EP3152289A1 - Détergents contenant au moins une laccase en tant qu'inhibiteur de transfert de couleur - Google Patents

Détergents contenant au moins une laccase en tant qu'inhibiteur de transfert de couleur

Info

Publication number
EP3152289A1
EP3152289A1 EP15724676.0A EP15724676A EP3152289A1 EP 3152289 A1 EP3152289 A1 EP 3152289A1 EP 15724676 A EP15724676 A EP 15724676A EP 3152289 A1 EP3152289 A1 EP 3152289A1
Authority
EP
European Patent Office
Prior art keywords
acid
laccase
laccases
detergent
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15724676.0A
Other languages
German (de)
English (en)
Inventor
Nina Mussmann
Timothy O'connell
Thomas Weber
Mareile Job
Hendrik Hellmuth
Michael STROTZ
Inken PRÜSER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP3152289A1 publication Critical patent/EP3152289A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0021Dye-stain or dye-transfer inhibiting compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • C11D3/3776Heterocyclic compounds, e.g. lactam
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38654Preparations containing enzymes, e.g. protease or amylase containing oxidase or reductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0055Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10)
    • C12N9/0057Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10) with oxygen as acceptor (1.10.3)
    • C12N9/0061Laccase (1.10.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y110/00Oxidoreductases acting on diphenols and related substances as donors (1.10)
    • C12Y110/03Oxidoreductases acting on diphenols and related substances as donors (1.10) with an oxygen as acceptor (1.10.3)
    • C12Y110/03002Laccase (1.10.3.2)
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/12Soft surfaces, e.g. textile
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/22Electronic devices, e.g. PCBs or semiconductors

Definitions

  • the present invention relates to the use of certain laccases as color transfer-inhibiting active ingredients in the washing of textiles as well as detergents containing these laccases.
  • Laccases (EC 1.10.3.2) are copper-containing, "blue" enzymes that are found in many plants, fungi and microorganisms, and laccases are oxidoreductases.
  • the catalytically active center contains four copper ions, which can be distinguished by their spectroscopic properties.
  • blue type 1 copper is involved in substrate oxidation
  • a type 2 and two type 3 copper ions form a trinuclear cluster that binds oxygen and reduces it to water.
  • Laccases are also referred to as p-diphenol oxidases.
  • laccases oxidize many other substrates such as methoxy-substituted phenols and diamines. With respect to their substrates, laccases are surprisingly unspecific.
  • laccases Because of their broad substrate specificity and their ability to oxidize phenolic compounds, laccases have aroused great interest in industrial applications. Promising areas for the use of laccases include, for example, the delignification and gluing of wood fiber boards, the dyeing of fabrics and the detoxification of dye waste water in the textile industry, as well as the use in biosensors.
  • laccases can also oxidize substrates that would otherwise be unable to oxidize.
  • the mediators are typically "small molecule compounds" which are oxidized by laccases. The oxidized mediator then oxidizes the actual substrate.
  • the first laccase was found as early as 1883 in the Japanese lacquer tree (Rhus vernicifera). Laccases are found in many plants such as peach, tomato, mango and potato; Laccases are also known from some insects.
  • laccases are derived from fungi, such as the species Agaricus, Aspergillus, Cerrena, Curvularia, Fusarium, Lentinius, Monocillium, Myceliophtora, Neurospora, Penicillium, Phanerochaete, Phlebia, Pleurotus, Podospora, Schizophyllum, Sporotrichum, Stagospora and Trametes.
  • This Farbin horrintulsver Sung washed, ie cleaner, textiles can be based on the one hand on the fact that dye components are removed by the washing process from the textile ("fading"), on the other hand, from other colored fabrics detached dyes on the textile reflected (“discoloration").
  • the discoloration aspect may also play a role in undyed laundry items when washed together with colored laundry items.
  • detergents especially if they are provided as so-called color or colored laundry detergents for colored textiles, contain active ingredients which prevent the detachment of dyes from the textile or At least the deposition of detached, located in the wash liquor to avoid dyes on textiles.
  • liquid detergents or cleaners for example, from an aesthetic point of view, should be clear and transparent or at least translucent and should also be sold in transparent / translucent packaging.
  • the present invention is therefore based on the object to provide a suitable color transfer inhibitor, which avoids the disadvantages known from the prior art or at least reduced, and is useful in both solid and aqueous detergent formulations.
  • a first subject of the present invention is therefore a detergent containing at least one laccase as a color transfer inhibitor.
  • Laccases from fungi, plants and in particular bacteria which have a low redox potential are preferred according to the invention, the standard redox potential of laccases being defined as the potential of the T1 copper center, as described in Mot AC, Silaghi-Dumitrescu R., Laccases : complex architectures for one-electron oxidations., Biochemistry (Moses). 2012 Dec; 77 (12): 1395-407.
  • the redox potential should be less than about 460 mV in order to be classified as low according to the invention.
  • a common method for determining the redox potential is described in the publication by Xu et al. 1996: "Biochimica. A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate speeificity and stability" and Biophysica Acta 1292, 303-31 1.
  • laccases which are the consensus sequence are particularly preferred.
  • HCHx (3) Hx (4) M where x stands for "any amino acid” and the number following the x in brackets indicates the number of arbitrary amino acids.
  • Very particularly preferred laccases according to the invention are those which comprise an amino acid sequence which corresponds to the amino acid sequence shown in SEQ ID NO. 1 or SEQ ID NO. 2 at least 70% and more preferably at least 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90% of the total amino acid sequence. , 90.5%, 91%, 91, 5%, 92%, 92.5%, 93%, 93.5%, 94%, 94.5%, 95%, 95.5%, 96%, 96 , 5%, 97%, 97.5%, 98%, 98.5% and 99% is identical.
  • SEQ ID NO. 1 is the sequence of a B. licheniformis laccase comprising 513 amino acids.
  • SEQ ID NO. Figure 2 is the sequence of a Streptomyces sviceus laccase comprising 325 amino acids.
  • sequence comparison is based on the BLAST algorithm established and commonly used in the prior art (see, for example, Altschul, SF, Gish, W., Miller, W., Myers, EW & Lipman, DJ. (1990) "Basic local alignment search tool.” Biol. 215: 403-410, and Altschul, Stephan F., Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Hheng Zhang, Webb Miller, and David J.
  • Lipman (1997): "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs "; Nucleic Acids Res., 25, pp.3389-3402) and in principle occurs by assigning similar sequences of nucleotides or amino acids in the nucleic acid or amino acid sequences to one another. A tabular assignment of the respective positions is referred to as alignment.
  • Another algorithm available in the prior art is the FASTA algorithm. Sequence comparisons (alignments), in particular multiple sequence comparisons, are created with computer programs.
  • Such a comparison also allows a statement about the similarity of the compared sequences to each other. It is usually given in percent identity, that is, the proportion of identical nucleotides or amino acid residues at the same or in an alignment corresponding positions.
  • the broader concept of homology involves conserved amino acid substitutions in the consideration of amino acid sequences, that is, amino acids with similar chemical activity, as these usually perform similar chemical activities within the protein. Therefore, the similarity of the sequences compared may also be stated as percent homology or percent similarity.
  • Identity and / or homology information can be made about whole polypeptides or genes or only over individual regions. Homologous or identical regions of different nucleic acid or amino acid sequences are therefore defined by matches in the sequences. Such areas often have identical functions.
  • nucleic acid or amino acid sequence can be small and comprise only a few nucleotides or amino acids. Often, such small regions exert essential functions for the overall activity of the protein. It may therefore be useful to relate sequence matches only to individual, possibly small areas. Unless otherwise indicated, identity or homology information in the present application, however, refers to the total length of the particular nucleic acid or amino acid sequence indicated.
  • laccases which can be used in the detergent according to the invention are obtainable from plants, fungi and preferably from bacteria, in particular from Bacilli and Actinomycetes.
  • the natural production quantities of the laccases are often very low. It may therefore be useful to increase production by expressing laccase genes in foreign production hosts.
  • vectors which contain a nucleic acid which codes for a laccase which can be used according to the invention are used for this purpose.
  • These may be DNA or RNA molecules. They can be present as a single strand, as a single strand that is complementary to this single strand, or as a double strand. Especially in the case of DNA molecules, the sequences of both complementary strands must be taken into account in all three possible reading frames. Furthermore, it should be noted that different codons, so base triplets, can code for the same amino acids, so that a particular amino acid sequence can be encoded by several different nucleic acids. The person skilled in the art is able to determine these nucleic acid sequences beyond doubt since, despite the degeneracy of the genetic code, individual codons can be assigned defined amino acids.
  • nucleic acids coding for this amino acid sequence on the basis of an amino acid sequence.
  • one or more codons may be replaced by synonymous codons.
  • This aspect relates in particular to the heterologous expression of the enzymes which can be used according to the invention.
  • every organism for example a host cell of a production strain, has a certain codon usage. Codon usage is understood to mean the translation of the genetic code into amino acids by the particular organism. Bottlenecks in protein biosynthesis can occur if the codons lying on the nucleic acid in the organism face a comparatively small number of loaded tRNA molecules.
  • a person skilled in the art can use well-known methods such as chemical synthesis or the polymerase chain reaction (PCR) in combination with molecular biological and / or proteinchemical standard methods, using known DNA and / or amino acid sequences, the corresponding nucleic acids to complete genes manufacture.
  • PCR polymerase chain reaction
  • Such methods are for example from Sambrook, J., Fritsch, E.F. and Maniatis, T. 2001. Molecular cloning: a laboratory manual, 3rd Edition Cold Spring Laboratory Press.
  • vectors are understood as consisting of nucleic acids which, as a characteristic nucleic acid region, are one for a method according to the invention contain insertable laccase encoding nucleic acid. They are able to establish them as a stable genetic element in a species or cell line over several generations or cell divisions.
  • Vectors, especially when used in bacteria, are special plasmids, ie circular genetic elements.
  • a nucleic acid encoding a laccase which can be used according to the invention is cloned into a vector.
  • the vectors include, for example, those whose origin are bacterial plasmids, viruses or bac teriophages, or predominantly synthetic vectors or plasmids with elements of various origins. With the other genetic elements present in each case, vectors are able to establish themselves as stable units in the relevant host cells over several generations. They may be extrachromosomal as separate units or integrated into a chromosome or chromosomal DNA.
  • Expression vectors comprise nucleic acid sequences which enable them to replicate in the host cells containing them, preferably microorganisms, particularly preferably bacteria, and to express a contained nucleic acid there.
  • expression is influenced by the promoter (s) that regulate transcription.
  • the expression may be effected by the natural promoter originally located in front of the nucleic acid to be expressed, but also by a promoter of the host cell provided on the expression vector or also by a modified or completely different promoter of another organism or another host cell.
  • at least one promoter for the expression of a nucleic acid which can be used for a laccase which can be used according to the invention is made available and used for its expression.
  • expression vectors can be regulatable, for example by changing the culturing conditions or when a specific cell density of the host cells contained therein is reached or by addition of specific substances, in particular activators of gene expression.
  • An example of such a substance is the galactose derivative isopropyl- ⁇ -D-thiogalactopyranoside (IPTG), which is used as an activator of the bacterial lactose operon (lac operon).
  • IPTG galactose derivative isopropyl- ⁇ -D-thiogalactopyranoside
  • lac operon lac operon
  • a nucleic acid encoding a laccase which can be used according to the invention or a vector containing such a nucleic acid is transformed into a microorganism which then serves as the host cell.
  • individual components, ie nucleic acid fragments or fragments of a nucleic acid coding for a laccase which can be used according to the invention can be introduced into a host cell in such a way that the resulting host cell contains such a nucleic acid or such a vector. This procedure is particularly suitable when the host cell already contains one or more constituents of such a nucleic acid or such a vector and the other constituents are then supplemented accordingly.
  • Methods of transforming cells are well established in the art and skilled in the art well known.
  • all cells ie prokaryotic or eukaryotic cells
  • host cells are suitable as host cells.
  • preferred host cells are characterized by good microbiological and biotechnological handling. This concerns, for example, easy culturing, high growth rates, low demands on fermentation media and good production and secretion rates for foreign proteins.
  • Preferred host cells according to the invention secrete the (transgenially) expressed protein into the medium surrounding the host cells.
  • the laccases can be modified by the cells producing them after their production, for example by attachment of sugar molecules, formylations, aminations, etc. Such post-translational modifications can functionally affect the laccases.
  • genetic regulatory elements which are provided, for example, on the vector but which can also be present in these cells from the outset.
  • chemical compounds that serve as activators by changing the culture conditions or when reaching a specific cell density, these can be excited for expression.
  • IPTG IPTG as described above.
  • Preferred host cells are prokaryotic or bacterial cells. Bacteria are characterized by short generation times and low demands on cultivation conditions. As a result, inexpensive cultivation methods or production methods can be established. In addition, the expert has a wealth of experience in bacteria in fermentation technology. For a specific production, gram-negative or gram-positive bacteria may be suitable for a wide variety of reasons to be determined experimentally in individual cases, such as nutrient sources, product formation rate, time requirement, etc.
  • Gram-negative bacteria such as Escherichia coli
  • Gram-negative bacteria can also be designed such that they eject the expressed proteins not only into the periplasmic space but into the medium surrounding the bacterium.
  • gram-positive bacteria such as Bacilli or Actinomycetes or other representatives of Actinomycetales have no outer membrane, so that secreted proteins are released immediately into the medium surrounding the bacteria, usually the nutrient medium, from which the expressed proteins can be purified. You can take off the medium directly isolated or further processed.
  • Gram-positive bacteria are related or identical to most of the organisms of origin for technically important enzymes and usually form even comparable enzymes, so they have a similar codon use and their protein synthesizer is naturally aligned accordingly.
  • the said host cells may be altered with respect to their requirements of the culture conditions, have different or additional selection markers or express other or additional proteins.
  • it may also be those host cells which express several proteins or enzymes transgene.
  • the present invention is applicable in principle to all microorganisms, in particular to all fermentable microorganisms and leads to the fact that can be produced by the use of such microorganisms according to the invention usable laccases.
  • Particularly preferred host cells for obtaining the laccases which can be used according to the invention are bacteria, in particular those selected from the genera Escherichia, Klebsiella, Bacillus, Staphylococcus, Corynebacterium, Arthrobacter, Streptomyces, Stenotrophomonas and Pseudomonas, and in particular Escherichia coli, Klebsiella planticola, Bacillus licheniformis, Bacillus lentus, Bacillus amyloliquefaciens, Bacillus subtilis, Bacillus alcalophilus, Bacillus globigii, Bacillus gibsonii, Bacillus clausii, Bacillus halodurans, Bacillus pumilus, Staphylococcus carnosus, Corynebacterium glutamicum, Arthrobacter oxidans, Streptomyces lividans, Streptomyces coelicolor and Stenotrophomonas maltophili
  • the host cell may also be a eukaryotic cell, which is characterized in that it has a cell nucleus.
  • eukaryotic cells are capable of post-translationally modifying the protein formed. Examples thereof are fungi such as Actinomycetes or yeasts such as Saccharomyces or Kluyveromyces. This may be particularly advantageous, for example, if the proteins are to undergo specific modifications in the context of their synthesis that enable such systems. Modifications that eukaryotic systems perform, especially in connection with protein synthesis, include, for example, the binding of low molecular weight compounds such as membrane anchors or oligosaccharides.
  • Such oligosaccharide modifications may be desirable, for example, for lowering the allergenicity of an expressed protein. Coexpression with the enzymes naturally formed by such cells, such as cellulases or lipases, may also be advantageous. Furthermore, for example, thermophilic fungal expression systems may be particularly suitable for the expression of temperature-resistant proteins or variants.
  • the said host cells are cultivated and fermented in the usual way, for example in discontinuous or continuous systems. In the first case, a suitable nutrient medium is inoculated with the host cells and the product is harvested from the medium after an experimentally determined period of time. Continuous fermentations are characterized by achieving a flow equilibrium, in which over a relatively long period of time cells partly die out but also regrow and at the same time the protein formed can be removed from the medium.
  • Fermentation processes are known per se from the prior art and represent the actual large-scale production step, usually followed by a suitable purification method of the product produced, for example a laccase which can be used according to the invention.
  • Fermentation processes which are characterized in that the fermentation is carried out via a feed strategy, come in particular into consideration.
  • the media components consumed by the ongoing cultivation are fed.
  • considerable increases can be achieved both in the cell density and in the cell mass or dry matter and / or in particular in the activity of the laccase of interest.
  • the fermentation can also be designed so that undesired metabolic products are filtered out or neutralized by the addition of buffer or suitable counterions.
  • the produced laccase can be harvested from the fermentation medium.
  • Such a fermentation process is resistant to isolation of the laccase from the host cell, i. however, requires the provision of suitable host cells or one or more suitable secretion markers or mechanisms and / or transport systems for the host cells to secrete the laccase into the fermentation medium.
  • the isolation of the laccase from the host cell i. a purification of the same from the cell mass, carried out, for example, using conventional methods of enzyme chemistry such as salt precipitation, ultrafiltration, ion exchange chromatography and hydrophobic interaction chromatography.
  • the purification can be monitored by SDS-polyacrylamide gel electrophoreses.
  • the enzyme activity of the purified enzyme at various temperatures and pHs can be determined; similarly, the molecular weight and the isoelectric point can be determined.
  • laccases which have a low redox potential are suitable as DTI in detergents. Laccases with medium or high redox potential do not show the desired DTI effect in detergents and, in addition, frequently darken and intensify stains, which is of course undesirable.
  • concentration of the laccases in the detergent according to the invention is preferably adjusted so that the laccase concentration in the wash liquor is in the range of 0.01 to 10 U / ml, in particular in the range of 0, 1 to 5 U / ml.
  • the detergent according to the invention is preferably used in the temperature range from 5 ° C to 95 ° C, preferably 20 ° C to 60 ° C and particularly preferably 30 ° C to 40 ° C.
  • the detergent of the invention may contain additional mediators to oxidize the dyes in solution at a higher efficiency.
  • Mediators suitable according to the invention are, for example, tempo (2,2,6,6-tetramethyl-1-piperidinyloxy), HBT (1-hydroxybenzotriazole), ABTS (2,2-azinobis-3-ethylbenzothiazole-6-sulphonate), NHA (N- Hydroxy-acetanilide), 2,5-xylidine, ethanol, copper, 4-methylcatechol, N-hydroxyphthalimide, gallic acid, tannic acid, quercetin, syringic acid, guaacol, dimethoxybenzyl alcohol, phenol, violuric acid (isonitrosobarbituric acid), phenol red, bromophenol blue, cellulose , p-cumaric acid, rooibos, o-cresol, dichloroindophenol, hydroxybenzotriazole, cycloheximi
  • Another object of the invention is the use of laccases to avoid or at least reduce the transfer of textile dyes of dyed textiles on undyed or differently colored textiles in their common laundry in particular surfactant-containing aqueous solutions.
  • Particularly preferred laccases are the laccases described for the first subject of the invention.
  • the color transfer-inhibiting laccases make a two-fold contribution to color constancy, that is, they reduce both discoloration and fading, although the effect of preventing staining, especially when washing white textiles, is most pronounced.
  • Another object of the invention is therefore the use of said laccases to avoid the change in the color impression of textiles in their washing in particular surfactant-containing aqueous solutions.
  • the change in the color impression is not the difference between dirty and clean textile to understand, but the difference between each clean textile before and after the washing process.
  • Another object of the invention is a process for washing dyed textiles in surfactant-containing aqueous solutions, which is characterized in that one uses a surfactant-containing aqueous solution containing at least one color transfer-inhibiting laccase.
  • the process is realized in its simplest form by bringing textiles requiring cleaning into contact with the aqueous liquor, it being possible to use a conventional washing machine or to carry out the washing by hand. In such a process, it is possible to wash together with the dyed textile also white or undyed textiles, wherein the coloring of the white or undyed textile is not completely but largely avoided. It is inventively preferred to carry out the process under intensive aeration of the wash liquor, as is the case when using a conventional household washing program.
  • a detergent may contain conventional ingredients compatible with this ingredient.
  • it may, for example, additionally contain a further color transfer inhibitor, then preferably in amounts of 0.1 wt .-% to 2 wt .-%, in particular 0.2 wt .-% to 1 wt .-%, containing in one preferred embodiment is selected from the polymers of vinylpyrrolidone, vinylimidazole, vinylpyridine-N-oxide or the copolymers thereof.
  • polyvinylpyrrolidones having molecular weights of from 15,000 g / mol to 50,000 g / mol and also polyvinylpyrrolidones having higher molecular weights of, for example, up to more than 1,000,000 g / mol, in particular from 1,500,000 g / mol to 4,000,000 g / mol, N-vinylimidazole / N-vinylpyrrolidone copolymers, polyvinyloxazolidones, copolymers based on vinyl monomers and carboxamides, polyesters containing pyrrolidone groups and polyamides, grafted polyamidoamines and polyethyleneimines, polyamine-N-oxide polymers and polyvinyl alcohols.
  • enzymatic systems comprising a peroxidase and hydrogen peroxide or a substance which gives off hydrogen peroxide in water.
  • a mediator compound for the peroxidase for example an acetosy ringone, a phenol derivative or a phenotiazine or phenoxazine, is preferred in this case, whereby also above-mentioned polymeric Farbübertragungsinhibitorwirkstoffe can be used.
  • Polyvinylpyrrolidone preferably has an average molecular weight in the range from 10,000 g / mol to 60,000 g / mol, in particular in the range from 25,000 g / mol to 50,000 g / mol.
  • the copolymers preference is given to those of vinylpyrrolidone and vinylimidazole in a molar ratio of 5: 1 to 1: 1 with an average molar mass in the range from 5,000 g / mol to 50,000 g / mol, in particular 10,000 g / mol to 20,000 g / mol , in preferred embodiments, however, the detergents are free of such additional color transfer inhibitors.
  • Detergents which may be in the form of homogeneous solutions or suspensions, especially in powdered solids, in densified particle form, in granular form, may in principle contain, in addition to the laccases used according to the invention, all known ingredients conventionally used in such compositions.
  • the agents according to the invention may in particular be builder substances, surface-active surfactants, bleaching agents based on organic and / or inorganic compounds Peroxygen compounds, bleach activators, water-miscible organic solvents, enzymes, sequestering agents, electrolytes, pH regulators and other auxiliaries, such as optical brighteners, grayness inhibitors, foam regulators and dyes and fragrances included.
  • compositions preferably comprise one or more surfactants, in particular anionic surfactants, nonionic surfactants and mixtures thereof, but also cationic, zwitterionic and amphoteric surfactants.
  • Suitable nonionic surfactants are in particular alkyl glycosides and ethoxylation and / or propoxylation of alkyl glycosides or linear or branched alcohols each having 12 to 18 carbon atoms in the alkyl moiety and 3 to 20, preferably 4 to 10 alkyl ether groups. Also suitable are ethoxylation and / or propoxylation products of N-alkylamines, vicinal diols, fatty acid esters and fatty acid amides, which correspond to said long-chain alcohol derivatives with respect to the alkyl moiety, and alkylphenols having from 5 to 12 carbon atoms in the alkyl radical ,
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary, alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol residue can be linear or preferably methyl-branched in the 2-position or may contain linear and methyl-branched radicals in the mixture, as they are usually present in Oxoalkoholresten.
  • EO ethylene oxide
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 EO per mole of alcohol are preferred.
  • the preferred ethoxylated alcohols include, for example, C12-C14 alcohols with 3 EO or 4 EO, Cg-Cn alcohols with 7 EO, cis-Cis alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C12-C18 alcohols. Alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of Ci2-Ci4-alcohol with 3 EO and Ci2-Ci8-alcohol with 7 EO.
  • the stated degrees of ethoxylation represent statistical averages, which for a particular product may be an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow rank ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used.
  • examples include (tallow) fatty alcohols with 14 EO, 16 EO, 20 EO, 25 EO, 30 EO or 40 EO.
  • agents for use in mechanical processes usually extremely low-foam compounds are used. These include preferably Ci2-Ci8-alkylpolyethylenglykol-polypropylene glycol ethers each with at 8 mol ethylene oxide and propylene oxide in the molecule.
  • nonionic surfactants also include alkyl glycosides of the general formula RO (G) x are used, in which R is a primary straight-chain or methyl-branched, in particular 2-methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G is a glycose unit with 5 or 6 C atoms, preferably for glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is an arbitrary number - which, as a variable to be determined analytically, may also assume fractional values - between 1 and 10; preferably x is 1, 2 to 1, 4.
  • R i -CO-N- [Z] in which R is CO for an aliphatic acyl radical having 6 to 22 carbon atoms, R 2 is hydrogen, an alkyl or hydroxyalkyl radical having 1 to 4 carbon atoms and [Z] for a linear or branched polyhydroxyalkyl radical 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are preferably derived from reducing sugars having 5 or 6 carbon atoms, in particular from glucose.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula
  • R 3 -CO-N- [Z] in the R 3 is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 4 is a linear, branched or cyclic alkylene radical or an arylene radical having 2 to 8 carbon atoms
  • R 5 is a linear, branched or cyclic alkyl radical or an aryl radical or an oxyalkyl radical having 1 to 8 carbon atoms, preference being given to C 1 -C 4 -alkyl or phenyl radicals
  • [Z] is a linear polyhydroxyalkyl radical whose alkyl chain is at least is substituted two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated derivatives of this group.
  • [Z] is also obtained here preferably by reductive amination of a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • Another class of preferred nonionic surfactants used either as the sole nonionic surfactant or in combination with other nonionic surfactants, in particular together with alkoxylated fatty alcohols and / or alkyl glycosides.
  • alkoxylated preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably having 1 to 4 carbon atoms in the alkyl chain, in particular fatty acid methyl esters.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides may also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half thereof.
  • Other suitable surfactants are so-called gemini surfactants.
  • gemini surfactants are, for example, sulfated hydroxy mixed ethers or dimer alcohol bis- and trimer alcohol tris sulfates and ether sulfates
  • End-capped dimeric and trimeric mixed ethers are notable in particular for their bi- and multifunctional nature, in which the end-capped surfactants have good wetting properties there Low foaming, so that they are particularly suitable for use in machine washing or cleaning processes.
  • Suitable anionic surfactants are in particular soaps and those which contain sulfate or sulfonate groups.
  • Preferred surfactants of the sulfonate type are C 9 -C 13 -alkylbenzenesulfonates, olefinsulfonates, ie mixtures of alkene and hydroxyalkanesulfonates and also disulfonates, such as are obtained, for example, from C 12 -C 18 -monoolefins having terminal or internal double bonds by sulfonation gaseous sulfur trioxide and subsequent alkaline or acid hydrolysis of the sulfonation obtained.
  • alkanesulfonates which are obtained from C 12 -alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • esters of ⁇ -sulfo fatty acids esters of ⁇ -sulfo fatty acids (ester sulfonates), for example the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids obtained by ⁇ -sulfonation of the methyl esters of fatty acids of plant and / or animal origin with 8 to 20 C -Atomen in the fatty acid molecule and subsequent neutralization to water-soluble mono-salts are prepared, into consideration.
  • ⁇ -sulfonated esters of hydrogenated coconut, palm, palm kernel or tallow fatty acids although sulfonated products of unsaturated fatty acids, for example oleic acid, in small amounts, preferably in amounts not above about 2 to 3 wt .-%, can be present.
  • ⁇ -sulfofatty acid alkyl esters which have an alkyl chain with not more than 4 C atoms in the ester group, for example methyl ester, ethyl ester, propyl ester and butyl ester.
  • the methyl esters of ⁇ -sulfofatty acids (MES), but also their saponified salts, are used with particular advantage.
  • Suitable anionic surfactants are sulfated fatty acid glycerol esters, which are mono-, di- and triesters and mixtures thereof, as in the preparation by esterification by a monoglycerol with 1 to 3 moles of fatty acid or in the transesterification of triglycerides with 0.3 to 2 moles of glycerol to be obtained.
  • alk (en) ylsulfates are the alkali metal salts and, in particular, the sodium salts of the sulfuric monoesters of C 12-18 fatty alcohols, for example coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 10 -C 20 oxo alcohols and those half esters of secondary alcohols this chain length is preferred. Also preferred are alk (en) ylsulfates of said chain length which contain a synthetic, straight-chain alkyl radical which is prepared on a petrochemical basis and has an analogous decomposition behavior to the adequate compounds based on oleochemical raw materials.
  • Ci2-Ci6-Alkylsul- fate and Ci2-Ci5-alkyl sulfates and Cw-Cis-alkyl sulfates are particularly preferred.
  • 2,3-alkyl sulphates which can be obtained as commercial products of the Shell Oil Company under the name DAN®, are suitable anionic surfactants.
  • the sulfuric acid monoesters of the straight-chain or branched C 7 -C 20 -alcohols ethoxylated with from 1 to 6 mol of ethylene oxide such as 2-methyl-branched C 9 -C 20 -alcohols having on average 3.5 mol of ethylene oxide (EO) or C 12 -C 18 -fatty alcohols with 1 to 4 EO.
  • EO ethylene oxide
  • the preferred anionic surfactants also include the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters, and which are monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • alcohols preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain Cs to Ci8 fatty alcohol residues or mixtures of these.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue derived from ethoxylated fatty alcohols, which by themselves are nonionic surfactants.
  • Sulfosuccinates whose fatty alcohol residues are derived from ethoxylated fatty alcohols with a narrow homolog distribution, are again particularly preferred.
  • alk (en) ylsuccinic acid having preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • Suitable further anionic surfactants are fatty acid derivatives of amino acids, for example N-methyltaurine (Tauride) and / or N-methylglycine (sarcosides).
  • sarcosides or the sarcosinates and here especially sarcosinates of higher and optionally monounsaturated or polyunsaturated fatty acids such as oleyl sarcosinate.
  • anionic surfactants are particularly soaps into consideration.
  • Particularly suitable are saturated fatty acid soaps, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid and, in particular, soap mixtures derived from natural fatty acids, for example coconut, palm kernel or tallow fatty acids. Together with these soaps or as a substitute for soaps, it is also possible to use the known alkenylsuccinic acid salts.
  • the anionic surfactants may be in the form of their sodium, potassium or ammonium salts and as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably present in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • Surfactants are present in detergents in proportions of normally from 1% by weight to 50% by weight, in particular from 5% by weight to 30% by weight.
  • a detergent preferably contains at least one water-soluble and / or water-insoluble, organic and / or inorganic builder.
  • the water-soluble organic builder substances include polycarboxylic acids, in particular citric acid and sugar acids, monomeric and polymeric aminopolycarboxylic acids, especially glycinediacetic acid, methylglycinediacetic acid, nitrilotriacetic acid, iminodisuccinates such as ethylenediamine-N, N'-disuccinic acid and hydroxyiminodisuccinates, ethylenediaminetetraacetic acid and polyaspartic acid, polyphosphonic acids, in particular aminotris (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), lysintetra (methylenephosphonic acid) and 1-hydroxyethane-1, 1-diphosphonic acid, polymeric hydroxy compounds such as dextrin and also polymeric (poly) carboxylic acids, in particular polycarboxy
  • the relative average molecular weight of the homopolymers of unsaturated carboxylic acids is generally between 5,000 g / mol and 200,000 g / mol, that of the copolymers between 2,000 g / mol and 200,000 g / mol, preferably 50,000 g / mol to 120,000 g / mol, in each case based on the free acid.
  • a particularly preferred acrylic acid-maleic acid copolymer has a relative average molecular weight of 50,000 to 100,000.
  • Suitable, although less preferred, compounds of this class are copolymers of acrylic acid or methacrylic acid with vinyl ethers, such as vinylmethyl ethers, vinyl esters, ethylene, propylene and styrene, in which the proportion of the acid is at least 50% by weight.
  • vinyl ethers such as vinylmethyl ethers, vinyl esters, ethylene, propylene and styrene
  • terpolymers which contain two unsaturated acids and / or salts thereof as monomers and vinyl alcohol and / or a vinyl alcohol derivative or a carbohydrate as the third monomer.
  • the first acidic monomer or its salt is derived from a monoethylenically unsaturated C3-Cs-carboxylic acid and preferably from a C3-C4-monocarboxylic acid, in particular from (meth) -acrylic acid.
  • the second acidic monomer or its salt may be a derivative of a C4-Cs-dicarboxylic acid, with maleic acid being particularly preferred.
  • the third monomeric unit is formed in this case of vinyl alcohol and / or preferably an esterified vinyl alcohol.
  • Preferred polymers contain from 60% by weight to 95% by weight, in particular from 70% by weight to 90% by weight, of (meth) acrylic acid or (meth) acrylate, particularly preferably acrylic acid or acrylate, and maleic acid or Maleinate and 5 wt .-% to 40 wt .-%, preferably 10 wt .-% to 30 wt .-% of vinyl alcohol and / or vinyl acetate.
  • Very particular preference is given to polymers in which the weight ratio of (Meth) acrylic acid or (meth) acrylate to maleic acid or maleate between 1: 1 and 4: 1, preferably between 2: 1 and 3: 1 and in particular 2: 1 and 2.5: 1. Both the amounts and the weight ratios are based on the acids.
  • the second acidic monomer or its salt may also be a derivative of an allylsulfonic acid substituted in the 2-position with an alkyl radical, preferably with a C 1 -C 4 -alkyl radical, or an aromatic radical which is preferably derived from benzene or benzene derivatives is.
  • Preferred terpolymers contain from 40% by weight to 60% by weight, in particular from 45 to 55% by weight, of (meth) acrylic acid or (meth) acrylate, particularly preferably acrylic acid or acrylate, from 10% by weight to 30% by weight.
  • % preferably 15 wt .-% to 25 wt .-% methallyl sulfonic acid or Methallylsulfonat and as the third monomer 15 wt .-% to 40 wt .-%, preferably 20 wt .-% to 40 wt .-% of a carbohydrate
  • This carbohydrate may be, for example, a mono-, di-, oligo- or polysaccharide, mono-, di- or oligosaccharides being preferred. Particularly preferred is sucrose.
  • the use of the third monomer presumably incorporates predetermined breaking points into the polymer which are responsible for the good biodegradability of the polymer.
  • terpolymers generally have a relative average molecular weight between 1,000 g / mol and 200,000 g / mol, preferably between 200 g / mol and 50,000 g / mol.
  • Further preferred copolymers are those which contain acrolein and acrylic acid / acrylic acid salts or vinyl acetate as monomers.
  • the organic builders can, in particular for the preparation of liquid agents, in the form of aqueous solutions, preferably in the form of 30 to 50 weight percent aqueous solutions are used. All of the acids mentioned are generally used in the form of their water-soluble salts, in particular their alkali metal salts.
  • organic builder substances may be present in amounts of up to 40% by weight, in particular up to 25% by weight and preferably from 1% by weight to 8% by weight. Quantities close to the stated upper limit are preferably used in pasty or liquid, in particular hydrous, agents.
  • Suitable water-soluble inorganic builder materials are, in particular, polyphosphates, preferably sodium triphosphate.
  • water-insoluble inorganic builder materials are in particular crystalline or amorphous, water-dispersible alkali metal aluminosilicates, in amounts not exceeding 25 wt .-%, preferably from 3 wt .-% to 20 wt .-% and in particular in amounts of 5 wt .-% to 15 wt. -% used.
  • preference is given to the detergent-grade crystalline sodium aluminosilicate in particular zeolite A, zeolite P and zeolite MAP and optionally zeolite X.
  • Amounts near the above upper limit are preferably used in solid, particulate agents.
  • suitable aluminosilicates have no particles with a particle size greater than 30 ⁇ m, and preferably consist of at least 80% by weight of particles having a size of less than 10 ⁇ m.
  • Their calcium binding inhibitor is usually in the range of 100 to 200 mg CaO per gram.
  • further water-soluble inorganic builder materials may be included.
  • polyphosphates such as sodium triphosphate, these include in particular the water-soluble crystalline and / or amorphous alkali metal silicate builders.
  • Such water-soluble inorganic builder materials are preferably present in the compositions in amounts of from 1% to 20% by weight, in particular from 5% to 15% by weight.
  • the alkali metal silicates useful as builder materials preferably have a molar ratio of alkali oxide to SiO 2 below 0.95, in particular from 1: 1, 1 to 1: 12, and may be amorphous or crystalline.
  • Preferred alkali metal silicates are the sodium silicates, in particular the amorphous sodium silicates, with a molar ratio of Na 2 O: SiO 2 of from 1: 2 to 1: 2.8.
  • Crystalline silicates which may be present alone or in a mixture with amorphous silicates are preferably crystalline phyllosilicates of the general formula Na.sub.2SixO.sub.2.sup.x + H.sub.2O.sub.2, in which x, the so-called modulus, is a number from 1.9 to 4 and y is a number from 0 is up to 20 and preferred values for x are 2, 3 or 4.
  • Preferred crystalline phyllosilicates are those in which x in the abovementioned general formula assumes the values 2 or 3. In particular, both .beta.
  • .delta.-sodium disilicates Na.sub.2Si.sub.20.sub.y H.sub.2O
  • amorphous alkali silicates practically anhydrous crystalline alkali metal silicates of the above general formula in which x is a number from 1, 9 to 2, 1, can be used in the compositions.
  • a crystalline sodium layer silicate with a modulus of 2 to 3 is used, as can be prepared from sand and soda.
  • Sodium silicates with a modulus in the range of 1.9 to 3.5 are used in another embodiment.
  • a granular compound of alkali silicate and alkali carbonate is used, as it is commercially available, for example, under the name Nabion® 15.
  • Suitable bleaching agents are those based on chlorine, in particular alkali hypochlorite, dichloroisocyanuric acid, trichloroisocyanuric acid and salts thereof, but in particular also those based on persuurs.
  • Suitable peroxygen compounds are, in particular, organic peracids or persaltic salts of organic acids, such as phthalimidopercaproic acid, perbenzoic acid, monoperoxyphthalic acid, and diperdodecanedioic acid and their salts, such as magnesium monoperoxyphthalate, hydrogen peroxide and inorganic salts releasing hydrogen peroxide under the conditions of use, such as perborate, percarbonate and / or persilicate, and Hydrogen peroxide inclusion compounds such as H 2 O 2 urea adducts.
  • Hydrogen peroxide can also be produced by means of an enzymatic system, ie an oxidase and its substrate.
  • solid peroxygen compounds ie an oxidase and its substrate.
  • solid peroxygen compounds can be used in the form of powders or granules, which can also be enveloped in a manner known in principle.
  • alkali metal percarbonate, alkali metal perborate monohydrate or hydrogen peroxide in the form of aqueous solutions which contain from 3% by weight to 10% by weight of hydrogen peroxide.
  • a detergent contains peroxygen compounds, they are present in amounts of preferably up to 25% by weight, more preferably from 1% to 20% and most preferably from 7% to 20% by weight.
  • peroxycarboxylic acid-yielding compound in particular compounds which give under perhydrolysis conditions optionally substituted perbenzoic acid and / or aliphatic peroxycarboxylic acids having 1 to 12 C-atoms, in particular 2 to 4 C-atoms, alone or in mixtures, are used.
  • Suitable bleach activators which carry O- and / or N-acyl groups, in particular of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexa-hydro-1,3,5-triazine (DADHT ), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates or carboxylates or the sulfonic or carboxylic acids of these, in particular nonanoyl or isononanoyl or lauroylbenzenesulfonate (NOBS or iso-NOBS or LOBS) or decanoyloxybenzoate (DOBA) their formal carbonic acid ester derivatives such as 4- (2-decanoyloxyethoxycarbonyloxy)
  • bleach-activating compounds such as nitriles, from which perimide acids form under perhydrolysis conditions may be present.
  • nitriles include in particular aminoacetonitrile derivatives with quaternized nitrogen atom according to the formula
  • R 3 in the R represents -H, -CH 3 , a C2-24-alkyl or alkenyl radical, a substituted Ci-24-alkyl or C2-24-alkenyl radical having at least one substituent from the group -Cl, -Br , -OH, -NH2, -CN and -N (+) -CH2-CN, an alkyl or alkenylaryl radical having a Ci-24-alkyl group, or for a substituted alkyl or alkenylaryl radical having at least one, preferably two, optionally substituted Ci-24-alkyl group (s) and optionally further substituents on the aromatic ring, R 2 and R 3 are independently selected from -CH 2-CN, -CH 3, -CH 2 -CH 3, -CH 2 -CH 2 -CH 3, -CH ( CH 3 ) -CH 3 , -CH 2 -OH, -CH 2 -CH 2 -OH, -CH (OH) -CH 3 ,
  • transition metal complexes are preferably selected from the cobalt, iron, copper, titanium, vanadium, manganese and ruthenium complexes.
  • Suitable ligands in such transition metal complexes are both inorganic and organic compounds, which in addition to carboxylates in particular compounds having primary, secondary and / or tertiary amine and / or alcohol functions, such as pyridine, pyridazine, pyrimidine, pyrazine, imidazole, pyrazole , triazole, 2,2 '-bispyridylamine, tris (2-pyridylmethyl) amine, 1, 4,7-triazacyclononane, 1, 4,7-trimethyl-1, 4,7-triazacyclononane, 1, 5,9-trimethyl -1, 5,9-triazacyclododecane, (bis ((1-methylimidazol-2-yl) methyl)) - (2-pyridyl
  • the inorganic neutral ligands include in particular ammonia and water. If not all coordination sites of the transition metal central atom are occupied by neutral ligands, the complex contains further, preferably anionic and among these in particular mono- or bidentate ligands. These include in particular the halides such as fluoride, chloride, bromide and iodide, and the (NO 2) - group, that is, a nitro ligand or a nitritol ligand.
  • the (NO 2) - group may also be attached to a transition metal be chelate-bound or it may have two transition metal atoms asymmetrically or r
  • the transition metal complexes may carry further, generally simpler ligands, in particular mono- or polyvalent anion ligands.
  • ligands for example, nitrate, actetate, trifluoroacetate, formate, carbonate, citrate, oxalate, perchlorate and complex anions such as hexafluorophosphate are possible.
  • the anion ligands should provide charge balance between the transition metal central atom and the ligand system.
  • the presence of oxo ligands, peroxo ligands and imino ligands is also possible.
  • such ligands can also act bridging, so that polynuclear complexes arise.
  • both metal atoms in the complex need not be the same.
  • the use of binuclear complexes in which the two transition metal central atoms have different oxidation states is also possible. If anion ligands are missing or the presence of anionic Otherwise, in order to charge balance in the complex, anionic counterions which neutralize the cationic transition metal complex are present in the transition metal complex compounds to be used according to the invention.
  • anionic counterions include in particular nitrate, hydroxide, hexafluorophosphate, sulfate, chlorate, perchlorate, the halides such as chloride or the anions of carboxylic acids such as formate, acetate, oxalate, benzoate or citrate.
  • transition metal complex compounds are , 4,7-trimethyl-1, 4,7-triazacyclononane) -di-hexafluorophosphate, [N, N'-bis [(2-hydroxy-5-vinylphenyl) -methylene] -1, 2-diaminocyclohexane] -manganese (III) chloride, [N, N'-bis [(2-hydroxy-5-nitrophenyl) methylene] -1,2-diamino-cyclohexane] manganese (III) acetate, [N, N'- Bis [(2-hydroxyphenyl) methylene] -1,2-phenylenediamine] manganese (III) acetate, [N, N'-bis [(2-hydroxyphenyl) methylene] -1,2-diaminocyclohexane] - manganese (III) chloride, [N, N'-bis [(2-hydroxyphenyl) methylene] -1, 2-dia
  • Enzymes which can be used in the compositions in addition to the laccases mentioned are those from the class of amylases, proteases, lipases, cutinases, pullulanases, hemicellulases, cellulases, oxidases and peroxidases, and also mixtures thereof.
  • the use of one or more other laccases or multi-copper oxidases in addition to the said laccases is possible according to the invention.
  • enzymatic agents obtained from fungi or bacteria such as Bacillus subtilis, Bacillus licheniformis, Bacillus lentus, Streptomyces griseus, Humicola lanuginosa, Humicola insolens, Pseudomonas pseudoalcaligenes, Pseudomonas cepacia or Coprinus cinereus.
  • the enzymes may be adsorbed to carriers and / or embedded in encapsulants to protect against premature inactivation. They are preferably present in the detergents or cleaners according to the invention in amounts of up to 5% by weight, in particular from 0.2% by weight to 4% by weight.
  • the agent of the invention contains protease, it preferably has a proteolytic activity in the range of about 100 PE / g to about 10,000 PE / g, in particular 300 PE / g to 8000 PE / g. If several enzymes are to be used in the agent according to the invention, this can be carried out by incorporation of the two or more separate or in a known manner separately prepared enzymes or by two or more enzymes formulated together in a granule.
  • usable organic solvents in addition to water include alcohols having 1 to 4 carbon atoms, in particular methanol, ethanol, isopropanol and tert-butanol, diols having 2 to 4 C Atoms, in particular ethylene glycol and propylene glycol, and mixtures thereof, and binding classes of derivable ethers.
  • Such water-miscible solvents are preferably present in the compositions according to the invention in amounts of not more than 30% by weight, in particular from 6% by weight to 20% by weight.
  • compositions of the invention system and environmentally friendly acids especially citric acid, acetic acid, tartaric acid, malic acid, lactic acid, glycolic acid, succinic acid, glutaric acid and / or Adipic acid, but also mineral acids, in particular sulfuric acid, or bases, in particular ammonium or alkali hydroxides.
  • pH regulators are present in the compositions according to the invention in amounts of preferably not more than 20% by weight, in particular from 1.2% by weight to 17% by weight.
  • Graying inhibitors have the task of keeping suspended from the textile fiber dirt suspended in the fleet.
  • Water-soluble colloids of mostly organic nature are suitable for this purpose, for example starch, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or of cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • water-soluble polyamides containing acidic groups are suitable for this purpose.
  • starch derivatives can be used, for example aldehyde starches.
  • cellulose ethers such as carboxymethylcellulose (sodium salt), methylcellulose, hydroxyalkylcellulose and mixed ethers, such as methylhydroxyethylcellulose, methylhydroxypropylcellulose, methylcarboxymethylcellulose and mixtures thereof, for example in amounts of from 0.1 to 5% by weight, based on the compositions used.
  • Detergents may contain, for example, derivatives of diaminostilbenedisulfonic acid or their alkali metal salts as optical brighteners, although they are preferably free of optical brighteners for use as color washing agents.
  • optical brighteners for use as color washing agents.
  • salts of 4,4'-bis (2-anilino-4-morpholino-1, 3,5-triazinyl-6-amino) stilbene-2,2'-disulphonic acid or similarly constructed compounds which are substituted for the morpholino Group carry a diethanolamino group, a methylamino group, an anilino group or a 2-methoxyethylamino group.
  • brighteners of the substituted diphenylstyrene type may be present, for example, the alkali salts of 4,4'-bis (2-sulfostyryl) -diphenyl, 4,4'-bis (4-chloro-3-sulfostyryl) -diphenyl, or 4 - (4-chlorostyryl) -4 '- (2-sulfostyryl) -diphenyls. Mixtures of the aforementioned optical brightener can be used.
  • Suitable foam inhibitors are, for example, soaps of natural or synthetic origin, which have a high proportion of cis-C24 fatty acids.
  • Suitable non-surfactant foam inhibitors are, for example, organopolysiloxanes and their mixtures. see with microfine, optionally silanized silica and paraffins, waxes, microcrystalline waxes and their mixtures with silanated silica or Bisfettklarealkylendiamiden. It is also advantageous to use mixtures of various foam inhibitors, for example those of silicones, paraffins or waxes.
  • the foam inhibitors in particular silicone and / or paraffin-containing foam inhibitors, are bound to a granular, water-soluble or dispersible carrier substance.
  • a granular, water-soluble or dispersible carrier substance In particular, mixtures of paraffins and bistearylethylenediamide are preferred.
  • compositions having an increased bulk density in particular in the range from 650 g / l to 950 g / l, a process comprising an extrusion step is preferred.
  • compositions in tablet form which may be monophasic or multiphase, monochromatic or multicolor and in particular consist of one or more layers, in particular two layers
  • the procedure is preferably such that all components - optionally one layer at a time - in a mixer mixed together and the mixture by means of conventional tablet presses, such as eccentric or rotary presses, pressed with compressive forces in the range of about 50 to 100 kN, preferably at 60 to 70 kN.
  • a tablet produced in this way has a weight of 10 g to 50 g, in particular 15 g up to 40 g.
  • the spatial form of the tablets is arbitrary and can be round, oval or angular, with intermediate forms are also possible. Corners and edges are advantageously rounded. Round tablets preferably have a diameter of 30 mm to 40 mm.
  • the size of rectangular or cuboid-shaped tablets, which are introduced predominantly via the metering device of the washing machine, is dependent on the geometry and the volume of this metering device.
  • Exemplary preferred embodiments have a base area of (20 to 30 mm) x (34 to 40 mm), in particular of 26x36 mm or 24x38 mm.
  • Liquid or pasty compositions in the form of conventional solvent-containing solutions are usually prepared by simply mixing the ingredients, which can be added in bulk or as a solution in an automatic mixer.
  • the detergents described herein in particular the described low-water to anhydrous liquid detergents, can be filled into a water-soluble casing and thus be part of a water-soluble packaging.
  • the content of water be less than 10% by weight, based on the total detergent, and that anionic surfactants, if present, be in the form of their ammonium salts.
  • low-water detergents can be prepared which are directly suitable for use in water-soluble wraps.
  • a water-soluble packaging contains, in addition to the detergent, a water-soluble coating.
  • the water-soluble coating is preferably formed by a water-soluble film material.
  • Such water soluble packages can be made by either vertical form fill seal (VFFS) or thermoforming techniques.
  • VFFS vertical form fill seal
  • the thermoforming process generally includes forming a first layer of water-soluble sheet material to form protrusions for receiving a composition therein, filling the composition into the protrusions, covering the composition-filled protrusions with a second layer of water-soluble sheet material, and sealing the first and second layers at least around the bulges.
  • the water-soluble coating is preferably formed from a water-soluble film material selected from the group consisting of polymers or polymer blends.
  • the wrapper may be formed of one or two or more layers of the water-soluble film material.
  • the water-soluble film material of the first layer and the further layers, if present, may be the same or different.
  • the water-soluble package comprising the detergent and the water-soluble wrapper may have one or more chambers.
  • the liquid detergent may be contained in one or more chambers, if any, of the water-soluble coating.
  • the amount of liquid detergent preferably corresponds to the full or half dose needed for a wash. It is preferred that the water-soluble casing contain polyvinyl alcohol or a polyvinyl alcohol copolymer.
  • Suitable water-soluble films for producing the water-soluble coating are preferably based on a polyvinyl alcohol or a polyvinyl alcohol copolymer whose molecular weight is in the range of 10,000 to 1,000,000 g / mol, preferably 20,000 to 500,000 g / mol, more preferably 30,000 to 100,000 g / mol, and especially from 40,000 to 80,000 g / mol.
  • a film material suitable for producing the water-soluble coating may contain polymers selected from the group comprising acrylic acid-containing polymers, polyacrylamides, oxazoline polymers, polystyrene sulfonates, polyurethanes, polyesters, polyether polylactic acid, and / or mixtures of the above polymers.
  • Preferred polyvinyl alcohol copolymers include, in addition to vinyl alcohol, dicarboxylic acids as further monomers.
  • Suitable dicarboxylic acids are itaconic acid, malonic acid, succinic acid and mixtures thereof, with itaconic acid being preferred.
  • polyvinyl alcohol copolymers comprise, in addition to vinyl alcohol, an ethylenically unsaturated carboxylic acid, its salt or its esters.
  • Such polyvinyl alcohol copolymers particularly preferably contain, in addition to vinyl alcohol, acrylic acid, methacrylic acid, acrylates, methacrylic esters or mixtures thereof.
  • Suitable water-soluble films for use in the casings of the water-soluble packaging according to the invention are films sold by the company MonoSol LLC, for example under the designation M8630, C8400 or M8900.
  • Other suitable films include films named Solublon® PT, Solublon® GA, Solublon® KC or Solublon® KL from Aicello Chemical Europe GmbH or the films VF-HP from Kuraray.
  • the water-soluble packages may have a substantially dimensionally stable spherical and crescent-shaped configuration with a circular, elliptical, square or rectangular basic shape.
  • the water soluble package may include one or more chambers for storing one or more agents. If the water-soluble packaging has two or more chambers, at least one chamber contains a liquid detergent. The other chambers may each contain a solid or a liquid detergent. Examples:
  • Example 1 Use of two bacterial laccases as DTI
  • Two bacterial laccases with SEQ ID NOs: 1 and 2 were tested for their suitability as DTI as follows.
  • the protein region of importance for the redox potential is indicated below, with conserved amino acids being marked by bold type.
  • amino acid M (methionine) marked by boldface is of importance for the low redox potential.
  • a staining scale rating which is based on ISO 105-A04, was carried out.
  • two white fabrics (A: 6 * 16 cm standard cotton fabric wfk, B: 6 * 16 cm standard polyamide fabric) were used in batches of 100 ml each with a color donor (Direct Red 83: 1, Hohenstein) whose concentration was 0, 3 g / tissue flap was, using a commercially available, liquid and dye transfer inhibitor-free detergent composition (dosage 5.21 g / l) and adding (approach 2) 100 U laccase 1 (SEQ ID NO: 1) or (approach 3 ) 100 U laccase 2 (SEQ ID NO: 2) in a Linitest Plus device from Atlas according to the Hohenstein method (analogous to ISO 105 C06) for 30 minutes at 50 ° C, incubated at 40 rpm / min and then with Rinsed water (16 ° DH) and dried hanging at room temperature.
  • SSR staining scale rating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Detergent Compositions (AREA)

Abstract

La présente invention concerne l'utilisation de certaines laccases en tant qu'agents actifs d'inhibition de transfert de couleur pour le lavage de textiles, et des détergents contenant lesdites laccases.
EP15724676.0A 2014-06-05 2015-05-27 Détergents contenant au moins une laccase en tant qu'inhibiteur de transfert de couleur Withdrawn EP3152289A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014210791.1A DE102014210791A1 (de) 2014-06-05 2014-06-05 Waschmittel, enthaltend mindestens eine Laccase als Farbübertragungsinhibitor
PCT/EP2015/061622 WO2015185393A1 (fr) 2014-06-05 2015-05-27 Détergents contenant au moins une laccase en tant qu'inhibiteur de transfert de couleur

Publications (1)

Publication Number Publication Date
EP3152289A1 true EP3152289A1 (fr) 2017-04-12

Family

ID=53267370

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15724676.0A Withdrawn EP3152289A1 (fr) 2014-06-05 2015-05-27 Détergents contenant au moins une laccase en tant qu'inhibiteur de transfert de couleur

Country Status (5)

Country Link
US (1) US20170267947A1 (fr)
EP (1) EP3152289A1 (fr)
KR (1) KR20170016428A (fr)
DE (1) DE102014210791A1 (fr)
WO (1) WO2015185393A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035038A1 (fr) * 2017-08-18 2019-02-21 The Procter & Gamble Company Agent de nettoyage
EP3444323A1 (fr) 2017-08-18 2019-02-20 The Procter & Gamble Company Trousse de nettoyage

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5912405A (en) * 1994-09-27 1999-06-15 Novo Nordisk A/S Enhancers such as acetosyringone
MA24178A1 (fr) * 1996-05-13 1997-12-31 Procter & Gamble Composition detergente comprenant un enzyme cellulase et un enzyme laccase
AU9257998A (en) * 1997-09-08 1999-03-29 Unilever N.V. Method for enhancing the activity of an enzyme
TW200948964A (en) * 2008-04-17 2009-12-01 Novozymes As Laccase variants
PL2756076T3 (pl) * 2011-09-15 2017-10-31 Metgen Oy Warianty enzymu o ulepszonych właściwościach

Also Published As

Publication number Publication date
WO2015185393A1 (fr) 2015-12-10
DE102014210791A1 (de) 2015-12-17
KR20170016428A (ko) 2017-02-13
US20170267947A1 (en) 2017-09-21

Similar Documents

Publication Publication Date Title
DE102007033104A1 (de) Mittel enthaltend Proteasen aus Stenotrophomonas maltophilia
DE102014221889B4 (de) Waschmittel mit Mannosylerythritollipid, Verstärkung der Reinigungsleistung von Waschmitteln durch Mannosylerythritollipid, und Waschverfahren unter Einsatz von Mannosylerythritollipid
WO2008110469A1 (fr) Détergent protégeant les couleurs
EP3143115B1 (fr) Agent de lavage et de nettoyage avec des performances de blanchiment amélioré
EP1084217B1 (fr) Detergents contenant une amylase et des derives d'acetonitrile
WO2015185393A1 (fr) Détergents contenant au moins une laccase en tant qu'inhibiteur de transfert de couleur
EP3212751A1 (fr) Procédé de lavage de textiles dans une machine à laver pourvue d'un dispositif d'activation
WO2018210591A1 (fr) Produits lessiviels protégeant les couleurs
EP3303572B1 (fr) Détergent contenant au moins une laccase, dont la performance de lavage est améliorée
DE102015210369A1 (de) Waschmittel mit verbesserter Waschleistung, enthaltend mindestens eine Laccase
DE102015210370A1 (de) Waschmittel mit verbesserter Waschleistung, enthaltend mindestens eine Laccase
DE102015210367A1 (de) Waschmittel mit verbesserter Waschleistung, enthaltend mindestens eine Laccase
DE102015210368A1 (de) Waschmittel mit verbesserter Waschleistung, enthaltend mindestens eine Laccase
DE102012219403A1 (de) Farbschützende Waschmittel
DE102013021276A1 (de) Farbschützende Waschmittel
EP1084220A1 (fr) Detergents contenant une amylase et un acide percarboxylique
EP2961820B1 (fr) Agents lavants n'altérant pas les couleurs
DE102014218507A1 (de) Spinnenseidenproteine als Enzymstabilisatoren
EP3204480A1 (fr) Procédé de lavage de textiles dans une machine à laver pourvue d'un dispositif d'activation
EP3331856B1 (fr) Nouveaux tensioactifs anioniques, et détergents les contenant
EP4353806A1 (fr) Mélanges de tensioactifs
WO2020002187A1 (fr) Détergent contenant des laccases ayant une performance de nettoyage améliorée
DE102014218503A1 (de) Proteinhaltiges Waschmittel
EP3009498A2 (fr) Lessive protegeant les couleurs
DE102014220662A1 (de) Farbschützende Waschmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20161114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20181201