose, methyl cellulose, methyl hydroxyethyl cellulose, methyl carboxymethyl cellulose, and mixures thereof.
  • Suitable carboxymethyl celluloses have a degree of carboxymethyl substitution from 0.5 to 0.9 and a molecular weight from 100,000 Da to 300,000 Da.
    Suitable carboxymethyl celluloses have a degree of substitution greater than 0.65 and a degree of blockiness greater than 0.45, e.g. as described in WO09/154933 .
  • Care polymers: Suitable care polymers include cellulosic polymers that are cationically modified or hydrophobically modified. Such modified cellulosic polymers can provide anti-abrasion benefits and dye lock benefits to fabric during the laundering cycle. Suitable cellulosic polymers include cationically modified hydroxyethyl cellulose.
  • Other suitable care polymers include dye lock polymers, for example the condensation oligomer produced by the condensation of imidazole and epichlorhydrin, preferably in ratio of 1:4:1. A suitable commercially available dye lock polymer is Polyquart® FDI (Cognis).
  • Other suitable care polymers include amino-silicone, which can provide fabric feel benefits and fabric shape retention benefits.
  • Bleach: Suitable bleach includes sources of hydrogen peroxide, bleach activators, bleach catalysts, pre-formed peracids and any combination thereof. A particularly suitable bleach includes a combination of a source of hydrogen peroxide with a bleach activator and/or a bleach catalyst.
  • Source of hydrogen peroxide: Suitable sources of hydrogen peroxide include sodium perborate and/or sodium percarbonate.
  • Bleach activator: Suitable bleach activators include tetra acetyl ethylene diamine and/or alkyl oxybenzene sulphonate.
  • Bleach catalyst: The composition may comprise a bleach catalyst. Suitable bleach catalysts include oxaziridinium bleach catalysts, transistion metal bleach catalysts, especially manganese and iron bleach catalysts. A suitable bleach catalyst has a structure corresponding to general formula below:
    Figure imgb0003
    wherein R13 is selected from the group consisting of 2-ethylhexyl, 2-propylheptyl, 2-butyloctyl, 2-pentylnonyl, 2-hexyldecyl, n-dodecyl, n-tetradecyl, n-hexadecyl, n-octadecyl, iso-nonyl, isodecyl, iso-tridecyl and iso-pentadecyl.
  • Pre-formed peracid: Suitable pre-form peracids include phthalimido-peroxycaproic acid.
  • Enzymes: Suitable enzymes include lipases, proteases, cellulases, amylases and any combination thereof.
  • Protease: Suitable proteases include metalloproteases and/or serine proteases. Examples of suitable neutral or alkaline proteases include: subtilisins (EC 3.4.21.62); trypsin-type or chymotrypsin-type proteases; and metalloproteases. The suitable proteases include chemically or genetically modified mutants of the aforementioned suitable proteases.
  • Suitable commercially available protease enzymes include those sold under the trade names Alcalase®, Savinase®, Primase®, Durazym®, Polarzyme®, Kannase®, Liquanase®, Liquanase Ultra®, Savinase Ultra®, Ovozyme®, Neutrase®, Everlase® and Esperase® by Novozymes A/S (Denmark), those sold under the tradename Maxatase®, Maxacal®, Maxapem®, Preferenz P® series of proteases including Preferenz® P280, Preferenz® P281, Preferenz® P2018-C, Preferenz® P2081-WE, Preferenz® P2082-EE and Preferenz® P2083-A/J, Properase®, Purafect®, Purafect Prime®, Purafect Ox®, FN3®, FN4®, Excellase® and Purafect OXP® by DuPont, those sold under the tradename Opticlean® and Optimase® by Solvay Enzymes, those available from Henkel/ Kemira, namely BLAP (sequence shown in Figure 29 of US 5,352,604 with the folowing mutations S99D + S101 R + S103A + V104I + G159S, hereinafter referred to as BLAP), BLAP R (BLAP with S3T + V4I + V199M + V205I + L217D), BLAP X (BLAP with S3T + V4I + V205I) and BLAP F49 (BLAP with S3T + V4I + A194P + V199M + V205I + L217D) - all from Henkel/Kemira; and KAP (Bacillus alkalophilus subtilisin with mutations A230V + S256G + S259N) from Kao.
  • A suitable protease is described in WO11/140316 and WO11/072117 .
  • Amylase: Suitable amylases are derived from AA560 alpha amylase endogenous to Bacillus sp. DSM 12649, preferably having the following mutations: R118K, D183*, G184*, N195F, R320K, and/or R458K. Suitable commercially available amylases include Stainzyme®, Stainzyme® Plus, Natalase, Termamyl®, Termamyl® Ultra, Liquezyme® SZ, Duramyl®, Everest® (all Novozymes) and Spezyme® AA, Preferenz S® series of amylases, Purastar® and Purastar® Ox Am, Optisize® HT Plus (all Du Pont).
    A suitable amylase is described in WO06/002643 .
  • Cellulase: Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are also suitable. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g., the fungal cellulases produced from Humicola insolens, Myceliophthora thermophila and Fusarium oxysporum.
  • Commercially available cellulases include Celluzyme®, Carezyme®, and Carezyme® Premium, Celluclean® and Whitezyme® (Novozymes A/S), Revitalenz® series of enzymes (Du Pont), and Biotouch® series of enzymes (AB Enzymes). Suitable commercially available cellulases include Carezyme® Premium, Celluclean® Classic. Suitable cellulases are described in WO07/144857 and WO10/056652 .
  • Lipase: Suitable lipases include those of bacterial, fungal or synthetic origin, and variants thereof. Chemically modified or protein engineered mutants are also suitable. Examples of suitable lipases include lipases from Humicola (synonym Thermomyces), e.g., from H. lanuginosa (T. lanuginosus).
  • The lipase may be a "first cycle lipase", e.g. such as those described in WO06/090335 and WO13/116261 . In one aspect, the lipase is a first-wash lipase, preferably a variant of the wild-type lipase from Thermomyces lanuginosus comprising T231R and/or N233R mutations. Preferred lipases include those sold under the tradenames Lipex®, Lipolex® and Lipoclean® by Novozymes, Bagsvaerd, Denmark.
  • Other suitable lipases include: Liprl 139, e.g. as described in WO2013/171241 ; and TfuLip2, e.g. as described in WO2011/084412 and WO2013/033318 .
  • Other enzymes: Other suitable enzymes are bleaching enzymes, such as peroxidases/oxidases, which include those of plant, bacterial or fungal origin and variants thereof. Commercially available peroxidases include Guardzyme® (Novozymes A/S). Other suitable enzymes include choline oxidases and perhydrolases such as those used in Gentle Power Bleach™.
  • Other suitable enzymes include pectate lyases sold under the tradenames X-Pect®, Pectaway® (from Novozymes A/S, Bagsvaerd, Denmark) and PrimaGreen® (DuPont) and mannanases sold under the tradenames Mannaway® (Novozymes A/S, Bagsvaerd, Denmark), and Mannastar® (Du Pont).
  • Zeolite builder: The composition may comprise zeolite builder. The composition may comprise from 0wt% to 5wt% zeolite builder, or 3wt% zeolite builder. The composition may even be substantially free of zeolite builder; substantially free means "no deliberately added". Typical zeolite builders include zeolite A, zeolite P and zeolite MAP.
  • Phosphate builder: The composition may comprise phosphate builder. The composition may comprise from 0wt% to 5wt% phosphate builder, or to 3wt%, phosphate builder. The composition may even be substantially free of phosphate builder; substantially free means "no deliberately added". A typical phosphate builder is sodium tri-polyphosphate.
  • Carbonate salt: The composition may comprise carbonate salt. The composition may comprise from 0wt% to 10wt% carbonate salt, or to 5wt% carbonate salt. The composition may even be substantially free of carbonate salt; substantially free means "no deliberately added". Suitable carbonate salts include sodium carbonate and sodium bicarbonate.
  • Silicate salt: The composition may comprise silicate salt. The composition may comprise from 0wt% to 10wt% silicate salt, or to 5wt% silicate salt. A preferred silicate salt is sodium silicate, especially preferred are sodium silicates having a Na2O:SiO2 ratio of from 1.0 to 2.8, preferably from 1.6 to 2.0.
  • Sulphate salt: A suitable sulphate salt is sodium sulphate.
  • Brightener: Suitable fluorescent brighteners include: di-styryl biphenyl compounds, e.g. Tinopal® CBS-X, di-amino stilbene di-sulfonic acid compounds, e.g. Tinopal® DMS pure Xtra and Blankophor® HRH, and Pyrazoline compounds, e.g. Blankophor® SN, and coumarin compounds, e.g. Tinopal® SWN.
    Preferred brighteners are: sodium 2(4-styryl-3-sulfophenyl)-2H-napthol[1,2-d]triazole, disodium 4,4'-bis{[(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1,3,5-triazin-2-yl)];amino}stilbene-2-2' disulfonate, disodium 4,4'-bis{[(4-anilino-6-morpholino-1,3,5-triazin-2-yl)]amino}stilbene-2-2' disulfonate, and disodium 4,4'-bis(2-sulfostyryl)biphenyl. A suitable fluorescent brightener is C.I. Fluorescent Brightener 260, which may be used in its beta or alpha crystalline forms, or a mixture of these forms.
  • Chelant: The composition may also comprise a chelant selected from: diethylene triamine pentaacetate, diethylene triamine penta(methyl phosphonic acid), ethylene diamine-N'N'-disuccinic acid, ethylene diamine tetraacetate, ethylene diamine tetra(methylene phosphonic acid) and hydroxyethane di(methylene phosphonic acid). A preferred chelant is ethylene diamine-N'N'-disuccinic acid (EDDS) and/or hydroxyethane diphosphonic acid (HEDP). The composition preferably comprises ethylene diamine-N'N'-disuccinic acid or salt thereof. Preferably the ethylene diamine-N'N'-disuccinic acid is in S,S enantiomeric form. Preferably the composition comprises 4,5-dihydroxy-m-benzenedisulfonic acid disodium salt. Preferred chelants may also function as calcium carbonate crystal growth inhibitors such as: 1-hydroxyethanediphosphonic acid (HEDP) and salt thereof; N,N-dicarboxymethyl-2-aminopentane-1,5-dioic acid and salt thereof; 2-phosphonobutane-1,2,4-tricarboxylic acid and salt thereof; and combination thereof.
  • Hueing agent: Suitable hueing agents include small molecule dyes, typically falling into the Colour Index (C.I.) classifications of Acid, Direct, Basic, Reactive (including hydrolysed forms thereof) or Solvent or Disperse dyes, for example classified as Blue, Violet, Red, Green or Black, and provide the desired shade either alone or in combination. Preferred such hueing agents include Acid Violet 50, Direct Violet 9, 66 and 99, Solvent Violet 13 and any combination thereof.
  • Many hueing agents are known and described in the art which may be suitable for the present invention, such as hueing agents described in WO2014/089386 .
  • Suitable hueing agents include phthalocyanine and azo dye conjugates, such as described in WO2009/069077 .
  • Suitable hueing agents may be alkoxylated. Such alkoxylated compounds may be produced by organic synthesis that may produce a mixture of molecules having different degrees of alkoxylation. Such mixtures may be used directly to provide the hueing agent, or may undergo a purification step to increase the proportion of the target molecule. Suitable hueing agents include alkoxylated bis-azo dyes, such as described in WO2012/054835 , and/or alkoxylated thiophene azo dyes, such as described in WO2008/087497 and WO2012/166768 .
  • The hueing agent may be incorporated into the detergent composition as part of a reaction mixture which is the result of the organic synthesis for a dye molecule, with optional purification step(s). Such reaction mixtures generally comprise the dye molecule itself and in addition may comprise un-reacted starting materials and/or by-products of the organic synthesis route. Suitable hueing agents can be incorporated into hueing dye particles, such as described in WO 2009/069077 .
  • Dye transfer inhibitors: Suitable dye transfer inhibitors include polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidone, polyvinyloxazolidone, polyvinylimidazole and mixtures thereof. Preferred are poly(vinyl pyrrolidone), poly(vinylpyridine betaine), poly(vinylpyridine N-oxide), poly(vinyl pyrrolidone-vinyl imidazole) and mixtures thereof. Suitable commercially available dye transfer inhibitors include PVP-K15 and K30 (Ashland), Sokalan® HP165, HP50, HP53, HP59, HP56K, HP56, HP66 (BASF), Chromabond® S-400, S403E and S-100 (Ashland).
  • Perfume: Suitable perfumes comprise perfume materials selected from the group: (a) perfume materials having a ClogP of less than 3.0 and a boiling point of less than 250°C (quadrant 1 perfume materials); (b) perfume materials having a ClogP of less than 3.0 and a boiling point of 250°C or greater (quadrant 2 perfume materials); (c) perfume materials having a ClogP of 3.0 or greater and a boiling point of less than 250°C (quadrant 3 perfume materials); (d) perfume materials having a ClogP of 3.0 or greater and a boiling point of 250°C or greater (quadrant 4 perfume materials); and (e) mixtures thereof.
  • It may be preferred for the perfume to be in the form of a perfume delivery technology. Such delivery technologies further stabilize and enhance the deposition and release of perfume materials from the laundered fabric. Such perfume delivery technologies can also be used to further increase the longevity of perfume release from the laundered fabric. Suitable perfume delivery technologies include: perfume microcapsules, pro-perfumes, polymer assisted deliveries, molecule assisted deliveries, fiber assisted deliveries, amine assisted deliveries, cyclodextrin, starch encapsulated accord, zeolite and other inorganic carriers, and any mixture thereof. A suitable perfume microcapsule is described in WO2009/101593 .
  • Silicone: Suitable silicones include polydimethylsiloxane and amino-silicones. Suitable silicones are described in WO05075616 .
  • Process for making the solid composition: Typically, the particles of the composition can be prepared by any suitable method. For example: spray-drying, agglomeration, extrusion and any combination thereof.
  • Typically, a suitable spray-drying process comprises the step of forming an aqueous slurry mixture, transferring it through at least one pump, preferably two pumps, to a pressure nozzle. Atomizing the aqueous slurry mixture into a spray-drying tower and drying the aqueous slurry mixture to form spray-dried particles. Preferably, the spray-drying tower is a counter-current spray-drying tower, although a co-current spray-drying tower may also be suitable.
  • Typically, the spray-dried powder is subjected to cooling, for example an air lift. Typically, the spray-drying powder is subjected to particle size classification, for example a sieve, to obtain the desired particle size distribution. Preferably, the spray-dried powder has a particle size distribution such that weight average particle size is in the range of from 300 micrometers to 500 micrometers, and less than 10wt% of the spray-dried particles have a particle size greater than 2360 micrometers.
  • It may be preferred to heat the aqueous slurry mixture to elevated temperatures prior to atomization into the spray-drying tower, such as described in WO2009/158162 .
  • It may be preferred for anionic surfactant, such as linear alkyl benzene sulphonate, to be introduced into the spray-drying process after the step of forming the aqueous slurry mixture: for example, introducing an acid precursor to the aqueous slurry mixture after the pump, such as described in WO 09/158449 .
  • It may be preferred for a gas, such as air, to be introduced into the spray-drying process after the step of forming the aqueous slurry, such as described in WO2013/181205 .
  • It may be preferred for any inorganic ingredients, such as sodium sulphate and sodium carbonate, if present in the aqueous slurry mixture, to be micronized to a small particle size such as described in WO2012/134969 .
  • Typically, a suitable agglomeration process comprises the step of contacting a detersive ingredient, such as a detersive surfactant, e.g. linear alkyl benzene sulphonate (LAS) and/or alkyl alkoxylated sulphate, with an inorganic material, such as sodium carbonate and/or silica, in a mixer. The agglomeration process may also be an in-situ neutralization agglomeration process wherein an acid precursor of a detersive surfactant, such as LAS, is contacted with an alkaline material, such as carbonate and/or sodium hydroxide, in a mixer, and wherein the acid precursor of a detersive surfactant is neutralized by the alkaline material to form a detersive surfactant during the agglomeration process.
  • Other suitable detergent ingredients that may be agglomerated include polymers, chelants, bleach activators, silicones and any combination thereof.
  • The agglomeration process may be a high, medium or low shear agglomeration process, wherein a high shear, medium shear or low shear mixer is used accordingly. The agglomeration process may be a multi-step agglomeration process wherein two or more mixers are used, such as a high shear mixer in combination with a medium or low shear mixer. The agglomeration process can be a continuous process or a batch process.
  • It may be preferred for the agglomerates to be subjected to a drying step, for example to a fluid bed drying step. It may also be preferred for the agglomerates to be subjected to a cooling step, for example a fluid bed cooling step.
  • Typically, the agglomerates are subjected to particle size classification, for example a fluid bed elutriation and/or a sieve, to obtain the desired particle size distribution. Preferably, the agglomerates have a particle size distribution such that weight average particle size is in the range of from 300 micrometers to 800 micrometers, and less than 10wt% of the agglomerates have a particle size less than 150 micrometers and less than 10wt% of the agglomerates have a particle size greater than 1200 micrometers.
  • It may be preferred for fines and over-sized agglomerates to be recycled back into the agglomeration process. Typically, over-sized particles are subjected to a size reduction step, such as grinding, and recycled back into an appropriate place in the agglomeration process, such as the mixer. Typically, fines are recycled back into an appropriate place in the agglomeration process, such as the mixer.
  • It may be preferred for ingredients such as polymer and/or non-ionic detersive surfactant and/or perfume to be sprayed onto base detergent particles, such as spray-dried base detergent particles and/or agglomerated base detergent particles. Typically, this spray-on step is carried out in a tumbling drum mixer.
  • Method of laundering fabric: The method of laundering fabric comprises the step of contacting the solid composition to water to form a wash liquor, and laundering fabric in said wash liquor. Typically, the wash liquor has a temperature of above 0°C to 90°C, or to 60°C, or to 40°C, or to 30°C, or to 20°C. The fabric may be contacted to the water prior to, or after, or simultaneous with, contacting the solid composition with water. Typically, the wash liquor is formed by contacting the laundry detergent to water in such an amount so that the concentration of laundry detergent composition in the wash liquor is from 0.2g/l to 20g/l, or from 0.5g/l to 10g/l, or to 5.0g/l. The method of laundering fabric can be carried out in a front-loading automatic washing machine, top loading automatic washing machines, including high efficiency automatic washing machines, or suitable hand-wash vessels._Typically, the wash liquor comprises 90 litres or less, or 60 litres or less, or 15 litres or less, or 10 litres or less of water. Typically, 200g or less, or 150g or less, or 100g or less, or 50g or less of laundry detergent composition is contacted to water to form the wash liquor.
  • Scoop: The scoop, together with the laundry detergent powder, is contained within the inner cuboidal volume.
  • Method of making the detergent product: The method of making the detergent product comprises the steps: forming an interim flexible box bag by suitably joining together the edges of the six panels except for the back edge of the top panel and top edge of the back panel. The laundry detergent powder and scoop are inserted into the inner cuboidal volume by passing through a filling opening that is formed between the back edge of the top panel and top edge of the back panel. The back edge of the top panel and top edge of the back panel are joined together in such a manner as to close the filling opening to form the flexible box bag and detergent product. Typically, after it is filled, the interim flexible box bag is sealed by a weld seal.
  • The flexible box bag may be made from at least two different webs of film. For example, a first film may form the top panel, bottom panel, back panel, and front panel, and a second film may form the side panels. In this manner, the flexible box bag may have transparent side panels.
  • Typically, the laundry detergent powder is inserted into the inner cuboidal volume prior to the scoop. Also, settling plates may be used to slightly bury the scoop in the powder, this improves the stability of the detergent product.
  • The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as "40 mm" is intended to mean "about 40 mm".

Claims (11)

  1. A detergent product comprising a flexible box bag, detergent powder and a scoop,
    wherein the flexible box bag comprises six rectangular panels: top panel, bottom panel, front panel, back panel and two side panels,
    wherein the six rectangular panels are joined together so as to form an inner cuboidal volume inside the flexible box bag,
    wherein each of the top panel and bottom panel comprise a front horizontal edge, a back edge and two side edges,
    wherein each of the front panel, back panel and two side panels comprise a top edge, a bottom edge, and two side edges,
    wherein the length of the two side edges of back panel are longer than the length of the two side edges of the front panel,
    wherein the front edge of the top panel joins the top edge of the front panel,
    wherein the back edge of the top panel joins the top edge of the back panel,
    wherein the front edge of the bottom panel joins the bottom edge of the front panel,
    wherein the back edge of the bottom panel joins the bottom edge of the back panel,
    wherein the side edges of the top panel join the top edges of the side panels and part of the side edges of the back panel,
    wherein the top panel comprises a two dimensional opening means that is capable of forming a two dimensional planar opening,
    wherein the detergent powder and scoop are both contained within the inner cuboidal volume.
  2. A detergent product according to claim 1, wherein the six rectangular panels are made of weldable sheet material and are secured together at the edges by weld seams.
  3. A detergent product according to any preceding claim, wherein at least one of the panels comprise a handle.
  4. A detergent product according to claim 3, wherein at least one of the side panels comprise a handle.
  5. A detergent product according to any preceding claim, wherein the opening means comprises laser-scored line in a two dimensional pattern.
  6. A detergent product according to any preceding claim, wherein the opening means comprises a reclosing means.
  7. A detergent product according to claim 6, wherein the reclosing means comprises an adhesive closing panel that is capable of enclosing the opening.
  8. A detergent product according to any preceding claim, wherein the top edge of the back panel is capable of being folded over the front edge of the top panel and being fastened to the front panel.
  9. A detergent product according to any preceding claim, wherein at least one of the panels is transparent.
  10. A detergent product according to any preceding claim, wherein the detergent powder is a laundry detergent composition.
  11. A method of making a detergent product according to any preceding claim, wherein an interim flexible box bag is formed by suitably joining together the edges of the six panels except for the back edge of the top panel and top edge of the back panel,
    wherein the laundry detergent powder and scoop are inserted into the inner cuboidal volume by passing through a filling opening that is formed between the back edge of the top panel and top edge of the back panel,
    wherein the back edge of the top panel and top edge of the back panel are joined together in such a manner as to close the filling opening to form the flexible box bag and detergent product.
EP16154525.6A 2015-10-06 2016-02-05 Flexible box bag comprising detergent powder and a scoop Active EP3153425B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/286,686 US20170096250A1 (en) 2015-10-06 2016-10-06 Flexible box bag comprising detergent powder and a scoop
PCT/US2016/055661 WO2017062560A1 (en) 2015-10-06 2016-10-06 Flexible box bag comprising detergent powder and a scoop

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15188629 2015-10-06

Publications (2)

Publication Number Publication Date
EP3153425A1 EP3153425A1 (en) 2017-04-12
EP3153425B1 true EP3153425B1 (en) 2018-07-04

Family

ID=54325320

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16154525.6A Active EP3153425B1 (en) 2015-10-06 2016-02-05 Flexible box bag comprising detergent powder and a scoop

Country Status (3)

Country Link
US (1) US20170096250A1 (en)
EP (1) EP3153425B1 (en)
WO (1) WO2017062560A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3754003A1 (en) * 2019-06-21 2020-12-23 Dalli-Werke GmbH & Co. KG Detergent package unit with a handle

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0493398B1 (en) 1989-08-25 1999-12-08 Henkel Research Corporation Alkaline proteolytic enzyme and method of production
WO2000058174A1 (en) * 1999-03-29 2000-10-05 Amcor Flexibles Europe A/S Stand-up bag
FR2803674B1 (en) * 2000-01-12 2002-04-19 Schlumberger Systems & Service ELECTRONIC CHIP FOR PORTABLE OBJECT
EP1508531A1 (en) * 2003-08-22 2005-02-23 CFS Weert B.V. Tubular Bag
ES2415870T3 (en) 2004-02-03 2013-07-29 The Procter & Gamble Company Composition for use in washing or tissue treatment
EP3620523A3 (en) 2004-07-05 2020-08-19 Novozymes A/S Alpha-amylase variants with altered properties
US20060124494A1 (en) * 2004-12-09 2006-06-15 Kimberly-Clark Worldwide, Inc. Shape retaining flexible package with easy access opening feature
GB2421013B (en) * 2004-12-10 2007-07-11 Amcor Flexibles Europe As Packaging with an openable top wall
EP1693440A1 (en) 2005-02-22 2006-08-23 The Procter & Gamble Company Detergent compositions
EP1867707B1 (en) 2006-06-16 2011-09-07 The Procter & Gamble Company Detergent compositions
EP1876227B2 (en) 2006-07-07 2020-08-12 The Procter and Gamble Company Detergent Compositions
EP1905818B2 (en) * 2006-09-28 2014-10-01 The Procter and Gamble Company Detergent Pack
PL2192169T3 (en) 2007-01-19 2012-10-31 Procter & Gamble Laundry care composition comprising a whitening agents for cellulosic substrates
CA2702883A1 (en) 2007-11-26 2009-06-04 The Procter & Gamble Company Detergent compositions
EP2247275B1 (en) 2008-02-15 2017-11-29 The Procter and Gamble Company Delivery particle
EP2272941B1 (en) 2008-06-20 2013-08-14 The Procter & Gamble Company Laundry composition
EP2138565A1 (en) 2008-06-25 2009-12-30 The Procter and Gamble Company A spray-drying process
EP2138567A1 (en) 2008-06-25 2009-12-30 The Procter & Gamble Company Spray-drying process
MX2011005097A (en) 2008-11-14 2011-05-30 Procter & Gamble Composition comprising polymer and enzyme.
EP3434764A3 (en) 2009-12-09 2019-04-03 The Procter & Gamble Company Fabric and home care products
MX2012007168A (en) 2009-12-21 2012-07-23 Danisco Us Inc Detergent compositions containing thermobifida fusca lipase and methods of use thereof.
DK2566960T3 (en) 2010-05-06 2017-05-22 Procter & Gamble CONSUMER PRODUCTS WITH PROTEASE VARIETIES
US20120101018A1 (en) 2010-10-22 2012-04-26 Gregory Scot Miracle Bis-azo colorants for use as bluing agents
EP2502980A1 (en) 2011-03-25 2012-09-26 The Procter & Gamble Company Spray-dried laundry detergent particles
RU2598853C2 (en) 2011-06-03 2016-09-27 Дзе Проктер Энд Гэмбл Компани Composition for washing clothes containing dyes
CN103781903A (en) 2011-08-31 2014-05-07 丹尼斯科美国公司 Compositions and methods comprising a lipolytic enzyme variant
MX353896B (en) 2012-02-03 2018-02-01 Procter & Gamble Compositions and methods for surface treatment with lipases.
JP2015525248A (en) 2012-05-16 2015-09-03 ノボザイムス アクティーゼルスカブ Composition comprising lipase and method of use thereof
ES2535580T3 (en) 2012-06-01 2015-05-12 The Procter & Gamble Company Spray drying process
DE102012213301A1 (en) * 2012-07-30 2014-02-20 Henkel Ag & Co. Kgaa Packaging containing water-soluble foil bags filled with liquid washing or cleaning agent
CN104955935A (en) 2012-12-06 2015-09-30 宝洁公司 Soluble pouch comprising hueing dye
US9284109B2 (en) * 2013-02-20 2016-03-15 Dow Global Technologies Llc Dispenser for flexible sheets

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20170096250A1 (en) 2017-04-06
WO2017062560A1 (en) 2017-04-13
EP3153425A1 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
EP3075826B1 (en) Solid free-flowing particulate laundry detergent composition
US9951296B2 (en) Solid free-flowing particulate laundry detergent composition
US10053654B2 (en) Solid free-flowing particulate laundry detergent composition
EP3081625A1 (en) Solid free-flowing particulate laundry detergent composition
US20160289604A1 (en) Spray-dried laundry detergent base particle
US9957466B2 (en) Solid free-flowing particulate laundry detergent composition
EP3075829B1 (en) Solid free-flowing particulate laundry detergent composition
US9951301B2 (en) Solid free-flowing particulate laundry detergent composition
WO2016160870A1 (en) Solid free-flowing particulate laundry detergent composition
US9957470B2 (en) Solid free-flowing particulate laundry detergent composition
EP3153425B1 (en) Flexible box bag comprising detergent powder and a scoop
EP3546557B1 (en) Catalase inhibition during a laundering process
US20220049194A1 (en) Process for making a laundry detergent composition
US20230227756A1 (en) Method of making a spray-dried laundry detergent particle
EP3754010A1 (en) A solid free-flowing particulate laundry detergent composition comprises a detersive surfactant and a linear polyamine salt

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171010

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: B65D 75/58 20060101AFI20171129BHEP

Ipc: B65D 5/42 20060101ALI20171129BHEP

Ipc: C11D 17/04 20060101ALI20171129BHEP

Ipc: B31B 150/00 20170101ALI20171129BHEP

Ipc: B65D 5/54 20060101ALI20171129BHEP

Ipc: C11D 17/00 20060101ALI20171129BHEP

Ipc: B65D 77/24 20060101ALI20171129BHEP

Ipc: B65D 33/06 20060101ALI20171129BHEP

Ipc: B65D 75/56 20060101ALI20171129BHEP

Ipc: B65D 30/20 20060101ALI20171129BHEP

Ipc: B65D 5/24 20060101ALI20171129BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180125

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1014253

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016003868

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180704

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1014253

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181004

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181104

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181004

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016003868

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

26N No opposition filed

Effective date: 20190405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190205

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190205

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20221230

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221230

Year of fee payment: 8

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230429